Sample records for observed genetic differences

  1. From observational to dynamic genetics

    PubMed Central

    Haworth, Claire M. A.; Davis, Oliver S. P.

    2014-01-01

    Twin and family studies have shown that most traits are at least moderately heritable. But what are the implications of finding genetic influence for the design of intervention and prevention programs? For complex traits, heritability does not mean immutability, and research has shown that genetic influences can change with age, context, and in response to behavioral and drug interventions. The most significant implications for intervention will come when we move from observational genetics to investigating dynamic genetics, including genetically sensitive interventions. Future interventions should be designed to overcome genetic risk and draw upon genetic strengths by changing the environment. PMID:24478793

  2. The genetic difference principle.

    PubMed

    Farrelly, Colin

    2004-01-01

    In the newly emerging debates about genetics and justice three distinct principles have begun to emerge concerning what the distributive aim of genetic interventions should be. These principles are: genetic equality, a genetic decent minimum, and the genetic difference principle. In this paper, I examine the rationale of each of these principles and argue that genetic equality and a genetic decent minimum are ill-equipped to tackle what I call the currency problem and the problem of weight. The genetic difference principle is the most promising of the three principles and I develop this principle so that it takes seriously the concerns of just health care and distributive justice in general. Given the strains on public funds for other important social programmes, the costs of pursuing genetic interventions and the nature of genetic interventions, I conclude that a more lax interpretation of the genetic difference principle is appropriate. This interpretation stipulates that genetic inequalities should be arranged so that they are to the greatest reasonable benefit of the least advantaged. Such a proposal is consistent with prioritarianism and provides some practical guidance for non-ideal societies--that is, societies that do not have the endless amount of resources needed to satisfy every requirement of justice.

  3. Genetic differences in juvenile Shumard oak

    Treesearch

    William J. Gabriel

    1958-01-01

    This is a report on the genetic differences observed among seedlings of four seed collections of Shumard oak (Quercus shumardii var. shumardii) during the first 2 years of growth. It is based on data from replicated seedbed and nursery plots at the Michaux Quercetum.

  4. Genetic Differences and School Readiness

    ERIC Educational Resources Information Center

    Dickens, William T.

    2005-01-01

    The author considers whether differences in genetic endowment may account for racial and ethnic differences in school readiness. While acknowledging an important role for genes in explaining differences "within" races, he nevertheless argues that environment explains most of the gap "between" blacks and whites, leaving little role for genetics.…

  5. Using genetic data to strengthen causal inference in observational research.

    PubMed

    Pingault, Jean-Baptiste; O'Reilly, Paul F; Schoeler, Tabea; Ploubidis, George B; Rijsdijk, Frühling; Dudbridge, Frank

    2018-06-05

    Causal inference is essential across the biomedical, behavioural and social sciences.By progressing from confounded statistical associations to evidence of causal relationships, causal inference can reveal complex pathways underlying traits and diseases and help to prioritize targets for intervention. Recent progress in genetic epidemiology - including statistical innovation, massive genotyped data sets and novel computational tools for deep data mining - has fostered the intense development of methods exploiting genetic data and relatedness to strengthen causal inference in observational research. In this Review, we describe how such genetically informed methods differ in their rationale, applicability and inherent limitations and outline how they should be integrated in the future to offer a rich causal inference toolbox.

  6. Causal Genetic Variation Underlying Metabolome Differences.

    PubMed

    Swain-Lenz, Devjanee; Nikolskiy, Igor; Cheng, Jiye; Sudarsanam, Priya; Nayler, Darcy; Staller, Max V; Cohen, Barak A

    2017-08-01

    An ongoing challenge in biology is to predict the phenotypes of individuals from their genotypes. Genetic variants that cause disease often change an individual's total metabolite profile, or metabolome. In light of our extensive knowledge of metabolic pathways, genetic variants that alter the metabolome may help predict novel phenotypes. To link genetic variants to changes in the metabolome, we studied natural variation in the yeast Saccharomyces cerevisiae We used an untargeted mass spectrometry method to identify dozens of metabolite Quantitative Trait Loci (mQTL), genomic regions containing genetic variation that control differences in metabolite levels between individuals. We mapped differences in urea cycle metabolites to genetic variation in specific genes known to regulate amino acid biosynthesis. Our functional assays reveal that genetic variation in two genes, AUA1 and ARG81 , cause the differences in the abundance of several urea cycle metabolites. Based on knowledge of the urea cycle, we predicted and then validated a new phenotype: sensitivity to a particular class of amino acid isomers. Our results are a proof-of-concept that untargeted mass spectrometry can reveal links between natural genetic variants and metabolome diversity. The interpretability of our results demonstrates the promise of using genetic variants underlying natural differences in the metabolome to predict novel phenotypes from genotype. Copyright © 2017 by the Genetics Society of America.

  7. Different differences: The use of ‘genetic ancestry’ versus race in biomedical human genetic research

    PubMed Central

    Fujimura, Joan H.; Rajagopalan, Ramya

    2011-01-01

    This article presents findings from our ethnographic research on biomedical scientists’ studies of human genetic variation and common complex disease. We examine the socio-material work involved in genome-wide association studies (GWAS) and discuss whether, how, and when notions of race and ethnicity are or are not used. We analyze how researchers produce simultaneously different kinds of populations and population differences. Although many geneticists use race in their analyses, we find some who have invented a statistical genetics method and associated software that they use specifically to avoid using categories of race in their genetics analysis. Their method allows them to operationalize their concept of ‘genetic ancestry’ without resorting to notions of race and ethnicity. We focus on the construction and implementation of the software’s algorithms, and discuss the consequences and implications of the software technology for debates and policies around the use of race in genetics research. We also demonstrate that the production and use of their method involves a dynamic and fluid assemblage of actors in various disciplines responding to disciplinary and sociopolitical contexts and concerns. This assemblage also includes particular discourses on human history and geography as they become entangled with research on genetic markers and disease. We introduce the concept of ‘genome geography’, to analyze how some researchers studying human genetic variation ‘locate’ stretches of DNA in different places and times. The concept of genetic ancestry and the practice of genome geography rely on old discourses, but they also incorporate new technologies, infrastructures, and political and scientific commitments. Some of these new technologies provide opportunities to change some of our institutional and cultural forms and frames around notions of difference and similarity. Neverthless, we also highlight the slipperiness of genome geography and the

  8. Deafness on the island of Providencia - Colombia: different etiology, different genetic counseling.

    PubMed

    Lattig, M C; Gelvez, N; Plaza, S L; Tamayo, G; Uribe, J I; Salvatierra, I; Bernal, J E; Tamayo, M L

    2008-01-01

    Providencia is a small island located in the Caribbean Ocean, northwest of Colombia with an unusually high frequency of individuals with hearing loss (5 in 1,000) is present. The hearing loss in the island was characterized as non-syndromic autosomal recessive deafness accounting for 47% (8/17) of the deaf population, Waardenburg Syndrome (deafness associated with pigmentary anomalies) for 29% (5/17), and the remaining 24% (4/17) are cases of sporadic non-syndromic deafness. For appropriate genetic counseling a complete pedigree of families with deaf individuals was constructed. The 35delG mutation in GJB2 gene, which encodes connexin 26 (Cx26), is responsible for the deafness observed in the 8 individuals with autosomal recessive non-syndromic hearing loss. The deaf individuals with Waardenburg Syndrome and the sporadic cases did not have this mutation. Therefore, we present here an atypical case of an isolated community with at least two different genetic etiologies for deafness: non-syndromic genetic deafness caused by the 35delG mutation in the GJB2 gene and deafness associated with Waardenburg Syndrome not related to GJB2. In a small and isolated population, it is feasible to assume that the deafness is caused by the same factor; however, Providencia is an atypical case. Therefore, it is extremely important to define the exact etiology of deafness in each case, since different etiologies require different genetic counseling.

  9. Different neurodevelopmental symptoms have a common genetic etiology.

    PubMed

    Pettersson, Erik; Anckarsäter, Henrik; Gillberg, Christopher; Lichtenstein, Paul

    2013-12-01

    Although neurodevelopmental disorders are demarcated as discrete entities in the Diagnostic Statistical Manual of mental disorders, empirical evidence indicates that there is a high degree of overlap among them. The first aim of this investigation was to explore if a single general factor could account for the large degree of observed overlap among neurodevelopmental problems, and explore whether this potential factor was primarily genetic or environmental in origin. The second aim was to explore whether there was systematic covariation, either genetic or environmental, over and above that contributed by the potential general factor, unique to each syndrome. Parents of all Swedish 9- and 12-year-old twin pairs born between 1992 and 2002 were targeted for interview regarding problems typical of autism spectrum disorders, ADHD and other neurodevelopmental conditions (response rate: 80 percent). Structural equation modeling was conducted on 6,595 pairs to examine the genetic and environmental structure of 53 neurodevelopmental problems. One general genetic factor accounted for a large proportion of the phenotypic covariation among the 53 symptoms. Three specific genetic subfactors identified 'impulsivity,' 'learning problems,' and 'tics and autism,' respectively. Three unique environment factors identified 'autism,' 'hyperactivity and impulsivity,' and 'inattention and learning problems,' respectively. One general genetic factor was responsible for the wide-spread phenotypic overlap among all neurodevelopmental symptoms, highlighting the importance of addressing broad patient needs rather than specific diagnoses. The unique genetic factors may help guide diagnostic nomenclature, whereas the unique environmental factors may highlight that neurodevelopmental symptoms are responsive to change at the individual level and may provide clues into different mechanisms and treatments. Future research would benefit from assessing the general factor separately from specific

  10. Kin-Aggregations Explain Chaotic Genetic Patchiness, a Commonly Observed Genetic Pattern, in a Marine Fish.

    PubMed

    Selwyn, Jason D; Hogan, J Derek; Downey-Wall, Alan M; Gurski, Lauren M; Portnoy, David S; Heath, Daniel D

    2016-01-01

    The phenomenon of chaotic genetic patchiness is a pattern commonly seen in marine organisms, particularly those with demersal adults and pelagic larvae. This pattern is usually associated with sweepstakes recruitment and variable reproductive success. Here we investigate the biological underpinnings of this pattern in a species of marine goby Coryphopterus personatus. We find that populations of this species show tell-tale signs of chaotic genetic patchiness including: small, but significant, differences in genetic structure over short distances; a non-equilibrium or "chaotic" pattern of differentiation among locations in space; and within locus, within population deviations from the expectations of Hardy-Weinberg equilibrium (HWE). We show that despite having a pelagic larval stage, and a wide distribution across Caribbean coral reefs, this species forms groups of highly related individuals at small spatial scales (<10 metres). These spatially clustered family groups cause the observed deviations from HWE and local population differentiation, a finding that is rarely demonstrated, but could be more common than previously thought.

  11. Genetic structure, diversity, and inbreeding of eastern white pine under different management conditions

    Treesearch

    Paula E. Marquardt; Craig S. Echt; Bryan K. Epperson; Dan M. Pubanz

    2007-01-01

    Resource sustainability requires a thorough understanding of the influence of forest management programs on the conservation of genetic diversity in tree populations. To observe how differences in forest structure affect the genetic structure of eastern white pine (Pinus strobus L.), we evaluated six eastern white pine sites across the 234000 acre (1...

  12. Virus fitness differences observed between two naturally occurring isolates of Ebola virus Makona variant using a reverse genetics approach.

    PubMed

    Albariño, César G; Guerrero, Lisa Wiggleton; Chakrabarti, Ayan K; Kainulainen, Markus H; Whitmer, Shannon L M; Welch, Stephen R; Nichol, Stuart T

    2016-09-01

    During the large outbreak of Ebola virus disease that occurred in Western Africa from late 2013 to early 2016, several hundred Ebola virus (EBOV) genomes have been sequenced and the virus genetic drift analyzed. In a previous report, we described an efficient reverse genetics system designed to generate recombinant EBOV based on a Makona variant isolate obtained in 2014. Using this system, we characterized the replication and fitness of 2 isolates of the Makona variant. These virus isolates are nearly identical at the genetic level, but have single amino acid differences in the VP30 and L proteins. The potential effects of these differences were tested using minigenomes and recombinant viruses. The results obtained with this approach are consistent with the role of VP30 and L as components of the EBOV RNA replication machinery. Moreover, the 2 isolates exhibited clear fitness differences in competitive growth assays. Published by Elsevier Inc.

  13. Genetic implications of bottleneck effects of differing severities on genetic diversity in naturally recovering populations: An example from Hawaiian coot and Hawaiian gallinule

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Wilson, Robert E.; Underwood, Jared G.

    2017-01-01

    The evolutionary trajectory of populations through time is influenced by the interplay of forces (biological, evolutionary, and anthropogenic) acting on the standing genetic variation. We used microsatellite and mitochondrial loci to examine the influence of population declines, of varying severity, on genetic diversity within two Hawaiian endemic waterbirds, the Hawaiian coot and Hawaiian gallinule, by comparing historical (samples collected in the late 1800s and early 1900s) and modern (collected in 2012–2013) populations. Population declines simultaneously experienced by Hawaiian coots and Hawaiian gallinules differentially shaped the evolutionary trajectory of these two populations. Within Hawaiian coot, large reductions (between −38.4% and −51.4%) in mitochondrial diversity were observed, although minimal differences were observed in the distribution of allelic and haplotypic frequencies between sampled time periods. Conversely, for Hawaiian gallinule, allelic frequencies were strongly differentiated between time periods, signatures of a genetic bottleneck were detected, and biases in means of the effective population size were observed at microsatellite loci. The strength of the decline appears to have had a greater influence on genetic diversity within Hawaiian gallinule than Hawaiian coot, coincident with the reduction in census size. These species exhibit similar life history characteristics and generation times; therefore, we hypothesize that differences in behavior and colonization history are likely playing a large role in how allelic and haplotypic frequencies are being shaped through time. Furthermore, differences in patterns of genetic diversity within Hawaiian coot and Hawaiian gallinule highlight the influence of demographic and evolutionary processes in shaping how species respond genetically to ecological stressors.

  14. [A comparative analysis of Ungulata species by different molecular genetic markers (proteins, RAPD-PCR)].

    PubMed

    Glazko, V I; Zelenaia, L B; Iasinetskaia, N A

    1997-01-01

    The investigation of genetic interrelation between a number of Artiodactyla and Perissodactyla species with the use of different types of molecular-genetic markers (proteins, RAPD-PCR) were carried out. The marker-specific features of interspecific relations and their similarities on the groups of markers of both types were revealed. The distinctions between interspecies genetic relations and ones estimated from the phylogeny on the determined group of different types of markers were observed. It was supposed that these discrepancies may be related with common selection factors and involving this marker group in selection in some species.

  15. "Genetic exceptionalism" in medicine: clarifying the differences between genetic and nongenetic tests.

    PubMed

    Green, Michael J; Botkin, Jeffrey R

    2003-04-01

    Predictive genetic tests are now available for assessing susceptibility to a variety of conditions, including breast and colon cancer, hemochromatosis, and Alzheimer and Huntington disease. Much controversy surrounds the application of these tests, stemming from their similarities to and differences from other tests commonly used in asymptomatic persons. Some have argued that genetic tests are unique and therefore justify special consideration with regard to informed consent and privacy. This paper examines the arguments for such "genetic exceptionalism" and concludes that no clear, significant distinctions between genetic and nongenetic tests justify a different approach to testing by clinicians. Nevertheless, with many genetic tests, the results may cause stigmatization, family discord, and psychological distress. Regardless of whether a test is genetic, when this combination of characteristics is present and when health care providers are not specifically trained to interpret results, testing should be performed with particular caution and the highest standards of informed consent and privacy protection should be applied.

  16. Genetics and intelligence differences: five special findings.

    PubMed

    Plomin, R; Deary, I J

    2015-02-01

    Intelligence is a core construct in differential psychology and behavioural genetics, and should be so in cognitive neuroscience. It is one of the best predictors of important life outcomes such as education, occupation, mental and physical health and illness, and mortality. Intelligence is one of the most heritable behavioural traits. Here, we highlight five genetic findings that are special to intelligence differences and that have important implications for its genetic architecture and for gene-hunting expeditions. (i) The heritability of intelligence increases from about 20% in infancy to perhaps 80% in later adulthood. (ii) Intelligence captures genetic effects on diverse cognitive and learning abilities, which correlate phenotypically about 0.30 on average but correlate genetically about 0.60 or higher. (iii) Assortative mating is greater for intelligence (spouse correlations ~0.40) than for other behavioural traits such as personality and psychopathology (~0.10) or physical traits such as height and weight (~0.20). Assortative mating pumps additive genetic variance into the population every generation, contributing to the high narrow heritability (additive genetic variance) of intelligence. (iv) Unlike psychiatric disorders, intelligence is normally distributed with a positive end of exceptional performance that is a model for 'positive genetics'. (v) Intelligence is associated with education and social class and broadens the causal perspectives on how these three inter-correlated variables contribute to social mobility, and health, illness and mortality differences. These five findings arose primarily from twin studies. They are being confirmed by the first new quantitative genetic technique in a century-Genome-wide Complex Trait Analysis (GCTA)-which estimates genetic influence using genome-wide genotypes in large samples of unrelated individuals. Comparing GCTA results to the results of twin studies reveals important insights into the genetic architecture

  17. Genetics and intelligence differences: five special findings

    PubMed Central

    Plomin, R; Deary, I J

    2015-01-01

    Intelligence is a core construct in differential psychology and behavioural genetics, and should be so in cognitive neuroscience. It is one of the best predictors of important life outcomes such as education, occupation, mental and physical health and illness, and mortality. Intelligence is one of the most heritable behavioural traits. Here, we highlight five genetic findings that are special to intelligence differences and that have important implications for its genetic architecture and for gene-hunting expeditions. (i) The heritability of intelligence increases from about 20% in infancy to perhaps 80% in later adulthood. (ii) Intelligence captures genetic effects on diverse cognitive and learning abilities, which correlate phenotypically about 0.30 on average but correlate genetically about 0.60 or higher. (iii) Assortative mating is greater for intelligence (spouse correlations ~0.40) than for other behavioural traits such as personality and psychopathology (~0.10) or physical traits such as height and weight (~0.20). Assortative mating pumps additive genetic variance into the population every generation, contributing to the high narrow heritability (additive genetic variance) of intelligence. (iv) Unlike psychiatric disorders, intelligence is normally distributed with a positive end of exceptional performance that is a model for ‘positive genetics'. (v) Intelligence is associated with education and social class and broadens the causal perspectives on how these three inter-correlated variables contribute to social mobility, and health, illness and mortality differences. These five findings arose primarily from twin studies. They are being confirmed by the first new quantitative genetic technique in a century—Genome-wide Complex Trait Analysis (GCTA)—which estimates genetic influence using genome-wide genotypes in large samples of unrelated individuals. Comparing GCTA results to the results of twin studies reveals important insights into the genetic

  18. Genetic Analysis of Phytophthora nicotianae Populations from Different Hosts Using Microsatellite Markers.

    PubMed

    Biasi, Antonio; Martin, Frank N; Cacciola, Santa O; di San Lio, Gaetano Magnano; Grünwald, Niklaus J; Schena, Leonardo

    2016-09-01

    In all, 231 isolates of Phytophthora nicotianae representing 14 populations from different host genera, including agricultural crops (Citrus, Nicotiana, and Lycopersicon), potted ornamental species in nurseries (Lavandula, Convolvulus, Myrtus, Correa, and Ruta), and other plant genera were characterized using simple-sequence repeat markers. In total, 99 multilocus genotypes (MLG) were identified, revealing a strong association between genetic grouping and host of recovery, with most MLG being associated with a single host genus. Significant differences in the structure of populations were revealed but clonality prevailed in all populations. Isolates from Citrus were found to be genetically related regardless of their geographic origin and were characterized by high genetic uniformity and high inbreeding coefficients. Higher variability was observed for other populations and a significant geographical structuring was determined for isolates from Nicotiana. Detected differences were related to the propagation and cultivation systems of different crops. Isolates obtained from Citrus spp. are more likely to be distributed worldwide with infected plant material whereas Nicotiana and Lycopersicon spp. are propagated by seed, which would not contribute to the spread of the pathogen and result in a greater chance for geographic isolation of lineages. With regard to ornamental species in nurseries, the high genetic variation is likely the result of the admixture of diverse pathogen genotypes through the trade of infected plant material from various geographic origins, the presence of several hosts in the same nursery, and genetic recombination through sexual reproduction of this heterothallic species.

  19. Heterogeneity in Genetic Admixture across Different Regions of Argentina

    PubMed Central

    Avena, Sergio; Via, Marc; Ziv, Elad; Pérez-Stable, Eliseo J.; Gignoux, Christopher R.; Dejean, Cristina; Huntsman, Scott; Torres-Mejía, Gabriela; Dutil, Julie; Matta, Jaime L.; Beckman, Kenneth; Burchard, Esteban González; Parolin, María Laura; Goicoechea, Alicia; Acreche, Noemí; Boquet, Mariel; Ríos Part, María Del Carmen; Fernández, Vanesa; Rey, Jorge; Stern, Mariana C.; Carnese, Raúl F.; Fejerman, Laura

    2012-01-01

    The population of Argentina is the result of the intermixing between several groups, including Indigenous American, European and African populations. Despite the commonly held idea that the population of Argentina is of mostly European origin, multiple studies have shown that this process of admixture had an impact in the entire Argentine population. In the present study we characterized the distribution of Indigenous American, European and African ancestry among individuals from different regions of Argentina and evaluated the level of discrepancy between self-reported grandparental origin and genetic ancestry estimates. A set of 99 autosomal ancestry informative markers (AIMs) was genotyped in a sample of 441 Argentine individuals to estimate genetic ancestry. We used non-parametric tests to evaluate statistical significance. The average ancestry for the Argentine sample overall was 65% European (95%CI: 63–68%), 31% Indigenous American (28–33%) and 4% African (3–4%). We observed statistically significant differences in European ancestry across Argentine regions [Buenos Aires province (BA) 76%, 95%CI: 73–79%; Northeast (NEA) 54%, 95%CI: 49–58%; Northwest (NWA) 33%, 95%CI: 21–41%; South 54%, 95%CI: 49–59%; p<0.0001] as well as between the capital and immediate suburbs of Buenos Aires city compared to more distant suburbs [80% (95%CI: 75–86%) versus 68% (95%CI: 58–77%), p = 0.01]. European ancestry among individuals that declared all grandparents born in Europe was 91% (95%CI: 88–94%) compared to 54% (95%CI: 51–57%) among those with no European grandparents (p<0.001). Our results demonstrate the range of variation in genetic ancestry among Argentine individuals from different regions in the country, highlighting the importance of taking this variation into account in genetic association and admixture mapping studies in this population. PMID:22506044

  20. Behavioural genetic differences between Chinese and European pigs.

    PubMed

    Chu, Qingpo; Liang, Tingting; Fu, Lingling; Li, Huizhi; Zhou, Bo

    2017-09-01

    Aggression is a heritable trait and genetically related to neurotransmitter-related genes. Behavioural characteristics of some pig breeds are different. To compare the genetic differences between breeds, backtest and aggressive behaviour assessments, and genotyped using Sequenom iPLEX platform were performed in 50 Chinese indigenous Mi pigs and 100 landrace-large white (LLW) cross pigs with 32 SNPs localized in 11 neurotransmitter-related genes. The genetic polymorphisms of 26 SNPs had notable differences (P < 0.05) between Mi and LLW. The most frequent haplotypes were different in DBH, HTR2A, GAD1, HTR2B,MAOA and MAOB genes between Mi and LLW. The mean of backtest scores was significantly lower (P < 0.001) for Mi than LLW pigs. Skin lesion scores were greater (P < 0.01) in LLW pigs than Mi pigs. In this study, we have confirmed that Chinese Mi pigs are less active and less aggressive than European LLW pigs, and the genetic polymorphisms of neurotransmitter-related genes, which have been proved previously associated with aggressive behaviour, have considerable differences between Mi and LLW pigs.

  1. Translating Population Difference: The Use and Re-Use of Genetic Ancestry in Brazilian Cancer Genetics

    PubMed Central

    Gibbon, Sahra

    2016-01-01

    ABSTRACT In the past ten years, there has been an expansion of scientific interest in population genetics linked to both understanding histories of human migration and the way that population difference and diversity may account for and/or be implicated in health and disease. In this article, I examine how particular aspects of a globalizing research agenda related to population differences and genetic ancestry are taken up in locally variant ways in the nascent field of Brazilian cancer genetics. Drawing on a broad range of ethnographic data from clinical and nonclinical contexts in the south of Brazil, I examine the ambiguities that attention to genetic ancestry generates, so revealing the disjunctured and diverse ways a global research agenda increasingly orientated to questions of population difference and genetic ancestry is being used and reused. PMID:26452039

  2. Population genetic structure and direct observations reveal sex-reversed patterns of dispersal in a cooperative bird.

    PubMed

    Harrison, Xavier A; York, Jennifer E; Young, Andrew J

    2014-12-01

    Sex-biased dispersal is pervasive and has diverse evolutionary implications, but the fundamental drivers of dispersal sex biases remain unresolved. This is due in part to limited diversity within taxonomic groups in the direction of dispersal sex biases, which leaves hypothesis testing critically dependent upon identifying rare reversals of taxonomic norms. Here, we use a combination of observational and genetic data to demonstrate a rare reversal of the avian sex bias in dispersal in the cooperatively breeding white-browed sparrow weaver (Plocepasser mahali). Direct observations revealed that (i) natal philopatry was rare, with both sexes typically dispersing locally to breed, and (ii), unusually for birds, males bred at significantly greater distances from their natal group than females. Population genetic analyses confirmed these patterns, as (i) corrected Assignment index (AIc), FST tests and isolation-by-distance metrics were all indicative of longer dispersal distances among males than females, and (ii) spatial autocorrelation analysis indicated stronger within-group genetic structure among females than males. Examining the spatial scale of extra-group mating highlighted that the resulting 'sperm dispersal' could have acted in concert with individual dispersal to generate these genetic patterns, but gamete dispersal alone cannot account entirely for the sex differences in genetic structure observed. That leading hypotheses for the evolution of dispersal sex biases cannot readily account for these sex-reversed patterns of dispersal in white-browed sparrow weavers highlights the continued need for attention to alternative explanations for this enigmatic phenomenon. We highlight the potential importance of sex differences in the distances over which dispersal opportunities can be detected. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  3. Interindividual differences of corneal sensitivity. Genetic aspects.

    PubMed

    Draeger, J; Schloot, W; Wirt, H

    1985-08-01

    By means of an electronic optical esthesiometer corneal sensitivity was examined in 91 volunteers of different age groups. Additionally, the anesthetic duration of the local anesthetic benoxinate was investigated. Corneal sensitivity decreases with advancing age. Comparing male and female subjects, we can suppose that there are age and sex specific differences of corneal sensitivity. There might be additional genetic factors. There are great interindividual differences in the anesthetic duration of benoxinate. It can be assumed that benoxinate is metabolized by pseudocholinesterase. One possible explanation for the great differences in the anesthetic duration of benoxinate can be seen in the genetically determined variants of pseudocholinesterase.

  4. Comparing estimates of genetic variance across different relationship models.

    PubMed

    Legarra, Andres

    2016-02-01

    Use of relationships between individuals to estimate genetic variances and heritabilities via mixed models is standard practice in human, plant and livestock genetics. Different models or information for relationships may give different estimates of genetic variances. However, comparing these estimates across different relationship models is not straightforward as the implied base populations differ between relationship models. In this work, I present a method to compare estimates of variance components across different relationship models. I suggest referring genetic variances obtained using different relationship models to the same reference population, usually a set of individuals in the population. Expected genetic variance of this population is the estimated variance component from the mixed model times a statistic, Dk, which is the average self-relationship minus the average (self- and across-) relationship. For most typical models of relationships, Dk is close to 1. However, this is not true for very deep pedigrees, for identity-by-state relationships, or for non-parametric kernels, which tend to overestimate the genetic variance and the heritability. Using mice data, I show that heritabilities from identity-by-state and kernel-based relationships are overestimated. Weighting these estimates by Dk scales them to a base comparable to genomic or pedigree relationships, avoiding wrong comparisons, for instance, "missing heritabilities". Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Genetic Basis of Type 1 Diabetes: Similarities and Differences between East and West

    PubMed Central

    Ikegami, Hiroshi; Noso, Shinsuke; Babaya, Naru; Hiromine, Yoshihisa; Kawabata, Yumiko

    2008-01-01

    Type 1 diabetes is a multifactorial disease caused by a complex interaction of genetic and environmental factors. The genetic factors involved consist of multiple susceptibility genes, at least five of which, HLA, INS, CTLA4, PTPN22 and IL2RA/CD25, have been shown to be associated with type 1 diabetes in Caucasian (Western) populations, as has recently been confirmed by genome-wide association studies. It has been proposed, however, that the contribution of these genes to type 1 diabetes susceptibility may be different in Asian (Eastern) populations. HLA and INS genes are consistently associated with type 1 diabetes in both Caucasian and Asian populations, but apparent differences in disease-associated alleles and haplotypes are observed between Japanese and Caucasian subjects. The association of CTLA4 with type 1 diabetes is concentrated in a subset of patients with autoimmune thyroid disease (AITD) in both Japanese and Caucasian populations, while the association of PTPN22 with type 1 diabetes in Japanese and most Asian populations is not as clear as in Caucasians. IL2RA/CD25 genes seem to be similarly distributed in type 1 diabetes patients in the two populations, whereas genetic heterogeneity may exist regarding SUMO4, with an association of the M55V variant with type 1 diabetes observed in Asians, but not in Caucasians. Genome-wide association studies (GWA) are largely outstanding for Asian populations but they are now underway in Japan. This review reports on the discovered similarities and differences in susceptibility genes for type 1 diabetes between East and West and discusses the most recent observations made by the involved investigators. PMID:18795209

  6. Mate choice for neutral and MHC genetic characteristics in Alpine marmots: different targets in different contexts?

    PubMed

    Ferrandiz-Rovira, Mariona; Allainé, Dominique; Callait-Cardinal, Marie-Pierre; Cohas, Aurélie

    2016-07-01

    Sexual selection through female mate choice for genetic characteristics has been suggested to be an important evolutionary force maintaining genetic variation in animal populations. However, the genetic targets of female mate choice are not clearly identified and whether female mate choice is based on neutral genetic characteristics or on particular functional loci remains an open question. Here, we investigated the genetic targets of female mate choice in Alpine marmots (Marmota marmota), a socially monogamous mammal where extra-pair paternity (EPP) occurs. We used 16 microsatellites to describe neutral genetic characteristics and two MHC loci belonging to MHC class I and II as functional genetic characteristics. Our results reveal that (1) neutral and MHC genetic characteristics convey different information in this species, (2) social pairs show a higher MHC class II dissimilarity than expected under random mate choice, and (3) the occurrence of EPP increases when social pairs present a high neutral genetic similarity or dissimilarity but also when they present low MHC class II dissimilarity. Thus, female mate choice is based on both neutral and MHC genetic characteristics, and the genetic characteristics targeted seem to be context dependent (i.e., the genes involved in social mate choice and genetic mate choice differ). We emphasize the need for empirical studies of mate choice in the wild using both neutral and MHC genetic characteristics because whether neutral and functional genetic characteristics convey similar information is not universal.

  7. Ethnic differences in parental perceptions of genetic testing for deaf infants.

    PubMed

    Palmer, Christina G S; Martinez, Ariadna; Fox, Michelle; Sininger, Yvonne; Grody, Wayne W; Schimmenti, Lisa A

    2008-02-01

    As genetic testing becomes an integral part of the evaluation of deaf infants and children, it is important to understand parental views on genetic testing. The purpose of this study is to examine parental reasons for, and beliefs about, genetic testing for deafness in early-identified infants, and to determine if they differ as a function of ethnicity. We present baseline data collected from 56 Caucasian, 59 Hispanic, and 24 Asian parents of deaf children participating in a longitudinal, prospective study on genetic testing for connexin-related deafness. The overall finding is that reasons for, and beliefs about, genetic testing for deafness varied as a function of ethnicity. Virtually all parents sought genetic testing to understand why their child is deaf. However, Asian and/or Hispanic parents were more likely than Caucasian parents to view family planning, helping with their child's medical care, and helping the family as other important reasons for testing, and were more likely than Caucasian parents to perceive genetic testing to be useful for these purposes. Asian and Hispanic parents were more likely than Caucasian parents to perceive genetic testing in harmful terms. Genetic testing fulfills a cognitive need for parents to understand why their child is deaf, yet differences in responses suggest that Asian and Hispanic parents may seek testing for other purposes. Understanding different perspectives on genetic testing for deafness will enhance genetic counselors' cultural competence and facilitate the pre-test genetic counseling session.

  8. Why do we differ in number sense? Evidence from a genetically sensitive investigation☆

    PubMed Central

    Tosto, M.G.; Petrill, S.A.; Halberda, J.; Trzaskowski, M.; Tikhomirova, T.N.; Bogdanova, O.Y.; Ly, R.; Wilmer, J.B.; Naiman, D.Q.; Germine, L.; Plomin, R.; Kovas, Y.

    2014-01-01

    Basic intellectual abilities of quantity and numerosity estimation have been detected across animal species. Such abilities are referred to as ‘number sense’. For human species, individual differences in number sense are detectable early in life, persist in later development, and relate to general intelligence. The origins of these individual differences are unknown. To address this question, we conducted the first large-scale genetically sensitive investigation of number sense, assessing numerosity discrimination abilities in 837 pairs of monozygotic and 1422 pairs of dizygotic 16-year-old twin pairs. Univariate genetic analysis of the twin data revealed that number sense is modestly heritable (32%), with individual differences being largely explained by non-shared environmental influences (68%) and no contribution from shared environmental factors. Sex-Limitation model fitting revealed no differences between males and females in the etiology of individual differences in number sense abilities. We also carried out Genome-wide Complex Trait Analysis (GCTA) that estimates the population variance explained by additive effects of DNA differences among unrelated individuals. For 1118 unrelated individuals in our sample with genotyping information on 1.7 million DNA markers, GCTA estimated zero heritability for number sense, unlike other cognitive abilities in the same twin study where the GCTA heritability estimates were about 25%. The low heritability of number sense, observed in this study, is consistent with the directional selection explanation whereby additive genetic variance for evolutionary important traits is reduced. PMID:24696527

  9. Microsatellite Analysis of Museum Specimens Reveals Historical Differences in Genetic Diversity between Declining and More Stable Bombus Species.

    PubMed

    Maebe, Kevin; Meeus, Ivan; Ganne, Maarten; De Meulemeester, Thibaut; Biesmeijer, Koos; Smagghe, Guy

    2015-01-01

    Worldwide most pollinators, e.g. bumblebees, are undergoing global declines. Loss of genetic diversity can play an essential role in these observed declines. In this paper, we investigated the level of genetic diversity of seven declining Bombus species and four more stable species with the use of microsatellite loci. Hereto we genotyped a unique collection of museum specimens. Specimens were collected between 1918 and 1926, in 6 provinces of the Netherlands which allowed us to make interspecific comparisons of genetic diversity. For the stable species B. pascuorum, we also selected populations from two additional time periods: 1949-1955 and 1975-1990. The genetic diversity and population structure in B. pascuorum remained constant over the three time periods. However, populations of declining bumblebee species showed a significantly lower genetic diversity than co-occurring stable species before their major declines. This historical difference indicates that the repeatedly observed reduced genetic diversity in recent populations of declining bumblebee species is not caused solely by the decline itself. The historically low genetic diversity in the declined species may be due to the fact that these species were already rare, making them more vulnerable to the major drivers of bumblebee decline.

  10. A Genetic Algorithm Method for Direct estimation of paleostress states from heterogeneous fault-slip observations

    NASA Astrophysics Data System (ADS)

    Srivastava, D. C.

    2016-12-01

    A Genetic Algorithm Method for Direct estimation of paleostress states from heterogeneous fault-slip observationsDeepak C. Srivastava, Prithvi Thakur and Pravin K. GuptaDepartment of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247667, India. Abstract Paleostress estimation from a group of heterogeneous fault-slip observations entails first the classification of the observations into homogeneous fault sets and then a separate inversion of each homogeneous set. This study combines these two issues into a nonlinear inverse problem and proposes a heuristic search method that inverts the heterogeneous fault-slip observations. The method estimates different paleostress states in a group of heterogeneous fault-slip observations and classifies it into homogeneous sets as a byproduct. It uses the genetic algorithm operators, elitism, selection, encoding, crossover and mutation. These processes translate into a guided search that finds successively fitter solutions and operate iteratively until the termination criteria is met and the globally fittest stress tensors are obtained. We explain the basic steps of the algorithm on a working example and demonstrate validity of the method on several synthetic and a natural group of heterogeneous fault-slip observations. The method is independent of any user-defined bias or any entrapment of solution in a local optimum. It succeeds even in the difficult situations where other classification methods are found to fail.

  11. Explaining individual differences in alcohol intake in adults: evidence for genetic and cultural transmission?

    PubMed

    van Beek, Jenny H D A; de Moor, Marleen H M; Geels, Lot M; Willemsen, Gonneke; Boomsma, Dorret I

    2014-03-01

    The current study aimed to describe what proportion of variation in adult alcohol intake is attributable to genetic differences among individuals and what proportion to differences in environmental experiences individuals have been exposed to. Effects of age, gender, spousal resemblance, and cultural transmission of alcohol intake from parents to offspring were taken into account. In a twin-family design, the effects of genetic and cultural transmission and shared and nonshared environment on alcohol intake were estimated with genetic structural equation models. Data originated from adult twins, their siblings, parents (n = 12,587), and spouses (n = 429) registered with the population-based Netherlands Twin Register (63.5% female; ages 18-97 years). Alcohol intake (grams per day) was higher among men than women and increased with age. Broad-sense heritability estimates were similar across sex and age (53%). Spousal resemblance was observed (r = .39) but did not significantly affect the heritability estimates. No effects of cultural transmission were detected. In total, 23% of the variation in alcohol intake was explained by additive genetic effects, 30% by dominant (nonadditive) gene action, and 47% by environmental effects that were not shared among family members. Individual differences in adult alcohol intake are explained by genetic and individual-specific environmental effects. The same genes are expressed in males and females and in younger and older participants. A substantial part of the heritability of alcohol intake is attributable to nonadditive gene action. Effects of cultural transmission that have been reported in adolescence are not present in adulthood.

  12. Microsatellite Analysis of Museum Specimens Reveals Historical Differences in Genetic Diversity between Declining and More Stable Bombus Species

    PubMed Central

    Maebe, Kevin; Meeus, Ivan; Ganne, Maarten; De Meulemeester, Thibaut; Biesmeijer, Koos; Smagghe, Guy

    2015-01-01

    Worldwide most pollinators, e.g. bumblebees, are undergoing global declines. Loss of genetic diversity can play an essential role in these observed declines. In this paper, we investigated the level of genetic diversity of seven declining Bombus species and four more stable species with the use of microsatellite loci. Hereto we genotyped a unique collection of museum specimens. Specimens were collected between 1918 and 1926, in 6 provinces of the Netherlands which allowed us to make interspecific comparisons of genetic diversity. For the stable species B. pascuorum, we also selected populations from two additional time periods: 1949–1955 and 1975–1990. The genetic diversity and population structure in B. pascuorum remained constant over the three time periods. However, populations of declining bumblebee species showed a significantly lower genetic diversity than co-occurring stable species before their major declines. This historical difference indicates that the repeatedly observed reduced genetic diversity in recent populations of declining bumblebee species is not caused solely by the decline itself. The historically low genetic diversity in the declined species may be due to the fact that these species were already rare, making them more vulnerable to the major drivers of bumblebee decline. PMID:26061732

  13. Observed Personality in Childhood: Psychometric and Behavioral Genetic Evidence of Two Broad Personality Factors

    PubMed Central

    Wang, Zhe; Chen, Nan; Petrill, Stephen A.; Deater-Deckard, Kirby

    2014-01-01

    We examined broad dimensions of children’s personalities (total n = 1056; age = 3.5 to 12 years) based on observers’ perceptions following a few hours of structured interaction. Siblings’ behaviors during a two-hour cognitive assessment in the home were rated separately by two different observers. Exploratory and confirmatory factor analyses clearly revealed a two-factor solution in three different samples. There was correspondence between parent-rated temperament and the observer-rated factors. Cross-sectional analyses indicated lower Plasticity among older children and higher Stability among older children. Sex differences were negligible. Plasticity and Stability were correlated in the .2 to .3 range. Most of the sibling similarity in the Plasticity was due to additive genetic influences, whereas most sibling similarity in Stability was attributable to shared environmental influences. The findings implicate a biometric factor structure to childhood personality that fits well with emerging bio-social theories of personality development. PMID:24932065

  14. Genetic risk score analysis indicates migraine with and without comorbid depression are genetically different disorders

    PubMed Central

    Ligthart, Lannie; Hottenga, Jouke-Jan; Lewis, Cathryn M.; Farmer, Anne E.; Craig, Ian W.; Breen, Gerome; Willemsen, Gonneke; Vink, Jacqueline M.; Middeldorp, Christel M.; Byrne, Enda M.; Heath, Andrew C.; Madden, Pamela A.F.; Pergadia, Michele L.; Montgomery, Grant W.; Martin, Nicholas G.; Penninx, Brenda W.J.H.; McGuffin, Peter; Boomsma, Dorret I.; Nyholt, Dale R.

    2013-01-01

    Migraine and major depressive disorder (MDD) are comorbid, moderately heritable and to some extent influenced by the same genes. In a previous paper, we suggested the possibility of causality (one trait causing the other) underlying this comorbidity. We present a new application of polygenic (genetic risk) score analysis to investigate the mechanisms underlying the genetic overlap of migraine and MDD. Genetic risk scores were constructed based on data from two discovery samples in which genome-wide association analyses (GWA) were performed for migraine and MDD, respectively. The Australian Twin Migraine GWA study (N = 6350) included 2825 migraine cases and 3525 controls, 805 of whom met the diagnostic criteria for MDD. The RADIANT GWA study (N = 3230) included 1636 MDD cases and 1594 controls. Genetic risk scores for migraine and for MDD were used to predict pure and comorbid forms of migraine and MDD in an independent Dutch target sample (NTR-NESDA, N = 2966), which included 1476 MDD cases and 1058 migraine cases (723 of these individuals had both disorders concurrently). The observed patterns of prediction suggest that the ‘pure’ forms of migraine and MDD are genetically distinct disorders. The subgroup of individuals with comorbid MDD and migraine were genetically most similar to MDD patients. These results indicate that in at least a subset of migraine patients with MDD, migraine may be a symptom or consequence of MDD. PMID:24081561

  15. Estimating the contribution of genetic variants to difference in incidence of disease between population groups.

    PubMed

    Moonesinghe, Ramal; Ioannidis, John P A; Flanders, W Dana; Yang, Quanhe; Truman, Benedict I; Khoury, Muin J

    2012-08-01

    Genome-wide association studies have identified multiple genetic susceptibility variants to several complex human diseases. However, risk-genotype frequency at loci showing robust associations might differ substantially among different populations. In this paper, we present methods to assess the contribution of genetic variants to the difference in the incidence of disease between different population groups for different scenarios. We derive expressions for the contribution of a single genetic variant, multiple genetic variants, and the contribution of the joint effect of a genetic variant and an environmental factor to the difference in the incidence of disease. The contribution of genetic variants to the difference in incidence increases with increasing difference in risk-genotype frequency, but declines with increasing difference in incidence between the two populations. The contribution of genetic variants also increases with increasing relative risk and the contribution of joint effect of genetic and environmental factors increases with increasing relative risk of the gene-environmental interaction. The contribution of genetic variants to the difference in incidence between two populations can be expressed as a function of the population attributable risks of the genetic variants in the two populations. The contribution of a group of genetic variants to the disparity in incidence of disease could change considerably by adding one more genetic variant to the group. Any estimate of genetic contribution to the disparity in incidence of disease between two populations at this stage seems to be an elusive goal.

  16. Estimating the contribution of genetic variants to difference in incidence of disease between population groups

    PubMed Central

    Moonesinghe, Ramal; Ioannidis, John PA; Flanders, W Dana; Yang, Quanhe; Truman, Benedict I; Khoury, Muin J

    2012-01-01

    Genome-wide association studies have identified multiple genetic susceptibility variants to several complex human diseases. However, risk-genotype frequency at loci showing robust associations might differ substantially among different populations. In this paper, we present methods to assess the contribution of genetic variants to the difference in the incidence of disease between different population groups for different scenarios. We derive expressions for the contribution of a single genetic variant, multiple genetic variants, and the contribution of the joint effect of a genetic variant and an environmental factor to the difference in the incidence of disease. The contribution of genetic variants to the difference in incidence increases with increasing difference in risk-genotype frequency, but declines with increasing difference in incidence between the two populations. The contribution of genetic variants also increases with increasing relative risk and the contribution of joint effect of genetic and environmental factors increases with increasing relative risk of the gene–environmental interaction. The contribution of genetic variants to the difference in incidence between two populations can be expressed as a function of the population attributable risks of the genetic variants in the two populations. The contribution of a group of genetic variants to the disparity in incidence of disease could change considerably by adding one more genetic variant to the group. Any estimate of genetic contribution to the disparity in incidence of disease between two populations at this stage seems to be an elusive goal. PMID:22333905

  17. Genetic and Environmental Influences on Individual Differences in Printed Word Recognition.

    ERIC Educational Resources Information Center

    Gayan, Javier; Olson, Richard K.

    2003-01-01

    Explored genetic and environmental etiologies of individual differences in printed word recognition and related skills in identical and fraternal twin 8- to 18-year-olds. Found evidence for moderate genetic influences common between IQ, phoneme awareness, and word-reading skills and for stronger IQ-independent genetic influences that were common…

  18. Can genetics help psychometrics? Improving dimensionality assessment through genetic factor modeling.

    PubMed

    Franić, Sanja; Dolan, Conor V; Borsboom, Denny; Hudziak, James J; van Beijsterveldt, Catherina E M; Boomsma, Dorret I

    2013-09-01

    In the present article, we discuss the role that quantitative genetic methodology may play in assessing and understanding the dimensionality of psychological (psychometric) instruments. Specifically, we study the relationship between the observed covariance structures, on the one hand, and the underlying genetic and environmental influences giving rise to such structures, on the other. We note that this relationship may be such that it hampers obtaining a clear estimate of dimensionality using standard tools for dimensionality assessment alone. One situation in which dimensionality assessment may be impeded is that in which genetic and environmental influences, of which the observed covariance structure is a function, differ from each other in structure and dimensionality. We demonstrate that in such situations settling dimensionality issues may be problematic, and propose using quantitative genetic modeling to uncover the (possibly different) dimensionalities of the underlying genetic and environmental structures. We illustrate using simulations and an empirical example on childhood internalizing problems.

  19. Genetic Differences Between Great Apes and Humans: Implications for Human Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varki, Ajit

    2004-03-17

    When considering protein sequences, humans are 99-100% identical to chimpanzees and bonobos, our closest evolutionary relatives. The evolution of humans (and the unique features of our species) from a common ancestor with these great apes involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of the differences. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly in relationship tomore » a family of cell surface molecules called sialic acids. These differences have implications for the human condition, ranging from susceptibility or resistance to microbial pathogens; effects on endogenous receptors in the immune system; potential effects on placental signaling; the expression of oncofetal antigens in cancers; consequences of dietary intake of animal foods; and the development of the mammalian brain. This talk will provide an overview of these and other genetic differences between humans and great apes, with attention to differences potentially relevant to the evolution of humans.« less

  20. Assessing Date Palm Genetic Diversity Using Different Molecular Markers.

    PubMed

    Atia, Mohamed A M; Sakr, Mahmoud M; Adawy, Sami S

    2017-01-01

    Molecular marker technologies which rely on DNA analysis provide powerful tools to assess biodiversity at different levels, i.e., among and within species. A range of different molecular marker techniques have been developed and extensively applied for detecting variability in date palm at the DNA level. Recently, the employment of gene-targeting molecular marker approaches to study biodiversity and genetic variations in many plant species has increased the attention of researchers interested in date palm to carry out phylogenetic studies using these novel marker systems. Molecular markers are good indicators of genetic distances among accessions, because DNA-based markers are neutral in the face of selection. Here we describe the employment of multidisciplinary molecular marker approaches: amplified fragment length polymorphism (AFLP), start codon targeted (SCoT) polymorphism, conserved DNA-derived polymorphism (CDDP), intron-targeted amplified polymorphism (ITAP), simple sequence repeats (SSR), and random amplified polymorphic DNA (RAPD) to assess genetic diversity in date palm.

  1. An Entamoeba sp. strain isolated from rhesus monkey is virulent but genetically different from Entamoeba histolytica.

    PubMed

    Tachibana, Hiroshi; Yanagi, Tetsuo; Pandey, Kishor; Cheng, Xun-Jia; Kobayashi, Seiki; Sherchand, Jeevan B; Kanbara, Hiroji

    2007-06-01

    An Entamoeba sp. strain, P19-061405, was isolated from a rhesus monkey in Nepal and characterized genetically. The strain was initially identified as Entamoeba histolytica using PCR amplification of peroxiredoxin genes. However, sequence analysis of the 18S rRNA gene showed a 0.8% difference when compared to the reference E. histolytica HM-1:IMSS human strain. Differences were also observed in the 5.8S rRNA gene and the internal transcribed spacer (ITS) regions 1 and 2, and analysis of the serine-rich protein gene from the monkey strain showed unique codon usages compared to E. histolytica isolated from humans. The amino acid sequences of two hexokinases and two glucose phosphate isomerases also differed from those of E. histolytica. Isoenzyme analyses of these enzymes in the monkey strain showed different electrophoretic mobility patterns compared with E. histolytica isolates. Analysis of peroxiredoxin genes indicated the presence of at least seven different types of protein, none of which were identical to proteins in E. histolytica. When the trophozoites from the monkey strain were inoculated into the livers of hamsters, formation of amebic abscesses was observed 7 days after the injection. These results demonstrate that the strain is genetically different from E. histolytica and is virulent. Revival of the name Entamoeba nuttalli is proposed for the organism.

  2. Genetically distinct populations of northern shrimp, Pandalus borealis, in the North Atlantic: adaptation to different temperatures as an isolation factor.

    PubMed

    Jorde, Per Erik; Søvik, Guldborg; Westgaard, Jon-Ivar; Albretsen, Jon; André, Carl; Hvingel, Carsten; Johansen, Torild; Sandvik, Anne Dagrun; Kingsley, Michael; Jørstad, Knut Eirik

    2015-04-01

    The large-scale population genetic structure of northern shrimp, Pandalus borealis, was investigated over the species' range in the North Atlantic, identifying multiple genetically distinct groups. Genetic divergence among sample localities varied among 10 microsatellite loci (range: FST = -0.0002 to 0.0475) with a highly significant average (FST = 0.0149; P < 0.0001). In contrast, little or no genetic differences were observed among temporal replicates from the same localities (FST = 0.0004; P = 0.33). Spatial genetic patterns were compared to geographic distances, patterns of larval drift obtained through oceanographic modelling, and temperature differences, within a multiple linear regression framework. The best-fit model included all three factors and explained approximately 29% of all spatial genetic divergence. However, geographic distance and larval drift alone had only minor effects (2.5-4.7%) on large-scale genetic differentiation patterns, whereas bottom temperature differences explained most (26%). Larval drift was found to promote genetic homogeneity in parts of the study area with strong currents, but appeared ineffective across large temperature gradients. These findings highlight the breakdown of gene flow in a species with a long pelagic larval phase (up to 3 months) and indicate a role for local adaptation to temperature conditions in promoting evolutionary diversification and speciation in the marine environment. © 2015 John Wiley & Sons Ltd.

  3. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    PubMed

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after

  4. An Association Mapping Framework To Account for Potential Sex Difference in Genetic Architectures.

    PubMed

    Kang, Eun Yong; Lee, Cue Hyunkyu; Furlotte, Nicholas A; Joo, Jong Wha J; Kostem, Emrah; Zaitlen, Noah; Eskin, Eleazar; Han, Buhm

    2018-05-11

    Over the past few years, genome-wide association studies have identified many trait-associated loci that have different effects on females and males, which increased attention to the genetic architecture differences between the sexes. The between-sex differences in genetic architectures can cause a variety of phenomena such as differences in the effect sizes at trait-associated loci, differences in the magnitudes of polygenic background effects, and differences in the phenotypic variances. However, current association testing approaches for dealing with sex, such as including sex as a covariate, cannot fully account for these phenomena and can be suboptimal in statistical power. We present a novel association mapping framework, MetaSex, that can comprehensively account for the genetic architecture differences between the sexes. Through simulations and applications to real data, we show that our framework has superior performance than previous approaches in association mapping. Copyright © 2018, Genetics.

  5. Sex differences in genetic and environmental influences on educational attainment and income.

    PubMed

    Orstavik, Ragnhild E; Czajkowski, Nikolai; Røysamb, Espen; Knudsen, Gun Peggy; Tambs, Kristian; Reichborn-Kjennerud, Ted

    2014-12-01

    In many Western countries, women now reach educational levels comparable to men, although their income remains considerably lower. For the past decades, it has become increasingly clear that these measures of socio-economic status are influenced by genetic as well as environmental factors. Less is known about the relationship between education and income, and sex differences. The aim of this study was to explore genetic and environmental factors influencing education and income in a large cohort of young Norwegian twins, with special emphasis on gender differences. National register data on educational level and income were obtained for 7,710 twins (aged 29-41 years). Bivariate Cholesky models were applied to estimate qualitative and quantitative gender differences in genetic and environmental influences, the relative contribution of genetic and environmental factors to the correlation between education and income, and genetic correlations within and between sexes and phenotypes. The phenotypic correlation between educational level and income was 0.34 (0.32-0.39) for men and 0.45 (0.43-0.48) for women. An ACE model with both qualitative and quantitative sex differences fitted the data best. The genetic correlation between men and women (rg) was 0.66 (0.22-1.00) for educational attainment and 0.38 (0.01-0.75) for income, and between the two phenotypes 0.31 (0.08-0.52) for men and 0.72 (0.64-0.85) for women. Our results imply that, in relatively egalitarian societies with state-supported access to higher education and political awareness of gender equality, genetic factors may play an important role in explaining sex differences in the relationship between education and income.

  6. Genetic and Environmental Influences on Testosterone in Adolescents: Evidence for Sex Differences

    PubMed Central

    Harden, K. Paige; Kretsch, Natalie; Tackett, Jennifer L.; Tucker-Drob, Elliot M.

    2015-01-01

    The current study investigated the genetic and environmental etiology of individual differences in salivary testosterone during adolescence, using data from 49 pairs of monozygotic twins and 68 pairs of dizygotic twins, ages 14–19 years (M = 16.0 years). Analyses tested for sex differences in genetic and environmental influences on testosterone and its relation to pubertal development. Among adolescent males, individual differences in testosterone were substantially heritable (55%), and significantly associated with self-reported pubertal status (controlling for age) via common genetic influences. In contrast, there was no heritable variation in testosterone for females, and testosterone in females was not significantly associated with pubertal status after controlling for age. Rather, environmental influences shared by twins raised together accounted for all of the familial similarity in female testosterone (53%). This study adds to a small but growing body of research that investigates genetic influences on individual differences in behaviorally-relevant hormones. PMID:24523135

  7. Mapping Genetic Variants Underlying Differences in the Central Nitrogen Metabolism in Fermenter Yeasts

    PubMed Central

    García, Verónica; Salinas, Francisco; Aguilera, Omayra; Liti, Gianni; Martínez, Claudio

    2014-01-01

    Different populations within a species represent a rich reservoir of allelic variants, corresponding to an evolutionary signature of withstood environmental constraints. Saccharomyces cerevisiae strains are widely utilised in the fermentation of different kinds of alcoholic beverages, such as, wine and sake, each of them derived from must with distinct nutrient composition. Importantly, adequate nitrogen levels in the medium are essential for the fermentation process, however, a comprehensive understanding of the genetic variants determining variation in nitrogen consumption is lacking. Here, we assessed the genetic factors underlying variation in nitrogen consumption in a segregating population derived from a cross between two main fermenter yeasts, a Wine/European and a Sake isolate. By linkage analysis we identified 18 main effect QTLs for ammonium and amino acids sources. Interestingly, majority of QTLs were involved in more than a single trait, grouped based on amino acid structure and indicating high levels of pleiotropy across nitrogen sources, in agreement with the observed patterns of phenotypic co-variation. Accordingly, we performed reciprocal hemizygosity analysis validating an effect for three genes, GLT1, ASI1 and AGP1. Furthermore, we detected a widespread pleiotropic effect on these genes, with AGP1 affecting seven amino acids and nine in the case of GLT1 and ASI1. Based on sequence and comparative analysis, candidate causative mutations within these genes were also predicted. Altogether, the identification of these variants demonstrate how Sake and Wine/European genetic backgrounds differentially consume nitrogen sources, in part explaining independently evolved preferences for nitrogen assimilation and representing a niche of genetic diversity for the implementation of practical approaches towards more efficient strains for nitrogen metabolism. PMID:24466135

  8. Living in a Genetic World: How Learning About Interethnic Genetic Similarities and Differences Affects Peace and Conflict.

    PubMed

    Kimel, Sasha Y; Huesmann, Rowell; Kunst, Jonas R; Halperin, Eran

    2016-05-01

    Information about the degree of one's genetic overlap with ethnic outgroups has been emphasized in genocides, is frequently learned about through media reporting, and is increasingly being accessed via personal genetic testing services. However, the consequence of learning about whether your own ethnic group is either genetically related to or genetically distinct from a disliked ethnic group remains unknown. Across four experiments, using diverse samples, measures and contexts, we demonstrate that altering perceptions of genetic overlap between groups in conflict--in this case Arabs and Jews--impacts factors that are directly related to interethnic hostility (e.g., aggressive behaviors, support of conflict-related policies). Our findings indicate that learning about the genetic difference between oneself and an ethnic outgroup may contribute to the promotion of violence, whereas learning about the similarities may be a vital step toward fostering peace in some contexts. Possible interventions and implications are discussed. © 2016 by the Society for Personality and Social Psychology, Inc.

  9. Erythrocyte phosphofructokinase in rat strains with genetically determined differences in 2,3-diphosphoglycerate levels.

    PubMed

    Noble, N A; Tanaka, K R

    1981-02-01

    We have studied the erythrocyte enzyme phosphofructokinase (PFK) from two strains of Long-Evans rats with genetically determined differences in erythrocyte 2,3-diphosphoglycerate (DPG) levels. The DPG difference is due to two alleles at one locus. With one probable exception, the genotype at this locus is always associated with the hemoglobin (Hb) electrophoretic phenotype, due to a polymorphism at the III beta-globin locus. The enzyme PFK has been implicated in the DPG difference because glycolytic intermediate levels suggest that this enzyme has a higher in vivo activity in High-DPG strain rats, although the total PFK activity does not differ. We report here that partially purified erythrocyte PFK from Low-DPG strain cells is inhibited significantly more at physiological levels of DPG (P less than 0.01) than PFK from High-DPG strain erythrocytes. Citrate and adenosine triphosphate also inhibit the Low-DPG enzyme more than the High-DPG enzyme. Therefore, a structurally different PFK, with a greater sensitivity to inhibitors, may explain the lower DPG and ATP levels observed in Low-DPG strain animals. These data support a two-locus (Hb and PFK) hypothesis and provide a gene marker to study the underlying genetic and physiologic relationships of these loci.

  10. Genetic Relationships among Different Chemotypes of Lupinus sulphureus.

    PubMed

    Cook, Daniel; Mott, Ivan W; Larson, Steven R; Lee, Stephen T; Johnson, Robert; Stonecipher, Clinton A

    2018-02-28

    Lupines (Lupinus spp.) are a common plant legume species found on western U.S. rangelands. Lupinus spp. may contain quinolizidine and/or piperidine alkaloids that can be toxic and/or teratogenic to grazing livestock. Alkaloid profiles may vary between and within a species. The objectives of this study were to (1) further explore the characteristic alkaloid profiles of Lupinus sulphureus using field collections and (2) explore the phylogenetic relationship of the different populations and chemotypes of L. sulphureus using the amplified fragment length polymorphism method of DNA fingerprinting, thus providing possible explanations to the phenomena of multiple chemotypes within a species. A total of 49 accessions of L. sulphureus were classified into seven chemotypes. The DNA profiles showed that one L. sulphureus chemotype, chemotype A, is genetically divergent from the other chemotypes of L. sulphureus, suggesting that it represents an unresolved lupine taxon, possibly a new lupine species. Additionally, the different chemotypes of L. sulphureus represented different genetic groups, as shown by Bayesian cluster analysis and principle component analysis.

  11. Association of a Genetic Risk Score With Body Mass Index Across Different Birth Cohorts.

    PubMed

    Walter, Stefan; Mejía-Guevara, Iván; Estrada, Karol; Liu, Sze Y; Glymour, M Maria

    2016-07-05

    Many genetic variants are associated with body mass index (BMI). Associations may have changed with the 20th century obesity epidemic and may differ for black vs white individuals. Using birth cohort as an indicator for exposure to obesogenic environment, to evaluate whether genetic predisposition to higher BMI has a larger magnitude of association among adults from more recent birth cohorts, who were exposed to the obesity epidemic at younger ages. Observational study of 8788 adults in the US national Health and Retirement Study who were aged 50 years and older, born between 1900 and 1958, with as many as 12 BMI assessments from 1992 to 2014. A multilocus genetic risk score for BMI (GRS-BMI), calculated as the weighted sum of alleles of 29 single nucleotide polymorphisms associated with BMI, with weights equal to the published per-allele effects. The GRS-BMI represents how much each person's BMI is expected to differ, based on genetic background (with respect to these 29 loci), from the BMI of a sample member with median genetic risk. The median-centered GRS-BMI ranged from -1.68 to 2.01. BMI based on self-reported height and weight. GRS-BMI was significantly associated with BMI among white participants (n = 7482; mean age at first assessment, 59 years; 3373 [45%] were men; P <.001) and among black participants (n = 1306; mean age at first assessment, 57 years; 505 [39%] were men; P <.001) but accounted for 0.99% of variation in BMI among white participants and 1.37% among black participants. In multilevel models accounting for age, the magnitude of associations of GRS-BMI with BMI were larger for more recent birth cohorts. For example, among white participants, each unit higher GRS-BMI was associated with a difference in BMI of 1.37 (95% CI, 0.93 to 1.80) if born after 1943, and 0.17 (95% CI, -0.55 to 0.89) if born before 1924 (P = .006). For black participants, each unit higher GRS-BMI was associated with a difference in BMI of 3.70 (95% CI, 2.42 to

  12. Genetic differences based on a beef terminal index are reflected in future phenotypic performance differences in commercial beef cattle.

    PubMed

    Connolly, S M; Cromie, A R; Berry, D P

    2016-05-01

    The increased demand for animal-derived protein and energy for human consumption will have to be achieved through a combination of improved animal genetic merit and better management strategies. The objective of the present study was to quantify whether differences in genetic merit among animals materialised into phenotypic differences in commercial herds. Carcass phenotypes on 156 864 animals from 7301 finishing herds were used, which included carcass weight (kg), carcass conformation score (scale 1 to 15), carcass fat score (scale 1 to 15) at slaughter as well as carcass price. The price per kilogram and the total carcass value that the producer received for the animal at slaughter was also used. A terminal index, calculated in the national genetic evaluations, was obtained for each animal. The index was based on pedigree index for calving performance, feed intake and carcass traits from the national genetic evaluations. Animals were categorised into four terminal index groups on the basis of genetic merit estimates that were derived before the expression of the phenotypic information by the validation animals. The association between terminal index and phenotypic performance at slaughter was undertaken using mixed models; whether the association differed by gender (i.e. young bulls, steers and heifers) or by early life experiences (animals born in a dairy herd or beef herd) was also investigated. The regression coefficient of phenotypic carcass weight, carcass conformation and carcass fat on their respective estimated breeding values (EBVs) was 0.92 kg, 1.08 units and 0.79 units, respectively, which is close to the expectation of one. Relative to animals in the lowest genetic merit group, animals in the highest genetic merit group had, on average, a 38.7 kg heavier carcass, with 2.21 units greater carcass conformation, and 0.82 units less fat. The superior genetic merit animals were, on average, slaughtered 6 days younger than their inferior genetic merit

  13. The Genetics of Sex Differences in Brain and Behavior

    PubMed Central

    Ngun, Tuck C; Ghahramani, Negar; Sánchez, Francisco J.; Bocklandt, Sven; Vilain, Eric

    2010-01-01

    Biological differences between men and women contribute to many sex-specific illnesses and disorders. Historically, it was argued that such differences were largely, if not exclusively, due to gonadal hormone secretions. However, emerging research has shown that some differences are mediated by mechanisms other than the action of these hormone secretions and in particular by products of genes located on the X and Y chromosomes, which we refer to as direct genetic effects. This paper reviews the evidence for direct genetic effects in behavioral and brain sex differences. We highlight the `four core genotypes' model and sex differences in the midbrain dopaminergic system, specifically focusing on the role of Sry. We also discuss novel research being done on unique populations including people attracted to the same sex and people with a cross-gender identity. As science continues to advance our understanding of biological sex differences, a new field is emerging that is aimed at better addressing the needs of both sexes: gender-based biology and medicine. Ultimately, the study of the biological basis for sex differences will improve healthcare for both men and women. PMID:20951723

  14. Reifying human difference: the debate on genetics, race, and health.

    PubMed

    Braun, Lundy

    2006-01-01

    The causes of racial and ethnic inequalities in health and the most appropriate categories to use to address health inequality have been the subject of heated debate in recent years. At the same time, genetic explanations for racial disparities have figured prominently in the scientific and popular press since the announcement of the sequencing of the human genome. To understand how such explanations assumed prominence, this essay analyzes the circulation of ideas about race and genetics and the rhetorical strategies used by authors of key texts to shape the debate. The authority of genetic accounts for racial and ethnic difference in disease, the author argues, is rooted in a broad cultural faith in the promise of genetics to solve problems of human disease and the inner truth of human beings that is intertwined with historical meanings attached to race. Such accounts are problematic for a variety of reasons. Importantly, they produce, reify, and naturalize notions of racial difference, provide a scientific rationale for racially targeted medical care, and distract attention from research that probes the complex ways in which political, economic, social, and biological factors, especially those of inequality and racism, cause health disparities.

  15. High genetic diversity among and within bitter manioc varieties cultivated in different soil types in Central Amazonia.

    PubMed

    Alves-Pereira, Alessandro; Peroni, Nivaldo; Cavallari, Marcelo Mattos; Lemes, Maristerra R; Zucchi, Maria Imaculada; Clement, Charles R

    2017-01-01

    Although manioc is well adapted to nutrient-poor Oxisols of Amazonia, ethnobotanical observations show that bitter manioc is also frequently cultivated in the highly fertile soils of the floodplains and Amazonian dark earths (ADE) along the middle Madeira River. Because different sets of varieties are grown in each soil type, and there are agronomic similarities between ADE and floodplain varieties, it was hypothesized that varieties grown in ADE and floodplain were more closely related to each other than either is to varieties grown in Oxisols. We tested this hypothesis evaluating the intra-varietal genetic diversity and the genetic relationships among manioc varieties commonly cultivated in Oxisols, ADE and floodplain soils. Genetic results did not agree with ethnobotanical expectation, since the relationships between varieties were variable and most individuals of varieties with the same vernacular name, but grown in ADE and floodplain, were distinct. Although the same vernacular name could not always be associated with genetic similarities, there is still a great amount of variation among the varieties. Many ecological and genetic processes may explain the high genetic diversity and differentiation found for bitter manioc varieties, but all contribute to the maintenance and amplification of genetic diversity within the manioc in Central Amazonia.

  16. High genetic diversity among and within bitter manioc varieties cultivated in different soil types in Central Amazonia

    PubMed Central

    Alves-Pereira, Alessandro; Peroni, Nivaldo; Cavallari, Marcelo Mattos; Lemes, Maristerra R.; Zucchi, Maria Imaculada; Clement, Charles R.

    2017-01-01

    Abstract Although manioc is well adapted to nutrient-poor Oxisols of Amazonia, ethnobotanical observations show that bitter manioc is also frequently cultivated in the highly fertile soils of the floodplains and Amazonian dark earths (ADE) along the middle Madeira River. Because different sets of varieties are grown in each soil type, and there are agronomic similarities between ADE and floodplain varieties, it was hypothesized that varieties grown in ADE and floodplain were more closely related to each other than either is to varieties grown in Oxisols. We tested this hypothesis evaluating the intra-varietal genetic diversity and the genetic relationships among manioc varieties commonly cultivated in Oxisols, ADE and floodplain soils. Genetic results did not agree with ethnobotanical expectation, since the relationships between varieties were variable and most individuals of varieties with the same vernacular name, but grown in ADE and floodplain, were distinct. Although the same vernacular name could not always be associated with genetic similarities, there is still a great amount of variation among the varieties. Many ecological and genetic processes may explain the high genetic diversity and differentiation found for bitter manioc varieties, but all contribute to the maintenance and amplification of genetic diversity within the manioc in Central Amazonia. PMID:28399193

  17. [Genetic relationship analysis of Ephedra intermedia from different habitat in Gansu by ISSR analysis].

    PubMed

    Zhu, Tian-Tian; Jin, Ling; Du, Tao; Cui, Zhi-Jia; Zhang, Xian-Fei; Wu, Di

    2013-09-01

    To investigate the genetic relationship of Ephedra intermedia from different habitats in Gansu. The genetic diversity and genetic relationship of E. intermedia from different habitats in Gansu were studied by ISSR molecular marker technique. Twelve ISSR primers were selected from 70 ISSR primers and used for ISSR amplification. Total 112 loci were amplified, in which 81 were polymorphic loci, the average percentage of polymorphie bands (PPB) was 72.32%. Clustering results indicated that the wild species and cultivating species were clustered into different group. The wild species, which had closer distance, were clustered into a group. E. intermedia of different habitats in Gansu have rich genetic diversities among species, it is the reason that E. intermedia has strong adaptability and wide distribution. Further, the genetic distance of E. intermedia is associated with geographical distance, the further distance can hinder the gene flow.

  18. Markers of Psychological Differences and Social and Health Inequalities: Possible Genetic and Phenotypic Overlaps.

    PubMed

    Mõttus, René; Marioni, Riccardo; Deary, Ian J

    2017-02-01

    Associations between markers of ostensible psychological characteristics and social and health inequalities are pervasive but difficult to explain. In some cases, there may be causal influence flowing from social and health inequalities to psychological differences, whereas sometimes it may be the other way around. Here, we focus on the possibility that some markers that we often consider as indexing different domains of individual differences may in fact reflect at least partially overlapping genetic and/or phenotypic bases. For example, individual differences in cognitive abilities and educational attainment appear to reflect largely overlapping genetic influences, whereas cognitive abilities and health literacy may be almost identical phenomena at the phenotypic, never mind genetic, level. We make the case for employing molecular genetic data and quantitative genetic techniques to better understand the associations of psychological individual differences with social and health inequalities. We illustrate these arguments by using published findings from the Lothian Birth Cohort and the Generation Scotland studies. We also present novel findings pertaining to longitudinal stability and change in older age personality traits and some correlates of the change, molecular genetic data-based heritability estimates of Neuroticism and Extraversion, and the genetic correlations of these personality traits with markers of social and health inequalities. © 2015 The Authors. Journal of Personality published by Wiley Periodicals, Inc.

  19. Teacher beliefs about the aetiology of individual differences in cognitive ability, and the relevance of behavioural genetics to education.

    PubMed

    Crosswaite, Madeline; Asbury, Kathryn

    2018-04-26

    Despite a large body of research that has explored the influence of genetic and environmental factors on educationally relevant traits, few studies have explored teachers' beliefs about, or knowledge of, developments in behavioural genetics related to education. This study aimed to describe the beliefs and knowledge of UK teachers about behavioural genetics and its relevance to education, and to test for differences between groups of teachers based on factors including years of experience and age of children taught. Data were gathered from n = 402 teachers from a representative sample of UK schools. Teachers from primary and secondary schools, and from across the state and independent sectors, were recruited. An online questionnaire was used to gather demographic data (gender, age, years of experience, age of children taught, and state vs. independent) and also data on beliefs about the relative influence of nature and nurture on cognitive ability; knowledge of behavioural genetics; openness to genetic research in education; and mindset. Data were analysed using descriptive statistics, ANOVA, correlations, and multiple regression. Teachers perceived genetic and environmental factors as equally important influences on cognitive ability and tended towards a growth mindset. Knowledge about behavioural genetics was low, but openness to learning more about genetics was high. Statistically significant differences were observed between groups based on age of children taught (openness higher among primary teachers) and state versus independent (more growth-minded in state sector). Although teachers have a limited knowledge of behavioural genetics, they are keen to learn more. © 2018 The British Psychological Society.

  20. Genetically encoded sensors enable real-time observation of metabolite production

    PubMed Central

    Rogers, Jameson K.; Church, George M.

    2016-01-01

    Engineering cells to produce valuable metabolic products is hindered by the slow and laborious methods available for evaluating product concentration. Consequently, many designs go unevaluated, and the dynamics of product formation over time go unobserved. In this work, we develop a framework for observing product formation in real time without the need for sample preparation or laborious analytical methods. We use genetically encoded biosensors derived from small-molecule responsive transcription factors to provide a fluorescent readout that is proportional to the intracellular concentration of a target metabolite. Combining an appropriate biosensor with cells designed to produce a metabolic product allows us to track product formation by observing fluorescence. With individual cells exhibiting fluorescent intensities proportional to the amount of metabolite they produce, high-throughput methods can be used to rank the quality of genetic variants or production conditions. We observe production of several renewable plastic precursors with fluorescent readouts and demonstrate that higher fluorescence is indeed an indicator of higher product titer. Using fluorescence as a guide, we identify process parameters that produce 3-hydroxypropionate at 4.2 g/L, 23-fold higher than previously reported. We also report, to our knowledge, the first engineered route from glucose to acrylate, a plastic precursor with global sales of $14 billion. Finally, we monitor the production of glucarate, a replacement for environmentally damaging detergents, and muconate, a renewable precursor to polyethylene terephthalate and nylon with combined markets of $51 billion, in real time, demonstrating that our method is applicable to a wide range of molecules. PMID:26858408

  1. Genetically encoded sensors enable real-time observation of metabolite production

    DOE PAGES

    Rogers, Jameson K.; Church, George M.

    2016-02-08

    Here, engineering cells to produce valuable metabolic products is hindered by the slow and laborious methods available for evaluating product concentration. Consequently, many designs go unevaluated, and the dynamics of product formation over time go unobserved. In this work, we develop a framework for observing product formation in real time without the need for sample preparation or laborious analytical methods. We use genetically encoded biosensors derived from small-molecule responsive transcription factors to provide a fluorescent readout that is proportional to the intracellular concentration of a target metabolite. Combining an appropriate biosensor with cells designed to produce a metabolic product allowsmore » us to track product formation by observing fluorescence. With individual cells exhibiting fluorescent intensities proportional to the amount of metabolite they produce, high-throughput methods can be used to rank the quality of genetic variants or production conditions. We observe production of several renewable plastic precursors with fluorescent readouts and demonstrate that higher fluorescence is indeed an indicator of higher product titer. Using fluorescence as a guide, we identify process parameters that produce 3-hydroxypropionate at 4.2 g/L, 23-fold higher than previously reported. We also report, to our knowledge, the first engineered route from glucose to acrylate, a plastic precursor with global sales of 14 billion. Finally, we monitor the production of glucarate, a replacement for environmentally damaging detergents, and muconate, a renewable precursor to polyethylene terephthalate and nylon with combined markets of 51 billion, in real time, demonstrating that our method is applicable to a wide range of molecules.« less

  2. Genetic parameters for different growth scales in GIFT strain of Nile tilapia (Oreochromis niloticus).

    PubMed

    He, J; Gao, H; Xu, P; Yang, R

    2015-12-01

    Body weight, length, width and depth at two growth stages were observed for a total of 5015 individuals of GIFT strain, along with a pedigree including 5588 individuals from 104 sires and 162 dams was collected. Multivariate animal models and a random regression model were used to genetically analyse absolute and relative growth scales of these growth traits. In absolute growth scale, the observed growth traits had moderate heritabilities ranging from 0.321 to 0.576, while pairwise ratios between body length, width and depth were lowly inherited and maximum heritability was only 0.146 for length/depth. All genetic correlations were above 0.5 between pairwise growth traits and genetic correlation between length/width and length/depth varied between both growth stages. Based on those estimates, selection index of multiple traits of interest can be formulated in future breeding program to improve genetically body weight and morphology of the GIFT strain. In relative growth scale, heritabilities in relative growths of body length, width and depth to body weight were 0.257, 0.412 and 0.066, respectively, while genetic correlations among these allometry scalings were above 0.8. Genetic analysis for joint allometries of body weight to body length, width and depth will contribute to genetically regulate the growth rate between body shape and body weight. © 2015 Blackwell Verlag GmbH.

  3. Different concepts and models of information for family-relevant genetic findings: comparison and ethical analysis.

    PubMed

    Lenk, Christian; Frommeld, Debora

    2015-08-01

    Genetic predispositions often concern not only individual persons, but also other family members. Advances in the development of genetic tests lead to a growing number of genetic diagnoses in medical practice and to an increasing importance of genetic counseling. In the present article, a number of ethical foundations and preconditions for this issue are discussed. Four different models for the handling of genetic information are presented and analyzed including a discussion of practical implications. The different models' ranges of content reach from a strictly autonomous position over self-governed arrangements in the practice of genetic counseling up to the involvement of official bodies and committees. The different models show a number of elements which seem to be very useful for the handling of genetic data in families from an ethical perspective. In contrast, the limitations of the standard medical attempt regarding confidentiality and personal autonomy in the context of genetic information in the family are described. Finally, recommendations for further ethical research and the development of genetic counseling in families are given.

  4. Genetic and Environmental Stability Differs in Reactive and Proactive Aggression

    PubMed Central

    Tuvblad, Catherine; Raine, Adrian; Zheng, Mo; Baker, Laura A.

    2009-01-01

    The aim of this study was to examine stability and change in genetic and environmental influences on reactive (impulsive and affective) and proactive (planned and instrumental) aggression from childhood to early adolescence. The sample was drawn from an ongoing longitudinal twin study of risk factors for antisocial behavior at the University of Southern California (USC). The twins were measured on two occasions: ages 9–10 years (N = 1,241) and 11–14 years (N = 874). Reactive and proactive aggressive behaviors were rated by parents. The stability in reactive aggression was due to genetic and nonshared environmental influences, whereas the continuity in proactive aggression was primarily genetically mediated. Change in both reactive and proactive aggression between the two occasions was mainly explained by nonshared environmental influences, although some evidence for new genetic variance at the second occasion was found for both forms of aggression. These results suggest that proactive and reactive aggression differ in their genetic and environmental stability, and provide further evidence for some distinction between reactive and proactive forms of aggression. PMID:19688841

  5. Genetic variation affecting host-parasite interactions: different genes affect different aspects of sigma virus replication and transmission in Drosophila melanogaster.

    PubMed

    Bangham, Jenny; Kim, Kang-Wook; Webster, Claire L; Jiggins, Francis M

    2008-04-01

    In natural populations, genetic variation affects resistance to disease. Knowing how much variation exists, and understanding the genetic architecture of this variation, is important for medicine, for agriculture, and for understanding evolutionary processes. To investigate the extent and nature of genetic variation affecting resistance to pathogens, we are studying a tractable model system: Drosophila melanogaster and its natural pathogen the vertically transmitted sigma virus. We show that considerable genetic variation affects transmission of the virus from parent to offspring. However, maternal and paternal transmission of the virus is affected by different genes. Maternal transmission is a simple Mendelian trait: most of the genetic variation is explained by a polymorphism in ref(2)P, a gene already well known to affect resistance to sigma. In contrast, there is considerable genetic variation in paternal transmission that cannot be explained by ref(2)P and is caused by other loci on chromosome 2. Furthermore, we found no genetic correlation between paternal transmission of the virus and resistance to infection by the sigma virus following injection. This suggests that different loci affect viral replication and paternal transmission.

  6. Genetic Mechanisms Leading to Sex Differences Across Common Diseases and Anthropometric Traits.

    PubMed

    Traglia, Michela; Bseiso, Dina; Gusev, Alexander; Adviento, Brigid; Park, Daniel S; Mefford, Joel A; Zaitlen, Noah; Weiss, Lauren A

    2017-02-01

    Common diseases often show sex differences in prevalence, onset, symptomology, treatment, or prognosis. Although studies have been performed to evaluate sex differences at specific SNP associations, this work aims to comprehensively survey a number of complex heritable diseases and anthropometric traits. Potential genetically encoded sex differences we investigated include differential genetic liability thresholds or distributions, gene-sex interaction at autosomal loci, major contribution of the X-chromosome, or gene-environment interactions reflected in genes responsive to androgens or estrogens. Finally, we tested the overlap between sex-differential association with anthropometric traits and disease risk. We utilized complementary approaches of assessing GWAS association enrichment and SNP-based heritability estimation to explore explicit sex differences, as well as enrichment in sex-implicated functional categories. We do not find consistent increased genetic load in the lower-prevalence sex, or a disproportionate role for the X-chromosome in disease risk, despite sex-heterogeneity on the X for several traits. We find that all anthropometric traits show less than complete correlation between the genetic contribution to males and females, and find a convincing example of autosome-wide genome-sex interaction in multiple sclerosis (P = 1 × 10 -9 ). We also find some evidence for hormone-responsive gene enrichment, and striking evidence of the contribution of sex-differential anthropometric associations to common disease risk, implying that general mechanisms of sexual dimorphism determining secondary sex characteristics have shared effects on disease risk. Copyright © 2017 by the Genetics Society of America.

  7. Differences in exam performance between pupils attending selective and non-selective schools mirror the genetic differences between them

    NASA Astrophysics Data System (ADS)

    Smith-Woolley, Emily; Pingault, Jean-Baptiste; Selzam, Saskia; Rimfeld, Kaili; Krapohl, Eva; von Stumm, Sophie; Asbury, Kathryn; Dale, Philip S.; Young, Toby; Allen, Rebecca; Kovas, Yulia; Plomin, Robert

    2018-03-01

    On average, students attending selective schools outperform their non-selective counterparts in national exams. These differences are often attributed to value added by the school, as well as factors schools use to select pupils, including ability, achievement and, in cases where schools charge tuition fees or are located in affluent areas, socioeconomic status. However, the possible role of DNA differences between students of different schools types has not yet been considered. We used a UK-representative sample of 4814 genotyped students to investigate exam performance at age 16 and genetic differences between students in three school types: state-funded, non-selective schools (`non-selective'), state-funded, selective schools (`grammar') and private schools, which are selective (`private'). We created a genome-wide polygenic score (GPS) derived from a genome-wide association study of years of education (EduYears). We found substantial mean genetic differences between students of different school types: students in non-selective schools had lower EduYears GPS compared to those in grammar (d = 0.41) and private schools (d = 0.37). Three times as many students in the top EduYears GPS decile went to a selective school compared to the bottom decile. These results were mirrored in the exam differences between school types. However, once we controlled for factors involved in pupil selection, there were no significant genetic differences between school types, and the variance in exam scores at age 16 explained by school type dropped from 7% to <1%. These results show that genetic and exam differences between school types are primarily due to the heritable characteristics involved in pupil admission.

  8. [ISSR analysis for genetic polymorphism of Aconitum leucostomum from different habitats].

    PubMed

    Gao, Fu-chun; Sun, Yun; Zhang, Jing; Zhang, Fan

    2014-01-01

    To investigate the genetic diversities and variations of Aconitum leucostomum,and to supply essential characteristics for identifying Aconitum crude drugs. Plant genome extraction kit was applied to extract DNA,and ultraviolet spectrophotometer was used to detect the concentrations and purity of DNA. 60 ISSR primers were screened to analyze the DNA of Aconitum leucostomum from 10 habitats. Biosoftwares including POPGEN32 and NTSYS-PC were used to analyze the polymorphic bands obtained, and hence to yield the genetic similarity coefficient of the 10 habitats and map the related graphics, and cluster analysis were performed by UPGMA method. 11 primers selected from 60 ISSR primers were used for amplification and a total of 101 DNA bands were obtained, including 89 polymorphic bands,the average percentage of polymorphic bands (PPB) was 88.1%. Shannon information index (I) was 0.5298, the genetic similarity coefficient (H) was 0.3648, observed number of alleles was 1.8911, and effective number of alleles was 1.6555. The genetic identity was from 0.4950 to 0.6931, and the genetic distances were from 0.3666 to 0.7031. According to cluster analysis result of ISSR, the 10 habitats of Aconitum leucostomum were classified into five groups. Germplasm resources of Aconitum leucostomum show abundant polymorphism and higher genetic variation, which might supply molecular level basis, and provide basis for building DNA fingerprint.

  9. Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease.

    PubMed

    Moreno-Moral, Aida; Pesce, Francesco; Behmoaras, Jacques; Petretto, Enrico

    2017-01-01

    Systems genetics stems from systems biology and similarly employs integrative modeling approaches to describe the perturbations and phenotypic effects observed in a complex system. However, in the case of systems genetics the main source of perturbation is naturally occurring genetic variation, which can be analyzed at the systems-level to explain the observed variation in phenotypic traits. In contrast with conventional single-variant association approaches, the success of systems genetics has been in the identification of gene networks and molecular pathways that underlie complex disease. In addition, systems genetics has proven useful in the discovery of master trans-acting genetic regulators of functional networks and pathways, which in many cases revealed unexpected gene targets for disease. Here we detail the central components of a fully integrated systems genetics approach to complex disease, starting from assessment of genetic and gene expression variation, linking DNA sequence variation to mRNA (expression QTL mapping), gene regulatory network analysis and mapping the genetic control of regulatory networks. By summarizing a few illustrative (and successful) examples, we highlight how different data-modeling strategies can be effectively integrated in a systems genetics study.

  10. Gender Differences in Genetic Risk Profiles for Cardiovascular Disease

    PubMed Central

    Silander, Kaisa; Saarela, Olli; Ripatti, Samuli; Auro, Kirsi; Karvanen, Juha; Kulathinal, Sangita; Niemelä, Matti; Ellonen, Pekka; Vartiainen, Erkki; Jousilahti, Pekka; Saarela, Janna; Kuulasmaa, Kari; Evans, Alun; Perola, Markus; Salomaa, Veikko; Peltonen, Leena

    2008-01-01

    Background Cardiovascular disease (CVD) incidence, complications and burden differ markedly between women and men. Although there is variation in the distribution of lifestyle factors between the genders, they do not fully explain the differences in CVD incidence and suggest the existence of gender-specific genetic risk factors. We aimed to estimate whether the genetic risk profiles of coronary heart disease (CHD), ischemic stroke and the composite end-point of CVD differ between the genders. Methodology/Principal Findings We studied in two Finnish population cohorts, using the case-cohort design the association between common variation in 46 candidate genes and CHD, ischemic stroke, CVD, and CVD-related quantitative risk factors. We analyzed men and women jointly and also conducted genotype-gender interaction analysis. Several allelic variants conferred disease risk for men and women jointly, including rs1801020 in coagulation factor XII (HR = 1.31 (1.08–1.60) for CVD, uncorrected p = 0.006 multiplicative model). Variant rs11673407 in the fucosyltransferase 3 gene was strongly associated with waist/hip ratio (uncorrected p = 0.00005) in joint analysis. In interaction analysis we found statistical evidence of variant-gender interaction conferring risk of CHD and CVD: rs3742264 in the carboxypeptidase B2 gene, p(interaction) = 0.009 for CHD, and rs2774279 in the upstream stimulatory factor 1 gene, p(interaction) = 0.007 for CHD and CVD, showed strong association in women but not in men, while rs2069840 in interleukin 6 gene, p(interaction) = 0.004 for CVD, showed strong association in men but not in women (uncorrected p-values). Also, two variants in the selenoprotein S gene conferred risk for ischemic stroke in women, p(interaction) = 0.003 and 0.007. Importantly, we identified a larger number of gender-specific effects for women than for men. Conclusions/Significance A false discovery rate analysis suggests that we may expect half of

  11. Different demographic, genetic, and longitudinal traits in language versus memory Alzheimer's subgroups.

    PubMed

    Mez, Jesse; Cosentino, Stephanie; Brickman, Adam M; Huey, Edward D; Mayeux, Richard

    2013-01-01

    The study's objective was to compare demographics, APOE genotypes, and rate of rise over time in functional impairment in neuropsychologically defined language, typical, and memory subgroups of clinical Alzheimer's disease (AD). 1,368 participants from the National Alzheimer's Coordinating Center database with a diagnosis of probable AD (CDR 0.5-1.0) were included. A language subgroup (n = 229) was defined as having language performance >1 SD worse than memory performance. A memory subgroup (n = 213) was defined as having memory performance >1 SD worse than language performance. A typical subgroup (n = 926) was defined as having a difference in language and memory performance of <1 SD. Compared with the memory subgroup, the language subgroup was 3.7 years older and more frequently self-identified as African American (OR = 3.69). Under a dominant genetic model, the language subgroup had smaller odds of carrying at least one APOEε4 allele relative to the memory subgroup. While this difference was present for all ages, it was more striking at a younger age (OR = 0.19 for youngest tertile; OR = 0.52 for oldest tertile). Compared with the memory subgroup, the language subgroup rose 35% faster on the Functional Assessment Questionnaire and 44% faster on CDR sum of boxes over time. Among a subset of participants who underwent autopsy (n = 98), the language, memory, and typical subgroups were equally likely to have an AD pathologic diagnosis, suggesting that variation in non-AD pathologies across subtypes did not lead to the observed differences. The study demonstrates that a language subgroup of AD has different demographics, genetic profile, and disease course in addition to cognitive phenotype.

  12. Estimating Genetic Ancestry Proportions from Faces

    PubMed Central

    Klimentidis, Yann C.; Shriver, Mark D.

    2009-01-01

    Ethnicity can be a means by which people identify themselves and others. This type of identification mediates many kinds of social interactions and may reflect adaptations to a long history of group living in humans. Recent admixture in the US between groups from different continents, and the historically strong emphasis on phenotypic differences between members of these groups, presents an opportunity to examine the degree of concordance between estimates of group membership based on genetic markers and on visually-based estimates of facial features. We first measured the degree of Native American, European, African and East Asian genetic admixture in a sample of 14 self-identified Hispanic individuals, chosen to cover a broad range of Native American and European genetic admixture proportions. We showed frontal and side-view photographs of the 14 individuals to 241 subjects living in New Mexico, and asked them to estimate the degree of NA admixture for each individual. We assess the overall concordance for each observer based on an aggregated measure of the difference between the observer and the genetic estimates. We find that observers reach a significantly higher degree of concordance than expected by chance, and that the degree of concordance as well as the direction of the discrepancy in estimates differs based on the ethnicity of the observer, but not on the observers' age or sex. This study highlights the potentially high degree of discordance between physical appearance and genetic measures of ethnicity, as well as how perceptions of ethnic affiliation are context-specific. We compare our findings to those of previous studies and discuss their implications. PMID:19223962

  13. Genetic differences among Anopheles vestitipennis subpopulations collected using different methods in Chiapas state, southern México.

    PubMed

    Arredondo-Jiménez, J I; Gimnig, J; Rodríguez, M H; Washino, R K

    1996-09-01

    Biting activity and population genetic studies of the malaria vector Anopheles vestitipennis were conducted in southern México. Three subpopulations were collected from 2 villages; 2 subpopulations were from the same village, one on human bait and one with an animal-baited trap; the third was collected from a cattle corral in the 2nd village (280 km away SSE). The anthropophilic subpopulation had steady activity with 61% of bites occurring before midnight, significantly different from those of the 2 zoophilic subpopulations, which had 78-82% of bites before midnight and 2 biting peaks, one at 1900-2100 h and the other at 0400-0500 h. Isozyme analysis (13 enzymes) of these subpopulations indicated that differences between the 2 sympatric subpopulations (D = 0.07), collected using 2 different methods, were greater than that between the 2 allopatric ones (D = 0.03). These studies suggest the existence of 2 genetically different subpopulations of An. vestitipennis with specific host preferences.

  14. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?

    PubMed

    Veturi, Yogasudha; Ritchie, Marylyn D

    2018-01-01

    Transcriptome-wide association studies (TWAS) have recently been employed as an approach that can draw upon the advantages of genome-wide association studies (GWAS) and gene expression studies to identify genes associated with complex traits. Unlike standard GWAS, summary level data suffices for TWAS and offers improved statistical power. Two popular TWAS methods include either (a) imputing the cis genetic component of gene expression from smaller sized studies (using multi-SNP prediction or MP) into much larger effective sample sizes afforded by GWAS - TWAS-MP or (b) using summary-based Mendelian randomization - TWAS-SMR. Although these methods have been effective at detecting functional variants, it remains unclear how extensive variability in the genetic architecture of complex traits and diseases impacts TWAS results. Our goal was to investigate the different scenarios under which these methods yielded enough power to detect significant expression-trait associations. In this study, we conducted extensive simulations based on 6000 randomly chosen, unrelated Caucasian males from Geisinger's MyCode population to compare the power to detect cis expression-trait associations (within 500 kb of a gene) using the above-described approaches. To test TWAS across varying genetic backgrounds we simulated gene expression and phenotype using different quantitative trait loci per gene and cis-expression /trait heritability under genetic models that differentiate the effect of causality from that of pleiotropy. For each gene, on a training set ranging from 100 to 1000 individuals, we either (a) estimated regression coefficients with gene expression as the response using five different methods: LASSO, elastic net, Bayesian LASSO, Bayesian spike-slab, and Bayesian ridge regression or (b) performed eQTL analysis. We then sampled with replacement 50,000, 150,000, and 300,000 individuals respectively from the testing set of the remaining 5000 individuals and conducted GWAS on each

  15. Vantage Sensitivity: Environmental Sensitivity to Positive Experiences as a Function of Genetic Differences.

    PubMed

    Pluess, Michael

    2017-02-01

    A large number of gene-environment interaction studies provide evidence that some people are more likely to be negatively affected by adverse experiences as a function of specific genetic variants. However, such "risk" variants are surprisingly frequent in the population. Evolutionary analysis suggests that genetic variants associated with increased risk for maladaptive development under adverse environmental conditions are maintained in the population because they are also associated with advantages in response to different contextual conditions. These advantages may include (a) coexisting genetic resilience pertaining to other adverse influences, (b) a general genetic susceptibility to both low and high environmental quality, and (c) a coexisting propensity to benefit disproportionately from positive and supportive exposures, as reflected in the recent framework of vantage sensitivity. After introducing the basic properties of vantage sensitivity and highlighting conceptual similarities and differences with diathesis-stress and differential susceptibility patterns of gene-environment interaction, selected and recent empirical evidence for the notion of vantage sensitivity as a function of genetic differences is reviewed. The unique contribution that the new perspective of vantage sensitivity may make to our understanding of social inequality will be discussed after suggesting neurocognitive and molecular mechanisms hypothesized to underlie the propensity to benefit disproportionately from benevolent experiences. © 2015 Wiley Periodicals, Inc.

  16. A statistical assessment of differences and equivalences between genetically modified and reference plant varieties

    PubMed Central

    2011-01-01

    Background Safety assessment of genetically modified organisms is currently often performed by comparative evaluation. However, natural variation of plant characteristics between commercial varieties is usually not considered explicitly in the statistical computations underlying the assessment. Results Statistical methods are described for the assessment of the difference between a genetically modified (GM) plant variety and a conventional non-GM counterpart, and for the assessment of the equivalence between the GM variety and a group of reference plant varieties which have a history of safe use. It is proposed to present the results of both difference and equivalence testing for all relevant plant characteristics simultaneously in one or a few graphs, as an aid for further interpretation in safety assessment. A procedure is suggested to derive equivalence limits from the observed results for the reference plant varieties using a specific implementation of the linear mixed model. Three different equivalence tests are defined to classify any result in one of four equivalence classes. The performance of the proposed methods is investigated by a simulation study, and the methods are illustrated on compositional data from a field study on maize grain. Conclusions A clear distinction of practical relevance is shown between difference and equivalence testing. The proposed tests are shown to have appropriate performance characteristics by simulation, and the proposed simultaneous graphical representation of results was found to be helpful for the interpretation of results from a practical field trial data set. PMID:21324199

  17. Different but Equal? How Nonmajors and Majors Approach and Learn Genetics

    ERIC Educational Resources Information Center

    Knight, Jennifer K.; Smith, Michelle K.

    2010-01-01

    Introductory biology courses are frequently offered separately to biology majors and nonbiology majors, with the assumption that the two groups of students are different enough to merit different courses. To assess the evidence behind this assumption, we compared students in two different genetics classes at the University of Colorado-Boulder, one…

  18. Genetic Mechanisms Leading to Sex Differences Across Common Diseases and Anthropometric Traits

    PubMed Central

    Traglia, Michela; Bseiso, Dina; Gusev, Alexander; Adviento, Brigid; Park, Daniel S.; Mefford, Joel A.; Zaitlen, Noah; Weiss, Lauren A.

    2017-01-01

    Common diseases often show sex differences in prevalence, onset, symptomology, treatment, or prognosis. Although studies have been performed to evaluate sex differences at specific SNP associations, this work aims to comprehensively survey a number of complex heritable diseases and anthropometric traits. Potential genetically encoded sex differences we investigated include differential genetic liability thresholds or distributions, gene–sex interaction at autosomal loci, major contribution of the X-chromosome, or gene–environment interactions reflected in genes responsive to androgens or estrogens. Finally, we tested the overlap between sex-differential association with anthropometric traits and disease risk. We utilized complementary approaches of assessing GWAS association enrichment and SNP-based heritability estimation to explore explicit sex differences, as well as enrichment in sex-implicated functional categories. We do not find consistent increased genetic load in the lower-prevalence sex, or a disproportionate role for the X-chromosome in disease risk, despite sex-heterogeneity on the X for several traits. We find that all anthropometric traits show less than complete correlation between the genetic contribution to males and females, and find a convincing example of autosome-wide genome-sex interaction in multiple sclerosis (P = 1 × 10−9). We also find some evidence for hormone-responsive gene enrichment, and striking evidence of the contribution of sex-differential anthropometric associations to common disease risk, implying that general mechanisms of sexual dimorphism determining secondary sex characteristics have shared effects on disease risk. PMID:27974502

  19. Genetic and Virulent Difference Between Pigmented and Non-pigmented Staphylococcus aureus.

    PubMed

    Zhang, Jing; Suo, Yujuan; Zhang, Daofeng; Jin, Fangning; Zhao, Hang; Shi, Chunlei

    2018-01-01

    Staphyloxanthin (STX), a golden carotenoid pigment produced by Staphylococcus aureus , is suggested to act as an important virulence factor due to its antioxidant properties. Restraining biosynthesis of STX was considered as an indicator of virulence decline in pigmented S. aureus isolates. However, it is not clear whether natural non-pigmented S. aureus isolates have less virulence than pigmented ones. In this study, it is aimed to compare the pigmented and non-pigmented S. aureus isolates to clarify the genetic and virulent differences between the two groups. Here, 132 S. aureus isolates were divided into two phenotype groups depending on the absorbance (OD 450 ) of the extracted carotenoids. Then, all isolates were subjected to spa typing and multilocus sequence typing (MLST), and then the detection of presence of 30 virulence factors and the gene integrity of crtN and crtM . Furthermore, 24 typical S. aureus isolates and 4 S. argenteus strains were selected for the murine infection assay of in vivo virulence, in which the histological observation and enumeration of CFUs were carried out. These isolates were distributed in 26 sequence types (STs) and 49 spa types. The pigmented isolates were scattered in 25 STs, while the non-pigmented isolates were more centralized, which mainly belonged to ST20 (59%) and ST25 (13%). Among the 54 non-pigmented isolates, about 20% carried intact crtN and crtM genes. The in vivo assay suggested that comparing with pigmented S. aureus , non-pigmented S. aureus and S. argenteus strains did not show a reduced virulence in murine sepsis models. Therefore, it suggested that there were no significant genetic and virulent differences between pigmented and non-pigmented S. aureus .

  20. Genetic Structure of Natural Populations of Escherichia coli in Wild Hosts on Different Continents

    PubMed Central

    Souza, Valeria; Rocha, Martha; Valera, Aldo; Eguiarte, Luis E.

    1999-01-01

    Current knowledge of genotypic and phenotypic diversity in the species Escherichia coli is based almost entirely on strains recovered from humans or zoo animals. In this study, we analyzed a collection of 202 strains obtained from 81 mammalian species representing 39 families and 14 orders in Australia and the Americas, as well as several reference strains; we also included a strain from a reptile and 10 from different families of birds collected in Mexico. The strains were characterized genotypically by multilocus enzyme electrophoresis (MLEE) and phenotypically by patterns of sugar utilization, antibiotic resistance, and plasmid profile. MLEE analysis yielded an estimated genetic diversity (H) of 0.682 for 11 loci. The observed genetic diversity in this sample is the greatest yet reported for E. coli. However, this genetic diversity is not randomly distributed; geographic effects and host taxonomic group accounted for most of the genetic differentiation. The genetic relationship among the strains showed that they are more associated by origin and host order than is expected by chance. In a dendrogram, the ancestral cluster includes primarily strains from Australia and ECOR strains from groups B and C. The most differentiated E. coli in our analysis are strains from Mexican carnivores and strains from humans, including those in the ECOR group A. The kinds and numbers of sugars utilized by the strains varied by host taxonomic group and country of origin. Strains isolated from bats were found to exploit the greatest range of sugars, while those from primates utilized the fewest. Toxins are more frequent in strains from rodents from both continents than in any other taxonomic group. Strains from Mexican wild mammals were, on average, as resistant to antibiotics as strains from humans in cities. On average, the Australian strains presented a lower antibiotic resistance than the Mexican strains. However, strains recovered from hosts in cities carried significantly more

  1. Monkey-based research on human disease: the implications of genetic differences.

    PubMed

    Bailey, Jarrod

    2014-11-01

    Assertions that the use of monkeys to investigate human diseases is valid scientifically are frequently based on a reported 90-93% genetic similarity between the species. Critical analyses of the relevance of monkey studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for monkeys to constitute good models for research, and that monkey data do not translate well to progress in clinical practice for humans. Salient examples include the failure of new drugs in clinical trials, the highly different infectivity and pathology of SIV/HIV, and poor extrapolation of research on Alzheimer's disease, Parkinson's disease and stroke. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology - there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and monkey genetic sequences is of little benefit for biomedical research. The extrapolation of biomedical data from monkeys to humans is therefore highly unreliable, and the use of monkeys must be considered of questionable value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to scientists. 2014 FRAME.

  2. Genetic Population Structure of Dastarcus helophoroides (Coleoptera: Bothrideridae) From Different Long-Horned Beetle Hosts Based on Complete Sequences of Mitochondrial COI.

    PubMed

    Zhang, Zhengqing; Chang, Yong; Li, Menglou

    2017-06-01

    Dastarcus helophoroides (Fairmaire) (Coleoptera: Bothrideridae) is an important natural enemy of long-horned beetles in China, Japan, and Korea. In this study, the genetic sequence of cytochrome oxidase subunit Ι was used to investigate the genetics and relationships within and among D. helophoroides populations collected from five different geographic locations. We used principal component analysis, heatmap, and Venn diagram results to determine the relationship between haplotypes and populations. In total, 26 haplotypes with 51 nucleotide polymorphic sites were defined, and low genetic diversity was found among the different populations. Significant genetic variations were observed mainly within populations, and no correlation was found between genetic distribution and geographical distance. Low pairwise fixation index values (-0.01424 to 0.04896) and high gene flows show that there was high gene exchange between populations. The codistributed haplotype DH01 was suggested to be the most ancestral haplotype, and other haplotypes were thought to have evolved from it through several mutations. In four of the populations, both common haplotypes (DH01, DH03, and DH22) and unique haplotypes were found. Low genetic diversity among different populations is related to a relatively high flight capacity, host movement, and human-aided dispersal of D. helophoroides. The high gene exchange and typically weak population genetic structure among five populations, especially among populations of Anoplophora glabripennis (Motschulsky), Monochamus alternatus (Hope), and Massicus raddei (Blessig), may suggest that these populations cross naturally in the field. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Cost-Effectiveness Analysis of Different Genetic Testing Strategies for Lynch Syndrome in Taiwan.

    PubMed

    Chen, Ying-Erh; Kao, Sung-Shuo; Chung, Ren-Hua

    2016-01-01

    Patients with Lynch syndrome (LS) have a significantly increased risk of developing colorectal cancer (CRC) and other cancers. Genetic screening for LS among patients with newly diagnosed CRC aims to identify mutations in the disease-causing genes (i.e., the DNA mismatch repair genes) in the patients, to offer genetic testing for relatives of the patients with the mutations, and then to provide early prevention for the relatives with the mutations. Several genetic tests are available for LS, such as DNA sequencing for MMR genes and tumor testing using microsatellite instability and immunohistochemical analyses. Cost-effectiveness analyses of different genetic testing strategies for LS have been performed in several studies from different countries such as the US and Germany. However, a cost-effectiveness analysis for the testing has not yet been performed in Taiwan. In this study, we evaluated the cost-effectiveness of four genetic testing strategies for LS described in previous studies, while population-specific parameters, such as the mutation rates of the DNA mismatch repair genes and treatment costs for CRC in Taiwan, were used. The incremental cost-effectiveness ratios based on discounted life years gained due to genetic screening were calculated for the strategies relative to no screening and to the previous strategy. Using the World Health Organization standard, which was defined based on Taiwan's Gross Domestic Product per capita, the strategy based on immunohistochemistry as a genetic test followed by BRAF mutation testing was considered to be highly cost-effective relative to no screening. Our probabilistic sensitivity analysis results also suggest that the strategy has a probability of 0.939 of being cost-effective relative to no screening based on the commonly used threshold of $50,000 to determine cost-effectiveness. To the best of our knowledge, this is the first cost-effectiveness analysis for evaluating different genetic testing strategies for LS in

  4. Genetic differences in human circadian clock genes among worldwide populations.

    PubMed

    Ciarleglio, Christopher M; Ryckman, Kelli K; Servick, Stein V; Hida, Akiko; Robbins, Sam; Wells, Nancy; Hicks, Jennifer; Larson, Sydney A; Wiedermann, Joshua P; Carver, Krista; Hamilton, Nalo; Kidd, Kenneth K; Kidd, Judith R; Smith, Jeffrey R; Friedlaender, Jonathan; McMahon, Douglas G; Williams, Scott M; Summar, Marshall L; Johnson, Carl Hirschie

    2008-08-01

    The daily biological clock regulates the timing of sleep and physiological processes that are of fundamental importance to human health, performance, and well-being. Environmental parameters of relevance to biological clocks include (1) daily fluctuations in light intensity and temperature, and (2) seasonal changes in photoperiod (day length) and temperature; these parameters vary dramatically as a function of latitude and locale. In wide-ranging species other than humans, natural selection has genetically optimized adaptiveness along latitudinal clines. Is there evidence for selection of clock gene alleles along latitudinal/photoperiod clines in humans? A number of polymorphisms in the human clock genes Per2, Per3, Clock, and AANAT have been reported as alleles that could be subject to selection. In addition, this investigation discovered several novel polymorphisms in the human Arntl and Arntl2 genes that may have functional impact upon the expression of these clock transcriptional factors. The frequency distribution of these clock gene polymorphisms is reported for diverse populations of African Americans, European Americans, Ghanaians, Han Chinese, and Papua New Guineans (including 5 subpopulations within Papua New Guinea). There are significant differences in the frequency distribution of clock gene alleles among these populations. Population genetic analyses indicate that these differences are likely to arise from genetic drift rather than from natural selection.

  5. Genet-specific spawning patterns in Acropora palmata

    NASA Astrophysics Data System (ADS)

    Miller, M. W.; Williams, D. E.; Fisch, J.

    2016-12-01

    The broadcast spawning elkhorn coral, Acropora palmata, requires outcrossing among different genets for effective fertilization. Hence, a low density of genets in parts of its range emphasizes the need for precise synchrony among neighboring genets as sperm concentration dilutes rapidly in open-ocean conditions. We documented the genet-specific nightly occurrence of spawning of A. palmata over 8 yr in a depauperate population in the Florida Keys to better understand this potential reproductive hurdle. The observed population failed to spawn within the predicted monthly window (nights 2-6 after the full moon in August) in three of the 8 yr of observation; negligible spawning was observed in a fourth year. Moreover, genet-specific patterns are evident in that (1) certain genets have significantly greater odds of spawning overall and (2) certain genets predictably spawn on the earlier and others on the later lunar nights within the predicted window. Given the already low genet density in this population, this pattern implies a substantial degree of wasted reproductive effort and supports the hypothesis that depensatory factors are impairing recovery in this species.

  6. CYP2D6 Genetic Polymorphisms and Phenotypes in Different Ethnicities of Malaysian Breast Cancer Patients.

    PubMed

    Chin, Fee Wai; Chan, Soon Choy; Abdul Rahman, Sabariah; Noor Akmal, Sharifah; Rosli, Rozita

    2016-01-01

    The cytochrome P450, family 2, subfamily D, polypeptide 6 (CYP2D6) is an enzyme that is predominantly involved in the metabolism of tamoxifen. Genetic polymorphisms of the CYP2D6 gene may contribute to inter-individual variability in tamoxifen metabolism, which leads to the differences in clinical response to tamoxifen among breast cancer patients. In Malaysia, the knowledge on CYP2D6 genetic polymorphisms as well as metabolizer status in Malaysian breast cancer patients remains unknown. Hence, this study aimed to comprehensively identify CYP2D6 genetic polymorphisms among 80 Malaysian breast cancer patients. The genetic polymorphisms of all the 9 exons of CYP2D6 gene were identified using high-resolution melting analysis and confirmed by DNA sequencing. Seven CYP2D6 alleles consisting of CYP2D6*1, CYP2D6*2, CYP2D6*4, CYP2D6*10, CYP2D6*39, CYP2D6*49, and CYP2D6*75 were identified in this study. Among these alleles, CYP2D6*10 is the most common allele in both Malaysian Malay (54.8%) and Chinese (71.4%) breast cancer patients, whereas CYP2D6*4 in Malaysian Indian (28.6%) breast cancer patients. In relation to CYP2D6 genotype, CYP2D6*10/*10 is more frequently observed in both Malaysian Malay (28.9%) and Chinese (57.1%) breast cancer patients, whereas CYP2D6*4/*10 is more frequently observed in Malaysian Indian (42.8%) breast cancer patients. In terms of CYP2D6 phenotype, 61.5% of Malaysian Malay breast cancer patients are predicted as extensive metabolizers in which they are most likely to respond well to tamoxifen therapy. However, 57.1% of Chinese as well as Indian breast cancer patients are predicted as intermediate metabolizers and they are less likely to gain optimal benefit from the tamoxifen therapy. This is the first report of CYP2D6 genetic polymorphisms and phenotypes in Malaysian breast cancer patients for different ethnicities. These data may aid clinicians in selecting an optimal drug therapy for Malaysian breast cancer patients, hence improve the

  7. Environmental and Genetic Factors Explain Differences in Intraocular Scattering.

    PubMed

    Benito, Antonio; Hervella, Lucía; Tabernero, Juan; Pennos, Alexandros; Ginis, Harilaos; Sánchez-Romera, Juan F; Ordoñana, Juan R; Ruiz-Sánchez, Marcos; Marín, José M; Artal, Pablo

    2016-01-01

    To study the relative impact of genetic and environmental factors on the variability of intraocular scattering within a classical twin study. A total of 64 twin pairs, 32 monozygotic (MZ) (mean age: 54.9 ± 6.3 years) and 32 dizygotic (DZ) (mean age: 56.4 ± 7.0 years), were measured after a complete ophthalmologic exam had been performed to exclude all ocular pathologies that increase intraocular scatter as cataracts. Intraocular scattering was evaluated by using two different techniques based on a straylight parameter log(S) estimation: a compact optical instrument based in the principle of optical integration and a psychophysical measurement. Intraclass correlation coefficients (ICC) were used as descriptive statistics of twin resemblance, and genetic models were fitted to estimate heritability. No statistically significant difference was found for MZ and DZ groups for age (P = 0.203), best-corrected visual acuity (P = 0.626), cataract gradation (P = 0.701), sex (P = 0.941), optical log(S) (P = 0.386), or psychophysical log(S) (P = 0.568), with only a minor difference in equivalent sphere (P = 0.008). Intraclass correlation coefficients between siblings were similar for scatter parameters: 0.676 in MZ and 0.471 in DZ twins for optical log(S); 0.533 in MZ twins and 0.475 in DZ twins for psychophysical log(S). For equivalent sphere, ICCs were 0.767 in MZ and 0.228 in DZ twins. Conservative estimates of heritability for the measured scattering parameters were 0.39 and 0.20, respectively. Correlations of intraocular scatter (straylight) parameters in the groups of identical and nonidentical twins were similar. Heritability estimates were of limited magnitude, suggesting that genetic and environmental factors determine the variance of ocular straylight in healthy middle-aged adults.

  8. Preliminary Observations of Population Genetics and Relatedness of the Broadnose Sevengill Shark, Notorynchus cepedianus, in Two Northeast Pacific Estuaries

    PubMed Central

    Larson, Shawn; Farrer, Debbie; Lowry, Dayv; Ebert, David A.

    2015-01-01

    The broadnose sevengill shark, Notorynchus cepedianus, a common coastal species in the eastern North Pacific, was sampled during routine capture and tagging operations conducted from 2005–2012. One hundred and thirty three biopsy samples were taken during these research operations in Willapa Bay, Washington and in San Francisco Bay, California. Genotypic data from seven polymorphic microsatellites (derived from the related sixgill shark, Hexanchus griseus) were used to describe N. cepedianus genetic diversity, population structure and relatedness. Diversity within N. cepedianus was found to be low to moderate with an average observed heterozygosity of 0.41, expected heterozygosity of 0.53, and an average of 5.1 alleles per microsatellite locus. There was no evidence of a recent population bottleneck based on genetic data. Analyses of genetic differences between the two sampled estuaries suggest two distinct populations with some genetic mixing of sharks sampled during 2005–2006. Relatedness within sampled populations was high, with percent relatedness among sharks caught in the same area indicating 42.30% first-order relative relationships (full or half siblings). Estuary-specific familial relationships suggest that management of N. cepedianus on the U.S. West Coast should incorporate stock-specific management goals to conserve this ecologically important predator. PMID:26052706

  9. Population genetic differentiation of height and body mass index across Europe

    PubMed Central

    Robinson, Matthew R.; Hemani, Gibran; Medina-Gomez, Carolina; Mezzavilla, Massimo; Esko, Tonu; Shakhbazov, Konstantin; Powell, Joseph E.; Vinkhuyzen, Anna; Berndt, Sonja I.; Gustafsson, Stefan; Justice, Anne E.; Kahali, Bratati; Locke, Adam E.; Pers, Tune H.; Vedantam, Sailaja; Wood, Andrew R.; van Rheenen, Wouter; Andreassen, Ole A.; Gasparini, Paolo; Metspalu, Andres; van den Berg, Leonard H.; Veldink, Jan H.; Rivadeneira, Fernando; Werge, Thomas M.; Abecasis, Goncalo R.; Boomsma, Dorret I.; Chasman, Daniel I.; de Geus, Eco J.C.; Frayling, Timothy M.; Hirschhorn, Joel N.; Hottenga, Jouke Jan; Ingelsson, Erik; Loos, Ruth J.F.; Magnusson, Patrik K. E.; Martin, Nicholas G.; Montgomery, Grant W.; North, Kari E.; Pedersen, Nancy L.; Spector, Timothy D.; Speliotes, Elizabeth K.; Goddard, Michael E.; Yang, Jian; Visscher, Peter M.

    2016-01-01

    Across-nation differences in the mean of complex traits such as obesity and stature are common1–8, but the reasons for these differences are not known. Here, we find evidence that many independent loci of small effect combine to create population genetic differences in height and body mass index (BMI) in a sample of 9,416 individuals across 14 European countries. Using discovery data on over 250,000 individuals and unbiased estimates of effect sizes from 17,500 sib pairs, we estimate that 24% (95% CI: 9%, 41%) and 8% (95% CI: 4%, 16%) of the captured additive genetic variance for height and BMI across Europe are attributed to among-population genetic differences. Population genetic divergence differed significantly from that expected under a null model (P <3.94e−08 for height and P<5.95e−04 for BMI), and we find an among-population genetic correlation for tall and slender nations (r = −0.80 (95% CI: −0.95, −0.60), contrasting no genetic correlation between height and BMI within populations (r = −0.016, 95% CI: −0.041, 0.001), consistent with selection on height genes that also act to reduce BMI. Observations of mean height across nations correlated with the predicted genetic means for height (r = 0.51, P<0.001), so that a proportion of observed differences in height within Europe reflect genetic factors. In contrast, observed mean BMI did not correlate with the genetic estimates (P<0.58), implying that genetic differentiation in BMI is masked by environmental differences across Europe. PMID:26366552

  10. Influence of genetic variability at the surfactant proteins A and D in community-acquired pneumonia: a prospective, observational, genetic study

    PubMed Central

    2011-01-01

    Introduction Genetic variability of the pulmonary surfactant proteins A and D may affect clearance of microorganisms and the extent of the inflammatory response. The genes of these collectins (SFTPA1, SFTPA2 and SFTPD) are located in a cluster at 10q21-24. The objective of this study was to evaluate the existence of linkage disequilibrium (LD) among these genes, and the association of variability at these genes with susceptibility and outcome of community-acquired pneumonia (CAP). We also studied the effect of genetic variability on SP-D serum levels. Methods Seven non-synonymous polymorphisms of SFTPA1, SFTPA2 and SFTPD were analyzed. For susceptibility, 682 CAP patients and 769 controls were studied in a case-control study. Severity and outcome were evaluated in a prospective study. Haplotypes were inferred and LD was characterized. SP-D serum levels were measured in healthy controls. Results The SFTPD aa11-C allele was significantly associated with lower SP-D serum levels, in a dose-dependent manner. We observed the existence of LD among the studied genes. Haplotypes SFTPA1 6A2 (P = 0.0009, odds ration (OR) = 0.78), SFTPA2 1A0 (P = 0.002, OR = 0.79), SFTPA1-SFTPA2 6A2-1A0 (P = 0.0005, OR = 0.77), and SFTPD-SFTPA1-SFTPA2 C-6A2-1A0 (P = 0.00001, OR = 0.62) were underrepresented in patients, whereas haplotypes SFTPA2 1A10 (P = 0.00007, OR = 6.58) and SFTPA1-SFTPA2 6A3-1A (P = 0.0007, OR = 3.92) were overrepresented. Similar results were observed in CAP due to pneumococcus, though no significant differences were now observed after Bonferroni corrections. 1A10 and 6A-1A were associated with higher 28-day and 90-day mortality, and with multi-organ dysfunction syndrome (MODS) and acute respiratory distress syndrome (ARDS) respectively. SFTPD aa11-C allele was associated with development of MODS and ARDS. Conclusions Our study indicates that missense single nucleotide polymorphisms and haplotypes of SFTPA1, SFTPA2 and SFTPD are associated with susceptibility to CAP, and

  11. Genetic variation in Northern Thailand Hill Tribes: origins and relationships with social structure and linguistic differences.

    PubMed

    Besaggio, Davide; Fuselli, Silvia; Srikummool, Metawee; Kampuansai, Jatupol; Castrì, Loredana; Tyler-Smith, Chris; Seielstad, Mark; Kangwanpong, Daoroong; Bertorelle, Giorgio

    2007-08-16

    Ethnic minorities in Northern Thailand, often referred to as Hill Tribes, are considered an ideal model to study the different genetic impact of sex-specific migration rates expected in matrilocal (women remain in their natal villages after the marriage and men move to their wife's village) and patrilocal societies (the opposite is true). Previous studies identified such differences, but little is known about the possible interaction with another cultural factor that may potentially affect genetic diversity, i.e. linguistic differences. In addition, Hill Tribes started to migrate to Thailand in the last centuries from different Northern areas, but the history of these migrations, the level of genetic legacy with their places of origin, and the possible confounding effects related to this migration history in the patterns of genetic diversity, have not been analysed yet. Using both original and published data on the Hill Tribes and several other Asian populations, we focused on all these aspects. Genetic variation within population at mtDNA is lower in matrilocal, compared to patrilocal, tribes. The opposite is true for Y-chromosome microsatellites within the Sino-Tibetan linguistic family, but Hmong-Mien speaking patrilocal groups have a genetic diversity very similar to the matrilocal samples. Population divergence ranges between 5% and 14% at mtDNA sequences, and between 5% and 36% at Y-chromosomes STRs, and follows the sex-specific differences expected in patrilocal and matrilocal tribes. On the average, about 2 men and 14 women, and 4 men and 4 women, are exchanged in patrilocal and matrilocal tribes every generation, respectively. Most of the Hill Tribes in Thailand seem to preserve a genetic legacy with their likely geographic origin, with children adoption probably affecting this pattern in one tribe. Overall, the sex specific genetic signature of different postmarital habits of residence in the Hill Tribes is robust. However, specific perturbations related

  12. Age-Based Differences in the Genetic Determinants of Glycemic Control: A Case of FOXO3 Variations.

    PubMed

    Sun, Liang; Hu, Caiyou; Qian, Yu; Zheng, Chenguang; Liang, Qinghua; Lv, Zeping; Huang, Zezhi; Qi, Keyan; Huang, Jin; Zhou, Qin; Yang, Ze

    2015-01-01

    Glucose homeostasis is a trait of healthy ageing and is crucial to the elderly, but less consideration has been given to the age composition in most studies involving genetics and hyperglycemia. Seven variants in FOXO3 were genotyped in three cohorts (n = 2037; LLI, MI_S and MI_N; mean age: 92.5 ± 3.6, 45.9 ± 8.2 and 46.8 ± 10.3, respectively) to compare the contribution of FOXO3 to fasting hyperglycemia (FH) between long-lived individuals (LLI, aged over 90 years) and middle-aged subjects (aged from 35-65 years). A different genetic predisposition of FOXO3 alleles to FH was observed between LLI and both of two middle-aged cohorts. In the LLI cohort, the longevity beneficial alleles of three variants with the haplotype "AGGC" in block 1 were significantly protective to FH, fasting glucose, hemoglobin A1C and HOMA-IR. Notably, combining multifactor dimensionality reduction and logistic regression, we identified a significant 3-factor interaction model (rs2802288, rs2802292 and moderate physical activity) associated with lower FH risk. However, not all of the findings were replicated in the two middle-aged cohorts. Our data provides a novel insight into the inconsistent genetic determinants between middle-aged and LLI subjects. FOXO3 might act as a shared genetic predisposition to hyperglycemia and lifespan.

  13. Age-Based Differences in the Genetic Determinants of Glycemic Control: A Case of FOXO3 Variations

    PubMed Central

    Sun, Liang; Hu, Caiyou; Qian, Yu; Zheng, Chenguang; Liang, Qinghua; Lv, Zeping; Huang, Zezhi; Qi, Keyan; Huang, Jin; Zhou, Qin; Yang, Ze

    2015-01-01

    Background Glucose homeostasis is a trait of healthy ageing and is crucial to the elderly, but less consideration has been given to the age composition in most studies involving genetics and hyperglycemia. Methods Seven variants in FOXO3 were genotyped in three cohorts (n = 2037; LLI, MI_S and MI_N; mean age: 92.5±3.6, 45.9±8.2 and 46.8±10.3, respectively) to compare the contribution of FOXO3 to fasting hyperglycemia (FH) between long-lived individuals (LLI, aged over 90 years) and middle-aged subjects (aged from 35–65 years). Results A different genetic predisposition of FOXO3 alleles to FH was observed between LLI and both of two middle-aged cohorts. In the LLI cohort, the longevity beneficial alleles of three variants with the haplotype “AGGC” in block 1 were significantly protective to FH, fasting glucose, hemoglobin A1C and HOMA-IR. Notably, combining multifactor dimensionality reduction and logistic regression, we identified a significant 3-factor interaction model (rs2802288, rs2802292 and moderate physical activity) associated with lower FH risk. However, not all of the findings were replicated in the two middle-aged cohorts. Conclusion Our data provides a novel insight into the inconsistent genetic determinants between middle-aged and LLI subjects. FOXO3 might act as a shared genetic predisposition to hyperglycemia and lifespan. PMID:25993007

  14. Racial and ethnic differences in willingness to participate in psychiatric genetic research

    PubMed Central

    Murphy, Eleanor J.; Wickramaratne, Priya; Weissman, Myrna M.

    2009-01-01

    Objective The National Institute of Mental Health’s effort to rectify the underrepresentation of American Blacks in the genetic studies of psychiatric disorders has met with mixed success. This study was designed to understand some of the barriers to recruitment. Methods Men and women, who were of Black, White or Hispanic race/ethnicity, aged 18–79 years (Nλ=λ353), were recruited from clinical and community settings in New York City Participants responded to a survey that was designed to measure willingness to participate and attitudes toward genetic research. Principal components analyses generated eight factors including perceived benefits, concerns about, and drawbacks of genetic research, and beliefs about genetic or environmental contributions to psychopathology. Analysis of variance assessed within-ethnic group differences on factor scores, as they related to willingness to participate in genetic research. Results Ethnic groups did not differ significantly in stated willingness to participate in genetic research; more than 70% in each group were willing to participate. Among Blacks and Hispanics, mistrust and wariness, and stigma were significantly increased in those unwilling to participate; for Whites, perceived benefit to society and perceived importance for knowledge/education were associated with willingness to participate. For Blacks and Hispanics, youth (aged 18–29 years) and college education reduced, but did not eliminate the association between wariness and mistrust and willingness to participate. Conclusion Findings suggest that recruitment efforts aimed at increasing the representation of Blacks should be aware of the barriers among those who are less educated, and involve interactive community collaborations, to fully address the mistrust in this population. PMID:19593860

  15. Individual differences in cognition, affect, and performance: Behavioral, neuroimaging, and molecular genetic approaches

    PubMed Central

    Parasuraman, Raja; Jiang, Yang

    2012-01-01

    We describe the use of behavioral, neuroimaging, and genetic methods to examine individual differences in cognition and affect, guided by three criteria: (1) relevance to human performance in work and everyday settings; (2) interactions between working memory, decision-making, and affective processing; and (3) examination of individual differences. The results of behavioral, functional MRI (fMRI), event-related potential (ERP), and molecular genetic studies show that analyses at the group level often mask important findings associated with sub-groups of individuals. Dopaminergic/noradrenergic genes influencing prefrontal cortex activity contribute to inter-individual variation in working memory and decision behavior, including performance in complex simulations of military decision-making. The interactive influences of individual differences in anxiety, sensation seeking, and boredom susceptibility on evaluative decision-making can be systematically described using ERP and fMRI methods. We conclude that a multi-modal neuroergonomic approach to examining brain function (using both neuroimaging and molecular genetics) can be usefully applied to understanding individual differences in cognition and affect and has implications for human performance at work. PMID:21569853

  16. Sex differences in the genetic and environmental influences on childhood conduct disorder and adult antisocial behavior.

    PubMed

    Meier, Madeline H; Slutske, Wendy S; Heath, Andrew C; Martin, Nicholas G

    2011-05-01

    Sex differences in the genetic and environmental influences on childhood conduct disorder and adult antisocial behavior were examined in a large community sample of 6,383 adult male, female, and opposite-sex twins. Retrospective reports of childhood conduct disorder (prior to 18 years of age) were obtained when participants were approximately 30 years old, and lifetime reports of adult antisocial behavior (antisocial behavior after 17 years of age) were obtained 8 years later. Results revealed that either the genetic or the shared environmental factors influencing childhood conduct disorder differed for males and females (i.e., a qualitative sex difference), but by adulthood, these sex-specific influences on antisocial behavior were no longer apparent. Further, genetic and environmental influences accounted for proportionally the same amount of variance in antisocial behavior for males and females in childhood and adulthood (i.e., there were no quantitative sex differences). Additionally, the stability of antisocial behavior from childhood to adulthood was slightly greater for males than females. Though familial factors accounted for more of the stability of antisocial behavior for males than females, genetic factors accounted for the majority of the covariation between childhood conduct disorder and adult antisocial behavior for both sexes. The genetic influences on adult antisocial behavior overlapped completely with the genetic influences on childhood conduct disorder for both males and females. Implications for future twin and molecular genetic studies are discussed.

  17. Sex Differences in the Genetic and Environmental Influences on Childhood Conduct Disorder and Adult Antisocial Behavior

    PubMed Central

    Meier, Madeline H.; Slutske, Wendy S.; Heath, Andrew C.; Martin, Nicholas G.

    2011-01-01

    Sex differences in the genetic and environmental influences on childhood conduct disorder and adult antisocial behavior were examined in a large community sample of 6,383 adult male, female, and opposite-sex twins. Retrospective reports of childhood conduct disorder (prior to age 18) were obtained when participants were approximately 30 years old, and lifetime reports of adult antisocial behavior (antisocial behavior after age 17) were obtained eight years later. Results revealed that either the genetic or shared environmental factors influencing childhood conduct disorder differed for males and females (i.e., a qualitative sex difference), but by adulthood, these sex-specific influences on antisocial behavior were no longer apparent. Further, genetic and environmental influences accounted for proportionally the same amount of variance in antisocial behavior for males and females in childhood and adulthood (i.e., no quantitative sex differences). Additionally, the stability of antisocial behavior from childhood to adulthood was slightly greater for males than females. Though familial factors accounted for more of the stability of antisocial behavior for males than females, genetic factors accounted for the majority of the covariation between childhood conduct disorder and adult antisocial behavior for both sexes. The genetic influences on adult antisocial behavior overlapped completely with the genetic influences on childhood conduct disorder for both males and females. Implications for future twin and molecular genetic studies are discussed. PMID:21319923

  18. Rural-urban and racial-ethnic differences in awareness of direct-to-consumer genetic testing.

    PubMed

    Salloum, Ramzi G; George, Thomas J; Silver, Natalie; Markham, Merry-Jennifer; Hall, Jaclyn M; Guo, Yi; Bian, Jiang; Shenkman, Elizabeth A

    2018-02-23

    Access to direct-to-consumer genetic testing services has increased in recent years. However, disparities in knowledge and awareness of these services are not well documented. We examined awareness of genetic testing services by rural/urban and racial/ethnic status. Analyses were conducted using pooled cross-sectional data from 4 waves (2011-2014) of the Health Information National Trends Survey (HINTS). Descriptive statistics compared sample characteristics and information sources by rural/urban residence. Logistic regression was used to examine the relationship between geography, racial/ethnic status, and awareness of genetic testing, controlling for sociodemographic characteristics. Of 13,749 respondents, 16.7% resided in rural areas, 13.8% were Hispanic, and 10.1% were non-Hispanic black. Rural residents were less likely than urban residents to report awareness of genetic testing (OR = 0.74, 95% CI = 0.63-0.87). Compared with non-Hispanic whites, racial/ethnic minorities were less likely to be aware of genetic testing: Hispanic (OR = 0.68, 95% CI = 0.56-0.82); and non-Hispanic black (OR = 0.74, 95% CI = 0.61-0.90). Rural-urban and racial-ethnic differences exist in awareness of direct-to-consumer genetic testing. These differences may translate into disparities in the uptake of genetic testing, health behavior change, and disease prevention through precision and personalized medicine.

  19. Marital assortment for genetic similarity.

    PubMed

    Eckman, Ronael E; Williams, Robert; Nagoshi, Craig

    2002-10-01

    The present study involved analyses of a Caucasian American sample (n=949) and a Japanese American sample (n=400) for factors supporting Genetic Similarity Theory (GST). The analyses found no evidence for the presence of genetic similarity between spouses in either sample for the blood group analyses of nine loci. All results indicated random mating for blood group genes. The results did not provide consistent substantial support to show that spousal similarity is correlated with the degree of genetic component of a trait for a set of seventeen individual differences variables, with only the Caucasian sample yielding significant correlations for this analysis. A third analysis examining the correlation between presence of spousal genetic similarity and spousal similarity on observable traits was not performed because spousal genetic similarity was not observed in either sample. The overall implication of the study is that GST is not supported as an explanation for spousal similarity in humans.

  20. Differences in Allergic Sensitization by Self-reported Race and Genetic Ancestry

    PubMed Central

    Yang, James J.; Burchard, Esteban G.; Choudhry, Shweta; Johnson, Christine C.; Ownby, Dennis R.; Favro, David; Chen, Justin; Akana, Matthew; Ha, Connie; Kwok, Pui-Yan; Krajenta, Richard; Havstad, Suzanne L.; Joseph, Christine L.; Seibold, Max A.; Shriver, Mark D.; Williams, L. Keoki

    2010-01-01

    Background Many allergic conditions occur more frequently in African-American patients when compared with white patients; however it is not known whether this represents genetic predisposition or disparate environmental exposures. Objective To assess the relationship of self-reported race and genetic ancestry to allergic sensitization. Methods We included 601 women enrolled in a population-based cohort study whose self-reported race was African-American or white. Genetic ancestry was estimated using markers that differentiate West African and European ancestry. We assessed the relationship between allergic sensitization (defined as ≥1 allergen-specific IgE result) and both self-reported race and genetic ancestry. Regression models adjusted for socio-demographic variables, environmental exposures, and location of residence. Results The average proportion of West African ancestry in African-American participants was 0.69, whereas the mean proportion of European ancestry in white participants was 0.79. Self-reported African-American race was associated with allergic sensitization when compared with those who reported being white (adjusted odds ratio [aOR] 2.19; 95% confidence interval [CI] 1.22 – 3.93) even after adjusting for other variables. Genetic ancestry was not significantly associated with allergic sensitization after accounting for location of residence (aOR 2.09 for urban vs. suburban residence, 95% CI 1.32 −3.31). Conclusion Self-reported race and location of residence appeared to be more important predictors of allergic sensitization when compared with genetic ancestry, suggesting that the disparity in allergic sensitization by race may be primarily due to environmental factors rather than genetic differences. Clinical Implications These data suggest that efforts to eliminate disparities in allergic sensitization should focus on contributing environmental factors. PMID:19014772

  1. Occurrence and genetic variability of Kemerovo virus in Ixodes ticks from different regions of Western Siberia, Russia and Kazakhstan.

    PubMed

    Tkachev, Sergey E; Tikunov, Artem Yu; Babkin, Igor V; Livanova, Natalia N; Livanov, Stanislav G; Panov, Victor V; Yakimenko, Valeriy V; Tantsev, Alexey K; Taranenko, Dmitrii E; Tikunova, Nina V

    2017-01-01

    Kemerovo virus (KEMV), a member of the Reoviridae family, Orbivirus genus, is transmitted by Ixodes ticks and can cause aseptic meningitis and meningoencephalitis. Recently, this virus was observed in certain provinces of European part of Russia, Ural, and Western and Eastern Siberia. However, the occurrence and genetic diversity of KEMV in Western Siberia remain poorly studied. Therefore, the aim of this work was to investigate the prevalence and genetic variability of KEMV in Ixodes ticks from Western Siberia. A total of 1958 Ixodes persulcatus, I. pavlovskyi ticks and their hybrids from Novosibirsk and Omsk provinces, Altai Republic (Russia) and East Kazakhstan province (Kazakhstan) were analyzed for the presence of KEMV and tick-borne encephalitis virus (TBEV) RNA. It was observed that the KEMV distribution area in Western Siberia was wider than originally thought and included Northern and Northeastern Altai in addition to the Omsk and Novosibirsk provinces. For the first time, this virus was found in Kazakhstan. The occurrence of KEMV was statistically lower than TBEV in most locations in Western Siberia. KEMV was found both in I. persulcatus and I. pavlovskyi ticks and in their hybrids. Notably, KEMV variants observed in the 2010s were genetically different from those isolated in the 1960s, which indicated the ongoing process of evolution of the Kemerovo virus group. Moreover, the possibility of reassortment for KEMV was demonstrated for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Family physicians' beliefs about genetic contributions to racial/ethnic and gender differences in health and clinical decision-making.

    PubMed

    Warshauer-Baker, Esther; Bonham, Vence L; Jenkins, Jean; Stevens, Nancy; Page, Zintesia; Odunlami, Adebola; McBride, Colleen M

    2008-01-01

    Greater attention towards genetics as a contributor to group health differences may lead to inappropriate use of race/ethnicity and gender as genetic heuristics and exacerbate health disparities. As part of a web-based survey, 1,035 family physicians (FPs) rated the contribution of genetics and environment to racial/ethnic and gender differences in health outcomes, and the importance of race/ethnicity and gender in their clinical decision-making. FPs attributed racial/ethnic and gender differences in health outcomes equally to environment and genetics. These beliefs were not associated with rated importance of race/ethnicity or gender in clinical decision-making. FPs appreciate the complexity of genetic and environmental influences on health differences by race/ethnicity and gender. Copyright 2008 S. Karger AG, Basel.

  3. Genetic variation in Northern Thailand Hill Tribes: origins and relationships with social structure and linguistic differences

    PubMed Central

    Besaggio, Davide; Fuselli, Silvia; Srikummool, Metawee; Kampuansai, Jatupol; Castrì, Loredana; Tyler-Smith, Chris; Seielstad, Mark; Kangwanpong, Daoroong; Bertorelle, Giorgio

    2007-01-01

    Background Ethnic minorities in Northern Thailand, often referred to as Hill Tribes, are considered an ideal model to study the different genetic impact of sex-specific migration rates expected in matrilocal (women remain in their natal villages after the marriage and men move to their wife's village) and patrilocal societies (the opposite is true). Previous studies identified such differences, but little is known about the possible interaction with another cultural factor that may potentially affect genetic diversity, i.e. linguistic differences. In addition, Hill Tribes started to migrate to Thailand in the last centuries from different Northern areas, but the history of these migrations, the level of genetic legacy with their places of origin, and the possible confounding effects related to this migration history in the patterns of genetic diversity, have not been analysed yet. Using both original and published data on the Hill Tribes and several other Asian populations, we focused on all these aspects. Results Genetic variation within population at mtDNA is lower in matrilocal, compared to patrilocal, tribes. The opposite is true for Y-chromosome microsatellites within the Sino-Tibetan linguistic family, but Hmong-Mien speaking patrilocal groups have a genetic diversity very similar to the matrilocal samples. Population divergence ranges between 5% and 14% at mtDNA sequences, and between 5% and 36% at Y- chromosomes STRs, and follows the sex-specific differences expected in patrilocal and matrilocal tribes. On the average, about 2 men and 14 women, and 4 men and 4 women, are exchanged in patrilocal and matrilocal tribes every generation, respectively. Most of the Hill Tribes in Thailand seem to preserve a genetic legacy with their likely geographic origin, with children adoption probably affecting this pattern in one tribe. Conclusion Overall, the sex specific genetic signature of different postmarital habits of residence in the Hill Tribes is robust. However

  4. Stoichiometric differences in food quality: impacts on genetic diversity and the coexistence of aquatic herbivores in a Daphnia hybrid complex.

    PubMed

    Weider, Lawrence J; Jeyasingh, Punidan D; Looper, Karen G

    2008-11-01

    The maintenance of genetic and species diversity in an assemblage of genotypes (clones) in the Daphnia pulex species complex (Cladocera: Anomopoda) in response to variation in the carbon:phosphorus ratio (quantity and quality) of the green alga, Scenedesmus acutus, was examined in a 90-day microcosm competition experiment. Results indicated that mixed assemblages of seven distinct genotypes (representing clonal lineages of D. pulex, D. pulicaria and interspecific hybrids) showed rapid loss of genetic diversity in all treatments (2 x 2 factorial design, high vs. low quantity, and high vs. low quality). However, the erosion of diversity (measured as the effective number of clones) was slowest under the poorest food conditions (i.e., low quantity, low quality) and by the conclusion of the experiment (90 days) had resulted in the (low, low) treatment having significantly greater genetic diversity than the other three treatments. In addition, significant genotype (clone) x (food) environment interactions were observed, with a different predominant species/clone found under low food quality versus high food quality (no significant differences were detected for the two food quantities). A clone of D. pulex displaced the other clones under low food quality conditions, while a clone of D. pulicaria displaced the other clones in the high food quality treatments. Subsequent life-history experiments were not sufficient to predict the outcome of competitive interactions among members of this clonal assemblage. Our results suggest that genetic diversity among herbivore species such as Daphnia may be impacted not only by differences in food quantity but also by those in food quality and could be important in the overall maintenance of genetic diversity in natural populations.

  5. Psychopathology in 7-year-old children: Differences in maternal and paternal ratings and the genetic epidemiology.

    PubMed

    Wesseldijk, Laura W; Fedko, Iryna O; Bartels, Meike; Nivard, Michel G; van Beijsterveldt, Catharina E M; Boomsma, Dorret I; Middeldorp, Christel M

    2017-04-01

    The assessment of children's psychopathology is often based on parental report. Earlier studies have suggested that rater bias can affect the estimates of genetic, shared environmental and unique environmental influences on differences between children. The availability of a large dataset of maternal as well as paternal ratings of psychopathology in 7-year old children enabled (i) the analysis of informant effects on these assessments, and (ii) to obtain more reliable estimates of the genetic and non-genetic effects. DSM-oriented measures of affective, anxiety, somatic, attention-deficit/hyperactivity, oppositional-defiant, conduct, and obsessive-compulsive problems were rated for 12,310 twin pairs from the Netherlands Twin Register by mothers (N = 12,085) and fathers (N = 8,516). The effects of genetic and non-genetic effects were estimated on the common and rater-specific variance. For all scales, mean scores on maternal ratings exceeded paternal ratings. Parents largely agreed on the ranking of their child's problems (r 0.60-0.75). The heritability was estimated over 55% for maternal and paternal ratings for all scales, except for conduct problems (44-46%). Unbiased shared environmental influences, i.e., on the common variance, were significant for affective (13%), oppositional (13%), and conduct problems (37%). In clinical settings, different cutoffs for (sub)clinical scores could be applied to paternal and maternal ratings of their child's psychopathology. Only for conduct problems, shared environmental and genetic influences explain an equal amount in differences between children. For the other scales, genetic factors explain the majority of the variance, especially for the common part that is free of rater bias. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley

  6. Genetic Differences Between Humans and Great Apes -- Implications for the Evolution of Humans

    NASA Astrophysics Data System (ADS)

    Varki, Ajit

    2004-06-01

    At the level of individual protein sequences, humans are 97-100% identical to the great apes, our closest evolutionary relatives. The evolution of humans (and of human intelligence) from a common ancestor with the chimpanzee and bonobo involved many steps, influenced by interactions amongst factors of genetic, developmental, ecological, microbial, climatic, behavioral, cultural and social origin. The genetic factors can be approached by direct comparisons of human and great ape genomes, genes and gene products, and by elucidating biochemical and biological consequences of any differences found. We have discovered multiple genetic and biochemical differences between humans and great apes, particularly with respect to a family of cell surface molecules called sialic acids, as well as in the metabolism of thyroid hormones. The hormone differences have potential consequences for human brain development. The differences in sialic acid biology have multiple implications for the human condition, ranging from susceptibility or resistance to microbial pathogens, effects on endogenous receptors in the immune system, and potential effects on placental signaling, expression of oncofetal antigens in cancers, consequences of dietary intake of animal foods, and development of the mammalian brain.

  7. Contemporary and historic factors influence differently genetic differentiation and diversity in a tropical palm

    PubMed Central

    da Silva Carvalho, C; Ribeiro, M C; Côrtes, M C; Galetti, M; Collevatti, R G

    2015-01-01

    Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes. PMID:25873150

  8. Spatial difference in genetic variation for fenitrothion tolerance between local populations of Daphnia galeata in Lake Kasumigaura, Japan.

    PubMed

    Mano, Hiroyuki; Tanaka, Yoshinari

    2017-12-01

    This study examines the spatial difference in genetic variation for tolerance to a pesticide, fenitrothion, in Daphnia galeata at field sites in Lake Kasumigaura, Japan. We estimated genetic values of isofemale lines established from dormant eggs of D. galeata collected from field sampling sites with the toxicant threshold model applied using acute toxicity. We compared genetic values and variances and broad-sense heritability across different sites in the lake. Results showed that the mean tolerance values to fenitrothion did not differ spatially. The variance in genetic value and heritability of fenitrothion tolerance significantly differed between sampling sites, revealing that long-term ecological risk of fenitrothion may differ between local populations in the lake. These results have implications for aquatic toxicology research, suggesting that differences in genetic variation of tolerance to a chemical among local populations must be considered for understanding the long-term ecological risks of the chemical over a large geographic area.

  9. Genetic structure of the world's polar bear populations.

    PubMed

    Paetkau, D; Amstrup, S C; Born, E W; Calvert, W; Derocher, A E; Garner, G W; Messier, F; Stirling, I; Taylor, M K; Wiig, O; Strobeck, C

    1999-10-01

    We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals.

  10. Genetic structure of the world's polar bear populations

    USGS Publications Warehouse

    Paetkau, David; Amstrup, Steven C.; Born, E.W.; Calvert, W.; Derocher, A.E.; Garner, G.W.; Messier, F.; Stirling, I.; Taylor, M.K.; Wiig, O.; Strobeck, C.

    1999-01-01

    We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals.

  11. Genetic covariance components within and among linear type traits differ among contrasting beef cattle breeds.

    PubMed

    Doyle, Jennifer L; Berry, Donagh P; Walsh, Siobhan W; Veerkamp, Roel F; Evans, Ross D; Carthy, Tara R

    2018-05-04

    Linear type traits describing the skeletal, muscular, and functional characteristics of an animal are routinely scored on live animals in both the dairy and beef cattle industries. Previous studies have demonstrated that genetic parameters for certain performance traits may differ between breeds; no study, however, has attempted to determine if differences exist in genetic parameters of linear type traits among breeds or sexes. Therefore, the objective of the present study was to determine if genetic covariance components for linear type traits differed among five contrasting cattle breeds, and to also investigate if these components differed by sex. A total of 18 linear type traits scored on 3,356 Angus (AA), 31,049 Charolais (CH), 3,004 Hereford (HE), 35,159 Limousin (LM), and 8,632 Simmental (SI) were used in the analysis. Data were analyzed using animal linear mixed models which included the fixed effects of sex of the animal (except in the investigation into the presence of sexual dimorphism), age at scoring, parity of the dam, and contemporary group of herd-date of scoring. Differences (P < 0.05) in heritability estimates, between at least two breeds, existed for 13 out of 18 linear type traits. Differences (P < 0.05) also existed between the pairwise within-breed genetic correlations among the linear type traits. Overall, the linear type traits in the continental breeds (i.e., CH, LM, SI) tended to have similar heritability estimates to each other as well as similar genetic correlations among the same pairwise traits, as did the traits in the British breeds (i.e., AA, HE). The correlation between a linear function of breeding values computed conditional on covariance parameters estimated from the CH breed with a linear function of breeding values computed conditional on covariance parameters estimated from the other breeds was estimated. Replacing the genetic covariance components estimated in the CH breed with those of the LM had least effect but the impact

  12. Differences in the Selection Bottleneck between Modes of Sexual Transmission Influence the Genetic Composition of the HIV-1 Founder Virus

    PubMed Central

    Tully, Damien C.; Ogilvie, Colin B.; Batorsky, Rebecca E.; Bean, David J.; Power, Karen A.; Ghebremichael, Musie; Bedard, Hunter E.; Gladden, Adrianne D.; Seese, Aaron M.; Amero, Molly A.; Lane, Kimberly; McGrath, Graham; Bazner, Suzane B.; Tinsley, Jake; Lennon, Niall J.; Henn, Matthew R.; Brumme, Zabrina L.; Norris, Philip J.; Rosenberg, Eric S.; Mayer, Kenneth H.; Jessen, Heiko; Kosakovsky Pond, Sergei L.; Walker, Bruce D.; Altfeld, Marcus; Carlson, Jonathan M.; Allen, Todd M.

    2016-01-01

    Due to the stringent population bottleneck that occurs during sexual HIV-1 transmission, systemic infection is typically established by a limited number of founder viruses. Elucidation of the precise forces influencing the selection of founder viruses may reveal key vulnerabilities that could aid in the development of a vaccine or other clinical interventions. Here, we utilize deep sequencing data and apply a genetic distance-based method to investigate whether the mode of sexual transmission shapes the nascent founder viral genome. Analysis of 74 acute and early HIV-1 infected subjects revealed that 83% of men who have sex with men (MSM) exhibit a single founder virus, levels similar to those previously observed in heterosexual (HSX) transmission. In a metadata analysis of a total of 354 subjects, including HSX, MSM and injecting drug users (IDU), we also observed no significant differences in the frequency of single founder virus infections between HSX and MSM transmissions. However, comparison of HIV-1 envelope sequences revealed that HSX founder viruses exhibited a greater number of codon sites under positive selection, as well as stronger transmission indices possibly reflective of higher fitness variants. Moreover, specific genetic “signatures” within MSM and HSX founder viruses were identified, with single polymorphisms within gp41 enriched among HSX viruses while more complex patterns, including clustered polymorphisms surrounding the CD4 binding site, were enriched in MSM viruses. While our findings do not support an influence of the mode of sexual transmission on the number of founder viruses, they do demonstrate that there are marked differences in the selection bottleneck that can significantly shape their genetic composition. This study illustrates the complex dynamics of the transmission bottleneck and reveals that distinct genetic bottleneck processes exist dependent upon the mode of HIV-1 transmission. PMID:27163788

  13. Differences in the Selection Bottleneck between Modes of Sexual Transmission Influence the Genetic Composition of the HIV-1 Founder Virus.

    PubMed

    Tully, Damien C; Ogilvie, Colin B; Batorsky, Rebecca E; Bean, David J; Power, Karen A; Ghebremichael, Musie; Bedard, Hunter E; Gladden, Adrianne D; Seese, Aaron M; Amero, Molly A; Lane, Kimberly; McGrath, Graham; Bazner, Suzane B; Tinsley, Jake; Lennon, Niall J; Henn, Matthew R; Brumme, Zabrina L; Norris, Philip J; Rosenberg, Eric S; Mayer, Kenneth H; Jessen, Heiko; Kosakovsky Pond, Sergei L; Walker, Bruce D; Altfeld, Marcus; Carlson, Jonathan M; Allen, Todd M

    2016-05-01

    Due to the stringent population bottleneck that occurs during sexual HIV-1 transmission, systemic infection is typically established by a limited number of founder viruses. Elucidation of the precise forces influencing the selection of founder viruses may reveal key vulnerabilities that could aid in the development of a vaccine or other clinical interventions. Here, we utilize deep sequencing data and apply a genetic distance-based method to investigate whether the mode of sexual transmission shapes the nascent founder viral genome. Analysis of 74 acute and early HIV-1 infected subjects revealed that 83% of men who have sex with men (MSM) exhibit a single founder virus, levels similar to those previously observed in heterosexual (HSX) transmission. In a metadata analysis of a total of 354 subjects, including HSX, MSM and injecting drug users (IDU), we also observed no significant differences in the frequency of single founder virus infections between HSX and MSM transmissions. However, comparison of HIV-1 envelope sequences revealed that HSX founder viruses exhibited a greater number of codon sites under positive selection, as well as stronger transmission indices possibly reflective of higher fitness variants. Moreover, specific genetic "signatures" within MSM and HSX founder viruses were identified, with single polymorphisms within gp41 enriched among HSX viruses while more complex patterns, including clustered polymorphisms surrounding the CD4 binding site, were enriched in MSM viruses. While our findings do not support an influence of the mode of sexual transmission on the number of founder viruses, they do demonstrate that there are marked differences in the selection bottleneck that can significantly shape their genetic composition. This study illustrates the complex dynamics of the transmission bottleneck and reveals that distinct genetic bottleneck processes exist dependent upon the mode of HIV-1 transmission.

  14. Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei.

    PubMed

    Hijri, Mohamed; Sanders, Ian R

    2005-01-13

    Arbuscular mycorrhizal fungi (AMF) are ancient asexually reproducing organisms that form symbioses with the majority of plant species, improving plant nutrition and promoting plant diversity. Little is known about the evolution or organization of the genomes of any eukaryotic symbiont or ancient asexual organism. Direct evidence shows that one AMF species is heterokaryotic; that is, containing populations of genetically different nuclei. It has been suggested, however, that the genetic variation passed from generation to generation in AMF is simply due to multiple chromosome sets (that is, high ploidy). Here we show that previously documented genetic variation in Pol-like sequences, which are passed from generation to generation, cannot be due to either high ploidy or repeated gene duplications. Our results provide the clearest evidence so far for substantial genetic differences among nuclei in AMF. We also show that even AMF with a very large nuclear DNA content are haploid. An underlying principle of evolutionary theory is that an individual passes on one or half of its genome to each of its progeny. The coexistence of a population of many genomes in AMF and their transfer to subsequent generations, therefore, has far-reaching consequences for understanding genome evolution.

  15. Genetic differences in ethanol-induced hyperglycemia and conditioned taste aversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Risinger, F.O.; Cunningham, C.L.

    1992-01-01

    Genetic differences in the hyperglycemic response to acute ethanol exposure and ethanol-induced conditioned taste aversion were examined using inbred mice. Adult male C57BL/6J and DBA/2J mice were injected with ethanol and blood glucose levels determined over 4 h. C57 mice demonstrated greater dose-dependent elevations in blood glucose compared to DBA mice. In a conditioned taste aversion procedure, water deprived mice received ethanol injections immediately after access to a NaCl flavored solution. DBA mice developed aversion to the ethanol-paired flavor at a lower dose than C57 mice. These results provide further support for a possible inverse genetic relationship between sensitivity tomore » ethanol-induced hyperglycemia and sensitivity to conditioned taste aversion.« less

  16. Different Histories, Different Destinies‒Impact of Evolutionary History and Population Genetic Structure on Extinction Risk of the Adriatic Spined Loaches (Genus Cobitis; Cypriniformes, Actinopterygii).

    PubMed

    Buj, Ivana; Ćaleta, Marko; Marčić, Zoran; Šanda, Radek; Vukić, Jasna; Mrakovčić, Milorad

    2015-01-01

    The region of Balkans is often considered as an ichthyologic "hot spot", with a great number of species and high portion of endemics living in fresh waters in a relatively small area. The Adriatic watershed in Croatia and Herzegovina is inhabited by six spined loach species (genus Cobitis) whose extinction risk estimations were based solely on their extent of occurrence (and/or area of occupancy) and its fragmentation, and conservation proposals do not consider diversity below species level. In this investigation we employed molecular genetic methods to describe present genetic structure of the Adriatic spined loaches and reveal their demographic history. The divergence of the Adriatic lineages inside the genus Cobitis started in Miocene and lasted until Pleistocene epoch. Geological events responsible for shaping recent diversity of spined loaches in the Adriatic basin are: the Dinarid Mountains upwelling, the evolution of Dinaric Lake system, local tectonic activity, river connections during glaciations and differences in sea level. Even though all the investigated species inhabit karstic rivers located in the same geographic area and that were subject of similar geological events, the results obtained reveal great differences in their genetic diversity and structure and point out the necessity of different conservation measures to ensure their future viability. High level of genetic polymorphism is characteristic for species located more to the south. Two species comprised of more than one population have completely different intraspecific structure; populations of C. illyrica are genetically distinct and represent separate evolutionary significant units, whereas intraspecific structure of C. narentana corresponds to metapopulational pattern. Without population genetic data, evolutionary significant units could be easily misidentified. Furthermore, the obtained results affirm that population genetic measurements are able to detect differences among closely

  17. The neuroanatomy of genetic subtype differences in Prader-Willi syndrome.

    PubMed

    Honea, Robyn A; Holsen, Laura M; Lepping, Rebecca J; Perea, Rodrigo; Butler, Merlin G; Brooks, William M; Savage, Cary R

    2012-03-01

    Despite behavioral differences between genetic subtypes of Prader-Willi syndrome (PWS), no studies have been published characterizing brain structure in these subgroups. Our goal was to examine differences in the brain structure phenotype of common subtypes of PWS [chromosome 15q deletions and maternal uniparental disomy 15 (UPD)]. Fifteen individuals with PWS due to a typical deletion [(DEL) type I; n = 5, type II; n = 10], eight with PWS due to UPD, and 25 age-matched healthy-weight individuals (HWC) participated in structural magnetic resonance imaging (MRI) scans. A custom voxel-based morphometry processing stream was used to examine regional differences in gray and white matter volume (WMV) between groups, covarying for age, sex, and body mass index (BMI). Overall, compared to HWC, PWS individuals had lower gray matter volumes (GMV) that encompassed the prefrontal, orbitofrontal and temporal cortices, hippocampus and parahippocampal gyrus, and lower WMVs in the brain stem, cerebellum, medial temporal, and frontal cortex. Compared to UPD, the DEL subtypes had lower GMV primarily in the prefrontal and temporal cortices, and lower white matter in the parietal cortex. The UPD subtype had more extensive lower gray and WMVs in the orbitofrontal and limbic cortices compared to HWC. These preliminary findings are the first structural neuroimaging findings to support potentially separate neural mechanisms mediating the behavioral differences seen in these genetic subtypes. Copyright © 2012 Wiley Periodicals, Inc.

  18. Pronounced differences in genetic structure despite overall ecological similarity for two Ambystoma salamanders in the same landscape

    Treesearch

    Andrew R. Whiteley; Kevin McGarigal; Michael K. Schwartz

    2014-01-01

    Studies linking genetic structure in amphibian species with ecological characteristics have focused on large differences in dispersal capabilities. Here, we test whether two species with similar dispersal potential but subtle differences in other ecological characteristics also exhibit strong differences in genetic structure in the same landscape. We examined eight...

  19. Pathogenicity of Genetically Similar, H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds

    PubMed Central

    Matsuu, Aya; Kobayashi, Tomoko; Patchimasiri, Tuangthong; Shiina, Takashi; Suzuki, Shingo; Chaichoune, Kridsada; Ratanakorn, Parntep; Hiromoto, Yasuaki; Abe, Haruka; Parchariyanon, Sujira; Saito, Takehiko

    2016-01-01

    Differences in the pathogenicity of genetically closely related H5N1 highly pathogenic avian influenza viruses (HPAIVs) were evaluated in White Leghorn chickens. These viruses varied in the clinical symptoms they induced, including lethality, virus shedding, and replication in host tissues. A comparison of the host responses in the lung, brain, and spleen suggested that the differences in viral replication efficiency were related to the host cytokine response at the early phase of infection, especially variations in the proinflammatory cytokine IL-6. Based on these findings, we inoculated the virus that showed the mildest pathogenicity among the five tested, A/pigeon/Thailand/VSMU-7-NPT/2004, into four breeds of Thai indigenous chicken, Phadu-Hung-Dang (PHD), Chee, Dang, and Luang-Hung-Khao (LHK), to explore effects of genetic background on host response. Among these breeds, Chee, Dang, and LHK showed significantly longer survival times than White Leghorns. Virus shedding from dead Thai indigenous chickens was significantly lower than that from White Leghorns. Although polymorphisms were observed in the Mx and MHC class I genes, there was no significant association between the polymorphisms in these loci and resistance to HPAIV. PMID:27078641

  20. River network architecture, genetic effective size and distributional patterns predict differences in genetic structure across species in a dryland stream fish community.

    PubMed

    Pilger, Tyler J; Gido, Keith B; Propst, David L; Whitney, James E; Turner, Thomas F

    2017-05-01

    Dendritic ecological network (DEN) architecture can be a strong predictor of spatial genetic patterns in theoretical and simulation studies. Yet, interspecific differences in dispersal capabilities and distribution within the network may equally affect species' genetic structuring. We characterized patterns of genetic variation from up to ten microsatellite loci for nine numerically dominant members of the upper Gila River fish community, New Mexico, USA. Using comparative landscape genetics, we evaluated the role of network architecture for structuring populations within species (pairwise F ST ) while explicitly accounting for intraspecific demographic influences on effective population size (N e ). Five species exhibited patterns of connectivity and/or genetic diversity gradients that were predicted by network structure. These species were generally considered to be small-bodied or habitat specialists. Spatial variation of N e was a strong predictor of pairwise F ST for two species, suggesting patterns of connectivity may also be influenced by genetic drift independent of network properties. Finally, two study species exhibited genetic patterns that were unexplained by network properties and appeared to be related to nonequilibrium processes. Properties of DENs shape community-wide genetic structure but effects are modified by intrinsic traits and nonequilibrium processes. Further theoretical development of the DEN framework should account for such cases. © 2017 John Wiley & Sons Ltd.

  1. Genetic and Environmental Influences on Individual Differences in Frequency of Play with Pets among Middle-Aged Men: A Behavioral Genetic Analysis

    PubMed Central

    Jacobson, Kristen C.; Hoffman, Christy L.; Vasilopoulos, Terrie; Kremen, William S.; Panizzon, Matthew S.; Grant, Michael D.; Lyons, Michael J.; Xian, Hong; Franz, Carol E.

    2014-01-01

    There is growing evidence that pet ownership and human–animal interaction (HAI) have benefits for human physical and psychological well-being. However, there may be pre-existing characteristics related to patterns of pet ownership and interactions with pets that could potentially bias results of research on HAI. The present study uses a behavioral genetic design to estimate the degree to which genetic and environmental factors contribute to individual differences in frequency of play with pets among adult men. Participants were from the ongoing longitudinal Vietnam Era Twin Study of Aging (VETSA), a population-based sample of 1,237 monozygotic (MZ) and dizygotic (DZ) twins aged 51–60 years. Results demonstrate that MZ twins have higher correlations than DZ twins on frequency of pet play, suggesting that genetic factors play a role in individual differences in interactions with pets. Structural equation modeling revealed that, according to the best model, genetic factors accounted for as much as 37% of the variance in pet play, although the majority of variance (63–71%) was due to environmental factors that are unique to each twin. Shared environmental factors, which would include childhood exposure to pets, overall accounted for <10% of the variance in adult frequency of pet play, and were not statistically significant. These results suggest that the effects of childhood exposure to pets on pet ownership and interaction patterns in adulthood may be mediated primarily by genetically-influenced characteristics. PMID:25580056

  2. Genetic and Environmental Influences on Individual Differences in Frequency of Play with Pets among Middle-Aged Men: A Behavioral Genetic Analysis.

    PubMed

    Jacobson, Kristen C; Hoffman, Christy L; Vasilopoulos, Terrie; Kremen, William S; Panizzon, Matthew S; Grant, Michael D; Lyons, Michael J; Xian, Hong; Franz, Carol E

    2012-12-01

    There is growing evidence that pet ownership and human-animal interaction (HAI) have benefits for human physical and psychological well-being. However, there may be pre-existing characteristics related to patterns of pet ownership and interactions with pets that could potentially bias results of research on HAI. The present study uses a behavioral genetic design to estimate the degree to which genetic and environmental factors contribute to individual differences in frequency of play with pets among adult men. Participants were from the ongoing longitudinal Vietnam Era Twin Study of Aging (VETSA), a population-based sample of 1,237 monozygotic (MZ) and dizygotic (DZ) twins aged 51-60 years. Results demonstrate that MZ twins have higher correlations than DZ twins on frequency of pet play, suggesting that genetic factors play a role in individual differences in interactions with pets. Structural equation modeling revealed that, according to the best model, genetic factors accounted for as much as 37% of the variance in pet play, although the majority of variance (63-71%) was due to environmental factors that are unique to each twin. Shared environmental factors, which would include childhood exposure to pets, overall accounted for <10% of the variance in adult frequency of pet play, and were not statistically significant. These results suggest that the effects of childhood exposure to pets on pet ownership and interaction patterns in adulthood may be mediated primarily by genetically-influenced characteristics.

  3. Genetic regulation of sex differences in songbirds and lizards.

    PubMed

    Wade, Juli

    2016-02-19

    Sex differences in the morphology of neural and peripheral structures related to reproduction often parallel the frequency of particular behaviours displayed by males and females. In a variety of model organisms, these sex differences are organized in development by gonadal steroids, which also act in adulthood to modulate behavioural expression and in some cases to generate parallel anatomical changes on a seasonal basis. Data collected from diverse species, however, suggest that changes in hormone availability are not sufficient to explain sex and seasonal differences in structure and function. This paper pulls together some of this literature from songbirds and lizards and considers the information in the broader context of taking a comparative approach to investigating genetic mechanisms associated with behavioural neuroendocrinology. © 2016 The Author(s).

  4. Genetic regulation of sex differences in songbirds and lizards

    PubMed Central

    Wade, Juli

    2016-01-01

    Sex differences in the morphology of neural and peripheral structures related to reproduction often parallel the frequency of particular behaviours displayed by males and females. In a variety of model organisms, these sex differences are organized in development by gonadal steroids, which also act in adulthood to modulate behavioural expression and in some cases to generate parallel anatomical changes on a seasonal basis. Data collected from diverse species, however, suggest that changes in hormone availability are not sufficient to explain sex and seasonal differences in structure and function. This paper pulls together some of this literature from songbirds and lizards and considers the information in the broader context of taking a comparative approach to investigating genetic mechanisms associated with behavioural neuroendocrinology. PMID:26833833

  5. Population genetic relationships between Casearia sylvestris (Salicaceae) varieties occurring sympatrically and allopatrically in different ecosystems in south-east Brazil.

    PubMed

    Cavallari, Marcelo Mattos; Gimenes, Marcos Aparecido; Billot, Claire; Torres, Roseli Buzanelli; Zucchi, Maria Imaculada; Cavalheiro, Alberto Jose; Bouvet, Jean-Marc

    2010-10-01

    Species delimitation can be problematic, and recently diverged taxa are sometimes viewed as the extremes of a species' continuum in response to environmental conditions. Using population genetic approaches, this study assessed the relationship between two Casearia sylvestris (Salicaceae) varieties, which occur sympatrically and allopatrically in the landscape of south-east Brazil, where intermediate types are also found. In total, 376 individuals from nine populations in four different ecosystems were sampled, and nine microsatellite markers were used to assess the relative effects of the ecosystems and varieties on the distribution of genetic diversity among populations of this species. As a by-product of this study, several PCR products with more than two alleles were observed. The possibility that extra bands represent non-specific amplification or PCR artefacts was discarded by sequencing a sample of these bands. We suggest that (partial) genome duplication in C. sylvestris most probably explains this phenomenon, which may be a key factor in the differentiation of the two taxa, as it was markedly more frequent in one of the varieties. AMOVA indicated that approx. 22 % of the total genetic diversity was found between the two varieties. Bayesian analysis identified varieties and ecosystems as evolutionary units, rather than the individual populations sampled. The results are in agreement with field observations and support the recognition of two varieties, as well as documenting the occurrence of hybridization between them.

  6. Two closely related species differ in their regional genetic differentiation despite admixing

    PubMed Central

    Fischer, Markus; Oja, Tatjana

    2018-01-01

    Abstract Regional genetic differentiation within species is often addressed in evolutionary ecology and conservation biology. Here, we address regional differentiation in two closely related hybridizing taxa, the perennial sedges Carex flava and C. viridula and their hybrid C. × subviridula in 37 populations in the north and centre of their distribution range in Europe (Estonia, Lowland (<1000 m a.s.l.) and Highland Switzerland) using 10 putative microsatellite loci. We ask whether regional differentiation was larger in the less common taxon C. viridula or whether, possibly due to hybridization, it was similar between taxa. Our results showed similar, low to moderate genetic diversity for the three studied taxa. In total, we found 12 regional species-specific alleles. Analysis of molecular variance (AMOVA), STRUCTURE and multidimensional scaling analysis showed regional structure in genetic variation, where intraspecific differentiation between regions was lower for C. flava (AMOVA: 6.84 %) than for C. viridula (20.77 %) or C. × subviridula (18.27 %) populations. Hybrids differed from the parental taxa in the two regions where they occurred, i.e. in Estonia and Lowland Switzerland. We conclude that C. flava and C. viridula clearly differ from each other genetically, that there is pronounced regional differentiation and that, despite hybridization, this regional differentiation is more pronounced in the less common taxon, C. viridula. We encourage future studies on hybridizing taxa to work with plant populations from more than one region. PMID:29479408

  7. Genetic and epigenetic alterations induced by different levels of rye genome integration in wheat recipient.

    PubMed

    Zheng, X L; Zhou, J P; Zang, L L; Tang, A T; Liu, D Q; Deng, K J; Zhang, Y

    2016-06-17

    The narrow genetic variation present in common wheat (Triticum aestivum) varieties has greatly restricted the improvement of crop yield in modern breeding systems. Alien addition lines have proven to be an effective means to broaden the genetic diversity of common wheat. Wheat-rye addition lines, which are the direct bridge materials for wheat improvement, have been wildly used to produce new wheat cultivars carrying alien rye germplasm. In this study, we investigated the genetic and epigenetic alterations in two sets of wheat-rye disomic addition lines (1R-7R) and the corresponding triticales. We used expressed sequence tag-simple sequence repeat, amplified fragment length polymorphism, and methylation-sensitive amplification polymorphism analyses to analyze the effects of the introduction of alien chromosomes (either the entire genome or sub-genome) to wheat genetic background. We found obvious and diversiform variations in the genomic primary structure, as well as alterations in the extent and pattern of the genomic DNA methylation of the recipient. Meanwhile, these results also showed that introduction of different rye chromosomes could induce different genetic and epigenetic alterations in its recipient, and the genetic background of the parents is an important factor for genomic and epigenetic variation induced by alien chromosome addition.

  8. Gastrointestinal nematode infection in beef cattle of different genetic groups in Brazil.

    PubMed

    Oliveira, M C S; Alencar, M M; Chagas, A C S; Giglioti, R; Oliveira, H N

    2009-12-23

    Resistance to natural infection by gastrointestinal nematodes was compared in 67 female calves of the following genetic groups: Nelore (NX); 1/2 Senepol+1/2 Nelore (SN); and 1/2 Aberdeen Angus+1/2 Nelore (AN). The NX (n=26), SN (n=23) and AN (n=18) animals were monitored for 14 months, during which they remained without treatment, allowed to graze in a tropical environment. Eggs per gram of feces (EPG), coprocultures and packed cell volume (PCV) were carried out monthly. No significant effects of the interaction between the genetic groups and month/year of collection and the genetic group on the EPG were found, but there was a significant influence of the month of collection (P<0.01). The monthly PCV measurements did not differ for the animals of the three genetic groups and there was no association found between the EPG and PCV. The animals of the SN and NX groups showed similar numbers of EPG with results zero, while for the AN group these numbers were significantly lower (P<0.05). Although the NX group had a large number of EPG with results zero, it also contained many animals with high counts, meaning this group had higher averages during the entire study period. The following nematode genera were found in the coprocultures: Haemonchus, Cooperia, Oesophagostomum and Trichostrongylus, the latter in smallest proportion. There was no significant difference between the genetic groups for averages of all parasites identified, except Cooperia, which were present in higher numbers in the animals of the NX group (P<0.05). The results obtained in this experiment suggest that the use of Bos taurus x Bos indicus crossbreeds can be a good strategy to reduce the use of chemical control in Brazil.

  9. Observational and Genetic Associations of Resting Heart Rate With Aortic Valve Calcium.

    PubMed

    Whelton, Seamus P; Mauer, Andreas C; Pencina, Karol M; Massaro, Joseph M; D'Agostino, Ralph B; Fox, Caroline S; Hoffmann, Udo; Michos, Erin D; Peloso, Gina M; Dufresne, Line; Engert, James C; Kathiresan, Sekar; Budoff, Matthew; Post, Wendy S; Thanassoulis, George; O'Donnell, Christopher J

    2018-05-15

    It is unknown if lifelong exposure to increased hemodynamic stress from an elevated resting heart rate (HR) may contribute to aortic valve calcium (AVC). We performed multivariate regression analyses using data from 1,266 Framingham Heart Study (FHS) Offspring cohort participants and 6,764 Multi-Ethnic Study of Atherosclerosis (MESA) participants. We constructed a genetic risk score (GRS) for HR using summary-level data in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) AVC Consortium to investigate if there was evidence in favor of a causal relation. AVC was present in 39% of FHS Offspring cohort participants and in 13% of MESA cohort participants. In multivariate adjusted models, participants in the highest resting HR quartiles had significantly greater prevalence of AVC, with a prevalence ratio of 1.19 (95% confidence interval [CI] 0.99 to 1.44) for the FHS Offspring cohort and 1.32 (95% CI 1.12 to 1.63) for the MESA cohort, compared with those in the lowest quartile. There was a similar increase in the prevalence of AVC per standard deviation increase in resting HR in both FHS Offspring (prevalence ratio 1.08, 95% CI 1.01 to 1.15) and MESA (1.10, 95% CI 1.03 to 1.17). In contrast with these observational findings, a HR associated GRS was not significantly associated with AVC. Although our observational analysis indicates that a higher resting HR is associated with AVC, our genetic results do not support a causal relation. Unmeasured environmental and/or lifestyle factors associated with both increased resting HR and AVC that are not fully explained by covariates in our observational models may account for the association between resting HR and AVC. Copyright © 2018. Published by Elsevier Inc.

  10. Genetic potential of common bean progenies obtained by different breeding methods evaluated in various environments.

    PubMed

    Pontes Júnior, V A; Melo, P G S; Pereira, H S; Melo, L C

    2016-09-02

    Grain yield is strongly influenced by the environment, has polygenic and complex inheritance, and is a key trait in the selection and recommendation of cultivars. Breeding programs should efficiently explore the genetic variability resulting from crosses by selecting the most appropriate method for breeding in segregating populations. The goal of this study was to evaluate and compare the genetic potential of common bean progenies of carioca grain for grain yield, obtained by different breeding methods and evaluated in different environments. Progenies originating from crosses between lines and CNFC 7812 and CNFC 7829 were replanted up to the F 7 generation using three breeding methods in segregating populations: population (bulk), bulk within F 2 progenies, and single-seed descent (SSD). Fifteen F 8 progenies per method, two controls (BRS Estilo and Perola), and the parents were evaluated in a 7 x 7 simple lattice design, with plots of two 4-m rows. The tests were conducted in 10 environments in four States of Brazil and in three growing seasons in 2009 and 2010. Genetic parameters including genetic variance, heritability, variance of interaction, and expected selection gain were estimated. Genetic variability among progenies and the effect of progeny-environment interactions were determined for the three methods. The breeding methods differed significantly due to the effects of sampling procedures on the progenies and due to natural selection, which mainly affected the bulk method. The SSD and bulk methods provided populations with better estimates of genetic parameters and more stable progenies that were less affected by interaction with the environment.

  11. Yellowstone bison genetics: let us move forward

    USGS Publications Warehouse

    Halbert, Natalie D.; Gogan, Peter J.P.; Hedrick, Philip W.; Wahl, Jacquelyn M.; Derr, James N.

    2012-01-01

    White and Wallen (2012) disagree with the conclusions and suggestions made in our recent assessment of population structure among Yellowstone National Park (YNP) bison based on 46 autosomal microsatellite loci in 661 animals (Halbert et al. 2012). First, they suggest that "the existing genetic substructure (that we observed) was artificially created." Specifically, they suggest that the substructure observed between the northern and central populations is the result of human activities, both historical and recent. In fact, the genetic composition of all known existing bison herds was created by, or has been influenced by, anthropogenic activities, although this obviously does not reduce the value of these herds for genetic conservation (Dratch and Gogan 2010). As perspective, many, if not most, species of conservation concern have been influenced by human actions and as a result currently exist as isolated populations. However, it is quite difficult to distinguish between genetic differences caused by human actions and important ancestral variation contained in separate populations without data from early time periods. Therefore, to not lose genetic variation that may be significant or indicative of important genetic variation, the generally acceptable management approach is to attempt to retain this variation based on the observed population genetic subdivision (Hedrick et al. 1986).

  12. Little genetic variability in resilience among cattle exists for a range of performance traits across herds in Ireland differing in Fasciola hepatica prevalence.

    PubMed

    Twomey, Alan J; Graham, David A; Doherty, Michael L; Blom, Astrid; Berry, Donagh P

    2018-06-04

    It is anticipated that in the future, livestock will be exposed to a greater risk of infection from parasitic diseases. Therefore, future breeding strategies for livestock, which are generally long-term strategies for change, should target animals adaptable to environments with a high parasitic load. Covariance components were estimated in the present study for a selection of dairy and beef performance traits over herd-years differing in Fasciola hepatica load using random regression sire models. Herd-year prevalence of F. hepatica was determined by using F. hepatica-damaged liver phenotypes which were recorded in abattoirs nationally. The data analyzed consisted up to 83,821 lactation records from dairy cows for a range of milk production and fertility traits, as well as 105,054 young animals with carcass-related information obtained at slaughter. Reaction norms for individual sires were derived from the random regression coefficients. The heritability and additive genetic standard deviations for all traits analyzed remained relatively constant as herd-year F. hepatica prevalence gradient increased up to a prevalence level of 0.7; although there was a large increase in heritability and additive genetic standard deviation for milk and fertility traits in the observed F. hepatica prevalence levels >0.7, only 5% of the data existed in herd-year prevalence levels >0.7. Very little rescaling, therefore, exists across differing herd-year F. hepatica prevalence levels. Within-trait genetic correlations among the performance traits across different herd-year F. hepatica prevalence levels were less than unity for all traits. Nevertheless, within-trait genetic correlations for milk production and carcass traits were all >0.8 for F. hepatica prevalence levels between 0.2 and 0.8. The lowest estimate of within-trait genetic correlations for the different fertility traits ranged from -0.03 (SE = 1.09) in age of first calving to 0.54 (SE = 0.22) for calving to first service

  13. Modeling the Etiology of Individual Differences in Early Reading Development: Evidence for Strong Genetic Influences

    PubMed Central

    Christopher, Micaela E.; Hulslander, Jacqueline; Byrne, Brian; Samuelsson, Stefan; Keenan, Janice M.; Pennington, Bruce; DeFries, John C.; Wadsworth, Sally J.; Willcutt, Erik; Olson, Richard K.

    2012-01-01

    We explored the etiology of individual differences in reading development from post-kindergarten to post-4th grade by analyzing data from 487 twin pairs tested in Colorado. Data from three reading measures and one spelling measure were fit to biometric latent growth curve models, allowing us to extend previous behavioral genetic studies of the etiology of early reading development at specific time points. We found primarily genetic influences on individual differences at post-1st grade for all measures. Genetic influences on variance in growth rates were also found, with evidence of small, nonsignificant, shared environmental influences for two measures. We discuss our results, including their implications for educational policy. PMID:24489459

  14. The Neuroanatomy of Genetic Subtype Differences in Prader-Willi Syndrome

    PubMed Central

    Honea, Robyn A.; Holsen, Laura M.; Lepping, Rebecca J.; Perea, Rodrigo; Butler, Merlin G.; Brooks, William M.; Savage, Cary R.

    2012-01-01

    Objective Despite behavioral differences between genetic subtypes of Prader-Willi syndrome, no studies have been published characterizing brain structure in these subgroups. Our goal was to examine differences in the brain structure phenotype of common subtypes of Prader-Willi syndrome (PWS) [chromosome 15q deletions and maternal uniparental disomy 15 (UPD)]. Methods Fifteen individuals with PWS due to a typical deletion ((DEL) Type I; n=5, Type II; n=10), 8 with PWS due to UPD, and 25 age-matched healthy-weight individuals (HWC) participated in structural magnetic resonance imaging (MRI) scans. A custom voxel-based morphometry processing stream was used to examine regional differences in gray and white matter volume between groups, covarying for age, sex, and body mass index (BMI). Results Overall, compared to HWC, PWS individuals had lower gray matter volumes that encompassed the prefrontal, orbitofrontal and temporal cortices, hippocampus and parahippocampal gyrus, and lower white matter volumes in the brain stem, cerebellum, medial temporal and frontal cortex. Compared to UPD, the DEL subtypes had lower gray matter volume primarily in the prefrontal and temporal cortices, and lower white matter in the parietal cortex. The UPD subtype had more extensive lower gray and white matter volumes in the orbitofrontal and limbic cortices compared to HWC. Conclusions These preliminary findings are the first structural neuroimaging findings to support potentially separate neural mechanisms mediating the behavioral differences seen in these genetic subtypes. PMID:22241551

  15. Age differences in genetic and environmental influences on weight and shape concerns.

    PubMed

    Klump, Kelly L; Burt, S Alexandra; Spanos, Alexia; McGue, Matt; Iacono, William G; Wade, Tracey D

    2010-12-01

    Previous research has shown important developmental shifts ingenetic and environmental influences for disordered eating. However, little research has examined age differences for weight/shape concerns, two key components of eating disorders. The goal of this study was to investigate these age differences in preadolescent, adolescent, young adult, and mid-adult twins. Participants included 2,618 female twins (ages of 10-41 years) from three large twin registries. Shape and weight concerns were assessed with the Eating Disorders Examination Questionnaire. Genetic influences were modest in preadolescent twins, but significant from early-adolescence through middle adulthood. Shared environmental factors showed the opposite pattern, with the largest shared environmental contributions occurring in the youngest age group. Nonshared environmental effects remained relatively constant across age. Findings highlight the importance of age differences in genetic and environmental influences. Possible mechanisms include gene x environment interactions and biological changes associated with key developmental stages. © 2009 by Wiley Periodicals, Inc.

  16. Dramatic genotypic difference in, and effect of genetic crossing on, tissue culture-induced mobility of retrotransposon Tos17 in rice.

    PubMed

    Lin, Chunjing; Lin, Xiuyun; Hu, Lanjuan; Yang, Jingjing; Zhou, Tianqi; Long, Likun; Xu, Chunming; Xing, Shaochen; Qi, Bao; Dong, Yingshan; Liu, Bao

    2012-11-01

    KEY MESSAGE : We show for the first time that intraspecific crossing may impact mobility of the prominent endogenous retrotransposon Tos17 under tissue culture conditions in rice. Tos17, an endogenous copia retrotransposon of rice, is transpositionally active in tissue culture. To study whether there exists fundamental genotypic difference in the tissue culture-induced mobility of Tos17, and if so, whether the difference is under genetic and/or epigenetic control, we conducted this investigation. We show that dramatic difference in tissue culture-induced Tos17 mobility exists among different rice pure-line cultivars sharing the same maternal parent: of the three lines studied that harbor Tos17, two showed mobilization of Tos17, which accrued in proportion to subculture duration, while the third line showed total quiescence (immobility) of the element and the fourth line did not contain the element. In reciprocal F1 hybrids between Tos17-mobile and -immobile (or absence) parental lines, immobility was dominant over mobility. In reciprocal F1 hybrids between both Tos17-mobile parental lines, an additive or synergistic effect on mobility of the element was noticed. In both types of reciprocal F1 hybrids, clear difference in the extent of Tos17 mobility was noted between crossing directions. Given that all lines share the same maternal parent, this observation indicates the existence of epigenetic parent-of-origin effect. We conclude that the tissue culture-induced mobility of Tos17 in rice is under complex genetic and epigenetic control, which can be either enhanced or repressed by intraspecific genetic crossing.

  17. Racial differences in enrolment in a cancer genetics registry.

    PubMed

    Moorman, Patricia G; Skinner, Celette Sugg; Evans, James P; Newman, Beth; Sorenson, James R; Calingaert, Brian; Susswein, Lisa; Crankshaw, T Sydnee; Hoyo, Cathrine; Schildkraut, Joellen M

    2004-08-01

    Lower enrolment of minorities into research studies has been reported frequently. Most studies have little information about nonparticipants, making it difficult to identify characteristics associated with enrolment and how they might vary by race. Women who had previously participated in a population-based, case-control study of breast cancer in North Carolina were invited to enroll in a cancer genetics registry. Detailed questionnaire data on sociodemographic characteristics and cancer risk factors were available for all women. We compared characteristics of women who agreed to be in the registry with those who were deceased, were unlocatable, or declined enrolment. Unconditional logistic regression analyses were done to identify predictors of enrolment. Enrolment rates were markedly lower among African Americans than Whites (15% and 36%, respectively) due to both lower contact rates (41% versus 63%) and lower enrolment rates among those contacted (37% versus 58%). Logistic regression models suggested that racial differences in enrolment were not due to socioeconomic characteristics or other cancer risk factors; race was the only significant predictor of enrolment in multivariable models (odds ratio 0.41, 95% confidence interval 0.23-0.72). Although all women had previously taken part in a research study, African American women were less likely to enroll in the cancer genetics registry than White women. A possible explanation of these findings is that studies of genetics may present particular concerns for African Americans. Further research is needed to identify attitudes and issues that present barriers to participation among minorities.

  18. Age differences in arterial and venous extra-cerebral blood flow in healthy adults: contributions of vascular risk factors and genetic variants.

    PubMed

    Raz, Naftali; Daugherty, Ana M; Sethi, Sean K; Arshad, Muzamil; Haacke, E Mark

    2017-08-01

    Sufficient cerebral blood flow (CBF) and venous drainage are critical for normal brain function, and their alterations can affect brain aging. However, to date, most studies focused on arterial CBF (inflow) with little attention paid to the age differences in venous outflow. We measured extra-cerebral arterial and venous blood flow rates with phase-contrast MRI and assessed the influence of vascular risk factors and genetic polymorphisms (ACE insertion/deletion, COMT val158met, and APOEε4) in 73 adults (age 18-74 years). Advanced age, elevated vascular risk, ACE Deletion, and COMT met alleles were linked to lower in- and outflow, with no effects of APOE ε4 noted. Lower age-related CBF rate was unrelated to brain volume and was observed only in val homozygotes of COMTval158met. Thus, in a disease-free population, age differences in CBF may be notable only in persons with high vascular risk and carriers of genetic variants associated with vasoconstriction and lower dopamine availability. It remains to be established if treatments targeting alleviation of the mutable factors can improve the course of cerebrovascular aging in spite of the immutable genetic influence.

  19. Exploring differences in adiposity in two U.S. Hispanic populations of Mexican origin using social, behavioral, physiologic and genetic markers: the IRAS Family Study.

    PubMed

    Young, Kendra A; Fingerlin, Tasha E; Langefeld, Carl D; Lorenzo, Carlos; Haffner, Steven M; Wagenknecht, Lynne E; Norris, Jill M

    2012-01-01

    The census classification of Hispanic origin is used in epidemiological studies to group individuals, even though there is geographical, cultural, and genetic diversity within Hispanic Americans of purportedly similar backgrounds. We observed differences in our measures of adiposity between our two Mexican American populations, and examined whether these differences were attributed to social, behavioral, physiologic or genetic differences between the two populations. In the IRAS Family Study, we examined 478 Hispanics from San Antonio, Texas and 447 Hispanics from the San Luis Valley, Colorado. Associations with body mass index (BMI), visceral adipose tissue area (VAT), and subcutaneous adipose tissue area (SAT) using social, behavioral, physiologic and genetic variables were examined. Hispanics of Mexican origin in our clinic population in San Antonio had significantly higher mean BMI (31.09 vs. 28.35 kg/m2), VAT (126.3 vs. 105.5 cm2), and SAT (391.6 vs. 336.9 cm2), than Hispanics of Mexican origin in the San Luis Valley. The amount of variation in adiposity explained by clinic population was 4.5% for BMI, 2.8% for VAT, and 2.7% for SAT. After adjustment, clinic population was no longer associated with VAT and SAT, but remained associated with BMI, although the amount of variation explained by population was substantially less (1.0% for BMI). Adiposity differences within this population of Mexican origin can be largely explained by social, behavioral, physiologic and genetic differences.

  20. Exploring Differences in Adiposity in Two US Hispanic Populations of Mexican Origin Using Social, Behavioral, Physiologic and Genetic Markers: The IRAS Family Study

    PubMed Central

    Young, Kendra A.; Fingerlin, Tasha E.; Langefeld, Carl D.; Lorenzo, Carlos; Haffner, Steven M.; Wagenknecht, Lynne E.; Norris, Jill M.

    2014-01-01

    Objective The census classification of Hispanic origin is used in epidemiological studies to group individuals, even though there is geographical, cultural, and genetic diversity within Hispanic Americans of purportedly similar backgrounds. We observed differences in our measures of adiposity between our two Mexican American populations, and examined whether these differences were attributed to social, behavioral, physiologic or genetic differences between the two populations. Research Design and Methods In the IRAS Family Study, we examined 478 Hispanics from San Antonio, Texas and 447 Hispanics from the San Luis Valley, Colorado. Associations with body mass index (BMI), visceral adipose tissue area (VAT), and subcutaneous adipose tissue area (SAT) using social, behavioral, physiologic and genetic variables were examined. Results Hispanics of Mexican origin in our clinic population in San Antonio had significantly higher mean BMI (31.09 vs 28.35 kg/m2), VAT (126.3 vs 105.5 cm2), and SAT (391.6 vs 336.9 cm2), than Hispanics of Mexican origin in the San Luis Valley. The amount of variation in adiposity explained by clinic population was 4.5% for BMI, 2.8% for VAT, and 2.7% for SAT. After adjustment, clinic population was no longer associated with VAT and SAT, but remained associated with BMI, although the amount of variation explained by population was substantially less (1.0% for BMI). Conclusion Adiposity differences within this population of Mexican origin can be largely explained by social, behavioral, physiologic and genetic differences. (Ethn Dis. 2012;22(1):65–71) PMID:22774311

  1. Is there a genetic contribution to cultural differences? Collectivism, individualism and genetic markers of social sensitivity.

    PubMed

    Way, Baldwin M; Lieberman, Matthew D

    2010-06-01

    Genes and culture are often thought of as opposite ends of the nature-nurture spectrum, but here we examine possible interactions. Genetic association studies suggest that variation within the genes of central neurotransmitter systems, particularly the serotonin (5-HTTLPR, MAOA-uVNTR) and opioid (OPRM1 A118G), are associated with individual differences in social sensitivity, which reflects the degree of emotional responsivity to social events and experiences. Here, we review recent work that has demonstrated a robust cross-national correlation between the relative frequency of variants in these genes and the relative degree of individualism-collectivism in each population, suggesting that collectivism may have developed and persisted in populations with a high proportion of putative social sensitivity alleles because it was more compatible with such groups. Consistent with this notion, there was a correlation between the relative proportion of these alleles and lifetime prevalence of major depression across nations. The relationship between allele frequency and depression was partially mediated by individualism-collectivism, suggesting that reduced levels of depression in populations with a high proportion of social sensitivity alleles is due to greater collectivism. These results indicate that genetic variation may interact with ecological and social factors to influence psychocultural differences.

  2. Is there a genetic contribution to cultural differences? Collectivism, individualism and genetic markers of social sensitivity

    PubMed Central

    Lieberman, Matthew D.

    2010-01-01

    Genes and culture are often thought of as opposite ends of the nature–nurture spectrum, but here we examine possible interactions. Genetic association studies suggest that variation within the genes of central neurotransmitter systems, particularly the serotonin (5-HTTLPR, MAOA-uVNTR) and opioid (OPRM1 A118G), are associated with individual differences in social sensitivity, which reflects the degree of emotional responsivity to social events and experiences. Here, we review recent work that has demonstrated a robust cross-national correlation between the relative frequency of variants in these genes and the relative degree of individualism–collectivism in each population, suggesting that collectivism may have developed and persisted in populations with a high proportion of putative social sensitivity alleles because it was more compatible with such groups. Consistent with this notion, there was a correlation between the relative proportion of these alleles and lifetime prevalence of major depression across nations. The relationship between allele frequency and depression was partially mediated by individualism–collectivism, suggesting that reduced levels of depression in populations with a high proportion of social sensitivity alleles is due to greater collectivism. These results indicate that genetic variation may interact with ecological and social factors to influence psychocultural differences. PMID:20592043

  3. Sex differences in genetic and environmental influences on percent body fatness and physical activity.

    PubMed

    White, Erin; Slane, Jennifer D; Klump, Kelly L; Burt, S Alexandra; Pivarnik, Jim

    2014-08-01

    Knowing the extent to which genetic and environmental factors influence percent body fatness (%Fat) and physical activity (PA) would be beneficial, since both are tightly correlated with future health outcomes. Thus, the purpose was to evaluate sex differences in genetic and environmental influences on %Fat and physical activity behavior in male and female adolescent twins. Subjects were adolescent (age range 8.3 to 16.6 yr) twins. %Fat (n = 518 twins) was assessed by bioelectrical impedance analysis (BIA) and PA (n = 296 twins) was measured using 3-Day PA Recall. Each activity was converted to total MET-minutes. Univariate twin models were used to examine sex differences in genetic and environmental factors influencing %Fat and PA. %Fat was influenced by genetic effects in both boys and girls (88% and 90%, respectively), with slightly higher heritability estimates for girls. PA was influenced solely by environmental effects for both sexes with higher shared environmental influences in boys (66%) and higher nonshared effects in girls (67%). When developing interventions to increase PA in adolescents, it is important to consider the environment in which it takes place as it is the primary contributor to PA levels.

  4. Different Slopes for Different Folks: Genetic Influences on Growth in Delinquent Peer Association and Delinquency During Adolescence.

    PubMed

    Connolly, Eric J; Schwartz, Joseph A; Nedelec, Joseph L; Beaver, Kevin M; Barnes, J C

    2015-07-01

    An extensive line of research has identified delinquent peer association as a salient environmental risk factor for delinquency, especially during adolescence. While previous research has found moderate-to-strong associations between exposure to delinquent peers and a variety of delinquent behaviors, comparatively less scholarship has focused on the genetic architecture of this association over the course of adolescence. Using a subsample of kinship pairs (N = 2379; 52% female) from the National Longitudinal Survey of Youth-Child and Young Adult Supplement (CNLSY), the present study examined the extent to which correlated individual differences in starting levels and developmental growth in delinquent peer pressure and self-reported delinquency were explained by additive genetic and environmental influences. Results from a series of biometric growth models revealed that 37% of the variance in correlated growth between delinquent peer pressure and self-reported delinquency was explained by additive genetic effects, while nonshared environmental effects accounted for the remaining 63% of the variance. Implications of these findings for interpreting the nexus between peer effects and adolescent delinquency are discussed.

  5. Species interactions differ in their genetic robustness

    DOE PAGES

    Chubiz, Lon M.; Granger, Brian R.; Segre, Daniel; ...

    2015-04-14

    Conflict and cooperation between bacterial species drive the composition and function of microbial communities. Stability of these emergent properties will be influenced by the degree to which species' interactions are robust to genetic perturbations. We use genome-scale metabolic modeling to computationally analyze the impact of genetic changes when Escherichia coli and Salmonella enterica compete, or cooperate. We systematically knocked out in silico each reaction in the metabolic network of E. coli to construct all 2583 mutant stoichiometric models. Then, using a recently developed multi-scale computational framework, we simulated the growth of each mutant E. coli in the presence of S.more » enterica. The type of interaction between species was set by modulating the initial metabolites present in the environment. We found that the community was most robust to genetic perturbations when the organisms were cooperating. Species ratios were more stable in the cooperative community, and community biomass had equal variance in the two contexts. Additionally, the number of mutations that have a substantial effect is lower when the species cooperate than when they are competing. In contrast, when mutations were added to the S. enterica network the system was more robust when the bacteria were competing. These results highlight the utility of connecting metabolic mechanisms and studies of ecological stability. Cooperation and conflict alter the connection between genetic changes and properties that emerge at higher levels of biological organization.« less

  6. High-Density Genetic Mapping Identifies New Susceptibility Variants in Sarcoidosis Phenotypes and Shows Genomic-driven Phenotypic Differences

    PubMed Central

    Ronninger, Marcus; Shchetynsky, Klementy; Franke, Andre; Nöthen, Markus M.; Müller-Quernheim, Joachim; Schreiber, Stefan; Adrianto, Indra; Karakaya, Bekir; van Moorsel, Coline H. M.; Navratilova, Zdenka; Kolek, Vitezslav; Rybicki, Benjamin A.; Iannuzzi, Michael C.; Petrek, Martin; Grutters, Jan C.; Montgomery, Courtney; Fischer, Annegret; Eklund, Anders; Padyukov, Leonid; Grunewald, Johan

    2016-01-01

    Rationale: Sarcoidosis is a multisystem disease of unknown cause. Löfgren’s syndrome (LS) is a characteristic subgroup of sarcoidosis that is associated with a good prognosis in sarcoidosis. However, little is known about its genetic architecture or its broader phenotype, non-LS sarcoidosis. Objectives: To address the genetic architecture of sarcoidosis phenotypes, LS and non-LS. Methods: An association study in a white Swedish cohort of 384 LS, 664 non-LS, and 2,086 control subjects, totaling 3,134 subjects using a fine-mapping genotyping platform was conducted. Replication was performed in four independent cohorts, three of white European descent (Germany, n = 4,975; the Netherlands, n = 613; and Czech Republic, n = 521), and one of black African descent (United States, n = 1,657), totaling 7,766 subjects. Measurements and Main Results: A total of 727 LS-associated variants expanding throughout the extended major histocompatibility complex (MHC) region and 68 non-LS–associated variants located in the MHC class II region were identified and confirmed. A shared overlap between LS and non-LS defined by 17 variants located in the MHC class II region was found. Outside the MHC region, two LS-associated loci, in ADCY3 and between CSMD1 and MCPH1, were observed and replicated. Conclusions: Comprehensive and integrative analyses of genetics, transcription, and pathway modeling on LS and non-LS indicates that these sarcoidosis phenotypes have different genetic susceptibility, genomic distributions, and cellular activities, suggesting distinct molecular mechanisms in pathways related to immune response with a common region. PMID:26651848

  7. The Genetic and Environmental Etiologies of Individual Differences in Early Reading Growth in Australia, the United States, and Scandinavia

    PubMed Central

    Christopher, Micaela E.; Hulslander, Jacqueline; Byrne, Brian; Samuelsson, Stefan; Keenan, Janice M.; Pennington, Bruce; DeFries, John C.; Wadsworth, Sally J.; Willcutt, Erik; Olson, Richard K.

    2013-01-01

    This first cross-country twin study of individual differences in reading growth from post-kindergarten to post-2nd grade analyzed data from 487 twin pairs from the United States, 267 pairs from Australia, and 280 pairs from Scandinavia. Data from two reading measures were fit to biometric latent growth models. Individual differences for the reading measures at post-kindergarten in the U.S. and Australia were due primarily to genetic influences, and to both genetic and shared environmental influences in Scandinavia. In contrast, individual differences in growth generally had large genetic influences in all countries. These results suggest that genetic influences are largely responsible for individual differences in early reading development. In addition, the timing of the start of formal literacy instruction may affect the etiology of individual differences in early reading development, but have only limited influence on the etiology of individual differences in growth. PMID:23665180

  8. Patterns of genetic and morphometric diversity in baobab (Adansonia digitata) populations across different climatic zones of Benin (West Africa).

    PubMed

    Assogbadjo, A E; Kyndt, T; Sinsin, B; Gheysen, G; van Damme, P

    2006-05-01

    Baobab (Adansonia digitata) is a multi-purpose tree used daily by rural African communities. The present study aimed at investigating the level of morphometric and genetic variation and spatial genetic structure within and between threatened baobab populations from the three climatic zones of Benin. A total of 137 individuals from six populations were analysed using morphometric data as well as molecular marker data generated using the AFLP technique. Five primer pairs resulted in a total of 217 scored bands with 78.34 % of them being polymorphic. A two-level AMOVA of 137 individuals from six baobab populations revealed 82.37 % of the total variation within populations and 17.63 % among populations (P < 0.001). Analysis of population structure with allele-frequency based F-statistics revealed a global F(ST) of 0.127 +/- 0.072 (P < 0.001). The mean gene diversity within populations (H(S)) and the average gene diversity between populations (D(ST)) were estimated at 0.309 +/- 0.000 and 0.045 +/- 0.072, respectively. Baobabs in the Sudanian and Sudan-Guinean zones of Benin were short and produced the highest yields of pulp, seeds and kernels, in contrast to the ones in the Guinean zone, which were tall and produced only a small number of fruits with a low pulp, seed and kernel productivity. A statistically significant correlation with the observed patterns of genetic diversity was observed for three morphological characteristics: height of the trees, number of branches and thickness of the capsules. The results indicate some degree of physical isolation of the populations collected in the different climatic zones and suggest a substantial amount of genetic structuring between the analysed populations of baobab. Sampling options of the natural populations are suggested for in or ex situ conservation.

  9. Population genetic differentiation of height and body mass index across Europe.

    PubMed

    Robinson, Matthew R; Hemani, Gibran; Medina-Gomez, Carolina; Mezzavilla, Massimo; Esko, Tonu; Shakhbazov, Konstantin; Powell, Joseph E; Vinkhuyzen, Anna; Berndt, Sonja I; Gustafsson, Stefan; Justice, Anne E; Kahali, Bratati; Locke, Adam E; Pers, Tune H; Vedantam, Sailaja; Wood, Andrew R; van Rheenen, Wouter; Andreassen, Ole A; Gasparini, Paolo; Metspalu, Andres; Berg, Leonard H van den; Veldink, Jan H; Rivadeneira, Fernando; Werge, Thomas M; Abecasis, Goncalo R; Boomsma, Dorret I; Chasman, Daniel I; de Geus, Eco J C; Frayling, Timothy M; Hirschhorn, Joel N; Hottenga, Jouke Jan; Ingelsson, Erik; Loos, Ruth J F; Magnusson, Patrik K E; Martin, Nicholas G; Montgomery, Grant W; North, Kari E; Pedersen, Nancy L; Spector, Timothy D; Speliotes, Elizabeth K; Goddard, Michael E; Yang, Jian; Visscher, Peter M

    2015-11-01

    Across-nation differences in the mean values for complex traits are common, but the reasons for these differences are unknown. Here we find that many independent loci contribute to population genetic differences in height and body mass index (BMI) in 9,416 individuals across 14 European countries. Using discovery data on over 250,000 individuals and unbiased effect size estimates from 17,500 sibling pairs, we estimate that 24% (95% credible interval (CI) = 9%, 41%) and 8% (95% CI = 4%, 16%) of the captured additive genetic variance for height and BMI, respectively, reflect population genetic differences. Population genetic divergence differed significantly from that in a null model (height, P < 3.94 × 10(-8); BMI, P < 5.95 × 10(-4)), and we find an among-population genetic correlation for tall and slender individuals (r = -0.80, 95% CI = -0.95, -0.60), consistent with correlated selection for both phenotypes. Observed differences in height among populations reflected the predicted genetic means (r = 0.51; P < 0.001), but environmental differences across Europe masked genetic differentiation for BMI (P < 0.58).

  10. Differential genetic susceptibility to child risk at birth in predicting observed maternal behavior.

    PubMed

    Fortuna, Keren; van Ijzendoorn, Marinus H; Mankuta, David; Kaitz, Marsha; Avinun, Reut; Ebstein, Richard P; Knafo, Ariel

    2011-01-01

    This study examined parenting as a function of child medical risks at birth and parental genotype (dopamine D4 receptor; DRD4). Our hypothesis was that the relation between child risks and later maternal sensitivity would depend on the presence/absence of a genetic variant in the mothers, thus revealing a gene by environment interaction (GXE). Risk at birth was defined by combining risk indices of children's gestational age at birth, birth weight, and admission to the neonatal intensive care unit. The DRD4-III 7-repeat allele was chosen as a relevant genotype as it was recently shown to moderate the effect of environmental stress on parental sensitivity. Mothers of 104 twin pairs provided DNA samples and were observed with their children in a laboratory play session when the children were 3.5 years old. Results indicate that higher levels of risk at birth were associated with less sensitive parenting only among mothers carrying the 7-repeat allele, but not among mothers carrying shorter alleles. Moreover, mothers who are carriers of the 7-repeat allele and whose children scored low on the risk index were observed to have the highest levels of sensitivity. These findings provide evidence for the interactive effects of genes and environment (in this study, children born at higher risk) on parenting, and are consistent with a genetic differential susceptibility model of parenting by demonstrating that some parents are inherently more susceptible to environmental influences, both good and bad, than are others.

  11. Privacy and equality in diagnostic genetic testing.

    PubMed

    Nyrhinen, Tarja; Hietala, Marja; Puukka, Pauli; Leino-Kilpi, Helena

    2007-05-01

    This study aimed to determine the extent to which the principles of privacy and equality were observed during diagnostic genetic testing according to views held by patients or child patients' parents (n = 106) and by staff (n = 162) from three Finnish university hospitals. The data were collected through a structured questionnaire and analysed using the SAS 8.1 statistical software. In general, the two principles were observed relatively satisfactorily in clinical practice. According to patients/parents, equality in the post-analytic phase and, according to staff, privacy in the pre-analytic phase, involved the greatest ethical problems. The two groups differed in their views concerning pre-analytic privacy. Although there were no major problems regarding the two principles, the differences between the testing phases require further clarification. To enhance privacy protection and equality, professionals need to be given more genetics/ethics training, and patients individual counselling by genetics units staff, giving more consideration to patients' world-view, the purpose of the test and the test result.

  12. Genetic variation in steelhead of Oregon and northern California

    USGS Publications Warehouse

    Reisenbichler, R.R.; McIntyre, J.D.; Solazzi, M.F.; Landino, S.W

    1992-01-01

    Steelhead Oncorhynchus mykiss from various sites between the Columbia River and the Mad River, California, were genetically characterized at 10 protein-coding loci or pairs of loci by starch gel electrophoresis. Fish from coastal streams differed from fish east of the Cascade Mountains and from fish of the Willamette River (a tributary of the Columbia River, west of the Cascade Mountains). Coastal steelhead from the northern part of the study area differed from those in the southern part. Genetic differentiation within and among drainages was not statistically significant; however, gene diversity analysis and the life history of steelhead suggested that fish from different drainages should be considered as separate populations. Genetic variation among fish in separate drainages was similar to that reported in northwestern Washington and less than that reported in British Columbia. Allele frequencies varied significantly among year-classes. Genetic variation within samples accounted for 98.3% of the total genetic variation observed in this study. Most hatchery populations differed from wild populations, suggesting that conservation of genetic diversity among and within wild populations could be facilitated by altering hatchery programs.

  13. "What is this genetics, anyway?" Understandings of genetics, illness causality and inheritance among British Pakistani users of genetic services.

    PubMed

    Shaw, Alison; Hurst, Jane A

    2008-08-01

    Misconceptions about basic genetic concepts and inheritance patterns may be widespread in the general population. This paper investigates understandings of genetics, illness causality and inheritance among British Pakistanis referred to a UK genetics clinic. During participant observation of genetics clinic consultations and semi-structured interviews in Urdu or English in respondents' homes, we identified an array of environmental, behavioral and spiritual understandings of the causes of medical and intellectual problems. Misconceptions about the location of genetic information in the body and of genetic mechanisms of inheritance were common, reflected the range of everyday theories observed for White British patients and included the belief that a child receives more genetic material from the father than the mother. Despite some participants' conversational use of genetic terminology, some patients had assimilated genetic information in ways that conflict with genetic theory with potentially serious clinical consequences. Additionally, skepticism of genetic theories of illness reflected a rejection of a dominant discourse of genetic risk that stigmatizes cousin marriages. Patients referred to genetics clinics may not easily surrender their lay or personal theories about the causes of their own or their child's condition and their understandings of genetic risk. Genetic counselors may need to identify, work with and at times challenge patients' understandings of illness causality and inheritance.

  14. Differences in attitudes toward genetic testing among the public, patients, and health-care professionals in Korea.

    PubMed

    Eum, Heesang; Lee, Mangyeong; Yoon, Junghee; Cho, Juhee; Lee, Eun Sook; Choi, Kui Son; Lee, Sangwon; Jung, So-Youn; Lim, Myong Cheol; Kong, Sun-Young; Chang, Yoon Jung

    2018-06-18

    With further advances in medical genetics, genetic tests to determine predisposition to disease are becoming viable for a growing number of diseases. Accordingly, it has also become important to identify various viewpoints on genetic testing. The aims of this study were to examine awareness of and attitudes toward genetic testing among the general public (public), cancer patients (patients), and health-care professionals (clinicians and researchers) in Korea. The present survey was conducted from November 2016 to February 2017. The public and patients were surveyed via face-to-face interviews conducted by trained interviewers. Health-care professionals were surveyed via self-administered questionnaires. In total, 1500 individuals from the general public, 1500 cancer patients, 113 clinicians, and 413 researchers were surveyed. Most respondents from the public and patients had previously heard about genetic testing (public, 89.4%; patients, 92.7%, p < 0.01). Differences in attitudes toward genetic testing among the public, patients, and professionals were noted, although most respondents in the present study were aware of genetic testing. Most of the cancer patients tended to overestimate the potential benefit of genetic testing, whereas clinicians expressed concerns for genetic testing. Providing correct information to people who are scheduled to undergo or order genetic testing could help in making an informed decision thereon.

  15. Genetic diversities of cytochrome B in Xinjiang Uyghur unveiled its origin and migration history

    PubMed Central

    2013-01-01

    Background Uyghurs are one of the many populations of Central Eurasia that is considered to be genetically related to Eastern and Western Eurasian populations. However, there are some different opinions on the relative importance of the degree of Eastern and Western Eurasian genetic influence. In addition, the genetic diversity of the Uyghur in different geographic locations has not been clearly studied. Results In this study, we are the first to report on the DNA polymorphism of cytochrome B in the Uyghur population located in Xinjiang in northwest China. We observed a total of 102 mutant sites in the 240 samples that were studied. The average number of mutated nucleotides in the samples was 5.126. A total of 93 different haplotypes were observed. The gene diversity and discrimination power were 0.9480 and 0.9440, respectively. There were founder and bottleneck haplotypes observed in Xinjiang Uyghurs. Xinjiang Uyghurs are more genetically related to Chinese population in genetics than to Caucasians. Moreover, there was genetic diversity between Uyghurs from the southern and northern regions. There was significance in genetic distance between the southern Xinjiang Uyghurs and Chinese population, but not between the northern Xinjiang Uyghurs and Chinese. The European vs. East Asian contribution to the ten regional Uyghur groups varies among the groups and the European contribution to the Uyghur increases from north to south geographically. Conclusion This study is the first report on DNA polymorphisms of cytochrome B in the Uyghur population. The study also further confirms that there are significant genetic differences among the Uyghurs in different geographical locations. PMID:24103151

  16. Demographic, genetic and phenotypic characteristics of centenarians in Italy: Focus on gender differences.

    PubMed

    Montesanto, Alberto; De Rango, Francesco; Pirazzini, Chiara; Guidarelli, Giulia; Domma, Filippo; Franceschi, Claudio; Passarino, Giuseppe

    2017-07-01

    An impressive and coherent series of epidemiological data from different populations (New England Americans, Mormons, Ashkenazi Jewish, Icelandic, Okinawan Japanese, Italians) suggests that long-lived subjects able to reach the extreme limits of human life, such as centenarians and supercentenarians, represent an extraordinary and informative model to identify the mechanisms responsible for healthy aging and human longevity. In most studies, genetic, demographic and phenotypic characteristics of longevity are discussed separately. However, longevity is a very complex trait due to the complicated interactions of numerous genetic and environmental factors. It is therefore necessary to analyse centenarians with a multidimensional approach, trying to consider different aspects simultaneously. In this review we will focus on Italian centenarians, who have been extensively studied for many years with different approaches, in order to show their peculiarities and the emerging data from the studies carried out on this exceptional population. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Fragmentation reduces regional-scale spatial genetic structure in a wind-pollinated tree because genetic barriers are removed.

    PubMed

    Wang, Rong; Compton, Stephen G; Shi, Yi-Su; Chen, Xiao-Yong

    2012-09-01

    Gene flow strongly influences the regional genetic structuring of plant populations. Seed and pollen dispersal patterns can respond differently to the increased isolation resulting from habitat fragmentation, with unpredictable consequences for gene flow and population structuring. In a recently fragmented landscape we compared the pre- and post-fragmentation genetic structure of populations of a tree species where pollen and seed dispersal respond differentially to forest fragmentation generated by flooding. Castanopsis sclerophylla is wind-pollinated, with seeds that are dispersed by gravity and rodents. Using microsatellites, we found no significant difference in genetic diversity between pre- and post-fragmentation cohorts. Significant genetic structure was observed in pre-fragmentation cohorts, due to an unknown genetic barrier that had isolated one small population. Among post-fragmentation cohorts this genetic barrier had disappeared and genetic structure was significantly weakened. The strengths of genetic structuring were at a similar level in both cohorts, suggesting that overall gene flow of C. sclerophylla has been unchanged by fragmentation at the regional scale. Fragmentation has blocked seed dispersal among habitats, but this appears to have been compensated for by enhanced pollen dispersal, as indicated by the disappearance of a genetic barrier, probably as a result of increased wind speeds and easier pollen movement over water. Extensive pollen flow can counteract some negative effects of fragmentation and assist the long-term persistence of small remnant populations.

  18. A Comparison of Telephone Genetic Counseling and In-Person Genetic Counseling from the Genetic Counselor's Perspective.

    PubMed

    Burgess, Kelly R; Carmany, Erin P; Trepanier, Angela M

    2016-02-01

    Growing demand for and limited geographic access to genetic counseling services is increasing the need for alternative service delivery models (SDM) like telephone genetic counseling (TGC). Little research has been done on genetic counselors' perspectives of the practice of TGC. We created an anonymous online survey to assess whether telephone genetic counselors believed the tasks identified in the ABGC (American Board of Genetic Counseling) Practice Analysis were performed similarly or differently in TGC compared to in person genetic counseling (IPGC). If there were differences noted, we sought to determine the nature of the differences and if additional training might be needed to address them. Eighty eight genetic counselors with experience in TGC completed some or all of the survey. Respondents identified differences in 13 (14.8%) of the 88 tasks studied. The tasks identified as most different in TGC were: "establishing rapport through verbal and nonverbal interactions" (60.2%; 50/83 respondents identified the task as different), "recognizing factors affecting the counseling interaction" (47.8%; 32/67), "assessing client/family emotions, support, etc." (40.1%; 27/66) and "educating clients about basic genetic concepts" (35.6%; 26/73). A slight majority (53.8%; 35/65) felt additional training was needed to communicate information without visual aids and more effectively perform psychosocial assessments. In summary, although a majority of genetic counseling tasks are performed similarly between TGC and IPGC, TGC counselors recognize that specific training in the TGC model may be needed to address the key differences.

  19. Individual differences in migratory behavior shape population genetic structure and microhabitat choice in sympatric blackcaps (Sylvia atricapilla)

    PubMed Central

    Rolshausen, Gregor; Segelbacher, Gernot; Hermes, Claudia; Hobson, Keith A; Schaefer, H Martin

    2013-01-01

    In migratory birds, traits such as orientation and distance are known to have a strong genetic background, and they often exhibit considerable within-population variation. How this variation relates to evolutionary responses to ongoing selection is unknown because the underlying mechanisms that translate environmental changes into population genetic changes are unclear. We show that within-population genetic structure in southern German blackcaps (Sylvia atricapilla) is related to individual differences in migratory behavior. Our 3-year study revealed a positive correlation between individual migratory origins, denoted via isotope (δ2H) values, and genetic distances. Genetic diversity and admixture differed not only across a recently established migratory polymorphism with NW- and SW-migrating birds but also across δ2H clusters within the same migratory route. Our results suggest assortment based on individual migratory origins which would facilitate evolutionary responses. We scrutinized arrival times and microhabitat choice as potential mechanisms mediating between individual variation in migratory behavior and assortment. We found significant support that microhabitat choice, rather than timing of arrival, is associated with individual variation in migratory origins. Moreover, examining genetic diversity across the migratory divide, we found migrants following the NW route to be genetically more distinct from each other compared with migrants following the traditional SW route. Our study suggests that migratory behavior shapes population genetic structure in blackcaps not only across the migratory divide but also on an individual level independent of the divide. Thus, within-population variation in migratory behavior might play an important role in translating environmental change into genetic change. PMID:24324877

  20. Effects of Different Observational Systems and Time Sequences Upon Non-Participant Observers' Behavioral Ratings.

    ERIC Educational Resources Information Center

    Wodarski, John S.; And Others

    Four different observational systems and two time sequences were employed to determine the extent to which they would yield different incidences of anti-social behavior. Two videotapes, randomly chosen from a pool of 30 tapes, were utilized. These illustrated the behaviors of anti-social children in a natural setting. Six observers were reliably…

  1. Heritabilities and genetic correlations in the same traits across different strata of herds created according to continuous genomic, genetic, and phenotypic descriptors.

    PubMed

    Yin, Tong; König, Sven

    2018-03-01

    The most common approach in dairy cattle to prove genotype by environment interactions is a multiple-trait model application, and considering the same traits in different environments as different traits. We enhanced such concepts by defining continuous phenotypic, genetic, and genomic herd descriptors, and applying random regression sire models. Traits of interest were test-day traits for milk yield, fat percentage, protein percentage, and somatic cell score, considering 267,393 records from 32,707 first-lactation Holstein cows. Cows were born in the years 2010 to 2013, and kept in 52 large-scale herds from 2 federal states of north-east Germany. The average number of genotyped cows per herd (45,613 single nucleotide polymorphism markers per cow) was 133.5 (range: 45 to 415 genotyped cows). Genomic herd descriptors were (1) the level of linkage disequilibrium (r 2 ) within specific chromosome segments, and (2) the average allele frequency for single nucleotide polymorphisms in close distance to a functional mutation. Genetic herd descriptors were the (1) intra-herd inbreeding coefficient, and (2) the percentage of daughters from foreign sires. Phenotypic herd descriptors were (1) herd size, and (2) the herd mean for nonreturn rate. Most correlations among herd descriptors were close to 0, indicating independence of genomic, genetic, and phenotypic characteristics. Heritabilities for milk yield increased with increasing intra-herd linkage disequilibrium, inbreeding, and herd size. Genetic correlations in same traits between adjacent levels of herd descriptors were close to 1, but declined for descriptor levels in greater distance. Genetic correlation declines were more obvious for somatic cell score, compared with test-day traits with larger heritabilities (fat percentage and protein percentage). Also, for milk yield, alterations of herd descriptor levels had an obvious effect on heritabilities and genetic correlations. By trend, multiple trait model results (based

  2. Genetic Factors in Determining Bone Mass

    PubMed Central

    Smith, David M.; Nance, Walter E.; Kang, Ke Won; Christian, Joe C.; Johnston, C. Conrad

    1973-01-01

    This investigation was undertaken to evaluate possible genetic determinants of bone mass with the premise that inheritance of bone mass could be of etiologic importance in osteoporosis. Bone mass and width measurements were made with the photon absorption technique on the right radius of 71 juvenile and 80 adult twin paris. The variance of intrapair differences of bone mass in monozygotic (MZ) juvenile twins was 0.0013 g2/cm2 compared to 0.0052 g2/cm2 in the dizygotic (DZ) twins. For the adult twins the variance of intrapair differences in bone mass was 0.0069 for MZ and 0.0137 for DZ twins. Similar results were obtained for bone width. The significantly larger variation in intrapair differences in DZ twins indicates that these traits have significant genetic determinants. These intrapair differences were found to increase with age, suggesting that genetic-environmental interaction also contributes to the observed variation in bone mass. These data provide evidence that bone mass does have significant genetic factors, which alone or in conjunction with environmental factors may predispose persons to the development of osteoporosis. PMID:4795916

  3. Perceptions of genetics research as harmful to society: differences among samples of African-Americans and European-Americans.

    PubMed

    Furr, L Allen

    2002-01-01

    Genetics has the potential not only to find cures for diseases, but to possess the mechanisms to change the bio-social make-up of populations. A specific question that has arisen on this issue is how developments in genetic technology may intersect with existing race and ethnic relations. Evidence of the racialization of some genetic disorders has been demonstrated elsewhere. The purpose of this study is to compare and contrast African-American and European-American attitudes on the benefits of genetics research for society. Findings show that African-Americans were more likely to say genetics research is harmful for society. This relationship remained statistically significant after controls were introduced in a regression model. Demographic characteristics and self-rated knowledge of genetics had no effect on attitudes among African-Americans. A willingness to use genetic services correlated with favorable attitudes. Differences in social position may lead some groups to opposing interpretations and symbolic meanings of genetics. This may be true in the context of this study because the social meanings of genetics may be tainted by racialization, historical attempts at eugenics, and the potential abuse of genetics targeting groups partially defined by superficial genetic characteristics.

  4. Psychosocial impact of prognostic genetic testing in the care of uveal melanoma patients: protocol of a controlled prospective clinical observational study.

    PubMed

    Erim, Yesim; Scheel, Jennifer; Breidenstein, Anja; Metz, Claudia Hd; Lohmann, Dietmar; Friederich, Hans-Christoph; Tagay, Sefik

    2016-07-07

    Uveal melanoma patients with a poor prognosis can be detected through genetic analysis of the tumor, which has a very high sensitivity. A large number of patients with uveal melanoma decide to receive information about their individual risk and therefore routine prognostic genetic testing is being carried out on a growing number of patients. It is obvious that a positive prediction for recidivism in the future will emotionally burden the respective patients, but research on the psychosocial impact of this innovative method is lacking. The aim of the current study is therefore to investigate the psychosocial impact (psychological distress and quality of life) of prognostic genetic testing in patients with uveal melanoma. This study is a non-randomized controlled prospective clinical observational trial. Subjects are patients with uveal melanoma, in whom genetic testing is possible. Patients who consent to genetic testing are allocated to the intervention group and patients who refuse genetic testing form the observational group. Both groups receive cancer therapy and psycho-oncological intervention when needed. The psychosocial impact of prognostic testing is investigated with the following variables: resilience, social support, fear of tumor progression, depression, general distress, cancer-specific and general health-related quality of life, attitude towards genetic testing, estimation of the perceived risk of metastasis, utilization and satisfaction with psycho-oncological crisis intervention, and sociodemographic data. Data are assessed preoperatively (at initial admission in the clinic) and postoperatively (at discharge from hospital after surgery, 6-12 weeks, 6 and 12 months after initial admission). Genetic test results are communicated 6-12 weeks after initial admission to the clinic. We created optimal conditions for investigation of the psychosocial impact of prognostic genetic testing. This study will provide information on the course of disease and

  5. Lifestyle, Genetics, and Disease in Sami

    PubMed Central

    Ross, Alastair B.; Johansson, Åsa; Ingman, Max; Gyllensten, Ulf

    2006-01-01

    Aim To present a summary of the lifestyle, genetic origin, diet, and disease in the population of Sami, indigenous people of northern Fennoscandia. Method A survey of the available scientific literature and preliminary results from our own study of the Swedish Sami population. Results The Sami probably have a heterogeneous genetic origin, with a major contribution of continental or Eastern European tribes and a smaller contribution from Asia. The traditional Sami diet, high in animal products, persists in Sami groups still involved with reindeer herding, but others have adopted a diet typical of Western cultures. Early reports indicated a lower prevalence of heart disease and most cancers, except stomach cancer. Recent studies have not found a lower risk of heart disease, but have consistently shown an overall reduced cancer risk. Sami have been reported to share some specific health-related genetic polymorphisms with other European populations, but none that would explain the observed differences in disease risk. Conclusion The genetic structure of the Sami population makes it suitable for studies of the genetic and environmental factors influencing the development of common diseases. The difference in incidence of heart disease between studies may reflect the ongoing transition from a traditional to a more Westernized lifestyle. The ability to compare population segments with different lifestyles, combined with the genetic structure of the population, creates unusual possibilities for studies of the genetic and environmental factors involved in the development of common disease. PMID:16909452

  6. Differences in foraging ecology align with genetically divergent ecotypes of a highly mobile marine top predator.

    PubMed

    Jeglinski, Jana W E; Wolf, Jochen B W; Werner, Christiane; Costa, Daniel P; Trillmich, Fritz

    2015-12-01

    Foraging differentiation within a species can contribute to restricted gene flow between ecologically different groups, promoting ecological speciation. Galapagos sea lions (Zalophus wollebaeki) show genetic and morphological divergence between the western and central archipelago, possibly as a result of an ecologically mediated contrast in the marine habitat. We use global positioning system (GPS) data, time-depth recordings (TDR), stable isotope and scat data to compare foraging habitat characteristics, diving behaviour and diet composition of Galapagos sea lions from a western and a central colony. We consider both juvenile and adult life stages to assess the potential role of ontogenetic shifts that can be crucial in shaping foraging behaviour and habitat choice for life. We found differences in foraging habitat use, foraging style and diet composition that aligned with genetic differentiation. These differences were consistent between juvenile and adult sea lions from the same colony, overriding age-specific behavioural differences. Our study contributes to an understanding of the complex interaction of ecological condition, plastic behavioural response and genetic make-up of interconnected populations.

  7. Spatial extent of analysis influences observed patterns of population genetic structure in a widespread darter species (Percidae)

    USGS Publications Warehouse

    Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.

    2018-01-01

    loss of genetic diversity, they reduce population connectivity and may impact long‐term population persistence.The broad spatial scale of this study demonstrated the large spatial extent of some variegate darter populations and indicated that dispersal is more extensive than expected given the movement patterns typically observed for small‐bodied, benthic fish. Dam impacts depended on underlying population size and stability, with larger populations more resilient to genetic drift and allelic richness loss than smaller populations.Other darters that inhabit large river habitats may show similar patterns in landscape‐scale studies, and large river barriers may impact populations of small‐bodied fish more than previously expected. Estimation of dispersal rates and behaviours is critical to conservation of imperilled riverine species such as darters.

  8. Genetic and environmental influences on the relationships between family connectedness, school connectedness, and adolescent depressed mood: sex differences.

    PubMed

    Jacobson, K C; Rowe, D C

    1999-07-01

    This study investigated (a) genetic and environmental contributions to the relationship between family and school environment and depressed mood and (b) potential sex differences in genetic and environmental contributions to both variation in and covariation between family connectedness, school connectedness, and adolescent depressed mood. Data are from 2,302 adolescent sibling pairs (mean age = 16 years) who were part of the National Longitudinal Study of Adolescent Health. Although genetic factors appeared to be important overall, model-fitting analyses revealed that the best-fitting model was a model that allowed for different parameters for male and female adolescents. Genetic contributions to variation in all 3 variables were greater among female adolescents than male adolescents, especially for depressed mood. Genetic factors also contributed to the correlations between family and school environment and adolescent depressed mood, although, again, these factors were stronger for female than for male adolescents.

  9. Expressive and receptive language in Prader-Willi syndrome: report on genetic subtype differences.

    PubMed

    Dimitropoulos, Anastasia; Ferranti, Angela; Lemler, Maria

    2013-01-01

    Prader-Willi syndrome (PWS), most recognized for the hallmark hyperphagia and food preoccupations, is caused by the absence of expression of the paternally active genes in the q11-13 region of chromosome 15. Since the recognition of PWS as a genetic disorder, most research has focused primarily on the medical, genetic, and behavioral aspects of the syndrome. Extensive research has not been conducted on the cognitive, speech, and language abilities in PWS. In addition, language differences with regard to genetic mechanism of PWS have not been well investigated. To date, research indicates overall language ability is markedly below chronological age with expressive language more impaired than receptive language in people with PWS. Thus, the aim of the present study was to further characterize expressive and receptive language ability in 35 participants with PWS and compare functioning by genetic subtype using the Clinical Evaluation of Language Fundamentals-4 (CELF-IV). Results indicate that core language ability is significantly impaired in PWS and both expressive and receptive abilities are significantly lower than verbal intelligence. In addition, participants with the maternal uniparental disomy (mUPD) genetic subtype exhibit discrepant language functioning with higher expressive vs. receptive language abilities. Future research is needed to further examine language functioning in larger genetic subtype participant samples using additional descriptive measures. Further work should also delineate findings with respect to size of the paternal deletion (Type 1 and Type 2 deletions) and explore how overexpression of maternally expressed genes in the 15q11-13 region may relate to verbal ability. After reading this article, the reader will be able to: (1) summarize primary characteristics of Prader-Willi syndrome (PWS), (2) describe differentiating characteristics for the PWS genetic subtypes, (3) recall limited research regarding language functioning in PWS to date

  10. Cootie Genetics: Simulating Mendel's Experiments to Understand the Laws of Inheritance

    ERIC Educational Resources Information Center

    Galloway, Katelyn; Anderson, Nadja

    2014-01-01

    "Cootie Genetics" is a hands-on, inquiry-based activity that enables students to learn the Mendelian laws of inheritance and gain an understanding of genetics principles and terminology. The activity begins with two true-breeding Cooties of the same species that exhibit five observable trait differences. Students observe the retention or…

  11. Ecological and Genetic Differences between Cacopsylla melanoneura (Hemiptera, Psyllidae) Populations Reveal Species Host Plant Preference

    PubMed Central

    Malagnini, Valeria; Pedrazzoli, Federico; Papetti, Chiara; Cainelli, Christian; Zasso, Rosaly; Gualandri, Valeria; Pozzebon, Alberto; Ioriatti, Claudio

    2013-01-01

    The psyllid Cacopsylla melanoneura is considered one of the vectors of ‘Candidatus Phytoplasma mali’, the causal agent of apple proliferation disease. In Northern Italy, overwintered C. melanoneura adults reach apple and hawthorn around the end of January. Nymph development takes place between March and the end of April. The new generation adults migrate onto conifers around mid-June and come back to the host plant species after overwintering. In this study we investigated behavioural differences, genetic differentiation and gene flow between samples of C. melanoneura collected from the two different host plants. Further analyses were performed on some samples collected from conifers. To assess the ecological differences, host-switching experiments were conducted on C. melanoneura samples collected from apple and hawthorn. Furthermore, the genetic structure of the samples was studied by genotyping microsatellite markers. The examined C. melanoneura samples performed better on their native host plant species. This was verified in terms of oviposition and development of the offspring. Data resulting from microsatellite analysis indicated a low, but statistically significant difference between collected-from-apple and hawthorn samples. In conclusion, both ecological and genetic results indicate a differentiation between C. melanoneura samples associated with the two host plants. PMID:23874980

  12. Difference in suitable mechanical properties of three-dimensional, synthetic scaffolds for self-renewing mouse embryonic stem cells of different genetic backgrounds.

    PubMed

    Lee, Myungook; Ahn, Jong Il; Ahn, Ji Yeon; Yang, Woo Sub; Hubbell, Jeffrey A; Lim, Jeong Mook; Lee, Seung Tae

    2017-11-01

    We evaluated whether the genetic background of embryonic stem cells (ESCs) affects the properties suitable for three-dimensional (3D) synthetic scaffolds for cell self-renewal. Inbred R1 and hybrid B6D2F1 mouse ESC lines were cultured for 7 days in hydrogel scaffolds with different properties derived from conjugating 7.5, 10, 12.5, or 15% (wt/vol) vinylsulfone-functionalized three-, four-, or eight-arm polyethylene glycol (PEG) with dicysteine-containing crosslinkers with an intervening matrix metalloproteinase-specific cleavage sites. Cell proliferation and expression of self-renewal-related genes and proteins by ESCs cultured in feeder-free or containing 2D culture plate or 3D hydrogel were monitored. As a preliminary experiment, the E14 ESC-customized synthetic 3D microenvironment did not maintain self-renewal of either the R1 or B6D2F1 ESCs. The best R1 cell proliferation (10.04 vs. 0.16-4.39; p < 0.0001) was observed in the four-arm 7.5% PEG-based hydrogels than those with other properties, whereas the F1 ESCs showed better proliferation when they were embedded in the three-arm 10% hydrogels. Self-renewal-related gene and protein expression by ESCs after feeder-free 3D culture was generally maintained compared with the feeder-containing 2D culture, but expression patterns and quantities differed. However, the feeder-free 3D culture yielded better expression than the feeder-free 2D culture. In conclusion, genetic background determined the suitability of hydrogel scaffolds for self-renewal of ESCs, which requires customization for the mechanical properties of each cell line. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2261-2268, 2017. © 2016 Wiley Periodicals, Inc.

  13. Population genetics and evaluation of genetic evidence for subspecies in the Semipalmated Sandpiper (Calidris pusilla)

    USGS Publications Warehouse

    Miller, Mark P.; Gratto-Trevor, Cheri; Haig, Susan M.; Mizrahi, David S.; Mitchell, Melanie M.; Mullins, Thomas D.

    2013-01-01

    Semipalmated Sandpipers (Calidris pusilla) are among the most common North American shorebirds. Breeding in Arctic North America, this species displays regional differences in migratory pathways and possesses longitudinal bill length variation. Previous investigations suggested that genetic structure may occur within Semipalmated Sandpipers and that three subspecies corresponding to western, central, and eastern breeding groups exist. In this study, mitochondrial control region sequences and nuclear microsatellite loci were used to analyze DNA of birds (microsatellites: n = 120; mtDNA: n = 114) sampled from seven North American locations. Analyses designed to quantify genetic structure and diversity patterns, evaluate genetic evidence for population size changes, and determine if genetic data support the existence of Semipalmated Sandpiper subspecies were performed. Genetic structure based only on the mtDNA data was observed, whereas the microsatellite loci provided no evidence of genetic differentiation. Differentiation among locations and regions reflected allele frequency differences rather than separate phylogenetic groups, and similar levels of genetic diversity were noted. Combined, the two data sets provided no evidence to support the existence of subspecies and were not useful for determining migratory connectivity between breeding sites and wintering grounds. Birds from western and central groups displayed signatures of population expansions, whereas the eastern group was more consistent with a stable overall population. Results of this analysis suggest that the eastern group was the source of individuals that colonized the central and western regions currently utilized by Semipalmated Sandpipers.

  14. Multilocus microsatellite typing shows three different genetic clusters of Leishmania major in Iran.

    PubMed

    Mahnaz, Tashakori; Al-Jawabreh, Amer; Kuhls, Katrin; Schönian, Gabriele

    2011-10-01

    Ten polymorphic microsatellite markers were used to analyse 25 strains of Leishmania major collected from cutaneous leishmaniasis cases in different endemic areas in Iran. Nine of the markers were polymorphic, revealing 21 different genotypes. The data displayed significant microsatellite polymorphism with rare allelic heterozygosity. Bayesian statistic and distance based analyses identified three genetic clusters among the 25 strains analysed. Cluster I represented mainly strains isolated in the west and south-west of Iran, with the exception of four strains originating from central Iran. Cluster II comprised strains from the central part of Iran, and cluster III included only strains from north Iran. The geographical distribution of L. major in Iran was supported by comparing the microsatellite profiles of the 25 Iranian strains to those of 105 strains collected in 19 Asian and African countries. The Iranian clusters I and II were separated from three previously described populations comprising strains from Africa, the Middle East and Central Asia whereas cluster III grouped together with the Central Asian population. The considerable genetic variability of L. major might be related to the existence of different populations of Phlebotomus papatasi and/or to differences in reservoir host abundance in different parts of Iran. Copyright © 2011 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Differences in genetic and environmental influences on the human cerebral cortex associated with development during childhood and adolescence.

    PubMed

    Lenroot, Rhoshel K; Schmitt, James E; Ordaz, Sarah J; Wallace, Gregory L; Neale, Michael C; Lerch, Jason P; Kendler, Kenneth S; Evans, Alan C; Giedd, Jay N

    2009-01-01

    In this report, we present the first regional quantitative analysis of age-related differences in the heritability of cortical thickness using anatomic MRI with a large pediatric sample of twins, twin siblings, and singletons (n = 600, mean age 11.1 years, range 5-19). Regions of primary sensory and motor cortex, which develop earlier, both phylogenetically and ontologically, show relatively greater genetic effects earlier in childhood. Later developing regions within the dorsal prefrontal cortex and temporal lobes conversely show increasingly prominent genetic effects with maturation. The observation that regions associated with complex cognitive processes such as language, tool use, and executive function are more heritable in adolescents than children is consistent with previous studies showing that IQ becomes increasingly heritable with maturity(Plomin et al. 1997: Psychol Sci 8:442-447). These results suggest that both the specific cortical region and the age of the population should be taken into account when using cortical thickness as an intermediate phenotype to link genes, environment, and behavior. (c) 2007 Wiley-Liss, Inc.

  16. Genetic and epigenetic factors underlying sex differences in the regulation of gene expression in the brain

    PubMed Central

    Ratnu, Vikram S.; Emami, Michael R.; Bredy, Timothy W.

    2016-01-01

    There are inherent biological differences between males and females that contribute to sex differences in brain function and to many sex-specific illnesses and disorders. Traditionally, it has been thought that such differences are largely due to hormonal regulation; however, there are also genetic and epigenetic effects caused by the inheritance and unequal dosage of genes located on the X- and Y-chromosomes. Here we discuss the evidence in favor of a genetic and epigenetic basis for sexually dimorphic behavior, as a consequence of underlying differences in the regulation of genes that drive brain function. A better understanding of sex-specific molecular processes in the brain will provide further insight for the development of novel therapeutic approaches for the treatment of neuropsychiatric disorders characterized by gender/sex differences. PMID:27870402

  17. Glioblastomas with oligodendroglial component - common origin of the different histological parts and genetic subclassification.

    PubMed

    Klink, Barbara; Schlingelhof, Ben; Klink, Martin; Stout-Weider, Karen; Patt, Stephan; Schrock, Evelin

    2010-01-01

    Glioblastomas are the most common and most malignant brain tumors in adults. A small subgroup of glioblastomas contains areas with histological features of oligodendroglial differentiation (GBMO). Our objective was to genetically characterize the oligodendroglial and the astrocytic parts of GBMOs and correlate morphologic and genetic features with clinical data. The oligodendroglial and the "classic" glioblastoma parts of 13 GBMO were analyzed separately by interphase fluorescence in situ hybridization (FISH) on paraffin sections using a custom probe set (regions 1p, 1q, 7q, 10q, 17p, 19q, cen18, 21q) and by comparative genomic hybridization (CGH) of microdissected paraffin embedded tumor tissue. We identified four distinct genetic subtypes in 13 GBMOs: an "astrocytic" subtype (9/13) characterized by +7/-10; an "oligodendroglial" subtype with -1p/-19q (1/13); an "intermediate" subtype showing +7/-1p (1/13), and an "other" subtype having none of the former aberrations typical for gliomas (2/13). The different histological tumor parts of GBMO revealed common genetic changes in all tumors and showed additional aberrations specific for each part. Our findings demonstrate the monoclonal origin of GBMO followed by the development of the astrocytic and oligodendroglial components. The diagnostic determination of the genetic signatures may allow for a better prognostication of the patients.

  18. Patterns of Genetic and Morphometric Diversity in Baobab (Adansonia digitata) Populations Across Different Climatic Zones of Benin (West Africa)

    PubMed Central

    ASSOGBADJO, A. E.; KYNDT, T.; SINSIN, B.; GHEYSEN, G.; VAN DAMME, P.

    2006-01-01

    • Background and Aims Baobab (Adansonia digitata) is a multi-purpose tree used daily by rural African communities. The present study aimed at investigating the level of morphometric and genetic variation and spatial genetic structure within and between threatened baobab populations from the three climatic zones of Benin. • Methods A total of 137 individuals from six populations were analysed using morphometric data as well as molecular marker data generated using the AFLP technique. • Key Results Five primer pairs resulted in a total of 217 scored bands with 78·34 % of them being polymorphic. A two-level AMOVA of 137 individuals from six baobab populations revealed 82·37 % of the total variation within populations and 17·63 % among populations (P < 0·001)· Analysis of population structure with allele-frequency based F-statistics revealed a global FST of 0·127 ± 0·072 (P < 0·001). The mean gene diversity within populations (HS) and the average gene diversity between populations (DST) were estimated at 0·309 ± 0·000 and 0·045 ± 0·072, respectively. Baobabs in the Sudanian and Sudan-Guinean zones of Benin were short and produced the highest yields of pulp, seeds and kernels, in contrast to the ones in the Guinean zone, which were tall and produced only a small number of fruits with a low pulp, seed and kernel productivity. A statistically significant correlation with the observed patterns of genetic diversity was observed for three morphological characteristics: height of the trees, number of branches and thickness of the capsules. • Conclusions The results indicate some degree of physical isolation of the populations collected in the different climatic zones and suggest a substantial amount of genetic structuring between the analysed populations of baobab. Sampling options of the natural populations are suggested for in or ex situ conservation. PMID:16520343

  19. The ethics of characterizing difference: guiding principles on using racial categories in human genetics

    PubMed Central

    Lee, Sandra Soo-Jin; Mountain, Joanna; Koenig, Barbara; Altman, Russ; Brown, Melissa; Camarillo, Albert; Cavalli-Sforza, Luca; Cho, Mildred; Eberhardt, Jennifer; Feldman, Marcus; Ford, Richard; Greely, Henry; King, Roy; Markus, Hazel; Satz, Debra; Snipp, Matthew; Steele, Claude; Underhill, Peter

    2008-01-01

    We are a multidisciplinary group of Stanford faculty who propose ten principles to guide the use of racial and ethnic categories when characterizing group differences in research into human genetic variation. PMID:18638359

  20. TPH2 polymorphisms and expression in Prader-Willi syndrome subjects with differing genetic subtypes.

    PubMed

    Henkhaus, Rebecca S; Bittel, Douglas C; Butler, Merlin G

    2010-09-01

    Prader-Willi syndrome (PWS) is a genetic imprinting disease that causes developmental and behavioral disturbances resulting from loss of expression of genes from the paternal chromosome 15q11-q13 region. In about 70% of subjects, this portion of the paternal chromosome is deleted, while 25% have two copies of the maternal chromosome 15, or uniparental maternal disomy (UPD; the remaining subjects have imprinting center defects. There are several documented physical and behavioral differences between the two major PWS genetic subtypes (deletion and UPD) indicating the genetic subtype plays a role in clinical presentation. Serotonin is known to be disturbed in PWS and affects both eating behavior and compulsion, which are reported to be abnormal in PWS. We investigated the tryptophan hydroxylase gene (TPH2), the rate-limiting enzyme in the production of brain serotonin, by analyzing three different TPH2 gene polymorphisms, transcript expression, and correlation with PWS genetic subtype. DNA and RNA from lymphoblastoid cell lines derived from 12 PWS and 12 comparison subjects were used for the determination of genetic subtype, TPH2 polymorphisms and quantitative RT-PCR analysis. A similar frequency of TPH2 polymorphisms was seen in the PWS and comparison subjects with PWS deletion subjects showing increased expression with one or more TPH2 polymorphism. Both PWS deletion and PWS UPD subjects had significantly lower TPH2 expression than control subjects and PWS deletion subjects had significantly lower TPH2 expression compared with PWS UPD subjects. PWS subjects with 15q11-q13 deletions had lower TPH2 expression compared with PWS UPD or control subjects, requiring replication and further studies to identify the cause including identification of disturbed gene interactions resulting from the deletion process.

  1. Temperature effect on triacylglycerol species in seed oil from high stearic sunflower lines with different genetic backgrounds.

    PubMed

    Izquierdo, Natalia G; Martínez-Force, Enrique; Garcés, Rafael; Aguirrezábal, Luis An; Zambelli, Andrés; Reid, Roberto

    2016-10-01

    This study characterized the influence of temperature during grain filling on the saturated fatty acid distribution in triacylglycerol molecules from high stearic sunflower lines with different genetic backgrounds. Two growth chamber experiments were conducted with day/night temperatures of 16/16, 26/16, 26/26 and 32/26 °C. In all genotypes, independently of the genetic background, higher temperatures increased palmitic and oleic acid and reduced linoleic acid concentrations. Increasing night temperature produced an increase in saturated-unsaturated-saturated species, indicating a more symmetrical distribution of saturated fatty acids. The solid fat index was more affected by temperature during grain filling in lines with high linoleic than high oleic background. Higher variations in symmetry among night temperatures were observed in lines with high oleic background, which are more stable in fatty acid composition. The effect of temperature on triacylglycerol composition is not completely explained by its effect on fatty acid composition. Thus night temperature affects oil properties via its effects on fatty acid synthesis and on the distribution of fatty acids in the triacylglycerol molecules. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. Consequences of the genetic threshold model for observing partial migration under climate change scenarios.

    PubMed

    Cobben, Marleen M P; van Noordwijk, Arie J

    2017-10-01

    Migration is a widespread phenomenon across the animal kingdom as a response to seasonality in environmental conditions. Partially migratory populations are populations that consist of both migratory and residential individuals. Such populations are very common, yet their stability has long been debated. The inheritance of migratory activity is currently best described by the threshold model of quantitative genetics. The inclusion of such a genetic threshold model for migratory behavior leads to a stable zone in time and space of partially migratory populations under a wide range of demographic parameter values, when assuming stable environmental conditions and unlimited genetic diversity. Migratory species are expected to be particularly sensitive to global warming, as arrival at the breeding grounds might be increasingly mistimed as a result of the uncoupling of long-used cues and actual environmental conditions, with decreasing reproduction as a consequence. Here, we investigate the consequences for migratory behavior and the stability of partially migratory populations under five climate change scenarios and the assumption of a genetic threshold value for migratory behavior in an individual-based model. The results show a spatially and temporally stable zone of partially migratory populations after different lengths of time in all scenarios. In the scenarios in which the species expands its range from a particular set of starting populations, the genetic diversity and location at initialization determine the species' colonization speed across the zone of partial migration and therefore across the entire landscape. Abruptly changing environmental conditions after model initialization never caused a qualitative change in phenotype distributions, or complete extinction. This suggests that climate change-induced shifts in species' ranges as well as changes in survival probabilities and reproductive success can be met with flexibility in migratory behavior at the

  3. Same genetic components underlie different measures of sweet taste preference.

    PubMed

    Keskitalo, Kaisu; Tuorila, Hely; Spector, Tim D; Cherkas, Lynn F; Knaapila, Antti; Silventoinen, Karri; Perola, Markus

    2007-12-01

    Sweet taste preferences are measured by several often correlated measures. We examined the relative proportions of genetic and environmental effects on sweet taste preference indicators and their mutual correlations. A total of 663 female twins (324 complete pairs, 149 monozygous and 175 dizygous pairs) aged 17-80 y rated the liking and intensity of a 20% (wt/vol) sucrose solution, reported the liking and the use-frequency of 6 sweet foods (sweet desserts, sweets, sweet pastry, ice cream, hard candy, and chocolate), and completed a questionnaire on cravings of sweet foods. The estimated contributions of genetic factors, environmental factors shared by a twin pair, and environmental factors unique to each twin individual to the variance and covariance of the traits were obtained with the use of linear structural equation modeling. Approximately half of the variation in liking for sweet solution and liking and use-frequency of sweet foods (49-53%) was explained by genetic factors, whereas the rest of the variation was due to environmental factors unique to each twin individual. Sweet taste preference-related traits were correlated. Tetravariate modeling showed that the correlation between liking for the sweet solution and liking for sweet foods was due to genetic factors (genetic r = 0.27). Correlations between liking, use-frequency, and craving for sweet foods were due to both genetic and unshared environmental factors. Detailed information on the associations between preference measures is an important intermediate goal in the determination of the genetic components affecting sweet taste preferences.

  4. Quantitative genetics of immunity and life history under different photoperiods.

    PubMed

    Hammerschmidt, K; Deines, P; Wilson, A J; Rolff, J

    2012-05-01

    Insects with complex life-cycles should optimize age and size at maturity during larval development. When inhabiting seasonal environments, organisms have limited reproductive periods and face fundamental decisions: individuals that reach maturity late in season have to either reproduce at a small size or increase their growth rates. Increasing growth rates is costly in insects because of higher juvenile mortality, decreased adult survival or increased susceptibility to parasitism by bacteria and viruses via compromised immune function. Environmental changes such as seasonality can also alter the quantitative genetic architecture. Here, we explore the quantitative genetics of life history and immunity traits under two experimentally induced seasonal environments in the cricket Gryllus bimaculatus. Seasonality affected the life history but not the immune phenotypes. Individuals under decreasing day length developed slower and grew to a bigger size. We found ample additive genetic variance and heritability for components of immunity (haemocyte densities, proPhenoloxidase activity, resistance against Serratia marcescens), and for the life history traits, age and size at maturity. Despite genetic covariance among traits, the structure of G was inconsistent with genetically based trade-off between life history and immune traits (for example, a strong positive genetic correlation between growth rate and haemocyte density was estimated). However, conditional evolvabilities support the idea that genetic covariance structure limits the capacity of individual traits to evolve independently. We found no evidence for G × E interactions arising from the experimentally induced seasonality.

  5. Differences in the timing of reproduction between urban and forest European blackbirds (Turdus merula): result of phenotypic flexibility or genetic differences?

    PubMed Central

    Partecke, Jesko; Van't Hof, Thomas; Gwinner, Eberhard

    2004-01-01

    Species which have settled in urban environments are exposed to different conditions from their wild conspecifics. A previous comparative study of an urban and a forest-living European blackbird population had revealed a three weeks earlier onset of gonadal growth in urban individuals. These physiological adjustments are either the result of genetic differences that have evolved during the urbanization process, or of phenotypic flexibility resulting from the bird's exposure to the different environmental conditions of town or forest. To identify which of these two mechanisms causes the differences in reproductive timing, hand-reared birds originating from the urban and the forest populations were kept in identical conditions. The substantial differences in the timing of reproduction between urban and forest birds known from the field did not persist under laboratory conditions, indicating that temporal differences in reproductive timing between these two populations are mainly a result of phenotypic flexibility. Nevertheless, urban males initiated plasma luteinizing hormone (LH) secretion and testicular development earlier than forest males in their first reproductive season. Moreover, plasma LH concentration and follicle size declined earlier in urban females than in forest females, suggesting that genetic differences are also involved and might contribute to the variations in the timing of reproduction in the wild. PMID:15451688

  6. Using a genetic, observational study as a strategy to estimate the potential cost-effectiveness of pharmacological CCR5 blockade in dialysis patients.

    PubMed

    Muntinghe, Friso L H; Vegter, Stefan; Verduijn, Marion; Boeschoten, Elisabeth W; Dekker, Friedo W; Navis, Gerjan; Postma, Maarten

    2011-07-01

    Randomized clinical trials are expensive and time consuming. Therefore, strategies are needed to prioritise tracks for drug development. Genetic association studies may provide such a strategy by considering the differences between genotypes as a proxy for a natural, lifelong, randomized at conception, clinical trial. Previously an association with better survival was found in dialysis patients with systemic inflammation carrying a deletion variant of the CC-chemokine receptor 5 (CCR5). We hypothesized that in an analogous manner, pharmacological CCR5 blockade could protect against inflammation-driven mortality and estimated if such a treatment would be cost-effective. A genetic screen and treat strategy was modelled using a decision-analytic Markov model, in which patients were screened for the CCR5 deletion 32 polymorphism and those with the wild type and systemic inflammation were treated with pharmacological CCR5 blockers. Kidney transplantation and mortality rates were calculated using patient level data. Extensive sensitivity analyses were performed. The cost-effectiveness of the genetic screen and treat strategy was &OV0556;18 557 per life year gained and &OV0556;21 896 per quality-adjusted life years gained. Concordance between the genetic association and pharmacological effectiveness was a main driver of cost-effectiveness. Sensitivity analyses showed that even a modest effectiveness of pharmacological CCR5 blockade would result in a treatment strategy that is good value for money. Pharmacological blockade of the CCR5 receptor in inflamed dialysis patients can be incorporated in a potentially cost-effective screen and treat programme. These findings provide formal rationale for clinical studies. This study illustrates the potential of genetic association studies for drug development, as a source of Mendelian randomized evidence from an observational setting.

  7. [Observation of genetic diversity in dental plaque of elder people with root caries].

    PubMed

    Ma, Shan-fen; Liang, Jing-ping; Jiang, Yun-tao; Zhu, Cai-lian

    2011-08-01

    Bacterial community in dental plaque of elder people was analyzed to learn about the microhabitat composition and diversity. Dental plaque samples were collected from 25 elders. PCR-based denaturing gradient gel electrophoresis (PCR-DGGE) was used to evaluate the microbial diversity by displaying PCR-generated 16SrDNA fragments that migrate at different distances, reflecting the different sequence of fragment. SPSS12.0 software was used to analyze the variance of genotypes between different groups of bacteria. Genotypes of bacteria in dental plaques in the root caries group was significantly more than the other two groups. Crown caries group and caries-free group had no significant difference. The genetic diversity of the dental plaque microflora in the root caries group is significantly higher than coronal caries group and caries-free group.

  8. Unexpected effects of different genetic backgrounds on identification of genomic rearrangements via whole-genome next generation sequencing.

    PubMed

    Chen, Zhangguo; Gowan, Katherine; Leach, Sonia M; Viboolsittiseri, Sawanee S; Mishra, Ameet K; Kadoishi, Tanya; Diener, Katrina; Gao, Bifeng; Jones, Kenneth; Wang, Jing H

    2016-10-21

    Whole genome next generation sequencing (NGS) is increasingly employed to detect genomic rearrangements in cancer genomes, especially in lymphoid malignancies. We recently established a unique mouse model by specifically deleting a key non-homologous end-joining DNA repair gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in germinal center B cells. This mouse model spontaneously develops mature B cell lymphomas (termed G1XP lymphomas). Here, we attempt to employ whole genome NGS to identify novel structural rearrangements, in particular inter-chromosomal translocations (CTXs), in these G1XP lymphomas. We sequenced six lymphoma samples, aligned our NGS data with mouse reference genome (in C57BL/6J (B6) background) and identified CTXs using CREST algorithm. Surprisingly, we detected widespread CTXs in both lymphomas and wildtype control samples, majority of which were false positive and attributable to different genetic backgrounds. In addition, we validated our NGS pipeline by sequencing multiple control samples from distinct tissues of different genetic backgrounds of mouse (B6 vs non-B6). Lastly, our studies showed that widespread false positive CTXs can be generated by simply aligning sequences from different genetic backgrounds of mouse. We conclude that mapping and alignment with reference genome might not be a preferred method for analyzing whole-genome NGS data obtained from a genetic background different from reference genome. Given the complex genetic background of different mouse strains or the heterogeneity of cancer genomes in human patients, in order to minimize such systematic artifacts and uncover novel CTXs, a preferred method might be de novo assembly of personalized normal control genome and cancer cell genome, instead of mapping and aligning NGS data to mouse or human reference genome. Thus, our studies have critical impact on the manner of data analysis for cancer genomics.

  9. Behavioral and adrenal responses to various stressors in mule ducks from different commercial genetic selection schemes and their respective parental genotypes.

    PubMed

    Arnaud, I; Gardin, E; Sauvage, E; Bernadet, M-D; Couty, M; Guy, G; Guémené, D

    2010-06-01

    The mule duck, a hybrid produced by crossing a Muscovy drake and a Pekin female, is reported to express inappropriate behavior such as collective avoidance of people, the resulting distress and physical consequences potentially compromising their welfare. The present study was carried out to characterize the responses of mule duck strains from different commercial selection schemes to various stressful conditions and to confirm previous data on the genetic cross effects observed in a specific genotype. Three independent experiments were conducted with ducks from 3 French breeding companies (A, B, and C). Each experiment compared 2 mule genotypes sharing one common parental origin (paternal for ducks from company A or maternal for ducks from companies B and C). Mule duck males from the 2 genotypes and their respective parental genotypes (Pekin and Muscovy) were subjected to a set of social and stressful physiological and behavioral tests. Previously reported differences in genetic cross effects on fear responses between the parental genotypes and the corresponding hybrid were confirmed in these commercial crosses. Both mule duck and Pekin genotypes showed more active physiological and behavioral responses to stress than Muscovy genotypes. The new finding of this study is that mule genotypes appear to be more sensitive to the social environment than both respective parental genotypes. Few differences were observed between the 2 mule genotypes from A and C. On the other hand, several traits of the 2 mule genotypes from B differed. In addition, A and C mule genotypes were characterized by the same adrenal and behavioral traits but contrasting responses. The B mule genotypes were characterized by a different set of behavioral traits, and only 1 of the 2 B mule ducks was characterized by a group of adrenal traits.

  10. Microstructure and tuber properties of potato varieties with different genetic profiles.

    PubMed

    Romano, Annalisa; Masi, Paolo; Aversano, Riccardo; Carucci, Francesca; Palomba, Sara; Carputo, Domenico

    2018-01-15

    The objectives of this research were to study tuber starch characteristics and chemical - thermal properties of 21 potato varieties, and to determine their genetic diversity through SSR markers. Starch granular size varied among samples, with a wide diameter distribution (5-85μm), while granule shapes were similar. Differential Scanning Calorimeter analysis showed that the transition temperatures (69°C-74°C) and enthalpies of gelatinization (0.9J/g-3.8J/g) of tubers were also variety dependent. SSR analysis allowed the detection of 157 alleles across all varieties, with an average value of 6.8 alleles per locus. Variety-specific alleles were also identified. SSR-based cluster analysis revealed that varieties with interesting quality attributes were distributed among all clusters and sub-clusters, suggesting that the genetic basis of traits analyzed may differ among our varieties. The information obtained in this study may be useful to identify and develop varieties with slowly digestible starch. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Gene Expression Profiling of the Local Cecal Response of Genetic Chicken Lines That Differ in Their Susceptibility to Campylobacter jejuni Colonization

    PubMed Central

    Kogut, Michael H.; Chiang, Hsin-I; Wang, Ying; Genovese, Kenneth J.; He, Haiqi; Zhou, Huaijun

    2010-01-01

    Campylobacter jejuni (C. jejuni) is one of the most common causes of human bacterial enteritis worldwide primarily due to contaminated poultry products. Previously, we found a significant difference in C. jejuni colonization in the ceca between two genetically distinct broiler lines (Line A (resistant) has less colony than line B (susceptible) on day 7 post inoculation). We hypothesize that different mechanisms between these two genetic lines may affect their ability to resist C. jejuni colonization in chickens. The molecular mechanisms of the local host response to C. jejuni colonization in chickens have not been well understood. In the present study, to profile the cecal gene expression in the response to C. jejuni colonization and to compare differences between two lines at the molecular level, RNA of ceca from two genetic lines of chickens (A and B) were applied to a chicken whole genome microarray for a pair-comparison between inoculated (I) and non-inoculated (N) chickens within each line and between lines. Our results demonstrated that metabolism process and insulin receptor signaling pathways are key contributors to the different response to C. jejuni colonization between lines A and B. With C. jejuni inoculation, lymphocyte activation and lymphoid organ development functions are important for line A host defenses, while cell differentiation, communication and signaling pathways are important for line B. Interestingly, circadian rhythm appears play a critical role in host response of the more resistant A line to C. jejuni colonization. A dramatic differential host response was observed between these two lines of chickens. The more susceptible line B chickens responded to C. jejuni inoculation with a dramatic up-regulation in lipid, glucose, and amino acid metabolism, which is undoubtedly for use in the response to the colonization with little or no change in immune host defenses. However, in more resistant line A birds the host defense responses were

  12. AFLPs reveal different population genetic structure under contrasting environments in the marine snail Nucella lapillus L.

    PubMed

    Carro, Belén; Quintela, María; Ruiz, José Miguel; Barreiro, Rodolfo

    2012-01-01

    Dispersal has received growing attention in marine ecology, particularly since evidence obtained with up-to-date techniques challenged the traditional view. The dogwhelk Nucella lapillus L., a sedentary gastropod with direct development, is a good example: dispersal was traditionally assumed to be limited until studies with microsatellites disputed this idea. To shed some light on this controversy, the genetic structure of dogwhelk populations in northwest Spain was investigated with highly polymorphic AFLP markers giving special attention to the influence of hydrodynamic stress. In agreement with the expectations for a poor disperser, our results show a significant genetic structure at regional (<200 km) and areal scales (<15 km). However, the spatial genetic structure varied with wave-exposure in the present case study: IBD was evident under sheltered conditions but absent from the exposed area where genetic differentiation was stronger. Our results provide evidence that differences in wave-exposure can exert a detectable influence on the genetic structure of coastal organisms, even in species without a planktonic larva.

  13. Recovery patterns, histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet vitrification and encapsulation-dehydration procedures

    USDA-ARS?s Scientific Manuscript database

    A droplet-vitrification procedure is described for cryopreservation of Malus shoot tips. Survival patterns, recovery types, histological observations, and genetic integrity were compared for Malus shoot tips cryopreserved using this droplet-vitrification procedure and an encapsulation-dehydration pr...

  14. Different histories but similar genetic diversity and structure for black walnut in Indiana and Missouri

    Treesearch

    Erin R. Victory; Jeffrey C. Glaubitz; Jennifer A. Fike; Olin E. Rhodes; Keith E. Woeste

    2008-01-01

    Missouri and Indiana have markedly different histories of glaciation and recolonization by forest trees. These states also differ in land use patterns and degree of anthropogenic landscape change such as forest fragmentation. To determine the overall effects of these and other demographic differences on the levels of genetic diversity and structure in black walnut (...

  15. Genetics of Species Differences in the Wild Annual Sunflowers, Helianthus annuus and H. petiolaris

    PubMed Central

    Lexer, Christian; Rosenthal, David M.; Raymond, Olivier; Donovan, Lisa A.; Rieseberg, Loren H.

    2005-01-01

    Much of our knowledge of speciation genetics stems from quantitative trait locus (QTL) studies. However, interpretations of the size and distribution of QTL underlying species differences are complicated by differences in the way QTL magnitudes are estimated. Also, many studies fail to exploit information about QTL directions or to compare inter- and intraspecific QTL variation. Here, we comprehensively analyze an extensive QTL data set for an interspecific backcross between two wild annual sunflowers, Helianthus annuus and H. petiolaris, interpret different estimates of QTL magnitudes, identify trait groups that have diverged through selection, and compare inter- and intraspecific QTL magnitudes. Our results indicate that even minor QTL (in terms of backcross variance) may be surprisingly large compared to levels of standing variation in the parental species or phenotypic differences between them. Morphological traits, particularly flower morphology, were more strongly or consistently selected than life history or physiological traits. Also, intraspecific QTL were generally smaller than interspecific ones, consistent with the prediction that larger QTL are more likely to spread to fixation across a subdivided population. Our results inform the genetics of species differences in Helianthus and suggest an approach for the simultaneous mapping of inter- and intraspecific QTL. PMID:15545657

  16. Genetic Factors of Individual Differences in Decision Making in Economic Behavior: A Japanese Twin Study using the Allais Problem.

    PubMed

    Shikishima, Chizuru; Hiraishi, Kai; Yamagata, Shinji; Ando, Juko; Okada, Mitsuhiro

    2015-01-01

    Why does decision making differ among individuals? People sometimes make seemingly inconsistent decisions with lower expected (monetary) utility even when objective information of probabilities and reward are provided. It is noteworthy, however, that a certain proportion of people do not provide anomalous responses, choosing the alternatives with higher expected utility, thus appearing to be more "rational." We investigated the genetic and environmental influences on these types of individual differences in decision making using a classical Allais problem task. Participants were 1,199 Japanese adult twins aged 20-47. Univariate genetic analysis revealed that approximately a third of the Allais problem response variance was explained by genetic factors and the rest by environmental factors unique to individuals and measurement error. The environmental factor shared between families did not contribute to the variance. Subsequent multivariate genetic analysis clarified that decision making using the expected utility theory was associated with general intelligence and that the association was largely mediated by the same genetic factor. We approach the mechanism underlying two types of "rational" decision making from the perspective of genetic correlations with cognitive abilities.

  17. East Greenland and Barents Sea polar bears (Ursus maritimus): adaptive variation between two populations using skull morphometrics as an indicator of environmental and genetic differences.

    PubMed

    Pertoldi, Cino; Sonne, Christian; Wiig, Øystein; Baagøe, Hans J; Loeschcke, Volker; Bechshøft, Thea Østergaard

    2012-06-01

    A morphometric study was conducted on four skull traits of 37 male and 18 female adult East Greenland polar bears (Ursus maritimus) collected 1892-1968, and on 54 male and 44 female adult Barents Sea polar bears collected 1950-1969. The aim was to compare differences in size and shape of the bear skulls using a multivariate approach, characterizing the variation between the two populations using morphometric traits as an indicator of environmental and genetic differences. Mixture analysis testing for geographic differentiation within each population revealed three clusters for Barents Sea males and three clusters for Barents Sea females. East Greenland consisted of one female and one male cluster. A principal component analysis (PCA) conducted on the clusters defined by the mixture analysis, showed that East Greenland and Barents Sea polar bear populations overlapped to a large degree, especially with regards to females. Multivariate analyses of variance (MANOVA) showed no significant differences in morphometric means between the two populations, but differences were detected between clusters from each respective geographic locality. To estimate the importance of genetics and environment in the morphometric differences between the bears, a PCA was performed on the covariance matrix derived from the skull measurements. Skull trait size (PC1) explained approx. 80% of the morphometric variation, whereas shape (PC2) defined approx. 15%, indicating some genetic differentiation. Hence, both environmental and genetic factors seem to have contributed to the observed skull differences between the two populations. Overall, results indicate that many Barents Sea polar bears are morphometrically similar to the East Greenland ones, suggesting an exchange of individuals between the two populations. Furthermore, a subpopulation structure in the Barents Sea population was also indicated from the present analyses, which should be considered with regards to future management

  18. Genetic diversity and relationships among different tomato varieties revealed by EST-SSR markers.

    PubMed

    Korir, N K; Diao, W; Tao, R; Li, X; Kayesh, E; Li, A; Zhen, W; Wang, S

    2014-01-08

    The genetic diversity and relationship of 42 tomato varieties sourced from different geographic regions was examined with EST-SSR markers. The genetic diversity was between 0.18 and 0.77, with a mean of 0.49; the polymorphic information content ranged from 0.17 to 0.74, with a mean of 0.45. This indicates a fairly high degree of diversity among these tomato varieties. Based on the cluster analysis using unweighted pair-group method with arithmetic average (UPGMA), all the tomato varieties fell into 5 groups, with no obvious geographical distribution characteristics despite their diverse sources. The principal component analysis (PCA) supported the clustering result; however, relationships among varieties were more complex in the PCA scatterplot than in the UPGMA dendrogram. This information about the genetic relationships between these tomato lines helps distinguish these 42 varieties and will be useful for tomato variety breeding and selection. We confirm that the EST-SSR marker system is useful for studying genetic diversity among tomato varieties. The high degree of polymorphism and the large number of bands obtained per assay shows that SSR is the most informative marker system for tomato genotyping for purposes of rights/protection and for the tomato industry in general. It is recommended that these varieties be subjected to identification using an SSR-based manual cultivar identification diagram strategy or other easy-to-use and referable methods so as to provide a complete set of information concerning genetic relationships and a readily usable means of identifying these varieties.

  19. Imaging genetics and the neurobiological basis of individual differences in vulnerability to addiction.

    PubMed

    Sweitzer, Maggie M; Donny, Eric C; Hariri, Ahmad R

    2012-06-01

    Addictive disorders are heritable, but the search for candidate functional polymorphisms playing an etiological role in addiction is hindered by complexity of the phenotype and the variety of factors interacting to impact behavior. Advances in human genome sequencing and neuroimaging technology provide an unprecedented opportunity to explore the impact of functional genetic variants on variability in behaviorally relevant neural circuitry. Here, we present a model for merging these technologies to trace the links between genes, brain, and addictive behavior. We describe imaging genetics and discuss the utility of its application to addiction. We then review data pertaining to impulsivity and reward circuitry as an example of how genetic variation may lead to variation in behavioral phenotype. Finally, we present preliminary data relating the neural basis of reward processing to individual differences in nicotine dependence. Complex human behaviors such as addiction can be traced to their basic genetic building blocks by identifying intermediate behavioral phenotypes, associated neural circuitry, and underlying molecular signaling pathways. Impulsivity has been linked with variation in reward-related activation in the ventral striatum (VS), altered dopamine signaling, and functional polymorphisms of DRD2 and DAT1 genes. In smokers, changes in reward-related VS activation induced by smoking abstinence may be associated with severity of nicotine dependence. Variation in genes related to dopamine signaling may contribute to heterogeneity in VS sensitivity to reward and, ultimately, to addiction. These findings illustrate the utility of the imaging genetics approach for investigating the neurobiological basis for vulnerability to addiction. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Genetic effects on bone mass and turnover-relevance to black/white differences.

    PubMed

    Parfitt, A M

    1997-08-01

    The mass of a bone is given by its volume and its apparent density--mass per unit external volume. Most measurements of so-called density are of mass incompletely normalized by some index of bone size. Genes control about 60% to 75% of the variance of peak bone mass/density and a much smaller proportion of the variance in rate of loss. Genetic influence on bone mass/density are mediated in large part by body size, bone size, and muscle mass. Most of the fifty-fold increase in bone mass from birth to maturity is due to bone growth, which is linked to muscle growth and bodily growth. Three-D apparent bone density in the vertebrae increases about 15% during the pubertal growth spurt. The genetic potential for bone accumulation can be frustrated by insufficient calcium intake, disruption of the calendar of puberty and inadequate physical activity. The growing skeleton is much more responsive than the mature skeleton to the osteotrophic effect of exercise, which is mediated by the detection of deviations from a target value for strain, and orchestration of cellular responses that restore the target value, processes collectively termed the mechanostat. Production of metaphyseal cancellous bone and growth in length are both linked to endochondral ossification, which is driven by growth plate cartilage cell proliferation. Production of diaphyseal cortical bone and growth in width are both linked to periosteal apposition, which is driven by osteoblast precursor proliferation. During adolescence trabeculae and cortices become thicker by net endosteal apposition, which increases apparent density. Two lines of evidence support a genetic basis for black/white differences in bone mass. First, the magnitude (10% to 40%) is incommensurate with known nongenetic factors. Second, the difference is already evident in the fetus and increases progressively during growth, especially in adolescence; the difference in peak bone mass persists throughout life. The genetic determination of

  1. Genetic Diversity and Population Structure of Theileria annulata in Oman

    PubMed Central

    Al-Hamidhi, Salama; H. Tageldin, Mohammed.; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H.; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Background Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Methods Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. Results We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST

  2. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    PubMed

    Al-Hamidhi, Salama; H Tageldin, Mohammed; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075, θ = 0.07) were

  3. Genetic Characterization of Bombyx mori (Lepidoptera: Bombycidae) Breeding and Hybrid Lines With Different Geographic Origins

    PubMed Central

    Furdui, Emilia M.; Mărghitaş, Liviu A.; Dezmirean, Daniel S.; Paşca, Ioan; Pop, Iulia F.; Erler, Silvio; Schlüns, Ellen A.

    2014-01-01

    Abstract The domesticated silkworm Bombyx mori L. comprises a large number of geographical breeds and hybrid lines. Knowing the genetic structure of those may provide information to improve the conservation of commercial lines by estimating inbreeding over generations and the consequences of excessive use of those lineages. Here, we analyzed the genetic diversity of seven breeds and eight hybrid lines from Eastern Europe and Asia using highly polymorphic microsatellites markers to determine its genetical impact on their use in global breeding programs. No consistent pattern of deviation from Hardy–Weinberg equilibrium was found for most breed and hybrids; and the absence of a linkage disequilibrium also suggests that the strains are in equilibrium. A principal coordinate analysis revealed a clear separation of two silkworm breeds from the rest: one (IBV) originated from India and the other one (RG 90 ) from Romania/Japan. The tendency of the other breeds from different geographic origins to cluster together in a general mix might be due to similar selection pressures (climate and anthropogenic factors) in different geographic locations. Phylogenetic analyses grouped the different silkworm breeds but not the hybrids according to their geographic origin and confirmed the pattern found in the principal coordinate analysis. PMID:25502023

  4. A social relations model of observed family negativity and positivity using a genetically informative sample.

    PubMed

    Rasbash, Jon; Jenkins, Jennifer; O'Connor, Thomas G; Tackett, Jennifer; Reiss, David

    2011-03-01

    The goal of this study was to investigate individual and relationship influences on expressions of negativity and positivity in families. Parents and adolescents were observed in a round-robin design in a sample of 687 families. Data were analyzed using a multilevel social relations model. In addition, genetic contributions were estimated for actor effects. Children showed higher mean levels of negativity and lower mean levels of positivity as actors than did parents. Mothers were found to express and elicit higher mean levels of positivity and negativity than fathers. Actor effects were much stronger than partner effects, accounting for between 18%-39% of the variance depending on the actor and the outcome. Genetic (35%) and shared environmental (19%) influences explained a substantial proportion of the actor effect variance for negativity. Dyadic reciprocities were lowest in dyads with a high power differential (i.e., parent-child dyads) and highest for dyads with equal power (sibling and marital dyads). (c) 2011 APA, all rights reserved

  5. Views, Knowledge, and Beliefs about Genetics and Genetic Counseling among Deaf People

    ERIC Educational Resources Information Center

    Middleton, Anna; Emery, Steven D.; Turner, Graham H.

    2010-01-01

    Genetic counseling is part of the social response to the science of genetics. It is intended to help twenty-first-century societies manage the consequences of our ability to observe and intervene in our genetic makeup. This article explores the views, knowledge, and beliefs of some Deaf and hard of hearing people about genetics and genetic…

  6. Sex Differences in Genetic and Environmental Influences on Longitudinal Change in Functional Ability in Late Adulthood.

    PubMed

    Finkel, Deborah; Ernsth-Bravell, Marie; Pedersen, Nancy L

    2015-09-01

    To determine the extent to which genetic and environmental factors contribute to individual and gender differences in aging of functional ability. Twenty assessments of functional ability are collected as part of the longitudinal Swedish Adoption/Twin Study of Aging from 859 twins aged 50-88 at the first wave. Participants completed up to 6 assessments covering a 19-year period. Factor analysis was used to create 3 factors: flexibility, fine motor skills, and balance. Latent growth curve analysis demonstrated increasing disability and variability after age 70. For flexibility, results indicated significant sex differences in mean change trajectories but no sex differences in components of variance. No sex differences were found for fine motor movement. For balance, there were no sex differences in mean change trajectories; however, there was significant genetic variance for changes in balance in women after age 70 but not for men. Although idiosyncratic environmental influences account for a large part of increasing variance, correlated and shared rearing environmental effects were also evident. Thus, both microenvironmental (individual) and macroenvironmental (family and cultural) effects, as well as genetic factors, affect maintenance of functional ability in late adulthood. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. The genetic structure of a Venturia inaequalis population in a heterogeneous host population composed of different Malus species

    PubMed Central

    2013-01-01

    Background Adaptation, which induces differentiation between populations in relation to environmental conditions, can initiate divergence. The balance between gene flow and selection determines the maintenance of such a structure in sympatry. Studying these two antagonistic forces in plant pathogens is made possible because of the high ability of pathogens to disperse and of the strong selective pressures exerted by their hosts. In this article, we analysed the genetic structure of the population of the apple scab fungus, Venturia inaequalis, in a heterogeneous environment composed of various Malus species. Inferences were drawn from microsatellite and AFLP data obtained from 114 strains sampled in a single orchard on nine different Malus species to determine the forces that shape the genetic structure of the pathogen. Results Using clustering methods, we first identified two specialist subpopulations: (i) a virulent subpopulation sampled on Malus trees carrying the Rvi6 resistance gene; and (ii) a subpopulation infecting only Malus trees that did not carry this resistance gene. A genome scan of loci on these two subpopulations did not detect any locus under selection. Additionally, we did not detect any other particular substructure linked to different hosts. However, an isolation-by-distance (IBD) pattern at the orchard scale revealed free gene flow within each subpopulation. Conclusions Our work shows a rare example of a very strong effect of a resistance gene on pathogen populations. Despite the high diversity of Malus hosts, the presence of Rvi6 seems sufficient to explain the observed genetic structure. Moreover, detection of an IBD pattern at the orchard scale revealed a very low average dispersal distance that is particularly significant for epidemiologists and landscape managers for the design of scab control strategies PMID:23497223

  8. Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms.

    PubMed

    Wang, Yupeng; Wang, Xiyin; Tang, Haibao; Tan, Xu; Ficklin, Stephen P; Feltus, F Alex; Paterson, Andrew H

    2011-01-01

    Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we have compared expression divergence between genes duplicated by six different mechanisms (WGD, tandem, proximal, DNA based transposed, retrotransposed and dispersed), and between positional orthologs. Both neo-functionalization and genetic redundancy appear to contribute to retention of duplicate genes. Genes resulting from WGD and tandem duplications diverge slowest in both coding sequences and gene expression, and contribute most to genetic redundancy, while other duplication modes contribute more to evolutionary novelty. WGD duplicates may more frequently be retained due to dosage amplification, while inferred transposon mediated gene duplications tend to reduce gene expression levels. The extent of expression divergence between duplicates is discernibly related to duplication modes, different WGD events, amino acid divergence, and putatively neutral divergence (time), but the contribution of each factor is heterogeneous among duplication modes. Gene loss may retard inter-species expression divergence. Members of different gene families may have non-random patterns of origin that are similar in Arabidopsis and rice, suggesting the action of pan-taxon principles of molecular evolution. Gene duplication modes differ in contribution to genetic novelty and redundancy, but show some parallels in taxa separated by hundreds of millions of years of evolution.

  9. Modes of Gene Duplication Contribute Differently to Genetic Novelty and Redundancy, but Show Parallels across Divergent Angiosperms

    PubMed Central

    Wang, Yupeng; Wang, Xiyin; Tang, Haibao; Tan, Xu; Ficklin, Stephen P.; Feltus, F. Alex; Paterson, Andrew H.

    2011-01-01

    Background Both single gene and whole genome duplications (WGD) have recurred in angiosperm evolution. However, the evolutionary effects of different modes of gene duplication, especially regarding their contributions to genetic novelty or redundancy, have been inadequately explored. Results In Arabidopsis thaliana and Oryza sativa (rice), species that deeply sample botanical diversity and for which expression data are available from a wide range of tissues and physiological conditions, we have compared expression divergence between genes duplicated by six different mechanisms (WGD, tandem, proximal, DNA based transposed, retrotransposed and dispersed), and between positional orthologs. Both neo-functionalization and genetic redundancy appear to contribute to retention of duplicate genes. Genes resulting from WGD and tandem duplications diverge slowest in both coding sequences and gene expression, and contribute most to genetic redundancy, while other duplication modes contribute more to evolutionary novelty. WGD duplicates may more frequently be retained due to dosage amplification, while inferred transposon mediated gene duplications tend to reduce gene expression levels. The extent of expression divergence between duplicates is discernibly related to duplication modes, different WGD events, amino acid divergence, and putatively neutral divergence (time), but the contribution of each factor is heterogeneous among duplication modes. Gene loss may retard inter-species expression divergence. Members of different gene families may have non-random patterns of origin that are similar in Arabidopsis and rice, suggesting the action of pan-taxon principles of molecular evolution. Conclusion Gene duplication modes differ in contribution to genetic novelty and redundancy, but show some parallels in taxa separated by hundreds of millions of years of evolution. PMID:22164235

  10. Genetic and Environmental Influences on the Relationships between Family Connectedness, School Connectedness, and Adolescent Depressed Mood: Sex Differences.

    ERIC Educational Resources Information Center

    Jacobson, Kristen C.; Rowe, David C.

    1999-01-01

    Investigated genetic and environmental contributions to relationship between family and school environment and depressed mood; also potential sex differences in genetic and environment contributions to variation in and covariation between family connectedness, school connectedness, and depressed mood. Subjects were 2,302 adolescent sibling pairs.…

  11. Computational Integration of Human Genetic and Toxicological Data to Evaluate AOP-Specific Susceptibility

    EPA Science Inventory

    Susceptibility to environmental chemicals can be modulated by genetic differences. Direct estimation of the genetic contribution to variability in susceptibility to environmental chemicals is only possible in special cases where there is an observed association between exposure a...

  12. A Genetic Approach to Spanish Populations of the Threatened Austropotamobius italicus Located at Three Different Scenarios

    PubMed Central

    Matallanas, Beatriz; Callejas, Carmen; Ochando, M. Dolores

    2012-01-01

    Spanish freshwater ecosystems are suffering great modification and some macroinvertebrates like Austropotamobius italicus, the white-clawed crayfish, are threatened. This species was once widely distributed in Spain, but its populations have shown a very strong decline over the last thirty years, due to different factors. Three Spanish populations of this crayfish—from different scenarios—were analysed with nuclear (microsatellites) and mitochondrial markers (COI and 16S rDNA). Data analyses reveal the existence of four haplotypes at mitochondrial level and polymorphism for four microsatellite loci. Despite this genetic variability, bottlenecks were detected in the two natural Spanish populations tested. In addition, the distribution of the mitochondrial haplotypes and SSR alleles show a similar geographic pattern and the genetic differentiation between these samples is mainly due to genetic drift. Given the current risk status of the species across its range, this diversity offers some hope for the species from a management point of view. PMID:22645491

  13. Genetic influences on the difference in variability of height, weight and body mass index between Caucasian and East Asian adolescent twins.

    PubMed

    Hur, Y-M; Kaprio, J; Iacono, W G; Boomsma, D I; McGue, M; Silventoinen, K; Martin, N G; Luciano, M; Visscher, P M; Rose, R J; He, M; Ando, J; Ooki, S; Nonaka, K; Lin, C C H; Lajunen, H R; Cornes, B K; Bartels, M; van Beijsterveldt, C E M; Cherny, S S; Mitchell, K

    2008-10-01

    Twin studies are useful for investigating the causes of trait variation between as well as within a population. The goals of the present study were two-fold: First, we aimed to compare the total phenotypic, genetic and environmental variances of height, weight and BMI between Caucasians and East Asians using twins. Secondly, we intended to estimate the extent to which genetic and environmental factors contribute to differences in variability of height, weight and BMI between Caucasians and East Asians. Height and weight data from 3735 Caucasian and 1584 East Asian twin pairs (age: 13-15 years) from Australia, China, Finland, Japan, the Netherlands, South Korea, Taiwan and the United States were used for analyses. Maximum likelihood twin correlations and variance components model-fitting analyses were conducted to fulfill the goals of the present study. The absolute genetic variances for height, weight and BMI were consistently greater in Caucasians than in East Asians with corresponding differences in total variances for all three body measures. In all 80 to 100% of the differences in total variances of height, weight and BMI between the two population groups were associated with genetic differences. Height, weight and BMI were more variable in Caucasian than in East Asian adolescents. Genetic variances for these three body measures were also larger in Caucasians than in East Asians. Variance components model-fitting analyses indicated that genetic factors contributed to the difference in variability of height, weight and BMI between the two population groups. Association studies for these body measures should take account of our findings of differences in genetic variances between the two population groups.

  14. Genetic influences on the difference in variability of height, weight and body mass index between Caucasian and East Asian adolescent twins

    PubMed Central

    Hur, Y-M; Kaprio, J; Iacono, WG; Boomsma, DI; McGue, M; Silventoinen, K; Martin, NG; Luciano, M; Visscher, PM; Rose, RJ; He, M; Ando, J; Ooki, S; Nonaka, K; Lin, CCH; Lajunen, HR; Cornes, BK; Bartels, M; van Beijsterveldt, CEM; Cherny, SS; Mitchell, K

    2008-01-01

    Objective Twin studies are useful for investigating the causes of trait variation between as well as within a population. The goals of the present study were two-fold: First, we aimed to compare the total phenotypic, genetic and environmental variances of height, weight and BMI between Caucasians and East Asians using twins. Secondly, we intended to estimate the extent to which genetic and environmental factors contribute to differences in variability of height, weight and BMI between Caucasians and East Asians. Design Height and weight data from 3735 Caucasian and 1584 East Asian twin pairs (age: 13–15 years) from Australia, China, Finland, Japan, the Netherlands, South Korea, Taiwan and the United States were used for analyses. Maximum likelihood twin correlations and variance components model-fitting analyses were conducted to fulfill the goals of the present study. Results The absolute genetic variances for height, weight and BMI were consistently greater in Caucasians than in East Asians with corresponding differences in total variances for all three body measures. In all 80 to 100% of the differences in total variances of height, weight and BMI between the two population groups were associated with genetic differences. Conclusion Height, weight and BMI were more variable in Caucasian than in East Asian adolescents. Genetic variances for these three body measures were also larger in Caucasians than in East Asians. Variance components model-fitting analyses indicated that genetic factors contributed to the difference in variability of height, weight and BMI between the two population groups. Association studies for these body measures should take account of our findings of differences in genetic variances between the two population groups. PMID:18779828

  15. Regional Brain Shrinkage over Two Years: Individual Differences and Effects of Pro-Inflammatory Genetic Polymorphisms

    PubMed Central

    Persson, N.; Ghisletta, P.; Dahle, C.L.; Bender, A.R.; Yang, Y.; Yuan, P.; Daugherty, A.M.; Raz, N.

    2014-01-01

    We examined regional changes in brain volume in healthy adults (N = 167, age 19-79 years at baseline; N = 90 at follow-up) over approximately two years. With latent change score models, we evaluated mean change and individual differences in rates of change in 10 anatomically-defined and manually-traced regions of interest (ROIs): lateral prefrontal cortex (LPFC), orbital frontal cortex (OF), prefrontal white matter (PFw), hippocampus (HC), parahippocampal gyrus (PhG), caudate nucleus (Cd), putamen (Pt), insula (In), cerebellar hemispheres (CbH), and primary visual cortex (VC). Significant mean shrinkage was observed in the HC, CbH, In, OF, and the PhG, and individual differences in change were noted in all regions, except the OF. Pro-inflammatory genetic variants mediated shrinkage in PhG and CbH. Carriers of two T alleles of interleukin-1β (IL-1βC-511T, rs16944) and a T allele of methylenetetrahydrofolate reductase (MTHFRC677T, rs1801133) polymorphisms showed increased PhG shrinkage. No effects of a pro-inflammatory polymorphism for C-reactive protein (CRP-286C>A>T, rs3091244) or apolipoprotein (APOE) ε4 allele were noted. These results replicate the pattern of brain shrinkage observed in previous studies, with a notable exception of the LPFC thus casting doubt on the unique importance of prefrontal cortex in aging. Larger baseline volumes of CbH and In were associated with increased shrinkage, in conflict with the brain reserve hypothesis. Contrary to previous reports, we observed no significant linear effects of age and hypertension on regional brain shrinkage. Our findings warrant further investigation of the effects of neuroinflammation on structural brain change throughout the lifespan. PMID:25264227

  16. Using simulation models to predict feed intake: phenotypic and genetic relationships between observed and predicted values in cattle.

    PubMed

    Williams, C B; Bennett, G L; Jenkins, T G; Cundiff, L V; Ferrell, C L

    2006-06-01

    The objectives of this study were to evaluate the accuracy of the Decision Evaluator for the Cattle Industry (DECI) and the Cornell Value Discovery System (CVDS) in predicting individual DMI and to assess the feasibility of using predicted DMI data in genetic evaluations of cattle. Observed individual animal data on the average daily DMI (OFI), ADG, and carcass measurements were obtained from postweaning records of 504 steers from 52 sires (502 with complete data). The experimental data and daily temperature and wind speed data were used as inputs to predict average daily feed DMI (kg) required (feed required; FR) for maintenance, cold stress, and ADG; maintenance and cold stress; ADG; maintenance and ADG; and maintenance alone, with CVDS (CFRmcg, CFRmc, CFRg, CFRmg, and CFRm, respectively) and DECI (DFRmcg, DFRmc, DFRg, DFRmg, and DFRm, respectively). Genetic parameters were estimated by REML using an animal model with age on test as a covariate and with genotype, age of dam, and year as fixed effects. Regression equations for observed on predicted DMI were OFI = 1.27 (SE = 0.27) + 0.83 (SE = 0.04) x CFRmcg [R2 = 0.44, residual SD (s(y.x)) = 0.669 kg/d] and OFI = 1.32 (SE = 0.22) + 0.8 (SE = 0.03) x DFRmcg (R2 = 0.53, s(y.x) = 0.612 kg/d). Heritability of OFI was 0.27 +/- 0.12, and heritabilities ranged from 0.33 +/- 0.12 to 0.41 +/- 0.13 for predicted measures of DMI. Phenotypic and genetic correlations between OFI and CFRmcg, CFRmc, CFRg, CFRmg, CFRm, DFRmcg, DFRmc, DFRg, DFRmg, and DFRm were 0.67, 0.73, 0.41, 0.63, 0.78, 0.73, 0.82, 0.45, 0.77, and 0.86 (P < 0.001 for all phenotypic correlations); and 0.95 +/- 0.07, 0.82 +/- 0.13, 0.89 +/- 0.09, 0.95 +/- 0.07, 0.91 +/- 0.09, 0.96 +/- 0.07, 0.89 +/- 0.09, 0.88 +/- 0.09, 0.96 +/- 0.06, and 0.96 +/- 0.07, respectively. Phenotypic and genetic correlations between CFRmcg and DFRmcg, CFRmc and DFRmc, CFRg and DFRg, CFRmg and DFRmg, and CFRm and DFRm were 0.98, 0.94, 0.99, 0.98, and 0.95 (P < 0.001 for all phenotypic

  17. A presentation of the differences between the sheep and goat genetic maps

    PubMed Central

    2005-01-01

    The current autosomal version (4.2) of the sheep genetic map comprises 1175 loci and spans ~3540 cM. This corresponds to almost complete coverage of the sheep genome. Each chromosome is represented by a single linkage group, with the largest gap between adjacent loci being 19.8 cM. In contrast the 1998 goat genetic map (the most recently published) is much less well developed spanning 2737 cM and comprising only 307 loci. Only one of the goat chromosomes appears to have complete coverage (chromosome 27), and 16 of the chromosomes are comprised of two or more linkage groups, or a linkage group and one or more unlinked markers. The two maps share 218 loci, and the maps have been aligned using the shared loci as reference points. Overall there is good agreement between the maps in terms of homologous loci mapping to equivalent chromosomes in the two species, with only four markers mapping to non-equivalent chromosomes. However, there are lots of inversions in locus order between the sheep and goat chromosomes. Whilst some of these differences in locus order may be genuine, the majority are likely to be a consequence of the paucity of genetic information for the goat map. PMID:15601590

  18. Proton Nuclear Magnetic Resonance-Spectroscopic Discrimination of Wines Reflects Genetic Homology of Several Different Grape (V. vinifera L.) Cultivars

    PubMed Central

    Zhu, Yong; Wen, Wen; Zhang, Fengmin; Hardie, Jim W.

    2015-01-01

    Background and Aims Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR has been shown to discriminate wines of different cultivars, a grape genetic component of the discrimination has been inferred only from discrimination of cultivars of undefined genetic homology and in the presence of many confounding environmental factors. We aimed to confirm the influence of grape genotypes in the absence of those factors. Methods and Results We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the same site and vinified similarly. We also compared the semi-quantitative profiles of the discriminant metabolites of each cultivar with previously reported chemical analyses. The cultivars were clearly distinguishable and there was a general correlation between their grouping and their genetic homology as revealed by recent genomic studies. Between cultivars, the relative amounts of several of the cultivar-related discriminant metabolites conformed closely with reported chemical analyses. Conclusions Differences in grape-derived metabolites associated with genetic differences alone are a major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to discriminate between very closely related cultivars. Significance of the Study The study confirms that genetic variation among grape cultivars alone can account for the discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of single grape cultivars may in future be used in tandem with hierarchical cluster analysis to elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence of genetic information, for example, where predecessor varieties are no longer extant, this may be a particularly useful approach. PMID

  19. Proton Nuclear Magnetic Resonance-Spectroscopic Discrimination of Wines Reflects Genetic Homology of Several Different Grape (V. vinifera L.) Cultivars.

    PubMed

    Hu, Boran; Yue, Yaqing; Zhu, Yong; Wen, Wen; Zhang, Fengmin; Hardie, Jim W

    2015-01-01

    Proton nuclear magnetic resonance spectroscopy coupled multivariate analysis (1H NMR-PCA/PLS-DA) is an important tool for the discrimination of wine products. Although 1H NMR has been shown to discriminate wines of different cultivars, a grape genetic component of the discrimination has been inferred only from discrimination of cultivars of undefined genetic homology and in the presence of many confounding environmental factors. We aimed to confirm the influence of grape genotypes in the absence of those factors. We applied 1H NMR-PCA/PLS-DA and hierarchical cluster analysis (HCA) to wines from five, variously genetically-related grapevine (V. vinifera) cultivars; all grown similarly on the same site and vinified similarly. We also compared the semi-quantitative profiles of the discriminant metabolites of each cultivar with previously reported chemical analyses. The cultivars were clearly distinguishable and there was a general correlation between their grouping and their genetic homology as revealed by recent genomic studies. Between cultivars, the relative amounts of several of the cultivar-related discriminant metabolites conformed closely with reported chemical analyses. Differences in grape-derived metabolites associated with genetic differences alone are a major source of 1H NMR-based discrimination of wines and 1H NMR has the capacity to discriminate between very closely related cultivars. The study confirms that genetic variation among grape cultivars alone can account for the discrimination of wine by 1H NMR-PCA/PLS and indicates that 1H NMR spectra of wine of single grape cultivars may in future be used in tandem with hierarchical cluster analysis to elucidate genetic lineages and metabolomic relations of grapevine cultivars. In the absence of genetic information, for example, where predecessor varieties are no longer extant, this may be a particularly useful approach.

  20. Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group.

    PubMed

    Brouwer, Rachel M; Panizzon, Matthew S; Glahn, David C; Hibar, Derrek P; Hua, Xue; Jahanshad, Neda; Abramovic, Lucija; de Zubicaray, Greig I; Franz, Carol E; Hansell, Narelle K; Hickie, Ian B; Koenis, Marinka M G; Martin, Nicholas G; Mather, Karen A; McMahon, Katie L; Schnack, Hugo G; Strike, Lachlan T; Swagerman, Suzanne C; Thalamuthu, Anbupalam; Wen, Wei; Gilmore, John H; Gogtay, Nitin; Kahn, René S; Sachdev, Perminder S; Wright, Margaret J; Boomsma, Dorret I; Kremen, William S; Thompson, Paul M; Hulshoff Pol, Hilleke E

    2017-09-01

    Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not been widely studied. Here we estimate heritability (h 2 ) of changes in global and subcortical brain volumes in five longitudinal twin cohorts from across the world and in different stages of the lifespan (N = 861). Heritability estimates of brain changes were significant and ranged from 16% (caudate) to 42% (cerebellar gray matter) for all global and most subcortical volumes (with the exception of thalamus and pallidum). Heritability estimates of change rates were generally higher in adults than in children suggesting an increasing influence of genetic factors explaining individual differences in brain structural changes with age. In children, environmental influences in part explained individual differences in developmental changes in brain structure. Multivariate genetic modeling showed that genetic influences of change rates and baseline volume significantly overlapped for many structures. The genetic influences explaining individual differences in the change rate for cerebellum, cerebellar gray matter and lateral ventricles were independent of the genetic influences explaining differences in their baseline volumes. These results imply the existence of genetic variants that are specific for brain plasticity, rather than brain volume itself. Identifying these genes may increase our understanding of brain development and ageing and possibly have implications for diseases that are characterized by deviant developmental trajectories of brain structure. Hum Brain Mapp 38:4444-4458, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Analysis of the genetic diversity of the nematode parasite Baylisascaris schroederi from wild giant pandas in different mountain ranges in China.

    PubMed

    Zhou, Xuan; Xie, Yue; Zhang, Zhi-he; Wang, Cheng-dong; Sun, Yun; Gu, Xiao-bin; Wang, Shu-xian; Peng, Xue-rong; Yang, Guang-you

    2013-08-08

    Baylisascaris schroederi is one of the most common nematodes of the giant panda, and can cause severe baylisascarosis in both wild and captive giant pandas. Previous studies of the giant pandas indicated that this population is genetically distinct, implying the presence of a new subspecies. Based on the co-evolution between the parasite and the host, the aim of this study was to investigate the genetic differentiation in the B. schroederi population collected from giant pandas inhabiting different mountain ranges, and further to identify whether the evolution of this parasite correlates with the evolution of giant pandas. In this study, 48 B. schroederi were collected from 28 wild giant pandas inhabiting the Qinling, Minshan and Qionglai mountain ranges in China. The complete sequence of the mitochondrial cytochrome b (mtCytb) gene was amplified by PCR, and the corresponding population genetic diversity of the three mountain populations was determined. In addition, we discussed the evolutionary relationship between B. schroederi and its host giant panda. For the DNA dataset, insignificant Fst values and a significant, high level of gene flow were detected among the three mountain populations of B. schroederi, and high genetic variation within populations and a low genetic distance were observed. Both phylogenetic analyses and network mapping of the 16 haplotypes revealed a dispersed pattern and an absence of branches strictly corresponding to the three mountain range sampling sites. Neutrality tests and mismatch analysis indicated that B. schroederi experienced a population expansion in the past. Taken together, the dispersed haplotype map, extremely high gene flow among the three populations of B. schroederi, low genetic structure and rapid evolutionary rate suggest that the B. schroederi populations did not follow a pattern of isolation by distance, indicating the existence of physical connections before these populations became geographically separated.

  2. AFLPs Reveal Different Population Genetic Structure under Contrasting Environments in the Marine Snail Nucella lapillus L.

    PubMed Central

    Carro, Belén; Quintela, María; Ruiz, José Miguel; Barreiro, Rodolfo

    2012-01-01

    Dispersal has received growing attention in marine ecology, particularly since evidence obtained with up-to-date techniques challenged the traditional view. The dogwhelk Nucella lapillus L., a sedentary gastropod with direct development, is a good example: dispersal was traditionally assumed to be limited until studies with microsatellites disputed this idea. To shed some light on this controversy, the genetic structure of dogwhelk populations in northwest Spain was investigated with highly polymorphic AFLP markers giving special attention to the influence of hydrodynamic stress. In agreement with the expectations for a poor disperser, our results show a significant genetic structure at regional (<200 km) and areal scales (<15 km). However, the spatial genetic structure varied with wave-exposure in the present case study: IBD was evident under sheltered conditions but absent from the exposed area where genetic differentiation was stronger. Our results provide evidence that differences in wave-exposure can exert a detectable influence on the genetic structure of coastal organisms, even in species without a planktonic larva. PMID:23185435

  3. Effect of genetic background on the stability of sunflower fatty acid composition in different high oleic mutations.

    PubMed

    Alberio, Constanza; Aguirrezábal, Luis An; Izquierdo, Natalia G; Reid, Roberto; Zuil, Sebastián; Zambelli, Andrés

    2018-02-01

    The effect of genetic background on the stability of fatty acid composition in sunflower near isogenic lines (NILs) carrying high-oleic Pervenets (P) or high-oleic NM1 mutations was studied. The materials were field-tested in different locations and at different sowing dates to evaluate a wide range of environmental conditions. Relationships were established between the fatty acids and the minimum night temperature (MNT) and the response was characterized. A genetic background effect for the fatty acid composition was found in both groups of NILs. The NM1-NILs showed an oleic level higher than 910 g kg -1 and they were more stable across environments with a zero or low dependence on the genetic background; on the other hand, high oleic materials bearing the P mutation showed lower levels of oleic acid, with a higher variation in fatty acid composition and a highly significant dependence on the genetic background. The NM1 mutation is the best option to develop ultra-high oleic sunflower oil that is stable across environments and genetic backgrounds, making its agronomical production more efficient and predictable. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  4. PHOTOSYNTHETIC PIGMENT AND GENETIC DIFFERENCES BETWEEN TWO SOUTHERN OCEAN MORPHOTYPES OF EMILIANIA HUXLEYI (HAPTOPHYTA)1.

    PubMed

    Cook, Suellen S; Whittock, Lucy; Wright, Simon W; Hallegraeff, Gustaaf M

    2011-06-01

    The widespread coccolithophorid Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler plays a pivotal role in the carbon pump and is known to exhibit significant morphological, genetic, and physiological diversity. In this study, we compared photosynthetic pigments and morphology of triplicate strains of Southern Ocean types A and B/C. The two morphotypes differed in width of coccolith distal shield elements (0.11-0.24 μm, type A; 0.06-0.12 μm, type B/C) and morphology of distal shield central area (grill of curved rods in type A; thin plain plate in type B/C) and showed differences in carotenoid composition. The mean 19'-hexanoyloxyfucoxanthin (Hex):chl a ratio in type B/C was >1, whereas the type A ratio was <1. The Hex:fucoxanthin (fuc) ratio for type B/C was 11 times greater than that for type A, and the proportion of fuc in type A was 6 times higher than that in type B/C. The fuc derivative 4-keto-19'-hexanoyloxyfucoxanthin (4-keto-hex) was present in type A but undetected in B/C. DNA sequencing of tufA distinguished morphotypes A, B/C (indistinguishable from B), and R, while little variation was observed within morphotypes. Thirty single nucleotide polymorphisms were identified in the 710 bp tufA sequence, of which 10 alleles were unique to B/C and B morphotypes, seven alleles were unique to type A, and six alleles were unique to type R. We propose that the morphologically, physiologically, and genetically distinct Southern Ocean type B/C sensu Young et al. (2003) be classified as E. huxleyi var. aurorae var. nov. S. S. Cook et Hallegr. © 2011 Phycological Society of America.

  5. Mitochondrial DNA sequence characteristics modulate the size of the genetic bottleneck.

    PubMed

    Wilson, Ian J; Carling, Phillipa J; Alston, Charlotte L; Floros, Vasileios I; Pyle, Angela; Hudson, Gavin; Sallevelt, Suzanne C E H; Lamperti, Costanza; Carelli, Valerio; Bindoff, Laurence A; Samuels, David C; Wonnapinij, Passorn; Zeviani, Massimo; Taylor, Robert W; Smeets, Hubert J M; Horvath, Rita; Chinnery, Patrick F

    2016-03-01

    With a combined carrier frequency of 1:200, heteroplasmic mitochondrial DNA (mtDNA) mutations cause human disease in ∼1:5000 of the population. Rapid shifts in the level of heteroplasmy seen within a single generation contribute to the wide range in the severity of clinical phenotypes seen in families transmitting mtDNA disease, consistent with a genetic bottleneck during transmission. Although preliminary evidence from human pedigrees points towards a random drift process underlying the shifting heteroplasmy, some reports describe differences in segregation pattern between different mtDNA mutations. However, based on limited observations and with no direct comparisons, it is not clear whether these observations simply reflect pedigree ascertainment and publication bias. To address this issue, we studied 577 mother-child pairs transmitting the m.11778G>A, m.3460G>A, m.8344A>G, m.8993T>G/C and m.3243A>G mtDNA mutations. Our analysis controlled for inter-assay differences, inter-laboratory variation and ascertainment bias. We found no evidence of selection during transmission but show that different mtDNA mutations segregate at different rates in human pedigrees. m.8993T>G/C segregated significantly faster than m.11778G>A, m.8344A>G and m.3243A>G, consistent with a tighter mtDNA genetic bottleneck in m.8993T>G/C pedigrees. Our observations support the existence of different genetic bottlenecks primarily determined by the underlying mtDNA mutation, explaining the different inheritance patterns observed in human pedigrees transmitting pathogenic mtDNA mutations. © The Author 2016. Published by Oxford University Press.

  6. Genetic characterization of Bombyx mori (Lepidoptera: Bombycidae) breeding and hybrid lines with different geographic origins.

    PubMed

    Furdui, Emilia M; Mărghitaş, Liviu A; Dezmirean, Daniel S; Paşca, Ioan; Pop, Iulia F; Erler, Silvio; Schlüns, Ellen A

    2014-01-01

    The domesticated silkworm Bombyx mori L. comprises a large number of geographical breeds and hybrid lines. Knowing the genetic structure of those may provide information to improve the conservation of commercial lines by estimating inbreeding over generations and the consequences of excessive use of those lineages. Here, we analyzed the genetic diversity of seven breeds and eight hybrid lines from Eastern Europe and Asia using highly polymorphic microsatellites markers to determine its genetical impact on their use in global breeding programs. No consistent pattern of deviation from Hardy-Weinberg equilibrium was found for most breed and hybrids; and the absence of a linkage disequilibrium also suggests that the strains are in equilibrium. A principal coordinate analysis revealed a clear separation of two silkworm breeds from the rest: one (IBV) originated from India and the other one (RG90) from Romania/Japan. The tendency of the other breeds from different geographic origins to cluster together in a general mix might be due to similar selection pressures (climate and anthropogenic factors) in different geographic locations. Phylogenetic analyses grouped the different silkworm breeds but not the hybrids according to their geographic origin and confirmed the pattern found in the principal coordinate analysis. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  7. Climate-driven genetic divergence of limpets with different life histories across a southeast African marine biogeographic disjunction: different processes, same outcome.

    PubMed

    Teske, Peter R; Papadopoulos, Isabelle; Mmonwa, K Lucas; Matumba, T Given; McQuaid, Christopher D; Barker, Nigel P; Beheregaray, Luciano B

    2011-12-01

    Genetic divergence among populations of marine broadcast spawners in the absence of past geological barriers presents an intriguing challenge to understanding speciation in the sea. To determine how differences in life history affect genetic divergence and demographic histories across incomplete dispersal barriers, we conducted a comparative phylogeographic study of three intertidal limpets (Siphonaria spp.) represented on either side of a biogeographic disjunction separating tropical and subtropical marine provinces in southeastern Africa. Using a combination of mitochondrial and nuclear sequence data, we identified two distinct evolutionary lineages each in both Siphonaria concinna (a planktonic disperser) and S. nigerrima (a direct developer), and panmixia in a second planktonic disperser, S. capensis. Although phylogeographic breaks were present in two species, how these became established differed depending on their life histories. In the direct developer, lack of gene flow following divergence, and demographic expansion from a small initial size in the species' subtropical population, point to a single colonisation event. In contrast, the evolutionary lineages of the planktonic disperser split into two genetic lineages with much larger initial population sizes and southward gene flow continued at least periodically, indicating that divergence in this species may have been driven by a combination of reduced larval dispersal and divergent selection. These findings help explain why the presence or absence of phylogeographic breaks often appears to be independent of species' dispersal potential. © 2011 Blackwell Publishing Ltd.

  8. Regional Differences in Seasonal Timing of Rainfall Discriminate between Genetically Distinct East African Giraffe Taxa

    PubMed Central

    Thomassen, Henri A.; Freedman, Adam H.; Brown, David M.; Buermann, Wolfgang; Jacobs, David K.

    2013-01-01

    Masai (Giraffa tippelskirchi), Reticulated (G. reticulata) and Rothschild's (G. camelopardalis) giraffe lineages in East Africa are morphologically and genetically distinct, yet in Kenya their ranges abut. This raises the question of how divergence is maintained among populations of a large mammal capable of long-distance travel, and which readily hybridize in zoos. Here we test four hypotheses concerning the maintenance of the phylogeographic boundaries among the three taxa: 1) isolation-by-distance; 2) physical barriers to dispersal; 3) general habitat differences resulting in habitat segregation; or 4) regional differences in the seasonal timing of rainfall, and resultant timing of browse availability. We used satellite remotely sensed and climate data to characterize the environment at the locations of genotyped giraffes. Canonical variate analysis, random forest algorithms, and generalized dissimilarity modelling were employed in a landscape genetics framework to identify the predictor variables that best explained giraffes' genetic divergence. We found that regional differences in the timing of precipitation, and resulting green-up associated with the abundance of browse, effectively discriminate between taxa. Local habitat conditions, topographic and human-induced barriers, and geographic distance did not aid in discriminating among lineages. Our results suggest that selection associated with regional timing of events in the annual climatic cycle may help maintain genetic and phenotypic divergence in giraffes. We discuss potential mechanisms of maintaining divergence, and suggest that synchronization of reproduction with seasonal rainfall cycles that are geographically distinct may contribute to reproductive isolation. Coordination of weaning with green-up cycles could minimize the costs of lactation and predation on the young. Our findings are consistent with theory and empirical results demonstrating the efficacy of seasonal or phenologically dictated

  9. Regional differences in seasonal timing of rainfall discriminate between genetically distinct East African giraffe taxa.

    PubMed

    Thomassen, Henri A; Freedman, Adam H; Brown, David M; Buermann, Wolfgang; Jacobs, David K

    2013-01-01

    Masai (Giraffa tippelskirchi), Reticulated (G. reticulata) and Rothschild's (G. camelopardalis) giraffe lineages in East Africa are morphologically and genetically distinct, yet in Kenya their ranges abut. This raises the question of how divergence is maintained among populations of a large mammal capable of long-distance travel, and which readily hybridize in zoos. Here we test four hypotheses concerning the maintenance of the phylogeographic boundaries among the three taxa: 1) isolation-by-distance; 2) physical barriers to dispersal; 3) general habitat differences resulting in habitat segregation; or 4) regional differences in the seasonal timing of rainfall, and resultant timing of browse availability. We used satellite remotely sensed and climate data to characterize the environment at the locations of genotyped giraffes. Canonical variate analysis, random forest algorithms, and generalized dissimilarity modelling were employed in a landscape genetics framework to identify the predictor variables that best explained giraffes' genetic divergence. We found that regional differences in the timing of precipitation, and resulting green-up associated with the abundance of browse, effectively discriminate between taxa. Local habitat conditions, topographic and human-induced barriers, and geographic distance did not aid in discriminating among lineages. Our results suggest that selection associated with regional timing of events in the annual climatic cycle may help maintain genetic and phenotypic divergence in giraffes. We discuss potential mechanisms of maintaining divergence, and suggest that synchronization of reproduction with seasonal rainfall cycles that are geographically distinct may contribute to reproductive isolation. Coordination of weaning with green-up cycles could minimize the costs of lactation and predation on the young. Our findings are consistent with theory and empirical results demonstrating the efficacy of seasonal or phenologically dictated

  10. Identity recognition in response to different levels of genetic relatedness in commercial soya bean

    PubMed Central

    Van Acker, Rene; Rajcan, Istvan; Swanton, Clarence J.

    2017-01-01

    Identity recognition systems allow plants to tailor competitive phenotypes in response to the genetic relatedness of neighbours. There is limited evidence for the existence of recognition systems in crop species and whether they operate at a level that would allow for identification of different degrees of relatedness. Here, we test the responses of commercial soya bean cultivars to neighbours of varying genetic relatedness consisting of other commercial cultivars (intraspecific), its wild progenitor Glycine soja, and another leguminous species Phaseolus vulgaris (interspecific). We found, for the first time to our knowledge, that a commercial soya bean cultivar, OAC Wallace, showed identity recognition responses to neighbours at different levels of genetic relatedness. OAC Wallace showed no response when grown with other commercial soya bean cultivars (intra-specific neighbours), showed increased allocation to leaves compared with stems with wild soya beans (highly related wild progenitor species), and increased allocation to leaves compared with stems and roots with white beans (interspecific neighbours). Wild soya bean also responded to identity recognition but these responses involved changes in biomass allocation towards stems instead of leaves suggesting that identity recognition responses are species-specific and consistent with the ecology of the species. In conclusion, elucidating identity recognition in crops may provide further knowledge into mechanisms of crop competition and the relationship between crop density and yield. PMID:28280587

  11. Genetic analysis of Mexican Criollo cattle populations.

    PubMed

    Ulloa-Arvizu, R; Gayosso-Vázquez, A; Ramos-Kuri, M; Estrada, F J; Montaño, M; Alonso, R A

    2008-10-01

    The objective of this study was to evaluate the genetic structure of Mexican Criollo cattle populations using microsatellite genetic markers. DNA samples were collected from 168 animals from four Mexican Criollo cattle populations, geographically isolated in remote areas of Sierra Madre Occidental (West Highlands). Also were included samples from two breeds with Iberian origin: the fighting bull (n = 24) and the milking central American Criollo (n = 24) and one Asiatic breed: Guzerat (n = 32). Genetic analysis consisted of the estimation of the genetic diversity in each population by the allele number and the average expected heterozygosity found in nine microsatellite loci. Furthermore, genetic relationships among the populations were defined by their genetic distances. Our data shows that Mexican cattle populations have a relatively high level of genetic diversity based either on the mean number of alleles (10.2-13.6) and on the expected heterozygosity (0.71-0.85). The degree of observed homozygosity within the Criollo populations was remarkable and probably caused by inbreeding (reduced effective population size) possibly due to reproductive structure within populations. Our data shows that considerable genetic differentiation has been occurred among the Criollo cattle populations in different regions of Mexico.

  12. gamma-Aminobutyric acid-activated chloride channels: relationship to genetic differences in ethanol sensitivity.

    PubMed

    Allan, A M; Spuhler, K P; Harris, R A

    1988-03-01

    We demonstrated recently that low concentrations of ethanol enhanced the muscimol-stimulated chloride influx in cerebellar membranes from long sleep (LS-ethanol sensitive) mice, but had no effect on membranes from short sleep (SS-ethanol resistant) mice. The LS and SS were selected from a heterogeneous stock (HS) of mice for differential sensitivity to the hypnotic effects of ethanol as measured by the duration of the loss of the righting reflex (sleep time). In the present study, we tested 100 HS for ethanol sleep time. The mice with the shortest sleep time (HS-SS) and the mice with the longest sleep time (HS-LS) were selected and tested for the effect of ethanol and muscimol on chloride flux in cerebellum. The effects of ethanol and muscimol on both cerebellar and cortical chloride flux were also examined in rats from the 7th generation selected for differential sensitivity to the hypnotic effects of ethanol (high acute ethanol sensitive rats-HAS and low acute ethanol sensitive rats-LAS). Low concentrations of ethanol (10-30 mM) potentiated muscimol stimulation of 36Cl- uptake in both cortical and cerebellar membranes prepared from ethanol-sensitive animals (HS-LS and HAS). None of the ethanol concentrations tested altered stimulated chloride uptake in ethanol-resistant animals (HS-SS and LAS). No differences in muscimol stimulation of chloride uptake were observed between the pairs of selected lines. These findings strongly suggest that genetic differences in ethanol hypnosis are related to differences in the sensitivity of gamma-aminobutyric acid-operated chloride channels to ethanol.

  13. Genetic variability of milk fatty acids.

    PubMed

    Arnould, V M-R; Soyeurt, H

    2009-01-01

    The milk fatty acid (FA) profile is far from the optimal fat composition in regards to human health. The natural sources of variation, such as feeding or genetics, could be used to increase the concentrations of unsaturated fatty acids. The impact of feeding is well described. However, genetic effects on the milk FA composition begin to be extensively studied. This paper summarizes the available information about the genetic variability of FAs. The greatest breed differences in FA composition are observed between Holstein and Jersey milk. Milk fat of the latter breed contains higher concentrations of saturated FAs, especially short-chain FAs. The variation of the delta-9 desaturase activity estimated from specific FA ratios could explain partly these breed differences. The choice of a specific breed seems to be a possibility to improve the nutritional quality of milk fat. Generally, the proportions of FAs in milk are more heritable than the proportions of these same FAs in fat. Heritability estimates range from 0.00 to 0.54. The presence of some single nucleotide polymorphisms could explain partly the observed individual genetic variability. The polymorphisms detected on SCD1 and DGAT1 genes influence the milk FA composition. The SCD1 V allele increases the unsaturation of C16 and C18. The DGAT1 A allele is related to the unsaturation of C18. So, a combination of the molecular and quantitative approaches should be used to develop tools helping farmers in the selection of their animals to improve the nutritional quality of the produced milk fat.

  14. The value of genetic information for diabetes risk prediction - differences according to sex, age, family history and obesity.

    PubMed

    Mühlenbruch, Kristin; Jeppesen, Charlotte; Joost, Hans-Georg; Boeing, Heiner; Schulze, Matthias B

    2013-01-01

    Genome-wide association studies have identified numerous single nucleotide polymorphisms associated with type 2 diabetes through the past years. In previous studies, the usefulness of these genetic markers for prediction of diabetes was found to be limited. However, differences may exist between substrata of the population according to the presence of major diabetes risk factors. This study aimed to investigate the added predictive value of genetic information (42 single nucleotide polymorphisms) in subgroups of sex, age, family history of diabetes, and obesity. A case-cohort study (random subcohort N = 1,968; incident cases: N = 578) within the European Prospective Investigation into Cancer and Nutrition Potsdam study was used. Prediction models without and with genetic information were evaluated in terms of the area under the receiver operating characteristic curve and the integrated discrimination improvement. Stratified analyses included subgroups of sex, age (<50 or ≥50 years), family history (positive if either father or mother or a sibling has/had diabetes), and obesity (BMI< or ≥30 kg/m(2)). A genetic risk score did not improve prediction above classic and metabolic markers, but - compared to a non-invasive prediction model - genetic information slightly improved the area under the receiver operating characteristic curve (difference [95%-CI]: 0.007 [0.002-0.011]). Stratified analyses showed stronger improvement in the older age group (0.010 [0.002-0.018]), the group with a positive family history (0.012 [0.000-0.023]) and among obese participants (0.015 [-0.005-0.034]) compared to the younger participants (0.005 [-0.004-0.014]), participants with a negative family history (0.003 [-0.001-0.008]) and non-obese (0.007 [0.000-0.014]), respectively. No difference was found between men and women. There was no incremental value of genetic information compared to standard non-invasive and metabolic markers. Our study suggests that inclusion of genetic

  15. Gender Differences in Marital Status Moderation of Genetic and Environmental Influences on Subjective Health.

    PubMed

    Finkel, Deborah; Franz, Carol E; Horwitz, Briana; Christensen, Kaare; Gatz, Margaret; Johnson, Wendy; Kaprio, Jaako; Korhonen, Tellervo; Niederheiser, Jenae; Petersen, Inge; Rose, Richard J; Silventoinen, Karri

    2015-10-14

    From the IGEMS Consortium, data were available from 26,579 individuals aged 23 to 102 years on 3 subjective health items: self-rated health (SRH), health compared to others (COMP), and impact of health on activities (ACT). Marital status was a marker of environmental resources that may moderate genetic and environmental influences on subjective health. Results differed for the 3 subjective health items, indicating that they do not tap the same construct. Although there was little impact of marital status on variance components for women, marital status was a significant modifier of variance in all 3 subjective health measures for men. For both SRH and ACT, single men demonstrated greater shared and nonshared environmental variance than married men. For the COMP variable, genetic variance was greater for single men vs. married men. Results suggest gender differences in the role of marriage as a source of resources that are associated with subjective health.

  16. Differences in salinity tolerance of genetically distinct Phragmites australis clones

    PubMed Central

    Achenbach, Luciana; Eller, Franziska; Nguyen, Loc Xuan; Brix, Hans

    2013-01-01

    Different clones of the wetland grass Phragmites australis differ in their morphology and physiology, and hence in their ability to cope with environmental stress. We analysed the responses of 15 P. australis clones with distinct ploidy levels (PLs) (4n, 6n, 8n, 10n, 12n) and geographic origins (Romania, Russia, Japan, Czech Republic, Australia) to step-wise increased salinity (8, 16, 24, 32, 40, 56 and 72 ppt). Shoot elongation rate, photosynthesis and plant part-specific ion accumulation were studied in order to assess if traits associated with salinity tolerance can be related to the genetic background and the geographic origin of the clones. Salt stress affected all clones, but at different rates. The maximum height was reduced from 1860 mm in control plants to 660 mm at 40 ppt salinity. The shoot elongation rate of salt-exposed plants varied significantly between clones until 40 ppt salinity. The light-saturated photosynthesis rate (Pmax) was stimulated by a salinity of 8 ppt, but decreased significantly at higher salinities. The stomatal conductance (gs) and the transpiration rate (E) decreased with increasing salinity. Only three clones survived at 72 ppt salinity, although their rates of photosynthesis were strongly inhibited. The roots and basal leaves of the salt-exposed plants accumulated high concentrations of water-extractable Na+ (1646 and 1004 µmol g−1 dry mass (DM), respectively) and Cl− (1876 and 1400 µmol g−1 DM, respectively). The concentrations of water-extractable Mg2+ and Ca2+ were reduced in salt-exposed plants compared with controls. The variation of all the measured parameters was higher among clones than among PLs. We conclude that the salinity tolerance of distinct P. australis clones varies widely and can be partially attributed to their longitudinal geographic origin, but not to PL. Further investigation will help in improving the understanding of this species' salt tolerance mechanisms and their connection to genetic factors.

  17. Genetic differentiation in natural populations of Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae) with different phenotypic spot patterns on tergites in males.

    PubMed

    Silva, M H; Nascimento, M D S B; Leonardo, F S; Rebêlo, J M M; Pereira, S R F

    2011-01-01

    Entomological surveys in the state of Maranhão have recorded morphologically distinct populations of Lutzomyia longipalpis (Lutz & Neiva). Some populations have one pair of spots (1S) on the fourth tergite, while others have two pairs (2S) on the third and fourth tergites of males. In the present study we investigated the degree of genetic polymorphism among four populations in the municipalities of Caxias, Codó and Raposa, in the state of Maranhão, Brazil, by using RAPD (Random Amplified Polymorphic DNA) markers. A total of 35 loci were identified, of which 30 were polymorphic. The highest polymorphism was observed with primer OPA 4, which produced 11 different profiles. Genetic diversity was assessed using grouping methods that produced a dendrogram in which the genotypes could be clearly separated into two main clades according to the number of spots on the male abdominal tergites. One cluster contained the populations from Caxias and Codó, and the other was formed by the populations from Raposa and Codó. The results of our RAPD analysis showed a clear separation between the populations with one and two pairs of spots. The epidemiologic significance of this genetic differentiation should be investigated in future studies.

  18. Imaging Genetics

    ERIC Educational Resources Information Center

    Munoz, Karen E.; Hyde, Luke W.; Hariri, Ahmad R.

    2009-01-01

    Imaging genetics is an experimental strategy that integrates molecular genetics and neuroimaging technology to examine biological mechanisms that mediate differences in behavior and the risks for psychiatric disorder. The basic principles in imaging genetics and the development of the field are discussed.

  19. Genetic diversity of disease-associated loci in Turkish population.

    PubMed

    Karaca, Sefayet; Cesuroglu, Tomris; Karaca, Mehmet; Erge, Sema; Polimanti, Renato

    2015-04-01

    Many consortia and international projects have investigated the human genetic variation of a large number of ethno-geographic groups. However, populations with peculiar genetic features, such as the Turkish population, are still absent in publically available datasets. To explore the genetic predisposition to health-related traits of the Turkish population, we analyzed 34 genes associated with different health-related traits (for example, lipid metabolism, cardio-vascular diseases, hormone metabolism, cellular detoxification, aging and energy metabolism). We observed relevant differences between the Turkish population and populations with non-European ancestries (that is, Africa and East Asia) in some of the investigated genes (that is, AGT, APOE, CYP1B1, GNB3, IL10, IL6, LIPC and PON1). As most complex traits are highly polygenic, we developed polygenic scores associated with different health-related traits to explore the genetic diversity of the Turkish population with respect to other human groups. This approach showed significant differences between the Turkish population and populations with non-European ancestries, as well as between Turkish and Northern European individuals. This last finding is in agreement with the genetic structure of European and Middle East populations, and may also agree with epidemiological evidences about the health disparities of Turkish communities in Northern European countries.

  20. Genetic architecture of verbal abilities in children and adolescents.

    PubMed

    Hoekstra, Rosa A; Bartels, Meike; van Leeuwen, Marieke; Boomsma, Dorret I

    2009-11-01

    The etiology of individual differences in general verbal ability, verbal learning and letter and category fluency were examined in two independent samples of 9- and 18-year-old twin pairs and their siblings. In both age groups, we observed strong familial resemblance for general verbal ability and moderate familial resemblance for verbal learning, letter and category fluency. All familial resemblance was explained by genetic factors. There was significant covariance among the tests, which was stronger in magnitude in the adolescent cohort. The covariance was mainly explained by genetic effects shared by subtests, both in middle childhood and in late adolescence. In addition to a shared set of genes that influenced all phenotypes, there were also genetic influences specific to the different verbal phenotypes.

  1. Genetic Background Has a Major Impact on Differences in Sleep Resulting from Environmental Influences in Drosophila

    PubMed Central

    Zimmerman, John E.; Chan, May T.; Jackson, Nicholas; Maislin, Greg; Pack, Allan I.

    2012-01-01

    Study Objectives: To determine the effect of different genetic backgrounds on demographic and environmental interventions that affect sleep and evaluate variance of these measures; and to evaluate sleep and variance of sleep behaviors in 6 divergent laboratory strains of common origin. Design: Assessment of the effects of age, sex, mating status, food sources, and social experience using video analysis of sleep behavior in 2 different strains of Drosophila, white1118ex (w1118ex) and white Canton-S (wCS10). Sleep was also determined for 6 laboratory strains of Canton-S and 3 inbred lines. The variance of total sleep was determined for all groups and conditions. Measurements and Results: The circadian periods and the effects of age upon sleep were the same between w1118ex and wCS10 strains. However, the w1118ex and wCS10 strains demonstrated genotype-dependent differences in the effects upon sleep of sex, mating status, social experience, and being on different foods. Variance of total sleep was found to differ in a genotype dependent manner for interventions between the w1118ex and wCS10 strains. Six different laboratory Canton-S strains were found to have significantly different circadian periods (P < 0.001) and sleep phenotypes (P < 0.001). Three inbred lines showed reduced variance for sleep measurements. Conclusions: One must control environmental conditions in a rigorously consistent manner to ensure that sleep data may be compared between experiments. Genetic background has a significant impact upon changes in sleep behavior and variance of behavior due to demographic factors and environmental interventions. This represents an opportunity to discover new genes that modify sleep/wake behavior. Citation: Zimmerman JE; Chan MT; Jackson N; Maislin G; Pack AI. Genetic background has a major impact on differences in sleep resulting from environmental influences in Drosophila. SLEEP 2012;35(4):545-557. PMID:22467993

  2. Glioblastomas with Oligodendroglial Component – Common Origin of the Different Histological Parts and Genetic Subclassification

    PubMed Central

    Klink, Barbara; Schlingelhof, Ben; Klink, Martin; Stout-Weider, Karen; Patt, Stephan; Schrock, Evelin

    2010-01-01

    Background: Glioblastomas are the most common and most malignant brain tumors in adults. A small subgroup of glioblastomas contains areas with histological features of oligodendroglial differentiation (GBMO). Our objective was to genetically characterize the oligodendroglial and the astrocytic parts of GBMOs and correlate morphologic and genetic features with clinical data. Methods: The oligodendroglial and the “classic” glioblastoma parts of 13 GBMO were analyzed separately by interphase fluorescence in situ hybridization (FISH) on paraffin sections using a custom probe set (regions 1p, 1q, 7q, 10q, 17p, 19q, cen18, 21q) and by comparative genomic hybridization (CGH) of microdissected paraffin embedded tumor tissue. Results: We identified four distinct genetic subtypes in 13 GBMOs: an “astrocytic” subtype (9/13) characterized by +7/−10; an “oligodendroglial” subtype with −1p/−19q (1/13); an “intermediate” subtype showing +7/−1p (1/13), and an “other” subtype having none of the former aberrations typical for gliomas (2/13). The different histological tumor parts of GBMO revealed common genetic changes in all tumors and showed additional aberrations specific for each part. Conclusion: Our findings demonstrate the monoclonal origin of GBMO followed by the development of the astrocytic and oligodendroglial components. The diagnostic determination of the genetic signatures may allow for a better prognostication of the patients. PMID:20966543

  3. Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model.

    PubMed

    Ikegami, Tetsuro; Balogh, Aaron; Nishiyama, Shoko; Lokugamage, Nandadeva; Saito, Tais B; Morrill, John C; Shivanna, Vinay; Indran, Sabarish V; Zhang, Lihong; Smith, Jennifer K; Perez, David; Juelich, Terry L; Morozov, Igor; Wilson, William C; Freiberg, Alexander N; Richt, Juergen A

    2017-01-01

    Rift Valley fever phlebovirus (RVFV) causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2-3 dpi. Recombinant SA51 (rSA51) and Zinga (rZinga) strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies.

  4. Distinct virulence of Rift Valley fever phlebovirus strains from different genetic lineages in a mouse model

    PubMed Central

    Balogh, Aaron; Nishiyama, Shoko; Lokugamage, Nandadeva; Saito, Tais B.; Morrill, John C.; Shivanna, Vinay; Indran, Sabarish V.; Zhang, Lihong; Smith, Jennifer K.; Perez, David; Juelich, Terry L.; Morozov, Igor; Wilson, William C.; Freiberg, Alexander N.; Richt, Juergen A.

    2017-01-01

    Rift Valley fever phlebovirus (RVFV) causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2–3 dpi. Recombinant SA51 (rSA51) and Zinga (rZinga) strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies. PMID:29267298

  5. Distinct genetic differentiation and species diversification within two marine nematodes with different habitat preference in Antarctic sediments.

    PubMed

    Hauquier, Freija; Leliaert, Frederik; Rigaux, Annelien; Derycke, Sofie; Vanreusel, Ann

    2017-05-30

    Dispersal ability, population genetic structure and species divergence in marine nematodes are still poorly understood, especially in remote areas such as the Southern Ocean. We investigated genetic differentiation of species and populations of the free-living endobenthic nematode genera Sabatieria and Desmodora using nuclear 18S rDNA, internal transcribed spacer (ITS) rDNA, and mitochondrial cytochrome oxidase I (COI) gene sequences. Specimens were collected at continental shelf depths (200-500 m) near the Antarctic Peninsula, Scotia Arc and eastern side of the Weddell Sea. The two nematode genera co-occurred at all sampled locations, but with different vertical distribution in the sediment. A combination of phylogenetic (GMYC, Bayesian Inference, Maximum Likelihood) and population genetic (AMOVA) analyses were used for species delimitation and assessment of gene flow between sampling locations. Sequence analyses resulted in the delimitation of four divergent species lineages in Sabatieria, two of which could not be discriminated morphologically and most likely constitute cryptic species. Two species were recognised in Desmodora, one of which showed large intraspecific morphological variation. Both genera comprised species that were restricted to one side of the Weddell Sea and species that were widely spread across it. Population genetic structuring was highly significant and more pronounced in the deeper sediment-dwelling Sabatieria species, which are generally less prone to resuspension and passive dispersal in the water column than surface Desmodora species. Our results indicate that gene flow is restricted at large geographic distance in the Southern Ocean, which casts doubt on the efficiency of the Weddell gyre and Antarctic Circumpolar Current in facilitating circum-Antarctic nematode species distributions. We also show that genetic structuring and cryptic speciation can be very different in nematode species isolated from the same geographic area, but with

  6. Population Genetic Structure of Apple Scab (Venturia inaequalis (Cooke) G. Winter) in Iran

    PubMed Central

    Ebrahimi, Leila; Fotuhifar, Khalil-Berdi; Javan Nikkhah, Mohammad; Naghavi, Mohammad-Reza; Baisakh, Niranjan

    2016-01-01

    The population genetic structure of 278 Venturia inaequalis isolates, collected from different apple cultivars of eighteen different provinces in Iran, was investigated using 22 polymorphic microsatellite markers. Analysis of molecular variation, Bayesian clustering and Nei's genetic distance analyses based on 88 microsatellite alleles indicated substantial levels of gene flow among the collection sites. Ninety three percent of the variation was observed among the individuals within the populations and only 7% variation was observed among the populations. Structure analysis grouped the isolates into two populations. Maximum number of pathogen genotypes (44) was observed in the North of Iran that grows various different apple cultivars. Investigation on the variation of the pathogen on different cultivars in the North of Iran suggested a significant differentiation of the pathogen populations between wild apple and commercial cultivars. During sampling, varying ranges of scab infection were observed on various apple cultivars in forests, monoculture and mix orchards. Wild type apple (Malus orientalis) along the Caspian Sea Coast had the most infection in comparison with the Iranian endemic and commercial cultivars. Based on the genetic analysis and host tracking scenario of the pathogen, it was presumed that Iran could potentially be the center of origin of V. inaequalis, which requires further detailed studies with isolates collected from different parts of central Asia and world for confirmation. PMID:27631622

  7. Characterization of the genetic profile of five Danish dog breeds.

    PubMed

    Pertoldi, C; Kristensen, T N; Loeschcke, V; Berg, P; Praebel, A; Stronen, A V; Proschowsky, H F; Fredholm, M

    2013-11-01

    This investigation presents results from a genetic characterization of 5 Danish dog breeds genotyped on the CanineHD BeadChip microarray with 170,000 SNP. The breeds investigated were 1) Danish Spitz (DS; n=8), 2) Danish-Swedish Farm Dog (DSF; n=18), 3) Broholmer (BR; n=22), 4) Old Danish Pointing Dog (ODP; n=24), and 5) Greenland Dog (GD; n=23). The aims of the investigation were to characterize the genetic profile of the abovementioned dog breeds by quantifying the genetic differentiation among them and the degree of genetic homogeneity within breeds. The genetic profile was determined by means of principal component analysis (PCA) and through a Bayesian clustering method. Both the PCA and the Bayesian clustering method revealed a clear genetic separation of the 5 breeds. The level of genetic variation within the breeds varied. The expected heterozygosity (HE) as well as the degree of polymorphism (P%) ranked the dog breeds in the order DS>DSF>BR>ODP>GD. Interestingly, the breed with a tenfold higher census population size compared to the other breeds, the Greenland Dog, had the lowest within-breed genetic variation, emphasizing that census size is a poor predictor of genetic variation. The observed differences in variation among and within dog breeds may be related to factors such as genetic drift, founder effects, genetic admixture, and population bottlenecks. We further examined whether the observed genetic patterns in the 5 dog breeds can be used to design breeding strategies for the preservation of the genetic pool of these dog breeds.

  8. Genetic divergence of common bean cultivars.

    PubMed

    Veloso, J S; Silva, W; Pinheiro, L R; Dos Santos, J B; Fonseca, N S; Euzebio, M P

    2015-09-22

    The aim of this study was to evaluate genetic divergence in the 'Carioca' (beige with brown stripes) common bean cultivar used by different institutions and in 16 other common bean cultivars used in the Rede Cooperativa de Pesquisa de Feijão (Cooperative Network of Common Bean Research), by using simple sequence repeats associated with agronomic traits that are highly distributed in the common bean genome. We evaluated 22 polymorphic loci using bulks containing DNA from 30 plants. There was genetic divergence among the Carioca cultivar provided by the institutions. Nevertheless, there was lower divergence among them than among the other cultivars. The cultivar used by Instituto Agronômico do Paraná was the most divergent in relation to the Carioca samples. The least divergence was observed among the samples used by Universidade Federal de Lavras and by Embrapa Arroz e Feijão. Of all the cultivars, 'CNFP 10104' and 'BRSMG Realce' showed the greatest dissimilarity. The cultivars were separated in two groups of greatest similarity using the Structure software. Genetic variation among cultivars was greater than the variation within or between the groups formed. This fact, together with the high estimate of heterozygosity observed and the genetic divergence of the samples of the Carioca cultivar in relation to the original provided by Instituto Agronômico de Campinas, indicates a mixture of cultivars. The high divergence among cultivars provides potential for the utilization of this genetic variability in plant breeding.

  9. Quantification of the genetic change in the transition of Rhodnius pallescens Barber, 1932 (Hemiptera: Reduviidae) from field to laboratory.

    PubMed

    Gómez-Sucerquia, Leysa Jackeline; Triana-Chávez, Omar; Jaramillo-Ocampo, Nicolás

    2009-09-01

    Previous studies have reported genetic differences between wild-caught sylvatic, domestic and laboratory pop-ulations of several Triatominae species. The differences between sylvatic and laboratory colonies parallel are similar to the differences observed between sylvatic and domestic populations. Laboratory colonies are frequently used as references for field populations, but the consequences of founder events on the genetic makeup of laboratory or domestic populations are rarely quantified. Our goal was to quantify the genetic change in Rhodnius pallescens populations artificially submitted to founder effects via laboratory colonization. We compared the genetic makeup of two sylvatic populations and their laboratory descendants using a panel of 10 microsatellite markers. Both sylvatic populations were initially collected from palm trees, but the colonies differed in the number of founder insects and amount of time kept in the laboratory. We evaluated allelic polymorphism, differences between expected and observed heterozygosity, estimates of population differentiation (Fst) and inbreeding (Fis, Fit) and cluster analyses based on Nei's distances. We found a unique genetic structure for each sample population, with significant differentiation between the field insects and each of the laboratory generations. These analyses showed strong founder effects and showed that genetic drift had led to a genetic equilibrium over several generations of isolation. Our results suggest that laboratory colonies of R. pallescens have a different genetic structure than their wild relatives and similar processes likely affect other Triatominae laboratory stocks.

  10. African Genetic Ancestry is Associated with Sleep Depth in Older African Americans

    PubMed Central

    Halder, Indrani; Matthews, Karen A.; Buysse, Daniel J.; Strollo, Patrick J.; Causer, Victoria; Reis, Steven E.; Hall, Martica H.

    2015-01-01

    Study Objectives: The mechanisms that underlie differences in sleep characteristics between European Americans (EA) and African Americans (AA) are not fully known. Although social and psychological processes that differ by race are possible mediators, the substantial heritability of sleep characteristics also suggests genetic underpinnings of race differences. We hypothesized that racial differences in sleep phenotypes would show an association with objectively measured individual genetic ancestry in AAs. Design: Cross sectional. Setting: Community-based study. Participants: Seventy AA adults (mean age 59.5 ± 6.7 y; 62% female) and 101 EAs (mean age 60.5 ± 7 y, 39% female). Measurements and Results: Multivariate tests were used to compare the Pittsburgh Sleep Quality Index (PSQI) and in-home polysomnographic measures of sleep duration, sleep efficiency, apnea-hypopnea index (AHI), and indices of sleep depth including percent visually scored slow wave sleep (SWS) and delta EEG power of EAs and AAs. Sleep duration, efficiency, and sleep depth differed significantly by race. Individual % African ancestry (%AF) was measured in AA subjects using a panel of 1698 ancestry informative genetic markers and ranged from 10% to 88% (mean 67%). Hierarchical linear regression showed that higher %AF was associated with lower percent SWS in AAs (β (standard error) = −4.6 (1.5); P = 0.002), and explained 11% of the variation in SWS after covariate adjustment. A similar association was observed for delta power. No association was observed for sleep duration and efficiency. Conclusion: African genetic ancestry is associated with indices of sleep depth in African Americans. Such an association suggests that part of the racial differences in slow-wave sleep may have genetic underpinnings. Citation: Halder I, Matthews KA, Buysse DJ, Strollo PJ, Causer V, Reis SE, Hall MH. African genetic ancestry is associated with sleep depth in older African Americans. SLEEP 2015;38(8):1185–1193

  11. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories

    PubMed Central

    Maside, Xulio; Gómez-Moracho, Tamara; Jara, Laura; Martín-Hernández, Raquel; De la Rúa, Pilar; Higes, Mariano; Bartolomé, Carolina

    2015-01-01

    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (< 4% of the variance), which suggests that the spread of this emergent pathogen throughout the A. mellifera worldwide population is a recent event. PMID:26720131

  12. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories.

    PubMed

    Maside, Xulio; Gómez-Moracho, Tamara; Jara, Laura; Martín-Hernández, Raquel; De la Rúa, Pilar; Higes, Mariano; Bartolomé, Carolina

    2015-01-01

    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (< 4% of the variance), which suggests that the spread of this emergent pathogen throughout the A. mellifera worldwide population is a recent event.

  13. Phylogeography and population genetic structure of double-crested cormorants (Phalacrocorax auritus)

    USGS Publications Warehouse

    Mercer, Dacey; Haig, Susan M.; Roby, Daniel D.

    2013-01-01

    is genetically divergent from other populations in North America (net sequence divergence = 5.85 %;UST for mitochondrial control region = 0.708; FST for microsatellite loci = 0.052). Historical records, contemporary population estimates, and field observations are consistent with recognition of the Alaskan subspecies as distinct and potentially of conservation interest. Our data also indicated the presence of another divergent lineage, associated with the southwestern portion of the species range, as evidenced by highly unique haplotypes sampled in southern California. In contrast, there was little support for recognition of subspecies within the conterminous U.S. and Canada. Rather than genetically distinct regions corresponding to the putative subspecies [P. a. albociliatus (Pacific), P. a. auritus (Interior and North Atlantic), and P. a. floridanus (Southeast)], we observed a distribution of genetic variation consistent with a pattern of isolation by distance. This pattern implies that genetic differences across the range are due to geographic distance, rather than discrete subspecific breaks. Although three of the four traditional subspecies were not genetically distinct, possible demographic separation, habitat differences, and documented declines at some colonies within the regions, suggests that the Pacific and possibly North Atlantic portions of the breeding range may warrant differential consideration from the Interior and Southeast breeding regions.

  14. Figure of merit and different combinations of observational data sets

    NASA Astrophysics Data System (ADS)

    Su, Qiping; Tuo, Zhong-Liang; Cai, Rong-Gen

    2011-11-01

    To constrain cosmological parameters, one often makes a joint analysis with different combinations of observational data sets. In this paper we take the figure of merit (FoM) for Dark Energy Task Force fiducial model (Chevallier-Polarski-Linder model) to estimate goodness of different combinations of data sets, which include 11 widely used observational data sets (type Ia supernovae, observational hubble parameter, baryon acoustic oscillation, cosmic microwave background, x-ray cluster baryon mass fraction, and gamma-ray bursts). We analyze different combinations and make a comparison for two types of combinations based on two types of basic combinations, which are often adopted in the literature. We find two sets of combinations, which have a strong ability to constrain the dark energy parameters: one has the largest FoM, and the other contains less observational data with a relatively large FoM and a simple fitting procedure.

  15. Genetic drift and the population history of the Irish travellers.

    PubMed

    Relethford, John H; Crawford, Michael H

    2013-02-01

    The Irish Travellers are an itinerant group in Ireland that has been socially isolated. Two hypotheses have been proposed concerning the genetic origin of the Travellers: (1) they are genetically related to Roma populations in Europe that share a nomadic lifestyle or (2) they are of Irish origin, and genetic differences from the rest of Ireland reflect genetic drift. These hypotheses were tested using data on 33 alleles from 12 red blood cell polymorphism loci. Comparison with other European, Roma, and Indian populations shows that the Travellers are genetically distinct from the Roma and Indian populations and most genetically similar to Ireland, in agreement with earlier genetic analyses of the Travellers. However, the Travellers are still genetically distinct from other Irish populations, which could reflect some external gene flow and/or the action of genetic drift in a small group that was descended from a small number of founders. In order to test the drift hypothesis, we analyzed genetic distances comparing the Travellers to four geographic regions in Ireland. These distances were then compared with adjusted distances that account for differential genetic drift using a method developed by Relethford (Hum Biol 68 (1996) 29-44). The unadjusted distances show the genetic distinctiveness of the Travellers. After adjustment for the expected effects of genetic drift, the Travellers are equidistant from the other Irish samples, showing their Irish origins and population history. The observed genetic differences are thus a reflection of genetic drift, and there is no evidence of any external gene flow. Copyright © 2012 Wiley Periodicals, Inc.

  16. Spatial and ecological population genetic structures within two island-endemic Aeonium species of different niche width.

    PubMed

    Harter, David E V; Thiv, Mike; Weig, Alfons; Jentsch, Anke; Beierkuhnlein, Carl

    2015-10-01

    The Crassulacean genus Aeonium is a well-known example for plant species radiation on oceanic archipelagos. However, while allopatric speciation among islands is documented for this genus, the role of intra-island speciation due to population divergence by topographical isolation or ecological heterogeneity has not yet been addressed. The aim of this study was to investigate intraspecific genetic structures and to identify spatial and ecological drivers of genetic population differentiation on the island scale. We analyzed inter simple sequence repeat variation within two island-endemic Aeonium species of La Palma: one widespread generalist that covers a large variety of different habitat types (Ae. davidbramwellii) and one narrow ecological specialist (Ae. nobile), in order to assess evolutionary potentials on this island. Gene pool differentiation and genetic diversity patterns were associated with major landscape structures in both species, with phylogeographic implications. However, overall levels of genetic differentiation were low. For the generalist species, outlier loci detection and loci-environment correlation approaches indicated moderate signatures of divergent selection pressures linked to temperature and precipitation variables, while the specialist species missed such patterns. Our data point to incipient differentiation among populations, emphasizing that ecological heterogeneity and topographical structuring within the small scales of an island can foster evolutionary processes. Very likely, such processes have contributed to the radiation of Aeonium on the Canary Islands. There is also support for different evolutionary mechanisms between generalist and specialist species.

  17. Artificial selection reveals sex differences in the genetic basis of sexual attractiveness.

    PubMed

    Gosden, Thomas P; Reddiex, Adam J; Chenoweth, Stephen F

    2018-05-07

    Mutual mate choice occurs when males and females base mating decisions on shared traits. Despite increased awareness, the extent to which mutual choice drives phenotypic change remains poorly understood. When preferences in both sexes target the same traits, it is unclear how evolution will proceed and whether responses to sexual selection from male choice will match or oppose responses to female choice. Answering this question is challenging, as it requires understanding, genetic relationships between the traits targeted by choice, mating success, and, ultimately, fitness for both sexes. Addressing this, we applied artificial selection to the cuticular hydrocarbons of the fly Drosophila serrata that are targeted by mutual choice and tracked evolutionary changes in males and females alongside changes in mating success. After 10 generations, significant trait evolution occurred in both sexes, but intriguingly there were major sex differences in the associated fitness consequences. Sexually selected trait evolution in males led to a genetically based increase in male mating success. By contrast, although trait evolution also occurred in females, there was no change in mating success. Our results suggest that phenotypic sexual selection on females from male choice is environmentally, rather than genetically, generated. Thus, compared with female choice, male choice is at best a weak driver of signal trait evolution in this species. Instead, the evolution of apparent female ornamentation seems more likely due to a correlated response to sexual selection on males and possibly other forms of natural selection.

  18. Integrating Genetics and Social Science: Genetic Risk Scores

    PubMed Central

    Belsky, Daniel W.; Israel, Salomon

    2014-01-01

    The sequencing of the human genome and the advent of low-cost genome-wide assays that generate millions of observations of individual genomes in a matter of hours constitute a disruptive innovation for social science. Many public-use social science datasets have or will soon add genome-wide genetic data. With these new data come technical challenges, but also new possibilities. Among these, the lowest hanging fruit and the most potentially disruptive to existing research programs is the ability to measure previously invisible contours of health and disease risk within populations. In this article, we outline why now is the time for social scientists to bring genetics into their research programs. We discuss how to select genetic variants to study. We explain how the polygenic architecture of complex traits and the low penetrance of individual genetic loci pose challenges to research integrating genetics and social science. We introduce genetic risk scores as a method of addressing these challenges and provide guidance on how genetic risk scores can be constructed. We conclude by outlining research questions that are ripe for social science inquiry. PMID:25343363

  19. Genome-Wide Association Analysis Reveals Different Genetic Control in Panicle Architecture Between and Rice.

    PubMed

    Bai, Xufeng; Zhao, Hu; Huang, Yong; Xie, Weibo; Han, Zhongmin; Zhang, Bo; Guo, Zilong; Yang, Lin; Dong, Haijiao; Xue, Weiya; Li, Guangwei; Hu, Gang; Hu, Yong; Xing, Yongzhong

    2016-07-01

    Panicle architecture determines the number of spikelets per panicle (SPP) and is highly associated with grain yield in rice ( L.). Understanding the genetic basis of panicle architecture is important for improving the yield of rice grain. In this study, we dissected panicle architecture traits into eight components, which were phenotyped from a germplasm collection of 529 cultivars. Multiple regression analysis revealed that the number of secondary branch (NSB) was the major factor that contributed to SPP. Genome-wide association analysis was performed independently for the eight particle architecture traits observed in the and rice subpopulations compared with the whole rice population. In total, 30 loci were associated with these traits. Of these, 13 loci were closely linked to known panicle architecture genes, and 17 novel loci were repeatedly identified in different environments. An association signal cluster was identified for NSB and number of spikelets per secondary branch (NSSB) in the region of 31.6 to 31.7 Mb on chromosome 4. In addition to the common associations detected in both and subpopulations, many associated loci were unique to one subpopulation. For example, and were specifically associated with panicle length (PL) in and rice, respectively. Moreover, the -mediated flowering genes and were associated with the formation of panicle architecture in rice. These results suggest that different gene networks regulate panicle architecture in and rice. Copyright © 2016 Crop Science Society of America.

  20. Genetic Diversity and Population Structure of Saccharomyces cerevisiae Strains Isolated from Different Grape Varieties and Winemaking Regions

    PubMed Central

    Schuller, Dorit; Cardoso, Filipa; Sousa, Susana; Gomes, Paula; Gomes, Ana C.; Santos, Manuel A. S.; Casal, Margarida

    2012-01-01

    We herein evaluate intraspecific genetic diversity of fermentative vineyard-associated S. cerevisiae strains and evaluate relationships between grape varieties and geographical location on populational structures. From the musts obtained from 288 grape samples, collected from two wine regions (16 vineyards, nine grape varieties), 94 spontaneous fermentations were concluded and 2820 yeast isolates were obtained that belonged mainly (92%) to the species S. cerevisiae. Isolates were classified in 321 strains by the use of ten microsatellite markers. A high strain diversity (8–43 strains per fermentation) was associated with high percentage (60–100%) of fermenting samples per vineyard, whereas a lower percentage of spontaneous fermentations (0–40%) corresponded to a rather low strain diversity (1–10 strains per fermentation). For the majority of the populations, observed heterozygosity (Ho) was about two to five times lower than the expected heterozygosity (He). The inferred ancestry showed a very high degree of admixture and divergence was observed between both grape variety and geographical region. Analysis of molecular variance showed that 81–93% of the total genetic variation existed within populations, while significant differentiation within the groups could be detected. Results from AMOVA analysis and clustering of allelic frequencies agree in the distinction of genetically more dispersed populations from the larger wine region compared to the less extended region. Our data show that grape variety is a driver of populational structures, because vineyards with distinct varieties harbor genetically more differentiated S. cerevisiae populations. Conversely, S. cerevisiae strains from vineyards in close proximity (5–10 km) that contain the same grape variety tend to be less divergent. Populational similarities did not correlate with the distance between vineyards of the two wine regions. Globally, our results show that populations of S. cerevisiae in

  1. Patterns of genetic variability and habitat occupancy in Crepis triasii (Asteraceae) at different spatial scales: insights on evolutionary processes leading to diversification in continental islands

    PubMed Central

    Mayol, Maria; Palau, Carles; Rosselló, Josep A.; González-Martínez, Santiago C.; Molins, Arántzazu; Riba, Miquel

    2012-01-01

    Background and Aims Archipelagos are unique systems for studying evolutionary processes promoting diversification and speciation. The islands of the Mediterranean basin are major areas of plant richness, including a high proportion of narrow endemics. Many endemic plants are currently found in rocky habitats, showing varying patterns of habitat occupancy at different spatial scales throughout their range. The aim of the present study was to understand the impact of varying patterns of population distribution on genetic diversity and structure to shed light on demographic and evolutionary processes leading to population diversification in Crepis triasii, an endemic plant from the eastern Balearic Islands. Methods Using allozyme and chloroplast markers, we related patterns of genetic structure and diversity to those of habitat occupancy at a regional (between islands and among populations within islands) and landscape (population size and connectivity) scale. Key Results Genetic diversity was highly structured both at the regional and at the landscape level, and was positively correlated with population connectivity in the landscape. Populations located in small isolated mountains and coastal areas, with restricted patterns of regional occupancy, were genetically less diverse and much more differentiated. In addition, more isolated populations had stronger fine-scale genetic structure than well-connected ones. Changes in habitat availability and quality arising from marine transgressions during the Quaternary, as well as progressive fragmentation associated with the aridification of the climate since the last glaciation, are the most plausible factors leading to the observed patterns of genetic diversity and structure. Conclusions Our results emphasize the importance of gene flow in preventing genetic erosion and maintaining the evolutionary potential of populations. They also agree with recent studies highlighting the importance of restricted gene flow and genetic

  2. Patterns of genetic variability and habitat occupancy in Crepis triasii (Asteraceae) at different spatial scales: insights on evolutionary processes leading to diversification in continental islands.

    PubMed

    Mayol, Maria; Palau, Carles; Rosselló, Josep A; González-Martínez, Santiago C; Molins, Arántzazu; Riba, Miquel

    2012-02-01

    Archipelagos are unique systems for studying evolutionary processes promoting diversification and speciation. The islands of the Mediterranean basin are major areas of plant richness, including a high proportion of narrow endemics. Many endemic plants are currently found in rocky habitats, showing varying patterns of habitat occupancy at different spatial scales throughout their range. The aim of the present study was to understand the impact of varying patterns of population distribution on genetic diversity and structure to shed light on demographic and evolutionary processes leading to population diversification in Crepis triasii, an endemic plant from the eastern Balearic Islands. Using allozyme and chloroplast markers, we related patterns of genetic structure and diversity to those of habitat occupancy at a regional (between islands and among populations within islands) and landscape (population size and connectivity) scale. Genetic diversity was highly structured both at the regional and at the landscape level, and was positively correlated with population connectivity in the landscape. Populations located in small isolated mountains and coastal areas, with restricted patterns of regional occupancy, were genetically less diverse and much more differentiated. In addition, more isolated populations had stronger fine-scale genetic structure than well-connected ones. Changes in habitat availability and quality arising from marine transgressions during the Quaternary, as well as progressive fragmentation associated with the aridification of the climate since the last glaciation, are the most plausible factors leading to the observed patterns of genetic diversity and structure. Our results emphasize the importance of gene flow in preventing genetic erosion and maintaining the evolutionary potential of populations. They also agree with recent studies highlighting the importance of restricted gene flow and genetic drift as drivers of plant evolution in Mediterranean

  3. Population genetic structure of Diaphorina citri Kuwayama (Hemiptera: Liviidae): host-driven genetic differentiation in China.

    PubMed

    Meng, Lixue; Wang, Yongmo; Wei, Wen-Hua; Zhang, Hongyu

    2018-01-24

    The Asian citrus psyllid Diaphorina citri Kuwayama is a major pest in citrus production, transmitting Candidatus Liberibacter asiaticus. It has spread widely across eastern and southern China. Unfortunately, little is known about the genetic diversity and population structure of D. citri, making pest control difficult. In this study, nine specifically developed SSR markers and three known mitochondrial DNA were used for population genetics study of D. citri using 225 samples collected from all 7 distribution regions in China. Based on the SSR data, D. citri was found highly diverse with a mean observed heterozygosity of 0.50, and three subgroups were structured by host plant: (i) Shatangju, NF mandarin and Ponkan; (ii) Murraya paniculata and Lemon; (iii) Citrus unshiu, Bingtangcheng, Summer orange and Navel. No significant genetic differences were found with mtDNA data. We suggested the host-associated divergence is likely to have occurred very recently. A unimodal distribution of paired differences, the negative and significant Tajima's D and Fu's F S parameters among mtDNA suggested a recent demographic expansion. The extensive citrus cultivation and increased suitable living habitat was recommended as a key for this expansion event.

  4. Effects of carbon-ion beams on human pancreatic cancer cell lines that differ in genetic status.

    PubMed

    Matsui, Yoshifumi; Asano, Takehide; Kenmochi, Takashi; Iwakawa, Mayumi; Imai, Takashi; Ochiai, Takenori

    2004-02-01

    The relative biologic effectiveness (RBE) of carbon-ion beams at 3 different linear energy transfer (LET) values (13, 50, and 80 keV/microm) accelerated by the Heavy Ion Medical Accelerator in Chiba on human pancreatic cancer cell lines differing in genetic status was determined. The RBE values were calculated as D10, the dose (Gy) required to reduce the surviving fraction to 10%, relative to X-rays. We also investigated apoptosis and the relationship between D10 and the cell cycle checkpoint using morphologic examination and flow cytometry analysis, respectively. The RBE values calculated by the D10 values ranged from 1.16 to 1.77 for the 13-keV/microm beam and from 1.83 to 2.46 for the 80-keV/microm beam. A correlation between the D10 values of each cell line and intensity of G2/M arrest was observed. In contrast, LET values did not clearly correlate with induction of apoptosis. These results suggest that carbon-ion beam therapy is a promising modality. Elucidation of the mechanisms of G2/M arrest and apoptosis may provide clues to enhancing the effects of radiation on pancreatic cancer.

  5. Acceptance of Genetic Testing in a General Population: Age, Education and Gender Differences.

    ERIC Educational Resources Information Center

    Aro, A. R.; Hakonen, A.; Hietala, M.; Lonnqvist, J.; Niemela, P.; Peltonen, L; Aula, P.

    1997-01-01

    Effects of age, education, and gender on acceptance of genetic testing were studied. Finnish participants responded to a questionnaire presenting reasons for and against genetic testing (N=1,967). Intentions to take genetic tests, worries, and experience of genetic test or hereditary disease were also assessed. Results are presented and discussed.…

  6. Genetic potential of common bean progenies selected for crude fiber content obtained through different breeding methods.

    PubMed

    Júnior, V A P; Melo, P G S; Pereira, H S; Bassinello, P Z; Melo, L C

    2015-05-29

    Gastrointestinal health is of great importance due to the increasing consumption of functional foods, especially those concern-ing diets rich in fiber content. The common bean has been valorized as a nutritious food due to its appreciable fiber content and the fact that it is consumed in many countries. The current study aimed to evaluate and compare the genetic potential of common bean progenies of the carioca group, developed through different breeding methods, for crude fiber content. The progenies originated through hybridization of two advanced strains, CNFC 7812 and CNFC 7829, up to the F7 generation using three breeding methods: bulk-population, bulk within F2 families, and single seed descent. Fifteen F8 progenies were evaluated in each method, as well as two check cultivars and both parents, us-ing a 7 x 7 simple lattice design, with experimental plots comprised of two 4-m long rows. Field trials were conducted in eleven environments encompassing four Brazilian states and three different sowing times during 2009 and 2010. Estimates of genetic parameters indicate differences among the breeding methods, which seem to be related to the different processes for sampling the advanced progenies inherent to each method, given that the trait in question is not subject to natural selection. Variability amongst progenies occurred within the three breeding methods and there was also a significant effect of environment on the progeny for all methods. Progenies developed by bulk-population attained the highest estimates of genetic parameters, had less interaction with the environment, and greater variability.

  7. Genetic variation in polyploid forage grass: Assessing the molecular genetic variability in the Paspalum genus

    PubMed Central

    2013-01-01

    Background Paspalum (Poaceae) is an important genus of the tribe Paniceae, which includes several species of economic importance for foraging, turf and ornamental purposes, and has a complex taxonomical classification. Because of the widespread interest in several species of this genus, many accessions have been conserved in germplasm banks and distributed throughout various countries around the world, mainly for the purposes of cultivar development and cytogenetic studies. Correct identification of germplasms and quantification of their variability are necessary for the proper development of conservation and breeding programs. Evaluation of microsatellite markers in different species of Paspalum conserved in a germplasm bank allowed assessment of the genetic differences among them and assisted in their proper botanical classification. Results Seventeen new polymorphic microsatellites were developed for Paspalum atratum Swallen and Paspalum notatum Flüggé, twelve of which were transferred to 35 Paspalum species and used to evaluate their variability. Variable degrees of polymorphism were observed within the species. Based on distance-based methods and a Bayesian clustering approach, the accessions were divided into three main species groups, two of which corresponded to the previously described Plicatula and Notata Paspalum groups. In more accurate analyses of P. notatum accessions, the genetic variation that was evaluated used thirty simple sequence repeat (SSR) loci and revealed seven distinct genetic groups and a correspondence of these groups to the three botanical varieties of the species (P. notatum var. notatum, P. notatum var. saurae and P. notatum var. latiflorum). Conclusions The molecular genetic approach employed in this study was able to distinguish many of the different taxa examined, except for species that belong to the Plicatula group, which has historically been recognized as a highly complex group. Our molecular genetic approach represents a

  8. Genetic difference but functional similarity among fish gut bacterial communities through molecular and biochemical fingerprints.

    PubMed

    Mouchet, Maud A; Bouvier, Corinne; Bouvier, Thierry; Troussellier, Marc; Escalas, Arthur; Mouillot, David

    2012-03-01

    Considering the major involvement of gut microflora in the digestive function of various macro-organisms, bacterial communities inhabiting fish guts may be the main actors of organic matter degradation by fish. Nevertheless, the extent and the sources of variability in the degradation potential of gut bacterial communities are largely overlooked. Using Biolog Ecoplate™ and denaturing gradient gel electrophoresis (DGGE), we explored functional (i.e. the ability to degrade organic matter) and genetic (i.e. identification of DGGE banding patterns) diversity of fish gut bacterial communities, respectively. Gut bacterial communities were extracted from fish species characterized by different diets sampled along a salinity gradient in the Patos-Mirim lagoons complex (Brazil). We found that functional diversity was surprisingly unrelated to genetic diversity of gut bacterial communities. Functional diversity was not affected by the sampling site but by fish species and diet, whereas genetic diversity was significantly influenced by all three factors. Overall, the functional diversity was consistently high across fish individuals and species, suggesting a wide functional niche breadth and a high potential of organic matter degradation. We conclude that fish gut bacterial communities may strongly contribute to nutrient cycling regardless of their genetic diversity and environment. © European Union 2011.

  9. Genetics in the art and art in genetics.

    PubMed

    Bukvic, Nenad; Elling, John W

    2015-01-15

    "Healing is best accomplished when art and science are conjoined, when body and spirit are probed together", says Bernard Lown, in his book "The Lost Art of Healing". Art has long been a witness to disease either through diseases which affected artists or diseases afflicting objects of their art. In particular, artists have often portrayed genetic disorders and malformations in their work. Sometimes genetic disorders have mystical significance; other times simply have intrinsic interest. Recognizing genetic disorders is also an art form. From the very beginning of my work as a Medical Geneticist I have composed personal "algorithms" to piece together evidence of genetics syndromes and diseases from the observable signs and symptoms. In this paper we apply some 'gestalt' Genetic Syndrome Diagnostic algorithms to virtual patients found in some art masterpieces. In some the diagnosis is clear and in others the artists' depiction only supports a speculative differential diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Biases and systematics in the observational derivation of galaxy properties: comparing different techniques on synthetic observations of simulated galaxies

    NASA Astrophysics Data System (ADS)

    Guidi, Giovanni; Scannapieco, Cecilia; Walcher, C. Jakob

    2015-12-01

    We study the sources of biases and systematics in the derivation of galaxy properties from observational studies, focusing on stellar masses, star formation rates, gas and stellar metallicities, stellar ages, magnitudes and colours. We use hydrodynamical cosmological simulations of galaxy formation, for which the real quantities are known, and apply observational techniques to derive the observables. We also analyse biases that are relevant for a proper comparison between simulations and observations. For our study, we post-process the simulation outputs to calculate the galaxies' spectral energy distributions (SEDs) using stellar population synthesis models and also generate the fully consistent far-UV-submillimetre wavelength SEDs with the radiative transfer code SUNRISE. We compared the direct results of simulations with the observationally derived quantities obtained in various ways, and found that systematic differences in all studied galaxy properties appear, which are caused by: (1) purely observational biases, (2) the use of mass-weighted and luminosity-weighted quantities, with preferential sampling of more massive and luminous regions, (3) the different ways of constructing the template of models when a fit to the spectra is performed, and (4) variations due to different calibrations, most notably for gas metallicities and star formation rates. Our results show that large differences can appear depending on the technique used to derive galaxy properties. Understanding these differences is of primary importance both for simulators, to allow a better judgement of similarities and differences with observations, and for observers, to allow a proper interpretation of the data.

  11. The Impact of Genetic and Non-Genetic Factors on Warfarin Dose Prediction in MENA Region: A Systematic Review

    PubMed Central

    2016-01-01

    Background Warfarin is the most commonly used oral anticoagulant for the treatment and prevention of thromboembolic disorders. Pharmacogenomics studies have shown that variants in CYP2C9 and VKORC1 genes are strongly and consistently associated with warfarin dose variability. Although different populations from the Middle East and North Africa (MENA) region may share the same ancestry, it is still unclear how they compare in the genetic and non-genetic factors affecting their warfarin dosing. Objective To explore the prevalence of CYP2C9 and VKORC1 variants in MENA, and the effect of these variants along with other non-genetic factors in predicting warfarin dose. Methods In this systematic review, we included observational cross sectional and cohort studies that enrolled patients on stable warfarin dose and had the genetics and non-genetics factors associated with mean warfarin dose as the primary outcome. We searched PubMed, Medline, Scopus, PharmGKB, PHGKB, Google scholar and reference lists of relevant reviews. Results We identified 17 studies in eight different populations: Iranian, Israeli, Egyptian, Lebanese, Omani, Kuwaiti, Sudanese and Turkish. Most common genetic variant in all populations was the VKORC1 (-1639G>A), with a minor allele frequency ranging from 30% in Egyptians and up to 52% and 56% in Lebanese and Iranian, respectively. Variants in the CYP2C9 were less common, with the highest MAF for CYP2C9*2 among Iranians (27%). Variants in the VKORC1 and CYP2C9 were the most significant predictors of warfarin dose in all populations. Along with other genetic and non-genetic factors, they explained up to 63% of the dose variability in Omani and Israeli patients. Conclusion Variants of VKORC1 and CYP2C9 are the strongest predictors of warfarin dose variability among the different populations from MENA. Although many of those populations share the same ancestry and are similar in their warfarin dose predictors, a population specific dosing algorithm is

  12. The Impact of Genetic and Non-Genetic Factors on Warfarin Dose Prediction in MENA Region: A Systematic Review.

    PubMed

    Bader, Loulia Akram; Elewa, Hazem

    2016-01-01

    Warfarin is the most commonly used oral anticoagulant for the treatment and prevention of thromboembolic disorders. Pharmacogenomics studies have shown that variants in CYP2C9 and VKORC1 genes are strongly and consistently associated with warfarin dose variability. Although different populations from the Middle East and North Africa (MENA) region may share the same ancestry, it is still unclear how they compare in the genetic and non-genetic factors affecting their warfarin dosing. To explore the prevalence of CYP2C9 and VKORC1 variants in MENA, and the effect of these variants along with other non-genetic factors in predicting warfarin dose. In this systematic review, we included observational cross sectional and cohort studies that enrolled patients on stable warfarin dose and had the genetics and non-genetics factors associated with mean warfarin dose as the primary outcome. We searched PubMed, Medline, Scopus, PharmGKB, PHGKB, Google scholar and reference lists of relevant reviews. We identified 17 studies in eight different populations: Iranian, Israeli, Egyptian, Lebanese, Omani, Kuwaiti, Sudanese and Turkish. Most common genetic variant in all populations was the VKORC1 (-1639G>A), with a minor allele frequency ranging from 30% in Egyptians and up to 52% and 56% in Lebanese and Iranian, respectively. Variants in the CYP2C9 were less common, with the highest MAF for CYP2C9*2 among Iranians (27%). Variants in the VKORC1 and CYP2C9 were the most significant predictors of warfarin dose in all populations. Along with other genetic and non-genetic factors, they explained up to 63% of the dose variability in Omani and Israeli patients. Variants of VKORC1 and CYP2C9 are the strongest predictors of warfarin dose variability among the different populations from MENA. Although many of those populations share the same ancestry and are similar in their warfarin dose predictors, a population specific dosing algorithm is needed for the prospective estimation of warfarin

  13. Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders

    PubMed Central

    Arloth, Janine; Bogdan, Ryan; Weber, Peter; Frishman, Goar; Menke, Andreas; Wagner, Klaus V.; Balsevich, Georgia; Schmidt, Mathias V.; Karbalai, Nazanin; Czamara, Darina; Altmann, Andre; Trümbach, Dietrich; Wurst, Wolfgang; Mehta, Divya; Uhr, Manfred; Klengel, Torsten; Erhardt, Angelika; Carey, Caitlin E.; Conley, Emily Drabant; Ripke, Stephan; Wray, Naomi R.; Lewis, Cathryn M.; Hamilton, Steven P.; Weissman, Myrna M.; Breen, Gerome; Byrne, Enda M.; Blackwood, Douglas H.R.; Boomsma, Dorret I.; Cichon, Sven; Heath, Andrew C.; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A.F.; Martin, Nicholas G.; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M.; Penninx, Brenda P.; Pergadia, Michele L.; Potash, James B.; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J.; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H.; Preisig, Martin; Smoller, Jordan W.; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E.; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R.; Bettecken, Thomas; Binder, Elisabeth B.; Breuer, René; Castro, Victor M.; Churchill, Susanne E.; Coryell, William H.; Craddock, Nick; Craig, Ian W.; Czamara, Darina; De Geus, Eco J.; Degenhardt, Franziska; Farmer, Anne E.; Fava, Maurizio; Frank, Josef; Gainer, Vivian S.; Gallagher, Patience J.; Gordon, Scott D.; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V.; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A.; Kohane, Isaac S.; Kohli, Martin A.; Korszun, Ania; Landen, Mikael; Lawson, William B.; Lewis, Glyn; MacIntyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J.; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M.; Middleton, Lefkos; Montgomery, Grant M.; Murphy, Shawn N.; Nauck, Matthias; Nolen, Willem A.; Nyholt, Dale R.; O’Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A.; Schulz, Andrea; Schulze, Thomas G.; Shyn, Stanley I.; Sigurdsson, Engilbert; Slager, Susan L.; Smit, Johannes H.; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J.C.G.; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B.; Willemsen, Gonneke; Zitman, Frans G.; Neale, Benjamin; Daly, Mark; Levinson, Douglas F.; Sullivan, Patrick F.; Ruepp, Andreas; Müller-Myhsok, Bertram; Hariri, Ahmad R.; Binder, Elisabeth B.

    2015-01-01

    Summary Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain. Video Abstract PMID:26050039

  14. Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress.

    PubMed

    Ning, Shanglong; Chen, Zhongqiang; Fan, Dongwei; Sun, Chuiguo; Zhang, Chi; Zeng, Yan; Li, Weishi; Hou, Xiaofei; Qu, Xiaochen; Ma, Yunlong; Yu, Huilei

    2017-01-01

    Mechanical stress and genetic factors play important roles in the occurrence of thoracic ossification of ligament flavum (TOLF), which can occur at one, two, or multiple levels of the spine. It is unclear whether single- and multiple-level TOLF differ in terms of osteogenic differentiation potency and osteogenesis-related gene expression under cyclic mechanical stress. This was addressed in the present study using patients with non‑TOLF and single‑ and multiple‑level TOLF (n=8 per group). Primary ligament cells were cultured and osteogenesis was induced by application of cyclic mechanical stress. Osteogenic differentiation was assessed by evaluating alkaline phosphatase (ALP) activity and the mRNA and protein expression of osteogenesis‑related genes, including ALP, bone morphogenetic protein 2 (BMP2), Runt‑related transcription factor‑2 (Runx‑2), osterix, osteopontin (OPN) and osteocalcin. The application of cyclic mechanical stress resulted in higher ALP activity in the multiple‑level than in the single‑level TOLF group, whereas no changes were observed in the non‑TOLF group. The ALP, BMP2, OPN and osterix mRNA levels were higher in the multiple‑level as compared to the single‑level TOLF group, and the levels of all osteogenesis-related genes, apart from Runx2, were higher in the multiple‑level as compared to the non‑TOLF group. The osterix and ALP protein levels were higher in the multiple‑level TOLF group than in the other 2 groups, and were increased with the longer duration of stress. These results highlight the differences in osteogenic differentiation potency between single‑ and multiple‑level TOLF that may be related to the different pathogenesis and genetic background.

  15. Genetic subtype differences in neural circuitry of food motivation in Prader-Willi syndrome.

    PubMed

    Holsen, L M; Zarcone, J R; Chambers, R; Butler, M G; Bittel, D C; Brooks, W M; Thompson, T I; Savage, C R

    2009-02-01

    Differences in behavioral phenotypes between the two most common subtypes of Prader-Willi syndrome (PWS) (chromosome 15q deletions and maternal uniparental disomy 15 (UPD) indicate that distinct neural networks may be affected. Though both subtypes display hyperphagia, the deletion subgroup shows reduced behavioral inhibition around food, whereas those with UPD are generally more able to maintain cognitive control over food intake impulses. To examine the neural basis of phenotypic differences to better understand relationships between genetic subtypes and behavioral outcomes. We predicted greater food motivation circuitry activity in the deletion subtype and greater activity in higher order cognitive regions in the UPD group, especially after eating. Nine individuals with PWS due to UPD and nine individuals with PWS due to (type 2) deletion, matched for age, gender and body mass index, underwent functional magnetic resonance imaging (fMRI) while viewing food images during two food motivation states: one before (pre-meal) and one after (post-meal) eating a standardized 500 kcal meal. Both PWS subgroups showed greater activity in response to food pre- and post-meal compared with the healthy-weight group. Compared with UPD, the deletion subtype showed increased food motivation network activation both pre- and post-meal, especially in the medial prefrontal cortex (mPFC) and amygdala. In contrast, the UPD group showed greater activation than the deletion subtype post-meal in the dorsolateral prefrontal cortex (DLPFC) and parahippocampal gyrus (PHG). These preliminary findings are the first functional neuroimaging findings to support divergent neural mechanisms associated with behavioral phenotypes in genetic subtypes of PWS. Results are discussed within the framework of genetic mechanisms such as haploinsufficiency and gene dosage effects and their differential influence on deletion and UPD subtypes, respectively.

  16. Geographic differences in fractures among women

    PubMed Central

    Litwic, Anna; Edwards, Mark; Cooper, Cyrus; Dennison, Elaine

    2013-01-01

    Osteoporotic fracture is associated with considerable morbidity and mortality in women throughout the world. However, significant variation in hip fracture rates among women from different nations have been observed, and are likely to represent a combination of real and apparent differences due to ascertainment bias. Higher rates are observed in Caucasian women, with lowest rates observed in black women and intermediate rates among Asian women. These differences are likely to represent a combination of genetic and environmental differences; for example, among European women, the highest fracture rates are observed in Scandinavian women where vitamin D insufficiency is common. In all groups, an expansion in absolute fracture numbers is anticipated due to demographic changes. PMID:23181532

  17. Genetic variability in krill.

    PubMed

    Valentine, J W; Ayala, F J

    1976-02-01

    We have estimated genetic variability by gel electrophoresis in three species of krill, genus Euphausia (Arthropoda: Crustacea). Genetic variability is low where trophic resources are most seasonal, and high where trophic resources are most stable. Simlar trends have been found in benthic marine invertebrates. The observed trends of genetic variability do not correlate with trends in the stability of physical environment parameters.

  18. Large 0/12 GMT Differences of US Vaisala RS80 Observations

    NASA Technical Reports Server (NTRS)

    Atlas, Robert (Technical Monitor)

    2002-01-01

    Large differences been observations taken at 0 and 12 GMT have been revealed during routine monitoring of observations at the Data Assimilation Office (DAO) at NASA's Goddard Space Flight Center (GSFC). As a result, an investigation has been conducted to confirm the large differences and isolate its source. The data clearly shows that 0/12 GMT differences are largely artificial especially over the central US and that the differences largely originate in the post processing software at the observing stations. In particular, the release time of the rawinsonde balloon may be misspecified to be the synoptic time which would lead to the miscalculation of the bias correction that accounts for solar radiation effects on the thermistor.

  19. Genetic diversity of a newly established population of golden eagles on the Channel Islands, California

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Coonan, Timothy J.; Latta, Brian C.; Sage, George K.; Talbot, Sandra L.

    2012-01-01

    Gene flow can have profound effects on the genetic diversity of a founding population depending on the number and relationship among colonizers and the duration of the colonization event. Here we used data from nuclear microsatellite and mitochondrial DNA control region loci to assess genetic diversity in golden eagles of the recently colonized Channel Islands, California. Genetic diversity in the Channel Island population was low, similar to signatures observed for other recent colonizing island populations. Differences in levels of genetic diversity and structure observed between mainland California and the islands suggests that few individuals were involved in the initial founding event, and may have comprised a family group. The spatial genetic structure observed between Channel Island and mainland California golden eagle populations across marker types, and genetic signature of population decline observed for the Channel Island population, suggest a single or relatively quick colonization event. Polarity in gene flow estimates based on mtDNA confirm an initial colonization of the Channel Islands by mainland golden eagles, but estimates from microsatellite data suggest that golden eagles on the islands were dispersing more recently to the mainland, possibly after reaching the carrying capacity of the island system. These results illustrate the strength of founding events on the genetic diversity of a population, and confirm that changes to genetic diversity can occur within just a few generations.

  20. Detrimental effect of selection for milk yield on genetic tolerance to heat stress in purebred Zebu cattle: Genetic parameters and trends.

    PubMed

    Santana, M L; Pereira, R J; Bignardi, A B; Filho, A E Vercesi; Menéndez-Buxadera, A; El Faro, L

    2015-12-01

    In an attempt to determine the possible detrimental effects of continuous selection for milk yield on the genetic tolerance of Zebu cattle to heat stress, genetic parameters and trends of the response to heat stress for 86,950 test-day (TD) milk yield records from 14,670 first lactations of purebred dairy Gir cows were estimated. A random regression model with regression on days in milk (DIM) and temperature-humidity index (THI) values was applied to the data. The most detrimental effect of THI on milk yield was observed in the stage of lactation with higher milk production, DIM 61 to 120 (-0.099kg/d per THI). Although modest variations were observed for the THI scale, a reduction in additive genetic variance as well as in permanent environmental and residual variance was observed with increasing THI values. The heritability estimates showed a slight increase with increasing THI values for any DIM. The correlations between additive genetic effects across the THI scale showed that, for most of the THI values, genotype by environment interactions due to heat stress were less important for the ranking of bulls. However, for extreme THI values, this type of genotype by environment interaction may lead to an important error in selection. As a result of the selection for milk yield practiced in the dairy Gir population for 3 decades, the genetic trend of cumulative milk yield was significantly positive for production in both high (51.81kg/yr) and low THI values (78.48kg/yr). However, the difference between the breeding values of animals at high and low THI may be considered alarming (355kg in 2011). The genetic trends observed for the regression coefficients related to general production level (intercept of the reaction norm) and specific ability to respond to heat stress (slope of the reaction norm) indicate that the dairy Gir population is heading toward a higher production level at the expense of lower tolerance to heat stress. These trends reflect the genetic

  1. Preimplantation genetic testing for aneuploidy: what technology should you use and what are the differences?

    PubMed

    Brezina, Paul R; Anchan, Raymond; Kearns, William G

    2016-07-01

    The purpose of the review was to define the various diagnostic platforms currently available to perform preimplantation genetic testing for aneuploidy and describe in a clear and balanced manner the various strengths and weaknesses of these technologies. A systematic literature review was conducted. We used the terms "preimplantation genetic testing," "preimplantation genetic diagnosis," "preimplantation genetic screening," "preimplantation genetic diagnosis for aneuploidy," "PGD," "PGS," and "PGD-A" to search through PubMed, ScienceDirect, and Google Scholar from the year 2000 to April 2016. Bibliographies of articles were also searched for relevant studies. When possible, larger randomized controlled trials were used. However, for some emerging data, only data from meeting abstracts were available. PGS is emerging as one of the most valuable tools to enhance pregnancy success with assisted reproductive technologies. While all of the current diagnostic platforms currently available have various advantages and disadvantages, some platforms, such as next-generation sequencing (NGS), are capable of evaluating far more data points than has been previously possible. The emerging complexity of different technologies, especially with the utilization of more sophisticated tools such as NGS, requires an understanding by clinicians in order to request the best test for their patients.. Ultimately, the choice of which diagnostic platform is utilized should be individualized to the needs of both the clinic and the patient. Such a decision must incorporate the risk tolerance of both the patient and provider, fiscal considerations, and other factors such as the ability to counsel patients on their testing results and how these may or may not impact clinical outcomes.

  2. Predicting risk in space: Genetic markers for differential vulnerability to sleep restriction

    NASA Astrophysics Data System (ADS)

    Goel, Namni; Dinges, David F.

    2012-08-01

    Several laboratories have found large, highly reliable individual differences in the magnitude of cognitive performance, fatigue and sleepiness, and sleep homeostatic vulnerability to acute total sleep deprivation and to chronic sleep restriction in healthy adults. Such individual differences in neurobehavioral performance are also observed in space flight as a result of sleep loss. The reasons for these stable phenotypic differential vulnerabilities are unknown: such differences are not yet accounted for by demographic factors, IQ or sleep need, and moreover, psychometric scales do not predict those individuals cognitively vulnerable to sleep loss. The stable, trait-like (phenotypic) inter-individual differences observed in response to sleep loss—with intraclass correlation coefficients accounting for 58-92% of the variance in neurobehavioral measures—point to an underlying genetic component. To this end, we utilized multi-day highly controlled laboratory studies to investigate the role of various common candidate gene variants—each independently—in relation to cumulative neurobehavioral and sleep homeostatic responses to sleep restriction. These data suggest that common genetic variations (polymorphisms) involved in sleep-wake, circadian, and cognitive regulation may serve as markers for prediction of inter-individual differences in sleep homeostatic and neurobehavioral vulnerability to sleep restriction in healthy adults. Identification of genetic predictors of differential vulnerability to sleep restriction—as determined from candidate gene studies—will help identify astronauts most in need of fatigue countermeasures in space flight and inform medical standards for obtaining adequate sleep in space. This review summarizes individual differences in neurobehavioral vulnerability to sleep deprivation and ongoing genetic efforts to identify markers of such differences.

  3. Genetic Diversity and Societally Important Disparities

    PubMed Central

    Rosenberg, Noah A.; Kang, Jonathan T. L.

    2015-01-01

    The magnitude of genetic diversity within human populations varies in a way that reflects the sequence of migrations by which people spread throughout the world. Beyond its use in human evolutionary genetics, worldwide variation in genetic diversity sometimes can interact with social processes to produce differences among populations in their relationship to modern societal problems. We review the consequences of genetic diversity differences in the settings of familial identification in forensic genetic testing, match probabilities in bone marrow transplantation, and representation in genome-wide association studies of disease. In each of these three cases, the contribution of genetic diversity to social differences follows from population-genetic principles. For a fourth setting that is not similarly grounded, we reanalyze with expanded genetic data a report that genetic diversity differences influence global patterns of human economic development, finding no support for the claim. The four examples describe a limit to the importance of genetic diversity for explaining societal differences while illustrating a distinction that certain biologically based scenarios do require consideration of genetic diversity for solving problems to which populations have been differentially predisposed by the unique history of human migrations. PMID:26354973

  4. Analysis of East Asia Genetic Substructure Using Genome-Wide SNP Arrays

    PubMed Central

    Tian, Chao; Kosoy, Roman; Lee, Annette; Ransom, Michael; Belmont, John W.; Gregersen, Peter K.; Seldin, Michael F.

    2008-01-01

    Accounting for population genetic substructure is important in reducing type 1 errors in genetic studies of complex disease. As efforts to understand complex genetic disease are expanded to different continental populations the understanding of genetic substructure within these continents will be useful in design and execution of association tests. In this study, population differentiation (Fst) and Principal Components Analyses (PCA) are examined using >200 K genotypes from multiple populations of East Asian ancestry. The population groups included those from the Human Genome Diversity Panel [Cambodian, Yi, Daur, Mongolian, Lahu, Dai, Hezhen, Miaozu, Naxi, Oroqen, She, Tu, Tujia, Naxi, Xibo, and Yakut], HapMap [ Han Chinese (CHB) and Japanese (JPT)], and East Asian or East Asian American subjects of Vietnamese, Korean, Filipino and Chinese ancestry. Paired Fst (Wei and Cockerham) showed close relationships between CHB and several large East Asian population groups (CHB/Korean, 0.0019; CHB/JPT, 00651; CHB/Vietnamese, 0.0065) with larger separation with Filipino (CHB/Filipino, 0.014). Low levels of differentiation were also observed between Dai and Vietnamese (0.0045) and between Vietnamese and Cambodian (0.0062). Similarly, small Fst's were observed among different presumed Han Chinese populations originating in different regions of mainland of China and Taiwan (Fst's <0.0025 with CHB). For PCA, the first two PC's showed a pattern of relationships that closely followed the geographic distribution of the different East Asian populations. PCA showed substructure both between different East Asian groups and within the Han Chinese population. These studies have also identified a subset of East Asian substructure ancestry informative markers (EASTASAIMS) that may be useful for future complex genetic disease association studies in reducing type 1 errors and in identifying homogeneous groups that may increase the power of such studies. PMID:19057645

  5. Survival differences among freeze-dried genetically engineered and wild-type bacteria.

    PubMed Central

    Israeli, E; Shaffer, B T; Hoyt, J A; Lighthart, B; Ganio, L M

    1993-01-01

    Because the death mechanisms of freeze-dried and air-dried bacteria are thought to be similar, freeze-drying was used to investigate the survival differences between potentially airborne genetically engineered microorganisms and their wild types. To this end, engineered strains of Escherichia coli and Pseudomonas syringae were freeze-dried and exposed to air, visible light, or both. The death rates of all engineered strains were significantly higher than those of their parental strains. Light and air exposure were found to increase the death rates of all strains. Application of death rate models to freeze-dried engineered bacteria to be released into the environment is discussed. PMID:8434925

  6. Does advertisement call variation coincide with genetic variation in the genetically diverse frog taxon currently known as Leptodactylus fuscus (Amphibia: Leptodactylidae)?

    PubMed

    Heyer, W Ronald; Reid, Yana R

    2003-03-01

    The frog Leptodactylus fuscus is found throughout much of South America in open and disturbed habitats. Previous study of genetic differentiation in L. fuscus demonstrated that there was lack of genetic exchange among population units consistent with multiple species, rather than a single species. We examine advertisement vocalizations of L. fuscus to determine whether call variation coincides with genetic differentiation. Calls were analyzed for 32 individual frogs from 25 localities throughout the distributional range of L. fuscus. Although there is variation in calls among geographic samples, call variation is not concordant with genetic variation or geographic distance and the call variation observed is less than that typically found among other closely related species of Leptodactylus. This study is an example of the rare pattern of strong genetic differentiation unaccompanied by salient differences in advertisement calls. The relative infrequency of this pattern as currently understood may only reflect the lack of detailed analyses of genetic and acoustic differentiation within population systems currently understood as single species with substantial geographic distributions.

  7. A multi-perspective view of genetic variation in Cameroon.

    PubMed

    Coia, V; Brisighelli, F; Donati, F; Pascali, V; Boschi, I; Luiselli, D; Battaggia, C; Batini, C; Taglioli, L; Cruciani, F; Paoli, G; Capelli, C; Spedini, G; Destro-Bisol, G

    2009-11-01

    In this study, we report the genetic variation of autosomal and Y-chromosomal microsatellites in a large Cameroon population dataset (a total of 11 populations) and jointly analyze novel and previous genetic data (mitochondrial DNA and protein coding loci) taking geographic and cultural factors into consideration. The complex pattern of genetic variation of Cameroon can in part be described by contrasting two geographic areas (corresponding to the northern and southern part of the country), which differ substantially in environmental, biological, and cultural aspects. Northern Cameroon populations show a greater within- and among-group diversity, a finding that reflects the complex migratory patterns and the linguistic heterogeneity of this area. A striking reduction of Y-chromosomal genetic diversity was observed in some populations of the northern part of the country (Podokwo and Uldeme), a result that seems to be related to their demographic history rather than to sampling issues. By exploring patterns of genetic, geographic, and linguistic variation, we detect a preferential correlation between genetics and geography for mtDNA. This finding could reflect a female matrimonial mobility that is less constrained by linguistic factors than in males. Finally, we apply the island model to mitochondrial and Y-chromosomal data and obtain a female-to-male migration Nnu ratio that was more than double in the northern part of the country. The combined effect of the propensity to inter-populational admixture of females, favored by cultural contacts, and of genetic drift acting on Y-chromosomal diversity could account for the peculiar genetic pattern observed in northern Cameroon.

  8. Clinical impact of genetic variants of drug transporters in different ethnic groups within and across regions.

    PubMed

    Ono, Chiho; Kikkawa, Hironori; Suzuki, Akiyuki; Suzuki, Misaki; Yamamoto, Yuichi; Ichikawa, Katsuomi; Fukae, Masato; Ieiri, Ichiro

    2013-11-01

    Drug transporters, together with drug metabolic enzymes, are major determinants of drug disposition and are known to alter the response to many commonly used drugs. Substantial frequency differences for known variants exist across geographic regions for certain drug transporters. To deliver efficacious medicine with the right dose for each patient, it is important to understand the contribution of genetic variants for drug transporters. Recently, mutual pharmacokinetic data usage among Asian regions, which are thought to be relatively similar in their own genetic background, is expected to accelerate new drug applications and reduce developmental costs. Polymorphisms of drug transporters could be key factors to be considered in implementing multiethnic global clinical trials. This review addresses the current knowledge on genetic variations of major drug transporters affecting drug disposition, efficacy and toxicity, focusing on the east Asian populations, and provides insights into future directions for precision medicine and drug development in east Asia.

  9. Genetic variability in krill.

    PubMed Central

    Valentine, J W; Ayala, F J

    1976-01-01

    We have estimated genetic variability by gel electrophoresis in three species of krill, genus Euphausia (Arthropoda: Crustacea). Genetic variability is low where trophic resources are most seasonal, and high where trophic resources are most stable. Simlar trends have been found in benthic marine invertebrates. The observed trends of genetic variability do not correlate with trends in the stability of physical environment parameters. Images PMID:1061166

  10. Evolutionary Determinants of Genetic Variation in Susceptibility to Infectious Diseases in Humans

    PubMed Central

    Baker, Christi; Antonovics, Janis

    2012-01-01

    Although genetic variation among humans in their susceptibility to infectious diseases has long been appreciated, little focus has been devoted to identifying patterns in levels of variation in susceptibility to different diseases. Levels of genetic variation in susceptibility associated with 40 human infectious diseases were assessed by a survey of studies on both pedigree-based quantitative variation, as well as studies on different classes of marker alleles. These estimates were correlated with pathogen traits, epidemiological characteristics, and effectiveness of the human immune response. The strongest predictors of levels of genetic variation in susceptibility were disease characteristics negatively associated with immune effectiveness. High levels of genetic variation were associated with diseases with long infectious periods and for which vaccine development attempts have been unsuccessful. These findings are consistent with predictions based on theoretical models incorporating fitness costs associated with the different types of resistance mechanisms. An appreciation of these observed patterns will be a valuable tool in directing future research given that genetic variation in disease susceptibility has large implications for vaccine development and epidemiology. PMID:22242158

  11. Genetic Variation of Beet Armyworm (Lepidoptera: Noctuidae) Populations Detected Using Microsatellite Markers in Iran.

    PubMed

    Golikhajeh, Neshat; Naseri, Bahram; Razmjou, Jabraeil; Hosseini, Reza; Aghbolaghi, Marzieh Asadi

    2018-05-28

    In order to understand the population genetic diversity and structure of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), a serious pest of sugar beet in Iran and the world, we genotyped 133 individuals from seven regions in Iran using four microsatellite loci. Significant difference was seen between the observed and expected heterozygosity in all loci. A lower observed heterozygosity than expected heterozygosity indicated a low heterozygosity in these populations. The value of F showed a high genetic differentiation, so that the mean of Fst was 0.21. Molecular analysis variance showed significant differences within and among populations with group variance accounted for 71 and 21%, respectively. No correlation was found between pair-wise Fst and geographic distance by Mantel test. Bayesian clustering analysis grouped all regions to two clusters. These data suggested that a combination of different factors, such as geographic distance, environmental condition, and physiological behavior in addition to genetic factors, could play an important role in forming variation within and between S. exigua populations.

  12. Genetic attack on neural cryptography.

    PubMed

    Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka; Kanter, Ido

    2006-03-01

    Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold for the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.

  13. Genetic attack on neural cryptography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka

    2006-03-15

    Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold formore » the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.« less

  14. Genetic attack on neural cryptography

    NASA Astrophysics Data System (ADS)

    Ruttor, Andreas; Kinzel, Wolfgang; Naeh, Rivka; Kanter, Ido

    2006-03-01

    Different scaling properties for the complexity of bidirectional synchronization and unidirectional learning are essential for the security of neural cryptography. Incrementing the synaptic depth of the networks increases the synchronization time only polynomially, but the success of the geometric attack is reduced exponentially and it clearly fails in the limit of infinite synaptic depth. This method is improved by adding a genetic algorithm, which selects the fittest neural networks. The probability of a successful genetic attack is calculated for different model parameters using numerical simulations. The results show that scaling laws observed in the case of other attacks hold for the improved algorithm, too. The number of networks needed for an effective attack grows exponentially with increasing synaptic depth. In addition, finite-size effects caused by Hebbian and anti-Hebbian learning are analyzed. These learning rules converge to the random walk rule if the synaptic depth is small compared to the square root of the system size.

  15. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum

    PubMed Central

    Mallick, Prashant K.; Sutton, Patrick L.; Singh, Ruchi; Singh, Om P.; Dash, Aditya P.; Singh, Ashok K.; Carlton, Jane M.; Bhasin, Virendra K.

    2013-01-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite’s acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST = 0.253, P<0.001) suggests a long period of isolation or a possibility of different origin between them. A pattern of significant isolation by distance was observed in low transmission areas (r = 0.49, P=0.003, N = 83, Mantel test). An unanticipated pattern of spread of hitchhiking suggests genetic structure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation

  16. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum.

    PubMed

    Mallick, Prashant K; Sutton, Patrick L; Singh, Ruchi; Singh, Om P; Dash, Aditya P; Singh, Ashok K; Carlton, Jane M; Bhasin, Virendra K

    2013-10-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite's acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST=0.253, P<0.001) suggests a long period of isolation or a possibility of different origin between them. A pattern of significant isolation by distance was observed in low transmission areas (r=0.49, P=0.003, N=83, Mantel test). An unanticipated pattern of spread of hitchhiking suggests genetic structure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation at both

  17. Genetic diversity of 38 insertion-deletion polymorphisms in Jewish populations.

    PubMed

    Ferragut, J F; Pereira, R; Castro, J A; Ramon, C; Nogueiro, I; Amorim, A; Picornell, A

    2016-03-01

    Population genetic data of 38 non-coding biallelic autosomal indels are reported for 466 individuals, representing six populations with Jewish ancestry (Ashkenazim, Mizrahim, Sephardim, North African, Chuetas and Bragança crypto-Jews). Intra-population diversity and forensic parameters values showed that this set of indels was highly informative for forensic applications in the Jewish populations studied. Genetic distance analysis demonstrated that this set of markers efficiently separates populations from different continents, but does not seem effective for molecular anthropology studies in Mediterranean region. Finally, it is important to highlight that although the genetic distances between Jewish populations were small, significant differences were observed for Chuetas and Bragança Jews, and therefore, specific databases must be used for these populations. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Genetic diversity based on 28S rDNA sequences among populations of Culex quinquefasciatus collected at different locations in Tamil Nadu, India.

    PubMed

    Sakthivelkumar, S; Ramaraj, P; Veeramani, V; Janarthanan, S

    2015-09-01

    The basis of the present study was to distinguish the existence of any genetic variability among populations of Culex quinquefasciatus which would be a valuable tool in the management of mosquito control programmes. In the present study, population of Cx. quinquefasciatus collected at different locations in Tamil Nadu were analyzed for their genetic variation based on 28S rDNA D2 region nucleotide sequences. A high degree of genetic polymorphism was detected in the sequences of D2 region of 28S rDNA on the predicted secondary structures in spite of high nucleotide sequence similarity. The findings based on secondary structure using rDNA sequences suggested the existence of a complex genotypic diversity of Cx. quinquefasciatus population collected at different locations of Tamil Nadu, India. This complexity in genetic diversity in a single mosquito population collected at different locations is considered an important issue towards their influence and nature of vector potential of these mosquitoes.

  19. Are genetically robust regulatory networks dynamically different from random ones?

    NASA Astrophysics Data System (ADS)

    Sevim, Volkan; Rikvold, Per Arne

    We study a genetic regulatory network model developed to demonstrate that genetic robustness can evolve through stabilizing selection for optimal phenotypes. We report preliminary results on whether such selection could result in a reorganization of the state space of the system. For the chosen parameters, the evolution moves the system slightly toward the more ordered part of the phase diagram. We also find that strong memory effects cause the Derrida annealed approximation to give erroneous predictions about the model's phase diagram.

  20. Genetic and environmental influences on individual differences in emotion regulation and its relation to working memory in toddlerhood.

    PubMed

    Wang, Manjie; Saudino, Kimberly J

    2013-12-01

    This is the first study to explore genetic and environmental contributions to individual differences in emotion regulation in toddlers, and the first to examine the genetic and environmental etiology underlying the association between emotion regulation and working memory. In a sample of 304 same-sex twin pairs (140 MZ, 164 DZ) at age 3, emotion regulation was assessed using the Behavior Rating Scale of the Bayley Scales of Infant Development (BRS; Bayley, 1993), and working memory was measured by the visually cued recall (VCR) task (Zelazo, Jacques, Burack, & Frye, 2002) and several memory tasks from the Mental Scale of the BSID. Based on model-fitting analyses, both emotion regulation and working memory were significantly influenced by genetic and nonshared environmental factors. Shared environmental effects were significant for working memory, but not for emotion regulation. Only genetic factors significantly contributed to the covariation between emotion regulation and working memory.

  1. Genetic and Environmental Influences on Individual Differences in Emotion Regulation and Its Relation to Working Memory in Toddlerhood

    PubMed Central

    Wang, Manjie; Saudino, Kimberly J.

    2014-01-01

    This is the first study to explore genetic and environmental contributions to individual differences in emotion regulation in toddlers, and the first to examine the genetic and environmental etiology underlying the association between emotion regulation and working memory. In a sample of 304 same-sex twin pairs (140 MZ, 164 DZ) at age 3, emotion regulation was assessed using the Behavior Rating Scale of the Bayley Scales of Infant Development (BRS; Bayley, 1993), and working memory was measured by the visually cued recall (VCR) task (Zelazo et al., 2002) and several memory tasks from the Mental Scale of BSID. Based on model-fitting analyses, both emotion regulation and working memory were significantly influenced by genetic and nonshared environmental factors. Shared environmental effects were significant for working memory, but not for emotion regulation. Only genetic factors significantly contributed to the covariation between emotion regulation and working memory. PMID:24098922

  2. Accurate population genetic measurements require cryptic species identification in corals

    NASA Astrophysics Data System (ADS)

    Sheets, Elizabeth A.; Warner, Patricia A.; Palumbi, Stephen R.

    2018-06-01

    Correct identification of closely related species is important for reliable measures of gene flow. Incorrectly lumping individuals of different species together has been shown to over- or underestimate population differentiation, but examples highlighting when these different results are observed in empirical datasets are rare. Using 199 single nucleotide polymorphisms, we assigned 768 individuals in the Acropora hyacinthus and A. cytherea morphospecies complexes to each of eight previously identified cryptic genetic species and measured intraspecific genetic differentiation across three geographic scales (within reefs, among reefs within an archipelago, and among Pacific archipelagos). We then compared these calculations to estimated genetic differentiation at each scale with all cryptic genetic species mixed as if we could not tell them apart. At the reef scale, correct genetic species identification yielded lower F ST estimates and fewer significant comparisons than when species were mixed, raising estimates of short-scale gene flow. In contrast, correct genetic species identification at large spatial scales yielded higher F ST measurements than mixed-species comparisons, lowering estimates of long-term gene flow among archipelagos. A meta-analysis of published population genetic studies in corals found similar results: F ST estimates at small spatial scales were lower and significance was found less often in studies that controlled for cryptic species. Our results and these prior datasets controlling for cryptic species suggest that genetic differentiation among local reefs may be lower than what has generally been reported in the literature. Not properly controlling for cryptic species structure can bias population genetic analyses in different directions across spatial scales, and this has important implications for conservation strategies that rely on these estimates.

  3. Genetic differences in internal transcribed spacer 1 between Dermanyssus gallinae from wild birds and domestic chickens.

    PubMed

    Brännström, S; Morrison, D A; Mattsson, J G; Chirico, J

    2008-06-01

    We investigated the presence of the poultry red mite or the chicken mite, Dermanyssus gallinae De Geer, Acari: Dermanyssidae, in wild bird populations in four different geographical regions of Sweden. The mites identified as D. gallinae were compared genetically with D. gallinae from egg-producing poultry farms in the same regions. The small subunit (SSU) gene, the 5.8S ribosomal RNA (rRNA) gene and the two internal transcribed spacers (ITS) of the rRNA genes were used in the genetic analysis. All D. gallinae mites had identical SSU rRNA, 5.8S rRNA and ITS2 sequences independent of their origin. By contrast, we identified significant differences in the ITS1 sequences. Based on the differences in the ITS1 sequences, the mites could be divided into two genotypes, of wild and domesticated origin, with no variation within the groups. These results imply that wild bird populations are of low importance, if any, as natural reservoirs of D. gallinae in these four geographical regions of Sweden.

  4. Population genetic structure of rare and endangered plants using molecular markers

    USGS Publications Warehouse

    Raji, Jennifer; Atkinson, Carter T.

    2013-01-01

    This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings

  5. Protecting genetic privacy.

    PubMed

    Roche, P A; Annas, G J

    2001-05-01

    This article outlines the arguments for and against new rules to protect genetic privacy. We explain why genetic information is different to other sensitive medical information, why researchers and biotechnology companies have opposed new rules to protect genetic privacy (and favour anti-discrimination laws instead), and discuss what can be done to protect privacy in relation to genetic-sequence information and to DNA samples themselves.

  6. Demographic Histories, Isolation and Social Factors as Determinants of the Genetic Structure of Alpine Linguistic Groups

    PubMed Central

    Coia, Valentina; Capocasa, Marco; Anagnostou, Paolo; Pascali, Vincenzo; Scarnicci, Francesca; Boschi, Ilaria; Battaggia, Cinzia; Crivellaro, Federica; Ferri, Gianmarco; Alù, Milena; Brisighelli, Francesca; Busby, George B. J.; Capelli, Cristian; Maixner, Frank; Cipollini, Giovanna; Viazzo, Pier Paolo; Zink, Albert; Destro Bisol, Giovanni

    2013-01-01

    Great European mountain ranges have acted as barriers to gene flow for resident populations since prehistory and have offered a place for the settlement of small, and sometimes culturally diverse, communities. Therefore, the human groups that have settled in these areas are worth exploring as an important potential source of diversity in the genetic structure of European populations. In this study, we present new high resolution data concerning Y chromosomal variation in three distinct Alpine ethno-linguistic groups, Italian, Ladin and German. Combining unpublished and literature data on Y chromosome and mitochondrial variation, we were able to detect different genetic patterns. In fact, within and among population diversity values observed vary across linguistic groups, with German and Italian speakers at the two extremes, and seem to reflect their different demographic histories. Using simulations we inferred that the joint effect of continued genetic isolation and reduced founding group size may explain the apportionment of genetic diversity observed in all groups. Extending the analysis to other continental populations, we observed that the genetic differentiation of Ladins and German speakers from Europeans is comparable or even greater to that observed for well known outliers like Sardinian and Basques. Finally, we found that in south Tyroleans, the social practice of Geschlossener Hof, a hereditary norm which might have favored male dispersal, coincides with a significant intra-group diversity for mtDNA but not for Y chromosome, a genetic pattern which is opposite to those expected among patrilocal populations. Together with previous evidence regarding the possible effects of “local ethnicity” on the genetic structure of German speakers that have settled in the eastern Italian Alps, this finding suggests that taking socio-cultural factors into account together with geographical variables and linguistic diversity may help unveil some yet to be understood

  7. Demographic histories, isolation and social factors as determinants of the genetic structure of Alpine linguistic groups.

    PubMed

    Coia, Valentina; Capocasa, Marco; Anagnostou, Paolo; Pascali, Vincenzo; Scarnicci, Francesca; Boschi, Ilaria; Battaggia, Cinzia; Crivellaro, Federica; Ferri, Gianmarco; Alù, Milena; Brisighelli, Francesca; Busby, George B J; Capelli, Cristian; Maixner, Frank; Cipollini, Giovanna; Viazzo, Pier Paolo; Zink, Albert; Destro Bisol, Giovanni

    2013-01-01

    Great European mountain ranges have acted as barriers to gene flow for resident populations since prehistory and have offered a place for the settlement of small, and sometimes culturally diverse, communities. Therefore, the human groups that have settled in these areas are worth exploring as an important potential source of diversity in the genetic structure of European populations. In this study, we present new high resolution data concerning Y chromosomal variation in three distinct Alpine ethno-linguistic groups, Italian, Ladin and German. Combining unpublished and literature data on Y chromosome and mitochondrial variation, we were able to detect different genetic patterns. In fact, within and among population diversity values observed vary across linguistic groups, with German and Italian speakers at the two extremes, and seem to reflect their different demographic histories. Using simulations we inferred that the joint effect of continued genetic isolation and reduced founding group size may explain the apportionment of genetic diversity observed in all groups. Extending the analysis to other continental populations, we observed that the genetic differentiation of Ladins and German speakers from Europeans is comparable or even greater to that observed for well known outliers like Sardinian and Basques. Finally, we found that in south Tyroleans, the social practice of Geschlossener Hof, a hereditary norm which might have favored male dispersal, coincides with a significant intra-group diversity for mtDNA but not for Y chromosome, a genetic pattern which is opposite to those expected among patrilocal populations. Together with previous evidence regarding the possible effects of "local ethnicity" on the genetic structure of German speakers that have settled in the eastern Italian Alps, this finding suggests that taking socio-cultural factors into account together with geographical variables and linguistic diversity may help unveil some yet to be understood

  8. Testing the link between population genetic differentiation and clade diversification in Costa Rican orchids.

    PubMed

    Kisel, Yael; Moreno-Letelier, Alejandra C; Bogarín, Diego; Powell, Martyn P; Chase, Mark W; Barraclough, Timothy G

    2012-10-01

    Species population genetics could be an important factor explaining variation in clade species richness. Here, we use newly generated amplified fragment length polymorphism (AFLP) data to test whether five pairs of sister clades of Costa Rican orchids that differ greatly in species richness also differ in average neutral genetic differentiation within species, expecting that if the strength of processes promoting differentiation within species is phylogenetically heritable, then clades with greater genetic differentiation should diversify more. Contrary to expectation, neutral genetic differentiation does not correlate directly with total diversification in the clades studied. Neutral genetic differentiation varies greatly among species and shows no heritability within clades. Half of the variation in neutral genetic differentiation among populations can be explained by ecological variables, and species-level traits explain the most variation. Unexpectedly, we find no isolation by distance in any species, but genetic differentiation is greater between populations occupying different niches. This pattern corresponds with those observed for microscopic eukaryotes and could reflect effective widespread dispersal of tiny and numerous orchid seeds. Although not providing a definitive answer to whether population genetics processes affect clade diversification, this work highlights the potential for addressing new macroevolutionary questions using a comparative population genetic approach. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  9. Genetic admixture, social-behavioural factors and body composition are associated with blood pressure differently by racial-ethnic group among children.

    PubMed

    Klimentidis, Y C; Dulin-Keita, A; Casazza, K; Willig, A L; Allison, D B; Fernandez, J R

    2012-02-01

    Cardiovascular disease has a progressively earlier age of onset, and disproportionately affects African Americans (AAs) in the United States. It has been difficult to establish the extent to which group differences are due to physiological, genetic, social or behavioural factors. In this study, we examined the association between blood pressure and these factors among a sample of 294 children, identified as AA, European American or Hispanic American. We use body composition, behavioural (diet and physical activity) and survey-based measures (socio-economic status and perceived racial discrimination), as well as genetic admixture based on 142 ancestry informative markers (AIMs) to examine associations with systolic and diastolic blood pressure. We find that associations differ by ethnic/racial group. Notably, among AAs, physical activity and perceived racial discrimination, but not African genetic admixture, are associated with blood pressure, while the association between blood pressure and body fat is nearly absent. We find an association between blood pressure and an AIM near a marker identified by a recent genome-wide association study. Our findings shed light on the differences in risk factors for elevated blood pressure among ethnic/racial groups, and the importance of including social and behavioural measures to grasp the full genetic/environmental aetiology of disparities in blood pressure.

  10. Genetic admixture, social-behavioral factors, and body composition are associated with blood pressure differently by racial-ethnic group among children.

    PubMed Central

    Klimentidis, Yann C.; Dulin-Keita, Akilah; Casazza, Krista; Willig, Amanda L.; Allison, David B.; Fernandez, Jose R.

    2011-01-01

    Cardiovascular disease has a progressively earlier age of onset, and disproportionately affects African Americans in the US. It has been difficult to establish the extent to which group differences are due to physiological, genetic, social, or behavioral factors. In this study, we examined the association between blood pressure and these factors among a sample of 294 children, identified as African-, European-, or Hispanic-American. We use body composition, behavioral (diet and physical activity), and survey-based measures (socio-economic status and perceived racial discrimination), as well as genetic admixture based on 142 ancestry informative markers (AIM) to examine associations with systolic and diastolic blood pressure. We find that associations differ by ethnic/racial group. Notably, among African Americans, physical activity and perceived racial discrimination, but not African genetic admixture, are associated with blood pressure, while the association between blood pressure and body fat is nearly absent. We find an association between blood pressure and an AIM near a marker identified by a recent genome-wide association study. Our findings shed light on the differences in risk factors for elevated blood pressure among ethnic/racial groups, and the importance of including social and behavioral measures to grasp the full genetic/environmental etiology of disparities in blood pressure. PMID:21248781

  11. Response to A Different Vantage Point Commentary: Psychotherapeutic Genetic Counseling, Is it?

    PubMed Central

    Austin, Jehannine; Caleshu, Colleen

    2016-01-01

    Whether genetic counseling is a form of psychotherapy is open for debate. Early practicioners in genetic counseling described it as such, and this claim has been replicated in recent publications. This commentary is a rebuttal to the claim that genetic counseling is distinct from psychotherapty. We argue that it is a a form of psychoterapy that aims to help clients manage a health threat that affects their psychological wellbeing, paralleling the goals of psychotherapy. PMID:27804046

  12. Present-Day Genetic Structure of Atlantic Salmon (Salmo salar) in Icelandic Rivers and Ice-Cap Retreat Models

    PubMed Central

    Olafsson, Kristinn; Pampoulie, Christophe; Hjorleifsdottir, Sigridur; Gudjonsson, Sigurdur; Hreggvidsson, Gudmundur O.

    2014-01-01

    Due to an improved understanding of past climatological conditions, it has now become possible to study the potential concordance between former climatological models and present-day genetic structure. Genetic variability was assessed in 26 samples from different rivers of Atlantic salmon in Iceland (total of 2,352 individuals), using 15 microsatellite loci. F-statistics revealed significant differences between the majority of the populations that were sampled. Bayesian cluster analyses using both prior information and no prior information on sampling location revealed the presence of two distinguishable genetic pools - namely, the Northern (Group 1) and Southern (Group 2) regions of Iceland. Furthermore, the random permutation of different allele sizes among allelic states revealed a significant mutational component to the genetic differentiation at four microsatellite loci (SsaD144, Ssa171, SSsp2201 and SsaF3), and supported the proposition of a historical origin behind the observed variation. The estimated time of divergence, using two different ABC methods, suggested that the observed genetic pattern originated from between the Last Glacial Maximum to the Younger Dryas, which serves as additional evidence of the relative immaturity of Icelandic fish populations, on account of the re-colonisation of this young environment following the Last Glacial Maximum. Additional analyses suggested the presence of several genetic entities which were likely to originate from the original groups detected. PMID:24498283

  13. Generational differences in the age at diagnosis with Ibd: genetic anticipation, bias, or temporal effects.

    PubMed

    Faybush, E M; Blanchard, J F; Rawsthorne, P; Bernstein, C N

    2002-03-01

    Previous cross-sectional research has demonstrated generational differences in age at diagnosis (AAD) in inflammatory bowel disease (IBD). This observation has at times been ascribed to genetic anticipation, but could also be due to biases related to case ascertainment or follow-up or to temporal changes in IBD epidemiology. We aimed to explore this issue using a population-based database. In 1995 we used the comprehensive administrative databases in the province of Manitoba, Canada to establish a population-based IBD Research Registry that includes clinical and demographic information for persons. We contacted those subjects within our Research Registry who reported having any family members with IBD and their family members for verification of diagnosis and AAD. Differences in AAD between familial pairs were calculated. In addition, to assess whether duration of follow-up accounted for generational differences in AAD, we computed the mean AAD for subjects with and without family histories of IBD based on age at the time of interview (i.e., < 45 and > or = 45 yr of age). Of the 2445 persons with IBD in the Research Registry, 548 reported positive family histories, and 315 of these (58%) were reached by telephone. There were 169 Crohn's disease and 146 ulcerative colitis subjects with positive family histories. The mean AADs for the parents, aunts/uncles, and grandparents were significantly greater than the mean AADs for the children, nieces/nephews, and grandchildren, respectively. There was a doubling of the mean AAD when comparing the grandparent/grandchild cases with the parent/child or aunt/uncle-niece/nephew cases. No statistically significant difference in anticipation was observed, whether or not the older generation was male or female or had Crohn's disease or ulcerative colitis. The AAD was substantially greater for those interviewed at > or = 45 yr of age for subjects with and without family histories. However, there was no substantial difference in mean

  14. Genetic influences on heart rate variability

    PubMed Central

    Golosheykin, Simon; Grant, Julia D.; Novak, Olga V.; Heath, Andrew C.; Anokhin, Andrey P.

    2016-01-01

    Heart rate variability (HRV) is the variation of cardiac inter-beat intervals over time resulting largely from the interplay between the sympathetic and parasympathetic branches of the autonomic nervous system. Individual differences in HRV are associated with emotion regulation, personality, psychopathology, cardiovascular health, and mortality. Previous studies have shown significant heritability of HRV measures. Here we extend genetic research on HRV by investigating sex differences in genetic underpinnings of HRV, the degree of genetic overlap among different measurement domains of HRV, and phenotypic and genetic relationships between HRV and the resting heart rate (HR). We performed electrocardiogram (ECG) recordings in a large population-representative sample of young adult twins (n = 1060 individuals) and computed HRV measures from three domains: time, frequency, and nonlinear dynamics. Genetic and environmental influences on HRV measures were estimated using linear structural equation modeling of twin data. The results showed that variability of HRV and HR measures can be accounted for by additive genetic and non-shared environmental influences (AE model), with no evidence for significant shared environmental effects. Heritability estimates ranged from 47 to 64%, with little difference across HRV measurement domains. Genetic influences did not differ between genders for most variables except the square root of the mean squared differences between successive R-R intervals (RMSSD, higher heritability in males) and the ratio of low to high frequency power (LF/HF, distinct genetic factors operating in males and females). The results indicate high phenotypic and especially genetic correlations between HRV measures from different domains, suggesting that >90% of genetic influences are shared across measures. Finally, about 40% of genetic variance in HRV was shared with HR. In conclusion, both HR and HRV measures are highly heritable traits in the general

  15. Intensive Management and Natural Genetic Variation in Red Deer (Cervus elaphus).

    PubMed

    Galarza, Juan A; Sánchez-Fernández, Beatriz; Fandos, Paulino; Soriguer, Ramón

    2017-07-01

    The current magnitude of big-game hunting has outpaced the natural growth of populations, making artificial breeding necessary to rapidly boost hunted populations. In this study, we evaluated if the rapid increase of red deer (Cervus elaphus) abundance, caused by the growing popularity of big-game hunting, has impacted the natural genetic diversity of the species. We compared several genetic diversity metrics between 37 fenced populations subject to intensive management and 21 wild free-ranging populations. We also included a historically protected population from a national park as a baseline for comparisons. Contrary to expectations, our results showed no significant differences in genetic diversity between wild and fenced populations. Relatively lower genetic diversity was observed in the protected population, although differences were not significant in most cases. Bottlenecks were detected in both wild and fenced populations, as well as in the protected population. Assignment tests identified individuals that did not belong to their population of origin, indicating anthropogenic movement. We discuss the most likely processes, which could have led to the observed high levels of genetic variability and lack of differentiation between wild and fenced populations and suggest cautionary points for future conservation. We illustrate our comparative approach in red deer. However, our results and interpretations can be largely applicable to most ungulates subject to big-game hunting as most of them share a common exploitation-recovery history as well as many ecological traits. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Transcriptomes Reveal Genetic Signatures Underlying Physiological Variations Imposed by Different Fermentation Conditions in Lactobacillus plantarum

    PubMed Central

    Bongers, Roger S.; van Bokhorst-van de Veen, Hermien; Wiersma, Anne; Overmars, Lex; Marco, Maria L.; Kleerebezem, Michiel

    2012-01-01

    Lactic acid bacteria (LAB) are utilized widely for the fermentation of foods. In the current post-genomic era, tools have been developed that explore genetic diversity among LAB strains aiming to link these variations to differential phenotypes observed in the strains investigated. However, these genotype-phenotype matching approaches fail to assess the role of conserved genes in the determination of physiological characteristics of cultures by environmental conditions. This manuscript describes a complementary approach in which Lactobacillus plantarum WCFS1 was fermented under a variety of conditions that differ in temperature, pH, as well as NaCl, amino acid, and O2 levels. Samples derived from these fermentations were analyzed by full-genome transcriptomics, paralleled by the assessment of physiological characteristics, e.g., maximum growth rate, yield, and organic acid profiles. A data-storage and -mining suite designated FermDB was constructed and exploited to identify correlations between fermentation conditions and industrially relevant physiological characteristics of L. plantarum, as well as the associated transcriptome signatures. Finally, integration of the specific fermentation variables with the transcriptomes enabled the reconstruction of the gene-regulatory networks involved. The fermentation-genomics platform presented here is a valuable complementary approach to earlier described genotype-phenotype matching strategies which allows the identification of transcriptome signatures underlying physiological variations imposed by different fermentation conditions. PMID:22802930

  17. Genetic diversity of functional food species Spinacia oleracea L. by protein markers.

    PubMed

    Rashid, M; Yousaf, Z; Haider, M S; Khalid, S; Rehman, H A; Younas, A; Arif, A

    2014-01-01

    Exploration of genetic diversity contributes primarily towards crop improvement. Spinaciaoleracea L. is a functional food species but unfortunately the genetic diversity of this vegetable is still unexplored. Therefore, this research was planned to explore the genetic diversity of S. oleracea by using morphological and protein markers. Protein profile of 25 accessions was generated on sodium dodecyl sulphate polyacrylamide gel. Total allelic variation of 27 bands was found. Out of these, 20 were polymorphic and the rest of the bands were monomorphic. Molecular weights of the bands ranged from 12.6 to 91.2 kDa. Major genetic differences were observed in accession 20541 (Peshawar) followed by 20180 (Lahore) and 19902 (AVRDC). Significant differences exist in the protein banding pattern. This variation can further be studied by advanced molecular techniques, including two-dimensional electrophoresis and DNA markers.

  18. The 'morbid anatomy' of the human genome: tracing the observational and representational approaches of postwar genetics and biomedicine the William Bynum Prize Essay.

    PubMed

    Hogan, Andrew J

    2014-07-01

    This paper explores evolving conceptions and depictions of the human genome among human and medical geneticists during the postwar period. Historians of science and medicine have shown significant interest in the use of informational approaches in postwar genetics, which treat the genome as an expansive digital data set composed of three billion DNA nucleotides. Since the 1950s, however, geneticists have largely interacted with the human genome at the microscopically visible level of chromosomes. Mindful of this, I examine the observational and representational approaches of postwar human and medical genetics. During the 1970s and 1980s, the genome increasingly came to be understood as, at once, a discrete part of the human anatomy and a standardised scientific object. This paper explores the role of influential medical geneticists in recasting the human genome as being a visible, tangible, and legible entity, which was highly relevant to traditional medical thinking and practice. I demonstrate how the human genome was established as an object amenable to laboratory and clinical research, and argue that the observational and representational approaches of postwar medical genetics reflect, more broadly, the interdisciplinary efforts underlying the development of contemporary biomedicine.

  19. GENETIC DIFFERENCES IN IN VIVO/IN VITRO AIRWAY INJURY AND INFLAMMATION AFTER OIL FLY ASH EXPOSURE

    EPA Science Inventory

    GENETIC DIFFERENCES IN IN VIVO/ IN VITRO AIRWAY INJURY/ INFLAMMATION AFTER OIL FLY ASH EXPOSURE

    Janice Dye, Debora Andrews, Judy Richards, Annette King*, Urmila Kodavanti. US EPA & *SEE Program, RTP, NC.

    Oxidative stress is implicated in the pathogenesis and progres...

  20. No difference in mitochondrial distribution is observed in human oocytes after cryopreservation.

    PubMed

    Stimpfel, Martin; Vrtacnik-Bokal, Eda; Virant-Klun, Irma

    2017-08-01

    The primary aim of this study was to determine if any difference in mitochondrial distribution can be observed between fresh and cryopreserved (slow-frozen/thawed and vitrified/warmed) oocytes when oocytes are stained with Mitotracker Red CMXRos and observed under a conventional fluorescent microscope. Additionally, the influence of cryopreservation procedure on the viable rates of oocytes at different maturation stages was evaluated. The germinal vesicle (GV) and MII oocytes were cryopreserved with slow-freezing and vitrification. After thawing/warming, oocytes were stained using Mitotracker Red CMXRos and observed under a conventional fluorescent microscope. Mitotracker staining revealed that in GV oocytes the pattern of mitochondrial distribution appeared as aggregated clusters around the whole oocyte. In mature MII oocytes, three different patterns of mitochondrial distribution were observed; a smooth pattern around the polar body with aggregated clusters at the opposite side of the polar body, a smooth pattern throughout the whole cell, and aggregated clusters as can be seen in GV oocytes. There were no significant differences in the observed patterns between fresh, vitrified/warmed and frozen/thawed oocytes. When comparing the viable rates of oocytes after two different cryopreservation procedures, the results showed no significant differences, although the trend of viable MII oocytes tends to be higher after vitrification/warming and for viable GV oocytes it tends to be higher after slow-freezing/thawing. Mitotracker Red CMXRos staining of mitochondria in oocytes did not reveal differences in mitochondrial distribution between fresh and cryopreserved oocytes at different maturity stages. Additionally, no difference was observed in the viable rates of GV and MII oocytes after slow-freezing/thawing and vitrification/warming.

  1. Heritable influences on behavioural problems from early childhood to mid-adolescence: evidence for genetic stability and innovation.

    PubMed

    Lewis, G J; Plomin, R

    2015-07-01

    Although behavioural problems (e.g., anxiety, conduct, hyperactivity, peer problems) are known to be heritable both in early childhood and in adolescence, limited work has examined prediction across these ages, and none using a genetically informative sample. We examined, first, whether parental ratings of behavioural problems (indexed by the Strengths and Difficulties questionnaire) at ages 4, 7, 9, 12, and 16 years were stable across these ages. Second, we examined the extent to which stability reflected genetic or environmental effects through multivariate quantitative genetic analysis on data from a large (n > 3000) population (UK) sample of monozygotic and dizygotic twins. Behavioural problems in early childhood (age 4 years) showed significant associations with the corresponding behavioural problem at all subsequent ages. Moreover, stable genetic influences were observed across ages, indicating that biological bases underlying behavioural problems in adolescence are underpinned by genetic influences expressed as early as age 4 years. However, genetic and environmental innovations were also observed at each age. These observations indicate that genetic factors are important for understanding stable individual differences in behavioural problems across childhood and adolescence, although novel genetic influences also facilitate change in such behaviours.

  2. Potential genetic anticipation in hereditary leiomyomatosis-renal cell cancer (HLRCC).

    PubMed

    Wong, Mei Hua; Tan, Chuen Seng; Lee, Soo Chin; Yong, Yvonne; Ooi, Aik Seng; Ngeow, Joanne; Tan, Min Han

    2014-06-01

    Hereditary leiomyomatosis-renal cell cancer (HLRCC) is an autosomal dominant disorder characterised by cutaneous leiomyomas, symptomatic uterine leiomyomas and aggressive type II papillary renal cell carcinoma. It is caused by heterozygous mutations in the fumarate hydratase (FH) gene on chromosome 1q43. We present evidence of genetic anticipation in HLRCC syndrome. A comprehensive literature review was performed to determine the potential for genetic anticipation in HLRCC syndrome. The normal random effects model was used to evaluate for genetic anticipation to ensure reduction in bias. A total of 11 FH kindreds with available multi-generational data were identified for analysis. The mean difference in age at diagnosis of RCC between the first and second generation was -18.6 years (95 % CI -26.6 to -10.6, p < 0.001). The mean difference in age at diagnosis of RCC between the first and third generation was -36.2 years (95 % CI -47.0 to -25.4, p < 0.001). No evidence of anticipation for uterine leiomyomas was observed (p = 0.349). We report preliminary evidence of genetic anticipation of RCC in HLRCC syndrome. Additional clinical validation is important to confirm this observation, which may have practical implications on counseling and timing of surveillance initiation. Exploration of the underlying mechanisms of anticipation in HLRCC would be of considerable biological interest.

  3. Constraining Cosmological Models with Different Observations

    NASA Astrophysics Data System (ADS)

    Wei, J. J.

    2016-07-01

    With the observations of Type Ia supernovae (SNe Ia), scientists discovered that the Universe is experiencing an accelerated expansion, and then revealed the existence of dark energy in 1998. Since the amazing discovery, cosmology has became a hot topic in the physical research field. Cosmology is a subject that strongly depends on the astronomical observations. Therefore, constraining different cosmological models with all kinds of observations is one of the most important research works in the modern cosmology. The goal of this thesis is to investigate cosmology using the latest observations. The observations include SNe Ia, Type Ic Super Luminous supernovae (SLSN Ic), Gamma-ray bursts (GRBs), angular diameter distance of galaxy cluster, strong gravitational lensing, and age measurements of old passive galaxies, etc. In Chapter 1, we briefly review the research background of cosmology, and introduce some cosmological models. Then we summarize the progress on cosmology from all kinds of observations in more details. In Chapter 2, we present the results of our studies on the supernova cosmology. The main difficulty with the use of SNe Ia as standard candles is that one must optimize three or four nuisance parameters characterizing SN luminosities simultaneously with the parameters of an expansion model of the Universe. We have confirmed that one should optimize all of the parameters by carrying out the method of maximum likelihood estimation in any situation where the parameters include an unknown intrinsic dispersion. The commonly used method, which estimates the dispersion by requiring the reduced χ^{2} to equal unity, does not take into account all possible variances among the parameters. We carry out such a comparison of the standard ΛCDM cosmology and the R_{h}=ct Universe using the SN Legacy Survey sample of 252 SN events, and show that each model fits its individually reduced data very well. Moreover, it is quite evident that SLSNe Ic may be useful

  4. Genetic differences in transcript responses to low-dose ionizing radiation identify tissue functions associated with breast cancer susceptibility.

    PubMed

    Snijders, Antoine M; Marchetti, Francesco; Bhatnagar, Sandhya; Duru, Nadire; Han, Ju; Hu, Zhi; Mao, Jian-Hua; Gray, Joe W; Wyrobek, Andrew J

    2012-01-01

    High dose ionizing radiation (IR) is a well-known risk factor for breast cancer but the health effects after low-dose (LD, <10 cGy) exposures remain highly uncertain. We explored a systems approach that compared LD-induced chromosome damage and transcriptional responses in strains of mice with genetic differences in their sensitivity to radiation-induced mammary cancer (BALB/c and C57BL/6) for the purpose of identifying mechanisms of mammary cancer susceptibility. Unirradiated mammary and blood tissues of these strains differed significantly in baseline expressions of DNA repair, tumor suppressor, and stress response genes. LD exposures of 7.5 cGy (weekly for 4 weeks) did not induce detectable genomic instability in either strain. However, the mammary glands of the sensitive strain but not the resistant strain showed early transcriptional responses involving: (a) diminished immune response, (b) increased cellular stress, (c) altered TGFβ-signaling, and (d) inappropriate expression of developmental genes. One month after LD exposure, the two strains showed opposing responses in transcriptional signatures linked to proliferation, senescence, and microenvironment functions. We also discovered a pre-exposure expression signature in both blood and mammary tissues that is predictive for poor survival among human cancer patients (p = 0.0001), and a post-LD-exposure signature also predictive for poor patient survival (p<0.0001). There is concordant direction of expression in the LD-exposed sensitive mouse strain, in biomarkers of human DCIS and in biomarkers of human breast tumors. Our findings support the hypothesis that genetic mechanisms that determine susceptibility to LD radiation induced mammary cancer in mice are similar to the tissue mechanisms that determine poor-survival in breast cancer patients. We observed non-linearity of the LD responses providing molecular evidence against the LNT risk model and obtained new evidence that LD responses are strongly

  5. Genetic and pathogenic difference between Streptococcus agalactiae serotype Ia fish and human isolates.

    PubMed

    Chu, Chishih; Huang, Pei-Yu; Chen, Hung-Ming; Wang, Ying-Hsiang; Tsai, I-An; Lu, Chih-Cheng; Chen, Che-Chun

    2016-08-02

    Streptococcus agalactiae (GBS) is a common pathogen to infect newborn, woman, the elderly, and immuno-compromised human and fish. 37 fish isolates and 554 human isolates of the GBS in 2007-2012 were investigated in serotypes, antibiotic susceptibility, genetic difference and pathogenicity to tilapia. PCR serotyping determined serotype Ia for all fish GBS isolates and only in 3.2 % (3-4.2 %) human isolates. For fish isolates, all consisted a plasmid less than 6 kb and belonged to ST7 type, which includes mainly pulsotypes I and Ia, with a difference in a deletion at the largest DNA fragment. These fish isolates were susceptible to all antimicrobials tested in 2007 and increased in non-susceptibility to penicillin, and resistance to clindamycin and ceftriaxone in 2011. Differing in pulsotype and lacking plasmid from fish isolates, human serotype Ia isolates were separated into eight pulsotypes II-IX. Main clone ST23 included pulsotypes II and IIa (50 %) and ST483 consisted of pulsotype III. Human serotype Ia isolates were all susceptible to ceftriaxone and penicillin and few were resistant to erythromycin, azithromycin, clindamycin, levofloxacin and moxifloxacine with the resistant rate of 20 % or less. Using tilapia to analyze the pathogenesis, fish isolates could cause more severe symptoms, including hemorrhage of the pectoral fin, hemorrhage of the gill, and viscous black and common scites, and mortality (>95 % for pulsotype I) than the human isolates (<30 %); however, the fish pulostype Ia isolate 912 with deletion caused less symptoms and the lowest mortality (<50 %) than pulsotype I isolates. Genetic, pathogenic, and antimicrobial differences demonstrate diverse origin of human and fish serotype Ia isolates. The pulsotype Ia of fish serotype Ia isolates may be used as vaccine strains to prevent the GBS infection in fish.

  6. Genetic grouping strategies in selection efficiency of composite beef cattle ( × ).

    PubMed

    Petrini, J; Pertile, S F N; Eler, J P; Ferraz, J B S; Mattos, E C; Figueiredo, L G G; Mourão, G B

    2015-02-01

    The inclusion of genetic groups in sire evaluation has been widely used to represent genetic differences among animals not accounted for by the absence of parentage data. However, the definition of these groups is still arbitrary, and studies assessing the effects of genetic grouping strategies on the selection efficiency are rare. Therefore, the aim in this study was to compare genetic grouping strategies for animals with unknown parentage in prediction of breeding values (EBV). The total of 179,302 records of weaning weight (WW), 29,825 records of scrotal circumference (SC), and 70,302 records of muscling score (MUSC) from Montana Tropical animals, a Brazilian composite beef cattle population, were used. Genetic grouping strategies involving year of birth, sex of the unknown parent, birth farm, breed composition, and their combinations were evaluated. Estimated breeding values were predicted for each approach simulating a loss of genealogy data. Thereafter, these EBV were compared to those obtained in an analysis involving a real relationship matrix to estimate selection efficiency and correlations between EBV and animal rankings. The analysis model included the fixed effects of contemporary groups and class of the dam age at calving, the covariates of additive and nonadditive genetic effects, and age, and the additive genetic effect of animal as random effects. A second model also included the fixed effects of genetic group. The use of genetic groups resulted in means of selection efficiency and correlation of 70.4 to 97.1% and 0.51 to 0.94 for WW, 85.8 to 98.8% and 0.82 to 0.98 for SC, and 85.1 to 98.6% and 0.74 to 0.97 for MUSC, respectively. High selection efficiencies were observed for year of birth and breed composition strategies. The maximum absolute difference in annual genetic gain estimated through the use of complete genealogy and genetic groups were 0.38 kg for WW, 0.02 cm for SC, and 0.01 for MUSC, with lower differences obtained when year of birth

  7. Genetic diversity in aspen and its relation to arthropod abundance

    PubMed Central

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2015-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen. PMID:25674097

  8. Population genetic structure of moose (Alces alces) of South-central Alaska

    USGS Publications Warehouse

    Wilson, Robert E.; McDonough, John T.; Barboza, Perry S.; Talbot, Sandra L.; Farley, Sean D.

    2015-01-01

    The location of a population can influence its genetic structure and diversity by impacting the degree of isolation and connectivity to other populations. Populations at range margins are often thought to have less genetic variation and increased genetic structure, and a reduction in genetic diversity can have negative impacts on the health of a population. We explored the genetic diversity and connectivity between 3 peripheral populations of moose (Alces alces) with differing potential for connectivity to other areas within interior Alaska. Populations on the Kenai Peninsula and from the Anchorage region were found to be significantly differentiated (FST= 0.071, P < 0.0001) with lower levels of genetic diversity observed within the Kenai population. Bayesian analyses employing assignment methodologies uncovered little evidence of contemporary gene flow between Anchorage and Kenai, suggesting regional isolation. Although gene flow outside the peninsula is restricted, high levels of gene flow were detected within the Kenai that is explained by male-biased dispersal. Furthermore, gene flow estimates differed across time scales on the Kenai Peninsula which may have been influenced by demographic fluctuations correlated, at least in part, with habitat change.

  9. The association between intelligence and lifespan is mostly genetic.

    PubMed

    Arden, Rosalind; Luciano, Michelle; Deary, Ian J; Reynolds, Chandra A; Pedersen, Nancy L; Plassman, Brenda L; McGue, Matt; Christensen, Kaare; Visscher, Peter M

    2016-02-01

    Several studies in the new field of cognitive epidemiology have shown that higher intelligence predicts longer lifespan. This positive correlation might arise from socioeconomic status influencing both intelligence and health; intelligence leading to better health behaviours; and/or some shared genetic factors influencing both intelligence and health. Distinguishing among these hypotheses is crucial for medicine and public health, but can only be accomplished by studying a genetically informative sample. We analysed data from three genetically informative samples containing information on intelligence and mortality: Sample 1, 377 pairs of male veterans from the NAS-NRC US World War II Twin Registry; Sample 2, 246 pairs of twins from the Swedish Twin Registry; and Sample 3, 784 pairs of twins from the Danish Twin Registry. The age at which intelligence was measured differed between the samples. We used three methods of genetic analysis to examine the relationship between intelligence and lifespan: we calculated the proportion of the more intelligent twins who outlived their co-twin; we regressed within-twin-pair lifespan differences on within-twin-pair intelligence differences; and we used the resulting regression coefficients to model the additive genetic covariance. We conducted a meta-analysis of the regression coefficients across the three samples. The combined (and all three individual samples) showed a small positive phenotypic correlation between intelligence and lifespan. In the combined sample observed r = .12 (95% confidence interval .06 to .18). The additive genetic covariance model supported a genetic relationship between intelligence and lifespan. In the combined sample the genetic contribution to the covariance was 95%; in the US study, 84%; in the Swedish study, 86%, and in the Danish study, 85%. The finding of common genetic effects between lifespan and intelligence has important implications for public health, and for those interested in the

  10. The association between intelligence and lifespan is mostly genetic

    PubMed Central

    Arden, Rosalind; Deary, Ian J; Reynolds, Chandra A; Pedersen, Nancy L; Plassman, Brenda L; McGue, Matt; Christensen, Kaare; Visscher, Peter M

    2016-01-01

    Abstract Background: Several studies in the new field of cognitive epidemiology have shown that higher intelligence predicts longer lifespan. This positive correlation might arise from socioeconomic status influencing both intelligence and health; intelligence leading to better health behaviours; and/or some shared genetic factors influencing both intelligence and health. Distinguishing among these hypotheses is crucial for medicine and public health, but can only be accomplished by studying a genetically informative sample. Methods: We analysed data from three genetically informative samples containing information on intelligence and mortality: Sample 1, 377 pairs of male veterans from the NAS-NRC US World War II Twin Registry; Sample 2, 246 pairs of twins from the Swedish Twin Registry; and Sample 3, 784 pairs of twins from the Danish Twin Registry. The age at which intelligence was measured differed between the samples. We used three methods of genetic analysis to examine the relationship between intelligence and lifespan: we calculated the proportion of the more intelligent twins who outlived their co-twin; we regressed within-twin-pair lifespan differences on within-twin-pair intelligence differences; and we used the resulting regression coefficients to model the additive genetic covariance. We conducted a meta-analysis of the regression coefficients across the three samples. Results: The combined (and all three individual samples) showed a small positive phenotypic correlation between intelligence and lifespan. In the combined sample observed r  = .12 (95% confidence interval .06 to .18). The additive genetic covariance model supported a genetic relationship between intelligence and lifespan. In the combined sample the genetic contribution to the covariance was 95%; in the US study, 84%; in the Swedish study, 86%, and in the Danish study, 85%. Conclusions: The finding of common genetic effects between lifespan and intelligence has important implications

  11. Genetic structure of tree and shrubby species among anthropogenic edges, natural edges, and interior of an atlantic forest fragment.

    PubMed

    Ramos, Flavio Nunes; de Lima, Paula Feliciano; Zucchi, Maria Imaculada; Colombo, Carlos Augusto; Solferini, Vera Nisaka

    2010-04-01

    Two species, Psychotria tenuinervis (shrub, Rubiaceae) and Guarea guidonia (tree, Meliaceae), were used as models to compare the genetic structure of tree and shrubby species among natural edges, anthropogenic edges, and a fragment interior. There were significant differences between two genetic markers. For isozymes, P. tenuinervis presented greater heterozygosity (expected and observed) and a higher percentage of polymorphic loci and median number of alleles than G. guidonia. For microsatellites, there was no difference in genetic variability between the species. Only P. tenuinervis, for isozymes, showed differences in genetic variability among the three habitats. There was no genetic structure (F (ST) < 0.05) among habitats in both plant species for both genetic markers. Isozymes showed great endogamy for both plant species, but not microsatellites. The forest fragmentation may have negative effects on both spatial (among edges and interior) and temporal genetic variability.

  12. Genotype variation and genetic relationship among Escherichia coli from nursery pigs located in different pens in the same farm.

    PubMed

    Herrero-Fresno, Ana; Ahmed, Shahana; Hansen, Monica Hegstad; Denwood, Matthew; Zachariasen, Camilla; Olsen, John Elmerdahl

    2017-01-05

    So far, little is known about the genetic diversity and relatedness among Escherichia coli (E. coli) populations in the gut of swine. Information on this is required to improve modeling studies on antimicrobial resistance aiming to fight its occurrence and development. This work evaluated the genotype variation of E. coli isolated from swine fecal samples at the single pig and pen level, as well as between pens using repetitive extragenic palindromic (REP) PCR fingerprinting and pulsed field gel electrophoresis (PFGE). The genetic diversity of strains collected from media supplemented with ampicillin or tetracycline was also investigated. Besides, the genetic relationship of strains within each pen, between pens, as well as among strains within each group isolated from media with or without antibiotic, was assessed. REP-PCR patterns (N = 75) were generated for all the isolates (N = 720). Two profiles (REP_2 and REP_5) dominated, accounting for 23.7 and 23.3% of all isolates, respectively. At the pig and at the pen level, the number of different strains ranged from two to eight, and from 27 to 31, respectively, and multiple isolates from a single pen were found to be identical; however, in some of the pens, additional strains occurred at a lower frequency. E. coli isolates yielding different REP profiles were subjected to PFGE and led to 41 different genotypes which were also compared. Despite the presence of dominant strains, our results suggest a high genetic diversity of E. coli strains exist at the pen level and between pens. Selection with antibiotic seems to not affect the genetic diversity. The dominant REP profiles were the same found in a previous study in Denmark, which highlights that the same predominant strains are circulating in pigs of this country and might represent the archetypal E.coli commensal in pigs.

  13. Genetic heterogeneity of the hepatitis C virus.

    PubMed

    Bukh, J; Miller, R H; Purcell, R H

    1995-01-01

    Hepatitis C virus (HCV) is an important etiological agent in the development of chronic liver diseases such as chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). The virus, identified only recently, contains a single-stranded RNA genome of positive polarity, is distantly related to pestiviruses and flaviviruses, and has been classified as the first member of a third genus within the family Flaviviridae. Extensive analysis of HCV genomic sequences demonstrated that this virus possesses significant genetic heterogeneity. Different regions of the viral genome demonstrate a varying degree of heterogeneity; the regions coding for the putative envelope proteins are the most variable sites between different isolates. Furthermore, HCV circulates as a quasispecies in the host. During the course of acute and chronic infection, the sequence composition of the HCV population in one patient has been found to change sequentially with an extremely high rate of nonconserved nucleotide changes in the hypervariable region I (HVR1) of HCV. Such sequence changes alter the antigenicity of the epitopes coded within HVR1 so that these are not always recognized by preexisting antibodies. It has been suggested that this could represent one mechanism by which HCV evades host immune surveillance and may account for the high rate of chronicity observed in such infections. Continuous viral replication may, in turn, lead to the development of chronic liver disease, including HCC, in infected individuals. To date, at least nine major genetic groups (genotypes 1-9) and more than 30 subgroups of HCV have been recognized based on genetic differences. A distinct difference has been observed in the genotype distribution in Africa compared with other continents. Recent data have suggested a difference in pathogenesis and in the outcome of interferon therapy in individuals infected with HCV of certain genotypes. For example, genotype 1b (II) seems to be associated with more severe liver

  14. Large 0/12 GMT Differences of US Vaisala RS80 Observations

    NASA Technical Reports Server (NTRS)

    Redder, Chris; Atlas, Robert (Technical Monitor)

    2002-01-01

    The daily differences between the temperatures and heights taken at 0 GMT and 12 GMT by Vaisala RS80 rawinsondes have been calculated. The observations were obtained during selected months from 1998 - 2002 over North America, Europe and Australia. The daily differences are defined by the formula, Delta T = Delta T(sub 0) - 0.5(T(sub -12) - T(sub +12)) where AT is the 0/12 GMT difference, T(sub 0) is the 0 GMT observation and T(sub -12) and T(sub +12) are the 12 GMT observations taken just prior and after the 0 GMT synoptic time. If T(sub +12) is missing then Delta T = T(sub 0) - T(sub -12). A similar expression is used if T(sub -12) is missing. Monthly averages of the increments at each station that launch RS80 rawinsondes are then calculated. The results show positive systematic differences in the stratosphere with values as high as 5 K and 150 m at 10 hPa over the central United States. The values remain generally positive and gradually decrease as the levels descend into the upper troposphere but are still significant. In addition, the maximum at each level is just westward of 90 W at the highest levels and just eastward in the troposphere with smaller values along both coasts. In Canada as well as in Europe and Australia the differences are much smaller with no systematic patterns similar to those that exist over the contiguous United States. Time-series plots of the temperatures and heights at select stations in the United States show that the observed values taken at 0 GMT are consistently higher than those at 12 GMT. Over Canada the differences become much less apparent and some cases non-existent. The observations were obtained through National Centers for Environmental Prediction (NCEP) but were checked with data from other sources to verify that no modifications were made other than those at the stations. Since the data from outside the the United States exhibit no large systematic differences, the preliminary conclusion is that the large differences are

  15. Behavioural Susceptibility Theory: Professor Jane Wardle and the Role of Appetite in Genetic Risk of Obesity.

    PubMed

    Llewellyn, Clare H; Fildes, Alison

    2017-03-01

    There is considerable variability in human body weight, despite the ubiquity of the 'obesogenic' environment. Human body weight has a strong genetic basis and it has been hypothesised that genetic susceptibility to the environment explains variation in human body weight, with differences in appetite being implicated as the mediating mechanism; so-called 'behavioural susceptibility theory' (BST), first described by Professor Jane Wardle. This review summarises the evidence for the role of appetite as a mediator of genetic risk of obesity. Variation in appetitive traits is observable from infancy, drives early weight gain and is highly heritable in infancy and childhood. Obesity-related common genetic variants identified through genome-wide association studies show associations with appetitive traits, and appetite mediates part of the observed association between genetic risk and adiposity. Obesity results from an interaction between genetic susceptibility to overeating and exposure to an 'obesogenic' food environment.

  16. Nonequilibrium Conditions Explain Spatial Variability in Genetic Structuring of Little Penguin (Eudyptula minor)

    PubMed Central

    Peucker, Amanda J.; Valautham, Sureen K.; Styan, Craig A.; Dann, Peter

    2015-01-01

    Factors responsible for spatial structuring of population genetic variation are varied, and in many instances there may be no obvious explanations for genetic structuring observed, or those invoked may reflect spurious correlations. A study of little penguins (Eudyptula minor) in southeast Australia documented low spatial structuring of genetic variation with the exception of colonies at the western limit of sampling, and this distinction was attributed to an intervening oceanographic feature (Bonney Upwelling), differences in breeding phenology, or sea level change. Here, we conducted sampling across the entire Australian range, employing additional markers (12 microsatellites and mitochondrial DNA, 697 individuals, 17 colonies). The zone of elevated genetic structuring previously observed actually represents the eastern half of a genetic cline, within which structuring exists over much shorter spatial scales than elsewhere. Colonies separated by as little as 27 km in the zone are genetically distinguishable, while outside the zone, homogeneity cannot be rejected at scales of up to 1400 km. Given a lack of additional physical or environmental barriers to gene flow, the zone of elevated genetic structuring may reflect secondary contact of lineages (with or without selection against interbreeding), or recent colonization and expansion from this region. This study highlights the importance of sampling scale to reveal the cause of genetic structuring. PMID:25833231

  17. Genetic diversity of resin yielder Pinus merkusii from West Java - Indonesia revealed by microsatellites marker

    NASA Astrophysics Data System (ADS)

    Susilowati, A.; Rachmat, H. H.; Siregar, I. Z.; Supriyanto

    2018-02-01

    Phenotypic observation of resin yielder Pinus merkusii showed higher value of genetic variation and narrow sense heritability values for resin production trait. This result indicated that genetic factor played as dominant aspect. However, further observation using molecular marker would still be needed to overcome the weakness of phenotypic observation. This study was carried out in order to characterize the genetic diversity and genetic differentiation of resin yielder genotype candidate P.merkusii using microsatellite markers and to characterize the genetic structure in the resin yielder populations. Seventy needle and inner bark samples were collected from resin yielder in Cijambu Seedling Seed Orchard (SSO) Sumedang, West Java and further divided into two genotype candidates (lower and high resin yielder). Seven microsatellites loci (pm01, pm04, pm05, pm07, pm08, pm09a, pm12, pde5 and SPAC 11.6) were used for detection of genetic diversity. Results showed that genetic diversity in higher resin candidates was (0.551), slightly different compared lower candidates (0.545). However, cluster analysis determined that higher resin yielder grouped with lower one. Molecular variation was found to be low among populations (21%) and high among individuals within the populations (79%). Private alleles were detected both in higher yielder and also normal population.

  18. Genetic diversity and population structure of the endangered Namaqua Afrikaner sheep.

    PubMed

    Qwabe, Sithembele O; van Marle-Köster, Este; Visser, Carina

    2013-02-01

    The Namaqua Afrikaner is an endangered sheep breed indigenous to South Africa, primarily used in smallholder farming systems. Genetic characterization is essential for the breed's conservation and utilization. In this study, a genetic characterization was performed on 144 Namaqua Afrikaner sheep kept at the Karakul Experimental Station (KES), Carnarvon Experimental Station (CES), and a private farm Welgeluk (WGK) using 22 microsatellite markers. The mean number of alleles observed was low (3.7 for KES, 3.9 for CES, and 4.2 for WGK). Expected heterozygosity values across loci ranged between 46 % for WGK, 48 % for KES, and 55 % for CES, indicating low to moderate genetic variation. The analysis of molecular variance revealed that 89.5 % of the genetic variation was due to differences within populations. The population structure confirmed the differentiation of three clusters with high relationships between the CES and WGK populations. In the population structure comparison with Pedi and South African Mutton Merino sheep, limited hybridization between the Namaqua Afrikaner sheep and both of these breeds was observed. The results of this study will serve as a reference for genetic management and conservation of Namaqua Afrikaner sheep.

  19. Genetic and environmental factors affecting birth size variation: a pooled individual-based analysis of secular trends and global geographical differences using 26 twin cohorts.

    PubMed

    Yokoyama, Yoshie; Jelenkovic, Aline; Hur, Yoon-Mi; Sund, Reijo; Fagnani, Corrado; Stazi, Maria A; Brescianini, Sonia; Ji, Fuling; Ning, Feng; Pang, Zengchang; Knafo-Noam, Ariel; Mankuta, David; Abramson, Lior; Rebato, Esther; Hopper, John L; Cutler, Tessa L; Saudino, Kimberly J; Nelson, Tracy L; Whitfield, Keith E; Corley, Robin P; Huibregtse, Brooke M; Derom, Catherine A; Vlietinck, Robert F; Loos, Ruth J F; Llewellyn, Clare H; Fisher, Abigail; Bjerregaard-Andersen, Morten; Beck-Nielsen, Henning; Sodemann, Morten; Krueger, Robert F; McGue, Matt; Pahlen, Shandell; Bartels, Meike; van Beijsterveldt, Catharina E M; Willemsen, Gonneke; Harris, Jennifer R; Brandt, Ingunn; Nilsen, Thomas S; Craig, Jeffrey M; Saffery, Richard; Dubois, Lise; Boivin, Michel; Brendgen, Mara; Dionne, Ginette; Vitaro, Frank; Haworth, Claire M A; Plomin, Robert; Bayasgalan, Gombojav; Narandalai, Danshiitsoodol; Rasmussen, Finn; Tynelius, Per; Tarnoki, Adam D; Tarnoki, David L; Ooki, Syuichi; Rose, Richard J; Pietiläinen, Kirsi H; Sørensen, Thorkild I A; Boomsma, Dorret I; Kaprio, Jaakko; Silventoinen, Karri

    2018-05-19

    The genetic architecture of birth size may differ geographically and over time. We examined differences in the genetic and environmental contributions to birthweight, length and ponderal index (PI) across geographical-cultural regions (Europe, North America and Australia, and East Asia) and across birth cohorts, and how gestational age modifies these effects. Data from 26 twin cohorts in 16 countries including 57 613 monozygotic and dizygotic twin pairs were pooled. Genetic and environmental variations of birth size were estimated using genetic structural equation modelling. The variance of birthweight and length was predominantly explained by shared environmental factors, whereas the variance of PI was explained both by shared and unique environmental factors. Genetic variance contributing to birth size was small. Adjusting for gestational age decreased the proportions of shared environmental variance and increased the propositions of unique environmental variance. Genetic variance was similar in the geographical-cultural regions, but shared environmental variance was smaller in East Asia than in Europe and North America and Australia. The total variance and shared environmental variance of birth length and PI were greater from the birth cohort 1990-99 onwards compared with the birth cohorts from 1970-79 to 1980-89. The contribution of genetic factors to birth size is smaller than that of shared environmental factors, which is partly explained by gestational age. Shared environmental variances of birth length and PI were greater in the latest birth cohorts and differed also across geographical-cultural regions. Shared environmental factors are important when explaining differences in the variation of birth size globally and over time.

  20. Genetic variability of garlic accessions as revealed by agro-morphological traits evaluated under different environments.

    PubMed

    Hoogerheide, E S S; Azevedo Filho, J A; Vencovsky, R; Zucchi, M I; Zago, B W; Pinheiro, J B

    2017-05-31

    The cultivated garlic (Allium sativum L.) displays a wide phenotypic diversity, which is derived from natural mutations and phenotypic plasticity, due to dependence on soil type, moisture, latitude, altitude and cultural practices, leading to a large number of cultivars. This study aimed to evaluate the genetic variability shown by 63 garlic accessions belonging to Instituto Agronômico de Campinas and the Escola Superior de Agricultura "Luiz de Queiroz" germplasm collections. We evaluated ten quantitative characters in experimental trials conducted under two localities of the State of São Paulo: Monte Alegre do Sul and Piracicaba, during the agricultural year of 2007, in a randomized blocks design with five replications. The Mahalanobis distance was used to measure genetic dissimilarities. The UPGMA method and Tocher's method were used as clustering procedures. Results indicated significant variation among accessions (P < 0.01) for all evaluated characters, except for the percentage of secondary bulb growth in MAS, indicating the existence of genetic variation for bulb production, and germplasm evaluation considering different environments is more reliable for the characterization of the genotypic variability among garlic accessions, since it diminishes the environmental effects in the clustering of genotypes.

  1. Genome-Wide Association Analyses Highlight the Potential for Different Genetic Mechanisms for Litter Size Among Sheep Breeds

    PubMed Central

    Xu, Song-Song; Gao, Lei; Xie, Xing-Long; Ren, Yan-Ling; Shen, Zhi-Qiang; Wang, Feng; Shen, Min; Eyϸórsdóttir, Emma; Hallsson, Jón H.; Kiseleva, Tatyana; Kantanen, Juha; Li, Meng-Hua

    2018-01-01

    Reproduction is an important trait in sheep breeding as well as in other livestock. However, despite its importance the genetic mechanisms of litter size in domestic sheep (Ovis aries) are still poorly understood. To explore genetic mechanisms underlying the variation in litter size, we conducted multiple independent genome-wide association studies in five sheep breeds of high prolificacy (Wadi, Hu, Icelandic, Finnsheep, and Romanov) and one low prolificacy (Texel) using the Ovine Infinium HD BeadChip, respectively. We identified different sets of candidate genes associated with litter size in different breeds: BMPR1B, FBN1, and MMP2 in Wadi; GRIA2, SMAD1, and CTNNB1 in Hu; NCOA1 in Icelandic; INHBB, NF1, FLT1, PTGS2, and PLCB3 in Finnsheep; ESR2 in Romanov and ESR1, GHR, ETS1, MMP15, FLI1, and SPP1 in Texel. Further annotation of genes and bioinformatics analyses revealed that different biological pathways could be involved in the variation in litter size of females: hormone secretion (FSH and LH) in Wadi and Hu, placenta and embryonic lethality in Icelandic, folliculogenesis and LH signaling in Finnsheep, ovulation and preovulatory follicle maturation in Romanov, and estrogen and follicular growth in Texel. Taken together, our results provide new insights into the genetic mechanisms underlying the prolificacy trait in sheep and other mammals, suggesting targets for selection where the aim is to increase prolificacy in breeding projects. PMID:29692799

  2. Migration features of Ips typographus in the Tatra Mountains: using a genetic method

    Treesearch

    Ferenc Lakatos

    2003-01-01

    The genetic structure of Ips typographus populations in the Tatra Mountains was studied based on the observed differences of gene flow and migration rate. It was a highlighted question as to what extent different natural barriers influence the migration potential of the species.

  3. Genetic architecture of white matter hyperintensities differs in hypertensive and nonhypertensive ischemic stroke.

    PubMed

    Adib-Samii, Poneh; Devan, William; Traylor, Matthew; Lanfranconi, Silvia; Zhang, Cathy R; Cloonan, Lisa; Falcone, Guido J; Radmanesh, Farid; Fitzpatrick, Kaitlin; Kanakis, Allison; Rothwell, Peter M; Sudlow, Cathie; Boncoraglio, Giorgio B; Meschia, James F; Levi, Chris; Dichgans, Martin; Bevan, Steve; Rosand, Jonathan; Rost, Natalia S; Markus, Hugh S

    2015-02-01

    Epidemiological studies suggest that white matter hyperintensities (WMH) are extremely heritable, but the underlying genetic variants are largely unknown. Pathophysiological heterogeneity is known to reduce the power of genome-wide association studies (GWAS). Hypertensive and nonhypertensive individuals with WMH might have different underlying pathologies. We used GWAS data to calculate the variance in WMH volume (WMHV) explained by common single nucleotide polymorphisms (SNPs) as a measure of heritability (SNP heritability [HSNP]) and tested the hypothesis that WMH heritability differs between hypertensive and nonhypertensive individuals. WMHV was measured on MRI in the stroke-free cerebral hemisphere of 2336 ischemic stroke cases with GWAS data. After adjustment for age and intracranial volume, we determined which cardiovascular risk factors were independent predictors of WMHV. Using the genome-wide complex trait analysis tool to estimate HSNP for WMHV overall and within subgroups stratified by risk factors found to be significant in multivariate analyses. A significant proportion of the variance of WMHV was attributable to common SNPs after adjustment for significant risk factors (HSNP=0.23; P=0.0026). HSNP estimates were higher among hypertensive individuals (HSNP=0.45; P=7.99×10(-5)); this increase was greater than expected by chance (P=0.012). In contrast, estimates were lower, and nonsignificant, in nonhypertensive individuals (HSNP=0.13; P=0.13). A quarter of variance is attributable to common SNPs, but this estimate was greater in hypertensive individuals. These findings suggest that the genetic architecture of WMH in ischemic stroke differs between hypertensives and nonhypertensives. Future WMHV GWAS studies may gain power by accounting for this interaction. © 2014 The Authors. Published on behalf of the American Heart Association, Inc., by Wolters Kluwer.

  4. Domesticated, Genetically Engineered, and Wild Plant Relatives Exhibit Unintended Phenotypic Differences: A Comparative Meta-Analysis Profiling Rice, Canola, Maize, Sunflower, and Pumpkin

    PubMed Central

    Hernández-Terán, Alejandra; Wegier, Ana; Benítez, Mariana; Lira, Rafael; Escalante, Ana E.

    2017-01-01

    Agronomic management of plants is a powerful evolutionary force acting on their populations. The management of cultivated plants is carried out by the traditional process of human selection or plant breeding and, more recently, by the technologies used in genetic engineering (GE). Even though crop modification through GE is aimed at specific traits, it is possible that other non-target traits can be affected by genetic modification due to the complex regulatory processes of plant metabolism and development. In this study, we conducted a meta-analysis profiling the phenotypic consequences of plant breeding and GE, and compared modified cultivars with wild relatives in five crops of global economic and cultural importance: rice, maize, canola, sunflower, and pumpkin. For these five species, we analyzed the literature with documentation of phenotypic traits that are potentially related to fitness for the same species in comparable conditions. The information was analyzed to evaluate whether the different processes of modification had influenced the phenotype in such a way as to cause statistical differences in the state of specific phenotypic traits or grouping of the organisms depending on their genetic origin [wild, domesticated with genetic engineering (domGE), and domesticated without genetic engineering (domNGE)]. In addition, we tested the hypothesis that, given that transgenic plants are a construct designed to impact, in many cases, a single trait of the plant (e.g., lepidopteran resistance), the phenotypic differences between domGE and domNGE would be either less (or inexistent) than between the wild and domesticated relatives (either domGE or domNGE). We conclude that (1) genetic modification (either by selective breeding or GE) can be traced phenotypically when comparing wild relatives with their domesticated relatives (domGE and domNGE) and (2) the existence and the magnitude of the phenotypic differences between domGE and domNGE of the same crop suggest

  5. [Genetic deafness].

    PubMed

    Marcolla, A; Bouchetemble, P; Lerosey, Y; Marie, J-P; Dehesdin, D

    2006-06-01

    The aim of this study was to review the different types of genetic deafness. We describe syndromic and isolated sensorineural deafness and transmission deafness. Genetic sensorineural syndromic deafness represents 30% of cases of genetic deafness. A frequent cause is Pendred syndrome, which associates congenital sensorineural deafness with goitre and malformations of the inner ear which can be identified on computed tomography scan. Isolated deafness which is responsible for 70% of cases of genetic deafness is then outlined. Among the different types of isolated deafness, 80% are autosomal recessive disorders. A frequent form of autosomal recessive deafness is due to mutations in the connexin 26 gene. Lastly, we detail transmission deafness dominated by aplasia. Major aplasia is characterized by a malformation of the external ear associated with malformations of the middle ear whereas, minor aplasia corresponds to a malformation of the middle ear, sometimes associated with minor external ear malformations. For each type of deafness we propose a systematic assessment.

  6. Genetic barcodes

    DOEpatents

    Weier, Heinz -Ulrich G

    2015-08-04

    Herein are described multicolor FISH probe sets termed "genetic barcodes" targeting several cancer or disease-related loci to assess gene rearrangements and copy number changes in tumor cells. Two, three or more different fluorophores are used to detect the genetic barcode sections thus permitting unique labeling and multilocus analysis in individual cell nuclei. Gene specific barcodes can be generated and combined to provide both numerical and structural genetic information for these and other pertinent disease associated genes.

  7. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer

    PubMed Central

    Shen, Lanlan; Toyota, Minoru; Kondo, Yutaka; Lin, E; Zhang, Li; Guo, Yi; Hernandez, Natalie Supunpong; Chen, Xinli; Ahmed, Saira; Konishi, Kazuo; Hamilton, Stanley R.; Issa, Jean-Pierre J.

    2007-01-01

    Colon cancer has been viewed as the result of progressive accumulation of genetic and epigenetic abnormalities. However, this view does not fully reflect the molecular heterogeneity of the disease. We have analyzed both genetic (mutations of BRAF, KRAS, and p53 and microsatellite instability) and epigenetic alterations (DNA methylation of 27 CpG island promoter regions) in 97 primary colorectal cancer patients. Two clustering analyses on the basis of either epigenetic profiling or a combination of genetic and epigenetic profiling were performed to identify subclasses with distinct molecular signatures. Unsupervised hierarchical clustering of the DNA methylation data identified three distinct groups of colon cancers named CpG island methylator phenotype (CIMP) 1, CIMP2, and CIMP negative. Genetically, these three groups correspond to very distinct profiles. CIMP1 are characterized by MSI (80%) and BRAF mutations (53%) and rare KRAS and p53 mutations (16% and 11%, respectively). CIMP2 is associated with 92% KRAS mutations and rare MSI, BRAF, or p53 mutations (0, 4, and 31% respectively). CIMP-negative cases have a high rate of p53 mutations (71%) and lower rates of MSI (12%) or mutations of BRAF (2%) or KRAS (33%). Clustering based on both genetic and epigenetic parameters also identifies three distinct (and homogeneous) groups that largely overlap with the previous classification. The three groups are independent of age, gender, or stage, but CIMP1 and 2 are more common in proximal tumors. Together, our integrated genetic and epigenetic analysis reveals that colon cancers correspond to three molecularly distinct subclasses of disease. PMID:18003927

  8. Early selection of resistance-associated mutations in HIV-1 RT C-terminal domains across different subtypes: role of the genetic barrier to resistance.

    PubMed

    Muniz, Cláudia P; Soares, Marcelo A; Santos, André F

    2014-10-01

    Interpretation of drug resistance mutation (DRM) has been based solely on HIV-1 subtype B. Reverse transcriptase (RT) C-terminal domains have been disregarded in resistance interpretation, as their clinical relevance is still controversial. We determined the emergence of DRM in RT C-terminal domains of different HIV-1 subtypes, the genetic barrier for the acquisition of these DRM and their temporal appearance with 'classical' RT inhibitor (RTI) mutations. HIV-1 RT sequences were obtained from information from 6087 treatment-naive and 3795 RTI-treated patients deposited in the Stanford HIV Resistance Database, including all major subtypes. DRM emergence was evaluated for subtype B, and was correlated with the number of DRM in the polymerase domain. Genetic barrier was calculated for each DRM studied and in each subtype. N348I, T369I and A360V were found at low prevalence in treatment-naive isolates of all subtypes. A371V was common to treatment-naive isolates. N348I was observed in all subtypes, while T369I was only selected in subtype C. A360V and T369V were selected by RTI treatment in several subtypes. A371V was selected in subtypes B and C, but is a signature in subtype A. RT C-terminal mutations were correlated with early drug resistance in subtype B. All subtypes have a low calculated genetic barrier towards C-terminal DRM acquisition, despite a few disparities having been observed. C-terminal mutations were selected in all HIV-1 subtypes, while some represent subtype-specific signatures. The selection of C-terminal DRMs occurs early in RTI resistance failure in subtype B. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Dissection of the complex genetic basis of craniofacial anomalies using haploid genetics and interspecies hybrids in Nasonia wasps

    PubMed Central

    Werren, John H.; Cohen, Lorna B.; Gadau, Juergen; Ponce, Rita; Baudry, Emmanuelle; Lynch, Jeremy A.

    2016-01-01

    The animal head is a complex structure where numerous sensory, structural and alimentary structures are concentrated and integrated, and its ontogeny requires precise and delicate interactions among genes, cells, and tissues. Thus, it is perhaps unsurprising that craniofacial abnormalities are among the most common birth defects in people, or that these defects have a complex genetic basis involving interactions among multiple loci. Developmental processes that depend on such epistatic interactions become exponentially more difficult to study in diploid organisms as the number of genes involved increases. Here, we present hybrid haploid males of the wasp species pair Nasonia vitripennis and Nasonia giraulti, which have distinct male head morphologies, as a genetic model of craniofacial development that possesses the genetic advantages of haploidy, along with many powerful genomic tools. Viable, fertile hybrids can be made between the species, and quantitative trail loci related to shape differences have been identified. In addition, a subset of hybrid males show head abnormalities, including clefting at the midline and asymmetries. Crucially, epistatic interactions among multiple loci underlie several developmental differences and defects observed in the F2 hybrid males. Furthermore, we demonstrate an introgression of a chromosomal region from N. giraulti into N. vitripennis that shows an abnormality in relative eye size, which maps to a region containing a major QTL for this trait. Therefore, the genetic sources of head morphology can, in principle, be identified by positional cloning. Thus, Nasonia is well positioned to be a uniquely powerful model invertebrate system with which to probe both development and complex genetics of craniofacial patterning and defects. PMID:26721604

  10. Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior

    PubMed Central

    Gacias, Mar; Gaspari, Sevasti; Santos, Patricia-Mae G; Tamburini, Sabrina; Andrade, Monica; Zhang, Fan; Shen, Nan; Tolstikov, Vladimir; Kiebish, Michael A; Dupree, Jeffrey L; Zachariou, Venetia; Clemente, Jose C; Casaccia, Patrizia

    2016-01-01

    Gene-environment interactions impact the development of neuropsychiatric disorders, but the relative contributions are unclear. Here, we identify gut microbiota as sufficient to induce depressive-like behaviors in genetically distinct mouse strains. Daily gavage of vehicle (dH2O) in nonobese diabetic (NOD) mice induced a social avoidance behavior that was not observed in C57BL/6 mice. This was not observed in NOD animals with depleted microbiota via oral administration of antibiotics. Transfer of intestinal microbiota, including members of the Clostridiales, Lachnospiraceae and Ruminococcaceae, from vehicle-gavaged NOD donors to microbiota-depleted C57BL/6 recipients was sufficient to induce social avoidance and change gene expression and myelination in the prefrontal cortex. Metabolomic analysis identified increased cresol levels in these mice, and exposure of cultured oligodendrocytes to this metabolite prevented myelin gene expression and differentiation. Our results thus demonstrate that the gut microbiota modifies the synthesis of key metabolites affecting gene expression in the prefrontal cortex, thereby modulating social behavior. DOI: http://dx.doi.org/10.7554/eLife.13442.001 PMID:27097105

  11. Genetic characterization of local Criollo pig breeds from the Americas using microsatellite markers.

    PubMed

    Revidatti, M A; Delgado Bermejo, J V; Gama, L T; Landi Periati, V; Ginja, C; Alvarez, L A; Vega-Pla, J L; Martínez, A M

    2014-11-01

    Little is known about local Criollo pig genetic resources and relationships among the various populations. In this paper, genetic diversity and relationships among 17 Criollo pig populations from 11 American countries were assessed with 24 microsatellite markers. Heterozygosities, F-statistics, and genetic distances were estimated, and multivariate, genetic structure and admixture analyses were performed. The overall means for genetic variability parameters based on the 24 microsatellite markers were the following: mean number of alleles per locus of 6.25 ± 2.3; effective number of alleles per locus of 3.33 ± 1.56; allelic richness per locus of 4.61 ± 1.37; expected and observed heterozygosity of 0.62 ± 0.04 and 0.57 ± 0.02, respectively; within-population inbreeding coefficient of 0.089; and proportion of genetic variability accounted for by differences among breeds of 0.11 ± 0.01. Genetic differences were not significantly associated with the geographical location to which breeds were assigned or their country of origin. Still, the NeighborNet dendrogram depicted the clustering by geographic origin of several South American breeds (Criollo Boliviano, Criollo of northeastern Argentina wet, and Criollo of northeastern Argentina dry), but some unexpected results were also observed, such as the grouping of breeds from countries as distant as El Salvador, Mexico, Ecuador, and Cuba. The results of genetic structure and admixture analyses indicated that the most likely number of ancestral populations was 11, and most breeds clustered separately when this was the number of predefined populations, with the exception of some closely related breeds that shared the same cluster and others that were admixed. These results indicate that Criollo pigs represent important reservoirs of pig genetic diversity useful for local development as well as for the pig industry.

  12. Genetic and phenotypic diversity of geographically different isolates of Glomus mosseae.

    PubMed

    Avio, Luciano; Cristani, Caterina; Strani, Patrizia; Giovannetti, Manuela

    2009-03-01

    In this work, we combined morphological taxonomy and molecular methods to investigate the intraspecific diversity of Glomus mosseae, whose global distribution has been reviewed by a survey of scientific literature and Web-available records from international germplasm collections (International Culture Collection of Vesicular Arbuscular Mycorrhizal Fungi and International Bank of Glomeromycota). We surveyed 186 publications reporting the occurrence of G. mosseae from at least 474 different sites from 55 countries throughout all continents, producing a geographical map of their distribution. The relationships among G. mosseae isolates originating from Europe (United Kingdom), the United States (Arizona, Florida, and Indiana), Africa (Namibia), and West Asia (Syria) were analyzed. The level of resolution of internal transcribed spacer (ITS) sequences strongly supports the morphological species definition of G. mosseae. An ITS - restriction fragment length polymorphism assay with the enzyme HinfI yielded a unique profile for all G. mosseae isolates, allowing a straightforward identification of this morphospecies. Genetic variability among G. mosseae isolates was revealed by the inter-simple-sequence repeat (ISSR) - polymerase chain reaction: the magnitude of genetic divergence shown by the investigated geographical isolates was higher than 50%, consistent with previous data on vegetative compatibility and functional diversity. The variability of ISSR patterns suggests that intraspecific diversity is much higher than that foreseen by morphology and rDNA regions, and should be further investigated by using other genes, such as those related to functional diversity.

  13. A propensity score approach to correction for bias due to population stratification using genetic and non-genetic factors.

    PubMed

    Zhao, Huaqing; Rebbeck, Timothy R; Mitra, Nandita

    2009-12-01

    Confounding due to population stratification (PS) arises when differences in both allele and disease frequencies exist in a population of mixed racial/ethnic subpopulations. Genomic control, structured association, principal components analysis (PCA), and multidimensional scaling (MDS) approaches have been proposed to address this bias using genetic markers. However, confounding due to PS can also be due to non-genetic factors. Propensity scores are widely used to address confounding in observational studies but have not been adapted to deal with PS in genetic association studies. We propose a genomic propensity score (GPS) approach to correct for bias due to PS that considers both genetic and non-genetic factors. We compare the GPS method with PCA and MDS using simulation studies. Our results show that GPS can adequately adjust and consistently correct for bias due to PS. Under no/mild, moderate, and severe PS, GPS yielded estimated with bias close to 0 (mean=-0.0044, standard error=0.0087). Under moderate or severe PS, the GPS method consistently outperforms the PCA method in terms of bias, coverage probability (CP), and type I error. Under moderate PS, the GPS method consistently outperforms the MDS method in terms of CP. PCA maintains relatively high power compared to both MDS and GPS methods under the simulated situations. GPS and MDS are comparable in terms of statistical properties such as bias, type I error, and power. The GPS method provides a novel and robust tool for obtaining less-biased estimates of genetic associations that can consider both genetic and non-genetic factors. 2009 Wiley-Liss, Inc.

  14. Genetic characterization of Uruguayan Pampa Rocha pigs with microsatellite markers

    PubMed Central

    Montenegro, M; Llambí, S; Castro, G; Barlocco, N; Vadell, A; Landi, V; Delgado, JV; Martínez, A

    2015-01-01

    In this study, we genetically characterized the Uruguayan pig breed Pampa Rocha. Genetic variability was assessed by analyzing a panel of 25 microsatellite markers from a sample of 39 individuals. Pampa Rocha pigs showed high genetic variability with observed and expected heterozygosities of 0.583 and 0.603, respectively. The mean number of alleles was 5.72. Twenty-four markers were polymorphic, with 95.8% of them in Hardy Weinberg equilibrium. The level of endogamy was low (FIS = 0.0475). A factorial analysis of correspondence was used to assess the genetic differences between Pampa Rocha and other pig breeds; genetic distances were calculated, and a tree was designed to reflect the distance matrix. Individuals were also allocated into clusters. This analysis showed that the Pampa Rocha breed was separated from the other breeds along the first and second axes. The neighbour-joining tree generated by the genetic distances DA showed clustering of Pampa Rocha with the Meishan breed. The allocation of individuals to clusters showed a clear separation of Pampa Rocha pigs. These results provide insights into the genetic variability of Pampa Rocha pigs and indicate that this breed is a well-defined genetic entity. PMID:25983624

  15. The Flipside of the Power of Engineered T Cells: Observed and Potential Toxicities of Genetically Modified T Cells as Therapy.

    PubMed

    Bedoya, Felipe; Frigault, Matthew J; Maus, Marcela V

    2017-02-01

    Autologous T cells modified to recognize novel antigen targets are a novel form of therapy for cancer. We review the various potential forms of observed and hypothetical toxicities associated with genetically modified T cells. Despite the focus on toxicities in this review, re-directed T cells represent a powerful and highly effective form of anti-cancer therapy; we remain optimistic that the common toxicities will become routinely manageable and that some theoretical toxicity will be exceedingly rare, if ever observed. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  16. Genetic Testing: How Genetics and Genomics Can Affect Healthcare Disparities
.

    PubMed

    Allen, Deborah

    2018-02-01

    Advances in oncology care have transformed treatment approaches as genetics and genomics analyses promote implementation of personalized medicine. Genetics and genomics research in TP53 have demonstrated that some mutations are prevalent in minority populations. This has implications on personalized treatment approaches, particularly in early disease stages. The purpose of this article is to describe oncology nurses' role in applying these findings in practice to reduce disparities observed in cancer and survivorship care.
.

  17. Genetics of human body size and shape: pleiotropic and independent genetic determinants of adiposity.

    PubMed

    Livshits, G; Yakovenko, K; Ginsburg, E; Kobyliansky, E

    1998-01-01

    The present study utilized pedigree data from three ethnically different populations of Kirghizstan, Turkmenia and Chuvasha. Principal component analysis was performed on a matrix of genetic correlations between 22 measures of adiposity, including skinfolds, circumferences and indices. Findings are summarized as follows: (1) All three genetic matrices were not positive definite and the first four factors retained even after exclusion RG > or = 1.0, explained from 88% to 97% of the total additive genetic variation in the 22 trials studied. This clearly emphasizes the massive involvement of pleiotropic gene effects in the variability of adiposity traits. (2) Despite the quite natural differences in pairwise correlations between the adiposity traits in the three ethnically different samples under study, factor analysis revealed a common basic pattern of covariability for the adiposity traits. In each of the three samples, four genetic factors were retained, namely, the amount of subcutaneous fat, the total body obesity, the pattern of distribution of subcutaneous fat and the central adiposity distribution. (3) Genetic correlations between the retained four factors were virtually non-existent, suggesting that several independent genetic sources may be governing the variation of adiposity traits. (4) Variance decomposition analysis on the obtained genetic factors leaves no doubt regarding the substantial familial and (most probably genetic) effects on variation of each factor in each studied population. The similarity of results in the three different samples indicates that the findings may be deemed valid and reliable descriptions of the genetic variation and covariation pattern of adiposity traits in the human species.

  18. The Epidemiology of Observed Temperament: Factor Structure and Demographic Group Differences

    PubMed Central

    Willoughby, Michael T.; Stifter, Cynthia A.; Gottfredson, Nisha C.

    2015-01-01

    This study investigated the factor structure of observational indicators of children’s temperament that were collected across the first three years of life in the Family Life Project (N = 1205) sample. A four-factor model (activity level, fear, anger, regulation), which corresponded broadly to Rothbart’s distinction between reactivity and regulation, provided an acceptable fit the observed data. Tests of measurement invariance demonstrated that a majority of the observational indicators exhibited comparable measurement properties for male vs. female, black vs. white, and poor vs. not-poor children, which improved the generalizability of these results. Unadjusted demographic group comparisons revealed small to moderate sized differences (Cohen ds = |.23 – .42|) in temperamental reactivity and moderate to large sized differences (Cohen ds = −.64 – −.97) in regulation. Collectively, demographic variables explained more of the variation in regulation (R2 = .25) than in reactivity (R2 = .02 – .06). Follow-up analyses demonstrated that race differences were substantially diminished in magnitude and better accounted for by poverty. These results help to validate the distinction between temperamental reactivity and regulation using observational indicators. PMID:25733489

  19. The ‘Morbid Anatomy’ of the Human Genome: Tracing the Observational and Representational Approaches of Postwar Genetics and Biomedicine The William Bynum Prize Essay

    PubMed Central

    Hogan, Andrew J.

    2014-01-01

    This paper explores evolving conceptions and depictions of the human genome among human and medical geneticists during the postwar period. Historians of science and medicine have shown significant interest in the use of informational approaches in postwar genetics, which treat the genome as an expansive digital data set composed of three billion DNA nucleotides. Since the 1950s, however, geneticists have largely interacted with the human genome at the microscopically visible level of chromosomes. Mindful of this, I examine the observational and representational approaches of postwar human and medical genetics. During the 1970s and 1980s, the genome increasingly came to be understood as, at once, a discrete part of the human anatomy and a standardised scientific object. This paper explores the role of influential medical geneticists in recasting the human genome as being a visible, tangible, and legible entity, which was highly relevant to traditional medical thinking and practice. I demonstrate how the human genome was established as an object amenable to laboratory and clinical research, and argue that the observational and representational approaches of postwar medical genetics reflect, more broadly, the interdisciplinary efforts underlying the development of contemporary biomedicine. PMID:25045177

  20. Genetic progression of malignant melanoma.

    PubMed

    Tímár, J; Vizkeleti, L; Doma, V; Barbai, T; Rásó, E

    2016-03-01

    Malignant melanoma of the skin is the most aggressive human cancer given that a primary tumor a few millimeters in diameter frequently has full metastatic competence. In view of that, revealing the genetic background of this potential may also help to better understand tumor dissemination in general. Genomic analyses have established the molecular classification of melanoma based on the most frequent driver oncogenic mutations (BRAF, NRAS, KIT) and have also revealed a long list of rare events, including mutations and amplifications as well as genetic microheterogeneity. At the moment, it is unclear whether any of these rare events have role in the metastasis initiation process since the major drivers do not have such a role. During lymphatic and hematogenous dissemination, the clonal selection process is evidently reflected by differences in oncogenic drivers in the metastases versus the primary tumor. Clonal selection is also evident during lymphatic progression, though the genetic background of this immunoselection is less clear. Genomic analyses of metastases identified further genetic alterations, some of which may correspond to metastasis maintenance genes. The natural genetic progression of melanoma can be modified by targeted (BRAF or MEK inhibitor) or immunotherapies. Some of the rare events in primary tumors may result in primary resistance, while further new genetic lesions develop during the acquired resistance to both targeted and immunotherapies. Only a few genetic lesions of the primary tumor are constant during natural or therapy-modulated progression. EGFR4 and NMDAR2 mutations, MITF and MET amplifications and PTEN loss can be considered as metastasis drivers. Furthermore, BRAF and MITF amplifications as well as PTEN loss are also responsible for resistance to targeted therapies, whereas NRAS mutation is the only founder genetic lesion showing any association with sensitivity to immunotherapies. Unfortunately, there are hardly any data on the

  1. The African baobab (Adansonia digitata, Malvaceae): genetic resources in neglected populations of the Nuba Mountains, Sudan.

    PubMed

    Wiehle, Martin; Prinz, Kathleen; Kehlenbeck, Katja; Goenster, Sven; Mohamed, Seifeldin Ali; Finkeldey, Reiner; Buerkert, Andreas; Gebauer, Jens

    2014-09-01

    • Adansonia digitata L. is one of the most important indigenous fruit trees of mainland Africa. Despite its significance for subsistence and income generation of local communities, little is known about the genetic and morphological variability of East African populations of A. digitata, including those of Sudan. The aim of the current study, therefore, was to analyze genetic and morphological variability of different baobab populations in Kordofan, Sudan and to estimate the effect of human intervention on genetic differentiation and diversity.• A total of 306 trees were randomly sampled from seven spatially separated locations in the Nuba Mountains, Sudan, to cover a wide range of differing environmental gradients and management regimes ('homesteads' and 'wild'). Genetic analyses were conducted using nine microsatellite markers. Because of the tetraploid nature of A. digitata, different approaches were applied to estimate patterns of genetic diversity. Investigations were completed by measurements of dendrometric and fruit morphological characters.• Genetic diversity was balanced and did not differ between locations or management regimes, although tendencies of higher diversity in 'homesteads' were observed. A Bayesian cluster approach detected two distinct gene pools in the sample set, mainly caused by one highly diverse population close to a main road. The variability of tree characters and fruit morphometries was high, and significantly different between locations.• Results indicated a rather positive effect with human intervention. The observed populations provide a promising gene pool and likely comprise ecotypes well-adapted to environmental conditions at the northern distribution range of the species, which should be considered in conservation and management programs. © 2014 Botanical Society of America, Inc.

  2. The neutral emergence of error minimized genetic codes superior to the standard genetic code.

    PubMed

    Massey, Steven E

    2016-11-07

    The standard genetic code (SGC) assigns amino acids to codons in such a way that the impact of point mutations is reduced, this is termed 'error minimization' (EM). The occurrence of EM has been attributed to the direct action of selection, however it is difficult to explain how the searching of alternative codes for an error minimized code can occur via codon reassignments, given that these are likely to be disruptive to the proteome. An alternative scenario is that EM has arisen via the process of genetic code expansion, facilitated by the duplication of genes encoding charging enzymes and adaptor molecules. This is likely to have led to similar amino acids being assigned to similar codons. Strikingly, we show that if during code expansion the most similar amino acid to the parent amino acid, out of the set of unassigned amino acids, is assigned to codons related to those of the parent amino acid, then genetic codes with EM superior to the SGC easily arise. This scheme mimics code expansion via the gene duplication of charging enzymes and adaptors. The result is obtained for a variety of different schemes of genetic code expansion and provides a mechanistically realistic manner in which EM has arisen in the SGC. These observations might be taken as evidence for self-organization in the earliest stages of life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Do parental perceptions and motivations towards genetic testing and prenatal diagnosis for deafness vary in different cultures?

    PubMed

    Nahar, Risha; Puri, Ratna D; Saxena, Renu; Verma, Ishwar C

    2013-01-01

    Surveys of attitudes of individuals with deafness and their families towards genetic testing or prenatal diagnosis have mostly been carried out in the West. It is expected that the perceptions and attitudes would vary amongst persons of different cultures and economic background. There is little information on the prevailing attitudes for genetic testing and prenatal diagnosis for deafness in developing countries. Therefore, this study evaluates the motivations of Indian people with inherited hearing loss towards such testing. Twenty-eight families with history of congenital hearing loss (23 hearing parents with child/family member with deafness, 4 couples with both partners having deafness and 1 parent and child with deafness) participated in a semi-structured survey investigating their interest, attitudes, and intentions for using genetic and prenatal testing for deafness. Participants opinioned that proper management and care of individuals with deafness were handicapped by limited rehabilitation facilities with significant financial and social burden. Nineteen (68%) opted for genetic testing. Twenty-six (93%) expressed high interest in prenatal diagnosis, while 19 (73%) would consider termination of an affected fetus. Three hearing couples, in whom the causative mutations were identified, opted for prenatal diagnosis. On testing, all the three fetuses were affected and the hearing parents elected to terminate the pregnancies. This study provides an insight into the contrasting perceptions towards hearing disability in India and its influence on the desirability of genetic testing and prenatal diagnosis. Copyright © 2012 Wiley Periodicals, Inc.

  4. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests.

    PubMed

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-02-01

    The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force-velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles.

  5. Muscle Force-Velocity Relationships Observed in Four Different Functional Tests

    PubMed Central

    Zivkovic, Milena Z.; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-01-01

    Abstract The aims of the present study were to investigate the shape and strength of the force-velocity relationships observed in different functional movement tests and explore the parameters depicting force, velocity and power producing capacities of the tested muscles. Twelve subjects were tested on maximum performance in vertical jumps, cycling, bench press throws, and bench pulls performed against different loads. Thereafter, both the averaged and maximum force and velocity variables recorded from individual trials were used for force–velocity relationship modeling. The observed individual force-velocity relationships were exceptionally strong (median correlation coefficients ranged from r = 0.930 to r = 0.995) and approximately linear independently of the test and variable type. Most of the relationship parameters observed from the averaged and maximum force and velocity variable types were strongly related in all tests (r = 0.789-0.991), except for those in vertical jumps (r = 0.485-0.930). However, the generalizability of the force-velocity relationship parameters depicting maximum force, velocity and power of the tested muscles across different tests was inconsistent and on average moderate. We concluded that the linear force-velocity relationship model based on either maximum or averaged force-velocity data could provide the outcomes depicting force, velocity and power generating capacity of the tested muscles, although such outcomes can only be partially generalized across different muscles. PMID:28469742

  6. Genetic Analysis of Termite Colonies in Wisconsin.

    PubMed

    Arango, R A; Marschalek, D A; Green, F; Raffa, K F; Berres, M E

    2015-06-01

    The objective of this study was to document current areas of subterranean termite activity in Wisconsin and to evaluate genetic characteristics of these northern, peripheral colonies. Here, amplified fragment-length polymorphism was used to characterize levels of inbreeding, expected heterozygosity, and percent polymorphism within colonies as well as genetic structure among populations sampled. Genetic analysis revealed two species of termites occur in Wisconsin, Reticulitermes flavipes (Kollar) and Reticulitermes tibialis Banks, both found in the southern half of the state. Colonies of both species in Wisconsin are thought to represent the northern boundary of their current distributions. Measurements of within colony genetic variation showed the proportion of polymorphic loci to be between 52.9-63.9% and expected heterozygosity to range from 0.122-0.189. Consistent with geographical isolation, strong intercolony genetic differences were observed, with over 50% of FST values above 0.25 and the remaining showing moderate levels of genetic differentiation. Combined with low levels of inbreeding in most collection locations (FIS 0.042-0.123), we hypothesize termites were introduced numerous times in the state, likely by anthropogenic means. We discuss the potential effects of these genetic characteristics on successful colony establishment of termites along the northern boundary compared with termites in the core region of their distribution. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  7. Response to A Different Vantage Point Commentary: Psychotherapeutic Genetic Counseling, Is it?

    PubMed

    Biesecker, Barbara; Austin, Jehannine; Caleshu, Colleen

    2017-04-01

    Whether genetic counseling is a form of psychotherapy is open for debate. Early practicioners in genetic counseling described it as such, and this claim has been replicated in recent publications. This commentary is a rebuttal to the claim that genetic counseling is distinct from psychotherapty. We argue that it is a a form of psychoterapy that aims to help clients manage a health threat that affects their psychological wellbeing, paralleling the goals of psychotherapy.

  8. The heterogeneous HLA genetic makeup of the Swiss population.

    PubMed

    Buhler, Stéphane; Nunes, José Manuel; Nicoloso, Grazia; Tiercy, Jean-Marie; Sanchez-Mazas, Alicia

    2012-01-01

    This study aims at investigating the HLA molecular variation across Switzerland in order to determine possible regional differences, which would be highly relevant to several purposes: optimizing donor recruitment strategies in hematopoietic stem cell transplantation (HSCT), providing reliable reference data in HLA and disease association studies, and understanding the population genetic background(s) of this culturally heterogeneous country. HLA molecular data of more than 20,000 HSCT donors from 9-13 recruitment centers of the whole country were analyzed. Allele and haplotype frequencies were estimated by using new computer tools adapted to the heterogeneity and ambiguity of the data. Non-parametric and resampling statistical tests were performed to assess Hardy-Weinberg equilibrium, selective neutrality and linkage disequilibrium among different loci, both in each recruitment center and in the whole national registry. Genetic variation was explored through genetic distance and hierarchical analysis of variance taking into account both geographic and linguistic subdivisions in Switzerland. The results indicate a heterogeneous genetic makeup of the Swiss population: first, allele frequencies estimated on the whole national registry strongly deviate from Hardy-Weinberg equilibrium, by contrast with the results obtained for individual centers; second, a pronounced differentiation is observed for Ticino, Graubünden, and, to a lesser extent, Wallis, suggesting that the Alps represent(ed) a barrier to gene flow; finally, although cultural (linguistic) boundaries do not represent a main genetic differentiation factor in Switzerland, the genetic relatedness between population from south-eastern Switzerland and Italy agrees with historical and linguistic data. Overall, this study justifies the maintenance of a decentralized donor recruitment structure in Switzerland allowing increasing the genetic diversity of the national--and hence global--donor registry. It also

  9. The Heterogeneous HLA Genetic Makeup of the Swiss Population

    PubMed Central

    Buhler, Stéphane; Nunes, José Manuel; Nicoloso, Grazia; Tiercy, Jean-Marie; Sanchez-Mazas, Alicia

    2012-01-01

    This study aims at investigating the HLA molecular variation across Switzerland in order to determine possible regional differences, which would be highly relevant to several purposes: optimizing donor recruitment strategies in hematopoietic stem cell transplantation (HSCT), providing reliable reference data in HLA and disease association studies, and understanding the population genetic background(s) of this culturally heterogeneous country. HLA molecular data of more than 20,000 HSCT donors from 9–13 recruitment centers of the whole country were analyzed. Allele and haplotype frequencies were estimated by using new computer tools adapted to the heterogeneity and ambiguity of the data. Non-parametric and resampling statistical tests were performed to assess Hardy-Weinberg equilibrium, selective neutrality and linkage disequilibrium among different loci, both in each recruitment center and in the whole national registry. Genetic variation was explored through genetic distance and hierarchical analysis of variance taking into account both geographic and linguistic subdivisions in Switzerland. The results indicate a heterogeneous genetic makeup of the Swiss population: first, allele frequencies estimated on the whole national registry strongly deviate from Hardy-Weinberg equilibrium, by contrast with the results obtained for individual centers; second, a pronounced differentiation is observed for Ticino, Graubünden, and, to a lesser extent, Wallis, suggesting that the Alps represent(ed) a barrier to gene flow; finally, although cultural (linguistic) boundaries do not represent a main genetic differentiation factor in Switzerland, the genetic relatedness between population from south-eastern Switzerland and Italy agrees with historical and linguistic data. Overall, this study justifies the maintenance of a decentralized donor recruitment structure in Switzerland allowing increasing the genetic diversity of the national—and hence global—donor registry. It also

  10. How Different Genetically Manipulated Brassica Genotypes Affect Life Table Parameters of Plutella xylostella (Lepidoptera: Plutellidae).

    PubMed

    Nikooei, Mehrnoosh; Fathipour, Yaghoub; Jalali Javaran, Mokhtar; Soufbaf, Mahmoud

    2015-04-01

    The fitness of Plutella xylostella L. on different genetically manipulated Brassica plants, including canola's progenitor (Brassica rapa L.), two cultivated canola cultivars (Opera and RGS003), one hybrid (Hyula401), one gamma-ray mutant-RGS003, and one transgenic (PF) genotype was compared using two-sex and female-based life table parameters. All experiments were conducted in a growth chamber at 25±1°C, 65±5% relative humidity, and a photoperiod of 16:8 (L:D) h. There were significant differences in duration of different life stages of P. xylostella on different plant genotypes. The shortest (13.92 d) and longest (24.61 d) total developmental time were on Opera and PF, respectively. The intrinsic rate of increase of P. xylostella ranged between 0.236 (Opera) and 0.071 day(-1) (PF). The highest (60.79 offspring) and lowest (7.88 offspring) net reproductive rates were observed on Opera and PF, respectively. Comparison of intrinsic rate of increase, net reproductive rates, finite rate of increase, mean generation time, fecundity, and survivorship of P. xylostella on the plant genotypes suggested that this pest performed well on cultivars (RGS003 and Opera) and performed poorly on the other manipulated genotypes especially on mutant-RGS003 and PF. Glucosinolate levels were significantly higher in damaged plants than undamaged ones and the lowest and highest concentrations of glucosinolates were found in transgenic genotype and canola's progenitor, respectively. Interestingly, our results showed that performance and fitness of this pest was better on canola's progenitor and cultivated plants, which had high levels of glucosinolate. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. The genetic algorithm: A robust method for stress inversion

    NASA Astrophysics Data System (ADS)

    Thakur, Prithvi; Srivastava, Deepak C.; Gupta, Pravin K.

    2017-01-01

    The stress inversion of geological or geophysical observations is a nonlinear problem. In most existing methods, it is solved by linearization, under certain assumptions. These linear algorithms not only oversimplify the problem but also are vulnerable to entrapment of the solution in a local optimum. We propose the use of a nonlinear heuristic technique, the genetic algorithm, which searches the global optimum without making any linearizing assumption or simplification. The algorithm mimics the natural evolutionary processes of selection, crossover and mutation and, minimizes a composite misfit function for searching the global optimum, the fittest stress tensor. The validity and efficacy of the algorithm are demonstrated by a series of tests on synthetic and natural fault-slip observations in different tectonic settings and also in situations where the observations are noisy. It is shown that the genetic algorithm is superior to other commonly practised methods, in particular, in those tectonic settings where none of the principal stresses is directed vertically and/or the given data set is noisy.

  12. Genetic Ancestry for Sleep Research: Leveraging Health Inequalities to Identify Causal Genetic Variants.

    PubMed

    Prasad, Bharati; Saxena, Richa; Goel, Namni; Patel, Sanjay R

    2018-06-01

    Recent evidence has highlighted the health inequalities in sleep behaviors and sleep disorders that adversely affect outcomes in select populations, including African-American and Hispanic-American subjects. Race-related sleep health inequalities are ascribed to differences in multilevel and interlinked health determinants, such as sociodemographic factors, health behaviors, and biology. African-American and Hispanic-American subjects are admixed populations whose genetic inheritance combines two or more ancestral populations originating from different continents. Racial inequalities in admixed populations can be parsed into relevant groups of mediating factors (environmental vs genetic) with the use of measures of genetic ancestry, including the proportion of an individual's genetic makeup that comes from each of the major ancestral continental populations. This review describes sleep health inequalities in African-American and Hispanic-American subjects and considers the potential utility of ancestry studies to exploit these differences to gain insight into the genetic underpinnings of these phenotypes. The inclusion of genetic approaches in future studies of admixed populations will allow greater understanding of the potential biological basis of race-related sleep health inequalities. Copyright © 2018 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  13. Evolutionary model with genetics, aging, and knowledge

    NASA Astrophysics Data System (ADS)

    Bustillos, Armando Ticona; de Oliveira, Paulo Murilo

    2004-02-01

    We represent a process of learning by using bit strings, where 1 bits represent the knowledge acquired by individuals. Two ways of learning are considered: individual learning by trial and error, and social learning by copying knowledge from other individuals or from parents in the case of species with parental care. The age-structured bit string allows us to study how knowledge is accumulated during life and its influence over the genetic pool of a population after many generations. We use the Penna model to represent the genetic inheritance of each individual. In order to study how the accumulated knowledge influences the survival process, we include it to help individuals to avoid the various death situations. Modifications in the Verhulst factor do not show any special feature due to its random nature. However, by adding years to life as a function of the accumulated knowledge, we observe an improvement of the survival rates while the genetic fitness of the population becomes worse. In this latter case, knowledge becomes more important in the last years of life where individuals are threatened by diseases. Effects of offspring overprotection and differences between individual and social learning can also be observed. Sexual selection as a function of knowledge shows some effects when fidelity is imposed.

  14. Genetics Home Reference: trisomy 13

    MedlinePlus

    ... and review of literature. Am J Med Genet A. 2006 Jan 1;140(1):92-3. Review. Citation on PubMed Parker MJ, Budd JL, Draper ES, Young ID. Trisomy 13 and trisomy 18 in a defined population: epidemiological, genetic and prenatal observations. Prenat ...

  15. Genetic structuring among silverside fish (Atherinella brasiliensis) populations from different Brazilian regions

    NASA Astrophysics Data System (ADS)

    da Silva Cortinhas, Maria Cristina; Kersanach, Ralf; Proietti, Maíra; Dumont, Luiz Felipe Cestari; D'Incao, Fernando; Lacerda, Ana Luzia F.; Prata, Pedro Sanmartin; Matoso, Daniele Aparecida; Noleto, Rafael Bueno; Ramsdorf, Wanessa; Boni, Talge Aiex; Prioli, Alberto José; Cestari, Marta Margarete

    2016-09-01

    Estuaries are dynamic environments, key for the survival of innumerous ecologically or economically important fish species. Among these species are Neotropical silversides (Atherinella brasiliensis), which are resident and abundant in Brazilian estuaries and used as a complementary source of income and food for local communities. To better understand silverside populations in Brazil, we evaluated the genetic diversity, structure and demography of fish sampled at six estuaries from the northeastern to the southern coast, using Random Amplified Polymorphic DNA and mitochondrial DNA (D-loop) markers. High haplotype diversities (h ranging from 0.75 to 0.99) were found in all populations except Carapebus, located in Southeast Brazil (h = 0.54). A total of 69 mtDNA haplotypes were found, with Itaparica (Northeast Brazil) and Carapebus presenting only exclusive haplotypes, while some were shared among populations in the South. Strong regional structure was observed, with very high differentiation between Itaparica and Carapebus, as well as among these two populations and the ones from the Southern region (Paranaguá, Conceição, Camacho and Patos). Among southern areas, low/moderate structure was detected. Most populations showed unimodal mismatch distributions indicating recent demographic expansion, while Carapebus presented a multimodal distribution characteristic of a stable or bottlenecked population. Times since possible population expansion were highest in Itaparica (32,500 ya) and Carapebus (29,540 ya), while in the Southern region longest time was observed at Conceição (25,540 ya) and shortest at Patos (9720 ya). In a general manner, haplotype diversities were directly related to times since population expansions; again, Carapebus was the exception, displaying long time since expansion but low diversity, possibly due to a recent bottleneck caused by the isolation and human impacts this lagoon is subject to. Isolation by Distance was significant for Itaparica

  16. Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country.

    PubMed

    Pumpaibool, Tepanata; Arnathau, Céline; Durand, Patrick; Kanchanakhan, Naowarat; Siripoon, Napaporn; Suegorn, Aree; Sitthi-Amorn, Chitr; Renaud, François; Harnyuttanakorn, Pongchai

    2009-07-14

    The population structure of the causative agents of human malaria, Plasmodium sp., including the most serious agent Plasmodium falciparum, depends on the local epidemiological and demographic situations, such as the incidence of infected people, the vector transmission intensity and migration of inhabitants (i.e. exchange between sites). Analysing the structure of P. falciparum populations at a large scale, such as continents, or with markers that are subject to non-neutral selection, can lead to a masking and misunderstanding of the effective process of transmission. Thus, knowledge of the genetic structure and organization of P. falciparum populations in a particular area with neutral genetic markers is needed to understand which epidemiological factors should be targeted for disease control. Limited reports are available on the population genetic diversity and structure of P. falciparum in Thailand, and this is of particular concern at the Thai-Myanmar and Thai-Cambodian borders, where there is a reported high resistance to anti-malarial drugs, for example mefloquine, with little understanding of its potential gene flow. The diversity and genetic differentiation of P. falciparum populations were analysed using 12 polymorphic apparently neutral microsatellite loci distributed on eight of the 14 different chromosomes. Samples were collected from seven provinces in the western, eastern and southern parts of Thailand. A strong difference in the nuclear genetic structure was observed between most of the assayed populations. The genetic diversity was comparable to the intermediate level observed in low P. falciparum transmission areas (average HS = 0.65 +/- 0.17), where the lowest is observed in South America and the highest in Africa. However, uniquely the Yala province, had only a single multilocus genotype present in all samples, leading to a strong geographic differentiation when compared to the other Thai populations during this study. Comparison of the genetic

  17. Direct testing for allele-specific expression differences between conditions

    USDA-ARS?s Scientific Manuscript database

    Genetic differences in cis regulatory regions contribute to the phenotypic variation observed in natural and human populations, including beneficial, potentially adaptive, traits as well as disease states. The two alleles in a diploid cell can differ in their allele-specific expression leading to al...

  18. Genetic Brain Disorders

    MedlinePlus

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form ... mutation is a change in a gene. Genetic brain disorders affect the development and function of the ...

  19. Molecular analysis of genetic diversity among vine accessions using DNA markers.

    PubMed

    da Costa, A F; Teodoro, P E; Bhering, L L; Tardin, F D; Daher, R F; Campos, W F; Viana, A P; Pereira, M G

    2017-04-13

    Viticulture presents a number of economic and social advantages, such as increasing employment levels and fixing the labor force in rural areas. With the aim of initiating a program of genetic improvement in grapevine from the State University of the state of Rio de Janeiro North Darcy Ribeiro, genetic diversity between 40 genotypes (varieties, rootstock, and species of different subgenera) was evaluated using Random amplified polymorphic DNA (RAPD) molecular markers. We built a matrix of binary data, whereby the presence of a band was assigned as "1" and the absence of a band was assigned as "0." The genetic distance was calculated between pairs of genotypes based on the arithmetic complement from the Jaccard Index. The results revealed the presence of considerable variability in the collection. Analysis of the genetic dissimilarity matrix revealed that the most dissimilar genotypes were Rupestris du Lot and Vitis rotundifolia because they were the most genetically distant (0.5972). The most similar were genotypes 31 (unidentified) and Rupestris du lot, which showed zero distance, confirming the results of field observations. A duplicate was confirmed, consistent with field observations, and a short distance was found between the variety 'Italy' and its mutation, 'Ruby'. The grouping methods used were somewhat concordant.

  20. Genetic consequences of selection cutting on sugar maple (Acer saccharum Marshall).

    PubMed

    Graignic, Noémie; Tremblay, Francine; Bergeron, Yves

    2016-07-01

    Selection cutting is a treatment that emulates tree-by-tree replacement for forests with uneven-age structures. It creates small openings in large areas and often generates a more homogenous forest structure (fewer large leaving trees and defective trees) that differs from old-growth forest. In this study, we evaluated whether this type of harvesting has an impact on genetic diversity of sugar maple (Acer saccharum Marshall). Genetic diversity among seedlings, saplings, and mature trees was compared between selection cut and old-growth forest stands in Québec, Canada. We found higher observed heterozygosity and a lower inbreeding coefficient in mature trees than in younger regeneration cohorts of both forest types. We detected a recent bottleneck in all stands undergoing selection cutting. Other genetic indices of diversity (allelic richness, observed and expected heterozygosity, and rare alleles) were similar between forest types. We concluded that the effect of selection cutting on the genetic diversity of sugar maple was recent and no evidence of genetic erosion was detectable in Québec stands after one harvest. However, the cumulative effect of recurring applications of selection cutting in bottlenecked stands could lead to fixation of deleterious alleles, and this highlights the need for adopting better forest management practices.

  1. How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases.

    PubMed

    Strynatka, Katherine A; Gurrola-Gal, Michelle C; Berman, Jason N; McMaster, Christopher R

    2018-03-01

    Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases. Copyright © 2018 by the Genetics Society of America.

  2. Likelihood-based inference for discretely observed birth-death-shift processes, with applications to evolution of mobile genetic elements.

    PubMed

    Xu, Jason; Guttorp, Peter; Kato-Maeda, Midori; Minin, Vladimir N

    2015-12-01

    Continuous-time birth-death-shift (BDS) processes are frequently used in stochastic modeling, with many applications in ecology and epidemiology. In particular, such processes can model evolutionary dynamics of transposable elements-important genetic markers in molecular epidemiology. Estimation of the effects of individual covariates on the birth, death, and shift rates of the process can be accomplished by analyzing patient data, but inferring these rates in a discretely and unevenly observed setting presents computational challenges. We propose a multi-type branching process approximation to BDS processes and develop a corresponding expectation maximization algorithm, where we use spectral techniques to reduce calculation of expected sufficient statistics to low-dimensional integration. These techniques yield an efficient and robust optimization routine for inferring the rates of the BDS process, and apply broadly to multi-type branching processes whose rates can depend on many covariates. After rigorously testing our methodology in simulation studies, we apply our method to study intrapatient time evolution of IS6110 transposable element, a genetic marker frequently used during estimation of epidemiological clusters of Mycobacterium tuberculosis infections. © 2015, The International Biometric Society.

  3. Genetic diversity of clinical Mycobacterium avium subsp. hominissuis and Mycobacterium intracellulare isolates causing pulmonary diseases recovered from different geographical regions.

    PubMed

    Ichikawa, Kazuya; van Ingen, Jakko; Koh, Won-Jung; Wagner, Dirk; Salfinger, Max; Inagaki, Takayuki; Uchiya, Kei-Ichi; Nakagawa, Taku; Ogawa, Kenji; Yamada, Kiyofumi; Yagi, Tetsuya

    2015-12-01

    Mycobacterium avium complex (MAC) infections are increasing annually in many countries. MAC strains are the most common nontuberculous mycobacterial pathogens isolated from respiratory samples and predominantly consist of two species, Mycobacterium avium and Mycobacterium intracellulare. The aim of this study was to analyze the molecular epidemiology and genetic backgrounds of clinical MAC isolates collected from The Netherlands, Germany, United States, Korea and Japan. Variable numbers of tandem repeats (VNTR) analysis was used to examine the genetic relatedness of clinical isolates of M. avium subsp. hominissuis (n=261) and M. intracellulare (n=116). Minimum spanning tree and unweighted pair group method using arithmetic averages analyses based on the VNTR data indicated that M. avium subsp. hominissuis isolates from Japan shared a high degree of genetic relatedness with Korean isolates, but not with isolates from Europe or the United States, whereas M. intracellulare isolates did not show any specific clustering by geographic origin. The findings from the present study indicate that strains of M. avium subsp. hominissuis, but not M. intracellulare, exhibit geographical differences in genetic diversity and imply that MAC strains may have different sources, routes of transmission and perhaps clinical manifestations. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Validation of alternative transcript splicing in chicken lines that differ in genetic resistance to Marek’s disease

    USDA-ARS?s Scientific Manuscript database

    Utilizing RNA-seq data, 1,574 candidate genes with alternative splicing were previously identified between two chicken lines that differ in Marek’s disease (MD) genetic resistance under control and Marek’s disease virus infection conditions. After filtering out 1,530 genes with splice variants in th...

  5. Two colonisation stages generate two different patterns of genetic diversity within native and invasive ranges of Ulex europaeus

    PubMed Central

    Hornoy, B; Atlan, A; Roussel, V; Buckley, Y M; Tarayre, M

    2013-01-01

    Genetic diversity and the way a species is introduced influence the capacity of populations of invasive species to persist in, and adapt to, their new environment. The diversity of introduced populations affects their evolutionary potential, which is particularly important for species that have invaded a wide range of habitats and climates, such as European gorse, Ulex europaeus. This species originated in the Iberian peninsula and colonised Europe in the Neolithic; over the course of the past two centuries it was introduced to, and has become invasive in, other continents. We characterised neutral genetic diversity and its structure in the native range and in invaded regions. By coupling these results with historical data, we have identified the way in which gorse populations were introduced and the consequences of introduction history on genetic diversity. Our study is based on the genotyping of individuals from 18 populations at six microsatellite loci. As U. europaeus is an allohexaploid species, we used recently developed tools that take into account genotypic ambiguity. Our results show that genetic diversity in gorse is very high and mainly contained within populations. We confirm that colonisation occurred in two stages. During the first stage, gorse spread out naturally from Spain towards northern Europe, losing some genetic diversity. During the second stage, gorse was introduced by humans into different regions of the world, from northern Europe. These introductions resulted in the loss of rare alleles but did not significantly reduce genetic diversity and thus the evolutionary potential of this invasive species. PMID:23759725

  6. Two colonisation stages generate two different patterns of genetic diversity within native and invasive ranges of Ulex europaeus.

    PubMed

    Hornoy, B; Atlan, A; Roussel, V; Buckley, Y M; Tarayre, M

    2013-11-01

    Genetic diversity and the way a species is introduced influence the capacity of populations of invasive species to persist in, and adapt to, their new environment. The diversity of introduced populations affects their evolutionary potential, which is particularly important for species that have invaded a wide range of habitats and climates, such as European gorse, Ulex europaeus. This species originated in the Iberian peninsula and colonised Europe in the Neolithic; over the course of the past two centuries it was introduced to, and has become invasive in, other continents. We characterised neutral genetic diversity and its structure in the native range and in invaded regions. By coupling these results with historical data, we have identified the way in which gorse populations were introduced and the consequences of introduction history on genetic diversity. Our study is based on the genotyping of individuals from 18 populations at six microsatellite loci. As U. europaeus is an allohexaploid species, we used recently developed tools that take into account genotypic ambiguity. Our results show that genetic diversity in gorse is very high and mainly contained within populations. We confirm that colonisation occurred in two stages. During the first stage, gorse spread out naturally from Spain towards northern Europe, losing some genetic diversity. During the second stage, gorse was introduced by humans into different regions of the world, from northern Europe. These introductions resulted in the loss of rare alleles but did not significantly reduce genetic diversity and thus the evolutionary potential of this invasive species.

  7. How Surrogate and Chemical Genetics in Model Organisms Can Suggest Therapies for Human Genetic Diseases

    PubMed Central

    Strynatka, Katherine A.; Gurrola-Gal, Michelle C.; Berman, Jason N.; McMaster, Christopher R.

    2018-01-01

    Genetic diseases are both inherited and acquired. Many genetic diseases fall under the paradigm of orphan diseases, a disease found in < 1 in 2000 persons. With rapid and cost-effective genome sequencing becoming the norm, many causal mutations for genetic diseases are being rapidly determined. In this regard, model organisms are playing an important role in validating if specific mutations identified in patients drive the observed phenotype. An emerging challenge for model organism researchers is the application of genetic and chemical genetic platforms to discover drug targets and drugs/drug-like molecules for potential treatment options for patients with genetic disease. This review provides an overview of how model organisms have contributed to our understanding of genetic disease, with a focus on the roles of yeast and zebrafish in gene discovery and the identification of compounds that could potentially treat human genetic diseases. PMID:29487144

  8. Bottlenecks drive temporal and spatial genetic changes in alpine caddisfly metapopulations.

    PubMed

    Shama, Lisa N S; Kubow, Karen B; Jokela, Jukka; Robinson, Christopher T

    2011-09-27

    Extinction and re-colonisation of local populations is common in ephemeral habitats such as temporary streams. In most cases, such population turnover leads to reduced genetic diversity within populations and increased genetic differentiation among populations due to stochastic founder events, genetic drift, and bottlenecks associated with re-colonisation. Here, we examined the spatio-temporal genetic structure of 8 alpine caddisfly populations inhabiting permanent and temporary streams from four valleys in two regions of the Swiss Alps in years before and after a major stream drying event, the European heat wave in summer 2003. We found that population turnover after 2003 led to a loss of allelic richness and gene diversity but not to significant changes in observed heterozygosity. Within all valleys, permanent and temporary streams in any given year were not differentiated, suggesting considerable gene flow and admixture between streams with differing hydroperiods. Large changes in allele frequencies after 2003 resulted in a substantial increase in genetic differentiation among valleys within one to two years (1-2 generations) driven primarily by drift and immigration. Signatures of genetic bottlenecks were detected in all 8 populations after 2003 using the M-ratio method, but in no populations when using a heterozygosity excess method, indicating differential sensitivity of bottleneck detection methods. We conclude that genetic differentiation among A. uncatus populations changed markedly both temporally and spatially in response to the extreme climate event in 2003. Our results highlight the magnitude of temporal population genetic changes in response to extreme events. More specifically, our results show that extreme events can cause rapid genetic divergence in metapopulations. Further studies are needed to determine if recovery from this perturbation through gradual mixing of diverged populations by migration and gene flow leads to the pre-climate event state

  9. Genetic variability of six French meat sheep breeds in relation to their genetic management.

    PubMed

    Huby, Marie; Griffon, Laurent; Moureaux, Sophie; De Rochambeau, Hubert; Danchin-Burge, Coralie; Verrier, Etienne

    2003-01-01

    Some demographic parameters, the genetic structure and the evolution of the genetic variability of six French meat sheep breeds were analysed in relation with their management. Four of these breeds are submitted to more or less intense selection: the Berrichon du Cher (BCH), Blanc du Massif Central (BMC), Charollais (CHA) and Limousin (LIM); the other two breeds are under conservation: the Roussin de La Hague (RLH) and Solognot (SOL). Genealogical data of the recorded animals born from 1970 to 2000 and of their known ancestors were used. The most balanced contributions of the different flocks to the sire-daughter path was found in the SOL. In the BCH, a single flock provided 43% of the sire-AI sire path, whereas the contributions of the flocks were more balanced in the BMC and LIM (the only other breeds where AI is used to a substantial amount). The distribution of the expected genetic contribution of the founder animals was found to be unbalanced, especially in the BCH and LIM. The effective numbers of ancestors (founders or not) for the ewes born from 1996 to 2000 were equal to 35 (BCH), 144 (BMC), 112 (CHA), 69 (LIM), 40 (RLH) and 49 (SOL). Inbreeding was not analysed in the BMC, due to incomplete pedigree information. From 1980 on, the rates of inbreeding, in percentage points per year, were +0.112 (BCH), +0.045 (CHA), +0.036 (LIM), +0.098 (RLH) and +0.062 (SOL). The implications of the observed trends on genetic variability are discussed in relation to the genetic management of each breed. The need for a larger selection basis in the BCH, the efficiency of the rules applied in the SOL to preserve the genetic variability and the need for a more collective organisation in the CHA and RLH are outlined.

  10. Effect of sociocultural cleavage on genetic differentiation: a study from North India.

    PubMed

    Khan, Faisal; Pandey, Atul Kumar; Borkar, Meenal; Tripathi, Manorma; Talwar, Sudha; Bisen, P S; Agrawal, Suraksha

    2008-06-01

    Indian populations possess an exclusive genetic profile primarily due to the many migratory events, which caused an extensive range of genetic diversity, and also due to stringent and austere sociocultural barriers that structure these populations into different endogamous groups. In the present study we attempt to explore the genetic relationships between various endogamous North Indian populations and to determine the effect of stringent social regulations on their gene pool. Twenty STR markers were genotyped in 1,800 random North Indians from 9 endogamous populations belonging to upper-caste and middle-caste Hindus and Muslims. All nine populations had high allelic diversity (176 alleles) and average observed heterozygosity (0.742 +/- 0.06), suggesting strong intrapopulation diversity. The average F(ST) value over all loci was as low as 0.0084. However, within-group F(ST) and genetic distance analysis showed that populations of the same group were genetically closer to each other. The genetic distance of Muslims from middle castes (F(ST) = 0.0090; DA = 0.0266) was significantly higher than that of Muslims from upper castes (F(ST) = 0.0050; DA = 0.0148). Phylogenetic trees (neighbor-joining and maximum-likelihood) show the basal cluster pattern of three clusters corresponding to Muslims, upper-caste, and middle-caste populations, with Muslims clustered with upper-caste populations. Based on the results, we conclude that the extensive gene flow through a series of migrations and invasions has created an enormous amount of genetic diversity. The interpopulation differences are minimal but have a definite pattern, in which populations of different socioreligious groups have more genetic similarity within the same group and are genetically more distant from populations of other groups. Finally, North Indian Muslims show a differential genetic relationship with upper- and middle-caste populations.

  11. African diversity from the HLA point of view: influence of genetic drift, geography, linguistics, and natural selection.

    PubMed

    Sanchez-Mazas, A

    2001-09-01

    This study investigates the influence of different evolutionary factors on the patterns of human leukocyte antigen (HLA) genetic diversity within sub-Saharan Africa, and between Africa, Europe, and East Asia. This is done by comparing the significance of several statistics computed on equivalent population data sets tested for two HLA class II loci, DRB1 and DPB1, which strongly differ from each other by the shape of their allelic distributions. Similar results are found for the two loci concerning highly significant correlations between geographic and genetic distances at the world scale, high levels of genetic diversity within sub-Saharan Africa and East Asia, and low within Europe, and low genetic differentiations among the three broad continental areas, with no special divergence of Africa. On the other hand, DPB1 behaves as a neutral polymorphism, although a significant excess of heterozygotes is often observed for DRB1. Whereas the pattern observed for DPB1 is explained by geographic differentiations and genetic drift in isolated populations, balancing selection is likely to have prevented genetic differentiations among populations at the DRB1 locus. However, this selective effect did not disrupt the high correlation found between DRB1 and geography at the world scale, nor between DRB1 and linguistic differentiations at the African level.

  12. Molecular Population Genetic Structure in the Piping Plover

    USGS Publications Warehouse

    Miller, Mark P.; Haig, Susan M.; Gratto-Trevor, Cheri L.; Mullins, Thomas D.

    2009-01-01

    The Piping Plover (Charadrius melodus) is a migratory shorebird currently listed as Endangered in Canada and the U.S. Great Lakes, and threatened throughout the remainder of its U.S. breeding and winter range. In this study, we undertook the first comprehensive molecular genetic-based investigation of Piping Plovers. Our primary goals were to (1) address higher level subspecific taxonomic issues, (2) characterize population genetic structure, and (3) make inferences regarding past bottlenecks or population expansions that have occurred within this species. Our analyses included samples of individuals from 23 U.S. States and Canadian Provinces, and were based on mitochondrial DNA sequences (580 bp, n = 245 individuals) and eight nuclear microsatellite loci (n = 229 individuals). Our findings illustrate strong support for separate Atlantic and Interior Piping Plover subspecies (C. m. melodus and C. m. circumcinctus, respectively). Birds from the Great Lakes region were allied with the Interior subspecies group and should be taxonomically referred to as C. m. circumcinctus. Population genetic analyses suggested that genetic structure was stronger among Atlantic birds relative to the Interior group. This pattern indicates that natal and breeding site fidelity may be reduced among Interior birds. Furthermore, analyses suggested that Interior birds have previously experienced genetic bottlenecks, whereas no evidence for such patterns existed among the Atlantic subspecies. Likewise, genetic analyses indicated that the Great Lakes region has experienced a population expansion. This finding may be interpreted as population growth following a previous bottleneck event. No genetic evidence for population expansions was found for Atlantic, Prairie Canada, or U.S. Northern Great Plains individuals. We interpret our population history insights in light of 25 years of Piping Plover census data. Overall, differences observed between Interior and Atlantic birds may reflect

  13. Gender Differences in the Structure of Marital Quality.

    PubMed

    Beam, Christopher R; Marcus, Katherine; Turkheimer, Eric; Emery, Robert E

    2018-05-01

    Marriages consist of shared experiences and interactions between husbands and wives that may lead to different impressions of the quality of the relationship. Few studies, unfortunately, have tested gender differences in the structure of marital quality, and even fewer studies have evaluated whether genetic and environmental influences on marital quality differ across gender. In this study, we evaluated gender differences in the structure of marital quality using independent samples of married male (n = 2406) and married female (n = 2215) participants from the National Survey of Midlife Development in the United States who provided ratings on twenty-eight marital quality items encompassing six marital quality constructs. We further explored gender differences in genetic and environmental influences on marital quality constructs in a subsample of 491 pairs of twins. Results suggest partial metric invariance across gender but structural variability in marital quality constructs. Notably, correlations between constructs were stronger in women than men. Results also support gender differences in the genetic and environmental influences on different aspects of marital quality. We discuss that men and women may approach and react to marriage differently as the primary reason why we observed differences in the structure of marital quality.

  14. Genetic selection and conservation of genetic diversity*.

    PubMed

    Blackburn, H D

    2012-08-01

    For 100s of years, livestock producers have employed various types of selection to alter livestock populations. Current selection strategies are little different, except our technologies for selection have become more powerful. Genetic resources at the breed level have been in and out of favour over time. These resources are the raw materials used to manipulate populations, and therefore, they are critical to the past and future success of the livestock sector. With increasing ability to rapidly change genetic composition of livestock populations, the conservation of these genetic resources becomes more critical. Globally, awareness of the need to steward genetic resources has increased. A growing number of countries have embarked on large scale conservation efforts by using in situ, ex situ (gene banking), or both approaches. Gene banking efforts have substantially increased and data suggest that gene banks are successfully capturing genetic diversity for research or industry use. It is also noteworthy that both industry and the research community are utilizing gene bank holdings. As pressures grow to meet consumer demands and potential changes in production systems, the linkage between selection goals and genetic conservation will increase as a mechanism to facilitate continued livestock sector development. © 2012 Blackwell Verlag GmbH.

  15. Geographic Variation of Melanisation Patterns in a Hornet Species: Genetic Differences, Climatic Pressures or Aposematic Constraints?

    PubMed Central

    Perrard, Adrien; Arca, Mariangela; Rome, Quentin; Muller, Franck; Tan, Jiangli; Bista, Sanjaya; Nugroho, Hari; Baudoin, Raymond; Baylac, Michel; Silvain, Jean-François; Carpenter, James M.; Villemant, Claire

    2014-01-01

    Coloration of stinging insects is often based on contrasted patterns of light and black pigmentations as a warning signal to predators. However, in many social wasp species, geographic variation drastically modifies this signal through melanic polymorphism potentially driven by different selective pressures. To date, surprisingly little is known about the geographic variation of coloration of social wasps in relation to aposematism and melanism and to genetic and developmental constraints. The main objectives of this study are to improve the description of the colour variation within a social wasp species and to determine which factors are driving this variation. Therefore, we explored the evolutionary history of a polymorphic hornet, Vespa velutina Lepeletier, 1836, using mitochondrial and microsatellite markers, and we analysed its melanic variation using a colour space based on a description of body parts coloration. We found two main lineages within the species and confirmed the previous synonymy of V. auraria Smith, 1852, under V. velutina, differing only by the coloration. We also found that the melanic variation of most body parts was positively correlated, with some segments forming potential colour modules. Finally, we showed that the variation of coloration between populations was not related to their molecular, geographic or climatic differences. Our observations suggest that the coloration patterns of hornets and their geographic variations are determined by genes with an influence of developmental constraints. Our results also highlight that Vespa velutina populations have experienced several convergent evolutions of the coloration, more likely influenced by constraints on aposematism and Müllerian mimicry than by abiotic pressures on melanism. PMID:24740142

  16. Geographic variation of melanisation patterns in a hornet species: genetic differences, climatic pressures or aposematic constraints?

    PubMed

    Perrard, Adrien; Arca, Mariangela; Rome, Quentin; Muller, Franck; Tan, Jiangli; Bista, Sanjaya; Nugroho, Hari; Baudoin, Raymond; Baylac, Michel; Silvain, Jean-François; Carpenter, James M; Villemant, Claire

    2014-01-01

    Coloration of stinging insects is often based on contrasted patterns of light and black pigmentations as a warning signal to predators. However, in many social wasp species, geographic variation drastically modifies this signal through melanic polymorphism potentially driven by different selective pressures. To date, surprisingly little is known about the geographic variation of coloration of social wasps in relation to aposematism and melanism and to genetic and developmental constraints. The main objectives of this study are to improve the description of the colour variation within a social wasp species and to determine which factors are driving this variation. Therefore, we explored the evolutionary history of a polymorphic hornet, Vespa velutina Lepeletier, 1836, using mitochondrial and microsatellite markers, and we analysed its melanic variation using a colour space based on a description of body parts coloration. We found two main lineages within the species and confirmed the previous synonymy of V. auraria Smith, 1852, under V. velutina, differing only by the coloration. We also found that the melanic variation of most body parts was positively correlated, with some segments forming potential colour modules. Finally, we showed that the variation of coloration between populations was not related to their molecular, geographic or climatic differences. Our observations suggest that the coloration patterns of hornets and their geographic variations are determined by genes with an influence of developmental constraints. Our results also highlight that Vespa velutina populations have experienced several convergent evolutions of the coloration, more likely influenced by constraints on aposematism and Müllerian mimicry than by abiotic pressures on melanism.

  17. Genetic and environmental contributions to children's prosocial behavior: brief review and new evidence from a reanalysis of experimental twin data.

    PubMed

    Knafo-Noam, Ariel; Vertsberger, Dana; Israel, Salomon

    2018-04-01

    Children's prosocial behaviors show considerable variability. Here we discuss the genetic and environmental contributions to individual differences in children's prosocial behavior. Twin research systematically shows, at least from the age of 3 years, a genetic contribution to individual differences in prosocial behavior, both questionnaire-based and observed. This finding is demonstrated across a wide variety of cultures. We discuss the possibility that different prosocial behaviors have different genetic etiologies. A re-analysis of past twin data shows that sharing and comforting are affected by overlapping genetic factors at age 3.5 years. In contrast, the association between helping and comforting is attributed to environmental factors. The few molecular genetic studies of children's prosocial behavior are reviewed, and we point out genome-wide and polygenic methods as a key future direction. Finally, we discuss the interplay of genetic and environmental factors, focusing on both gene×environment interactions and gene-environment correlations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Radiogenomics to characterize regional genetic heterogeneity in glioblastoma.

    PubMed

    Hu, Leland S; Ning, Shuluo; Eschbacher, Jennifer M; Baxter, Leslie C; Gaw, Nathan; Ranjbar, Sara; Plasencia, Jonathan; Dueck, Amylou C; Peng, Sen; Smith, Kris A; Nakaji, Peter; Karis, John P; Quarles, C Chad; Wu, Teresa; Loftus, Joseph C; Jenkins, Robert B; Sicotte, Hugues; Kollmeyer, Thomas M; O'Neill, Brian P; Elmquist, William; Hoxworth, Joseph M; Frakes, David; Sarkaria, Jann; Swanson, Kristin R; Tran, Nhan L; Li, Jing; Mitchell, J Ross

    2017-01-01

    Glioblastoma (GBM) exhibits profound intratumoral genetic heterogeneity. Each tumor comprises multiple genetically distinct clonal populations with different therapeutic sensitivities. This has implications for targeted therapy and genetically informed paradigms. Contrast-enhanced (CE)-MRI and conventional sampling techniques have failed to resolve this heterogeneity, particularly for nonenhancing tumor populations. This study explores the feasibility of using multiparametric MRI and texture analysis to characterize regional genetic heterogeneity throughout MRI-enhancing and nonenhancing tumor segments. We collected multiple image-guided biopsies from primary GBM patients throughout regions of enhancement (ENH) and nonenhancing parenchyma (so called brain-around-tumor, [BAT]). For each biopsy, we analyzed DNA copy number variants for core GBM driver genes reported by The Cancer Genome Atlas. We co-registered biopsy locations with MRI and texture maps to correlate regional genetic status with spatially matched imaging measurements. We also built multivariate predictive decision-tree models for each GBM driver gene and validated accuracies using leave-one-out-cross-validation (LOOCV). We collected 48 biopsies (13 tumors) and identified significant imaging correlations (univariate analysis) for 6 driver genes: EGFR, PDGFRA, PTEN, CDKN2A, RB1, and TP53. Predictive model accuracies (on LOOCV) varied by driver gene of interest. Highest accuracies were observed for PDGFRA (77.1%), EGFR (75%), CDKN2A (87.5%), and RB1 (87.5%), while lowest accuracy was observed in TP53 (37.5%). Models for 4 driver genes (EGFR, RB1, CDKN2A, and PTEN) showed higher accuracy in BAT samples (n = 16) compared with those from ENH segments (n = 32). MRI and texture analysis can help characterize regional genetic heterogeneity, which offers potential diagnostic value under the paradigm of individualized oncology. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society

  19. Radiogenomics to characterize regional genetic heterogeneity in glioblastoma

    PubMed Central

    Hu, Leland S.; Ning, Shuluo; Eschbacher, Jennifer M.; Baxter, Leslie C.; Gaw, Nathan; Ranjbar, Sara; Plasencia, Jonathan; Dueck, Amylou C.; Peng, Sen; Smith, Kris A.; Nakaji, Peter; Karis, John P.; Quarles, C. Chad; Wu, Teresa; Loftus, Joseph C.; Jenkins, Robert B.; Sicotte, Hugues; Kollmeyer, Thomas M.; O'Neill, Brian P.; Elmquist, William; Hoxworth, Joseph M.; Frakes, David; Sarkaria, Jann; Swanson, Kristin R.; Tran, Nhan L.; Li, Jing; Mitchell, J. Ross

    2017-01-01

    Background Glioblastoma (GBM) exhibits profound intratumoral genetic heterogeneity. Each tumor comprises multiple genetically distinct clonal populations with different therapeutic sensitivities. This has implications for targeted therapy and genetically informed paradigms. Contrast-enhanced (CE)-MRI and conventional sampling techniques have failed to resolve this heterogeneity, particularly for nonenhancing tumor populations. This study explores the feasibility of using multiparametric MRI and texture analysis to characterize regional genetic heterogeneity throughout MRI-enhancing and nonenhancing tumor segments. Methods We collected multiple image-guided biopsies from primary GBM patients throughout regions of enhancement (ENH) and nonenhancing parenchyma (so called brain-around-tumor, [BAT]). For each biopsy, we analyzed DNA copy number variants for core GBM driver genes reported by The Cancer Genome Atlas. We co-registered biopsy locations with MRI and texture maps to correlate regional genetic status with spatially matched imaging measurements. We also built multivariate predictive decision-tree models for each GBM driver gene and validated accuracies using leave-one-out-cross-validation (LOOCV). Results We collected 48 biopsies (13 tumors) and identified significant imaging correlations (univariate analysis) for 6 driver genes: EGFR, PDGFRA, PTEN, CDKN2A, RB1, and TP53. Predictive model accuracies (on LOOCV) varied by driver gene of interest. Highest accuracies were observed for PDGFRA (77.1%), EGFR (75%), CDKN2A (87.5%), and RB1 (87.5%), while lowest accuracy was observed in TP53 (37.5%). Models for 4 driver genes (EGFR, RB1, CDKN2A, and PTEN) showed higher accuracy in BAT samples (n = 16) compared with those from ENH segments (n = 32). Conclusion MRI and texture analysis can help characterize regional genetic heterogeneity, which offers potential diagnostic value under the paradigm of individualized oncology. PMID:27502248

  20. Relationship between physical attributes and heat stress in dairy cattle from different genetic groups

    NASA Astrophysics Data System (ADS)

    Alfonzo, Evelyn Priscila München; Barbosa da Silva, Marcos Vinicius Gualberto; dos Santos Daltro, Darlene; Stumpf, Marcelo Tempel; Dalcin, Vanessa Calderaro; Kolling, Giovani; Fischer, Vivian; McManus, Concepta Margaret

    2016-02-01

    Dairy cattle raised under harsh conditions have to adapt and prevent heat stress. The aim of this study was to evaluate physical characteristics and their association with heat tolerance in different genetic groups of dairy cattle. Thickness of the skin and coat, length and number of hairs, body measurements, as well as physiological parameters and body temperatures by infrared thermography were determined in 19 Holstein and 19 Girolando (½ and ¾ Holstein) cows. The Holstein cattle were less tolerant to heat stress than Girolando (GH50 and GH75 Holstein), because of the difficulty in dissipating heat due to the larger body size, as well as thicker and longer hairs. The correlations between physical characteristics, physiological parameters, and thermographic measurements prove to be inconsistent among genetic groups and therefore are not predictive of heat tolerance, while the regressions of morphometric characteristics on physiological and thermographic measures were not significant. Thus, the physical characteristics were not good predictors of physiological indices and thermographic temperature and so should not be used.

  1. Relationship between physical attributes and heat stress in dairy cattle from different genetic groups.

    PubMed

    Alfonzo, Evelyn Priscila München; Barbosa da Silva, Marcos Vinicius Gualberto; dos Santos Daltro, Darlene; Stumpf, Marcelo Tempel; Dalcin, Vanessa Calderaro; Kolling, Giovani; Fischer, Vivian; McManus, Concepta Margaret

    2016-02-01

    Dairy cattle raised under harsh conditions have to adapt and prevent heat stress. The aim of this study was to evaluate physical characteristics and their association with heat tolerance in different genetic groups of dairy cattle. Thickness of the skin and coat, length and number of hairs, body measurements, as well as physiological parameters and body temperatures by infrared thermography were determined in 19 Holstein and 19 Girolando (½ and ¾ Holstein) cows. The Holstein cattle were less tolerant to heat stress than Girolando (GH50 and GH75 Holstein), because of the difficulty in dissipating heat due to the larger body size, as well as thicker and longer hairs. The correlations between physical characteristics, physiological parameters, and thermographic measurements prove to be inconsistent among genetic groups and therefore are not predictive of heat tolerance, while the regressions of morphometric characteristics on physiological and thermographic measures were not significant. Thus, the physical characteristics were not good predictors of physiological indices and thermographic temperature and so should not be used.

  2. A randomized trial Examining The Impact Of Communicating Genetic And Lifestyle Risks For Obesity.

    PubMed

    Wang, Catharine; Gordon, Erynn S; Norkunas, Tricia; Wawak, Lisa; Liu, Ching-Ti; Winter, Michael; Kasper, Rachel S; Christman, Michael F; Green, Robert C; Bowen, Deborah J

    2016-12-01

    Genetic testing for obesity is available directly to consumers, yet little is understood about its behavioral impact and its added value to nongenetic risk communication efforts based on lifestyle factors. A randomized trial examined the short-term impact of providing personalized obesity risk information, using a 2 × 2 factorial design. Participants were recruited from the Coriell Personalized Medicine Collaborative (CPMC) and randomized to receive (1) no risk information (control), (2) genetic risk, (3) lifestyle risk, or (4) combined genetic/lifestyle risks. Baseline and 3-month follow-up survey data were collected. Analyses examined the impact of risk feedback on intentions to lose weight and self-reported weight. A total of 696 participants completed the study. A significant interaction effect was observed for genetic and lifestyle information on intent to lose weight (P = 0.0150). Those who received genetic risk alone had greater intentions at follow-up, compared with controls (P = 0.0034). The impact of receiving elevated risk information on intentions varied by source and combination of risks presented. Non-elevated genetic risk did not lower intentions. No group differences were observed for self-reported weight. Genetic risk information for obesity may add value to lifestyle risk information depending on the context in which it is presented. © 2016 The Obesity Society.

  3. Genetic analysis of semen production traits of Japanese Black and Holstein bulls: genome-wide marker-based estimation of genetic parameters and environmental effect trends.

    PubMed

    Atagi, Y; Onogi, A; Kinukawa, M; Ogino, A; Kurogi, K; Uchiyama, K; Yasumori, T; Adachi, K; Togashi, K; Iwata, H

    2017-05-01

    The semen production traits of bulls from 2 major cattle breeds in Japan, Holstein and Japanese Black, were analyzed comprehensively using genome-wide markers. Weaker genetic correlations were observed between the 2 age groups (1 to 3 yr old and 4 to 6 yr old) regarding semen volume and sperm motility compared with those observed for sperm number and motility after freeze-thawing. The preselection of collected semen for freezing had a limited effect. Given the increasing importance of bull proofs at a young age because of genomic selection and the results from preliminary studies, we used a multiple-trait model that included motility after freeze-thawing with records collected at young ages. Based on variations in contemporary group effects, accounting for both seasonal and management factors, Holstein bulls may be more sensitive than Japanese Black bulls to seasonal environmental variations; however, the seasonal variations of contemporary group effects were smaller than those of overall contemporary group effects. The improvement of motilities, recorded immediately after collection and freeze-thawing, was observed in recent years; thus, good management and better freeze-thawing protocol may alleviate seasonal phenotypic differences. The detrimental effects of inbreeding were observed in all traits of both breeds; accordingly, the selection of candidate bulls with high inbreeding coefficients should be avoided per general recommendations. Semen production traits have never been considered for bull selection. However, negative genetic trends were observed. The magnitudes of the estimated h were comparable to those of other economically important traits. A single-step genomic BLUP will provide more accurate predictions of breeding values compared with BLUP; thus, marker genotype information is useful for estimating the genetic merits of bulls for semen production traits. The selection of these traits would improve sperm viability, a component related to breeding

  4. Genetic drift and collective dispersal can result in chaotic genetic patchiness.

    PubMed

    Broquet, Thomas; Viard, Frédérique; Yearsley, Jonathan M

    2013-06-01

    Chaotic genetic patchiness denotes unexpected patterns of genetic differentiation that are observed at a fine scale and are not stable in time. These patterns have been described in marine species with free-living larvae, but are unexpected because they occur at a scale below the dispersal range of pelagic larvae. At the scale where most larvae are immigrants, theory predicts spatially homogeneous, temporally stable genetic variation. Empirical studies have suggested that genetic drift interacts with complex dispersal patterns to create chaotic genetic patchiness. Here we use a co-ancestry model and individual-based simulations to test this idea. We found that chaotic genetic patterns (qualified by global FST and spatio-temporal variation in FST's between pairs of samples) arise from the combined effects of (1) genetic drift created by the small local effective population sizes of the sessile phase and variance in contribution among breeding groups and (2) collective dispersal of related individuals in the larval phase. Simulations show that patchiness levels qualitatively comparable to empirical results can be produced by a combination of strong variance in reproductive success and mild collective dispersal. These results call for empirical studies of the effective number of breeders producing larval cohorts, and population genetics at the larval stage. © 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.

  5. Prioritization based on neutral genetic diversity may fail to conserve important characteristics in cattle breeds.

    PubMed

    Hall, S J G; Lenstra, J A; Deeming, D C

    2012-06-01

    Conservation of the intraspecific genetic diversity of livestock species requires protocols that assess between-breed genetic variability and also take into account differences among individuals within breeds. Here, we focus on variation between breeds. Conservation of neutral genetic variation has been seen as promoting, through linkage processes, the retention of useful and potentially useful variation. Using public information on beef cattle breeds, with a total of 165 data sets each relating to a breed comparison of a performance variable, we have tested this paradigm by calculating the correlations between pairwise breed differences in performance and pairwise genetic distances deduced from biochemical and immunological polymorphisms, microsatellites and single-nucleotide polymorphisms. As already observed in floral and faunal biodiversity, significant positive correlations (n=54) were found, but many correlations were non-significant (n=100) or significantly negative (n=11). This implies that maximizing conserved neutral genetic variation with current techniques may conserve breed-level genetic variation in some traits but not in others and supports the view that genetic distance measurements based on neutral genetic variation are not sufficient as a determinant of conservation priority among breeds. © 2011 Blackwell Verlag GmbH.

  6. Calibration of Herschel SPIRE FTS observations at different spectral resolutions

    NASA Astrophysics Data System (ADS)

    Marchili, N.; Hopwood, R.; Fulton, T.; Polehampton, E. T.; Valtchanov, I.; Zaretski, J.; Naylor, D. A.; Griffin, M. J.; Imhof, P.; Lim, T.; Lu, N.; Makiwa, G.; Pearson, C.; Spencer, L.

    2017-01-01

    The SPIRE Fourier Transform Spectrometer on-board the Herschel Space Observatory had two standard spectral resolution modes for science observations: high resolution (HR) and low resolution (LR), which could also be performed in sequence (H+LR). A comparison of the HR and LR resolution spectra taken in this sequential mode revealed a systematic discrepancy in the continuum level. Analysing the data at different stages during standard pipeline processing demonstrates that the telescope and instrument emission affect HR and H+LR observations in a systematically different way. The origin of this difference is found to lie in the variation of both the telescope and instrument response functions, while it is triggered by fast variation of the instrument temperatures. As it is not possible to trace the evolution of the response functions using housekeeping data from the instrument subsystems, the calibration cannot be corrected analytically. Therefore, an empirical correction for LR spectra has been developed, which removes the systematic noise introduced by the variation of the response functions.

  7. Habitat predictors of genetic diversity for two sympatric wetland-breeding amphibian species.

    PubMed

    McKee, Anna M; Maerz, John C; Smith, Lora L; Glenn, Travis C

    2017-08-01

    Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond-breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata ; and Southern Leopard frogs, Lithobates sphenocephalus ) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond-breeding amphibian species.

  8. Genetic and infective diversity of the liver fluke Fasciola hepatica (Trematoda: Digenea) from Cuba.

    PubMed

    Vázquez, A A; Lounnas, M; Sánchez, J; Alba, A; Milesi, A; Hurtrez-Boussès, S

    2016-11-01

    In this study we present the first approach to exploration of the genetic diversity of Cuban Fasciola hepatica populations using microsatellite markers, coupled with observed prevalence in slaughterhouses. Nine populations of flukes recovered from cows and buffalos were studied in the central-western region of Cuba. The observed infection rates of definitive hosts (bovines) were 70-100% in most cases. An important amount of polymorphism was found in the four loci explored. However, no apparent genetic differences were found between populations from different provinces or bovine species. The absence of deviations from Hardy-Weinberg equilibrium suggests a high rate of cross-fertilization between F. hepatica individuals. This result was confirmed when all multilocus genotypes were tested for clonal reproduction and only four individuals differed statistically (P sex< 0.05). High values of expected heterozygosity coupled with highly probable mixing among strains make the metapopulation genetically diversified but similar in terms of certain alleles (low F ST values). These results suggest a close relationship between parasite diversity and cattle management in Cuba. Our findings should be taken into consideration by veterinary authorities to help mitigate fasciolosis transmission.

  9. The correlation between reading and mathematics ability at age twelve has a substantial genetic component.

    PubMed

    Davis, Oliver S P; Band, Gavin; Pirinen, Matti; Haworth, Claire M A; Meaburn, Emma L; Kovas, Yulia; Harlaar, Nicole; Docherty, Sophia J; Hanscombe, Ken B; Trzaskowski, Maciej; Curtis, Charles J C; Strange, Amy; Freeman, Colin; Bellenguez, Céline; Su, Zhan; Pearson, Richard; Vukcevic, Damjan; Langford, Cordelia; Deloukas, Panos; Hunt, Sarah; Gray, Emma; Dronov, Serge; Potter, Simon C; Tashakkori-Ghanbaria, Avazeh; Edkins, Sarah; Bumpstead, Suzannah J; Blackwell, Jenefer M; Bramon, Elvira; Brown, Matthew A; Casas, Juan P; Corvin, Aiden; Duncanson, Audrey; Jankowski, Janusz A Z; Markus, Hugh S; Mathew, Christopher G; Palmer, Colin N A; Rautanen, Anna; Sawcer, Stephen J; Trembath, Richard C; Viswanathan, Ananth C; Wood, Nicholas W; Barroso, Ines; Peltonen, Leena; Dale, Philip S; Petrill, Stephen A; Schalkwyk, Leonard S; Craig, Ian W; Lewis, Cathryn M; Price, Thomas S; Donnelly, Peter; Plomin, Robert; Spencer, Chris C A

    2014-07-08

    Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children's ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child's cognitive abilities at age twelve.

  10. Cytonuclear genetics of experimental fish hybrid zones inside Biosphere 2

    USGS Publications Warehouse

    Scribner, K.T.; Avise, John C.

    1994-01-01

    Two species of mosquitofish (family Poeciliidae) known to hybridize in nature were introduced into freshwater habitats inside Biosphere 2, and their population genetics were monitored after 2 years. Within four to six generations, nuclear and cytoplasmic markers characteristic of Gambusia holbrooki had risen greatly in frequency, although some Gambusia affinis alleles and haplotypes were retained primarily in recombinant genotypes, indicative of introgressive hybridization. The temporal cytonuclear dynamics proved similar to population genetic changes observed in replicated experimental hybrid populations outside of Biosphere 2, thus indicating strong directional selection favoring G. holbrooki genotypes across the range of environments monitored. When interpreted in the context of species-specific population demographies observed previously, results suggest that the extremely rapid evolution in these zones of secondary contact is attributable primarily to species differences in life-history traits.

  11. Employability of genetic counselors with a PhD in genetic counseling.

    PubMed

    Wallace, Jody P; Myers, Melanie F; Huether, Carl A; Bedard, Angela C; Warren, Nancy Steinberg

    2008-06-01

    The development of a PhD in genetic counseling has been discussed for more than 20 years, yet the perspectives of employers have not been assessed. The goal of this qualitative study was to gain an understanding of the employability of genetic counselors with a PhD in genetic counseling by conducting interviews with United States employers of genetic counselors. Study participants were categorized according to one of the following practice areas: academic, clinical, government, industry, laboratory, or research. All participants were responsible for hiring genetic counselors in their institutions. Of the 30 employers interviewed, 23 envisioned opportunities for individuals with a PhD degree in genetic counseling, particularly in academic and research settings. Performing research and having the ability to be a principal investigator on a grant was the primary role envisioned for these individuals by 22/30 participants. Employers expect individuals with a PhD in genetic counseling to perform different roles than MS genetic counselors with a master's degree. This study suggests there is an employment niche for individuals who have a PhD in genetic counseling that complements, and does not compete with, master's prepared genetic counselors.

  12. Dense Genotyping of Immune-Related Loci in the Idiopathic Inflammatory Myopathies Confirms HLA alleles as Strongest Genetic Risk Factor and Suggests Different Genetic Background for Major Clinical Subgroups

    PubMed Central

    Rothwell, Simon; Cooper, Robert G.; Lundberg, Ingrid E.; Miller, Frederick W.; Gregersen, Peter K.; Bowes, John; Vencovsky, Jiri; Danko, Katalin; Limaye, Vidya; Selva-O’Callaghan, Albert; Hanna, Michael G.; Machado, Pedro M.; Pachman, Lauren M.; Reed, Ann M.; Rider, Lisa G.; Cobb, Joanna; Platt, Hazel; Molberg, Øyvind; Benveniste, Olivier; Mathiesen, Pernille; Radstake, Timothy; Doria, Andrea; De Bleecker, Jan; De Paepe, Boel; Maurer, Britta; Ollier, William E.; Padyukov, Leonid; O’Hanlon, Terrance P.; Lee, Annette; Amos, Christopher I.; Gieger, Christian; Meitinger, Thomas; Winkelmann, Juliane; Wedderburn, Lucy R; Chinoy, Hector; Lamb, Janine A

    2017-01-01

    The idiopathic inflammatory myopathies (IIM) are a heterogeneous group of rare autoimmune diseases characterized by muscle weakness and extramuscular manifestations such as skin rashes and interstitial lung disease. We genotyped 2,566 IIM cases of Caucasian descent using the Immunochip; a custom array covering 186 established autoimmune susceptibility loci. The cohort was predominantly comprised of dermatomyositis (DM, n=879), juvenile dermatomyositis (JDM, n=481), polymyositis (PM, n=931) and inclusion body myositis (IBM, n=252) patients collected from 14 countries through the Myositis Genetics Consortium. The human leukocyte antigen (HLA) and PTPN22 regions reached genome-wide significance (p<5×10−8). Nine regions were associated at a significance level of p<2.25×10−5, including UBE2L3, CD28 and TRAF6, with evidence of independent effects within STAT4. Analysis of clinical subgroups revealed distinct differences between PM, and DM and JDM. PTPN22 was associated at genome-wide significance with PM, but not DM and JDM, suggesting this effect is driven by PM. Additional suggestive associations including IL18R1 and RGS1 in PM and GSDMB in DM were identified. HLA imputation confirmed that alleles HLA-DRB1*03:01 and HLA-B*08:01 of the 8.1 ancestral haplotype (8.1AH) are most strongly associated with IIM, and provides evidence that amino acids within the HLA, such as HLA-DQB1 position 57 in DM, may explain part of the risk in this locus. Associations with alleles outside the 8.1AH reveal differences between PM, DM, and JDM. This work represents the largest IIM genetic study to date, reveals new insights into the genetic architecture of these rare diseases and suggests different predominating pathophysiology in different clinical subgroups. PMID:26362759

  13. Long-term implications of feed energy source in different genetic types of reproductive rabbit females: III. Fitness and productivity.

    PubMed

    Arnau-Bonachera, A; Savietto, D; Pascual, J J

    2017-12-11

    , we observed that genetic types prioritized different fitness components and that diets could affected them. In this sense, seems that more specialized genetic types, were more sensitive to diets than the more generalist type.

  14. A comparative phylogenetic study of genetics and folk music.

    PubMed

    Pamjav, Horolma; Juhász, Zoltán; Zalán, Andrea; Németh, Endre; Damdin, Bayarlkhagva

    2012-04-01

    Computer-aided comparison of folk music from different nations is one of the newest research areas. We were intrigued to have identified some important similarities between phylogenetic studies and modern folk music. First of all, both of them use similar concepts and representation tools such as multidimensional scaling for modelling relationship between populations. This gave us the idea to investigate whether these connections are merely accidental or if they mirror population migrations from the past. We raised the question; does the complex structure of musical connections display a clear picture and can this system be interpreted by the genetic analysis? This study is the first to systematically investigate the incidental genetic background of the folk music context between different populations. Paternal (42 populations) and maternal lineages (56 populations) were compared based on Fst genetic distances of the Y chromosomal and mtDNA haplogroup frequencies. To test this hypothesis, the corresponding musical cultures were also compared using an automatic overlap analysis of parallel melody styles for 31 Eurasian nations. We found that close musical relations of populations indicate close genetic distances (<0.05) with a probability of 82%. It was observed that there is a significant correlation between population genetics and folk music; maternal lineages have a more important role in folk music traditions than paternal lineages. Furthermore, the combination of these disciplines establishing a new interdisciplinary research field of "music-genetics" can be an efficient tool to get a more comprehensive picture on the complex behaviour of populations in prehistoric time.

  15. Live animal measurements, carcass composition and plasma hormone and metabolite concentrations in male progeny of sires differing in genetic merit for beef production.

    PubMed

    Clarke, A M; Drennan, M J; McGee, M; Kenny, D A; Evans, R D; Berry, D P

    2009-07-01

    In genetic improvement programmes for beef cattle, the effect of selecting for a given trait or index on other economically important traits, or their predictors, must be quantified to ensure no deleterious consequential effects go unnoticed. The objective was to compare live animal measurements, carcass composition and plasma hormone and metabolite concentrations of male progeny of sires selected on an economic index in Ireland. This beef carcass index (BCI) is expressed in euros and based on weaning weight, feed intake, carcass weight and carcass conformation and fat scores. The index is used to aid in the genetic comparison of animals for the expected profitability of their progeny at slaughter. A total of 107 progeny from beef sires of high (n = 11) or low (n = 11) genetic merit for the BCI were compared in either a bull (slaughtered at 16 months of age) or steer (slaughtered at 24 months of age) production system, following purchase after weaning (8 months of age) from commercial beef herds. Data were analysed as a 2 × 2 factorial design (two levels of genetic merit by two production systems). Progeny of high BCI sires had heavier carcasses, greater (P < 0.01) muscularity scores after weaning, greater (P < 0.05) skeletal scores and scanned muscle depth pre-slaughter, higher (P < 0.05) plasma insulin concentrations and greater (P < 0.01) animal value (obtained by multiplying carcass weight by carcass value, which was based on the weight of meat in each cut by its commercial value) than progeny of low BCI sires. Regression of progeny performance on sire genetic merit was also undertaken across the entire data set. In steers, the effect of BCI on carcass meat proportion, calculated carcass value (c/kg) and animal value was positive (P < 0.01), while a negative association was observed for scanned fat depth pre-slaughter and carcass fat proportion (P < 0.01), but there was no effect in bulls. The effect of sire expected progeny difference (EPD) for carcass weight

  16. Differences in the Fecal Concentrations and Genetic Diversities of Campylobacter jejuni Populations among Individual Cows in Two Dairy Herds

    PubMed Central

    Ross, Colleen M.; Pleydell, Eve J.; Muirhead, Richard W.

    2012-01-01

    Dairy cows have been identified as common carriers of Campylobacter jejuni, which causes many of the human gastroenteritis cases reported worldwide. To design on-farm management practices that control the human infection sourced from dairy cows, the first step is to acquire an understanding of the excretion patterns of the cow reservoir. We monitored the same 35 cows from two dairy farms for C. jejuni excretion fortnightly for up to 12 months. The objective was to examine the concentration of C. jejuni and assess the genetic relationship of the C. jejuni populations excreted by individual cows. Significant differences (P < 0.01) in C. jejuni fecal concentration were observed among the 35 cows, with median concentrations that varied by up to 3.6 log10 · g−1 feces. A total of 36 different genotypes were identified from the 514 positive samples by using enterobacterial repetitive intergenic consensus (ERIC)-PCR. Although 22 of these genotypes were excreted by more than one cow, the analysis of frequencies and distribution of the genotypes by model-based statistics revealed a high degree of individuality in the C. jejuni population in each cow. The observed variation in the frequency of excretion of a genotype among cows and the analysis by multilocus sequence typing (MLST) of these genotypes suggest that excretion of C. jejuni in high numbers is due to a successful adaptation of a particular genotype to a particular cow's gut environment, but that animal-related factors render some individual cows resistant to colonization by particular genotypes. The reasons for differences in C. jejuni colonization of animals warrant further investigation. PMID:22904055

  17. Relevance of genetics for conservation policies: the case of Minorcan cork oaks

    PubMed Central

    Lorenzo, Zaida; Burgarella, Concetta; de Heredia, Unai López; Lumaret, Roselyne; Petit, Rémy J.; Soto, Álvaro; Gil, Luis

    2009-01-01

    Background and Aims Marginal populations of widely distributed species can be of high conservation interest when they hold a significant or unique portion of the genetic diversity of the species. However, such genetic information is frequently lacking. Here the relevance of genetic surveys to develop efficient conservation strategies for such populations is illustrated using cork oak (Quercus suber) from Minorca (Balearic Islands, Spain) as a case study. Cork oak is highly endangered on the island, where no more than 67 individuals live in small, isolated stands in siliceous sites. As a consequence, it was recently granted protected status. Methods Two Bayesian clustering approaches were used to analyse the genetic structure of the Minorcan population, on the basis of nuclear microsatellite data. The different groups within the island were also compared with additional island and continental populations surrounding Minorca. Key Results Very high genetic diversity was found, with values comparable with those observed in continental parts of the species' range. Furthermore, the Minorcan oak stands were highly differentiated from one another and were genetically related to different continental populations of France and Spain. Conclusions The high levels of genetic diversity and inter-stands differentiation make Minorcan cork oak eligible for specific conservation efforts. The relationship of Minorcan stands to different continental populations in France and Spain probably reflects multiple colonization events. However, discrepancy between chloroplast DNA- and nuclear DNA-based groups does not support a simple scenario of recent introduction. Gene exchanges between neighbouring cork oak stands and with holm oak have created specific and exceptional genetic combinations. They also constitute a wide range of potential genetic resources for research on adaptation to new environmental conditions. Conservation guidelines that take into account these findings are provided

  18. Genetic diversity and genetic relationships of japonica rice varieties in Northeast Asia based on SSR markers

    PubMed Central

    Wang, Jingguo; Jiang, Tingbo; Zou, Detang; Zhao, Hongwei; Li, Qiang; Liu, Hualong; Zhou, Changjun

    2014-01-01

    Genetic diversity and the relationship among nine japonica rice groups consisting of 288 landraces and varieties in different geographical origins of Northeast Asia (China, Japan, Korea, Democratic People's Republic of Korea) and the Russian Far East district of the Russian Federation were evaluated with 154 simple sequence repeat (SSR) markers. A total of 823 alleles were detected. The observed allele numbers (Na) per locus, Nei's gene diversity (He) and the polymorphism information content (PIC) ranged from 2 to 9, 0.061 to 0.869 and 0.060 to 0.856, with an average of 5.344, 0.624 and 0.586, respectively. Five SSR loci, RM1350, RM1369, RM257, RM336 and RM1374, provided the highest PIC values and are potential for exploring the genetic diversity of rice cultivars in Northeast Asia. Molecular variance analysis showed that a significant difference existed both among groups (91.6%) and within each group (8.4%). The low genetic variation within each group indicated that the gene pool is narrow and alien genetic variation should be introduced into the rice breeding program in Northeast Asia. Based on the He and PIC values, the nine groups were ranked in a descending order: Heilongjiang landraces, Jilin landraces, Japanese improved varieties, Heilongjiang improved varieties, Russian Far East district of the Russian Federation improved varieties, Liaoning improved varieties, Jilin improved varieties, Korean improved varieties and Democratic People's Republic of Korea improved varieties. The nine groups were further divided into three subgroups and the 288 varieties into five clusters. This study provided information for parent selection in order to broaden the gene pool of the japonica rice germplasm in Northeast Asia. PMID:26019508

  19. Genetic diversity and genetic relationships of japonica rice varieties in Northeast Asia based on SSR markers.

    PubMed

    Wang, Jingguo; Jiang, Tingbo; Zou, Detang; Zhao, Hongwei; Li, Qiang; Liu, Hualong; Zhou, Changjun

    2014-03-04

    Genetic diversity and the relationship among nine japonica rice groups consisting of 288 landraces and varieties in different geographical origins of Northeast Asia (China, Japan, Korea, Democratic People's Republic of Korea) and the Russian Far East district of the Russian Federation were evaluated with 154 simple sequence repeat (SSR) markers. A total of 823 alleles were detected. The observed allele numbers (Na) per locus, Nei's gene diversity (He) and the polymorphism information content (PIC) ranged from 2 to 9, 0.061 to 0.869 and 0.060 to 0.856, with an average of 5.344, 0.624 and 0.586, respectively. Five SSR loci, RM1350, RM1369, RM257, RM336 and RM1374, provided the highest PIC values and are potential for exploring the genetic diversity of rice cultivars in Northeast Asia. Molecular variance analysis showed that a significant difference existed both among groups (91.6%) and within each group (8.4%). The low genetic variation within each group indicated that the gene pool is narrow and alien genetic variation should be introduced into the rice breeding program in Northeast Asia. Based on the He and PIC values, the nine groups were ranked in a descending order: Heilongjiang landraces, Jilin landraces, Japanese improved varieties, Heilongjiang improved varieties, Russian Far East district of the Russian Federation improved varieties, Liaoning improved varieties, Jilin improved varieties, Korean improved varieties and Democratic People's Republic of Korea improved varieties. The nine groups were further divided into three subgroups and the 288 varieties into five clusters. This study provided information for parent selection in order to broaden the gene pool of the japonica rice germplasm in Northeast Asia.

  20. Chemical and genetic diversity of Astragalus mongholicus grown in different eco-climatic regions.

    PubMed

    Li, Lin; Zheng, Sihao; Brinckmann, Josef A; Fu, Juan; Zeng, Rui; Huang, Linfang; Chen, Shilin

    2017-01-01

    Astragalus mongholicus Bunge (Fabaceae) is an important plant source of the herbal drug known as Radix Astragali, which is used worldwide as a medicinal ingredient and a component of food supplement. Russian Federation, Mongolia, Kazakhstan, and China are the main natural distribution areas of A. mongholicus in the world. However, the quality of medicinal plant varies among different locations. As for A. mongholicus, limited literature focused on its biodiversity mechanism. Here, we combined the chemometric analysis of chemical components with genetic variation, as well as climatic and edaphic traits, to reveal the biodiversity mechanism of A. mongholicus. Results showed that the detected chemical, genetic and climatic traits comprehensively contributed to the quality diversity of A. mongholicus. The eight main chemical components, as well as the inorganic elements of P, B and Na were all significant chemical factors. The precipitation and sunshine duration were the main distinguishing climatic factors. The inorganic elements As, Mn, P, Se and Pb were the distinguishing edaphic factors. The systematic method was firstly established for this medicinal plant in order to illustrate the formation of diversity in terms of quality, and provide scientific evidence for geographic indications and climatic adaptation in production and in the clinical application of herbal medicinal plants.

  1. Chemical and genetic diversity of Astragalus mongholicus grown in different eco-climatic regions

    PubMed Central

    Li, Lin; Zheng, Sihao; Brinckmann, Josef A.; Fu, Juan; Zeng, Rui; Huang, Linfang; Chen, Shilin

    2017-01-01

    Astragalus mongholicus Bunge (Fabaceae) is an important plant source of the herbal drug known as Radix Astragali, which is used worldwide as a medicinal ingredient and a component of food supplement. Russian Federation, Mongolia, Kazakhstan, and China are the main natural distribution areas of A. mongholicus in the world. However, the quality of medicinal plant varies among different locations. As for A. mongholicus, limited literature focused on its biodiversity mechanism. Here, we combined the chemometric analysis of chemical components with genetic variation, as well as climatic and edaphic traits, to reveal the biodiversity mechanism of A. mongholicus. Results showed that the detected chemical, genetic and climatic traits comprehensively contributed to the quality diversity of A. mongholicus. The eight main chemical components, as well as the inorganic elements of P, B and Na were all significant chemical factors. The precipitation and sunshine duration were the main distinguishing climatic factors. The inorganic elements As, Mn, P, Se and Pb were the distinguishing edaphic factors. The systematic method was firstly established for this medicinal plant in order to illustrate the formation of diversity in terms of quality, and provide scientific evidence for geographic indications and climatic adaptation in production and in the clinical application of herbal medicinal plants. PMID:28945770

  2. The nature of creativity: The roles of genetic factors, personality traits, cognitive abilities, and environmental sources.

    PubMed

    Kandler, Christian; Riemann, Rainer; Angleitner, Alois; Spinath, Frank M; Borkenau, Peter; Penke, Lars

    2016-08-01

    This multitrait multimethod twin study examined the structure and sources of individual differences in creativity. According to different theoretical and metrological perspectives, as well as suggestions based on previous research, we expected 2 aspects of individual differences, which can be described as perceived creativity and creative test performance. We hypothesized that perceived creativity, reflecting typical creative thinking and behavior, should be linked to specific personality traits, whereas test creativity, reflecting maximum task-related creative performance, should show specific associations with cognitive abilities. Moreover, we tested whether genetic variance in intelligence and personality traits account for the genetic component of creativity. Multiple-rater and multimethod data (self- and peer reports, observer ratings, and test scores) from 2 German twin studies-the Bielefeld Longitudinal Study of Adult Twins and the German Observational Study of Adult Twins-were analyzed. Confirmatory factor analyses yielded the expected 2 correlated aspects of creativity. Perceived creativity showed links to openness to experience and extraversion, whereas tested figural creativity was associated with intelligence and also with openness. Multivariate behavioral genetic analyses indicated that the heritability of tested figural creativity could be accounted for by the genetic component of intelligence and openness, whereas a substantial genetic component in perceived creativity could not be explained. A primary source of individual differences in creativity was due to environmental influences, even after controlling for random error and method variance. The findings are discussed in terms of the multifaceted nature and construct validity of creativity as an individual characteristic. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  3. The Etiology of Individual Differences in Second Language Acquisition in Australian School Students: A Behavior-Genetic Study

    ERIC Educational Resources Information Center

    Coventry, William; Anton-Mendez, Ines; Ellis, Elizabeth M.; Levisen, Christina; Byrne, Brian; van Daal, Victor H. P.; Ellis, Nick C.

    2012-01-01

    We present one of the first behavior-genetic studies of individual differences in school students' levels of achievement in instructed second language acquisition (ISLA). We assessed these language abilities in Australian twin pairs (maximum N pairs = 251) by means of teacher ratings, class rankings, and self-ratings of proficiency, and used the…

  4. Genetics of polycystic ovarian syndrome.

    PubMed

    Fratantonio, Enza; Vicari, Enzo; Pafumi, Carlo; Calogero, Aldo E

    2005-06-01

    Polycystic ovarian syndrome (PCOS) is a reproductive system disorder characterized by irregular menses, anovulation, clinical and/or biochemical signs of hyperandrogenism (hirsutism and/or acne), ovarian micropolycystic appearance and metabolic abnormalities, such as hyperinsulinaemia and obesity. The aetiopathogenesis of this syndrome is not well known. Several pathogenetic hypotheses have been proposed to explain the full array of symptoms and signs, but with elusive results. A genetic abnormality causing PCOS is supported by the observation that different members of the same family are often affected, and about half of the sisters of PCOS women have elevated serum testosterone concentrations. Therefore, the presence of gene abnormalities in women with PCOS has been widely explored in the attempt to establish whether their mutations or polymorphisms may cause PCOS. The main genes evaluated are those involved in steroidogenesis, steroid hormone effects, gonadotrophin release regulation and action, insulin secretion and action, and adipose tissue metabolism. Despite the vast body of literature produced, none of the genes evaluated seems to play a key role in PCOS pathogenesis. It is likely that PCOS may represent the final outcome of different, deeply inter-related genetic abnormalities that influence each other and perpetuate the syndrome.

  5. Shared genetic basis for migraine and ischemic stroke

    PubMed Central

    Malik, Rainer; Freilinger, Tobias; Winsvold, Bendik S.; Anttila, Verneri; Vander Heiden, Jason; Traylor, Matthew; de Vries, Boukje; Holliday, Elizabeth G.; Terwindt, Gisela M.; Sturm, Jonathan; Bis, Joshua C.; Hopewell, Jemma C.; Ferrari, Michel D.; Rannikmae, Kristiina; Wessman, Maija; Kallela, Mikko; Kubisch, Christian; Fornage, Myriam; Meschia, James F.; Lehtimäki, Terho; Sudlow, Cathie; Clarke, Robert; Chasman, Daniel I.; Mitchell, Braxton D.; Maguire, Jane; Kaprio, Jaakko; Farrall, Martin; Raitakari, Olli T.; Kurth, Tobias; Ikram, M. Arfan; Reiner, Alex P.; Longstreth, W.T.; Rothwell, Peter M.; Strachan, David P.; Sharma, Pankaj; Seshadri, Sudha; Quaye, Lydia; Cherkas, Lynn; Schürks, Markus; Rosand, Jonathan; Ligthart, Lannie; Boncoraglio, Giorgio B.; Davey Smith, George; van Duijn, Cornelia M.; Stefansson, Kari; Worrall, Bradford B.; Nyholt, Dale R.; Markus, Hugh S.; van den Maagdenberg, Arn M.J.M.; Cotsapas, Chris; Zwart, John A.; Palotie, Aarno

    2015-01-01

    Objective: To quantify genetic overlap between migraine and ischemic stroke (IS) with respect to common genetic variation. Methods: We applied 4 different approaches to large-scale meta-analyses of genome-wide data on migraine (23,285 cases and 95,425 controls) and IS (12,389 cases and 62,004 controls). First, we queried known genome-wide significant loci for both disorders, looking for potential overlap of signals. We then analyzed the overall shared genetic load using polygenic scores and estimated the genetic correlation between disease subtypes using data derived from these models. We further interrogated genomic regions of shared risk using analysis of covariance patterns between the 2 phenotypes using cross-phenotype spatial mapping. Results: We found substantial genetic overlap between migraine and IS using all 4 approaches. Migraine without aura (MO) showed much stronger overlap with IS and its subtypes than migraine with aura (MA). The strongest overlap existed between MO and large artery stroke (LAS; p = 6.4 × 10−28 for the LAS polygenic score in MO) and between MO and cardioembolic stroke (CE; p = 2.7 × 10−20 for the CE score in MO). Conclusions: Our findings indicate shared genetic susceptibility to migraine and IS, with a particularly strong overlap between MO and both LAS and CE pointing towards shared mechanisms. Our observations on MA are consistent with a limited role of common genetic variants in this subtype. PMID:25934857

  6. Embryonic aneuploidy does not differ among genetic ancestry according to continental origin as determined by ancestry informative markers.

    PubMed

    Franasiak, Jason M; Olcha, Meir; Shastri, Shefali; Molinaro, Thomas A; Congdon, Haley; Treff, Nathan R; Scott, Richard T

    2016-10-01

    Is embryonic aneuploidy, as determined by comprehensive chromosome screening (CCS), related to genetic ancestry, as determined by ancestry informative markers (AIMs)? In this study, when determining continental ancestry utilizing AIMs, genetic ancestry does not have an impact on embryonic aneuploidy. Aneuploidy is one of the best-characterized barriers to ART success and little information exists regarding ethnicity and whole chromosome aneuploidy in IVF. Classifying continental ancestry utilizing genetic profiles from a selected group of single nucleotide polymorphisms, termed AIMs, can determine ancestral origin with more accuracy than self-reported data. This is a retrospective cohort study of patients undergoing their first cycle of IVF with CCS at a single center from 2008 to 2014. There were 2328 patients identified whom had undergone IVF/CCS and AIM genotyping. All patients underwent IVF/ICSI and CCS after trophectoderm biopsy. Patients' serum was genotyped using 32 custom AIMs to identify continental origin. Admixture proportions were determined using Bayesian clustering algorithms. Patients were assigned to the population (European, African, East Asian or Central/South Asian) corresponding to their greatest admixture proportion. The mean number of embryos tested was 5.3 (range = 1-40) and the mode was 1. Patients' ethnic classifications revealed European (n = 1698), African (n = 103), East Asian (n = 206) or Central/South Asian (n = 321). When controlling for age and BMI, aneuploidy rate did not differ by genetic ancestry (P = 0.28). The study type (retrospective) and the ability to classify patients by continental rather than sub-continental origin as well as the predominantly European patient mix may impact generalizability. Post hoc power calculation revealed power to detect a 16.8% difference in embryonic aneuploidy between the two smallest sample size groups. These data do not support differences in embryonic aneuploidy among various genetic

  7. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties.

    PubMed

    Hoffman, Robert M

    2016-03-01

    Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.

  8. Molecular Population Genetics

    PubMed Central

    Casillas, Sònia; Barbadilla, Antonio

    2017-01-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. PMID:28270526

  9. Analysis of autosomal genes reveals gene-sex interactions and higher total genetic risk in men with systemic lupus erythematosus.

    PubMed

    Hughes, Travis; Adler, Adam; Merrill, Joan T; Kelly, Jennifer A; Kaufman, Kenneth M; Williams, Adrienne; Langefeld, Carl D; Gilkeson, Gary S; Sanchez, Elena; Martin, Javier; Boackle, Susan A; Stevens, Anne M; Alarcón, Graciela S; Niewold, Timothy B; Brown, Elizabeth E; Kimberly, Robert P; Edberg, Jeffrey C; Ramsey-Goldman, Rosalind; Petri, Michelle; Reveille, John D; Criswell, Lindsey A; Vilá, Luis M; Jacob, Chaim O; Gaffney, Patrick M; Moser, Kathy L; Vyse, Timothy J; Alarcón-Riquelme, Marta E; James, Judith A; Tsao, Betty P; Scofield, R Hal; Harley, John B; Richardson, Bruce C; Sawalha, Amr H

    2012-05-01

    Systemic lupus erythematosus (SLE) is a sexually dimorphic autoimmune disease which is more common in women, but affected men often experience a more severe disease. The genetic basis of sexual dimorphism in SLE is not clearly defined. A study was undertaken to examine sex-specific genetic effects among SLE susceptibility loci. A total of 18 autosomal genetic susceptibility loci for SLE were genotyped in a large set of patients with SLE and controls of European descent, consisting of 5932 female and 1495 male samples. Sex-specific genetic association analyses were performed. The sex-gene interaction was further validated using parametric and non-parametric methods. Aggregate differences in sex-specific genetic risk were examined by calculating a cumulative genetic risk score for SLE in each individual and comparing the average genetic risk between male and female patients. A significantly higher cumulative genetic risk for SLE was observed in men than in women. (P=4.52x10-8) A significant sex-gene interaction was seen primarily in the human leucocyte antigen (HLA) region but also in IRF5, whereby men with SLE possess a significantly higher frequency of risk alleles than women. The genetic effect observed in KIAA1542 is specific to women with SLE and does not seem to have a role in men. The data indicate that men require a higher cumulative genetic load than women to develop SLE. These observations suggest that sex bias in autoimmunity could be influenced by autosomal genetic susceptibility loci.

  10. Competitive advantage and higher fitness in native populations of genetically structured planktonic diatoms.

    PubMed

    Sildever, Sirje; Sefbom, Josefin; Lips, Inga; Godhe, Anna

    2016-12-01

    It has been shown that the planktonic diatom Skeletonema from neighbouring areas are genetically differentiated despite absence of physical dispersal barriers. We revisited two sites, Mariager Fjord and Kattegat, NE Atlantic, and isolated new strains. Microsatellite genotyping and F-statistics revealed that the populations were genetically differentiated. An experiment was designed to investigate if populations are locally adapted and have a native competitive advantage. Ten strains from each location were grown individually in native and foreign water to investigate differences in produced biomass. Additionally, we mixed six pairs, one strain from each site, and let them grow together in native and foreign water. Strains from Mariager Fjord and Kattegat produced higher biomass in native water. In the competition experiment, strains from both sites displayed higher relative abundance and demonstrated competitive advantage in their native water. The cause of the differentiated growth is unknown, but could possibly be attributed to differences in silica concentration or viruses in the two water types. Our data show that dispersal potential does not influence the genetic structure of the populations. We conclude that genetic adaptation has not been overruled by gene flow, but instead the responses to different selection conditions are enforcing the observed genetic structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. How spatio-temporal habitat connectivity affects amphibian genetic structure.

    PubMed

    Watts, Alexander G; Schlichting, Peter E; Billerman, Shawn M; Jesmer, Brett R; Micheletti, Steven; Fortin, Marie-Josée; Funk, W Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.

  12. How spatio-temporal habitat connectivity affects amphibian genetic structure

    PubMed Central

    Watts, Alexander G.; Schlichting, Peter E.; Billerman, Shawn M.; Jesmer, Brett R.; Micheletti, Steven; Fortin, Marie-Josée; Funk, W. Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations. PMID:26442094

  13. How spatio-temporal habitat connectivity affects amphibian genetic structure

    USGS Publications Warehouse

    Watts, Alexander G.; Schlichting, P; Billerman, S; Jesmer, B; Micheletti, S; Fortin, M.-J.; Funk, W.C.; Hapeman, P; Muths, Erin L.; Murphy, M.A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.

  14. Genetic variation in caribou and reindeer (Rangifer tarandus).

    PubMed

    Cronin, M A; Patton, J C; Balmysheva, N; MacNeil, M D

    2003-02-01

    Genetic variation at seven microsatellite DNA loci was quantified in 19 herds of wild caribou and domestic reindeer (Rangifer tarandus) from North America, Scandinavia and Russia. There is an average of 2.0-6.6 alleles per locus and observed individual heterozygosity of 0.33-0.50 in most herds. A herd on Svalbard Island, Scandinavia, is an exception, with relatively few alleles and low heterozygosity. The Central Arctic, Western Arctic and Porcupine River caribou herds in Alaska have similar allele frequencies and comprise one breeding population. Domestic reindeer in Alaska originated from transplants from Siberia, Russia, more than 100 years ago. Reindeer in Alaska and Siberia have different allele frequencies at several loci, but a relatively low level of genetic differentiation. Wild caribou and domestic reindeer in Alaska have significantly different allele frequencies at the seven loci, indicating that gene flow between reindeer and caribou in Alaska has been limited.

  15. The correlation between reading and mathematics ability at age twelve has a substantial genetic component

    PubMed Central

    Davis, Oliver S. P.; Band, Gavin; Pirinen, Matti; Haworth, Claire M. A.; Meaburn, Emma L.; Kovas, Yulia; Harlaar, Nicole; Docherty, Sophia J.; Hanscombe, Ken B.; Trzaskowski, Maciej; Curtis, Charles J. C.; Strange, Amy; Freeman, Colin; Bellenguez, Céline; Su, Zhan; Pearson, Richard; Vukcevic, Damjan; Langford, Cordelia; Deloukas, Panos; Hunt, Sarah; Gray, Emma; Dronov, Serge; Potter, Simon C.; Tashakkori-Ghanbaria, Avazeh; Edkins, Sarah; Bumpstead, Suzannah J.; Blackwell, Jenefer M.; Bramon, Elvira; Brown, Matthew A.; Casas, Juan P.; Corvin, Aiden; Duncanson, Audrey; Jankowski, Janusz A. Z.; Markus, Hugh S.; Mathew, Christopher G.; Palmer, Colin N. A.; Rautanen, Anna; Sawcer, Stephen J.; Trembath, Richard C.; Viswanathan, Ananth C.; Wood, Nicholas W.; Barroso, Ines; Peltonen, Leena; Dale, Philip S.; Petrill, Stephen A.; Schalkwyk, Leonard S.; Craig, Ian W.; Lewis, Cathryn M.; Price, Thomas S.; Donnelly, Peter; Plomin, Robert; Spencer, Chris C. A.

    2014-01-01

    Dissecting how genetic and environmental influences impact on learning is helpful for maximizing numeracy and literacy. Here we show, using twin and genome-wide analysis, that there is a substantial genetic component to children’s ability in reading and mathematics, and estimate that around one half of the observed correlation in these traits is due to shared genetic effects (so-called Generalist Genes). Thus, our results highlight the potential role of the learning environment in contributing to differences in a child’s cognitive abilities at age twelve. PMID:25003214

  16. Genetic analysis of the Venezuelan Criollo horse.

    PubMed

    Cothran, E G; Canelon, J L; Luis, C; Conant, E; Juras, R

    2011-10-07

    Various horse populations in the Americas have an origin in Spain; they are remnants of the first livestock introduced to the continent early in the colonial period (16th and 17th centuries). We evaluated genetic variability within the Venezuelan Criollo horse and its relationship with other horse breeds. We observed high levels of genetic diversity within the Criollo breed. Significant population differentiation was observed between all South American breeds. The Venezuelan Criollo horse showed high levels of genetic diversity, and from a conservation standpoint, there is no immediate danger of losing variation unless there is a large drop in population size.

  17. The genomic signature of sexual selection in the genetic diversity of the sex chromosomes and autosomes.

    PubMed

    Corl, Ammon; Ellegren, Hans

    2012-07-01

    Genomic levels of variation can help reveal the selective and demographic forces that have affected a species during its history. The relative amount of genetic diversity observed on the sex chromosomes as compared to the autosomes is predicted to differ among monogamous and polygynous species. Many species show departures from the expectation for monogamy, but it can be difficult to conclude that this pattern results from variation in mating system because forces other than sexual selection can act upon sex chromosome genetic diversity. As a critical test of the role of mating system, we compared levels of genetic diversity on the Z chromosome and autosomes of phylogenetically independent pairs of shorebirds that differed in their mating systems. We found general support for sexual selection shaping sex chromosome diversity because most polygynous species showed relatively reduced genetic variation on their Z chromosomes as compared to monogamous species. Differences in levels of genetic diversity between the sex chromosomes and autosomes may therefore contribute to understanding the long-term history of sexual selection experienced by a species. © 2012 The Author(s).

  18. Multilocus genetics to reconstruct aeromonad evolution

    PubMed Central

    2012-01-01

    Background Aeromonas spp. are versatile bacteria that exhibit a wide variety of lifestyles. In an attempt to improve the understanding of human aeromonosis, we investigated whether clinical isolates displayed specific characteristics in terms of genetic diversity, population structure and mode of evolution among Aeromonas spp. A collection of 195 Aeromonas isolates from human, animal and environmental sources was therefore genotyped using multilocus sequence analysis (MLSA) based on the dnaK, gltA, gyrB, radA, rpoB, tsf and zipA genes. Results The MLSA showed a high level of genetic diversity among the population, and multilocus-based phylogenetic analysis (MLPA) revealed 3 major clades: the A. veronii, A. hydrophila and A. caviae clades, among the eleven clades detected. Lower genetic diversity was observed within the A. caviae clade as well as among clinical isolates compared to environmental isolates. Clonal complexes, each of which included a limited number of strains, mainly corresponded to host-associated subsclusters of strains, i.e., a fish-associated subset within A. salmonicida and 11 human-associated subsets, 9 of which included only disease-associated strains. The population structure was shown to be clonal, with modes of evolution that involved mutations in general and recombination events locally. Recombination was detected in 5 genes in the MLSA scheme and concerned approximately 50% of the STs. Therefore, these recombination events could explain the observed phylogenetic incongruities and low robustness. However, the MLPA globally confirmed the current systematics of the genus Aeromonas. Conclusions Evolution in the genus Aeromonas has resulted in exceptionally high genetic diversity. Emerging from this diversity, subsets of strains appeared to be host adapted and/or “disease specialized” while the A. caviae clade displayed an atypical tempo of evolution among aeromonads. Considering that A. salmonicida has been described as a genetically

  19. A better coefficient of determination for genetic profile analysis.

    PubMed

    Lee, Sang Hong; Goddard, Michael E; Wray, Naomi R; Visscher, Peter M

    2012-04-01

    Genome-wide association studies have facilitated the construction of risk predictors for disease from multiple Single Nucleotide Polymorphism markers. The ability of such "genetic profiles" to predict outcome is usually quantified in an independent data set. Coefficients of determination (R(2) ) have been a useful measure to quantify the goodness-of-fit of the genetic profile. Various pseudo-R(2) measures for binary responses have been proposed. However, there is no standard or consensus measure because the concept of residual variance is not easily defined on the observed probability scale. Unlike other nongenetic predictors such as environmental exposure, there is prior information on genetic predictors because for most traits there are estimates of the proportion of variation in risk in the population due to all genetic factors, the heritability. It is this useful ability to benchmark that makes the choice of a measure of goodness-of-fit in genetic profiling different from that of nongenetic predictors. In this study, we use a liability threshold model to establish the relationship between the observed probability scale and underlying liability scale in measuring R(2) for binary responses. We show that currently used R(2) measures are difficult to interpret, biased by ascertainment, and not comparable to heritability. We suggest a novel and globally standard measure of R(2) that is interpretable on the liability scale. Furthermore, even when using ascertained case-control studies that are typical in human disease studies, we can obtain an R(2) measure on the liability scale that can be compared directly to heritability. © 2012 Wiley Periodicals, Inc.

  20. Partition of genetic trends by origin in Landrace and Large-White pigs.

    PubMed

    Škorput, D; Gorjanc, G; Kasap, A; Luković, Z

    2015-10-01

    The objective of this study was to analyse the effectiveness of genetic improvement via domestic selection and import for backfat thickness and time on test in a conventional pig breeding programme for Landrace (L) and Large-White (LW) breeds. Phenotype data was available for 25 553 L and 10 432 LW pigs born between 2002 and 2012 from four large-scale farms and 72 family farms. Pedigree information indicated whether each animal was born and registered within the domestic breeding programme or has been imported. This information was used for defining the genetic groups of unknown parents in a pedigree and the partitioning analysis. Breeding values were estimated using a Bayesian analysis of an animal model with and without genetic groups. Such analysis enabled full Bayesian inference of the genetic trends and their partitioning by the origin of germplasm. Estimates of genetic group indicated that imported germplasm was overall better than domestic and substantial changes in estimates of breeding values was observed when genetic group were fitted. The estimated genetic trends in L were favourable and significantly different from zero by the end of the analysed period. Overall, the genetic trends in LW were not different from zero. The relative contribution of imported germplasm to genetic trends was large, especially towards the end of analysed period with 78% and 67% in L and from 50% to 67% in LW. The analyses suggest that domestic breeding activities and sources of imported animals need to be re-evaluated, in particular in LW breed.

  1. Genetic and ecological studies of animals in Chernobyl and Fukushima.

    PubMed

    Mousseau, Timothy A; Møller, Anders P

    2014-01-01

    Recent advances in genetic and ecological studies of wild animal populations in Chernobyl and Fukushima have demonstrated significant genetic, physiological, developmental, and fitness effects stemming from exposure to radioactive contaminants. The few genetic studies that have been conducted in Chernobyl generally show elevated rates of genetic damage and mutation rates. All major taxonomic groups investigated (i.e., birds, bees, butterflies, grasshoppers, dragonflies, spiders, mammals) displayed reduced population sizes in highly radioactive parts of the Chernobyl Exclusion Zone. In Fukushima, population censuses of birds, butterflies, and cicadas suggested that abundances were negatively impacted by exposure to radioactive contaminants, while other groups (e.g., dragonflies, grasshoppers, bees, spiders) showed no significant declines, at least during the first summer following the disaster. Insufficient information exists for groups other than insects and birds to assess effects on life history at this time. The differences observed between Fukushima and Chernobyl may reflect the different times of exposure and the significance of multigenerational mutation accumulation in Chernobyl compared to Fukushima. There was considerable variation among taxa in their apparent sensitivity to radiation and this reflects in part life history, physiology, behavior, and evolutionary history. Interestingly, for birds, population declines in Chernobyl can be predicted by historical mitochondrial DNA base-pair substitution rates that may reflect intrinsic DNA repair ability. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Social interactions predict genetic diversification: an experimental manipulation in shorebirds.

    PubMed

    Cunningham, Charles; Parra, Jorge E; Coals, Lucy; Beltrán, Marcela; Zefania, Sama; Székely, Tamás

    2018-01-01

    Mating strategy and social behavior influence gene flow and hence affect levels of genetic differentiation and potentially speciation. Previous genetic analyses of closely related plovers Charadrius spp. found strikingly different population genetic structure in Madagascar: Kittlitz's plovers are spatially homogenous whereas white-fronted plovers have well segregated and geographically distinct populations. Here, we test the hypotheses that Kittlitz's plovers are spatially interconnected and have extensive social interactions that facilitate gene flow, whereas white-fronted plovers are spatially discrete and have limited social interactions. By experimentally removing mates from breeding pairs and observing the movements of mate-searching plovers in both species, we compare the spatial behavior of Kittlitz's and white-fronted plovers within a breeding season. The behavior of experimental birds was largely consistent with expectations: Kittlitz's plovers travelled further, sought new mates in larger areas, and interacted with more individuals than white-fronted plovers, however there was no difference in breeding dispersal. These results suggest that mating strategies, through spatial behavior and social interactions, are predictors of gene flow and thus genetic differentiation and speciation. Our study highlights the importance of using social behavior to understand gene flow. However, further work is needed to investigate the relative importance of social structure, as well as intra- and inter-season dispersal, in influencing the genetic structures of populations.

  3. Long-term implications of feed energy source in different genetic types of reproductive rabbit females. II. Immunologic status.

    PubMed

    Penadés, M; Arnau-Bonachera, A; García-Quirós, A; Viana, D; Selva, L; Corpa, J M; Pascual, J J

    2017-12-11

    Genetic selection and nutrition management have played a central role in the development of commercial rabbitry industry over the last few decades, being able to affect productive and immunological traits of the animals. However, the implication of different energy sources in animals from diverse genetic lines achieving such evolutionary success remains still unknown. Therefore, in this work, 203 female rabbits housed and bred in the same conditions were used from their first artificial insemination until their fifth weaning. The animals belonged to three different genetic types diverging greatly on breeding goals (H line, hyper-prolific (n=66); LP line, robust (n=67) and R line, selected for growth rate (n=67), and were assigned to two experimental diets, promoting major differences in energy source (cereal starch or animal fat)). The aims of this work were to: (1) characterize and describe blood leucocyte populations of three lines of rabbit does in different physiological stages during their reproductive period: first artificial insemination, first weaning, second parturition and fifth weaning; and (2) study the possible influence of two different experimental diets on the leucocyte populations in peripheral blood. Flow cytometry analyses were performed on blood samples taken from females at each different sampling stade. Lymphocyte populations at both weanings were characterized by significantly lower counts of total, CD5+ and CD8+ lymphocytes (-19.8, -21.7 and -44.6%; P<0.05), and higher counts of monocytes and granulocytes (+49.2 and +26.2%; P<0.05) than in the other stages. Females had higher blood counts of lymphocytes B, CD8+ and CD25+ and lower counts of CD4+ at first than at fifth weaning (+55.6, +85.8, +57.5, -14.5%; P<0.05). G/L ratio was higher at both weanings (P<0.05), and CD4+/CD8+ ratio increased progressively from the 1AI to the 5 W (P<0.001). Regarding the effect of genetic type in blood leucocyte counts, LP animals presented the highest counts

  4. Genetic differences in the ethanol sensitivity of GABA sub A receptors expressed in Xenopus oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wafford, K.A.; Burnett, D.M.; Dunwiddie, T.V.

    1990-07-20

    Animal lines selected for differences in drug sensitivity can be used to help determine the molecular basis of drug action. Long-sleep (LS) and short-sleep (SS) mice differ markedly in their genetic sensitivity to ethanol. To investigate the molecular basis for this difference, mRNA from brains of LS and SS mice was expressed in Xenopus oocytes and the ethanol sensitivity of gamma-aminobutyric acid A (GABA{sub A})- and N-methyl D-aspartate (NMDA) - activated ion channels was tested. Ethanol facilitated GABA responses in oocytes injected with mRNA from LS mice but antagonized responses in oocytes injected with mRNA from SS animals. Ethanol inhibitedmore » NMDA responses equally in the two lines. Thus, genes coding for the GABA{sub A} receptor or associated proteins may be critical determinants of individual differences in ethanol sensitivity.« less

  5. Drought genetics have varying influence on corn water stress under differing water availability

    USDA-ARS?s Scientific Manuscript database

    Irrigated corn (Zea mays L.) in the Great Plains will be increasingly grown under limited irrigation management and greater water stress. Hybrids with drought genetics may decrease the impacts of water stress on yield. The objective of this experiment was to evaluate the effect of drought genetics o...

  6. Genetic Moderation of Stress Effects on Corticolimbic Circuitry.

    PubMed

    Bogdan, Ryan; Pagliaccio, David; Baranger, David Aa; Hariri, Ahmad R

    2016-01-01

    Stress exposure is associated with individual differences in corticolimbic structure and function that often mirror patterns observed in psychopathology. Gene x environment interaction research suggests that genetic variation moderates the impact of stress on risk for psychopathology. On the basis of these findings, imaging genetics, which attempts to link variability in DNA sequence and structure to neural phenotypes, has begun to incorporate measures of the environment. This research paradigm, known as imaging gene x environment interaction (iGxE), is beginning to contribute to our understanding of the neural mechanisms through which genetic variation and stress increase psychopathology risk. Although awaiting replication, evidence suggests that genetic variation within the canonical neuroendocrine stress hormone system, the hypothalamic-pituitary-adrenal axis, contributes to variability in stress-related corticolimbic structure and function, which, in turn, confers risk for psychopathology. For iGxE research to reach its full potential it will have to address many challenges, of which we discuss: (i) small effects, (ii) measuring the environment and neural phenotypes, (iii) the absence of detailed mechanisms, and (iv) incorporating development. By actively addressing these challenges, iGxE research is poised to help identify the neural mechanisms underlying genetic and environmental associations with psychopathology.

  7. Genetic analysis of the Hungarian draft horse population using partial mitochondrial DNA D-loop sequencing

    PubMed Central

    2018-01-01

    Background The Hungarian draft is a horse breed with a recent mixed ancestry created in the 1920s by crossing local mares with draught horses imported from France and Belgium. The interest in its conservation and characterization has increased over the last few years. The aim of this work is to contribute to the characterization of the endangered Hungarian heavy draft horse populations in order to obtain useful information to implement conservation strategies for these genetic stocks. Methods To genetically characterize the breed and to set up the basis for a conservation program, in the present study a hypervariable region of the mitochrondial DNA (D-loop) was used to assess genetic diversity in Hungarian draft horses. Two hundred and eighty five sequences obtained in our laboratory and 419 downloaded sequences available from Genbank were analyzed. Results One hundred and sixty-four haplotypes and thirty-six polymorphic sites were observed. High haplotype and nucleotide diversity values (Hd = 0.954 ± 0.004; π = 0.028 ± 0.0004) were identified in Hungarian population, although they were higher within than among the different populations (Hd = 0.972 ± 0.002; π = 0.03097 ± 0.002). Fourteen of the previously observed seventeen haplogroups were detected. Discussion Our samples showed a large intra- and interbreed variation. There was no clear clustering on the median joining network figure. The overall information collected in this work led us to consider that the genetic scenario observed for Hungarian draft breed is more likely the result of contributions from ‘ancestrally’ different genetic backgrounds. This study could contribute to the development of a breeding plan for Hungarian draft horses and help to formulate a genetic conservation plan, avoiding inbreeding while. PMID:29404201

  8. Genetic analysis of the Hungarian draft horse population using partial mitochondrial DNA D-loop sequencing.

    PubMed

    Csizmár, Nikolett; Mihók, Sándor; Jávor, András; Kusza, Szilvia

    2018-01-01

    The Hungarian draft is a horse breed with a recent mixed ancestry created in the 1920s by crossing local mares with draught horses imported from France and Belgium. The interest in its conservation and characterization has increased over the last few years. The aim of this work is to contribute to the characterization of the endangered Hungarian heavy draft horse populations in order to obtain useful information to implement conservation strategies for these genetic stocks. To genetically characterize the breed and to set up the basis for a conservation program, in the present study a hypervariable region of the mitochrondial DNA (D-loop) was used to assess genetic diversity in Hungarian draft horses. Two hundred and eighty five sequences obtained in our laboratory and 419 downloaded sequences available from Genbank were analyzed. One hundred and sixty-four haplotypes and thirty-six polymorphic sites were observed. High haplotype and nucleotide diversity values ( H d  = 0.954 ± 0.004; π  = 0.028 ± 0.0004) were identified in Hungarian population, although they were higher within than among the different populations ( H d  = 0.972 ± 0.002; π  = 0.03097 ± 0.002). Fourteen of the previously observed seventeen haplogroups were detected. Our samples showed a large intra- and interbreed variation. There was no clear clustering on the median joining network figure. The overall information collected in this work led us to consider that the genetic scenario observed for Hungarian draft breed is more likely the result of contributions from 'ancestrally' different genetic backgrounds. This study could contribute to the development of a breeding plan for Hungarian draft horses and help to formulate a genetic conservation plan, avoiding inbreeding while.

  9. The Genetic Diversity of Two Brazilian Vellozia (Velloziaceae) with Different Patterns of Spatial Distribution and Pollination Biology

    PubMed Central

    FRANCESCHINELLI, EDIVANI VILLARON; JACOBI, CLAUDIA M.; DRUMMOND, MARCELA GONÇALVES; RESENDE, MARCELO F. SILVEIRA

    2006-01-01

    • Background and Aims The genetic structure and variability of two species of Vellozia (Velloziaceae) with restricted distribution in high-altitude quartzitic fields in south-eastern Brazil were studied. Vellozia epidendroides is short, grows on pebbly or sandy soil, and is pollinated by bees. Vellozia leptopetala is arborescent, grows on rock outcrops, and is pollinated by bees and hummingbirds. Both are self-incompatible and have a short, massive flowering strategy. The study aimed to associate differences in their genetic diversity and structure with their microhabitat distribution and pollination ecology. • Methods Leaves from 106 and 139 plants of V. epidendroides and V. leptopetala, respectively, were collected from five patches of each species and prepared for electrophoretic analyses. • Key Results Five enzyme systems could be reliably scored for both species. Vellozia epidendroides showed 100 % of the loci polymorphic for almost all patches. The average number of alleles per locus ranged between 2·2 and 2·4 among patches. The Wright's fixation index (F) for this species was 0·226. A significant θp value indicates that there is a reasonable genetic divergence among patches. Vellozia leptopetala presented 47·5 % of polymorphic loci. All levels of P, A, Ap and of heterozygosities were lower than those of V. epidendroides. Vellozia leptopetala showed high inbreeding within patches. • Conclusions The relatively high values of genetic diversity indices found for V. epidendroides may be associated with its large and widespread populations. On the other hand, the low values of genetic diversity found for V. leptopetala may be related to physical isolation on outcrops and intensive foraging by territorial hummingbirds, which may hinder gene flow among patches, aggravated by the very restricted seed dispersal characteristic of the genus, that facilitates sibling mating. It is important to stress the need to preserve the specific habitats of these

  10. Sex differences in genetic and environmental contributions to alcohol consumption from early adolescence to young adulthood.

    PubMed

    Seglem, Karoline B; Waaktaar, Trine; Ask, Helga; Torgersen, Svenn

    2016-07-01

    To estimate genetic and environmental contributions to alcohol consumption from early adolescence to young adulthood, and test whether gender moderates these effects. Longitudinal twin cohort design. Population-based sample from Norway. A total of 2862 male and female twins, aged 14-22 years, were assessed at one (n = 881), two (n = 898) or three (n = 1083) occasions. The percentage of females was between 56 and 63 in the different age groups (in the different waves). Alcohol consumption was measured by two questionnaire items about frequency of alcohol use and frequency of being drunk. Additive genetic effects showed low to moderate contributions [proportion estimate, 95% confidence interval (CI) = range from 0.03 (0.00-0.14) to 0.49 (0.37-0.59) in males and from 0.09 (0.00-0.57) to 0.41 (0.24-0.58) in females] from adolescence to young adulthood, while environmental influences shared by twin pairs and contributing to twin similarity were moderate to highly influential during this developmental period [proportion estimate, 95% CI = range from 0.04 (0.00-0.13) to 0.45 (0.26-0.60) in males for shared environment in common with females, from 0.25 (0.09-0.42) to 0.54 (0.06-0.78) for shared environment specific to males and from 0.36 (0.20-0.52) to 0.51 (0.37-0.71) in females]. There was evidence of qualitative sex differences with shared environmental influences being largely sex-specific from middle adolescence onwards. Alcohol consumption from early adolescence to young adulthood appears to be influenced to a small to moderate degree by genetic factors and to a moderate to high degree by shared environmental factors (e.g. rearing influences, shared friends). The shared environmental factors influencing alcohol consumption appear to be largely gender-specific. © 2016 Society for the Study of Addiction.

  11. Genetic Interactions with Prenatal Social Environment: Effects on Academic and Behavioral Outcomes

    ERIC Educational Resources Information Center

    Conley, Dalton; Rauscher, Emily

    2013-01-01

    Numerous studies report gene-environment interactions, suggesting that specific alleles have different effects on social outcomes depending on environment. In all these studies, however, environmental conditions are potentially endogenous to unmeasured genetic characteristics. That is, it could be that the observed interaction effects actually…

  12. A population genetics perspective on the determinants of intra-tumor heterogeneity

    PubMed Central

    Hu, Zheng; Sun, Ruping; Curtis, Christina

    2017-01-01

    Cancer results from the acquisition of somatic alterations in a microevolutionary process that typically occurs over many years, much of which is occult. Understanding the evolutionary dynamics that are operative at different stages of progression in individual tumors might inform the earlier detection, diagnosis, and treatment of cancer. Although these processes cannot be directly observed, the resultant spatiotemporal patterns of genetic variation amongst tumor cells encode their evolutionary histories. Such intra-tumor heterogeneity is pervasive not only at the genomic level, but also at the transcriptomic, phenotypic, and cellular levels. Given the implications for precision medicine, the accurate quantification of heterogeneity within and between tumors has become a major focus of current research. In this review, we provide a population genetics perspective on the determinants of intra-tumor heterogeneity and approaches to quantify genetic diversity. We summarize evidence for different modes of evolution based on recent cancer genome sequencing studies and discuss emerging evolutionary strategies to therapeutically exploit tumor heterogeneity. PMID:28274726

  13. Understanding the Cognitive and Genetic Underpinnings of Procrastination: Evidence for Shared Genetic Influences with Goal Management and Executive Function Abilities

    PubMed Central

    Gustavson, Daniel E.; Miyake, Akira; Hewitt, John K.; Friedman, Naomi P.

    2015-01-01

    Previous research has suggested that individual differences in procrastination are tied to everyday goal-management abilities, but little research has been conducted on specific cognitive abilities that may underlie tendencies for procrastination, such as executive functions (EFs). In this study, we used behavioral genetics methodology to investigate two hypotheses about the relationships between procrastination and EF ability: (a) that procrastination is negatively correlated with general EF ability, and (b) that this relationship is due to the genetic components of procrastination that are most related to other everyday goal-management abilities. The results confirmed both of these hypotheses. Procrastination was related to worse general EF ability at both the phenotypic and genetic levels, and this relationship was due to the component of procrastination shared with self-report measures of everyday goal-management failures. These results were observed even after controlling for potential self-report biases stemming from the urge to respond in a socially desirable manner. Together, these findings provide strong evidence for growing theories of procrastination emphasizing the importance of goal-related cognitive abilities and further highlight important genetic influences that underlie procrastination. PMID:26389573

  14. Understanding the cognitive and genetic underpinnings of procrastination: Evidence for shared genetic influences with goal management and executive function abilities.

    PubMed

    Gustavson, Daniel E; Miyake, Akira; Hewitt, John K; Friedman, Naomi P

    2015-12-01

    Previous research has suggested that individual differences in procrastination are tied to everyday goal-management abilities, but little research has been conducted on specific cognitive abilities that may underlie tendencies for procrastination, such as executive functions (EFs). In this study, we used behavioral genetics methodology to investigate 2 hypotheses about the relationships between procrastination and EF ability: (a) that procrastination is negatively correlated with general EF ability, and (b) that this relationship is due to the genetic components of procrastination that are most related to other everyday goal-management abilities. The results confirmed both of these hypotheses. Procrastination was related to worse general EF ability at both the phenotypic and genetic levels, and this relationship was due to the component of procrastination shared with self-report measures of everyday goal-management failures. These results were observed even after controlling for potential self-report biases stemming from the urge to respond in a socially desirable manner. Together, these findings provide strong evidence for growing theories of procrastination emphasizing the importance of goal-related cognitive abilities and further highlight important genetic influences that underlie procrastination. (c) 2015 APA, all rights reserved).

  15. Genetic bottlenecks during systemic movement of Cucumber mosaic virus vary in different host plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Akhtar; Roossinck, Marilyn J., E-mail: mroossinck@noble.or

    2010-09-01

    Genetic bottlenecks are stochastic events that narrow variation in a population. We compared bottlenecks during the systemic infection of Cucumber mosaic virus (CMV) in four host plants. We mechanically inoculated an artificial population of twelve CMV mutants to young leaves of tomato, pepper, Nicotiana benthamiana, and squash. The inoculated leaves and primary and secondary systemically infected leaves were sampled at 2, 10, and 15 days post-inoculation. All twelve mutants were detected in all of the inoculated leaves. The number of mutants recovered from the systemically infected leaves of all host species was reduced significantly, indicating bottlenecks in systemic movement. Themore » recovery frequencies of a few of the mutants were significantly different in each host probably due to host-specific selective forces. These results have implications for the differences in virus population variation that is seen in different host plants.« less

  16. Genetic and Behavioral Influences on Received Aggression during Observed Play among Unfamiliar Preschool-Aged Peers

    ERIC Educational Resources Information Center

    DiLalla, Lisabeth Fisher; John, Sufna Gheyara

    2014-01-01

    Peer victimization appears heritable, but it is unclear whether the traits that confer genetic risk require time and familiarity with a perpetrator to manifest or whether novel and brief interactions can lead to received aggression that demonstrates similar genetic risk. We examined 20-minute, peer-play interactions between 5-year-olds, pairing…

  17. [Study on the genetic difference of SEO type Hantaviruses].

    PubMed

    Zhang, X; Zhou, S; Wang, H; Hu, J; Guan, Z; Liu, H

    2000-10-01

    To understand the genetic type of Hantaviruses and the difference between them caused by rodents in Beijing and to furhter explore the source of the infectious factors. Hantavirus RNA, isolated from lungs of rodents captured in Beijing and positive with Hantavirus antigens with frozen sectioning and Immunofluorescent assay, were reverse-transcribed and amplified with PCR with Hantavirus-specific primers. Five of the PCR amplifications were discovered and sequenced with 300 bp sequence data of M segments (from 2003 - 2302nt according cDNA of seoul 8039 strain). Nucleotide sequence homology showed that they were sequences of SEO-type Hantavirus. Compared with SEO type Hantavirus, the nucleotide sequence homology of these samples was more than 94% while the homology of amonia acid sequence was more than 98%. When compared with HNT type Hantavirus, the homology of nucleotide sequence became less than 72% with the homology of amonia acid sequence less than 81%. Similar to other Hantavirus of SEO type, their nucleotide sequences and deduced amino acid sequences were highly preserved. Phylogenetic tree analysis showed that the five viruses could be divided into at least 4 branches. It was quite likely that there were at least two sub-type SEO viruses with 4 branches that were circulating in Beijing.

  18. [Correlation between genetic differences of mates and pathogenicity of Schistosoma japonicum in definitive host].

    PubMed

    Wen-Qiao, Huang; Yuan-Jian, Zhu; Da-Bing, Lv; Xia, Zhou; Ying-Nan, Yang; Hong-Xiang, Zhu-Ge

    2016-05-24

    To explore the correlation between the genetic dissimilarity and heterozygosity of mates and the pathogenicity of Schistosoma japonicum in the definitive host. By using seven microsatellite loci markers, S. japonicum genotyping of sixteen pairs randomly mated was performed, the genetic dissimilarity and heterozygosity were calculated between the mates, and the correlation between the genetic dissimilarity and heterozygosity of the mates and the pathogenicity of S. japonicum in the definitive host was evaluated. There was a significant correlation between the genetic similarity of S. japonicum mates and the mean number of eggs per worm pair in the liver and intestinal tissue ( r = 0.501 6, P < 0.05; r = 0.796 5, P < 0.01, respectively) and the hatching rate of deposited eggs in the liver ( r = 0.508 3, P < 0.05), respectively. There was no correlation between the genetic similarity of the mates and hepatosplenomegaly per worm pair ( r = 0.109 5, P > 0.05; r = 0.265 3, P > 0.05, respectively) and the average diameter of granuloma in the liver ( r = -0.272 7, P > 0.05), respectively. There was no correlation between the heterozygosity of the mates and all the pathological parameters of S. japonicum in the definitive host ( P > 0.05). There is the correlation between the genetic dissimilarity of the mates and the pathogenicity of S. japonicum in the definitive host, and the genetic dissimilarity is greater, pathogenicity is weaker. There is no correlation between heterozygosity of the mates and the pathogenicity of S. japonicum in the definitive host.

  19. Fire alters patterns of genetic diversity among 3 lizard species in Florida Scrub habitat.

    PubMed

    Schrey, Aaron W; Ashton, Kyle G; Heath, Stacy; McCoy, Earl D; Mushinsky, Henry R

    2011-01-01

    The Florida Sand Skink (Plestiodon reynoldsi), the Florida Scrub Lizard (Sceloporus woodi), and the Six-lined Racerunner (Aspidoscelis sexlineata) occur in the threatened and fire-maintained Florida scrub habitat. Fire may have different consequences to local genetic diversity of these species because they each have different microhabitat preference. We collected tissue samples of each species from 3 sites with different time-since-fire: Florida Sand Skink n = 73, Florida Scrub Lizard n = 70, and Six-lined Racerunner n = 66. We compared the effect of fire on genetic diversity at microsatellite loci for each species. We screened 8 loci for the Florida Sand Skink, 6 loci for the Florida Scrub Lizard, and 6 loci for the Six-lined Racerunner. We also tested 2 potential driving mechanisms for the observed change in genetic diversity, a metapopulation source/sink model and a local demographic model. Genetic diversity varied with fire history, and significant genetic differentiation occurred among sites. The Florida Scrub Lizard had highest genetic variation at more recently burned sites, whereas the Florida Sand Skink and the Six-lined Racerunner had highest genetic variation at less recently burned sites. Habitat preferences of the Florida Sand Skink and the Florida Scrub Lizard may explain their discordant results, and the Six-lined Racerunner may have a more complicated genetic response to fire or is acted on at a different geographic scale than we have investigated. Our results indicate that these species may respond to fire in a more complicated manner than predicted by our metapopulation model or local demographic model. Our results show that the population-level responses in genetic diversity to fire are species-specific mandating conservation management of habitat diversity through a mosaic of burn frequencies.

  20. Molecular population genetics of inversion breakpoint regions in Drosophila pseudoobscura.

    PubMed

    Wallace, Andre G; Detweiler, Don; Schaeffer, Stephen W

    2013-07-08

    Paracentric inversions in populations can have a profound effect on the pattern and organization of nucleotide variability along a chromosome. Regions near inversion breakpoints are expected to have greater levels of differentiation because of reduced genetic exchange between different gene arrangements whereas central regions in the inverted segments are predicted to have lower levels of nucleotide differentiation due to greater levels of genetic flux among different karyotypes. We used the inversion polymorphism on the third chromosome of Drosophila pseudoobscura to test these predictions with an analysis of nucleotide diversity of 18 genetic markers near and away from inversion breakpoints. We tested hypotheses about how the presence of different chromosomal arrangements affects the pattern and organization of nucleotide variation. Overall, markers in the distal segment of the chromosome had greater levels of nucleotide heterozygosity than markers within the proximal segment of the chromosome. In addition, our results rejected the hypothesis that the breakpoints of derived inversions will have lower levels of nucleotide variability than breakpoints of ancestral inversions, even when strains with gene conversion events were removed. High levels of linkage disequilibrium were observed within all 11 breakpoint regions as well as between the ends of most proximal and distal breakpoints. The central region of the chromosome had the greatest levels of linkage disequilibrium compared with the proximal and distal regions because this is the region that experiences the highest level of recombination suppression. These data do not fully support the idea that genetic exchange is the sole force that influences genetic variation on inverted chromosomes.

  1. Human Aggression Across the Lifespan: Genetic Propensities and Environmental Moderators

    PubMed Central

    Tuvblad, Catherine; Baker, Laura A.

    2013-01-01

    This chapter reviews the recent evidence of genetic and environmental influences on human aggression. Findings from a large selection of the twin and adoption studies that have investigated the genetic and environmental architecture of aggressive behavior are summarized. These studies together show that about half (50%) of the variance in aggressive behavior is explained by genetic influences in both males and females, with the remaining 50% of the variance being explained by environmental factors not shared by family members. Form of aggression (reactive, proactive, direct/physical, indirect/relational), method of assessment (laboratory observation, self-report, ratings by parents and teachers), and age of the subjects—all seem to be significant moderators of the magnitude of genetic and environmental influences on aggressive behavior. Neither study design (twin vs. sibling adoption design) nor sex (male vs. female) seems to impact the magnitude of the genetic and environmental influences on aggression. There is also some evidence of gene-environment interaction (G × E) from both twin/adoption studies and molecular genetic studies. Various measures of family adversity and social disadvantage have been found to moderate genetic influences on aggressive behavior. Findings from these G × E studies suggest that not all individuals will be affected to the same degree by experiences and exposures, and that genetic predispositions may have different effects depending on the environment. PMID:22078481

  2. Angiotensin-converting enzyme genetic polymorphism: its impact on cardiac remodeling

    PubMed Central

    de Albuquerque, Felipe Neves; Brandão, Andréa Araujo; da Silva, Dayse Aparecida; Mourilhe-Rocha, Ricardo; Duque, Gustavo Salgado; Gondar, Alyne Freitas Pereira; Neves, Luiza Maceira de Almeida; Bittencourt, Marcelo Imbroinise; Pozzan, Roberto; de Albuquerque, Denilson Campos

    2014-01-01

    Background The role of angiotensin-converting enzyme genetic polymorphisms as a predictor of echocardiographic outcomes on heart failure is yet to be established. The local profile should be identified so that the impact of those genotypes on the Brazilian population could be identified. This is the first study on exclusively non-ischemic heart failure over a follow-up longer than 5 years. Objective To determine the distribution of angiotensin-converting enzyme genetic polymorphism variants and their relation with echocardiographic outcome of patients with non-ischemic heart failure. Methods Secondary analysis of the medical records of 111 patients and identification of the angiotensin-converting enzyme genetic polymorphism variants, classified as DD (Deletion/Deletion), DI (Deletion/Insertion) or II (Insertion/Insertion). Results The cohort means were as follows: follow-up, 64.9 months; age, 59.5 years; male sex, 60.4%; white skin color, 51.4%; use of beta-blockers, 98.2%; and use of angiotensin-converting-enzyme inhibitors or angiotensin receptor blocker, 89.2%. The angiotensin-converting enzyme genetic polymorphism distribution was as follows: DD, 51.4%; DI, 44.1%; and II, 4.5%. No difference regarding the clinical characteristics or treatment was observed between the groups. The final left ventricular systolic diameter was the only isolated echocardiographic variable that significantly differed between the angiotensin-converting enzyme genetic polymorphisms: 59.2 ± 1.8 for DD versus 52.3 ± 1.9 for DI versus 59.2 ± 5.2 for II (p = 0.029). Considering the evolutionary behavior, all echocardiographic variables (difference between the left ventricular ejection fraction at the last and first consultation; difference between the left ventricular systolic diameter at the last and first consultation; and difference between the left ventricular diastolic diameter at the last and first consultation) differed between the genotypes (p = 0.024; p = 0.002; and p = 0

  3. Angiotensin-converting enzyme genetic polymorphism: its impact on cardiac remodeling.

    PubMed

    Albuquerque, Felipe Neves de; Brandão, Andréa Araujo; Silva, Dayse Aparecida da; Mourilhe-Rocha, Ricardo; Duque, Gustavo Salgado; Gondar, Alyne Freitas Pereira; Neves, Luiza Maceira de Almeida; Bittencourt, Marcelo Imbroinise; Pozzan, Roberto; Albuquerque, Denilson Campos de

    2014-01-01

    The role of angiotensin-converting enzyme genetic polymorphisms as a predictor of echocardiographic outcomes on heart failure is yet to be established. The local profile should be identified so that the impact of those genotypes on the Brazilian population could be identified. This is the first study on exclusively non-ischemic heart failure over a follow-up longer than 5 years. To determine the distribution of angiotensin-converting enzyme genetic polymorphism variants and their relation with echocardiographic outcome of patients with non-ischemic heart failure. Secondary analysis of the medical records of 111 patients and identification of the angiotensin-converting enzyme genetic polymorphism variants, classified as DD (Deletion/Deletion), DI (Deletion/Insertion) or II (Insertion/Insertion). The cohort means were as follows: follow-up, 64.9 months; age, 59.5 years; male sex, 60.4%; white skin color, 51.4%; use of beta-blockers, 98.2%; and use of angiotensin-converting-enzyme inhibitors or angiotensin receptor blocker, 89.2%. The angiotensin-converting enzyme genetic polymorphism distribution was as follows: DD, 51.4%; DI, 44.1%; and II, 4.5%. No difference regarding the clinical characteristics or treatment was observed between the groups. The final left ventricular systolic diameter was the only isolated echocardiographic variable that significantly differed between the angiotensin-converting enzyme genetic polymorphisms: 59.2 ± 1.8 for DD versus 52.3 ± 1.9 for DI versus 59.2 ± 5.2 for II (p = 0.029). Considering the evolutionary behavior, all echocardiographic variables (difference between the left ventricular ejection fraction at the last and first consultation; difference between the left ventricular systolic diameter at the last and first consultation; and difference between the left ventricular diastolic diameter at the last and first consultation) differed between the genotypes (p = 0.024; p = 0.002; and p = 0.021, respectively). The distribution of

  4. Comparison of the levels of intra-specific genetic variation within Giardia muris and Giardia intestinalis.

    PubMed

    Andrews, R H; Monis, P T; Ey, P L; Mayrhofer, G

    1998-08-01

    The extent of intra-specific genetic variation between isolates of Giardia muris was assessed by allozyme electrophoresis. Additionally, the levels of allozymic variation detected within G. muris were compared with those observed between members of the two major assemblages of the morphologically distinct species Giardia intestinalis. Four isolates of G. muris were analysed. Three (Ad-120, -150, -151) were isolated from mice in Australia, while the fourth (R-T) was isolated from a golden hamster in North America. The 11 isolates of G. intestinalis (Ad-1, -12, -2, -62, representing genetic Groups I and II of Assemblage A and BAH-12, BRIS/87/HEPU/694, Ad-19, -22, -28, -45, -52, representing genetic Groups III and IV of Assemblage B) were from humans in Australia. Intra-specific genetic variation was detected between G. muris isolates at four of the 23 enzyme loci examined. Similar levels of variation were found within the genetic groups that comprise Assemblages A and B of G. intestinalis. These levels of intra-specific variation are similar to those observed within other morphologically-distinct species of protozoan parasites. We suggest that the magnitude of the genetic differences detected within G. muris provides an indication of the range of genetic variation within other species of Giardia and that this can be used as a model to delineate morphologically similar but genetically distinct (cryptic) species within this genus.

  5. Genetic variation facilitates seedling establishment but not population growth rate of a perennial invader

    PubMed Central

    Li, Shou-Li; Vasemägi, Anti; Ramula, Satu

    2016-01-01

    Background and Aims Assessing the demographic consequences of genetic variation is fundamental to invasion biology. However, genetic and demographic approaches are rarely combined to explore the effects of genetic variation on invasive populations in natural environments. This study combined population genetics, demographic data and a greenhouse experiment to investigate the consequences of genetic variation for the population fitness of the perennial, invasive herb Lupinus polyphyllus. Methods Genetic and demographic data were collected from 37 L. polyphyllus populations representing different latitudes in Finland, and genetic variation was characterized based on 13 microsatellite loci. Associations between genetic variation and population size, population density, latitude and habitat were investigated. Genetic variation was then explored in relation to four fitness components (establishment, survival, growth, fecundity) measured at the population level, and the long-term population growth rate (λ). For a subset of populations genetic variation was also examined in relation to the temporal variability of λ. A further assessment was made of the role of natural selection in the observed variation of certain fitness components among populations under greenhouse conditions. Key Results It was found that genetic variation correlated positively with population size, particularly at higher latitudes, and differed among habitat types. Average seedling establishment per population increased with genetic variation in the field, but not under greenhouse conditions. Quantitative genetic divergence (QST) based on seedling establishment in the greenhouse was smaller than allelic genetic divergence (F′ST), indicating that unifying selection has a prominent role in this fitness component. Genetic variation was not associated with average survival, growth or fecundity measured at the population level, λ or its variability. Conclusions The study suggests that although genetic

  6. X-chromosome SNP analyses in 11 human Mediterranean populations show a high overall genetic homogeneity except in North-west Africans (Moroccans)

    PubMed Central

    2008-01-01

    Background Due to its history, with a high number of migration events, the Mediterranean basin represents a challenging area for population genetic studies. A large number of genetic studies have been carried out in the Mediterranean area using different markers but no consensus has been reached on the genetic landscape of the Mediterranean populations. In order to further investigate the genetics of the human Mediterranean populations, we typed 894 individuals from 11 Mediterranean populations with 25 single-nucleotide polymorphisms (SNPs) located on the X-chromosome. Results A high overall homogeneity was found among the Mediterranean populations except for the population from Morocco, which seemed to differ genetically from the rest of the populations in the Mediterranean area. A very low genetic distance was found between populations in the Middle East and most of the western part of the Mediterranean Sea. A higher migration rate in females versus males was observed by comparing data from X-chromosome, mt-DNA and Y-chromosome SNPs both in the Mediterranean and a wider geographic area. Multilocus association was observed among the 25 SNPs on the X-chromosome in the populations from Ibiza and Cosenza. Conclusion Our results support both the hypothesis of (1) a reduced impact of the Neolithic Wave and more recent migration movements in NW-Africa, and (2) the importance of the Strait of Gibraltar as a geographic barrier. In contrast, the high genetic homogeneity observed in the Mediterranean area could be interpreted as the result of the Neolithic wave caused by a large demic diffusion and/or more recent migration events. A differentiated contribution of males and females to the genetic landscape of the Mediterranean area was observed with a higher migration rate in females than in males. A certain level of background linkage disequilibrium in populations in Ibiza and Cosenza could be attributed to their demographic background. PMID:18312628

  7. Further blood genetic studies on Amazonian diversity--data from four Indian groups.

    PubMed

    Callegari-Jacques, S M; Salzano, F M; Weimer, T A; Hutz, M H; Black, F L; Santos, S E; Guerreiro, J F; Mestriner, M A; Pandey, J P

    1994-01-01

    Information related to 31 protein genetic systems was obtained for 307 individuals affiliated with the Cinta Larga, Karitiana, Surui and Kararaô Indians of northern Brazil. In terms of genetic distances the Cinta Larga showed more similarities with the Karitiana (both are Tupi-speaking tribes), while at a more distant level the Surui clustered with the Kararaô. The latter, a Cayapo subgroup, showed a completely different genetic constitution from the other subgroups of this same tribe. Both the Kararaô and Karitiana are small, remnant populations, and their gene pools have presumably been severely affected by random and founder effects. These results were incorporated with those of 25 other Amazonian Indian tribes, and analysis by two multivariate techniques confirmed a previously observed geographical dichotomy, suggesting either that the Amazon river constitutes a barrier to north-south gene flow or that latitudinally different past migrations entered the region from the west.

  8. An epigenetic intervention interacts with genetic strain differences to modulate the stress-induced reduction of flurazepam's antiseizure efficacy in the mouse.

    PubMed

    Deutsch, Stephen I; Mastropaolo, John; Burket, Jessica A; Rosse, Richard B

    2009-06-01

    Stress induces changes in the endogenous tone of both GABA and NMDA receptor-mediated neurotransmission in the intact mouse. Because changes are observed 24 h after stress, epigenetically-regulated alterations in gene expression may mediate these effects. In earlier work, sodium butyrate, a centrally-active histone deacetylase inhibitor that promotes gene expression, was shown to modulate the stress-induced reduction of the ability of MK-801 (dizocilpine), a noncompetitive NMDA receptor antagonist, to antagonize electrically-precipitated seizures. In the current study, we extended this work to look at sodium butyrate's modulatory effect on stress-induced changes in the antiseizure efficacy of flurazepam, a benzodiazepine receptor agonist, in two strains of mice. Epigenetic mechanisms, genetic strain differences and a standard stress interacted to alter flurazepam's antiseizure efficacy. These data support examination and development of epigenetic treatment strategies.

  9. Genetic architecture of lipid traits changes over time and differs by race: Princeton Lipid Follow-up Study.

    PubMed

    Woo, Jessica G; Morrison, John A; Stroop, Davis M; Aronson Friedman, Lisa; Martin, Lisa J

    2014-07-01

    Dyslipidemia is a major risk factor for CVD. Previous studies on lipid heritability have largely focused on white populations assessed after the obesity epidemic. Given secular trends and racial differences in lipid levels, this study explored whether lipid heritability is consistent across time and between races. African American and white nuclear families had fasting lipids measured in the 1970s and 22-30 years later. Heritability was estimated, and bivariate analyses between visits were conducted by race using variance components analysis. A total of 1,454 individuals (age 14.1/40.6 for offspring/parents at baseline; 39.6/66.5 at follow-up) in 373 families (286 white, 87 African American) were included. Lipid trait heritabilities were typically stronger during the 1970s than the 2000s. At baseline, additive genetic variation for LDL was significantly lower in African Americans than whites (P = 0.015). Shared genetic contribution to lipid variability over time was significant in both whites (all P < 0.0001) and African Americans (P ≤ 0.05 for total, LDL, and HDL cholesterol). African American families demonstrated shared environmental contributions to lipid variation over time (all P ≤ 0.05). Lower heritability, lower LDL genetic variance, and durable environmental effects across the obesity epidemic in African American families suggest race-specific approaches are needed to clarify the genetic etiology of lipids. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  10. Genetic identity affects performance of species in grasslands of different plant diversity: an experiment with Lolium perenne cultivars.

    PubMed

    Roscher, Christiane; Schumacher, Jens; Weisser, Wolfgang W; Schulze, Ernst-Detlef

    2008-07-01

    Recent biodiversity research has focused on ecosystem processes, but less is known about responses of populations of individual plant species to changing community diversity and implications of genetic variation within species. To address these issues, effects of plant community diversity on the performance of different cultivars of Lolium perenne were analysed. Populations of 15 genetic cultivars of Lolium perenne were established in experimental grasslands varying in richness of species (from 1 to 60) and functional groups (from 1 to 4). Population sizes, mean size of individual plants, biomass of individual shoots and seed production were measured in the first and second growing season after establishment. Population sizes of all cultivars decreased with increasing community species richness. Plant individuals formed fewer shoots with a lower shoot mass in more species-rich plant communities. A large proportion of variation in plant size and relative population growth was attributable to effects of community species and functional group richness, but the inclusion of cultivar identity explained additional 4-7 % of variation. Cultivar identity explained most variation (28-51 %) at the shoot level (biomass of individual tillers and reproductive shoots, seed production, heading stage). Coefficients of variation of the measured variables across plant communities were larger in cultivars with a lower average performance, indicating that this variation was predominantly due to passive growth reductions and not a consequence of larger adaptive plastic responses. No single cultivar performed best in all communities. The decreasing performance of Lolium perenne in plant communities of increasing species richness suggests a regulation of competitive interactions by species diversity. Genetic variation within species provides a base for larger phenotypic variation and may affect competitive ability. However, heterogeneous biotic environments (= plant communities of

  11. Genetic characterization of Common Eiders breeding in the Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Talbot, Sandra L.; McCracken, Kevin G.

    2007-01-01

    We assessed population genetic subdivision among four colonies of Common Eiders (Somateria mollissima v-nigrum) breeding in the Yukon-Kuskokwim Delta (YKD), Alaska, using microsatellite genotypes and DNA sequences with differing modes of inheritance. Significant, albeit low, levels of genetic differentiation were observed between mainland populations and Kigigak Island for nuclear intron lamin A and mitochondrial DNA (mtDNA) control region. Intercolony variation in haplotypic frequencies also was observed at mtDNA. Positive growth signatures assayed from microsatellites, nuclear introns, and mtDNA indicate recent colonization of the YKD, and may explain the low levels of structuring observed. Gene flow estimates based on microsatellites, nuclear introns, and mtDNA suggest asymmetrical gene flow between mainland colonies and Kigigak Island, with more individuals on average dispersing from mainland populations to Kigigak Island than vice versa. The directionality of gene flow observed may be explained by the colonization of the YKD from northern glacial refugia or by YKD metapopulation dynamics.

  12. Genetic differences in the serum proteome of horses, donkeys and mules are detectable by protein profiling.

    PubMed

    Henze, Andrea; Aumer, Franziska; Grabner, Arthur; Raila, Jens; Schweigert, Florian J

    2011-10-01

    Although horses and donkeys belong to the same genus, their genetic characteristics probably result in specific proteomes and post-translational modifications (PTM) of proteins. Since PTM can alter protein properties, specific PTM may contribute to species-specific characteristics. Therefore, the aim of the present study was to analyse differences in serum protein profiles of horses and donkeys as well as mules, which combine the genetic backgrounds of both species. Additionally, changes in PTM of the protein transthyretin (TTR) were analysed. Serum protein profiles of each species (five animals per species) were determined using strong anion exchanger ProteinChips® (Bio-Rad, Munich, Germany) in combination with surface-enhanced laser desorption ionisation-time of flight MS. The PTM of TTR were analysed subsequently by immunoprecipitation in combination with matrix-assisted laser desorption ionisation-time of flight MS. Protein profiling revealed species-specific differences in the proteome, with some protein peaks present in all three species as well as protein peaks that were unique for donkeys and mules, horses and mules or for horses alone. The molecular weight of TTR of horses and donkeys differed by 30 Da, and both species revealed several modified forms of TTR besides the native form. The mass spectra of mules represented a merging of TTR spectra of horses and donkeys. In summary, the present study indicated that there are substantial differences in the proteome of horses and donkeys. Additionally, the results probably indicate that the proteome of mules reveal a higher similarity to donkeys than to horses.

  13. Characterizing Male–Female Interactions Using Natural Genetic Variation in Drosophila melanogaster

    PubMed Central

    Reinhart, Michael; Carney, Tara; Clark, Andrew G.

    2015-01-01

    Drosophila melanogaster females commonly mate with multiple males establishing the opportunity for pre- and postcopulatory sexual selection. Traits impacting sexual selection can be affected by a complex interplay of the genotypes of the competing males, the genotype of the female, and compatibilities between the males and females. We scored males from 96 2nd and 94 3rd chromosome substitution lines for traits affecting reproductive success when mated with females from 3 different genetic backgrounds. The traits included male-induced female refractoriness, male remating ability, the proportion of offspring sired under competitive conditions and male-induced female fecundity. We observed significant effects of male line, female genetic background, and strong male by female interactions. Some males appeared to be “generalists” and performed consistently across the different females; other males appeared to be “specialists” and performed very well with a particular female and poorly with others. “Specialist” males did not, however, prefer to court those females with whom they had the highest reproductive fitness. Using 143 polymorphisms in male reproductive genes, we mapped several genes that had consistent effects across the different females including a derived, high fitness allele in Acp26Aa that may be the target of adaptive evolution. We also identified a polymorphism upstream of PebII that may interact with the female genetic background to affect male-induced refractoriness to remating. These results suggest that natural variation in PebII might contribute to the observed male–female interactions. PMID:25425680

  14. Genetic variation and selection of MHC class I loci differ in two congeneric frogs.

    PubMed

    Kiemnec-Tyburczy, Karen M; Tracy, Karen E; Lips, Karen R; Zamudio, Kelly R

    2018-04-01

    Major histocompatibility complex (MHC) genes encode proteins in the acquired immune response pathway that often show distinctive selection-driven patterns in wild vertebrate populations. We examined genetic variation and signatures of selection in the MHC class I alpha 1 (A1)- and alpha 2 (A2)-domain encoding exons of two frog congeners [Agalychnis callidryas (n = 20) and A. lemur (n = 20)] from a single locality in Panama. We also investigated how historical demographic processes may have impacted MHC genetic diversity by analyzing a neutral mitochondrial marker. We found that both MHC domains were highly variable in both species, with both species likely expressing three loci. Our analyses revealed different signatures of selection between the two species, most notably that the A. callidryas A2 domain had experienced positive selection while the A2 domain of A. lemur had not. Diversifying selection acted on the same number of A1 and A2 allelic lineages, but on a higher percentage of A1 sites compared to A2 sites. Neutrality tests of mitochondrial haplotypes predominately indicated that the two species were at genetic equilibrium when the samples were collected. In addition, two historical tests of demography indicated both species have had relatively stable population sizes over the past 100,000 years; thus large population size changes are unlikely to have greatly influenced MHC diversity in either species during this time period. In conclusion, our results suggest that the impact of selection on MHC diversity varied between these two closely related species, likely due to a combination of distinct ecological conditions and past pathogenic pressures.

  15. Developmental cognitive genetics: How psychology can inform genetics and vice versa

    PubMed Central

    Bishop, Dorothy V. M.

    2006-01-01

    Developmental neuropsychology is concerned with uncovering the underlying basis of developmental disorders such as specific language impairment (SLI), developmental dyslexia, and autistic disorder. Twin and family studies indicate that genetic influences play an important part in the aetiology of all of these disorders, yet progress in identifying genes has been slow. One way forward is to cut loose from conventional clinical criteria for diagnosing disorders and to focus instead on measures of underlying cognitive mechanisms. Psychology can inform genetics by clarifying what the key dimensions are for heritable phenotypes. However, it is not a one-way street. By using genetically informative designs, one can gain insights about causal relationships between different cognitive deficits. For instance, it has been suggested that low-level auditory deficits cause phonological problems in SLI. However, a twin study showed that, although both types of deficit occur in SLI, they have quite different origins, with environmental factors more important for auditory deficit, and genes more important for deficient phonological short-term memory. Another study found that morphosyntactic deficits in SLI are also highly heritable, but have different genetic origins from impairments of phonological short-term memory. A genetic perspective shows that a search for the underlying cause of developmental disorders may be misguided, because they are complex and heterogeneous and are associated with multiple risk factors that only cause serious disability when they occur in combination. PMID:16769616

  16. Molecular Population Genetics.

    PubMed

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  17. Morphine clearance in children: does race or genetics matter?

    PubMed

    Sadhasivam, Senthilkumar; Krekels, Elke H J; Chidambaran, Vidya; Esslinger, Hope R; Ngamprasertwong, Pornswan; Zhang, Kejian; Fukuda, Tsuyoshi; Vinks, Alexander A

    2012-01-01

    Interindividual variability in analgesic response and adverse effects of opioids because of narrow therapeutic indices are major clinical problems. Morphine is an opioid commonly used in children to manage perioperative pain. Al-though size and age often are considered primary covariates for morphine pharmacokinetic models, the impact of other factors important in personalizing care such as race and genetic variations on morphine disposition is not well documented. Genotype blinded clinical observational pharmacokinetic study. One hundred forty-six African American and Caucasian children scheduled for elective outpatient adenotonsillectomy were enrolled in our prospective genotype blinded observational study with standard perioperative clinical care. Tertiary care pediatric institution. Morphine bolus for intraoperative analgesia in children and pharmacokinetic analyses in different races. Pharmacokinetics and pharmacogenetics of intravenous morphine in a homogeneous pediatric outpatient surgical pain population were evaluated. The authors observed that African American children have higher morphine clearance than Caucasian children. The increased clearance is directed toward the formation of morphine-3-glucuronide formation, rather than the formation of morphine-6-glucuronide. Common uridine diphosphate glucuronosyl transferase (UGT) 2B7 genetic variations (2161C>T and 802C>T) were not associated with observed racial differences in morphine's clearance although the wild type of the UGT2B7 isozyme is more prevalent in the African Americans. Race of the child is an important factor in perioperative intravenous morphine's clearance and its potential role in personalizing analgesia with morphine needs further investigation.

  18. Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials.

    PubMed

    Foust, C M; Preite, V; Schrey, A W; Alvarez, M; Robertson, M H; Verhoeven, K J F; Richards, C L

    2016-04-01

    While traits and trait plasticity are partly genetically based, investigating epigenetic mechanisms may provide more nuanced understanding of the mechanisms underlying response to environment. Using AFLP and methylation-sensitive AFLP, we tested the hypothesis that differentiation to habitats along natural salt marsh environmental gradients occurs at epigenetic, but not genetic loci in two salt marsh perennials. We detected significant genetic and epigenetic structure among populations and among subpopulations, but we found multilocus patterns of differentiation to habitat type only in epigenetic variation for both species. In addition, more epigenetic than genetic loci were correlated with habitat in both species. When we analysed genetic and epigenetic variation simultaneously with partial Mantel, we found no correlation between genetic variation and habitat and a significant correlation between epigenetic variation and habitat in Spartina alterniflora. In Borrichia frutescens, we found significant correlations between epigenetic and/or genetic variation and habitat in four of five populations when populations were analysed individually, but there was no significant correlation between genetic or epigenetic variation and habitat when analysed jointly across the five populations. These analyses suggest that epigenetic mechanisms are involved in the response to salt marsh habitats, but also that the relationships among genetic and epigenetic variation and habitat vary by species. Site-specific conditions may also cloud our ability to detect response in replicate populations with similar environmental gradients. Future studies analysing sequence data and the correlation between genetic variation and DNA methylation will be powerful to identify the contributions of genetic and epigenetic response to environmental gradients. © 2016 John Wiley & Sons Ltd.

  19. Assessment of Genetic Diversity of Sweet Potato in Puerto Rico

    PubMed Central

    Rodriguez-Bonilla, Lorraine; Cuevas, Hugo E.; Montero-Rojas, Milly; Bird-Pico, Fernando; Luciano-Rosario, Dianiris; Siritunga, Dimuth

    2014-01-01

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand for food and the need for conservation of agricultural and genetic resources. In Puerto Rico (PR), the genetic diversity of sweet potato has been poorly understood, although it has been part of the diet since Pre-Columbus time. Thus, 137 landraces from different localities around PR were collected and subjected to a genetic diversity analysis using 23 SSR-markers. In addition, 8 accessions from a collection grown in Gurabo, PR at the Agricultural Experimental Station (GAES), 10 US commercial cultivars and 12 Puerto Rican accessions from the USDA repository collection were included in this assessment. The results of the analysis of the 23 loci showed 255 alleles in the 167 samples. Observed heterozygosity was high across populations (0.71) while measurements of total heterozygosity revealed a large genetic diversity throughout the population and within populations. UPGMA clustering method revealed two main clusters. Cluster 1 contained 12 PR accessions from the USDA repository collection, while cluster 2 consisted of PR landraces, US commercial cultivars and the PR accessions from GAES. Population structure analysis grouped PR landraces in five groups including four US commercial cultivars. Our study shows the presence of a high level of genetic diversity of sweet potato across PR which can be related to the genetic makeup of sweet potato, human intervention and out-crossing nature of the plant. The history of domestication and dispersal of sweet potato in the Caribbean and the high levels of genetic diversity found through this study makes sweet potato an invaluable resource that needs to be protected and further studied. PMID:25551388

  20. Genetic Diversity of HIV-1 in Tunisia.

    PubMed

    El Moussi, Awatef; Thomson, Michael M; Delgado, Elena; Cuevas, María Teresa; Nasr, Majda; Abid, Salma; Ben Hadj Kacem, Mohamed Ali; Benaissa Tiouiri, Hanene; Letaief, Amel; Chakroun, Mohamed; Ben Jemaa, Mounir; Hamdouni, Hayet; Tej Dellagi, Rafla; Kheireddine, Khaled; Boutiba, Ilhem; Pérez-Álvarez, Lucía; Slim, Amine

    2017-01-01

    In this study, the genetic diversity of HIV-1 in Tunisia was analyzed. For this, 193 samples were collected in different regions of Tunisia between 2012 and 2015. A protease and reverse transcriptase fragment were amplified and sequenced. Phylogenetic analyses were performed through maximum likelihood and recombination was analyzed by bootscanning. Six HIV-1 subtypes (B, A1, G, D, C, and F2), 5 circulating recombinant forms (CRF02_AG, CRF25_cpx, CRF43_02G, CRF06_cpx, and CRF19_cpx), and 11 unique recombinant forms were identified. Subtype B (46.4%) and CRF02_AG (39.4%) were the predominant genetic forms. A group of 44 CRF02_AG sequences formed a distinct Tunisian cluster, which also included four viruses from western Europe. Nine viruses were closely related to isolates collected in other African or in European countries. In conclusion, a high HIV-1 genetic diversity is observed in Tunisia and the local spread of CRF02_AG is first documented in this country.

  1. Full genome comparison and characterization of avian H10 viruses with different pathogenicity in Mink (Mustela vison) reveals genetic and functional differences in the non-structural gene

    PubMed Central

    2010-01-01

    Background The unique property of some avian H10 viruses, particularly the ability to cause severe disease in mink without prior adaptation, enabled our study. Coupled with previous experimental data and genetic characterization here we tried to investigate the possible influence of different genes on the virulence of these H10 avian influenza viruses in mink. Results Phylogenetic analysis revealed a close relationship between the viruses studied. Our study also showed that there are no genetic differences in receptor specificity or the cleavability of the haemagglutinin proteins of these viruses regardless of whether they are of low or high pathogenicity in mink. In poly I:C stimulated mink lung cells the NS1 protein of influenza A virus showing high pathogenicity in mink down regulated the type I interferon promoter activity to a greater extent than the NS1 protein of the virus showing low pathogenicity in mink. Conclusions Differences in pathogenicity and virulence in mink between these strains could be related to clear amino acid differences in the non structural 1 (NS1) protein. The NS gene of mink/84 appears to have contributed to the virulence of the virus in mink by helping the virus evade the innate immune responses. PMID:20591155

  2. On the suitability of different representations of solid catalysts for combinatorial library design by genetic algorithms.

    PubMed

    Gobin, Oliver C; Schüth, Ferdi

    2008-01-01

    Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied for library design in combinatorial chemistry. Because of their flexibility, however, their implementation can be challenging. In this study, the influence of the representation of solid catalysts on the performance of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective, combinatorial test problem with properties common to problems in combinatorial materials science. Constraints were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to build up a predictive model to validate the results of the theoretical test problem. A significant influence of the representation on the optimization performance was observed. Binary encodings were found to be the preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or penalty functions performed best.

  3. Externalizing problems, attention regulation, and household chaos: a longitudinal behavioral genetic study.

    PubMed

    Wang, Zhe; Deater-Deckard, Kirby; Petrill, Stephen A; Thompson, Lee A

    2012-08-01

    Previous research documented a robust link between difficulties in self-regulation and development of externalizing problems (i.e., aggression and delinquency). In this study, we examined the longitudinal additive and interactive genetic and environmental covariation underlying this well-established link using a twin design. The sample included 131 pairs of monozygotic twins and 173 pairs of same-sex dizygotic twins who participated in three waves of annual assessment. Mothers and fathers provided reports of externalizing problems. Teacher report and observer rating were used to assess twin's attention regulation. The etiology underlying the link between externalizing problems and attention regulation shifted from a common genetic mechanism to a common environmental mechanism in the transition across middle childhood. Household chaos moderated the genetic variance of and covariance between externalizing problems and attention regulation. The genetic influence on individual differences in both externalizing problems and attention regulation was stronger in more chaotic households. However, higher levels of household chaos attenuated the genetic link between externalizing problems and attention regulation.

  4. Molecular genetics made simple

    PubMed Central

    Kassem, Heba Sh.; Girolami, Francesca; Sanoudou, Despina

    2012-01-01

    Abstract Genetics have undoubtedly become an integral part of biomedical science and clinical practice, with important implications in deciphering disease pathogenesis and progression, identifying diagnostic and prognostic markers, as well as designing better targeted treatments. The exponential growth of our understanding of different genetic concepts is paralleled by a growing list of genetic terminology that can easily intimidate the unfamiliar reader. Rendering genetics incomprehensible to the clinician however, defeats the very essence of genetic research: its utilization for combating disease and improving quality of life. Herein we attempt to correct this notion by presenting the basic genetic concepts along with their usefulness in the cardiology clinic. Bringing genetics closer to the clinician will enable its harmonious incorporation into clinical care, thus not only restoring our perception of its simple and elegant nature, but importantly ensuring the maximal benefit for our patients. PMID:25610837

  5. Relationships between adaptive and neutral genetic diversity and ecological structure and functioning: a meta-analysis

    PubMed Central

    Whitlock, Raj

    2014-01-01

    Understanding the effects of intraspecific genetic diversity on the structure and functioning of ecological communities is a fundamentally important part of evolutionary ecology and may also have conservation relevance in identifying the situations in which genetic diversity coincides with species-level diversity.Early studies within this field documented positive relationships between genetic diversity and ecological structure, but recent studies have challenged these findings. Conceptual synthesis has been hampered because studies have used different measures of intraspecific variation (phenotypically adaptive vs. neutral) and have considered different measures of ecological structure in different ecological and spatial contexts. The aim of this study is to strengthen conceptual understanding by providing an empirical synthesis quantifying the relationship between genetic diversity and ecological structure.Here, I present a meta-analysis of the relationship between genetic diversity within plant populations and the structure and functioning of associated ecological communities (including 423 effect sizes from 70 studies). I used Bayesian meta-analyses to examine (i) the strength and direction of this relationship, (ii) the extent to which phenotypically adaptive and neutral (molecular) measures of diversity differ in their association with ecological structure and (iii) variation in outcomes among different measures of ecological structure and in different ecological contexts.Effect sizes measuring the relationship between adaptive diversity (genotypic richness) and both community- and ecosystem-level ecological responses were small, but significantly positive. These associations were supported by genetic effects on species richness and productivity, respectively.There was no overall association between neutral genetic diversity and measures of ecological structure, but a positive correlation was observed under a limited set of demographic conditions. These

  6. Genetic structure among greater white-fronted goose populations of the Pacific Flyway

    USGS Publications Warehouse

    Ely, Craig R.; Wilson, Robert E.; Talbot, Sandra L.

    2017-01-01

    An understanding of the genetic structure of populations in the wild is essential for long-term conservation and stewardship in the face of environmental change. Knowledge of the present-day distribution of genetic lineages (phylogeography) of a species is especially important for organisms that are exploited or utilize habitats that may be jeopardized by human intervention, including climate change. Here, we describe mitochondrial (mtDNA) and nuclear genetic (microsatellite) diversity among three populations of a migratory bird, the greater white-fronted goose (Anser albifrons), which breeds discontinuously in western and southwestern Alaska and winters in the Pacific Flyway of North America. Significant genetic structure was evident at both marker types. All three populations were differentiated for mtDNA, whereas microsatellite analysis only differentiated geese from the Cook Inlet Basin. In sexual reproducing species, nonrandom mate selection, when occurring in concert with fine-scale resource partitioning, can lead to phenotypic and genetic divergence as we observed in our study. If mate selection does not occur at the time of reproduction, which is not uncommon in long-lived organisms, then mechanisms influencing the true availability of potential mates may be obscured, and the degree of genetic and phenotypic diversity may appear incongruous with presumed patterns of gene flow. Previous investigations revealed population-specific behavioral, temporal, and spatial mechanisms that likely influence the amount of gene flow measured among greater white-fronted goose populations. The degree of observed genetic structuring aligns well with our current understanding of population differences pertaining to seasonal movements, social structure, pairing behavior, and resource partitioning.

  7. Firefly algorithm versus genetic algorithm as powerful variable selection tools and their effect on different multivariate calibration models in spectroscopy: A comparative study

    NASA Astrophysics Data System (ADS)

    Attia, Khalid A. M.; Nassar, Mohammed W. I.; El-Zeiny, Mohamed B.; Serag, Ahmed

    2017-01-01

    For the first time, a new variable selection method based on swarm intelligence namely firefly algorithm is coupled with three different multivariate calibration models namely, concentration residual augmented classical least squares, artificial neural network and support vector regression in UV spectral data. A comparative study between the firefly algorithm and the well-known genetic algorithm was developed. The discussion revealed the superiority of using this new powerful algorithm over the well-known genetic algorithm. Moreover, different statistical tests were performed and no significant differences were found between all the models regarding their predictabilities. This ensures that simpler and faster models were obtained without any deterioration of the quality of the calibration.

  8. Variability of Cutaneous Leishmaniasis Lesions Is Not Associated with Genetic Diversity of Leishmania tropica in Khyber Pakhtunkhwa Province of Pakistan.

    PubMed

    Khan, Nazma Habib; Llewellyn, Martin S; Schönian, Gabriele; Sutherland, Colin J

    2017-11-01

    Leishmania tropica is the causative agent of cutaneous leishmaniasis in Pakistan. Here, intraspecific diversity of L. tropica from northern Pakistan was investigated using multilocus microsatellite typing. Fourteen polymorphic microsatellite markers were typed in 34 recently collected L. tropica isolates from Pakistan along with 158 archival strains of diverse Afro-Eurasian origins. Previously published profiles for 145 strains of L. tropica originating from different regions of Africa, Central Asia, Iran, and Middle East were included for comparison. Six consistently well-supported genetic groups were resolved: 1) Asia, 2) Morroco A, 3) Namibia and Kenya A, 4) Kenya B/Tunisia and Galilee, 5) Morocco B, and 6) Middle East. Strains from northern Pakistan were assigned to Asian cluster except for three that were placed in a geographically distant genetic group; Morocco A. Lesion variability among these Pakistani strains was not associated with specific L. tropica genetic profile. Pakistani strains showed little genetic differentiation from strains of Iraq, Afghanistan, and Syria (F ST = 0.00-0.06); displayed evidence of modest genetic flow with India (F ST = 0.14). Furthermore, genetic structuring within these isolates was not geographically defined. Pak-Afghan cluster was in significant linkage disequilibrium (I A = 1.43), had low genetic diversity, and displayed comparatively higher heterozygosity (F IS = -0.62). Patterns of genetic diversity observed suggest dominance of a minimally diverse clonal lineage within northern Pakistan. This is surprising as a wide clinical spectrum was observed in patients, suggesting the importance of host and other factors. Further genotyping studies of L. tropica isolates displaying different clinical phenotypes are required to validate this potentially important observation.

  9. Observing and Understanding Arterial and Venous Circulation Differences in a Physiology Laboratory Activity

    ERIC Educational Resources Information Center

    Altermann, Caroline; Gonçalves, Rithiele; Lara, Marcus Vinícius S.; Neves, Ben-Hur S.; Mello-Carpes, Pâmela B.

    2015-01-01

    The purpose of the present article is to describe three simple practical experiments that aim to observe and discuss the anatomic and physiological functions and differences between arteries and veins as well as the alterations observed in skin blood flow in different situations. For this activity, students were divided in small groups. In each…

  10. Expressive and Receptive Language in Prader-Willi Syndrome: Report on Genetic Subtype Differences

    ERIC Educational Resources Information Center

    Dimitropoulos, Anastasia; Ferranti, Angela; Lemler, Maria

    2013-01-01

    Prader-Willi syndrome (PWS), most recognized for the hallmark hyperphagia and food preoccupations, is caused by the absence of expression of the paternally active genes in the q11-13 region of chromosome 15. Since the recognition of PWS as a genetic disorder, most research has focused primarily on the medical, genetic, and behavioral aspects of…

  11. Race, Genetic Ancestry and Response to Antidepressant Treatment for Major Depression

    PubMed Central

    Murphy, Eleanor; Hou, Liping; Maher, Brion S; Woldehawariat, Girma; Kassem, Layla; Akula, Nirmala; Laje, Gonzalo; McMahon, Francis J

    2013-01-01

    The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Study revealed poorer antidepressant treatment response among black compared with white participants. This racial disparity persisted even after socioeconomic and baseline clinical factors were taken into account. Some studies have suggested genetic contributions to this disparity, but none have attempted to disentangle race and genetic ancestry. Here we used genome-wide single-nucleotide polymorphism (SNP) data to examine independent contributions of race and genetic ancestry to citalopram response. Secondary data analyses included 1877 STAR*D participants who completed an average of 10 weeks of citalopram treatment and provided DNA samples. Participants reported their race as White (n=1464), black (n=299) or other/mixed (n=114). Genetic ancestry was estimated by multidimensional scaling (MDS) analyses of about 500 000 SNPs. Ancestry proportions were estimated by STRUCTURE. Structural equation modeling was used to examine the direct and indirect effects of observed and latent predictors of response, defined as change in the Quick Inventory of Depressive Symptomatology (QIDS) score from baseline to exit. Socioeconomic and baseline clinical factors, race, and anxiety significantly predicted response, as previously reported. However, direct effects of race disappeared in all models that included genetic ancestry. Genetic African ancestry predicted lower treatment response in all models. Although socioeconomic and baseline clinical factors drive racial differences in antidepressant response, genetic ancestry, rather than self-reported race, explains a significant fraction of the residual differences. Larger samples would be needed to identify the specific genetic mechanisms that may be involved, but these findings underscore the importance of including more African-American patients in drug trials. PMID:23827886

  12. Sex Differences in Response to an Observational Fear Conditioning Procedure

    ERIC Educational Resources Information Center

    Kelly, Megan M.; Forsyth, John P.

    2007-01-01

    The present study evaluated sex differences in observational fear conditioning using modeled ''mock'' panic attacks as an unconditioned stimulus (UCS). Fifty-nine carefully prescreened healthy undergraduate participants (30 women) underwent 3 consecutive differential conditioning phases: habituation, acquisition, and extinction. It was expected…

  13. Genetic characterization of commercial Saccharomyces cerevisiae isolates recovered from vineyard environments.

    PubMed

    Schuller, Dorit; Pereira, Leonor; Alves, Hugo; Cambon, Brigitte; Dequin, Sylvie; Casal, Margarida

    2007-08-01

    One hundred isolates of the commercial Saccharomyces cerevisiae strain Zymaflore VL1 were recovered from spontaneous fermentations carried out with grapes collected from vineyards located close to wineries in the Vinho Verde wine region of Portugal. Isolates were differentiated based on their mitochondrial DNA restriction patterns and the evaluation of genetic polymorphisms was carried out by microsatellite analysis, interdelta sequence typing and pulsed-field gel electrophoresis (PFGE). Genetic patterns were compared to those obtained for 30 isolates of the original commercialized Zymaflore VL1 strain. Among the 100 recovered isolates we found a high percentage of chromosomal size variations, most evident for the smaller chromosomes III and VI. Complete loss of heterozygosity was observed for two isolates that had also lost chromosomal heteromorphism; their growth and fermentative capacity in a synthetic must medium was also affected. A considerably higher number of variant patterns for interdelta sequence amplifications was obtained for grape-derived strains compared to the original VL1 isolates. Our data show that the long-term presence of strain VL1 in natural grapevine environments induced genetic changes that can be detected using different fingerprinting methods. The observed genetic changes may reflect adaptive mechanisms to changed environmental conditions that yeast cells encounter during their existence in nature. (c) 2007 John Wiley & Sons, Ltd.

  14. Different genetic elements carrying the tet(W) gene in two human clinical isolates of Streptococcus suis.

    PubMed

    Palmieri, Claudio; Princivalli, Maria Stella; Brenciani, Andrea; Varaldo, Pietro E; Facinelli, Bruna

    2011-02-01

    The genetic support for tet(W), an emerging tetracycline resistance determinant, was studied in two strains of Streptococcus suis, SsCA and SsUD, both isolated in Italy from patients with meningitis. Two completely different tet(W)-carrying genetic elements, sharing only a tet(W)-containing segment barely larger than the gene, were found in the two strains. The one from strain SsCA was nontransferable, and aside from an erm(B)-containing insertion, it closely resembled a genomic island recently described in an S. suis Chinese human isolate in sequence, organization, and chromosomal location. The tet(W)-carrying genetic element from strain SsUD was transferable (at a low frequency) and, though apparently noninducible following mitomycin C treatment, displayed a typical phage organization and was named ΦSsUD.1. Its full sequence was determined (60,711 bp), the highest BLASTN score being Streptococcus pyogenes Φm46.1. ΦSsUD.1 exhibited a unique combination of antibiotic and heavy metal resistance genes. Besides tet(W), it contained a MAS (macrolide-aminoglycoside-streptothricin) fragment with an erm(B) gene having a deleted leader peptide and a cadC/cadA cadmium efflux cassette. The MAS fragment closely resembled the one recently described in pneumococcal transposons Tn6003 and Tn1545. These resistance genes found in the ΦSsUD.1 phage scaffold differed from, but were in the same position as, cargo genes carried by other streptococcal phages. The chromosome integration site of ΦSsUD.1 was at the 3' end of a conserved tRNA uracil methyltransferase (rum) gene. This site, known to be an insertional hot spot for mobile elements in S. pyogenes, might play a similar role in S. suis.

  15. Genetic architecture of differences between populations of cowpea weevil (Callosobruchus maculatus) evolved in the same environment.

    PubMed

    Bieri, Jonas; Kawecki, Tadeusz J

    2003-02-01

    We investigated the genetic architecture underlying differentiation in fitness-related traits between two pairs of populations of the seed beetle Callosobruchus maculatus (Coleoptera: Bruchidae). These populations had geographically distant (> 2000 km) origins but evolved in a uniform laboratory environment for 120 generations. For each pair of populations (Nigeria x Yemen and Cameroon x Uganda) we estimated the means of five fitness-related characters and a measure of fitness (net reproductive rate R0) in each of the parental populations and 12 types of hybrids (two F1 and two F2 lines and eight backcrosses). Models containing up to nine composite genetic parameters were fitted to the means of the 14 lines. The patterns of line means for all traits in the Nigeria x Yemen cross and for four traits (larval survival, developmental rate, female body weight, and fecundity) in the Cameroon x Uganda cross were best explained by models including additive, dominance, and maternal effects, but excluding epistasis. We did not find any evidence for outbreeding depression for any trait. An epistatic component of divergence was detected for egg hatching success and R0 in the Cameroon x Uganda cross, but its sign was opposite to that expected under outbreeding depression, that is, additive x additive epistasis had a positive effect on the performance of F2 hybrids. All traits except fecundity showed a pattern of heterosis. A large difference of egg-hatching success between the two reciprocal F1 lines in that cross was best explained as fertilization incompatibility between Cameroon females and sperm carrying Uganda genes. The results suggest that these populations have not converged to the same life-history phenotype and genetic architecture, despite 120 generations of uniform natural selection. However, the absence of outbreeding depression implies that they did not evolve toward different adaptive peaks.

  16. Refining and defining riverscape genetics: How rivers influence population genetic structure

    Treesearch

    Chanté D. Davis; Clinton W. Epps; Rebecca L. Flitcroft; Michael A. Banks

    2018-01-01

    Traditional analysis in population genetics evaluates differences among groups of individuals and, in some cases, considers the effects of distance or potential barriers to gene flow. Genetic variation of organisms in complex landscapes, seascapes, or riverine systems, however, may be shaped by many forces. Recent research has linked habitat heterogeneity and landscape...

  17. The genetic diversity and epizootiology of infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Oshima, Kevin H.; Arakawa, Cindy K.; Higman, Keith H.; Landolt, Marsha L.; Nichol, Stuart T.; Winton, James R.

    1994-01-01

    Infectious hematopoietic necrosis virus (IHNV) is a rhabdovirus which causes a serious disease in salmondd fish. The T1 ribonuclease fingerprinttin method was used to compare the RNA genomes of 26 isolates of IHNV recovered from sockeye salmon (Oncorhynchus nerka), chinook salmon (O. tshawytscha), and steelhead trout (O. mykiss) throughout the enzootic portion of western North America. Most of the isolates as a source of genetic variation. In from a single year (1987) to limit time of isolation as a source of genetic variation. In addition, isolates from different years collected at three sites were analyzed to investigate genetic drift or evolution of IHNV within specific locations. All of the isolates examined by T1 fingerprint analysis contained less than a 50% variation in spot location and were represented by a single fingerprint group. The observed variation was estimated to correspond to less than 5% variation in the nucleic acid sequence. However, sufficient variation was detected to separate the isolates into four subgroups which appeared to correlate to different geographic regions. Host species appeared not to be a significant source of variation. The evolutionary and epizootiologic significance of these findings and their relationship to other evidence of genetic variation in IHNV isolates are discussed.

  18. Genetic structure and natal origins of immature hawksbill turtles (Eretmochelys imbricata) in Brazilian waters.

    PubMed

    Proietti, Maira C; Reisser, Julia; Marins, Luis Fernando; Rodriguez-Zarate, Clara; Marcovaldi, Maria A; Monteiro, Danielle S; Pattiaratchi, Charitha; Secchi, Eduardo R

    2014-01-01

    Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations.

  19. Genetic Structure and Natal Origins of Immature Hawksbill Turtles (Eretmochelys imbricata) in Brazilian Waters

    PubMed Central

    Proietti, Maira C.; Reisser, Julia; Marins, Luis Fernando; Rodriguez-Zarate, Clara; Marcovaldi, Maria A.; Monteiro, Danielle S.; Pattiaratchi, Charitha; Secchi, Eduardo R.

    2014-01-01

    Understanding the connections between sea turtle populations is fundamental for their effective conservation. Brazil hosts important hawksbill feeding areas, but few studies have focused on how they connect with nesting populations in the Atlantic. Here, we (1) characterized mitochondrial DNA control region haplotypes of immature hawksbills feeding along the coast of Brazil (five areas ranging from equatorial to temperate latitudes, 157 skin samples), (2) analyzed genetic structure among Atlantic hawksbill feeding populations, and (3) inferred natal origins of hawksbills in Brazilian waters using genetic, oceanographic, and population size information. We report ten haplotypes for the sampled Brazilian sites, most of which were previously observed at other Atlantic feeding grounds and rookeries. Genetic profiles of Brazilian feeding areas were significantly different from those in other regions (Caribbean and Africa), and a significant structure was observed between Brazilian feeding grounds grouped into areas influenced by the South Equatorial/North Brazil Current and those influenced by the Brazil Current. Our genetic analysis estimates that the studied Brazilian feeding aggregations are mostly composed of animals originating from the domestic rookeries Bahia and Pipa, but some contributions from African and Caribbean rookeries were also observed. Oceanographic data corroborated the local origins, but showed higher connection with West Africa and none with the Caribbean. High correlation was observed between origins estimated through genetics/rookery size and oceanographic/rookery size data, demonstrating that ocean currents and population sizes influence haplotype distribution of Brazil's hawksbill populations. The information presented here highlights the importance of national conservation strategies and international cooperation for the recovery of endangered hawksbill turtle populations. PMID:24558419

  20. Genetic Correlates of Individual Differences in Sleep Behavior of Free-Living Great Tits (Parus major)

    PubMed Central

    Stuber, Erica F.; Baumgartner, Christine; Dingemanse, Niels J.; Kempenaers, Bart; Mueller, Jakob C.

    2016-01-01

    Within populations, free-living birds display considerable variation in observable sleep behaviors, reflecting dynamic interactions between individuals and their environment. Genes are expected to contribute to repeatable between-individual differences in sleep behaviors, which may be associated with individual fitness. We identified and genotyped polymorphisms in nine candidate genes for sleep, and measured five repeatable sleep behaviors in free-living great tits (Parus major), partly replicating a previous study in blue tits (Cyanistes caeruleus). Microsatellites in the CLOCK and NPAS2 clock genes exhibited an association with sleep duration relative to night length, and morning latency to exit the nest box, respectively. Furthermore, microsatellites in the NPSR1 and PCSK2 genes associated with relative sleep duration and proportion of time spent awake at night, respectively. Given the detection rate of associations in the same models run with random markers instead of candidate genes, we expected two associations to arise by chance. The detection of four associations between candidate genes and sleep, however, suggests that clock genes, a clock-related gene, or a gene involved in the melanocortin system, could play key roles in maintaining phenotypic variation in sleep behavior in avian populations. Knowledge of the genetic architecture underlying sleep behavior in the wild is important because it will enable ecologists to assess the evolution of sleep in response to selection. PMID:26739645