Sample records for observed genetic differentiation

  1. Differential genetic susceptibility to child risk at birth in predicting observed maternal behavior.

    PubMed

    Fortuna, Keren; van Ijzendoorn, Marinus H; Mankuta, David; Kaitz, Marsha; Avinun, Reut; Ebstein, Richard P; Knafo, Ariel

    2011-01-01

    This study examined parenting as a function of child medical risks at birth and parental genotype (dopamine D4 receptor; DRD4). Our hypothesis was that the relation between child risks and later maternal sensitivity would depend on the presence/absence of a genetic variant in the mothers, thus revealing a gene by environment interaction (GXE). Risk at birth was defined by combining risk indices of children's gestational age at birth, birth weight, and admission to the neonatal intensive care unit. The DRD4-III 7-repeat allele was chosen as a relevant genotype as it was recently shown to moderate the effect of environmental stress on parental sensitivity. Mothers of 104 twin pairs provided DNA samples and were observed with their children in a laboratory play session when the children were 3.5 years old. Results indicate that higher levels of risk at birth were associated with less sensitive parenting only among mothers carrying the 7-repeat allele, but not among mothers carrying shorter alleles. Moreover, mothers who are carriers of the 7-repeat allele and whose children scored low on the risk index were observed to have the highest levels of sensitivity. These findings provide evidence for the interactive effects of genes and environment (in this study, children born at higher risk) on parenting, and are consistent with a genetic differential susceptibility model of parenting by demonstrating that some parents are inherently more susceptible to environmental influences, both good and bad, than are others.

  2. Testing the link between population genetic differentiation and clade diversification in Costa Rican orchids.

    PubMed

    Kisel, Yael; Moreno-Letelier, Alejandra C; Bogarín, Diego; Powell, Martyn P; Chase, Mark W; Barraclough, Timothy G

    2012-10-01

    Species population genetics could be an important factor explaining variation in clade species richness. Here, we use newly generated amplified fragment length polymorphism (AFLP) data to test whether five pairs of sister clades of Costa Rican orchids that differ greatly in species richness also differ in average neutral genetic differentiation within species, expecting that if the strength of processes promoting differentiation within species is phylogenetically heritable, then clades with greater genetic differentiation should diversify more. Contrary to expectation, neutral genetic differentiation does not correlate directly with total diversification in the clades studied. Neutral genetic differentiation varies greatly among species and shows no heritability within clades. Half of the variation in neutral genetic differentiation among populations can be explained by ecological variables, and species-level traits explain the most variation. Unexpectedly, we find no isolation by distance in any species, but genetic differentiation is greater between populations occupying different niches. This pattern corresponds with those observed for microscopic eukaryotes and could reflect effective widespread dispersal of tiny and numerous orchid seeds. Although not providing a definitive answer to whether population genetics processes affect clade diversification, this work highlights the potential for addressing new macroevolutionary questions using a comparative population genetic approach. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  3. Genetic differentiation among populations of marine algae

    NASA Astrophysics Data System (ADS)

    Innes, D. J.

    1984-09-01

    Most of the information for genetic differentiation among populations of marine algae is from studies on ecotypic variation. Physiological ecotypes have been described for individuals showing different responses to temperature and salinity conditions. Morphological ecotypes have also been found associated with areas differing in wave exposure or different intertidal positions. Little is known on how genetic variation is organized within and between populations of marine algae. The occurrence of ecotypic variation in some species is evidence for genetic differentiation among populations resulting from selection by the local environment. The rate of dispersal and subsequent gene flow will also affect the level of differentiation among populations. In species with low dispersal, differentiation can arise through chance founder events or random genetic drift. The few studies available have shown that species of algae exhibit a range of dispersal capabilities. This information can be useful for predicting the potential level of genetic differentiation among populations of these species. Crossing experiments with several species of algae have shown that populations separated by a considerable distance can be interfertile. In some cases individuals from these populations have been found to be morphologically distinct. Crosses have been used to study the genetic basis of this variation and are evidence for genetic differentiation among the populations sampled. Genetic variation of enzyme proteins detected by electrophoresis provides an additional method for measuring genetic variation within and between populations of marine algae. Electrophoretic methods have previously been used to study systematic problems in algae. However, there have been few attempts to use electrophoretic variation to study the genetic structure of populations of marine algae. This approach is outlined and includes some of the potential problems associated with interpreting electrophoretic data

  4. Patterns of Post-Glacial Genetic Differentiation in Marginal Populations of a Marine Microalga

    PubMed Central

    Tahvanainen, Pia; Alpermann, Tilman J.; Figueroa, Rosa Isabel; John, Uwe; Hakanen, Päivi; Nagai, Satoshi; Blomster, Jaanika; Kremp, Anke

    2012-01-01

    This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F ST) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms. PMID:23300940

  5. Patterns of post-glacial genetic differentiation in marginal populations of a marine microalga.

    PubMed

    Tahvanainen, Pia; Alpermann, Tilman J; Figueroa, Rosa Isabel; John, Uwe; Hakanen, Päivi; Nagai, Satoshi; Blomster, Jaanika; Kremp, Anke

    2012-01-01

    This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F(ST)) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms.

  6. Serum-free Erythroid Differentiation for Efficient Genetic Modification and High-Level Adult Hemoglobin Production.

    PubMed

    Uchida, Naoya; Demirci, Selami; Haro-Mora, Juan J; Fujita, Atsushi; Raines, Lydia N; Hsieh, Matthew M; Tisdale, John F

    2018-06-15

    In vitro erythroid differentiation from primary human cells is valuable to develop genetic strategies for hemoglobin disorders. However, current erythroid differentiation methods are encumbered by modest transduction rates and high baseline fetal hemoglobin production. In this study, we sought to improve both genetic modification and hemoglobin production among human erythroid cells in vitro . To model therapeutic strategies, we transduced human CD34 + cells and peripheral blood mononuclear cells (PBMCs) with lentiviral vectors and compared erythropoietin-based erythroid differentiation using fetal-bovine-serum-containing media and serum-free media. We observed more efficient transduction (85%-93%) in serum-free media than serum-containing media (20%-69%), whereas the addition of knockout serum replacement (KSR) was required for serum-free media to promote efficient erythroid differentiation (96%). High-level adult hemoglobin production detectable by electrophoresis was achieved using serum-free media similar to serum-containing media. Importantly, low fetal hemoglobin production was observed in the optimized serum-free media. Using KSR-containing, serum-free erythroid differentiation media, therapeutic adult hemoglobin production was detected at protein levels with β-globin lentiviral transduction in both CD34 + cells and PBMCs from sickle cell disease subjects. Our in vitro erythroid differentiation system provides a practical evaluation platform for adult hemoglobin production among human erythroid cells following genetic manipulation.

  7. Kin-Aggregations Explain Chaotic Genetic Patchiness, a Commonly Observed Genetic Pattern, in a Marine Fish.

    PubMed

    Selwyn, Jason D; Hogan, J Derek; Downey-Wall, Alan M; Gurski, Lauren M; Portnoy, David S; Heath, Daniel D

    2016-01-01

    The phenomenon of chaotic genetic patchiness is a pattern commonly seen in marine organisms, particularly those with demersal adults and pelagic larvae. This pattern is usually associated with sweepstakes recruitment and variable reproductive success. Here we investigate the biological underpinnings of this pattern in a species of marine goby Coryphopterus personatus. We find that populations of this species show tell-tale signs of chaotic genetic patchiness including: small, but significant, differences in genetic structure over short distances; a non-equilibrium or "chaotic" pattern of differentiation among locations in space; and within locus, within population deviations from the expectations of Hardy-Weinberg equilibrium (HWE). We show that despite having a pelagic larval stage, and a wide distribution across Caribbean coral reefs, this species forms groups of highly related individuals at small spatial scales (<10 metres). These spatially clustered family groups cause the observed deviations from HWE and local population differentiation, a finding that is rarely demonstrated, but could be more common than previously thought.

  8. Contemporary and historic factors influence differently genetic differentiation and diversity in a tropical palm

    PubMed Central

    da Silva Carvalho, C; Ribeiro, M C; Côrtes, M C; Galetti, M; Collevatti, R G

    2015-01-01

    Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes. PMID:25873150

  9. Investigating the population structure and genetic differentiation of livestock guard dog breeds.

    PubMed

    Bigi, D; Marelli, S P; Liotta, L; Frattini, S; Talenti, A; Pagnacco, G; Polli, M; Crepaldi, P

    2018-01-14

    Livestock guarding dogs are a valuable adjunct to the pastoral community. Having been traditionally selected for their working ability, they fulfil their function with minimal interaction or command from their human owners. In this study, the population structure and the genetic differentiation of three Italian livestock guardian breeds (Sila's Dog, Maremma and Abruzzese Sheepdog and Mannara's Dog) and three functionally and physically similar breeds (Cane Corso, Central Asian Shepherd Dog and Caucasian Shepherd Dog), totalling 179 dogs unrelated at the second generation, were investigated with 18 autosomal microsatellite markers. Values for the number of alleles per locus, observed and expected heterozygosity, Hardy-Weinberg Equilibrium, F stats, Nei's and Reynold's genetic distances, clustering and sub-population formation abilities and individual genetic structures were calculated. Our results show clear breed differentiation, whereby all the considered breeds show reasonable genetic variability despite small population sizes and variable selection schemes. These results provide meaningful data to stakeholders in specific breed and environmental conservation programmes.

  10. [Genetic differentiation of Isaria farinosa populations in Anhui Province of East China].

    PubMed

    Sun, Zhao-Hong; Luan, Feng-Gang; Zhang, Da-Min; Chen, Ming-Jun; Wang, Bin; Li, Zeng-Zhi

    2011-11-01

    Isaria farinosa is an important entomopathogenic fungus. By using ISSR, this paper studied the genetic heterogeneity of six I. farinosa populations at different localities of Anhui Province, East China. A total of 98.5% polymorphic loci were amplified with ten polymorphic primers, but the polymorphism at population level varied greatly, within the range of 59.6%-93.2%. The genetic differentiation index (G(st)) between the populations based on Nei's genetic heterogenesis analysis was 0.3365, and the gene flow (N(m)) was 0.4931. The genetic differentiation between the populations was lower than that within the populations, suggesting that the genetic variation of I. farinosa mainly come from the interior of the populations. The UPGMA clustering based on the genetic similarities between the isolates revealed that the Xishan population was monophylectic, while the other five populations were polyphylectic, with the Yaoluoping population being the most heterogenic and the Langyashan population being the least heterogenic. No correlations were observed between the geographic distance and the genetic distance of the populations. According to the UPGMA clustering based on the genetic distance between the populations, the six populations were classified into three groups, and this classification was accorded with the clustering based on geographic environment, suggesting the effects of environmental heterogeneity on the population heterogeneity.

  11. MAINTENANCE OF ECOLOGICALLY SIGNIFICANT GENETIC VARIATION IN THE TIGER SWALLOWTAIL BUTTERFLY THROUGH DIFFERENTIAL SELECTION AND GENE FLOW.

    PubMed

    Bossart, J L; Scriber, J M

    1995-12-01

    Differential selection in a heterogeneous environment is thought to promote the maintenance of ecologically significant genetic variation. Variation is maintained when selection is counterbalanced by the homogenizing effects of gene flow and random mating. In this study, we examine the relative importance of differential selection and gene flow in maintaining genetic variation in Papilio glaucus. Differential selection on traits contributing to successful use of host plants (oviposition preference and larval performance) was assessed by comparing the responses of southern Ohio, north central Georgia, and southern Florida populations of P. glaucus to three hosts: Liriodendron tulipifera, Magnolia virginiana, and Prunus serotina. Gene flow among populations was estimated using allozyme frequencies from nine polymorphic loci. Significant genetic differentiation was observed among populations for both oviposition preference and larval performance. This differentiation was interpreted to be the result of selection acting on Florida P. glaucus for enhanced use of Magnolia, the prevalent host in Florida. In contrast, no evidence of population differentiation was revealed by allozyme frequencies. F ST -values were very small and Nm, an estimate of the relative strengths of gene flow and genetic drift, was large, indicating that genetic exchange among P. glaucus populations is relatively unrestricted. The contrasting patterns of spatial differentiation for host-use traits and lack of differentiation for electrophoretically detectable variation implies that differential selection among populations will be counterbalanced by gene flow, thereby maintaining genetic variation for host-use traits. © 1995 The Society for the Study of Evolution.

  12. Genetic differentiation and population structure of five ethnic groups of Punjab (North-West India).

    PubMed

    Singh, Gagandeep; Talwar, Indu; Sharma, Rubina; Matharoo, Kawaljit; Bhanwer, A J S

    2016-12-01

    The state of Punjab in the North-West part of India has acted as the main passage for all the major human invasions into the Indian subcontinent. It has resulted in the mixing of foreign gene pool into the local populations, which led to an extensive range of genetic diversity and has influenced the genetic structure of populations in Punjab, North-West India. The present study was conducted to examine the genetic structure, relationships, and extent of genetic differentiation in five Indo-European speaking ethnic groups of Punjab. A total of 1021 unrelated samples belonging to Banias, Brahmins, Jat Sikhs, Khatris, and Scheduled castes were analyzed for four human-specific Ins/Del polymorphic loci (ACE, APO, PLAT, and D1) and three restriction fragment length polymorphisms ESR (PvuII), LPL (PvuII), and T2 (MspI) using Polymerase chain reaction (PCR). All the loci were found to be polymorphic among the studied populations. The frequency of the Alu insertion at APO locus was observed to exhibit the highest value (82.6-96.3 %), whereas D1 exhibited the lowest (26.5-45.6 %) among all the ethnic groups. The average heterozygosity among the studied populations ranged from 0.3816 in Banias to 0.4163 in Khatris. The F ST values ranged from 0.0418 to 0.0033 for the PLAT and LPL loci, respectively, with an average value being 0.0166. Phylogenetic analysis revealed that Banias and Khatris are genetically closest to each other. The Jat Sikhs are genetically close to Brahmins and are distant from the Banias. The Jat Sikhs, Banias, Brahmins, and Khatris are genetically very distant from the Scheduled castes. Overall, Uniform allele frequency distribution patterns, high average heterozygosity values, and a small degree of genetic differentiation in this study suggest a genetic proximity among the selected populations. A low level of genetic differentiation was observed in the studied population groups indicating that genetic drift might have been small or negligible in shaping

  13. Pattern of genetic differentiation of an incipient speciation process: The case of the high Andean killifish Orestias

    PubMed Central

    Guerrero-Jiménez, Claudia Jimena; Peña, Fabiola; Morales, Pamela; Méndez, Marco; Sallaberry, Michel; Vila, Irma; Poulin, Elie

    2017-01-01

    During the Pleistocene and Holocene, the southwest Andean Altiplano (17°-22°S) was affected by repeated fluctuations in water levels, high volcanic activity and major tectonic movements. In the early Holocene the humid Tauca phase shifted to the arid conditions that have lasted until the present, producing endorheic rivers, lakes, lagoons and wetlands. The endemic fish Orestias (Cyprinodontidae) represents a good model to observe the genetic differentiation that characterizes an incipient speciation process in allopatry since the morphospecies described inhabit a restricted geographic area, with present habitat fragmentation. The genetic diversity and population structure of four endemic morphospecies of Orestias (Cyprinodontidae) found in the Lauca National Park (LNP) analyzed with mitochondrial markers (Control Region) and eight microsatellites, revealed the existence of genetic groups that matches the fragmentation of these systems. High values of genetic and phylogeographic differentiation indices were observed between Chungará Lake and Piacota lagoon. The group composed of the Lauca River, Copapujo and Chuviri wetlands sampling sites showed a clear signal of expansion, with a star-like haplotype network. Levels of genetic differentiation were lower than in Chungará and Piacota, suggesting that these localities would have differentiated after the bottlenecks linked to the collapse of Parinacota volcano. The Parinacota sample showed a population signal that differed from the other localities revealing greater genetic diversity and a disperse network, presenting haplotypes shared with other LNP localities. A mixing pattern of the different genetic groups was evident using the microsatellite markers. The chronology of the vicariance events in LNP may indicate that the partition process of the Orestias populations was gradual. Considering this, and in view of the genetic results, we may conclude that the morphospecies from LNP are populations in ongoing

  14. Relevant genetic differentiation among Brazilian populations of Anastrepha fraterculus (Diptera, Tephritidae)

    PubMed Central

    Manni, Mosè; Lima, Kátia Manuela; Guglielmino, Carmela Rosalba; Lanzavecchia, Silvia Beatriz; Juri, Marianela; Vera, Teresa; Cladera, Jorge; Scolari, Francesca; Gomulski, Ludvik; Bonizzoni, Mariangela; Gasperi, Giuliano; Silva, Janisete Gomes; Malacrida, Anna Rodolfa

    2015-01-01

    Abstract We used a population genetic approach to detect the presence of genetic diversity among six populations of Anastrepha fraterculus across Brazil. To this aim, we used Simple Sequence Repeat (SSR) markers, which may capture the presence of differentiative processes across the genome in distinct populations. Spatial analyses of molecular variance were used to identify groups of populations that are both genetically and geographically homogeneous while also being maximally differentiated from each other. The spatial analysis of genetic diversity indicates that the levels of diversity among the six populations vary significantly on an eco-geographical basis. Particularly, altitude seems to represent a differentiating adaptation, as the main genetic differentiation is detected between the two populations present at higher altitudes and the other four populations at sea level. The data, together with the outcomes from different cluster analyses, identify a genetic diversity pattern that overlaps with the distribution of the known morphotypes in the Brazilian area. PMID:26798258

  15. High genetic diversity with moderate differentiation in Juniperus excelsa from Lebanon and the eastern Mediterranean region

    PubMed Central

    Douaihy, Bouchra; Vendramin, Giovanni G.; Boratyński, Adam; Machon, Nathalie; Bou Dagher-Kharrat, Magda

    2011-01-01

    Background and aims Juniperus excelsa is an important woody species in the high mountain ecosystems of the eastern Mediterranean Basin where it constitutes the only coniferous species found at the tree line. The genetic diversity within and among J. excelsa populations of the eastern Mediterranean Basin is studied in the light of their historical fragmentation. Methodology Nuclear microsatellites originally developed for Juniperus communis and J. przewalskii were tested on 320 individuals from 12 different populations originating from Lebanon, Turkey, Cyprus, Greece and the Ukraine. Principal results Among the 31 nuclear microsatellite primers tested, only three produced specific amplification products, with orthology confirmed by sequence analysis. They were then used for genetic diversity studies. The mean number of alleles and the expected heterozygosity means were Na=8.78 and He=0.76, respectively. The fixation index showed a significant deviation from Hardy–Weinberg equilibrium and an excess of homozygotes (FIS=0.27–0.56). A moderate level of genetic differentiation was observed among the populations (FST=0.075, P<0.001). The most differentiated populations corresponded to old vestigial stands found at the tree line (>2000 m) in Lebanon. These populations were differentiated from the other populations that are grouped into three sub-clusters. Conclusions High levels of genetic diversity were observed at species and population levels. The high level of differentiation in the high-mountain Lebanese populations reflects a long period of isolation or possibly a different origin. The admixture observed in other populations from Lebanon suggests a more recent separation from the Turkish–southeastern European populations. PMID:22476474

  16. High genetic diversity with moderate differentiation in Juniperus excelsa from Lebanon and the eastern Mediterranean region.

    PubMed

    Douaihy, Bouchra; Vendramin, Giovanni G; Boratyński, Adam; Machon, Nathalie; Bou Dagher-Kharrat, Magda

    2011-01-01

    Juniperus excelsa is an important woody species in the high mountain ecosystems of the eastern Mediterranean Basin where it constitutes the only coniferous species found at the tree line. The genetic diversity within and among J. excelsa populations of the eastern Mediterranean Basin is studied in the light of their historical fragmentation. Nuclear microsatellites originally developed for Juniperus communis and J. przewalskii were tested on 320 individuals from 12 different populations originating from Lebanon, Turkey, Cyprus, Greece and the Ukraine. Among the 31 nuclear microsatellite primers tested, only three produced specific amplification products, with orthology confirmed by sequence analysis. They were then used for genetic diversity studies. The mean number of alleles and the expected heterozygosity means were N(a)=8.78 and H(e)=0.76, respectively. The fixation index showed a significant deviation from Hardy-Weinberg equilibrium and an excess of homozygotes (F(IS)=0.27-0.56). A moderate level of genetic differentiation was observed among the populations (F(ST)=0.075, P<0.001). The most differentiated populations corresponded to old vestigial stands found at the tree line (>2000 m) in Lebanon. These populations were differentiated from the other populations that are grouped into three sub-clusters. High levels of genetic diversity were observed at species and population levels. The high level of differentiation in the high-mountain Lebanese populations reflects a long period of isolation or possibly a different origin. The admixture observed in other populations from Lebanon suggests a more recent separation from the Turkish-southeastern European populations.

  17. Population genetic differentiation of height and body mass index across Europe

    PubMed Central

    Robinson, Matthew R.; Hemani, Gibran; Medina-Gomez, Carolina; Mezzavilla, Massimo; Esko, Tonu; Shakhbazov, Konstantin; Powell, Joseph E.; Vinkhuyzen, Anna; Berndt, Sonja I.; Gustafsson, Stefan; Justice, Anne E.; Kahali, Bratati; Locke, Adam E.; Pers, Tune H.; Vedantam, Sailaja; Wood, Andrew R.; van Rheenen, Wouter; Andreassen, Ole A.; Gasparini, Paolo; Metspalu, Andres; van den Berg, Leonard H.; Veldink, Jan H.; Rivadeneira, Fernando; Werge, Thomas M.; Abecasis, Goncalo R.; Boomsma, Dorret I.; Chasman, Daniel I.; de Geus, Eco J.C.; Frayling, Timothy M.; Hirschhorn, Joel N.; Hottenga, Jouke Jan; Ingelsson, Erik; Loos, Ruth J.F.; Magnusson, Patrik K. E.; Martin, Nicholas G.; Montgomery, Grant W.; North, Kari E.; Pedersen, Nancy L.; Spector, Timothy D.; Speliotes, Elizabeth K.; Goddard, Michael E.; Yang, Jian; Visscher, Peter M.

    2016-01-01

    Across-nation differences in the mean of complex traits such as obesity and stature are common1–8, but the reasons for these differences are not known. Here, we find evidence that many independent loci of small effect combine to create population genetic differences in height and body mass index (BMI) in a sample of 9,416 individuals across 14 European countries. Using discovery data on over 250,000 individuals and unbiased estimates of effect sizes from 17,500 sib pairs, we estimate that 24% (95% CI: 9%, 41%) and 8% (95% CI: 4%, 16%) of the captured additive genetic variance for height and BMI across Europe are attributed to among-population genetic differences. Population genetic divergence differed significantly from that expected under a null model (P <3.94e−08 for height and P<5.95e−04 for BMI), and we find an among-population genetic correlation for tall and slender nations (r = −0.80 (95% CI: −0.95, −0.60), contrasting no genetic correlation between height and BMI within populations (r = −0.016, 95% CI: −0.041, 0.001), consistent with selection on height genes that also act to reduce BMI. Observations of mean height across nations correlated with the predicted genetic means for height (r = 0.51, P<0.001), so that a proportion of observed differences in height within Europe reflect genetic factors. In contrast, observed mean BMI did not correlate with the genetic estimates (P<0.58), implying that genetic differentiation in BMI is masked by environmental differences across Europe. PMID:26366552

  18. Population differentiation in Pacific salmon: local adaptation, genetic drift, or the environment?

    USGS Publications Warehouse

    Adkison, Milo D.

    1995-01-01

    Morphological, behavioral, and life-history differences between Pacific salmon (Oncorhynchus spp.) populations are commonly thought to reflect local adaptation, and it is likewise common to assume that salmon populations separated by small distances are locally adapted. Two alternatives to local adaptation exist: random genetic differentiation owing to genetic drift and founder events, and genetic homogeneity among populations, in which differences reflect differential trait expression in differing environments. Population genetics theory and simulations suggest that both alternatives are possible. With selectively neutral alleles, genetic drift can result in random differentiation despite many strays per generation. Even weak selection can prevent genetic drift in stable populations; however, founder effects can result in random differentiation despite selective pressures. Overlapping generations reduce the potential for random differentiation. Genetic homogeneity can occur despite differences in selective regimes when straying rates are high. In sum, localized differences in selection should not always result in local adaptation. Local adaptation is favored when population sizes are large and stable, selection is consistent over large areas, selective diffeentials are large, and straying rates are neither too high nor too low. Consideration of alternatives to local adaptation would improve both biological research and salmon conservation efforts.

  19. Population genetic differentiation of height and body mass index across Europe.

    PubMed

    Robinson, Matthew R; Hemani, Gibran; Medina-Gomez, Carolina; Mezzavilla, Massimo; Esko, Tonu; Shakhbazov, Konstantin; Powell, Joseph E; Vinkhuyzen, Anna; Berndt, Sonja I; Gustafsson, Stefan; Justice, Anne E; Kahali, Bratati; Locke, Adam E; Pers, Tune H; Vedantam, Sailaja; Wood, Andrew R; van Rheenen, Wouter; Andreassen, Ole A; Gasparini, Paolo; Metspalu, Andres; Berg, Leonard H van den; Veldink, Jan H; Rivadeneira, Fernando; Werge, Thomas M; Abecasis, Goncalo R; Boomsma, Dorret I; Chasman, Daniel I; de Geus, Eco J C; Frayling, Timothy M; Hirschhorn, Joel N; Hottenga, Jouke Jan; Ingelsson, Erik; Loos, Ruth J F; Magnusson, Patrik K E; Martin, Nicholas G; Montgomery, Grant W; North, Kari E; Pedersen, Nancy L; Spector, Timothy D; Speliotes, Elizabeth K; Goddard, Michael E; Yang, Jian; Visscher, Peter M

    2015-11-01

    Across-nation differences in the mean values for complex traits are common, but the reasons for these differences are unknown. Here we find that many independent loci contribute to population genetic differences in height and body mass index (BMI) in 9,416 individuals across 14 European countries. Using discovery data on over 250,000 individuals and unbiased effect size estimates from 17,500 sibling pairs, we estimate that 24% (95% credible interval (CI) = 9%, 41%) and 8% (95% CI = 4%, 16%) of the captured additive genetic variance for height and BMI, respectively, reflect population genetic differences. Population genetic divergence differed significantly from that in a null model (height, P < 3.94 × 10(-8); BMI, P < 5.95 × 10(-4)), and we find an among-population genetic correlation for tall and slender individuals (r = -0.80, 95% CI = -0.95, -0.60), consistent with correlated selection for both phenotypes. Observed differences in height among populations reflected the predicted genetic means (r = 0.51; P < 0.001), but environmental differences across Europe masked genetic differentiation for BMI (P < 0.58).

  20. Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite markers

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Wang, Weiji; Li, Weiya; Zhang, Quanqi; Kong, Jie

    2014-08-01

    Seven microsatellite markers were used to evaluate the genetic diversity and differentiation of seven stocks of Litopenaeus vannamei, which were introduced from Central and South America to China. All seven microsatellite loci were polymorphic, with polymorphism information content ( PIC) values ranging from 0.593 to 0.952. Totally 92 alleles were identified, and the number of alleles ( Na) and effective alleles ( Ne) varied between 4 and 21 and 2.7 and 14.6, respectively. Observed heterozygosity ( H o) values were lower than the expected heterozygosity ( H e) values (0.526-0.754), which indicated that the seven stocks possessed a rich genetic diversity. Thirty-seven tests were detected for reasonable significant deviation from Hardy-Weinberg equilibrium. F is values were positive at five loci, suggesting that there was a relatively high degree of inbreeding within stocks. Pairwise F st values ranged from 0.0225 to 0.151, and most of the stock pairs were moderately differentiated. Genetic distance and cluster analysis using UPGMA revealed a close genetic relationship of L. vannamei between Pop2 and Pop3. AMOVA indicated that the genetic variation among stocks (11.3%) was much lower than that within stocks (88.7%). Although the seven stocks had a certain degree of genetic differentiation and a rich genetic diversity, there is an increasing risk of decreased performance due to inbreeding in subsequent generations.

  1. Genetic diversity and drivers of genetic differentiation of Reaumuria soongorica of the Inner Mongolia plateau in China

    Treesearch

    Jiuyan Yang; Samuel A. Cushman; Xuemei Song; Jie Yang; Pujin Zhang

    2015-01-01

    We quantified genetic diversity and gene flow among eight populations of Reaumuria soongorica in Inner Mongolia, China. Our results showed that genetic differentiation of R. soongorica across the Inner Mongolian plateau is primarily clinal in nature and is driven primarily by differential landscape resistance across areas with changing patterns of seasonal...

  2. Predicting risk in space: Genetic markers for differential vulnerability to sleep restriction

    NASA Astrophysics Data System (ADS)

    Goel, Namni; Dinges, David F.

    2012-08-01

    Several laboratories have found large, highly reliable individual differences in the magnitude of cognitive performance, fatigue and sleepiness, and sleep homeostatic vulnerability to acute total sleep deprivation and to chronic sleep restriction in healthy adults. Such individual differences in neurobehavioral performance are also observed in space flight as a result of sleep loss. The reasons for these stable phenotypic differential vulnerabilities are unknown: such differences are not yet accounted for by demographic factors, IQ or sleep need, and moreover, psychometric scales do not predict those individuals cognitively vulnerable to sleep loss. The stable, trait-like (phenotypic) inter-individual differences observed in response to sleep loss—with intraclass correlation coefficients accounting for 58-92% of the variance in neurobehavioral measures—point to an underlying genetic component. To this end, we utilized multi-day highly controlled laboratory studies to investigate the role of various common candidate gene variants—each independently—in relation to cumulative neurobehavioral and sleep homeostatic responses to sleep restriction. These data suggest that common genetic variations (polymorphisms) involved in sleep-wake, circadian, and cognitive regulation may serve as markers for prediction of inter-individual differences in sleep homeostatic and neurobehavioral vulnerability to sleep restriction in healthy adults. Identification of genetic predictors of differential vulnerability to sleep restriction—as determined from candidate gene studies—will help identify astronauts most in need of fatigue countermeasures in space flight and inform medical standards for obtaining adequate sleep in space. This review summarizes individual differences in neurobehavioral vulnerability to sleep deprivation and ongoing genetic efforts to identify markers of such differences.

  3. Genetic Resources in the "Calabaza Pipiana" Squash (Cucurbita argyrosperma) in Mexico: Genetic Diversity, Genetic Differentiation and Distribution Models.

    PubMed

    Sánchez-de la Vega, Guillermo; Castellanos-Morales, Gabriela; Gámez, Niza; Hernández-Rosales, Helena S; Vázquez-Lobo, Alejandra; Aguirre-Planter, Erika; Jaramillo-Correa, Juan P; Montes-Hernández, Salvador; Lira-Saade, Rafael; Eguiarte, Luis E

    2018-01-01

    Analyses of genetic variation allow understanding the origin, diversification and genetic resources of cultivated plants. Domesticated taxa and their wild relatives are ideal systems for studying genetic processes of plant domestication and their joint is important to evaluate the distribution of their genetic resources. Such is the case of the domesticated subspecies C. argyrosperma ssp. argyrosperma , known in Mexico as calabaza pipiana , and its wild relative C. argyrosperma ssp. sororia . The main aim of this study was to use molecular data (microsatellites) to assess the levels of genetic variation and genetic differentiation within and among populations of domesticated argyrosperma across its distribution in Mexico in comparison to its wild relative, sororia , and to identify environmental suitability in previously proposed centers of domestication. We analyzed nine unlinked nuclear microsatellite loci to assess levels of diversity and distribution of genetic variation within and among populations in 440 individuals from 19 populations of cultivated landraces of argyrosperma and from six wild populations of sororia , in order to conduct a first systematic analysis of their genetic resources. We also used species distribution models (SDMs) for sororia to identify changes in this wild subspecies' distribution from the Holocene (∼6,000 years ago) to the present, and to assess the presence of suitable environmental conditions in previously proposed domestication sites. Genetic variation was similar among subspecies ( H E = 0.428 in sororia , and H E = 0.410 in argyrosperma ). Nine argyrosperma populations showed significant levels of inbreeding. Both subspecies are well differentiated, and genetic differentiation ( F ST ) among populations within each subspecies ranged from 0.152 to 0.652. Within argyrosperma we found three genetic groups (Northern Mexico, Yucatan Peninsula, including Michoacan and Veracruz, and Pacific coast plus Durango). We detected low

  4. Genetic diversity, structure and differentiation in cultivate walnut (Juglans regia L.)

    Treesearch

    M. Aradhya; K. Woeste; D. Velasco

    2012-01-01

    An analysis of genetic structure and differentiation in cultivated walnut (Juglans regia) using 15 microsatellite loci revealed a considerable amount of genetic variation with a mild genetic structure indicating five genetic groups corresponding to the centers of diversity within the home range of walnut in Eurasia. Despite the narrow genetic...

  5. Genetic Differentiation in Insular Lowland Rainforests: Insights from Historical Demographic Patterns in Philippine Birds

    PubMed Central

    Sánchez-González, Luis Antonio; Hosner, Peter A.; Moyle, Robert G.

    2015-01-01

    Phylogeographic studies of Philippine birds support that deep genetic structure occurs across continuous lowland forests within islands, despite the lack of obvious contemporary isolation mechanisms. To examine the pattern and tempo of diversification within Philippine island forests, and test if common mechanisms are responsible for observed differentiation, we focused on three co-distributed lowland bird taxa endemic to Greater Luzon and Greater Negros-Panay: Blue-headed Fantail (Rhipidura cyaniceps), White-browed Shama (Copsychus luzoniensis), and Lemon-throated Leaf-Warbler (Phylloscopus cebuensis). Each species has two described subspecies within Greater Luzon, and a single described subspecies on Greater Negros/Panay. Each of the three focal species showed a common geographic pattern of two monophyletic groups in Greater Luzon sister to a third monophyletic group found in Greater Negros-Panay, suggesting that common or similar biogeographic processes may have produced similar distributions. However, studied species displayed variable levels of mitochondrial DNA differentiation between clades, and genetic differentiation within Luzon was not necessarily concordant with described subspecies boundaries. Population genetic parameters for the three species suggested both rapid population growth from small numbers and geographic expansion across Luzon Island. Estimates of the timing of population expansion further supported that these events occurred asynchronously throughout the Pleistocene in the focal species, demanding particular explanations for differentiation, and support that co-distribution may be secondarily congruent. PMID:26312748

  6. Genetic Differentiation in Insular Lowland Rainforests: Insights from Historical Demographic Patterns in Philippine Birds.

    PubMed

    Sánchez-González, Luis Antonio; Hosner, Peter A; Moyle, Robert G

    2015-01-01

    Phylogeographic studies of Philippine birds support that deep genetic structure occurs across continuous lowland forests within islands, despite the lack of obvious contemporary isolation mechanisms. To examine the pattern and tempo of diversification within Philippine island forests, and test if common mechanisms are responsible for observed differentiation, we focused on three co-distributed lowland bird taxa endemic to Greater Luzon and Greater Negros-Panay: Blue-headed Fantail (Rhipidura cyaniceps), White-browed Shama (Copsychus luzoniensis), and Lemon-throated Leaf-Warbler (Phylloscopus cebuensis). Each species has two described subspecies within Greater Luzon, and a single described subspecies on Greater Negros/Panay. Each of the three focal species showed a common geographic pattern of two monophyletic groups in Greater Luzon sister to a third monophyletic group found in Greater Negros-Panay, suggesting that common or similar biogeographic processes may have produced similar distributions. However, studied species displayed variable levels of mitochondrial DNA differentiation between clades, and genetic differentiation within Luzon was not necessarily concordant with described subspecies boundaries. Population genetic parameters for the three species suggested both rapid population growth from small numbers and geographic expansion across Luzon Island. Estimates of the timing of population expansion further supported that these events occurred asynchronously throughout the Pleistocene in the focal species, demanding particular explanations for differentiation, and support that co-distribution may be secondarily congruent.

  7. From observational to dynamic genetics

    PubMed Central

    Haworth, Claire M. A.; Davis, Oliver S. P.

    2014-01-01

    Twin and family studies have shown that most traits are at least moderately heritable. But what are the implications of finding genetic influence for the design of intervention and prevention programs? For complex traits, heritability does not mean immutability, and research has shown that genetic influences can change with age, context, and in response to behavioral and drug interventions. The most significant implications for intervention will come when we move from observational genetics to investigating dynamic genetics, including genetically sensitive interventions. Future interventions should be designed to overcome genetic risk and draw upon genetic strengths by changing the environment. PMID:24478793

  8. Genetic Resources in the “Calabaza Pipiana” Squash (Cucurbita argyrosperma) in Mexico: Genetic Diversity, Genetic Differentiation and Distribution Models

    PubMed Central

    Sánchez-de la Vega, Guillermo; Castellanos-Morales, Gabriela; Gámez, Niza; Hernández-Rosales, Helena S.; Vázquez-Lobo, Alejandra; Aguirre-Planter, Erika; Jaramillo-Correa, Juan P.; Montes-Hernández, Salvador; Lira-Saade, Rafael; Eguiarte, Luis E.

    2018-01-01

    Analyses of genetic variation allow understanding the origin, diversification and genetic resources of cultivated plants. Domesticated taxa and their wild relatives are ideal systems for studying genetic processes of plant domestication and their joint is important to evaluate the distribution of their genetic resources. Such is the case of the domesticated subspecies C. argyrosperma ssp. argyrosperma, known in Mexico as calabaza pipiana, and its wild relative C. argyrosperma ssp. sororia. The main aim of this study was to use molecular data (microsatellites) to assess the levels of genetic variation and genetic differentiation within and among populations of domesticated argyrosperma across its distribution in Mexico in comparison to its wild relative, sororia, and to identify environmental suitability in previously proposed centers of domestication. We analyzed nine unlinked nuclear microsatellite loci to assess levels of diversity and distribution of genetic variation within and among populations in 440 individuals from 19 populations of cultivated landraces of argyrosperma and from six wild populations of sororia, in order to conduct a first systematic analysis of their genetic resources. We also used species distribution models (SDMs) for sororia to identify changes in this wild subspecies’ distribution from the Holocene (∼6,000 years ago) to the present, and to assess the presence of suitable environmental conditions in previously proposed domestication sites. Genetic variation was similar among subspecies (HE = 0.428 in sororia, and HE = 0.410 in argyrosperma). Nine argyrosperma populations showed significant levels of inbreeding. Both subspecies are well differentiated, and genetic differentiation (FST) among populations within each subspecies ranged from 0.152 to 0.652. Within argyrosperma we found three genetic groups (Northern Mexico, Yucatan Peninsula, including Michoacan and Veracruz, and Pacific coast plus Durango). We detected low levels of gene

  9. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation.

    PubMed

    Aegisdóttir, Hafdís Hanna; Kuss, Patrick; Stöcklin, Jürg

    2009-12-01

    Gene flow and genetic variability within and among alpine plant populations can be greatly influenced by the steep environmental gradients and heterogeneous topography of alpine landscapes. In this study, the effects are examined of natural isolation of alpine habitats on genetic diversity and geographic structure in populations of C. thyrsoides, a rare and isolated European Alpine monocarpic perennial with limited seed dispersal capacity. Molecular diversity was analysed for 736 individuals from 32 populations in the Swiss Alps and adjacent Jura mountains using five polymorphic microsatellite loci. Pollen flow was estimated using pollen grain-sized fluorescent powder. In addition, individual-based Bayesian approaches were applied to examine population structure. High within-population genetic diversity (H(E) = 0.76) and a relatively low inbreeding coefficient (F(IS) = 0.022) were found. Genetic differentiation among populations measured with a standardized measure was considerable (G'(ST) = 0.53). A significant isolation-by-distance relationship was found (r = 0.62, P < 0.001) and a significant geographic sub-structure, coinciding with proposed postglacial migration patterns. Altitudinal location and size of populations did not influence molecular variation. Direct measures of pollen flow revealed that insect-mediated pollen dispersal was restricted to short distances within a population. The natural isolation of suitable habitats for C. thyrsoides restricts gene flow among the populations as expected for a monocarpic species with very limited seed dispersal capacities. The observed high within-population genetic diversity in this rare monocarpic perennial is best explained by its outcrossing behaviour, long-lived individuals and overlapping generations. Despite the high within-population genetic diversity, the considerable genetic differentiation and the clear western-eastern differentiation in this species merits consideration in future conservation efforts.

  10. Evaluating methods to visualize patterns of genetic differentiation on a landscape.

    PubMed

    House, Geoffrey L; Hahn, Matthew W

    2018-05-01

    With advances in sequencing technology, research in the field of landscape genetics can now be conducted at unprecedented spatial and genomic scales. This has been especially evident when using sequence data to visualize patterns of genetic differentiation across a landscape due to demographic history, including changes in migration. Two recent model-based visualization methods that can highlight unusual patterns of genetic differentiation across a landscape, SpaceMix and EEMS, are increasingly used. While SpaceMix's model can infer long-distance migration, EEMS' model is more sensitive to short-distance changes in genetic differentiation, and it is unclear how these differences may affect their results in various situations. Here, we compare SpaceMix and EEMS side by side using landscape genetics simulations representing different migration scenarios. While both methods excel when patterns of simulated migration closely match their underlying models, they can produce either un-intuitive or misleading results when the simulated migration patterns match their models less well, and this may be difficult to assess in empirical data sets. We also introduce unbundled principal components (un-PC), a fast, model-free method to visualize patterns of genetic differentiation by combining principal components analysis (PCA), which is already used in many landscape genetics studies, with the locations of sampled individuals. Un-PC has characteristics of both SpaceMix and EEMS and works well with simulated and empirical data. Finally, we introduce msLandscape, a collection of tools that streamline the creation of customizable landscape-scale simulations using the popular coalescent simulator ms and conversion of the simulated data for use with un-PC, SpaceMix and EEMS. © 2017 John Wiley & Sons Ltd.

  11. Genetic differentiation between sympatric and allopatric wintering populations of Snow Geese

    USGS Publications Warehouse

    Humphries, E.M.; Peters, J.L.; Jonsson, J.E.; Stone, R.; Afton, A.D.; Omland, K.E.

    2009-01-01

    Blackwater National Wildlife Refuge on the Delmarva Peninsula, Maryland, USA has been the wintering area of a small population of Lesser Snow Geese (Chen caerulescens caerulescens; LSGO) since the 1930s. Snow Geese primarily pair in wintering areas and gene flow could be restricted between this and other LSGO wintering populations. Winter pair formation also could facilitate interbreeding with sympatric but morphologically differentiated Greater Snow Geese (C. c. atlantica; GSGO).We sequenced 658 bp of the mitochondrial DNA control region for 68 Snow Geese from East Coast and Louisiana wintering populations to examine the level of genetic differentiation among populations and subspecies. We found no evidence for genetic differentiation between LSGO populations but, consistent with morphological differences, LSGO and GSGO were significantly differentiated. We also found a lack of genetic differentiation between different LSGO morphotypes from Louisiana. We examined available banding data and found the breeding range of Delmarva LSGO overlaps extensively with LSGO that winter in Louisiana, and documented movements between wintering populations. Our results suggest the Delmarva population of LSGO is not a unique population unit apart from Mid-Continent Snow Geese. ?? 2009 by the Wilson Ornithological Society.

  12. Genetic differentiation among North Atlantic killer whale populations.

    PubMed

    Foote, Andrew D; Vilstrup, Julia T; De Stephanis, Renaud; Verborgh, Philippe; Abel Nielsen, Sandra C; Deaville, Robert; Kleivane, Lars; Martín, Vidal; Miller, Patrick J O; Oien, Nils; Pérez-Gil, Monica; Rasmussen, Morten; Reid, Robert J; Robertson, Kelly M; Rogan, Emer; Similä, Tiu; Tejedor, Maria L; Vester, Heike; Víkingsson, Gísli A; Willerslev, Eske; Gilbert, M Thomas P; Piertney, Stuart B

    2011-02-01

    Population genetic structure of North Atlantic killer whale samples was resolved from differences in allele frequencies of 17 microsatellite loci, mtDNA control region haplotype frequencies and for a subset of samples, using complete mitogenome sequences. Three significantly differentiated populations were identified. Differentiation based on microsatellite allele frequencies was greater between the two allopatric populations than between the two pairs of partially sympatric populations. Spatial clustering of individuals within each of these populations overlaps with the distribution of particular prey resources: herring, mackerel and tuna, which each population has been seen predating. Phylogenetic analyses using complete mitogenomes suggested two populations could have resulted from single founding events and subsequent matrilineal expansion. The third population, which was sampled at lower latitudes and lower density, consisted of maternal lineages from three highly divergent clades. Pairwise population differentiation was greater for estimates based on mtDNA control region haplotype frequencies than for estimates based on microsatellite allele frequencies, and there were no mitogenome haplotypes shared among populations. This suggests low or no female migration and that gene flow was primarily male mediated when populations spatially and temporally overlap. These results demonstrate that genetic differentiation can arise through resource specialization in the absence of physical barriers to gene flow. © 2010 Blackwell Publishing Ltd.

  13. Regional genetic differentiation in the blue mussel from the Baltic Sea area

    NASA Astrophysics Data System (ADS)

    Larsson, J.; Lind, E. E.; Corell, H.; Grahn, M.; Smolarz, K.; Lönn, M.

    2017-08-01

    Connectivity plays an important role in shaping the genetic structure and in evolution of local adaptation. In the marine environment barriers to gene flow are in most cases caused by gradients in environmental factors, ocean circulation and/or larval behavior. Despite the long pelagic larval stages, with high potential for dispersal many marine organisms have been shown to have a fine scale genetic structuring. In this study, by using a combination of high-resolution genetic markers, species hybridization data and biophysical modeling we can present a comprehensive picture of the evolutionary landscape for a keystone species in the Baltic Sea, the blue mussel. We identified distinct genetic differentiation between the West Coast, Baltic Proper and Bothnian Sea regions, with lower gene diversity in the Bothnian Sea. Oceanographic connectivity together with salinity and to some extent species identity provides explanations for the genetic differentiation between the West Coast and the Baltic Sea (Baltic Proper and Bothnian Sea). The genetic differentiation between the Baltic Proper and Bothnian Sea cannot be directly explained by oceanographic connectivity, species identity or salinity, while the lower connectivity to the Bothnian Sea may explain the lower gene diversity.

  14. Population-genetic properties of differentiated copy number variations in cattle.

    PubMed

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Zhou, Yang; Hay, El Hamidi Abdel; Song, Jiuzhou; Sonstegard, Tad S; Van Tassell, Curtis P; Liu, George E

    2016-03-23

    While single nucleotide polymorphism (SNP) is typically the variant of choice for population genetics, copy number variation (CNV) which comprises insertion, deletion and duplication of genomic sequence, is an informative type of genetic variation. CNVs have been shown to be both common in mammals and important for understanding the relationship between genotype and phenotype. However, CNV differentiation, selection and its population genetic properties are not well understood across diverse populations. We performed a population genetics survey based on CNVs derived from the BovineHD SNP array data of eight distinct cattle breeds. We generated high resolution results that show geographical patterns of variations and genome-wide admixture proportions within and among breeds. Similar to the previous SNP-based studies, our CNV-based results displayed a strong correlation of population structure and geographical location. By conducting three pairwise comparisons among European taurine, African taurine, and indicine groups, we further identified 78 unique CNV regions that were highly differentiated, some of which might be due to selection. These CNV regions overlapped with genes involved in traits related to parasite resistance, immunity response, body size, fertility, and milk production. Our results characterize CNV diversity among cattle populations and provide a list of lineage-differentiated CNVs.

  15. Genetic diversity and geographic differentiation in the threatened species Dysosma pleiantha in China as revealed by ISSR analysis.

    PubMed

    Zong, Min; Liu, Hai-Long; Qiu, Ying-Xiong; Yang, Shu-Zhen; Zhao, Ming-Shui; Fu, Cheng-Xin

    2008-04-01

    Dysosma pleiantha, an important threatened medicinal plant species, is restricted in distribution to southeastern China. The species is capable of reproducing both sexually and asexually. In this study, inter-simple sequence repeat marker data were obtained and analyzed with respect to genetic variation and genetic structure. The extent of clonality, together with the clonal and sexual reproductive strategies, varied among sites, and the populations under harsh ecological conditions tended to have large clones with relatively low clonal diversity caused by vegetative reproduction. The ramets sharing the same genotype show a clumped distribution. Across all populations surveyed, average within-population diversity was remarkably low (e.g., 0.111 for Nei's gene diversity), with populations from the nature reserves maintaining relatively high amounts of genetic diversity. Among all populations, high genetic differentiation (AMOVA: Phi(ST) = 0.500; Nei's genetic diversity: G (ST) = 0.465, Bayesian analysis: Phi(B) = 0.436) was detected, together with an isolation-by-distance pattern. Low seedling recruitment due to inbreeding, restricted gene flow, and genetic drift are proposed as determinant factors responsible for the low genetic diversity and high genetic differentiation observed.

  16. Two closely related species differ in their regional genetic differentiation despite admixing

    PubMed Central

    Fischer, Markus; Oja, Tatjana

    2018-01-01

    Abstract Regional genetic differentiation within species is often addressed in evolutionary ecology and conservation biology. Here, we address regional differentiation in two closely related hybridizing taxa, the perennial sedges Carex flava and C. viridula and their hybrid C. × subviridula in 37 populations in the north and centre of their distribution range in Europe (Estonia, Lowland (<1000 m a.s.l.) and Highland Switzerland) using 10 putative microsatellite loci. We ask whether regional differentiation was larger in the less common taxon C. viridula or whether, possibly due to hybridization, it was similar between taxa. Our results showed similar, low to moderate genetic diversity for the three studied taxa. In total, we found 12 regional species-specific alleles. Analysis of molecular variance (AMOVA), STRUCTURE and multidimensional scaling analysis showed regional structure in genetic variation, where intraspecific differentiation between regions was lower for C. flava (AMOVA: 6.84 %) than for C. viridula (20.77 %) or C. × subviridula (18.27 %) populations. Hybrids differed from the parental taxa in the two regions where they occurred, i.e. in Estonia and Lowland Switzerland. We conclude that C. flava and C. viridula clearly differ from each other genetically, that there is pronounced regional differentiation and that, despite hybridization, this regional differentiation is more pronounced in the less common taxon, C. viridula. We encourage future studies on hybridizing taxa to work with plant populations from more than one region. PMID:29479408

  17. Genetic diversity and differentiation of exotic and American commercial cattle breeds raised in Brazil.

    PubMed

    Brasil, B S A F; Coelho, E G A; Drummond, M G; Oliveira, D A A

    2013-11-18

    The Brazilian cattle population is mainly composed of breeds of zebuine origin and their American derivatives. Comprehensive knowledge about the genetic diversity of these populations is fundamental for animal breeding programs and the conservation of genetic resources. This study aimed to assess the phylogenetic relationships, levels of genetic diversity, and patterns of taurine/zebuine admixture among 9 commercial cattle breeds raised in Brazil. Analysis of DNA polymorphisms was performed on 2965 animals using the 11 microsatellite markers recommended by the International Society of Animal Genetics. High genetic diversity was detected in all breeds, even though significant inbreeding was observed within some. Differences among the breeds accounted for 14.72% of the total genetic variability, and genetic differentiation was higher among taurine than among zebuine cattle. Of note, Nelore cattle presented with high levels of admixture, which is consistent with the history of frequent gene flow during the establishment of this breed in Brazil. Furthermore, significant genetic variability was partitioned within the commercial cattle breeds formed in America, which, therefore, comprise important resources of genetic diversity in the tropics. The genetic characterization of these important Brazilian breeds may now facilitate the development of management and breeding programs for these populations.

  18. Comparative analysis of genetic diversity and differentiation of cauliflower (Brassica oleracea var. botrytis) accessions from two ex situ genebanks

    PubMed Central

    Börner, Andreas

    2018-01-01

    Cauliflower (Brassica oleracea var. botrytis) is an important vegetable crop for human nutrition. We characterized 192 cauliflower accessions from the USDA and IPK genebanks with genotyping by sequencing (GBS). They originated from 26 different countries and represent about 44% of all cauliflower accessions in both genebanks. The analysis of genetic diversity revealed that accessions formed two major groups that represented the two genebanks and were not related to the country of origin. This differentiation was robust with respect to the analysis methods that included principal component analysis, ADMIXTURE and neighbor-joining trees. Genetic diversity was higher in the USDA collection and significant phenotypic differences between the two genebanks were found in three out of six traits investigated. GBS data have a high proportion of missing data, but we observed that the exclusion of single nucleotide polymorphisms (SNPs) with missing data or the imputation of missing SNP alleles produced very similar results. The results indicate that the composition and type of accessions have a strong effect on the structure of genetic diversity of ex situ collections, although regeneration procedures and local adaptation to regeneration conditions may also contribute to a divergence. Fst-based outlier tests of genetic differentiation identified only a small proportion (<1%) of SNPs that are highly differentiated between the two genebanks, which indicates that selection during seed regeneration is not a major cause of differentiation between genebanks. Seed regeneration procedures of both genebanks do not result in different levels of genetic drift and loss of genetic variation. We therefore conclude that the composition and type of accessions mainly influence the level of genetic diversity and explain the strong genetic differentiation between the two ex situ collections. In summary, GBS is a useful method for characterizing genetic diversity in cauliflower genebank material

  19. Comparative analysis of genetic diversity and differentiation of cauliflower (Brassica oleracea var. botrytis) accessions from two ex situ genebanks.

    PubMed

    Yousef, Eltohamy A A; Müller, Thomas; Börner, Andreas; Schmid, Karl J

    2018-01-01

    Cauliflower (Brassica oleracea var. botrytis) is an important vegetable crop for human nutrition. We characterized 192 cauliflower accessions from the USDA and IPK genebanks with genotyping by sequencing (GBS). They originated from 26 different countries and represent about 44% of all cauliflower accessions in both genebanks. The analysis of genetic diversity revealed that accessions formed two major groups that represented the two genebanks and were not related to the country of origin. This differentiation was robust with respect to the analysis methods that included principal component analysis, ADMIXTURE and neighbor-joining trees. Genetic diversity was higher in the USDA collection and significant phenotypic differences between the two genebanks were found in three out of six traits investigated. GBS data have a high proportion of missing data, but we observed that the exclusion of single nucleotide polymorphisms (SNPs) with missing data or the imputation of missing SNP alleles produced very similar results. The results indicate that the composition and type of accessions have a strong effect on the structure of genetic diversity of ex situ collections, although regeneration procedures and local adaptation to regeneration conditions may also contribute to a divergence. Fst-based outlier tests of genetic differentiation identified only a small proportion (<1%) of SNPs that are highly differentiated between the two genebanks, which indicates that selection during seed regeneration is not a major cause of differentiation between genebanks. Seed regeneration procedures of both genebanks do not result in different levels of genetic drift and loss of genetic variation. We therefore conclude that the composition and type of accessions mainly influence the level of genetic diversity and explain the strong genetic differentiation between the two ex situ collections. In summary, GBS is a useful method for characterizing genetic diversity in cauliflower genebank material

  20. Genetic Differentiation of Colombian Populations of Anopheles darlingi Root (Diptera: Culicidae).

    PubMed

    Rosero, C Y; Jaramillo, G I; Gonzalez, R; Cardenas, H

    2017-10-01

    Anopheles darlingi Root is a primary vector of malaria in the neotropic region, a species not just highly anthropophilic but very efficient in transmitting Plasmodium species and considered the most important vector in the Amazon region. The main goal of this study was to determine the genetic structure of the A. darlingi populations using microsatellites (STR) in western and eastern regions of Colombia. DNA extraction was done with the cited protocol of band using the Genomic Prep™ cell and tissue isolation commercial kits. We used the STR reported by Conn et al (Mol Ecol Notes 1: 223-225, 2001). The analysis with STR proved there was a high genetic diversity and significant alterations of the Hardy-Weinberg equilibrium. The greatest genetic diversity was recorded in Mitu (Vaupes) (Na = 14, Ho = 0.520). The lowest was in Pueblo Nuevo (Cordoba) (Na = 12, Ho = 0.457). The eastern region and the Mitu (Vaupes) populations presented the highest number of primer alleles (Ap = 30; Ap = 13; Ap = 9), with variations between 0.010 and 0.097. The AMOVA revealed that the whole population underwent moderate genetic differentiation (F ST  = 0.063, p < 0.05). The same differentiation was noticed (0.06 < F ST  > 0.06, p < 0.05) with five of the six populations included in this job, and there was a low differentiation in the Las Margaritas (Santander) area (F ST  = 0.02s3, p < 0.05). Our results suggest a slight positive correlation, which does not show a statistical significance between the geographic and genetic distances, probably suggesting that the moderate genetic differentiation found between pairs of populations does not need to be explained for the hypothesis of separation by distance.

  1. Genetic Differentiation in the Stingless Bee, Scaptotrigona xanthotricha Moure, 1950 (Apidae, Meliponini): a Species with Wide Geographic Distribution in the Atlantic Rainforest.

    PubMed

    Duarte, Olívia M P; Gaiotto, Fernanda A; Costa, Marco A

    2014-01-01

    Stingless bees are important pollinators that are severely threatened by anthropic interference, resulting in a strong population decline. Scaptotrigona xanthotricha has a wide distribution in the Atlantic Rainforest, ranging from the northeastern state of Bahia to Santa Catarina in southern Brazil. To understand the genetic structure of S. xanthotricha, 12 species-specific microsatellite loci were analyzed in 42 colonies sampled throughout the species range. The results indicated 5 distinct clusters throughout the sampled area with high rates of genetic diversity, and the greatest diversity was found in southern Bahia. Greater differentiation was observed between samples from the extremes of the distribution, with an F ST value of 0.189 between cluster 1 and 5. The genetic differentiation analysis for all loci had an F ST value of 0.113, a result that is consistent with the analysis of molecular variance, which revealed 7.72% of the variation occurring between groups. The Mantel correlation between a genetic differentiation matrix and a geographic distance matrix (r = 0.184, P = 0.043) indicated a tendency toward increased differentiation with increased distance. This study revealed the profile of differentiation and distribution of genetic diversity in this species and indicates parameters that should be considered in future taxonomic revisions and activities for its management and conservation. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Striking Phenotypic Variation yet Low Genetic Differentiation in Sympatric Lake Trout (Salvelinus namaycush)

    PubMed Central

    Coon, Andrew; Carson, Robert; Debes, Paul V.

    2016-01-01

    The study of population differentiation in the context of ecological speciation is commonly assessed using populations with obvious discreteness. Fewer studies have examined diversifying populations with occasional adaptive variation and minor reproductive isolation, so factors impeding or facilitating the progress of early stage differentiation are less understood. We detected non-random genetic structuring in lake trout (Salvelinus namaycush) inhabiting a large, pristine, postglacial lake (Mistassini Lake, Canada), with up to five discernible genetic clusters having distinctions in body shape, size, colouration and head shape. However, genetic differentiation was low (FST = 0.017) and genetic clustering was largely incongruent between several population- and individual-based clustering approaches. Genotype- and phenotype-environment associations with spatial habitat, depth and fish community structure (competitors and prey) were either inconsistent or weak. Striking morphological variation was often more continuous within than among defined genetic clusters. Low genetic differentiation was a consequence of relatively high contemporary gene flow despite large effective population sizes, not migration-drift disequilibrium. Our results suggest a highly plastic propensity for occupying multiple habitat niches in lake trout and a low cost of morphological plasticity, which may constrain the speed and extent of adaptive divergence. We discuss how factors relating to niche conservatism in this species may also influence how plasticity affects adaptive divergence, even where ample ecological opportunity apparently exists. PMID:27680019

  3. Phenotypic divergence despite low genetic differentiation in house sparrow populations.

    PubMed

    Ben Cohen, Shachar; Dor, Roi

    2018-01-10

    Studying patterns of phenotypic variation among populations can shed light on the drivers of evolutionary processes. The house sparrow (Passer domesticus) is one of the world's most ubiquitous bird species, as well as a successful invader. We investigated phenotypic variation in house sparrow populations across a climatic gradient and in relation to a possible scenario of an invasion. We measured variation in morphological, coloration, and behavioral traits (exploratory behavior and neophobia) and compared it to the neutral genetic variation. We found that sparrows were larger and darker in northern latitudes, in accordance with Bergmann's and Gloger's biogeographic rules. Morphology and behavior mostly differed between the southernmost populations and the other regions, supporting the possibility of an invasion. Genetic differentiation was low and diversity levels were similar across populations, indicating high gene flow. Nevertheless, the southernmost and northern populations differed genetically to some extent. Furthermore, genetic differentiation (F ST ) was lower in comparison to phenotypic variation (P ST ), indicating that the phenotypic variation is shaped by directional selection or by phenotypic plasticity. This study expands our knowledge on evolutionary mechanisms and biological invasions.

  4. High degree of genetic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus).

    PubMed

    Defaveri, Jacquelin; Shikano, Takahito; Shimada, Yukinori; Merilä, Juha

    2013-09-01

    Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene-based genome-scan approach to analyse variability in 138 microsatellite loci located within/close to (<6 kb) functionally important genes in samples collected from ten geographic locations. The degree of genetic differentiation in markers classified as neutral or under balancing selection-as determined with several outlier detection methods-was low (F(ST) = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (F(ST) = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes. © 2013 John Wiley & Sons Ltd.

  5. Genetic diversity, structure, and patterns of differentiation in the genus vitis

    USDA-ARS?s Scientific Manuscript database

    Vitis (Vitaceae) is a taxonomically complicated genus with ca. 60 taxa divided into two subgenera, Vitis and Muscadinia. We used population genetic approaches to gain insights into the genetic diversity, patterns of evolutionary differentiation and to decipher the taxonomic status of some of the con...

  6. Solar Radiation-Associated Adaptive SNP Genetic Differentiation in Wild Emmer Wheat, Triticum dicoccoides.

    PubMed

    Ren, Jing; Chen, Liang; Jin, Xiaoli; Zhang, Miaomiao; You, Frank M; Wang, Jirui; Frenkel, Vladimir; Yin, Xuegui; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2017-01-01

    Whole-genome scans with large number of genetic markers provide the opportunity to investigate local adaptation in natural populations and identify candidate genes under positive selection. In the present study, adaptation genetic differentiation associated with solar radiation was investigated using 695 polymorphic SNP markers in wild emmer wheat originated in a micro-site at Yehudiyya, Israel. The test involved two solar radiation niches: (1) sun, in-between trees; and (2) shade, under tree canopy, separated apart by a distance of 2-4 m. Analysis of molecular variance showed a small (0.53%) but significant portion of overall variation between the sun and shade micro-niches, indicating a non-ignorable genetic differentiation between sun and shade habitats. Fifty SNP markers showed a medium (0.05 ≤ F ST ≤ 0.15) or high genetic differentiation ( F ST > 0.15). A total of 21 outlier loci under positive selection were identified by using four different F ST -outlier testing algorithms. The markers and genome locations under positive selection are consistent with the known patterns of selection. These results suggested that genetic differentiation between sun and shade habitats is substantial, radiation-associated, and therefore ecologically determined. Hence, the results of this study reflected effects of natural selection through solar radiation on EST-related SNP genetic diversity, resulting presumably in different adaptive complexes at a micro-scale divergence. The present work highlights the evolutionary theory and application significance of solar radiation-driven natural selection in wheat improvement.

  7. Genetic diversity and population differentiation of small giant clam Tridacna maxima in Comoros islands assessed by microsatellite markers.

    PubMed

    Ahmed Mohamed, Nadjim; Yu, Qian; Chanfi, Mohamed Ibrahim; Li, Yangping; Wang, Shi; Huang, Xiaoting; Bao, Zhenmin

    2016-01-01

    Small giant clam, Tridacna maxima , widely distributed from French Polynesia to East Africa, has faced population declines due to over-exploitation. Comoros islands are an important biogeographic region due to potential richness of marine species, but no relevant information is available. In order to facilitate devising effective conservation management plan for T. maxima , nine microsatellite markers were used to survey genetic diversity and population differentiation of 72 specimens collected from three Comoros islands, Grande Comore, Moheli and Anjouan. A total of 51 alleles were detected ranged from 2 to 8 per locus. Observed and expected heterozygosity varied from 0.260 to 0.790 and from 0.542 to 0.830, respectively. All populations have high genetic diversity, especially the population in Moheli, a protected area, has higher genetic diversity than the others. Significant heterozygote deficiencies were recorded, and null alleles were probably the main factor leading to these deficits. F ST value indicated medium genetic differentiation among the populations. Although significant, AMOVA revealed 48.9 % of genetic variation within individuals and only a small variation of 8.9 % was found between populations. Gene flow was high ( Nm  = 12.40) between Grande Comore and Moheli, while lower ( Nm  = 1.80) between Grande Comore and Anjouan, explaining geographic barriers to genetic exchanges might exist in these two islands. Global gene flow analysis ( Nm  = 5.50) showed that larval dispersal is enough to move between the islands. The high genetic diversity and medium population differentiation revealed in the present study offer useful information on genetic conservation of small giant clams.

  8. Philopatry drives genetic differentiation in an island archipelago: comparative population genetics of Galapagos Nazca boobies (Sula granti) and great frigatebirds (Fregata minor)

    PubMed Central

    Levin, Iris I; Parker, Patricia G

    2012-01-01

    Seabirds are considered highly mobile, able to fly great distances with few apparent barriers to dispersal. However, it is often the case that seabird populations exhibit strong population genetic structure despite their potential vagility. Here we show that Galapagos Nazca booby (Sula granti) populations are substantially differentiated, even within the small geographic scale of this archipelago. On the other hand, Galapagos great frigatebird (Fregata minor) populations do not show any genetic structure. We characterized the genetic differentiation by sampling five colonies of both species in the Galapagos archipelago and analyzing eight microsatellite loci and three mitochondrial genes. Using an F-statistic approach on the multilocus data, we found significant differentiation between nearly all island pairs of Nazca booby populations and a Bayesian clustering analysis provided support for three distinct genetic clusters. Mitochondrial DNA showed less differentiation of Nazca booby colonies; only Nazca boobies from the island of Darwin were significantly differentiated from individuals throughout the rest of the archipelago. Great frigatebird populations showed little to no evidence for genetic differentiation at the same scale. Only two island pairs (Darwin – Wolf, N. Seymour – Wolf) were significantly differentiated using the multilocus data, and only two island pairs had statistically significant φST values (N. Seymour – Darwin, N. Seymour – Wolf) according to the mitochondrial data. There was no significant pattern of isolation by distance for either species calculated using both markers. Seven of the ten Nazca booby migration rates calculated between island pairs were in the south or southeast to north or northwest direction. The population differentiation found among Galapagos Nazca booby colonies, but not great frigatebird colonies, is most likely due to differences in natal and breeding philopatry. PMID:23170212

  9. Unravelling the genetic differentiation among varieties of the Neotropical savanna tree Hancornia speciosa Gomes.

    PubMed

    Collevatti, Rosane G; Rodrigues, Eduardo E; Vitorino, Luciana C; Lima-Ribeiro, Matheus S; Chaves, Lázaro J; Telles, Mariana P C

    2018-04-20

    Spatial distribution of species genetic diversity is often driven by geographical distance (isolation by distance) or environmental conditions (isolation by environment), especially under climate change scenarios such as Quaternary glaciations. Here, we used coalescent analyses coupled with ecological niche modelling (ENM), spatially explicit quantile regression analyses and the multiple matrix regression with randomization (MMRR) approach to unravel the patterns of genetic differentiation in the widely distributed Neotropical savanna tree, Hancornia speciosa (Apocynaceae). Due to its high morphological differentiation, the species was originally classified into six botanical varieties by Monachino, and has recently been recognized as only two varieties by Flora do Brasil 2020. Thus, H. speciosa is a good biological model for learning about evolution of phenotypic plasticity under genetic and ecological effects, and predicting their responses to changing environmental conditions. We sampled 28 populations (777 individuals) of Monachino's four varieties of H. speciosa and used seven microsatellite loci to genotype them. Bayesian clustering showed five distinct genetic groups (K = 5) with high admixture among Monachino's varieties, mainly among populations in the central area of the species geographical range. Genetic differentiation among Monachino's varieties was lower than the genetic differentiation among populations within varieties, with higher within-population inbreeding. A high historical connectivity among populations of the central Cerrado shown by coalescent analyses may explain the high admixture among varieties. In addition, areas of higher climatic suitability also presented higher genetic diversity in such a way that the wide historical refugium across central Brazil might have promoted the long-term connectivity among populations. Yet, FST was significantly related to geographic distances, but not to environmental distances, and coalescent analyses

  10. Genetic differentiation of the stingless bee Tetragonula pagdeni in Thailand using SSCP analysis of a large subunit of mitochondrial ribosomal DNA.

    PubMed

    Thummajitsakul, Sirikul; Klinbunga, Sirawut; Sittipraneed, Siriporn

    2011-08-01

    Genetic diversity and population differentiation of the stingless bee Tetragonula pagdeni (Schwarz) was assessed using single-strand conformational polymorphism (SSCP) analysis of a large subunit of the ribosomal RNA gene (16S rRNA). High levels of genetic variation among individuals within each population (North, Northeast, Central, Prachuap Khiri Khan, Chumphon, and Peninsular Thailand) of T. pagdeni were observed. Analysis of molecular variance indicated significant genetic differentiation among the six geographic populations (Φ (PT) = 0.28, P < 0.001) and between samples collected from north and south of the Isthmus of Kra (Φ (PT) = 0.18, P < 0.001). In addition, Φ (PT) values between all pairwise comparisons were statistically significant (P < 0.01), indicating strong degrees of intraspecific population differentiation. Therefore, PCR-SSCP is a simple and cost-effective technique applicable for routine population genetic analyses in T. pagdeni and other stingless bees. The results also provide an important baseline for the conservation and management of this ecologically important species.

  11. Genetic diversity and substantial population differentiation in Crassostrea hongkongensis revealed by mitochondrial DNA.

    PubMed

    Li, Lu; Wu, Xiangyun; Yu, Ziniu

    2013-09-01

    The Hong Kong oyster, Crassostrea hongkongensis, is an important fisheries resource that is cultivated in the coastal waters of the South China Sea. Despite significant advances in understanding biological and taxonomic aspects of this species, no detailed study of its population genetic diversity in regions of extensive cultivation are available. Direct sequencing of the mtDNA cox1 gene region was used to investigate genetic variation within and between eleven C. hongkongensis populations collected from typical habitats. Sixty-two haplotypes were identified; only haplotype 2 (21.74% of total haplotypes) was shared among all the eleven populations, and most of the observed haplotypes were restricted to individual populations. Both AMOVA and FST analyses revealed significant population structure, and the isolation by distance (IBD) was confirmed. The highest local differentiation was observed between the sample pools from Guangxi versus Guangdong and Fujian, which are separated by a geographic barrier, the Leizhou Peninsula. Current knowledge from seed management suggests that seed transfer from Guangxi province has likely reduced the divergence that somewhat naturally exists between these pools. The findings from the present study could be useful for genetic management and may serve as a baseline by which to monitor future changes in genetic diversity, either due to natural or anthropogenic impacts. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Similarity in genetic alterations between paired well-differentiated and dedifferentiated components of dedifferentiated liposarcoma.

    PubMed

    Horvai, Andrew E; DeVries, Sandy; Roy, Ritu; O'Donnell, Richard J; Waldman, Frederic

    2009-11-01

    Liposarcoma represents a unique model insofar as some well-differentiated liposarcomas progress to non-lipogenic, so-called 'dedifferentiated,' forms. The well-differentiated and dedifferentiated family of liposarcomas demonstrates amplification of the chromosome subregion 12q13-q15 with resultant amplification of the MDM2 and CDK4 genes. However, the specific genetic changes that distinguish between well-differentiated and dedifferentiated liposarcomas are less well understood. To study the genetic changes in dedifferentiated liposarcomas, paired well-differentiated and dedifferentiated components of 29 tumors were analyzed separately by array-based comparative genomic hybridization. A bacterial artificial chromosome array at approximately 1-Mb resolution was used. The genetic changes were compared with clinical presentation, grade of the dedifferentiated component and overexpression of MDM2 and CDK4. Most tumors (n=21, 72%) were retroperitoneal, with both components present at initial diagnosis (n=25, 86%). Eight tumors (28%) were classified as low-grade dedifferentiation. In four cases (14%), a well-differentiated liposarcoma preceded the presentation of the dedifferentiated tumor by 1-5 years. 12q13-q15 was amplified in all tumors. Using unsupervised hierarchical clustering of copy-number changes, all but two tumors showed close similarities between well-differentiated and dedifferentiated components, and segregated as pairs. Dedifferentiated components had more total amplifications (P=0.008) and a trend for gain at 19q13.2, but no genetic changes were significant in distinguishing between the two components. High-level amplifications of 1p21-32 (n=7, 24%), 1q21-23 (n=9, 31%), 6q23-24 (n=6, 21%) and 12q24 (n=3, 10%) were common, but none significantly correlated with differentiation. Presentation and grade correlated with the frequency of changes at a number of genetic loci (P<0.001), whereas CDK4 immunostaining showed negative correlation with 12q13

  13. Microsatellite genetic diversity and differentiation of native and introduced grass carp populations in three continents

    USGS Publications Warehouse

    Chapman, Duane C.; Chen, Qin; Wang, Chenghui; Zhao, Jinlian; Lu, Guoqing; Zsigmond, Jeney; Li, Si-Fa

    2012-01-01

    Grass carp (Ctenopharyngodon idella), a freshwater species native to China, has been introduced to about 100 countries/regions and poses both biological and environmental challenges to the receiving ecosystems. In this study, we analyzed genetic variation in grass carp from three introduced river systems (Mississippi River Basin in US, Danube River in Hungary, and Tone River in Japan) as well as its native ranges (Yangtze, Pearl, and Amur Rivers) in China using 21 novel microsatellite loci. The allelic richness, observed heterozygosity, and within-population gene diversity were found to be lower in the introduced populations than in the native populations, presumably due to the small founder population size of the former. Significant genetic differentiation was found between all pairwise populations from different rivers. Both principal component analysis and Bayesian clustering analysis revealed obvious genetic distinction between the native and introduced populations. Interestingly, genetic bottlenecks were detected in the Hungarian and Japanese grass carp populations, but not in the North American population, suggesting that the Mississippi River Basin grass carp has experienced rapid population expansion with potential genetic diversification during the half-century since its introduction. Consequently, the combined forces of the founder effect, introduction history, and rapid population expansion help explaining the observed patterns of genetic diversity within and among both native and introduced populations of the grass carp.

  14. Genetic diversity and differentiation of five Cuban cattle breeds using 30 microsatellite loci.

    PubMed

    Acosta, A C; Uffo, O; Sanz, A; Ronda, R; Osta, R; Rodellar, C; Martin-Burriel, I; Zaragoza, P

    2013-02-01

    Conservation and improvement strategies in farm animals should be based on a combination of genetic and phenotypic characteristics. Genotype data from 30 microsatellites were used to assess the genetic diversity and relationships among five Cuban cattle breeds (Siboney de Cuba, Criollo Cubano, Cebú Cubano, Mambí de Cuba and Taíno de Cuba). All microsatellite markers were highly polymorphic in all the breeds. The expected heterozygosity ranged from 0.67 ± 0.02 in the Taíno de Cuba breed to 0.75 ± 0.02 in the Mambí de Cuba breed, and the observed heterozygosity ranged from 0.66 ± 0.03 in the Cebú Cubano breed to 0.73 ± 0.02 in the Siboney de Cuba breed. The genetic differentiation between the breeds was significant (p < 0.01) based on the infinitesimal model (F(ST)). The exact test for Hardy-Weinberg equilibrium within breeds showed a significant deviation in each breed (p < 0.0003) for one or more loci. The genetic distance and structure analysis showed that a significant amount of genetic variation is maintained in the local cattle population and that all breeds studied could be considered genetically distinct. The Siboney de Cuba and Mambí de Cuba breeds seem to be the most genetically related among the studied five breeds. © 2012 Blackwell Verlag GmbH.

  15. Impact of Geography and Climate on the Genetic Differentiation of the Subtropical Pine Pinus yunnanensis

    PubMed Central

    Zhao, Wei; Wang, Xiao-Ru

    2013-01-01

    Southwest China is a biodiversity hotspot characterized by complex topography, heterogeneous regional climates and rich flora. The processes and driving factors underlying this hotspot remain to be explicitly tested across taxa to gain a general understanding of the evolution of biodiversity and speciation in the region. In this study, we examined the role played by historically neutral processes, geography and environment in producing the current genetic diversity of the subtropical pine Pinus yunnanensis. We used genetic and ecological methods to investigate the patterns of genetic differentiation and ecological niche divergence across the distribution range of this species. We found both continuous genetic differentiation over the majority of its range, and discrete isolated local clusters. The discrete differentiation between two genetic groups in the west and east peripheries is consistent with niche divergence and geographical isolation of these groups. In the central area of the species’ range, population structure was shaped mainly by neutral processes and geography rather than by ecological selection. These results show that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, and illustrate the importance of ecological factors in forming or maintaining genetic divergence across a complex landscape. Our findings differ from other phylogenetic studies that identified the historical drainage system in the region as the primary factor shaping population structure, and highlight the heterogeneous contributions that geography and environment have made to genetic diversity among taxa in southwest China. PMID:23840668

  16. Impact of Geography and Climate on the Genetic Differentiation of the Subtropical Pine Pinus yunnanensis.

    PubMed

    Wang, Baosheng; Mao, Jian-Feng; Zhao, Wei; Wang, Xiao-Ru

    2013-01-01

    Southwest China is a biodiversity hotspot characterized by complex topography, heterogeneous regional climates and rich flora. The processes and driving factors underlying this hotspot remain to be explicitly tested across taxa to gain a general understanding of the evolution of biodiversity and speciation in the region. In this study, we examined the role played by historically neutral processes, geography and environment in producing the current genetic diversity of the subtropical pine Pinus yunnanensis. We used genetic and ecological methods to investigate the patterns of genetic differentiation and ecological niche divergence across the distribution range of this species. We found both continuous genetic differentiation over the majority of its range, and discrete isolated local clusters. The discrete differentiation between two genetic groups in the west and east peripheries is consistent with niche divergence and geographical isolation of these groups. In the central area of the species' range, population structure was shaped mainly by neutral processes and geography rather than by ecological selection. These results show that geographical and environmental factors together created stronger and more discrete genetic differentiation than isolation by distance alone, and illustrate the importance of ecological factors in forming or maintaining genetic divergence across a complex landscape. Our findings differ from other phylogenetic studies that identified the historical drainage system in the region as the primary factor shaping population structure, and highlight the heterogeneous contributions that geography and environment have made to genetic diversity among taxa in southwest China.

  17. Genetic differentiation over a small spatial scale of the sand fly Lutzomyia vexator (Diptera: Psychodidae).

    PubMed

    Neal, Allison T; Ross, Max S; Schall, Jos J; Vardo-Zalik, Anne M

    2016-10-18

    The geographic scale and degree of genetic differentiation for arthropod vectors that transmit parasites play an important role in the distribution, prevalence and coevolution of pathogens of human and wildlife significance. We determined the genetic diversity and population structure of the sand fly Lutzomyia vexator over spatial scales from 0.56 to 3.79 km at a study region in northern California. The study was provoked by observations of differentiation at fine spatial scales of a lizard malaria parasite vectored by Lu. vexator. A microsatellite enrichment/next-generation sequencing protocol was used to identify variable microsatellite loci within the genome of Lu. vexator. Alleles present at these loci were examined in four populations of Lu. vexator in Hopland, CA. Population differentiation was assessed using Fst and D (of Cavalli-Sforza and Edwards), and the program Structure was used to determine the degree of subdivision present. The effective population size for the sand fly populations was also calculated. Eight microsatellite markers were characterized and revealed high genetic diversity (uHe = 0.79-0.92, Na = 12-24) and slight but significant differentiation across the fine spatial scale examined (average pairwise D = 0.327; F ST  = 0.0185 (95 % bootstrapped CI: 0.0102-0.0264). Even though the insects are difficult to capture using standard methods, the estimated population size was thousands per local site. The results argue that Lu. vexator at the study sites are abundant and not highly mobile, which may influence the overall transmission dynamics of the lizard malaria parasite, Plasmodium mexicanum, and other parasites transmitted by this species.

  18. Genetic differentiation in proboscis monkeys--A reanalysis.

    PubMed

    Nijman, Vincent

    2016-01-01

    Ogata and Seino [Zoo Biol, 2015, 34:76-79] sequenced the mitochondrial D-loop of five proboscis monkeys Nasalis larvatus from Yokahama Zoo, Japan, that were imported from Surabaya Zoo, Indonesia. They compared their sequences with those of 16 proboscis monkeys from Sabah, Malaysia, and on the basis of a haplotype network analysis of 256 base pairs concluded that the northern Malaysian and southern Indonesian populations of proboscis monkeys are genetically differentiated. I provide information on the origin of the Indonesian proboscis monkeys, showing that they were the first-generation offspring of wild-caught individuals from the Pulau Kaget Strict Nature Reserve in the province of South Kalimantan. Using a phylogenetic approach and adding additional sequences from Indonesia and Malaysia, I reanalyzed their data, and found no support for a north-south divide. Instead the resulting tree based on 433 base pairs sequences show two strongly supported clades, both containing individuals from Indonesia and Malaysia. Work on captive individuals, as reported by Ogata and Seino, can aid in developing appropriate markers and techniques, but to obtain a more complete understanding of the genetic diversity and differentiation of wild proboscis monkeys, more detailed geographic sampling from all over Borneo is needed. © 2015 Wiley Periodicals, Inc.

  19. Population genetic analysis and bioclimatic modeling in Agave striata in the Chihuahuan Desert indicate higher genetic variation and lower differentiation in drier and more variable environments.

    PubMed

    Trejo, Laura; Alvarado-Cárdenas, Leonardo O; Scheinvar, Enrique; Eguiarte, Luis E

    2016-06-01

    Is there an association between bioclimatic variables and genetic variation within species? This question can be approached by a detailed analysis of population genetics parameters along environmental gradients in recently originated species (so genetic drift does not further obscure the patterns). The genus Agave, with more than 200 recent species encompassing a diversity of morphologies and distributional patterns, is an adequate system for such analyses. We studied Agave striata, a widely distributed species from the Chihuahuan Desert, with a distinctive iteroparous reproductive ecology and two recognized subspecies with clear morphological differences. We used population genetic analyses along with bioclimatic studies to understand the effect of environment on the genetic variation and differentiation of this species. We analyzed six populations of the subspecies A. striata subsp. striata, with a southern distribution, and six populations of A. striata subsp. falcata, with a northern distribution, using 48 ISSR loci and a total of 541 individuals (averaging 45 individuals per population). We assessed correlations between population genetics parameters (the levels of genetic variation and differentiation) and the bioclimatic variables of each population. We modeled each subspecies distribution and used linear correlations and multifactorial analysis of variance. Genetic variation (measured as expected heterozygosity) increased at higher latitudes. Higher levels of genetic variation in populations were associated with a higher variation in environmental temperature and lower precipitation. Stronger population differentiation was associated with wetter and more variable precipitation in the southern distribution of the species. The two subspecies have genetic differences, which coincide with their climatic differences and potential distributions. Differences in genetic variation among populations and the genetic differentiation between A. striata subsp. striata

  20. Environmental and Historical Determinants of Patterns of Genetic Differentiation in Wild Soybean (Glycine soja Sieb. et Zucc)

    PubMed Central

    He, Shui-Lian; Wang, Yun-Sheng; Li, De-Zhu; Yi, Ting-Shuang

    2016-01-01

    Wild soybean, the direct progenitor of cultivated soybean, inhabits a wide distribution range across the mainland of East Asia and the Japanese archipelago. A multidisciplinary approach combining analyses of population genetics based on 20 nuclear microsatellites and one plastid locus were applied to reveal the genetic variation of wild soybean, and the contributions of geographical, environmental factors and historic climatic change on its patterns of genetic differentiation. High genetic diversity and significant genetic differentiation were revealed in wild soybean. Wild soybean was inferred to be limited to southern and central China during the Last Glacial Maximum (LGM) and experienced large-scale post-LGM range expansion into northern East Asia. A substantial northward range shift has been predicted to occur by the 2080s. A stronger effect of isolation by environment (IBE) versus isolation by geographical distance (IBD) was found for genetic differentiation in wild soybean, which suggested that environmental factors were responsible for the adaptive eco-geographical differentiation. This study indicated that IBE and historical climatic change together shaped patterns of genetic variation and differentiation of wild soybean. Different conservation measures should be implemented on different populations according to their adaptive potential to future changes in climate and human-induced environmental changes. PMID:26952904

  1. Effect of sociocultural cleavage on genetic differentiation: a study from North India.

    PubMed

    Khan, Faisal; Pandey, Atul Kumar; Borkar, Meenal; Tripathi, Manorma; Talwar, Sudha; Bisen, P S; Agrawal, Suraksha

    2008-06-01

    Indian populations possess an exclusive genetic profile primarily due to the many migratory events, which caused an extensive range of genetic diversity, and also due to stringent and austere sociocultural barriers that structure these populations into different endogamous groups. In the present study we attempt to explore the genetic relationships between various endogamous North Indian populations and to determine the effect of stringent social regulations on their gene pool. Twenty STR markers were genotyped in 1,800 random North Indians from 9 endogamous populations belonging to upper-caste and middle-caste Hindus and Muslims. All nine populations had high allelic diversity (176 alleles) and average observed heterozygosity (0.742 +/- 0.06), suggesting strong intrapopulation diversity. The average F(ST) value over all loci was as low as 0.0084. However, within-group F(ST) and genetic distance analysis showed that populations of the same group were genetically closer to each other. The genetic distance of Muslims from middle castes (F(ST) = 0.0090; DA = 0.0266) was significantly higher than that of Muslims from upper castes (F(ST) = 0.0050; DA = 0.0148). Phylogenetic trees (neighbor-joining and maximum-likelihood) show the basal cluster pattern of three clusters corresponding to Muslims, upper-caste, and middle-caste populations, with Muslims clustered with upper-caste populations. Based on the results, we conclude that the extensive gene flow through a series of migrations and invasions has created an enormous amount of genetic diversity. The interpopulation differences are minimal but have a definite pattern, in which populations of different socioreligious groups have more genetic similarity within the same group and are genetically more distant from populations of other groups. Finally, North Indian Muslims show a differential genetic relationship with upper- and middle-caste populations.

  2. Differential detection of genetic Loci underlying stem and root lignin content in Populus.

    PubMed

    Yin, Tongming; Zhang, Xinye; Gunter, Lee; Priya, Ranjan; Sykes, Robert; Davis, Mark; Wullschleger, Stan D; Tuskan, Gerald A

    2010-11-22

    In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G) ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS) varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration.

  3. Genetic differentiation and origin of the Jordanian population: an analysis of Alu insertion polymorphisms.

    PubMed

    Bahri, Raoudha; El Moncer, Wifak; Al-Batayneh, Khalid; Sadiq, May; Esteban, Esther; Moral, Pedro; Chaabani, Hassen

    2012-05-01

    Although much of Jordan is covered by desert, its north-western region forms part of the Fertile Crescent region that had given a rich past to Jordanians. This past, scarcely described by historians, is not yet clarified by sufficient genetic data. Thus in this paper we aim to determine the genetic differentiation of the Jordanian population and to discuss its origin. A total of 150 unrelated healthy Jordanians were investigated for ten Alu insertion polymorphisms. Genetic relationships among populations were estimated by a principal component (PC) plot based on the analyses of the R-matrix software. Statistical analysis showed that the Jordanian population is not significantly different from the United Arab Emirates population or the North Africans. This observation, well represented in PC plot, suggests a common origin of these populations belonging respectively to ancient Mesopotamia, Arabia, and North Africa. Our results are compatible with ancient peoples' movements from Arabia to ancient Mesopotamia and North Africa as proposed by historians and supported by previous genetic results. The original genetic profile of the Jordanian population, very likely Arabian Semitic, has not been subject to significant change despite the succession of several civilizations.

  4. Contrasting Patterns of Genetic Differentiation among Blackcaps (Sylvia atricapilla) with Divergent Migratory Orientations in Europe

    PubMed Central

    Mettler, Raeann; Schaefer, H. Martin; Chernetsov, Nikita; Fiedler, Wolfgang; Hobson, Keith A.; Ilieva, Mihaela; Imhof, Elisabeth; Johnsen, Arild; Renner, Swen C.; Rolshausen, Gregor; Serrano, David; Wesołowski, Tomasz; Segelbacher, Gernot

    2013-01-01

    Migratory divides are thought to facilitate behavioral, ecological, and genetic divergence among populations with different migratory routes. However, it is currently contentious how much genetic divergence is needed to maintain distinct migratory behavior across migratory divides. Here we investigate patterns of neutral genetic differentiation among Blackcap (Sylvia atricapilla) populations with different migratory strategies across Europe. We compare the level of genetic divergence of populations migrating to southwestern (SW) or southeastern (SE) wintering areas with birds wintering in the British Isles following a recently established northwesterly (NW) migration route. The migratory divide between SW and SE wintering areas can be interpreted as a result of a re-colonization process after the last glaciation. Thus we predicted greater levels of genetic differentiation among the SW/SE populations. However, a lack of genetic differentiation was found between SW and SE populations, suggesting that interbreeding likely occurs among Blackcaps with different migratory orientations across a large area; therefore the SW/SE migratory divide can be seen as diffuse, broad band and is, at best, a weak isolating barrier. Conversely, weak, albeit significant genetic differentiation was evident between NW and SW migrants breeding sympatrically in southern Germany, suggesting a stronger isolating mechanism may be acting in this population. Populations located within/near the SW/SE contact zone were the least genetically divergent from NW migrants, confirming NW migrants likely originated from within the contact zone. Significant isolation-by-distance was found among eastern Blackcap populations (i.e. SE migrants), but not among western populations (i.e. NW and SW migrants), revealing different patterns of genetic divergence among Blackcap populations in Europe. We discuss possible explanations for the genetic structure of European Blackcaps and how gene flow influences the

  5. From broadscale patterns to fine-scale processes: habitat structure influences genetic differentiation in the pitcher plant midge across multiple spatial scales.

    PubMed

    Rasic, Gordana; Keyghobadi, Nusha

    2012-01-01

    The spatial scale at which samples are collected and analysed influences the inferences that can be drawn from landscape genetic studies. We examined genetic structure and its landscape correlates in the pitcher plant midge, Metriocnemus knabi, an inhabitant of the purple pitcher plant, Sarracenia purpurea, across several spatial scales that are naturally delimited by the midge's habitat (leaf, plant, cluster of plants, bog and system of bogs). We analysed 11 microsatellite loci in 710 M. knabi larvae from two systems of bogs in Algonquin Provincial Park (Canada) and tested the hypotheses that variables related to habitat structure are associated with genetic differentiation in this midge. Up to 54% of variation in individual-based genetic distances at several scales was explained by broadscale landscape variables of bog size, pitcher plant density within bogs and connectivity of pitcher plant clusters. Our results indicate that oviposition behaviour of females at fine scales, as inferred from the spatial locations of full-sib larvae, and spatially limited gene flow at broad scales represent the important processes underlying observed genetic patterns in M. knabi. Broadscale landscape features (bog size and plant density) appear to influence oviposition behaviour of midges, which in turn influences the patterns of genetic differentiation observed at both fine and broad scales. Thus, we inferred linkages among genetic patterns, landscape patterns and ecological processes across spatial scales in M. knabi. Our results reinforce the value of exploring such links simultaneously across multiple spatial scales and landscapes when investigating genetic diversity within a species. © 2011 Blackwell Publishing Ltd.

  6. Blue genes: An integrative laboratory to differentiate genetic transformation from gene mutation for underclassmen.

    PubMed

    Militello, Kevin T; Chang, Ming-Mei; Simon, Robert D; Lazatin, Justine C

    2016-01-01

    The ability of students to understand the relationship between genotype and phenotype, and the mechanisms by which genotypes and phenotypes can change is essential for students studying genetics. To this end, we have developed a four-week laboratory called Blue Genes, which is designed to help novice students discriminate between two mechanisms by which the genetic material can be altered: genetic transformation and gene mutation. In the first week of the laboratory, students incubate a plasmid DNA with calcium chloride-treated Escherichia coli JM109 cells and observe a phenotype change from ampicillin sensitive to ampicillin resistant and from white color to blue color on plates containing 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) and isopropyl β-D-thiogalactopyranoside (IPTG). Over the course of the next three weeks, students use a battery of approaches including plasmid DNA isolation experiments, restriction maps, and PCR to differentiate between mutation and transformation. The students ultimately come to the conclusion that the changes in phenotypes are due to genetic transformation and not mutation based on the evidence generated over the four-week period. Pre-laboratory tests and post-laboratory tests indicate that this set of exercises is successful in helping students differentiate between transformation and mutation. The laboratory is designed for underclassmen and is a good prerequisite for an apprentice-based research opportunity, although it is not designed as a class based research experience. Potential modifications and future directions of the laboratory based upon student experiences and assessment are presented. © 2015 The International Union of Biochemistry and Molecular Biology.

  7. Genetic differentiation and phylogeographical structure of the Brachionus calyciflorus complex in eastern China.

    PubMed

    Xiang, Xian-Ling; Xi, Yi-Long; Wen, Xin-Li; Zhang, Gen; Wang, Jin-Xia; Hu, Ke

    2011-07-01

    Spatio-temporal patterns and processes of genetic differentiation in passively dispersing zooplankton are drawing much attention from both ecologists and evolutionary biologists. Two opposite phylogeographical scenarios have already been demonstrated in rotifers, which consist of high levels of genetic differentiation among populations even on small geographical scales on the one hand and the traditionally known cosmopolitanism that is associated with high levels of gene flow and long-distance dispersal via diapausing stages on the other hand. Here, we analysed the population genetic structure and the phylogeography of the Brachionus calyciflorus species complex in eastern China. By screening a total of 318 individuals from ten locations along a 2320-km gradient and analysing samples from two growing seasons, we aimed at focusing on both small- and large-scale patterns. We identified eight cryptic species and verified species status of two of these by sexual reproduction tests. Samples in summer and winter yielded different cryptic species. The distribution patterns of these genetically distinct cryptic species were diverse across eastern China, from full cosmopolitanism to local endemism. The two most abundant cryptic species BcWIII and BcSW showed a pattern of strong genetic differentiation among populations and no significant isolation by distance. Long-distance colonization, secondary contact and recent range expansion are probably responsible for the indistinct pattern of isolation by distance. Our results suggest that geographical distance is more important than temporal segregation across seasons in explaining population differentiation and the occurrence of cryptic species. We explain the current phylogeographical structure in the B. calyciflorus species complex by a combination of recent population expansion, restricted gene flow, priority effects and long-distance colonization. © 2011 Blackwell Publishing Ltd.

  8. Population genetic structure of gray wolves (Canis lupus) in a marine archipelago suggests island-mainland differentiation consistent with dietary niche.

    PubMed

    Stronen, Astrid V; Navid, Erin L; Quinn, Michael S; Paquet, Paul C; Bryan, Heather M; Darimont, Christopher T

    2014-06-10

    Emerging evidence suggests that ecological heterogeneity across space can influence the genetic structure of populations, including that of long-distance dispersers such as large carnivores. On the central coast of British Columbia, Canada, wolf (Canis lupus L., 1758) dietary niche and parasite prevalence data indicate strong ecological divergence between marine-oriented wolves inhabiting islands and individuals on the coastal mainland that interact primarily with terrestrial prey. Local holders of traditional ecological knowledge, who distinguish between mainland and island wolf forms, also informed our hypothesis that genetic differentiation might occur between wolves from these adjacent environments. We used microsatellite genetic markers to examine data obtained from wolf faecal samples. Our results from 116 individuals suggest the presence of a genetic cline between mainland and island wolves. This pattern occurs despite field observations that individuals easily traverse the 30 km wide study area and swim up to 13 km among landmasses in the region. Natal habitat-biased dispersal (i.e., the preference for dispersal into familiar ecological environments) might contribute to genetic differentiation. Accordingly, this working hypothesis presents an exciting avenue for future research where marine resources or other components of ecological heterogeneity are present.

  9. Population-genetic properties of differentiated copy number variations in cattle

    USDA-ARS?s Scientific Manuscript database

    Copy number variations (CNVs) have been shown to be both common in mammals and important for understanding the relationship between genotype and phenotype. However, CNV differentiation, selection and its population genetic properties are not well understood across diverse populations. We performed a...

  10. Genetic differentiation and karyotype variation in Hedysarum chaiyrakanicum, an endemic species of Tuva Republic, Russia.

    PubMed

    Zvyagina, Natalia S; Dorogina, Olga V; Krasnikov, Alexander A

    2016-05-01

    Overgrazing and mining affect vegetation, particularly in mountains. At times, it goes to such an extent that the plant species become vulnerable and slowly extinct from its habitat. Such endemic species need to be protected. One such endemic species Hedysarum chaiyrakanicum Kurbatsky, a vulnerable steppe vegetation of Tuva Republic, Russia was evaluated for its genetic diversity and taxonomic definition using molecular technique and chromosome number adjustment. The genetic differentiation among H. chaiyrakanicum, H. setigerum Turcz. and H. gmelinii Ledeb. genotypes was determined using five inter-simple sequence repeat (ISSR) markers and then examined with Nei's genetic distance coefficient (D) and Shannon's information index (H). A total of 134 reproducible bands were detected with polymorphism percentage of 98%. The genetic diversity of H. chaiyrakanicum was found to be 0.343 while the Shannon index H(sp) was determined as 8 06. The chromosome number 2n = 16 is newly observed within the H. chaiyrakanicum. The genetic relationship based on ISSR data supported the taxonomic distinction of H. chaiyrakanicum from H. setigerum and H. gmelinii. We recommend both in situ and ex situ conservation strategies, specially germplasm sampling, to save this endemic species.

  11. Separating the effects of habitat area, fragmentation and matrix resistance on genetic differentiation in complex landscapes

    Treesearch

    Samuel A. Cushman; Andrew J. Shirk; Erin L. Landguth

    2012-01-01

    Little is known about how variation in landscape mosaics affects genetic differentiation. The goal of this paper is to quantify the relative importance of habitat area and configuration, as well as the contrast in resistance between habitat and non-habitat, on genetic differentiation. We hypothesized that habitat configuration would be more influential than habitat...

  12. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis).

    PubMed

    Funk, W Chris; Lovich, Robert E; Hohenlohe, Paul A; Hofman, Courtney A; Morrison, Scott A; Sillett, T Scott; Ghalambor, Cameron K; Maldonado, Jesus E; Rick, Torben C; Day, Mitch D; Polato, Nicholas R; Fitzpatrick, Sarah W; Coonan, Timothy J; Crooks, Kevin R; Dillon, Adam; Garcelon, David K; King, Julie L; Boser, Christina L; Gould, Nicholas; Andelt, William F

    2016-05-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1-89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6-6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential. © 2016 John Wiley & Sons Ltd.

  13. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis)

    PubMed Central

    FUNK, W. CHRIS; LOVICH, ROBERT E.; HOHENLOHE, PAUL A.; HOFMAN, COURTNEY A.; MORRISON, SCOTT A.; SILLETT, T. SCOTT; GHALAMBOR, CAMERON K.; MALDONADO, JESUS E.; RICK, TORBEN C.; DAY, MITCH D.; POLATO, NICHOLAS R.; FITZPATRICK, SARAH W.; COONAN, TIMOTHY J.; CROOKS, KEVIN R.; DILLON, ADAM; GARCELON, DAVID K.; KING, JULIE L.; BOSER, CHRISTINA L.; GOULD, NICHOLAS; ANDELT, WILLIAM F.

    2016-01-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of 6 subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland gray foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness, and reduced adaptive potential. PMID:26992010

  14. Genetic diversity and geographic differentiation analysis of duckweed using inter-simple sequence repeat markers.

    PubMed

    Xue, Huiling; Xiao, Yao; Jin, Yanling; Li, Xinbo; Fang, Yang; Zhao, Hai; Zhao, Yun; Guan, Jiafa

    2012-01-01

    Duckweed, with rapid growth rate and high starch content, is a new alternate feedstock for bioethanol production. The genetic diversity among 27 duckweed populations of seven species in genus Lemna and Spirodela from China and Vietnam was analyzed by ISSR-PCR. Eight ISSR primers generating a reproducible amplification banding pattern had been screened. 89 polymorphic bands were scored out of the 92 banding patterns of 16 Lemna populations, accounting for 96.74% of the polymorphism. 98 polymorphic bands of 11 Spirodela populations were scored out of 99 banding patterns, and the polymorphism was 98.43%. The genetic distance of Lemna varied from 0.127 to 0.784, and from 0.138 to 0.902 for Spirodela, which indicated a high level of genetic variation among the populations studied. The unweighted pair group method with arithmetic average (UPGMA) cluster analysis corresponded well with the genetic distance. Populations from Sichuan China grouped together and so did the populations from Vietnam, which illuminated populations collected from the same region clustered into one group. Especially, the only one population from Tibet was included in subgroup A2 alone. Clustering analysis indicated that the geographic differentiation of collected sites correlated closely with the genetic differentiation of duckweeds. The results suggested that geographic differentiation had great influence on genetic diversity of duckweed in China and Vietnam at the regional scale. This study provided primary guidelines for collection, conservation, characterization of duckweed resources for bioethanol production etc.

  15. Observability of discretized partial differential equations

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1988-01-01

    It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.

  16. Temporal Stability of Genetic Variability and Differentiation in the Three-Spined Stickleback (Gasterosteus aculeatus)

    PubMed Central

    DeFaveri, Jacquelin; Merilä, Juha

    2015-01-01

    Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable – at least over periods of few generations – across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow. PMID:25853707

  17. Temporal stability of genetic variability and differentiation in the three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    DeFaveri, Jacquelin; Merilä, Juha

    2015-01-01

    Temporal variation in allele frequencies, whether caused by deterministic or stochastic forces, can inform us about interesting demographic and evolutionary phenomena occurring in wild populations. In spite of the continued surge of interest in the genetics of three-spined stickleback (Gasterosteus aculeatus) populations, little attention has been paid towards the temporal stability of allele frequency distributions, and whether there are consistent differences in effective size (Ne) of local populations. We investigated temporal stability of genetic variability and differentiation in 15 microsatellite loci within and among eight collection sites of varying habitat type, surveyed twice over a six-year time period. In addition, Nes were estimated with the expectation that they would be lowest in isolated ponds, intermediate in larger lakes and largest in open marine sites. In spite of the marked differences in genetic variability and differentiation among the study sites, the temporal differences in allele frequencies, as well as measures of genetic diversity and differentiation, were negligible. Accordingly, the Ne estimates were temporally stable, but tended to be lower in ponds than in lake or marine habitats. Hence, we conclude that allele frequencies in putatively neutral markers in three-spined sticklebacks seem to be temporally stable - at least over periods of few generations - across a wide range of habitat types differing markedly in levels of genetic variability, effective population size and gene flow.

  18. Population genetic structure of gray wolves (Canis lupus) in a marine archipelago suggests island-mainland differentiation consistent with dietary niche

    PubMed Central

    2014-01-01

    Background Emerging evidence suggests that ecological heterogeneity across space can influence the genetic structure of populations, including that of long-distance dispersers such as large carnivores. On the central coast of British Columbia, Canada, wolf (Canis lupus L., 1758) dietary niche and parasite prevalence data indicate strong ecological divergence between marine-oriented wolves inhabiting islands and individuals on the coastal mainland that interact primarily with terrestrial prey. Local holders of traditional ecological knowledge, who distinguish between mainland and island wolf forms, also informed our hypothesis that genetic differentiation might occur between wolves from these adjacent environments. Results We used microsatellite genetic markers to examine data obtained from wolf faecal samples. Our results from 116 individuals suggest the presence of a genetic cline between mainland and island wolves. This pattern occurs despite field observations that individuals easily traverse the 30 km wide study area and swim up to 13 km among landmasses in the region. Conclusions Natal habitat-biased dispersal (i.e., the preference for dispersal into familiar ecological environments) might contribute to genetic differentiation. Accordingly, this working hypothesis presents an exciting avenue for future research where marine resources or other components of ecological heterogeneity are present. PMID:24915756

  19. Genetic differentiation in Elaeocarpus photiniifolia (Elaeocarpaceae) associated with geographic distribution and habitat variation in the Bonin (Ogasawara) Islands.

    PubMed

    Sugai, Kyoko; Setsuko, Suzuki; Nagamitsu, Teruyoshi; Murakami, Noriaki; Kato, Hidetoshi; Yoshimaru, Hiroshi

    2013-11-01

    Gene flow between populations in different environmental conditions can be limited due to divergent natural selection, thus promoting genetic differentiation. Elaeocarpus photiniifolia, an endemic tree species in the Bonin Islands, is distributed in two types of habitats, dry scrubs and mesic forests. We aim to elucidate the genetic differentiation in E. photiniifolia within and between islands and between the habitat types. We investigated genotypes of 639 individuals from 19 populations of E. photiniifolia and its closely-related E. sylvestris at 24 microsatellite loci derived from expressed sequence tags. The data revealed genetic differentiation (1) between E. photiniifolia and E. sylvestris (0.307 ≤ F ST ≤ 0.470), (2) between the E. photiniifolia populations of the Chichijima and Hahajima Island Groups in the Bonin Islands (0.033 ≤ F ST ≤ 0.121) and (3) between E. photiniifolia populations associated with dry scrubs and mesic forests in the Chichijima Island Group (0.005 ≤ F ST ≤ 0.071). Principal coordinate analysis and Bayesian clustering analysis also showed that genetically distinct groups were associated with the habitat types, and isolation by distance was not responsible for the genetic differentiation. These findings suggest that E. photiniifolia is divided into genetically differentiated groups associated with different environmental conditions in the Bonin Islands.

  20. Ecological and genetic barriers differentiate natural populations of Saccharomyces cerevisiae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clowers, Katie J.; Heilberger, Justin; Piotrowski, Jeff S.

    How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causalmore » genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Lastly, our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations.« less

  1. Ecological and genetic barriers differentiate natural populations of Saccharomyces cerevisiae

    DOE PAGES

    Clowers, Katie J.; Heilberger, Justin; Piotrowski, Jeff S.; ...

    2015-05-06

    How populations that inhabit the same geographical area become genetically differentiated is not clear. To investigate this, we characterized phenotypic and genetic differences between two populations of Saccharomyces cerevisiae that in some cases inhabit the same environment but show relatively little gene flow. We profiled stress sensitivity in a group of vineyard isolates and a group of oak-soil strains and found several niche-related phenotypes that distinguish the populations. We performed bulk-segregant mapping on two of the distinguishing traits: The vineyard-specific ability to grow in grape juice and oak-specific tolerance to the cell wall damaging drug Congo red. To implicate causalmore » genes, we also performed a chemical genomic screen in the lab-strain deletion collection and identified many important genes that fell under quantitative trait loci peaks. One gene important for growth in grape juice and identified by both the mapping and the screen was SSU1, a sulfite-nitrite pump implicated in wine fermentations. The beneficial allele is generated by a known translocation that we reasoned may also serve as a genetic barrier. We found that the translocation is prevalent in vineyard strains, but absent in oak strains, and presents a postzygotic barrier to spore viability. Furthermore, the translocation was associated with a fitness cost to the rapid growth rate seen in oak-soil strains. Lastly, our results reveal the translocation as a dual-function locus that enforces ecological differentiation while producing a genetic barrier to gene flow in these sympatric populations.« less

  2. Differential Effects of Estrogen and Progesterone on Genetic and Environmental Risk for Emotional Eating in Women

    PubMed Central

    Klump, Kelly L.; O’Connor, Shannon M.; Hildebrandt, Britny A.; Keel, Pamela K.; Neale, Michael; Sisk, Cheryl L.; Boker, Steven; Burt, S. Alexandra

    2016-01-01

    Recent data show shifts in genetic and environmental influences on emotional eating across the menstrual cycle, with significant shared environmental influences during pre-ovulation, and primarily genetic effects during post-ovulation. Factors driving differential effects are unknown, although increased estradiol during pre-ovulation and increased progesterone during post-ovulation are thought to play a role. We indirectly investigated this possibility by examining whether overall levels of estradiol and progesterone differentially impact genetic and environmental risk for emotional eating in adult female twins (N = 571) drawn from the MSU Twin Registry. Emotional eating, estradiol levels, and progesterone levels were assessed daily and then averaged to create aggregate measures for analysis. As predicted, shared environmental influences were significantly greater in twins with high estradiol levels, whereas additive genetic effects increased substantially across low versus high progesterone groups. Results highlight significant and differential effects of ovarian hormones on etiologic risk for emotional eating in adulthood. PMID:27747142

  3. Genetic differentiation of methicillin-resistant Staphylococcus aureus strains from Korea and Japan.

    PubMed

    Soo Ko, Kwan; Peck, Kyong Ran; Sup Oh, Won; Lee, Nam Yong; Hiramatsu, Keiichi; Song, Jae-Hoon

    2005-01-01

    In this study, we evaluated genetic differentiation between methicillin-resistant Staphylococcus aureus (MRSA) strains from Korea and Japan. Seventy-five MRSA strains, including 25 h VISA strains, were analyzed by molecular typing methods, including multilocus sequence typing (MLST), SCC mec typing, and spa typing. The most prevalent genotype of MRSA strains, in both Korea and Japan, was ST 5-MRSA-II with the DMGMK spa motif, characteristic of the New York/Japan MRSA clone. In spite of these common features in MRSA strains from Korea and Japan, we also observed some genotypic divergence in MRSA from the two countries. Several spa types might be differentiated from a prevalent prototype (TJMBMDMGMK) that is shared by the two countries, revealing a unique geographic distribution. SCC mec type II lacking pUB110, designated type IIA, was found more frequently in Korea than in Japan. The rate of gentamicin resistance was also dramatically different between the two countries: 87.2% (Korea) vs. 28.6% (Japan). These preliminary findings suggested that MRSA strains from Korea and Japan might have originated from a common ancestor, but then clearly differentiated according to locality. A further comprehensive study should be performed to document the hypotheses from this study.

  4. Genetic differentiation and trade among populations of peach palm ( Bactris gasipaes Kunth) in the Peruvian Amazon-implications for genetic resource management.

    PubMed

    Adin, A; Weber, J C; Sotelo Montes, C; Vidaurre, H; Vosman, B; Smulders, M J M

    2004-05-01

    Peach palm ( Bactris gasipaes Kunth) is cultivated for fruit and 'heart of palm', and is an important component of agroforestry systems in the Peruvian Amazon. In this study, AFLP was used to compare genetic diversity among domesticated populations along the Paranapura and Cuiparillo rivers, which are managed by indigenous and colonist farming communities, respectively. Gene diversity was 0.2629 for the populations in indigenous communities and 0.2534 in colonist communities. Genetic differentiation among populations ( G(st)) was 0.0377-0.0416 ( P<0.01) among populations along both rivers. There was no relation between genetic differentiation and the geographical location of populations along the rivers. Since natural seed dispersal by birds and rodents is thought to occur only across relatively short distances (100-200 m), it is likely that exchange of material by farmers and commercial traders is responsible for most of the 'long-distance' (over more than 20 km) gene flow among populations along the two rivers studied. This exchange of material may be important to counteract the effects of selection as well as genetic drift in small groups of trees in farmers' fields, much as in a metapopulation, and may account for the weak genetic differentiation between the two rivers ( G(st)=0.0249, P<0.01). A comparison with samples from other landraces in Peru and Brazil showed the existence of an isolation-by-distance structure up to 3,000 km, consistent with gene flow on a regional scale, likely mediated by trade in the Amazon Basin. Results are discussed with regard to practical implications for the management of genetic resources with farming communities.

  5. Ancient marine hunter-gatherers from Patagonia and Tierra Del Fuego: Diversity and differentiation using uniparentally inherited genetic markers.

    PubMed

    de la Fuente, Constanza; Galimany, Jacqueline; Kemp, Brian M; Judd, Kathleen; Reyes, Omar; Moraga, Mauricio

    2015-12-01

    The human population history from Patagonia and Tierra del Fuego has been of great interest in the context of the American peopling. Different sources of evidence have contributed to the characterization of the local populations, but some main questions about their history remain unsolved. Among the native populations, two marine hunter-gatherers groups inhabited the Patagonian channels below the 478S: Kawéskar and Yámana. Regardless of their geographical proximity and cultural resemblance, their languages were mutually unintelligible. In this study we aim to evaluate the genetic diversity of uniparental genetic markers in both groups and to test if there is a high genetic differentiation between them, mirroring their linguistic differences. Ancient DNA was extracted from 37 samples from both populations. We compared their genetic variability of their mitochondrial lineages and Y-STR as well as with other modern native populations from the area and further north. We observed an important differentiation in their maternal lineages: while Kawéskar shows a high frequency of D (80%), Yámana shows a high frequency of C (90%). The analysis of paternal lineages reveals the presence of only Q1a2a1a1 and little variation was found between individuals. Both groups show very low levels of genetic diversity compared with modern populations. We also notice shared and unique mitochondrial DNA variants between modern and ancient samples of Kawéskar and Yámana. © 2015 Wiley Periodicals, Inc.

  6. Population genetics of the understory fishtail palm Chamaedorea ernesti-augusti in Belize: high genetic connectivity with local differentiation

    PubMed Central

    Cibrián-Jaramillo, Angélica; Bacon, Christine D; Garwood, Nancy C; Bateman, Richard M; Thomas, Meredith M; Russell, Steve; Bailey, C Donovan; Hahn, William J; Bridgewater, Samuel GM; DeSalle, Rob

    2009-01-01

    Background Developing a greater understanding of population genetic structure in lowland tropical plant species is highly relevant to our knowledge of increasingly fragmented forests and to the conservation of threatened species. Specific studies are particularly needed for taxa whose population dynamics are further impacted by human harvesting practices. One such case is the fishtail or xaté palm (Chamaedorea ernesti-augusti) of Central America, whose wild-collected leaves are becoming progressively more important to the global ornamental industry. We use microsatellite markers to describe the population genetics of this species in Belize and test the effects of climate change and deforestation on its recent and historical effective population size. Results We found high levels of inbreeding coupled with moderate or high allelic diversity within populations. Overall high gene flow was observed, with a north and south gradient and ongoing differentiation at smaller spatial scales. Immigration rates among populations were more difficult to discern, with minimal evidence for isolation by distance. We infer a tenfold reduction in effective population size ca. 10,000 years ago, but fail to detect changes attributable to Mayan or contemporary deforestation. Conclusion Populations of C. ernesti-augusti are genetically heterogeneous demes at a local spatial scale, but are widely connected at a regional level in Belize. We suggest that the inferred patterns in population genetic structure are the result of the colonization of this species into Belize following expansion of humid forests in combination with demographic and mating patterns. Within populations, we hypothesize that low aggregated population density over large areas, short distance pollen dispersal via thrips, low adult survival, and low fruiting combined with early flowering may contribute towards local inbreeding via genetic drift. Relatively high levels of regional connectivity are likely the result of

  7. Genetic differentiation of Artyfechinostomum malayanum and A. sufrartyfex (Trematoda: Echinostomatidae) based on internal transcribed spacer sequences.

    PubMed

    Tantrawatpan, Chairat; Saijuntha, Weerachai; Sithithaworn, Paiboon; Andrews, Ross H; Petney, Trevor N

    2013-01-01

    Genetic differentiation between two synonymous echinostomes species, Artyfechinostomum malayanum and Artyfechinostomum sufrartyfex was determined by using the first and second internal transcribed spacers (ITS1 and ITS2), the non-coding region of rDNA as genetic makers. Of the 699 bp of combined ITS1 and ITS2 sequences examined, 18 variable nucleotide positions (2.58 %) were observed. Of these, 17 positions could be used as diagnostic position between these two sibling species, whereas the other one variation was intraspecific variation of A. malayanum. A clade of A. malayanum was closely aligned with A. sufrartyfex and clearly distance from the cluster of other echinostomes. Our results may sufficiently suggest that the current synonymy of these species is not valid.

  8. Genomic evidence for the population genetic differentiation of Misgurnus anguillicaudatus in the Yangtze River basin of China.

    PubMed

    Yi, Shaokui; Wang, Weimin; Zhou, Xiaoyun

    2018-02-21

    Misgurnus anguillicaudatus, an important aquatic species, is mainly distributed in the Yangtze River basin. To reveal the population genetic structure of M. anguillicaudatus distributed in the Yangtze River basin, genotyping by sequencing (GBS) technique was employed to detect the genome wide genetic variations of M. anguillicaudatus. A total of 30.03 Gb raw data were yielded from 70 samples collected from 15 geographic sites located in the Yangtze River basin. Subsequently, 2092 high quality SNPs were genotyped across these samples and used for a series of genetic analysis. The results of genetic analysis showed that high levels of genetic diversity were observed and the populations from upper reaches (UR) were significantly differentiated from the middle and lower reaches (MLR) of Yangtze River basin. Meanwhile, no significant isolation by distance was detected among the populations. Ecological factors (e.g. complicated topography and climatic environment) and anthropogenic factors (e.g. aquaculture and agriculture cultivation) might account for the genetic disconnectivity between UR and MLR populations. This study provided valuable genetic data for the future breeding program and also for the conversation and scientific utilization of those abundant genetic resources stored in the Yangtze River basin. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Genetic Variation in Dopamine Pathways Differentially Associated with Smoking Progression in Adolescence

    ERIC Educational Resources Information Center

    Laucht, Manfred; Becker, Katja; Frank, Josef; Schmidt, Martin H.; Esser, Gunter; Treutlein, Jens; Skowronek, Markus H.; Schumann, Gunter

    2008-01-01

    A study examines whether genetic variation in dopamine pathways differentially associate with smoking progression in adolescence. Results indicate the influence of specific dopamine genes in different stages of smoking progression in adolescents.

  10. Genetic variation and differentiation in parent-descendant cattle and bison populations

    USDA-ARS?s Scientific Manuscript database

    Genetic variation and differentiation at 32 microsatellite DNA loci is quantified for parent-descendant cattle populations and parent-descendant bison (Bison bison) populations. Heterozygosity (Ho) and numbers of alleles/locus (AR) are less in the Line 1 Hereford inbred cattle population than in t...

  11. Autosomal InDel polymorphisms for population genetic structure and differentiation analysis of Chinese Kazak ethnic group

    PubMed Central

    Kong, Tingting; Chen, Yahao; Guo, Yuxin; Wei, Yuanyuan; Jin, Xiaoye; Xie, Tong; Mu, Yuling; Dong, Qian; Wen, Shaoqing; Zhou, Boyan; Zhang, Li; Shen, Chunmei; Zhu, Bofeng

    2017-01-01

    In the present study, we assessed the genetic diversities of the Chinese Kazak ethnic group on the basis of 30 well-chosen autosomal insertion and deletion loci and explored the genetic relationships between Kazak and 23 reference groups. We detected the level of the expected heterozygosity ranging from 0.3605 at HLD39 locus to 0.5000 at HLD136 locus and the observed heterozygosity ranging from 0.3548 at HLD39 locus to 0.5283 at HLD136 locus. The combined power of discrimination and the combined power of exclusion for all 30 loci in the studied Kazak group were 0.999999999999128 and 0.9945, respectively. The dataset generated in this study indicated the panel of 30 InDels was highly efficient in forensic individual identifcation but may not have enough power in paternity cases. The results of the interpopulation differentiations, PCA plots, phylogenetic trees and STRUCTURE analyses showed a close genetic affiliation between the Kazak and Uigur group. PMID:28915619

  12. Population genetic structure and geographic differentiation in butter catfish, Ompok bimaculatus, from Indian waters inferred by cytochrome b mitochondrial gene.

    PubMed

    Kumar, Ravindra; Pandey, Brijesh Kumar; Sarkar, Uttam Kumar; Nagpure, Naresh Sahebrao; Baisvar, Vishwamitra Singh; Agnihotri, Praveen; Awasthi, Abhishek; Mishra, Abha; Kumar, Narendra

    2017-05-01

    Documentation of genetic differentiation among the populations of a species can provide useful information that has roles in conservation, breeding, and management plans. In the present study, we examined the genetic structure and phylogenetic relationships among the 149 individuals of Ompok bimaculatus belonging to 24 populations, collected from Indian waters, using cytochrome b gene. The combined analyses of data suggested that the Indian O. bimaculatus consist of three distinct mtDNA lineages with star-like haplotypes network, which exhibited high genetic variation and haplotypic diversity. Analysis of molecular variance indicated that most of the observed genetic variation was found among the populations suggesting restricted gene flow. Long-term interruption of gene flow was also evidenced by high overall Fst values (0.82367) that could be favored by the discontinuous distributions of the lineages.

  13. Present spatial diversity patterns of Theobroma cacao L. in the neotropics reflect genetic differentiation in pleistocene refugia followed by human-influenced dispersal.

    PubMed

    Thomas, Evert; van Zonneveld, Maarten; Loo, Judy; Hodgkin, Toby; Galluzzi, Gea; van Etten, Jacob

    2012-01-01

    Cacao (Theobroma cacao L.) is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao's distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000-13,000 BP) had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species' Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ conservation of cacao.

  14. Present Spatial Diversity Patterns of Theobroma cacao L. in the Neotropics Reflect Genetic Differentiation in Pleistocene Refugia Followed by Human-Influenced Dispersal

    PubMed Central

    Thomas, Evert; van Zonneveld, Maarten; Loo, Judy; Hodgkin, Toby; Galluzzi, Gea; van Etten, Jacob

    2012-01-01

    Cacao (Theobroma cacao L.) is indigenous to the Amazon basin, but is generally believed to have been domesticated in Mesoamerica for the production of chocolate beverage. However, cacao’s distribution of genetic diversity in South America is also likely to reflect pre-Columbian human influences that were superimposed on natural processes of genetic differentiation. Here we present the results of a spatial analysis of the intra-specific diversity of cacao in Latin America, drawing on a dataset of 939 cacao trees genotypically characterized by means of 96 SSR markers. To assess continental diversity patterns we performed grid-based calculations of allelic richness, Shannon diversity and Nei gene diversity, and distinguished different spatially coherent genetic groups by means of cluster analysis. The highest levels of genetic diversity were observed in the Upper Amazon areas from southern Peru to the Ecuadorian Amazon and the border areas between Colombia, Peru and Brazil. On the assumption that the last glaciation (22,000–13,000 BP) had the greatest pre-human impact on the current distribution and diversity of cacao, we modeled the species’ Pleistocene niche suitability and overlaid this with present-day diversity maps. The results suggest that cacao was already widely distributed in the Western Amazon before the onset of glaciation. During glaciations, cacao populations were likely to have been restricted to several refugia where they probably underwent genetic differentiation, resulting in a number of genetic clusters which are representative for, or closest related to, the original wild cacao populations. The analyses also suggested that genetic differentiation and geographical distribution of a number of other clusters seem to have been significantly affected by processes of human management and accompanying genetic bottlenecks. We discuss the implications of these results for future germplasm collection and in situ, on farm and ex situ conservation of

  15. Genetic structure in the coral, Montastraea cavernosa: assessing genetic differentiation among and within Mesophotic reefs.

    PubMed

    Brazeau, Daniel A; Lesser, Michael P; Slattery, Marc

    2013-01-01

    Mesophotic coral reefs (30-150 m) have recently received increased attention as a potential source of larvae (e.g., the refugia hypothesis) to repopulate a select subset of the shallow water (<30 m) coral fauna. To test the refugia hypothesis we used highly polymorphic Amplified Fragment Length Polymorphism (AFLP) markers as a means to assess small-scale genetic heterogeneity between geographic locations and across depth clines in the Caribbean coral, Montastraea cavernosa. Zooxanthellae-free DNA extracts of coral samples (N = 105) were analyzed from four depths, shallow (3-10 m), medium (15-25 m), deep (30-50 m) and very deep (60-90 m) from Little Cayman Island (LCI), Lee Stocking Island (LSI), Bahamas and San Salvador (SS), Bahamas which range in distance from 170 to 1,600 km apart. Using AMOVA analysis there were significant differences in ΦST values in pair wise comparisons between LCI and LSI. Among depths at LCI, there was significant genetic differentiation between shallow and medium versus deep and very deep depths in contrast there were no significant differences in ΦST values among depths at LSI. The assignment program AFLPOP, however, correctly assigned 95.7% of the LCI and LSI samples to the depths from which they were collected, differentiating among populations as little as 10 to 20 m in depth from one another. Discriminant function analysis of the data showed significant differentiation among samples when categorized by collection site as well as collection depth. FST outlier analyses identified 2 loci under positive selection and 3 under balancing selection at LCI. At LSI 2 loci were identified, both showing balancing selection. This data shows that adult populations of M. cavernosa separated by depths of tens of meters exhibits significant genetic structure, indicative of low population connectivity among and within sites and are not supplying successful recruits to adjacent coral reefs less than 30 m in depth.

  16. Genetic backgrounds and redox conditions influence morphological characteristics and cell differentiation of osteoclasts in mice.

    PubMed

    Narahara, Shun; Matsushima, Haruna; Sakai, Eiko; Fukuma, Yutaka; Nishishita, Kazuhisa; Okamoto, Kuniaki; Tsukuba, Takayuki

    2012-04-01

    Osteoclasts (OCLs) are multinucleated giant cells and are formed by the fusion of mononuclear progenitors of monocyte/macrophage lineage. It is known that macrophages derived from different genetic backgrounds exhibit quite distinct characteristics of immune responses. However, it is unknown whether OCLs from different genetic backgrounds show distinct characteristics. In this study, we showed that bone-marrow macrophages (BMMs) derived from C57BL/6, BALB/c and ddY mice exhibited considerably distinct morphological characteristics and cell differentiation into OCLs. The differentiation of BMMs into OCLs was comparatively quicker in the C57BL/6 and ddY mice, while that of BALB/c mice was rather slow. Morphologically, ddY OCLs showed a giant cell with a round shape, C57BL/6 OCLs were of a moderate size with many protrusions and BALB/c OCLs had the smallest size with fewer nuclei. The intracellular signaling of differentiation and expression levels of marker proteins of OCLs were different in the respective strains. Treatment of BMMs from the three different strains with the reducing agent N-acetylcysteine (NAC) or with the oxidation agent hydrogen peroxide (H(2)O(2)) induced changes in the shape and sizes of the cells and caused distinct patterns of cell differentiation and survival. Thus, genetic backgrounds and redox conditions regulate the morphological characteristics and cell differentiation of OCLs.

  17. Low but significant genetic differentiation underlies biologically meaningful phenotypic divergence in a large Atlantic salmon population.

    PubMed

    Aykanat, Tutku; Johnston, Susan E; Orell, Panu; Niemelä, Eero; Erkinaro, Jaakko; Primmer, Craig R

    2015-10-01

    Despite decades of research assessing the genetic structure of natural populations, the biological meaning of low yet significant genetic divergence often remains unclear due to a lack of associated phenotypic and ecological information. At the same time, structured populations with low genetic divergence and overlapping boundaries can potentially provide excellent models to study adaptation and reproductive isolation in cases where high-resolution genetic markers and relevant phenotypic and life history information are available. Here, we combined single nucleotide polymorphism (SNP)-based population inference with extensive phenotypic and life history data to identify potential biological mechanisms driving fine-scale subpopulation differentiation in Atlantic salmon (Salmo salar) from the Teno River, a major salmon river in Europe. Two sympatrically occurring subpopulations had low but significant genetic differentiation (FST  = 0.018) and displayed marked differences in the distribution of life history strategies, including variation in juvenile growth rate, age at maturity and size within age classes. Large, late-maturing individuals were virtually absent from one of the two subpopulations, and there were significant differences in juvenile growth rates and size at age after oceanic migration between individuals in the respective subpopulations. Our findings suggest that different evolutionary processes affect each subpopulation and that hybridization and subsequent selection may maintain low genetic differentiation without hindering adaptive divergence. © 2015 John Wiley & Sons Ltd.

  18. Dietary Differentiation and the Evolution of Population Genetic Structure in a Highly Mobile Carnivore

    PubMed Central

    Pilot, Małgorzata; Jędrzejewski, Włodzimierz; Sidorovich, Vadim E.; Meier-Augenstein, Wolfram; Hoelzel, A. Rus

    2012-01-01

    Recent studies on highly mobile carnivores revealed cryptic population genetic structures correlated to transitions in habitat types and prey species composition. This led to the hypothesis that natal-habitat-biased dispersal may be responsible for generating population genetic structure. However, direct evidence for the concordant ecological and genetic differentiation between populations of highly mobile mammals is rare. To address this we analyzed stable isotope profiles (δ 13C and δ 15N values) for Eastern European wolves (Canis lupus) as a quantifiable proxy measure of diet for individuals that had been genotyped in an earlier study (showing cryptic genetic structure), to provide a quantitative assessment of the relationship between individual foraging behavior and genotype. We found a significant correlation between genetic distances and dietary differentiation (explaining 46% of the variation) in both the marginal test and crucially, when geographic distance was accounted for as a co-variable. These results, interpreted in the context of other possible mechanisms such as allopatry and isolation by distance, reinforce earlier studies suggesting that diet and associated habitat choice are influencing the structuring of populations in highly mobile carnivores. PMID:22768075

  19. High genetic differentiation among French populations of the Orsini's viper (Vipera ursinii ursinii) based on mitochondrial and microsatellite data: implications for conservation management.

    PubMed

    Ferchaud, Anne-Laure; Lyet, Arnaud; Cheylan, Marc; Arnal, Véronique; Baron, Jean-Pierre; Montgelard, Claudine; Ursenbacher, Sylvain

    2011-01-01

    The Orsini's viper (Vipera ursinii) is one of the most threatened snakes in Europe due to its highly fragmented distribution and specific open environment (steppic habitat) requirement. French populations are isolated on top of mountain massifs of the southern Prealps/Alps. Mitochondrial sequences (cytochrome b) and 6 microsatellite loci have been used to estimate the levels of genetic diversity and isolation within and among 11 French fragmented populations (a total of 157 individuals). Eleven cytochrome b haplotypes with a limited divergence were observed (mean divergence between haplotypes: 0.31%). However, we detected considerable genetic differentiation among populations (global F(ST) = 0.76 and 0.26 for mitochondrial and nuclear DNA, respectively). Results indicate that 3 populations possibly went through a bottleneck and 1 population showed low genetic diversity compared with the others. Although a significant isolation by distance was detected for both markers, strong differentiation was also observed between geographically close populations, probably due to the ragged landscape that constitutes a serious barrier to gene flow owing to the limited dispersal capability of the viper. Despite some discrepancies between the 2 markers, 8 Management Units have been identified and should be considered for future management projects.

  20. Mitochondrial DNA markers reveal high genetic diversity and strong genetic differentiation in populations of Dendrolimus kikuchii Matsumura (Lepidoptera: Lasiocampidae).

    PubMed

    Men, Qiulei; Xue, Guoxi; Mu, Dan; Hu, Qingling; Huang, Minyi

    2017-01-01

    Dendrolimus kikuchii Matsumura, 1927 is a serious forest pest causing great damage to coniferous trees in China. Despite its economic importance, the population genetics of this pest are poorly known. We used three mitochondrial genes (COI, COII and Cytb) to investigate the genetic diversity and genetic differentiation of 15 populations collected from the main distribution regions of D. kikuchii in China. Populations show high haplotype and nucleotide diversity. Haplotype network and phylogenetic analysis divides the populations into three major clades, the central and southeastern China (CC+SEC) clade, the eastern China (EC) clade, and the southwestern China (SWC) clade. Populations collected from adjacent localities share the same clade, which is consistent with the strong relationship of isolation by distance (r = 0.74824, P = 0.00001). AMOVA analysis indicated that the major portion of this molecular genetic variation is found among the three groups of CC+SEC, EC and SWC (61.26%). Of 105 pairwise FST comparisons, 93 show high genetic differentiation. Populations of Puer (PE), Yangshuo (YS) and Leishan (LS) are separated from other populations by a larger genetic distance. Distributions of pairwise differences obtained with single and combined gene data from the overall populations are multimodal, suggesting these populations had no prior population expansion in southern China. The nonsignificant neutral test on the basis of Tajima' D and Fu's Fs, and the lack of a star-shaped haplotype network together with the multiple haplotypes support this hypothesis. Pleistocene climatic fluctuations, combined with the host specificity to Pinus species, made these regions of south China into a refuge for D. kikuchii. The high level of population genetic structuring is related to their weak flight capacity, their variations of life history and the geographic distance among populations.

  1. Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis.

    PubMed

    Herrera, Carlos M; Bazaga, Pilar

    2010-08-01

    *In plants, epigenetic variations based on DNA methylation are often heritable and could influence the course of evolution. Before this hypothesis can be assessed, fundamental questions about epigenetic variation remain to be addressed in a real-world context, including its magnitude, structuring within and among natural populations, and autonomy in relation to the genetic context. *Extent and patterns of cytosine methylation, and the relationship to adaptive genetic divergence between populations, were investigated for wild populations of the southern Spanish violet Viola cazorlensis (Violaceae) using the methylation-sensitive amplified polymorphism (MSAP) technique, a modification of the amplified fragment length polymorphism method (AFLP) based on the differential sensitivity of isoschizomeric restriction enzymes to site-specific cytosine methylation. *The genome of V. cazorlensis plants exhibited extensive levels of methylation, and methylation-based epigenetic variation was structured into distinct between- and within- population components. Epigenetic differentiation of populations was correlated with adaptive genetic divergence revealed by a Bayesian population-genomic analysis of AFLP data. Significant associations existed at the individual genome level between adaptive AFLP loci and the methylation state of methylation-susceptible MSAP loci. *Population-specific, divergent patterns of correlated selection on epigenetic and genetic individual variation could account for the coordinated epigenetic-genetic adaptive population differentiation revealed by this study.

  2. The Mars Observer differential one-way range demonstration

    NASA Technical Reports Server (NTRS)

    Kroger, P. M.; Border, J. S.; Nandi, S.

    1994-01-01

    Current methods of angular spacecraft positioning using station differenced range data require an additional observation of an extragalactic radio source (quasar) to estimate the timing offset between the reference clocks at the two Deep Space Stations. The quasar observation is also used to reduce the effects of instrumental and media delays on the radio metric observable by forming a difference with the spacecraft observation (delta differential one-way range, delta DOR). An experiment has been completed using data from the Global Positioning System satellites to estimate the station clock offset, eliminating the need for the quasar observation. The requirements for direct measurement of the instrumental delays that must be made in the absence of a quasar observation are assessed. Finally, the results of the 'quasar-free' differential one-way range, or DOR, measurements of the Mars Observer spacecraft are compared with those of simultaneous conventional delta DOR measurements.

  3. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran

    PubMed Central

    Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig

    2016-01-01

    Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among

  4. Dispersal in the sub-Antarctic: king penguins show remarkably little population genetic differentiation across their range.

    PubMed

    Clucas, Gemma V; Younger, Jane L; Kao, Damian; Rogers, Alex D; Handley, Jonathan; Miller, Gary D; Jouventin, Pierre; Nolan, Paul; Gharbi, Karim; Miller, Karen J; Hart, Tom

    2016-10-13

    Seabirds are important components of marine ecosystems, both as predators and as indicators of ecological change, being conspicuous and sensitive to changes in prey abundance. To determine whether fluctuations in population sizes are localised or indicative of large-scale ecosystem change, we must first understand population structure and dispersal. King penguins are long-lived seabirds that occupy a niche across the sub-Antarctic zone close to the Polar Front. Colonies have very different histories of exploitation, population recovery, and expansion. We investigated the genetic population structure and patterns of colonisation of king penguins across their current range using a dataset of 5154 unlinked, high-coverage single nucleotide polymorphisms generated via restriction site associated DNA sequencing (RADSeq). Despite breeding at a small number of discrete, geographically separate sites, we find only very slight genetic differentiation among colonies separated by thousands of kilometers of open-ocean, suggesting migration among islands and archipelagos may be common. Our results show that the South Georgia population is slightly differentiated from all other colonies and suggest that the recently founded Falkland Island colony is likely to have been established by migrants from the distant Crozet Islands rather than nearby colonies on South Georgia, possibly as a result of density-dependent processes. The observed subtle differentiation among king penguin colonies must be considered in future conservation planning and monitoring of the species, and demographic models that attempt to forecast extinction risk in response to large-scale climate change must take into account migration. It is possible that migration could buffer king penguins against some of the impacts of climate change where colonies appear panmictic, although it is unlikely to protect them completely given the widespread physical changes projected for their Southern Ocean foraging grounds

  5. Strong Genetic Differentiation of Submerged Plant Populations across Mountain Ranges: Evidence from Potamogeton pectinatus in Iran.

    PubMed

    Abbasi, Shabnam; Afsharzadeh, Saeed; Saeidi, Hojjatollah; Triest, Ludwig

    2016-01-01

    Biogeographic barriers for freshwater biota can be effective at various spatial scales. At the largest spatial scale, freshwater organisms can become genetically isolated by their high mountain ranges, vast deserts, and inability to cross oceans. Isolation by distance of aquatic plants is expected to be stronger across than alongside mountain ridges whereas the heterogeneity of habitats among populations and temporary droughts may influence connectivity and hamper dispersal. Suitable aquatic plant habitats became reduced, even for the widespread submerged Potamogeton pectinatus L. (also named Stuckenia pectinata) giving structure to various aquatic habitats. We compared the level of genetic diversity in a heterogeneous series of aquatic habitats across Iran and tested their differentiation over distances and across mountain ranges (Alborz and Zagros) and desert zones (Kavir), with values obtained from temperate region populations. The diversity of aquatic ecosystems across and along large geographic barriers provided a unique ecological situation within Iran. P. pectinatus were considered from thirty-six sites across Iran at direct flight distances ranging from 20 to 1,200 km. Nine microsatellite loci revealed a very high number of alleles over all sites. A PCoA, NJT clustering and STRUCTURE analysis revealed a separate grouping of individuals of southeastern Iranian sites and was confirmed by their different nuclear ITS and cpDNA haplotypes thereby indicating an evolutionary significant unit (ESU). At the level of populations, a positive correlation between allelic differentiation Dest with geographic distance was found. Individual-based STRUCTURE analysis over 36 sites showed 7 genetic clusters. FST and RST values for ten populations reached 0.343 and 0.521, respectively thereby indicating that allele length differences are more important and contain evolutionary information. Overall, higher levels of diversity and a stronger differentiation was revealed among

  6. Restitution and genetic differentiation of salmon populations in the southern Baltic genotyped with the Atlantic salmon 7K SNP array.

    PubMed

    Poćwierz-Kotus, Anita; Bernaś, Rafał; Kent, Matthew P; Lien, Sigbjørn; Leliűna, Egidijus; Dębowski, Piotr; Wenne, Roman

    2015-05-06

    Native populations of Atlantic salmon in Poland, from the southern Baltic region, became extinct in the 1980s. Attempts to restitute salmon populations in Poland have been based on a Latvian salmon population from the Daugava river. Releases of hatchery reared smolts started in 1986, but to date, only one population with confirmed natural reproduction has been observed in the Slupia river. Our aim was to investigate the genetic differentiation of salmon populations in the southern Baltic using a 7K SNP (single nucleotide polymorphism) array in order to assess the impact of salmon restitution in Poland. One hundred and forty salmon samples were collected from: the Polish Slupia river including wild salmon and individuals from two hatcheries, the Swedish Morrum river and the Lithuanian Neman river. All samples were genotyped using an Atlantic salmon 7K SNP array. A set of 3218 diagnostic SNPs was used for genetic analyses. Genetic structure analyses indicated that the individuals from the investigated populations were clustered into three groups i.e. one clade that included individuals from both hatcheries and the wild population from the Polish Slupia river, which was clearly separated from the other clades. An assignment test showed that there were no stray fish from the Morrum or Neman rivers in the sample analyzed from the Slupia river. Global FST over polymorphic loci was high (0.177). A strong genetic differentiation was observed between the Lithuanian and Swedish populations (FST = 0.28). Wild juvenile salmon specimens that were sampled from the Slupia river were the progeny of fish released from hatcheries and, most likely, were not progeny of stray fish from Sweden or Lithuania. Strong genetic differences were observed between the salmon populations from the three studied locations. Our recommendation is that future stocking activities that aim at restituting salmon populations in Poland include stocking material from the Lithuanian Neman river because of

  7. Genetic biomarkers for brain hemisphere differentiation in Parkinson's Disease

    NASA Astrophysics Data System (ADS)

    Hourani, Mou'ath; Mendes, Alexandre; Berretta, Regina; Moscato, Pablo

    2007-11-01

    This work presents a study on the genetic profile of the left and right hemispheres of the brain of a mouse model of Parkinson's disease (PD). The goal is to characterize, in a genetic basis, PD as a disease that affects these two brain regions in different ways. Using the same whole-genome microarray expression data introduced by Brown et al. (2002) [1], we could find significant differences in the expression of some key genes, well-known to be involved in the mechanisms of dopamine production control and PD. The problem of selecting such genes was modeled as the MIN (α,β)—FEATURE SET problem [2]; a similar approach to that employed previously to find biomarkers for different types of cancer using gene expression microarray data [3]. The Feature Selection method produced a series of genetic signatures for PD, with distinct expression profiles in the Parkinson's model and control mice experiments. In addition, a close examination of the genes composing those signatures shows that many of them belong to genetic pathways or have ontology annotations considered to be involved in the onset and development of PD. Such elements could provide new clues on which mechanisms are implicated in hemisphere differentiation in PD.

  8. Genetic basis of allochronic differentiation in the fall armyworm.

    PubMed

    Hänniger, Sabine; Dumas, Pascaline; Schöfl, Gerhard; Gebauer-Jung, Steffi; Vogel, Heiko; Unbehend, Melanie; Heckel, David G; Groot, Astrid T

    2017-03-06

    Very little is known on how changes in circadian rhythms evolve. The noctuid moth Spodoptera frugiperda (Lepidoptera: Noctuidae) consists of two strains that exhibit allochronic differentiation in their mating time, which acts as a premating isolation barrier between the strains. We investigated the genetic basis of the strain-specific timing differences to identify the molecular mechanisms of differentiation in circadian rhythms. Through QTL analyses we identified one major Quantitative trait chromosome (QTC) underlying differentiation in circadian timing of mating activity. Using RADtags, we identified this QTC to be homologous to Bombyx mori C27, on which the clock gene vrille is located, which thus became the major candidate gene. In S. frugiperda, vrille showed strain-specific polymorphisms. Also, vrille expression differed significantly between the strains, with the rice-strain showing higher expression levels than the corn-strain. In addition, RT-qPCR experiments with the other main clock genes showed that pdp1, antagonist of vrille in the modulatory feedback loop of the circadian clock, showed higher expression levels in the rice-strain than in the corn-strain. Together, our results indicate that the allochronic differentiation in the two strains of S. frugiperda is associated with differential transcription of vrille or a cis-acting gene close to vrille, which contributes to the evolution of prezygotic isolation in S. frugiperda.

  9. Significant genetic differentiation between native and introduced silver carp (Hypophthalmichthys molitrix) inferred from mtDNA analysis

    USGS Publications Warehouse

    Li, S.-F.; Xu, J.-W.; Yang, Q.-L.; Wang, C.H.; Chapman, D.C.; Lu, G.

    2011-01-01

    Silver carp Hypophthalmichthys molitrix (Cyprinidae) is native to China and has been introduced to over 80 countries. The extent of genetic diversity in introduced silver carp and the genetic divergence between introduced and native populations remain largely unknown. In this study, 241 silver carp sampled from three major native rivers and two non-native rivers (Mississippi River and Danube River) were analyzed using nucleotide sequences of mitochondrial COI gene and D-loop region. A total of 73 haplotypes were observed, with no haplotype found common to all the five populations and eight haplotypes shared by two to four populations. As compared with introduced populations, all native populations possess both higher haplotype diversity and higher nucleotide diversity, presumably a result of the founder effect. Significant genetic differentiation was revealed between native and introduced populations as well as among five sampled populations, suggesting strong selection pressures might have occurred in introduced populations. Collectively, this study not only provides baseline information for sustainable use of silver carp in their native country (i.e., China), but also offers first-hand genetic data for the control of silver carp in countries (e.g., the United States) where they are considered invasive.

  10. Genetic differentiation among migrant and resident populations of the threatened Asian houbara bustard.

    PubMed

    Riou, Samuel; Combreau, Olivier; Judas, Jacky; Lawrence, Mark; Al Baidani, Mohamed Saleh; Pitra, Christian

    2012-01-01

    The Asian houbara bustard Chlamydotis macqueenii is a partial migrant of conservation concern found in deserts of central Asia and the Middle East. In the southern part of the species range, resident populations have been greatly fragmented and reduced by sustained human pressure. In the north, birds migrate from breeding grounds between West Kazakhstan and Mongolia to wintering areas in the Middle East and south central Asia. Extensive satellite tracking has shown substantial partitioning in migration routes and wintering grounds, suggesting a longitudinal barrier to present-day gene flow among migrants. In this context, we explored genetic population structure using 17 microsatellite loci and sampling 108 individuals across the range. We identified limited but significant overall differentiation (F(CT) = 0.045), which was overwhelmingly due to the differentiation of resident Arabian populations, particularly the one from Yemen, relative to the central Asian populations. Population structure within the central Asian group was not detectable with the exception of subtle differentiation of West Kazakh birds on the western flyway, relative to eastern populations. We interpret these patterns as evidence of recent common ancestry in Asia, coupled with a longitudinal barrier to present-day gene flow along the migratory divide, which has yet to translate into genetic divergence. These results provide key parameters for a coherent conservation strategy aimed at preserving genetic diversity and migration routes.

  11. Woody climbers show greater population genetic differentiation than trees: Insights into the link between ecological traits and diversification.

    PubMed

    Gianoli, Ernesto; Torres-Díaz, Cristian; Ruiz, Eduardo; Salgado-Luarte, Cristian; Molina-Montenegro, Marco A; Saldaña, Alfredo; Ríos, Rodrigo S

    2016-12-01

    The climbing habit is a key innovation in plants: climbing taxa have higher species richness than nonclimbing sister groups. We evaluated the hypothesis that climbing plant species show greater among-population genetic differentiation than nonclimber species. We compared the among-population genetic distance in woody climbers (eight species, 30 populations) and trees (seven species, 29 populations) coexisting in nine communities in a temperate rainforest. We also compared within-population genetic diversity in co-occurring woody climbers and trees in two communities. Mean genetic distance between populations of climbers was twice that of trees. Isolation by distance (increase in genetic distance with geographic distance) was greater for climbers. Climbers and trees showed similar within-population genetic diversity. Our longevity estimate suggested that climbers had shorter generation times, while other biological features often associated with diversification (dispersal and pollination syndromes, mating system, size, and metabolic rate) did not show significant differences between groups. We hypothesize that the greater population differentiation in climbers could result from greater evolutionary responses to local selection acting on initially higher within-population genetic diversity, which could be driven by neutral processes associated with shorter generation times. Increased population genetic differentiation could be incorporated as another line of evidence when testing for key innovations. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  12. Mitochondrial DNA Markers Reveal High Genetic Diversity but Low Genetic Differentiation in the Black Fly Simulium tani Takaoka & Davies along an Elevational Gradient in Malaysia

    PubMed Central

    Low, Van Lun; Adler, Peter H.; Takaoka, Hiroyuki; Ya’cob, Zubaidah; Lim, Phaik Eem; Tan, Tiong Kai; Lim, Yvonne A. L.; Chen, Chee Dhang; Norma-Rashid, Yusoff; Sofian-Azirun, Mohd

    2014-01-01

    The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima’s D, Fu’s Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected. PMID:24941043

  13. Mitochondrial DNA markers reveal high genetic diversity but low genetic differentiation in the black fly Simulium tani Takaoka & Davies along an elevational gradient in Malaysia.

    PubMed

    Low, Van Lun; Adler, Peter H; Takaoka, Hiroyuki; Ya'cob, Zubaidah; Lim, Phaik Eem; Tan, Tiong Kai; Lim, Yvonne A L; Chen, Chee Dhang; Norma-Rashid, Yusoff; Sofian-Azirun, Mohd

    2014-01-01

    The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima's D, Fu's Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected.

  14. From Shelf to Shelf: Assessing Historical and Contemporary Genetic Differentiation and Connectivity across the Gulf of Mexico in Gag, Mycteroperca microlepis

    PubMed Central

    Jue, Nathaniel K.; Brulé, Thierry; Coleman, Felicia C.; Koenig, Christopher C.

    2015-01-01

    Describing patterns of connectivity among populations of species with widespread distributions is particularly important in understanding the ecology and evolution of marine species. In this study, we examined patterns of population differentiation, migration, and historical population dynamics using microsatellite and mitochondrial loci to test whether populations of the epinephelid fish, Gag, Mycteroperca microlepis, an important fishery species, are genetically connected across the Gulf of Mexico and if so, whether that connectivity is attributable to either contemporary or historical processes. Populations of Gag on the Campeche Bank and the West Florida Shelf show significant, but low magnitude, differentiation. Time since divergence/expansion estimates associated with historical population dynamics indicate that any population or spatial expansions indicated by population genetics would have likely occurred in the late Pleistocene. Using coalescent-based approaches, we find that the best model for explaining observed spatial patterns of contemporary genetic variation is one of asymmetric gene flow, with movement from Campeche Bank to the West Florida Shelf. Both estimated migration rates and ecological data support the hypothesis that Gag populations throughout the Gulf of Mexico are connected via present day larval dispersal. Demonstrating this greatly expanded scale of connectivity for Gag highlights the influence of “ghost” populations (sensu Beerli) on genetic patterns and presents a critical consideration for both fisheries management and conservation of this and other species with similar genetic patterns. PMID:25856095

  15. Population structure and genetic differentiation of livestock guard dog breeds from the Western Balkans.

    PubMed

    Ceh, E; Dovc, P

    2014-08-01

    Livestock guard dog (LGD) breeds from the Western Balkans are a good example of how complex genetic diversity pattern observed in dog breeds has been shaped by transition in dog breeding practices. Despite their common geographical origin and relatively recent formal recognition as separate breeds, the Karst Shepherd, Sarplaninac and Tornjak show distinct population dynamics, assessed by pedigree, microsatellite and mtDNA data. We genotyped 493 dogs belonging to five dog breeds using a set of 18 microsatellite markers and sequenced mtDNA from 94 dogs from these breeds. Different demographic histories of the Karst Shepherd and Tornjak breeds are reflected in the pedigree data with the former breed having more unbalanced contributions of major ancestors and a realized effective population size of less than 20 animals. The highest allelic richness was found in Sarplaninac (5.94), followed by Tornjak (5.72), whereas Karst Shepherd dogs exhibited the lowest allelic richness (3.33). Similarly, the highest mtDNA haplotype diversity was found in Sarplaninac, followed by Tornjak and Karst Shepherd, where only one haplotype was found. Based on FST differentiation values and high percentages of animals correctly assigned, all breeds can be considered genetically distinct. However, using microsatellite data, common ancestry between the Karst Shepherd and Sarplaninac could not be reconstructed, despite pedigree and mtDNA evidence of their historical admixture. Using neighbour-joining, STRUCTURE or DAPC methods, Sarplaninac and Caucasian Shepherd breeds could not be separated and additionally showed close proximity in the NeighborNet tree. STRUCTURE analysis of the Tornjak breed demonstrated substructuring, which needs further investigation. Altogether, results of this study show that the official separation of these dog breeds strongly affected the resolution of genetic differentiation and thus suggest that the relationships between breeds are not only determined by breed

  16. Genotypic and phenotypic characterization of genetic differentiation and diversity in the USDA rice mini-core collection.

    PubMed

    Li, Xiaobai; Yan, Wengui; Agrama, Hesham; Hu, Biaolin; Jia, Limeng; Jia, Melissa; Jackson, Aaron; Moldenhauer, Karen; McClung, Anna; Wu, Dianxing

    2010-12-01

    A rice mini-core collection consisting of 217 accessions has been developed to represent the USDA core and whole collections that include 1,794 and 18,709 accessions, respectively. To improve the efficiency of mining valuable genes and broadening the genetic diversity in breeding, genetic structure and diversity were analyzed using both genotypic (128 molecular markers) and phenotypic (14 numerical traits) data. This mini-core had 13.5 alleles per locus, which is the most among the reported germplasm collections of rice. Similarly, polymorphic information content (PIC) value was 0.71 in the mini-core which is the highest with one exception. The high genetic diversity in the mini-core suggests there is a good possibility of mining genes of interest and selecting parents which will improve food production and quality. A model-based clustering analysis resulted in lowland rice including three groups, aus (39 accessions), indica (71) and their admixtures (5), upland rice including temperate japonica (32), tropical japonica (40), aromatic (6) and their admixtures (12) and wild rice (12) including glaberrima and four other species of Oryza. Group differentiation was analyzed using both genotypic distance Fst from 128 molecular markers and phenotypic (Mahalanobis) distance D(2) from 14 traits. Both dendrograms built by Fst and D(2) reached similar-differentiative relationship among these genetic groups, and the correlation coefficient showed high value 0.85 between Fst matrix and D(2) matrix. The information of genetic and phenotypic differentiation could be helpful for the association mapping of genes of interest. Analysis of genotypic and phenotypic diversity based on genetic structure would facilitate parent selection for broadening genetic base of modern rice cultivars via breeding effort.

  17. Genetic differentiation of Ganaspis brasiliensis (Hymenoptera: Figitidae) from East and Southeast Asia

    USDA-ARS?s Scientific Manuscript database

    This study aims to clarify genetic differentiation of the Drosophila parasitoid Ganaspis brasiliensis (Hymenoptera; Figitidae; Eucoilinae) based on the nucleotide sequences of the cytochrome oxidase subunit 1 (CO1) and three nuclear DNA regions, the inter-transcribed spacers 1 and 2 (ITS1 and ITS2) ...

  18. Global genetic differentiation in a cosmopolitan pest of stored beans: effects of geography, host-plant usage and anthropogenic factors.

    PubMed

    Tuda, Midori; Kagoshima, Kumiko; Toquenaga, Yukihiko; Arnqvist, Göran

    2014-01-01

    Genetic differentiation can be promoted allopatrically by geographic isolation of populations due to limited dispersal ability and diversification over time or sympatrically through, for example, host-race formation. In crop pests, the trading of crops across the world can lead to intermixing of genetically distinct pest populations. However, our understanding of the importance of allopatric and sympatric genetic differentiation in the face of anthropogenic genetic intermixing is limited. Here, we examined global sequence variation in two mitochondrial and one nuclear genes in the seed beetle Callosobruchus maculatus that uses different legumes as hosts. We analyzed 180 samples from 42 populations of this stored bean pest from tropical and subtropical continents and archipelagos: Africa, the Middle East, South and Southeast Asia, Oceania and South America. For the mitochondrial genes, there was weak but significant genetic differentiation across continents/archipelagos. Further, we found pronounced differentiation among subregions within continents/archipelagos both globally and within Africa but not within Asia. We suggest that multiple introductions into Asia and subsequent intermixing within Asia have generated this pattern. The isolation by distance hypothesis was supported globally (with or without continents controlled) but not when host species was restricted to cowpeas Vigna unguiculata, the ancestral host of C. maculatus. We also document significant among-host differentiation both globally and within Asia, but not within Africa. We failed to reject a scenario of a constant population size in the recent past combined with selective neutrality for the mitochondrial genes. We conclude that mitochondrial DNA differentiation is primarily due to geographic isolation within Africa and to multiple invasions by different alleles, followed by host shifts, within Asia. The weak inter-continental differentiation is most likely due to frequent inter-continental gene

  19. Relative contributions of neutral and non-neutral genetic differentiation to inform conservation of steelhead trout across highly variable landscapes

    PubMed Central

    Matala, Andrew P; Ackerman, Michael W; Campbell, Matthew R; Narum, Shawn R

    2014-01-01

    Mounting evidence of climatic effects on riverine environments and adaptive responses of fishes have elicited growing conservation concerns. Measures to rectify population declines include assessment of local extinction risk, population ecology, viability, and genetic differentiation. While conservation planning has been largely informed by neutral genetic structure, there has been a dearth of critical information regarding the role of non-neutral or functional genetic variation. We evaluated genetic variation among steelhead trout of the Columbia River Basin, which supports diverse populations distributed among dynamic landscapes. We categorized 188 SNP loci as either putatively neutral or candidates for divergent selection (non-neutral) using a multitest association approach. Neutral variation distinguished lineages and defined broad-scale population structure consistent with previous studies, but fine-scale resolution was also detected at levels not previously observed. Within distinct coastal and inland lineages, we identified nine and 22 candidate loci commonly associated with precipitation or temperature variables and putatively under divergent selection. Observed patterns of non-neutral variation suggest overall climate is likely to shape local adaptation (e.g., potential rapid evolution) of steelhead trout in the Columbia River region. Broad geographic patterns of neutral and non-neutral variation demonstrated here can be used to accommodate priorities for regional management and inform long-term conservation of this species. PMID:25067950

  20. Genetic differentiation of the wheat leaf rust fungus Puccinia triticina in Europe

    USDA-ARS?s Scientific Manuscript database

    Leaf rust, caused by Puccinia triticina is a common disease of wheat in Europe. The objective of this study was to determine whether genetically differentiated groups of P. triticina are present in Europe. In total, 133 isolates of P. triticina collected from western Europe, central Europe, and Turk...

  1. The underlying process of early ecological and genetic differentiation in a facultative mutualistic Sinorhizobium meliloti population.

    PubMed

    Toro, Nicolás; Villadas, Pablo J; Molina-Sánchez, María Dolores; Navarro-Gómez, Pilar; Vinardell, José M; Cuesta-Berrio, Lidia; Rodríguez-Carvajal, Miguel A

    2017-04-06

    The question of how genotypic and ecological units arise and spread in natural microbial populations remains controversial in the field of evolutionary biology. Here, we investigated the early stages of ecological and genetic differentiation in a highly clonal sympatric Sinorhizobium meliloti population. Whole-genome sequencing revealed that a large DNA region of the symbiotic plasmid pSymB was replaced in some isolates with a similar synteny block carrying densely clustered SNPs and displaying gene acquisition and loss. Two different versions of this genomic island of differentiation (GID) generated by multiple genetic exchanges over time appear to have arisen recently, through recombination in a particular clade within this population. In addition, these isolates display resistance to phages from the same geographic region, probably due to the modification of surface components by the acquired genes. Our results suggest that an underlying process of early ecological and genetic differentiation in S. meliloti is primarily triggered by acquisition of genes that confer resistance to soil phages within particular large genomic DNA regions prone to recombination.

  2. Pollination Mode and Mating System Explain Patterns in Genetic Differentiation in Neotropical Plants

    PubMed Central

    Ballesteros-Mejia, Liliana; Lima, Natácia E.; Lima-Ribeiro, Matheus S.

    2016-01-01

    We studied genetic diversity and differentiation patterns in Neotropical plants to address effects of life history traits (LHT) and ecological attributes based on an exhaustive literature survey. We used generalized linear mixed models (GLMMs) to test the effects as fixed and random factors of growth form, pollination and dispersal modes, mating and breeding systems, geographical range and habitat on patterns of genetic diversity (HS, HeS, π and h), inbreeding coefficient (FIS), allelic richness (AR) and differentiation among populations (FST) for both nuclear and chloroplast genomes. In addition, we used phylogenetic generalized least squares (pGLS) to account for phylogenetic independence on predictor variables and verify the robustness of the results from significant GLMMs. In general, GLMM revealed more significant relationships among LHTs and genetic patterns than pGLS. After accounting for phylogenetic independence (i.e., using pGLS), FST for nuclear microsatellites was significantly related to pollination mode, mating system and habitat. Plants specifically with outcrossing mating system had lower FST. Moreover, AR was significantly related to pollination mode and geographical range and HeS for nuclear dominant markers was significantly related to habitat. Our findings showed that different results might be retrieved when phylogenetic non-independence is taken into account and that LHTs and ecological attributes affect substantially the genetic pattern in Neotropical plants, hence may drive key evolutionary processes in plants. PMID:27472384

  3. Microsatellite DNA fingerprinting, differentiation, and genetic relationships of clones, cultivars, and varieties of six poplar species from three sections of the genus Populus.

    PubMed

    Rahman, Muhammad H; Rajora, Om P

    2002-12-01

    Accurate identification of Populus clones and cultivars is essential for effective selection, breeding, and genetic resource management programs. The unit of cultivation and breeding in poplars is a clone, and individual cultivars are normally represented by a single clone. Microsatellite DNA markers of 10 simple sequence repeat loci were used for genetic fingerprinting and differentiation of 96 clones/cultivars and varieties belonging to six Populus species (P. deltoides, P. nigra, P. balsamifera, P. trichocarpa, P. grandidentata, and P maximowiczii) from three sections of the genus. All 96 clones/cultivars could be uniquely fingerprinted based on their single- or multilocus microsatellite genotypes. The five P. grandidentata clones could be differentiated based on their single-locus genotypes, while six clones of P. trichocarpa and 11 clones of P. maximowiczii could be identified by their two-locus genotypes. Twenty clones of P. deltoides and 25 clones of P. nigra could be differentiated by their multilocus genotypes employing three loci, and 29 clones of P. balsamifera required the use of multilocus genotypes at five loci for their genetic fingerprinting and differentiation. The loci PTR3, PTR5, and PTR7 were found to be the most informative for genetic fingerprinting and differentiation of the clones. The mean number of alleles per locus ranged from 2.9 in P. trichocarpa or P. grandidentata to 6.0 in P. balsamifera and 11.2 in 96 clones of the six species. The mean number of observed genotypes per locus ranged from 2.4 in P. grandidentata to 7.4 in P. balsamifera and 19.6 in 96 clones of the six species. The mean number of unique genotypes per locus ranged from 1.3 in P. grandidentata to 3.9 in P. deltoides and 8.8 in 96 clones of the six species. The power of discrimination of the microsatellite DNA markers in the 96 clones ranged from 0.726 for PTR4 to 0.939 for PTR7, with a mean of 0.832 over the 10 simple sequence repeat loci. Clones/cultivars from the same

  4. High genetic diversity and insignificant interspecific differentiation in Opisthopappus Shih, an endangered cliff genus endemic to the Taihang Mountains of China.

    PubMed

    Guo, Rongmin; Zhou, Lihua; Zhao, Hongbo; Chen, Fadi

    2013-01-01

    Opisthopappus Shih is endemic to the Taihang Mountains, China. It grows in the crevice of cliffs and is in fragmented distribution. This genus consists of two species, namely, O. taihangensis (Ling) Shih and O. longilobus Shih, which are both endangered plants in China. This study adopted intersimple sequence repeat markers (ISSR) to analyze the genetic diversity and genetic structure from different levels (genus, species, and population) in this genus. A total of 253 loci were obtained from 27 primers, 230 of which were polymorphic loci with a proportion of polymorphic bands (PPB) of up to 90.91% at genus level. At species level, both O. taihangensis (PPB = 90.12%, H = 0.1842, and I = 0.289) and O. longilobus (PPB = 95.21%, H = 0.2226, and I = 0.3542) have high genetic diversity. Their respective genetic variation mostly existed within the population. And genetic variation in O. longilobus (84.95%) was higher than that in O. taihangensis (80.45%). A certain genetic differentiation among populations in O. taihangensis was found (G(st) = 0.2740, Φ(st) = 0.196) and genetic differentiation in O. longilobus was very small (G(st) = 0.1034, Φ(st) = 0.151). Gene flow in different degrees (N(m) = 1.325 and 4.336, resp.) and mating system can form the existing genetic structures of these two species. Furthermore, genetic differentiation coefficient (G(st) = 0.0453) between species and the clustering result based on the genetic distance showed that interspecific differentiation between O. taihangensis and O. longilobus was not significant and could occur lately.

  5. Genetic diversity and differentiation in a wide ranging anadromous fish, American shad (Alosa sapidissima), is correlated with latitude.

    PubMed

    Hasselman, Daniel J; Ricard, Daniel; Bentzen, Paul

    2013-03-01

    Studies that span entire species ranges can provide insight into the relative roles of historical contingency and contemporary factors that influence population structure and can reveal patterns of genetic variation that might otherwise go undetected. American shad is a wide ranging anadromous clupeid fish that exhibits variation in demographic histories and reproductive strategies (both semelparity and iteroparity) and provides a unique perspective on the evolutionary processes that govern the genetic architecture of anadromous fishes. Using 13 microsatellite loci, we examined the magnitude and spatial distribution of genetic variation among 33 populations across the species' range to (i) determine whether signals of historical demography persist among contemporary populations and (ii) assess the effect of different reproductive strategies on population structure. Patterns of genetic diversity and differentiation among populations varied widely and reflect the differential influences of historical demography, microevolutionary processes and anthropogenic factors across the species' range. Sequential reductions of diversity with latitude among formerly glaciated rivers are consistent with stepwise postglacial colonization and successive population founder events. Weak differentiation among U.S. iteroparous populations may be a consequence of human-mediated gene flow, while weak differentiation among semelparous populations probably reflects natural gene flow. Evidence for an effect of reproductive strategy on population structure suggests an important role for environmental variation and suggests that the factors that are responsible for shaping American shad life history patterns may also influence population genetic structure. © 2013 Blackwell Publishing Ltd.

  6. Patterns and processes in the genetic differentiation of the Brachionus calyciflorus complex, a passively dispersing freshwater zooplankton.

    PubMed

    Xiang, Xian-ling; Xi, Yi-long; Wen, Xin-li; Zhang, Gen; Wang, Jin-xia; Hu, Ke

    2011-05-01

    Elucidating the evolutionary patterns and processes of extant species is an important objective of any research program that seeks to understand population divergence and, ultimately, speciation. The island-like nature and temporal fluctuation of limnetic habitats create opportunities for genetic differentiation in rotifers through space and time. To gain further understanding of spatio-temporal patterns of genetic differentiation in rotifers other than the well-studied Brachionus plicatilis complex in brackish water, a total of 318 nrDNA ITS sequences from the B. calyciflorus complex in freshwater were analysed using phylogenetic and phylogeographic methods. DNA taxonomy conducted by both the sequence divergence and the GMYC model suggested the occurrence of six potential cryptic species, supported also by reproductive isolation among the tested lineages. The significant genetic differentiation and non-significant correlation between geographic and genetic distances existed in the most abundant cryptic species, BcI-W and Bc-SW. The large proportion of genetic variability for cryptic species Bc-SW was due to differences between sampling localities within seasons, rather than between different seasons. Nested Clade Analysis suggested allopatric or past fragmentation, contiguous range expansion and long-distance colonization possibly coupled with subsequent fragmentation as the probable main forces shaping the present-day phylogeographic structure of the B. calyciflorus species complex. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Pleistocene and ecological effects on continental-scale genetic differentiation in the bobcat (Lynx rufus).

    PubMed

    Reding, Dawn M; Bronikowski, Anne M; Johnson, Warren E; Clark, William R

    2012-06-01

    The potential for widespread, mobile species to exhibit genetic structure without clear geographic barriers is a topic of growing interest. Yet the patterns and mechanisms of structure--particularly over broad spatial scales--remain largely unexplored for these species. Bobcats occur across North America and possess many characteristics expected to promote gene flow. To test whether historical, topographic or ecological factors have influenced genetic differentiation in this species, we analysed 1 kb mtDNA sequence and 15 microsatellite loci from over 1700 samples collected across its range. The primary signature in both marker types involved a longitudinal cline with a sharp transition, or suture zone, occurring along the Great Plains. Thus, the data distinguished bobcats in the eastern USA from those in the western half, with no obvious physical barrier to gene flow. Demographic analyses supported a scenario of expansion from separate Pleistocene refugia, with the Great Plains representing a zone of secondary contact. Substructure within the two main lineages likely reflected founder effects, ecological factors, anthropogenic/topographic effects or a combination of these forces. Two prominent topographic features, the Mississippi River and Rocky Mountains, were not supported as significant genetic barriers. Ecological regions and environmental correlates explained a small but significant proportion of genetic variation. Overall, results implicate historical processes as the primary cause of broad-scale genetic differentiation, but contemporary forces seem to also play a role in promoting and maintaining structure. Despite the bobcat's mobility and broad niche, large-scale landscape changes have contributed to significant and complex patterns of genetic structure. © 2012 Blackwell Publishing Ltd.

  8. Sex-dependent selection differentially shapes genetic variation on and off the guppy Y chromosome.

    PubMed

    Postma, Erik; Spyrou, Nicolle; Rollins, Lee Ann; Brooks, Robert C

    2011-08-01

    Because selection is often sex-dependent, alleles can have positive effects on fitness in one sex and negative effects in the other, resulting in intralocus sexual conflict. Evolutionary theory predicts that intralocus sexual conflict can drive the evolution of sex limitation, sex-linkage, and sex chromosome differentiation. However, evidence that sex-dependent selection results in sex-linkage is limited. Here, we formally partition the contribution of Y-linked and non-Y-linked quantitative genetic variation in coloration, tail, and body size of male guppies (Poecilia reticulata)-traits previously implicated as sexually antagonistic. We show that these traits are strongly genetically correlated, both on and off the Y chromosome, but that these correlations differ in sign and magnitude between both parts of the genome. As predicted, variation in attractiveness was found to be associated with the Y-linked, rather than with the non-Y-linked component of genetic variation in male ornamentation. These findings show how the evolution of Y-linkage may be able to resolve sexual conflict. More generally, they provide unique insight into how sex-specific selection has the potential to differentially shape the genetic architecture of fitness traits across different parts of the genome. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  9. Genetic and Morphological Differentiation of the Semiterrestrial Crab Armases angustipes (Brachyura: Sesarmidae) along the Brazilian Coast.

    PubMed

    Marochi, Murilo Zanetti; Masunari, Setuko; Schubart, Christoph D

    2017-02-01

    The genetic and morphometric population structures of the semiterrestrial crab Armases angustipes from along the Brazilian coast were examined. The influence of the Central South Equatorial Current on larval dispersal of A. angustipes also was evaluated. Six populations were sampled from estuarine areas in São Luis do Maranhão, Maranhão; Natal, Rio Grande do Norte; Maceió, Alagoas; Ilhéus, Bahia; Aracruz, Espírito Santo; and Guaratuba, Paraná. Patterns of genetic differentiation were assessed using DNA sequence data corresponding to parts of the mitochondrial cytochrome c oxidase subunit 1. Geometric morphometric techniques were used to evaluate morphological variation in shape and size of the carapace and right cheliped propodus. Our results revealed low genetic variability and lack of phylogeographic structure; geometric morphometrics showed statistically significant morphological differentiation and geographic structuring. Our data indicate the absence of possible barriers to gene flow for this mobile species, and no clear correlation of morphological or genetic variation with ocean currents and/or geographic distance. Our results also suggest that historical geological and climatological events and/or possible bottleneck effects influenced the current low genetic variability among the populations of A. angustipes.

  10. Does advertisement call variation coincide with genetic variation in the genetically diverse frog taxon currently known as Leptodactylus fuscus (Amphibia: Leptodactylidae)?

    PubMed

    Heyer, W Ronald; Reid, Yana R

    2003-03-01

    The frog Leptodactylus fuscus is found throughout much of South America in open and disturbed habitats. Previous study of genetic differentiation in L. fuscus demonstrated that there was lack of genetic exchange among population units consistent with multiple species, rather than a single species. We examine advertisement vocalizations of L. fuscus to determine whether call variation coincides with genetic differentiation. Calls were analyzed for 32 individual frogs from 25 localities throughout the distributional range of L. fuscus. Although there is variation in calls among geographic samples, call variation is not concordant with genetic variation or geographic distance and the call variation observed is less than that typically found among other closely related species of Leptodactylus. This study is an example of the rare pattern of strong genetic differentiation unaccompanied by salient differences in advertisement calls. The relative infrequency of this pattern as currently understood may only reflect the lack of detailed analyses of genetic and acoustic differentiation within population systems currently understood as single species with substantial geographic distributions.

  11. Development of genetic diversity, differentiation and structure over 500 years in four ponderosa pine populations.

    PubMed

    Lesser, M R; Parchman, T L; Jackson, S T

    2013-05-01

    Population history plays an important role in shaping contemporary levels of genetic variation and geographic structure. This is especially true in small, isolated range-margin populations, where effects of inbreeding, genetic drift and gene flow may be more pronounced than in large continuous populations. Effects of landscape fragmentation and isolation distance may have implications for persistence of range-margin populations if they are demographic sinks. We studied four small, disjunct populations of ponderosa pine over a 500-year period. We coupled demographic data obtained through dendroecological methods with microsatellite data to discern how and when contemporary levels of allelic diversity, among and within-population levels of differentiation, and geographic structure, arose. Alleles accumulated rapidly following initial colonization, demonstrating proportionally high levels of gene flow into the populations. At population sizes of approximately 100 individuals, allele accumulation saturated. Levels of genetic differentiation among populations (F(ST) and Jost's D(est)) and diversity within populations (F(IS)) remained stable through time. There was no evidence of geographic genetic structure at any time in the populations' history. Proportionally, high gene flow in the early stages of population growth resulted in rapid accumulation of alleles and quickly created relatively homogenous genetic patterns among populations. Our study demonstrates that contemporary levels of genetic diversity were formed quickly and early in population development. How contemporary genetic diversity accumulates over time is a key facet of understanding population growth and development. This is especially relevant given the extent and speed at which species ranges are predicted to shift in the coming century. © 2013 Blackwell Publishing Ltd.

  12. Global genetic differentiation of complex traits shaped by natural selection in humans.

    PubMed

    Guo, Jing; Wu, Yang; Zhu, Zhihong; Zheng, Zhili; Trzaskowski, Maciej; Zeng, Jian; Robinson, Matthew R; Visscher, Peter M; Yang, Jian

    2018-05-14

    There are mean differences in complex traits among global human populations. We hypothesize that part of the phenotypic differentiation is due to natural selection. To address this hypothesis, we assess the differentiation in allele frequencies of trait-associated SNPs among African, Eastern Asian, and European populations for ten complex traits using data of large sample size (up to ~405,000). We show that SNPs associated with height ([Formula: see text]), waist-to-hip ratio ([Formula: see text]), and schizophrenia ([Formula: see text]) are significantly more differentiated among populations than matched "control" SNPs, suggesting that these trait-associated SNPs have undergone natural selection. We further find that SNPs associated with height ([Formula: see text]) and schizophrenia ([Formula: see text]) show significantly higher variance in linkage disequilibrium (LD) scores across populations than control SNPs. Our results support the hypothesis that natural selection has shaped the genetic differentiation of complex traits, such as height and schizophrenia, among worldwide populations.

  13. Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event

    PubMed Central

    2010-01-01

    Background Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Results Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. Conclusions The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary

  14. Locally adapted fish populations maintain small-scale genetic differentiation despite perturbation by a catastrophic flood event.

    PubMed

    Plath, Martin; Hermann, Bernd; Schröder, Christiane; Riesch, Rüdiger; Tobler, Michael; García de León, Francisco J; Schlupp, Ingo; Tiedemann, Ralph

    2010-08-23

    Local adaptation to divergent environmental conditions can promote population genetic differentiation even in the absence of geographic barriers and hence, lead to speciation. Perturbations by catastrophic events, however, can distort such parapatric ecological speciation processes. Here, we asked whether an exceptionally strong flood led to homogenization of gene pools among locally adapted populations of the Atlantic molly (Poecilia mexicana, Poeciliidae) in the Cueva del Azufre system in southern Mexico, where two strong environmental selection factors (darkness within caves and/or presence of toxic H2S in sulfidic springs) drive the diversification of P. mexicana. Nine nuclear microsatellites as well as heritable female life history traits (both as a proxy for quantitative genetics and for trait divergence) were used as markers to compare genetic differentiation, genetic diversity, and especially population mixing (immigration and emigration) before and after the flood. Habitat type (i.e., non-sulfidic surface, sulfidic surface, or sulfidic cave), but not geographic distance was the major predictor of genetic differentiation. Before and after the flood, each habitat type harbored a genetically distinct population. Only a weak signal of individual dislocation among ecologically divergent habitat types was uncovered (with the exception of slightly increased dislocation from the Cueva del Azufre into the sulfidic creek, El Azufre). By contrast, several lines of evidence are indicative of increased flood-induced dislocation within the same habitat type, e.g., between different cave chambers of the Cueva del Azufre. The virtual absence of individual dislocation among ecologically different habitat types indicates strong natural selection against migrants. Thus, our current study exemplifies that ecological speciation in this and other systems, in which extreme environmental factors drive speciation, may be little affected by temporary perturbations, as adaptations

  15. A social relations model of observed family negativity and positivity using a genetically informative sample.

    PubMed

    Rasbash, Jon; Jenkins, Jennifer; O'Connor, Thomas G; Tackett, Jennifer; Reiss, David

    2011-03-01

    The goal of this study was to investigate individual and relationship influences on expressions of negativity and positivity in families. Parents and adolescents were observed in a round-robin design in a sample of 687 families. Data were analyzed using a multilevel social relations model. In addition, genetic contributions were estimated for actor effects. Children showed higher mean levels of negativity and lower mean levels of positivity as actors than did parents. Mothers were found to express and elicit higher mean levels of positivity and negativity than fathers. Actor effects were much stronger than partner effects, accounting for between 18%-39% of the variance depending on the actor and the outcome. Genetic (35%) and shared environmental (19%) influences explained a substantial proportion of the actor effect variance for negativity. Dyadic reciprocities were lowest in dyads with a high power differential (i.e., parent-child dyads) and highest for dyads with equal power (sibling and marital dyads). (c) 2011 APA, all rights reserved

  16. Genetic differentiation in red-bellied piranha populations (Pygocentrus nattereri, Kner, 1858) from the Solimões-Amazonas River.

    PubMed

    Dos Santos, Carlos Henrique Dos A; de Sá Leitão, Carolina S; Paula-Silva, Maria de N; Almeida-Val, Vera Maria F

    2016-06-01

    Red-bellied piranhas (Pygocentrus nattereri) are widely caught with different intensities throughout the region of Solimões-Amazonas River by local fishermen. Thus, the management of this resource is performed in the absence of any information on its genetic stock. P. nattereri is a voracious predator and widely distributed in the Neotropical region, and it is found in other regions of American continent. However, information about genetic variability and structure of wild populations of red-bellied piranha is unavailable. Here, we describe the levels of genetic diversity and genetic structure of red-bellied piranha populations collected at different locations of Solimões-Amazonas River system. We collected 234 red-bellied piranhas and analyzed throughout eight microsatellite markers. We identified high genetic diversity within populations, although the populations of lakes ANA, ARA, and MAR have shown some decrease in their genetic variability, indicating overfishing at these communities. Was identified the existence of two biological populations when the analysis was taken altogether at the lakes of Solimões-Amazonas River system, with significant genetic differentiation between them. The red-bellied piranha populations presented limited gene flow between two groups of populations, which were explained by geographical distance between these lakes. However, high level of gene flow was observed between the lakes within of the biological populations. We have identified high divergence between the Catalão subpopulation and all other subpopulations. We suggest the creation of sustainable reserve for lakes near the city of Manaus to better manage and protect this species, whose populations suffer from both extractive and sport fishing.

  17. Geographic and Genetic Population Differentiation of the Amazonian Chocolate Tree (Theobroma cacao L)

    PubMed Central

    Motamayor, Juan C.; Lachenaud, Philippe; da Silva e Mota, Jay Wallace; Loor, Rey; Kuhn, David N.; Brown, J. Steven; Schnell, Raymond J.

    2008-01-01

    Numerous collecting expeditions of Theobroma cacao L. germplasm have been undertaken in Latin-America. However, most of this germplasm has not contributed to cacao improvement because its relationship to cultivated selections was poorly understood. Germplasm labeling errors have impeded breeding and confounded the interpretation of diversity analyses. To improve the understanding of the origin, classification, and population differentiation within the species, 1241 accessions covering a large geographic sampling were genotyped with 106 microsatellite markers. After discarding mislabeled samples, 10 genetic clusters, as opposed to the two genetic groups traditionally recognized within T. cacao, were found by applying Bayesian statistics. This leads us to propose a new classification of the cacao germplasm that will enhance its management. The results also provide new insights into the diversification of Amazon species in general, with the pattern of differentiation of the populations studied supporting the palaeoarches hypothesis of species diversification. The origin of the traditional cacao cultivars is also enlightened in this study. PMID:18827930

  18. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L).

    PubMed

    Motamayor, Juan C; Lachenaud, Philippe; da Silva E Mota, Jay Wallace; Loor, Rey; Kuhn, David N; Brown, J Steven; Schnell, Raymond J

    2008-10-01

    Numerous collecting expeditions of Theobroma cacao L. germplasm have been undertaken in Latin-America. However, most of this germplasm has not contributed to cacao improvement because its relationship to cultivated selections was poorly understood. Germplasm labeling errors have impeded breeding and confounded the interpretation of diversity analyses. To improve the understanding of the origin, classification, and population differentiation within the species, 1241 accessions covering a large geographic sampling were genotyped with 106 microsatellite markers. After discarding mislabeled samples, 10 genetic clusters, as opposed to the two genetic groups traditionally recognized within T. cacao, were found by applying Bayesian statistics. This leads us to propose a new classification of the cacao germplasm that will enhance its management. The results also provide new insights into the diversification of Amazon species in general, with the pattern of differentiation of the populations studied supporting the palaeoarches hypothesis of species diversification. The origin of the traditional cacao cultivars is also enlightened in this study.

  19. The relationships between chemical and genetic differentiation and environmental factors across the distribution of Erigeron breviscapus (Asteraceae).

    PubMed

    Li, Xiang; Peng, Li-yan; Zhang, Shu-dong; Zhao, Qin-shi; Yi, Ting-shuang

    2013-01-01

    Erigeron breviscapus (Vant.) Hand.-Mazz. is an important, widely used Chinese herb with scutellarin, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and erigoster B being its major active compounds. We aimed to resolve the influence of biotic and abiotic factors on the concentrations of these compounds and to determine appropriate cultivation methods to improve the yields of the four compounds in this herb. In order to detect the major genetic and natural environmental factors affecting the yields of these four compounds, we applied AFLP markers to investigate the population genetic differentiation and HPLC to measure the concentrations of four major active compounds among 23 wild populations which were located across almost the entire distribution of this species in China. The meteorological data including annual average temperature, annual average precipitation and annual average hours of sunshine were collected. The relationships among the concentrations of four compounds and environmental factors and genetic differentiation were studied. Low intraspecific genetic differentiation is detected, and there is no obvious correlation between the genetic differentiation and the contents of the chemical compounds. We investigated the correlation between the concentrationsof four compounds (scutellarin, 1,5-dicaffeoylquinic acid, 3,5-dicaffeoylquinic acid and erigoster B) and environmental factors. Concentrations of two compounds (1,5-dicaffeoylquinic acid and 3,5-dicaffeoylquinic acid) were correlated with environmental factors. The concentration of 1,5-dicaffeoylquinic acid is positively correlated with latitude, and is negatively correlated with the annual average temperature. The concentration of 3,5-dicaffeoylquinic acid is positively correlated with annual average precipitation. Therefore, changing cultivation conditions may significantly improve the yields of these two compounds. We found the concentration of scutellarin positively correlated with that of

  20. RAPID-COMMUNICATION Genetic diversity and differentiation in natural populations of Arapaima gigas from lower Amazon revealed by microsatellites.

    PubMed

    Fazzi-Gomes, P F; Melo, N; Palheta, G; Guerreiro, S; Amador, M; Ribeiro-Dos-Santos, A K; Santos, S; Hamoy, I

    2017-02-08

    Genetic variability is one of the important criteria for species conservation decisions. This study aimed to analyze the genetic diversity and the population differentiation of two natural populations of Arapaima gigas, a species with a long history of being commercially exploited. We collected 87 samples of A. gigas from Grande Curuai Lake and Paru Lake, located in the Lower Amazon region of Amazônia, Brazil, and genotyped these samples using a multiplex panel of microsatellite markers. Our results showed that the populations of A. gigas analyzed had high levels of genetic variability, which were similar to those described in previous studies. These two populations had a significant population differentiation supported by the estimates of F ST and R ST (0.06), by Bayesian analysis (K = 2), and by population assignment tests, which revealed a moderate genetic distance.

  1. Population size is weakly related to quantitative genetic variation and trait differentiation in a stream fish.

    PubMed

    Wood, Jacquelyn L A; Tezel, Defne; Joyal, Destin; Fraser, Dylan J

    2015-09-01

    How population size influences quantitative genetic variation and differentiation among natural, fragmented populations remains unresolved. Small, isolated populations might occupy poor quality habitats and lose genetic variation more rapidly due to genetic drift than large populations. Genetic drift might furthermore overcome selection as population size decreases. Collectively, this might result in directional changes in additive genetic variation (VA ) and trait differentiation (QST ) from small to large population size. Alternatively, small populations might exhibit larger variation in VA and QST if habitat fragmentation increases variability in habitat types. We explored these alternatives by investigating VA and QST using nine fragmented populations of brook trout varying 50-fold in census size N (179-8416) and 10-fold in effective number of breeders, Nb (18-135). Across 15 traits, no evidence was found for consistent differences in VA and QST with population size and almost no evidence for increased variability of VA or QST estimates at small population size. This suggests that (i) small populations of some species may retain adaptive potential according to commonly adopted quantitative genetic measures and (ii) populations of varying sizes experience a variety of environmental conditions in nature, however extremely large studies are likely required before any firm conclusions can be made. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  2. Identification of a barrier height threshold where brook trout population genetic diversity, differentiation, and relatedness are affected

    Treesearch

    Anne Timm; Eric Hallerman; Andy Dolloff; Mark Hudy; Randall Kolka

    2016-01-01

    The overall goal of the study was to evaluate effects of landscape features, barriers, on Brook Trout Salvelinus fontinalis population genetics and to identify a potential barrier height threshold where genetic diversity was reduced upstream of the barrier and differentiation and relatedness increase. We screened variation at eight...

  3. Strong genetic differentiation in tropical seagrass Enhalus acoroides (Hydrocharitaceae) at the Indo-Malay Archipelago revealed by microsatellite DNA.

    PubMed

    Putra, I Nyoman Giri; Syamsuni, Yuliana Fitri; Subhan, Beginer; Pharmawati, Made; Madduppa, Hawis

    2018-01-01

    The Indo-Malay Archipelago is regarded as a barrier that separates organisms of the Indian and Pacific Oceans. Previous studies of marine biota from this region have found a variety of biogeographic barriers, seemingly dependent on taxon and methodology. Several hypotheses, such as emergence of the Sunda Shelf and recent physical oceanography, have been proposed to account for the genetic structuring of marine organisms in this region. Here, we used six microsatellite loci to infer genetic diversity, population differentiation and phylogeographic patterns of Enhalus acoroides across the Indo-Malay Archipelago. Heterozygosities were consistently high, and significant isolation-by-distance, consistent with restricted gene flow, was observed. Both a neighbour joining tree based on D A distance and Bayesian clustering revealed three major clusters of E. acoroides . Our results indicate that phylogeographic patterns of E. acoroides have possibly been influenced by glaciation and deglaciation during the Pleistocene. Recent physical oceanography such as the South Java Current and the Seasonally Reversing Current may also play a role in shaping the genetic patterns of E. acoroides .

  4. Strong genetic differentiation in tropical seagrass Enhalus acoroides (Hydrocharitaceae) at the Indo-Malay Archipelago revealed by microsatellite DNA

    PubMed Central

    Putra, I Nyoman Giri; Syamsuni, Yuliana Fitri; Subhan, Beginer; Pharmawati, Made

    2018-01-01

    The Indo-Malay Archipelago is regarded as a barrier that separates organisms of the Indian and Pacific Oceans. Previous studies of marine biota from this region have found a variety of biogeographic barriers, seemingly dependent on taxon and methodology. Several hypotheses, such as emergence of the Sunda Shelf and recent physical oceanography, have been proposed to account for the genetic structuring of marine organisms in this region. Here, we used six microsatellite loci to infer genetic diversity, population differentiation and phylogeographic patterns of Enhalus acoroides across the Indo-Malay Archipelago. Heterozygosities were consistently high, and significant isolation-by-distance, consistent with restricted gene flow, was observed. Both a neighbour joining tree based on DA distance and Bayesian clustering revealed three major clusters of E. acoroides. Our results indicate that phylogeographic patterns of E. acoroides have possibly been influenced by glaciation and deglaciation during the Pleistocene. Recent physical oceanography such as the South Java Current and the Seasonally Reversing Current may also play a role in shaping the genetic patterns of E. acoroides. PMID:29576933

  5. Small cell and large cell neuroendocrine carcinomas of the pancreas are genetically similar and distinct from well-differentiated pancreatic neuroendocrine tumors.

    PubMed

    Yachida, Shinichi; Vakiani, Efsevia; White, Catherine M; Zhong, Yi; Saunders, Tyler; Morgan, Richard; de Wilde, Roeland F; Maitra, Anirban; Hicks, Jessica; Demarzo, Angelo M; Shi, Chanjuan; Sharma, Rajni; Laheru, Daniel; Edil, Barish H; Wolfgang, Christopher L; Schulick, Richard D; Hruban, Ralph H; Tang, Laura H; Klimstra, David S; Iacobuzio-Donahue, Christine A

    2012-02-01

    Poorly differentiated neuroendocrine carcinomas (NECs) of the pancreas are rare malignant neoplasms with a poor prognosis. The aim of this study was to determine the clinicopathologic and genetic features of poorly differentiated NECs and compare them with other types of pancreatic neoplasms. We investigated alterations of KRAS, CDKN2A/p16, TP53, SMAD4/DPC4, DAXX, ATRX, PTEN, Bcl2, and RB1 by immunohistochemistry and/or targeted exomic sequencing in surgically resected specimens of 9 small cell NECs, 10 large cell NECs, and 11 well-differentiated neuroendocrine tumors (PanNETs) of the pancreas. Abnormal immunolabeling patterns of p53 and Rb were frequent (p53, 18 of 19, 95%; Rb, 14 of 19, 74%) in both small cell and large cell NECs, whereas Smad4/Dpc4, DAXX, and ATRX labeling was intact in virtually all of these same carcinomas. Abnormal immunolabeling of p53 and Rb proteins correlated with intragenic mutations in the TP53 and RB1 genes. In contrast, DAXX and ATRX labeling was lost in 45% of PanNETs, whereas p53 and Rb immunolabeling was intact in these same cases. Overexpression of Bcl-2 protein was observed in all 9 small cell NECs (100%) and in 5 of 10 (50%) large cell NECs compared with only 2 of 11 (18%) PanNETs. Bcl-2 overexpression was significantly correlated with higher mitotic rate and Ki67 labeling index in neoplasms in which it was present. Small cell NECs are genetically similar to large cell NECs, and these genetic changes are distinct from those reported in PanNETs. The finding of Bcl-2 overexpression in poorly differentiated NECs, particularly small cell NEC, suggests that Bcl-2 antagonists/inhibitors may be a viable treatment option for these patients.

  6. Genetic and phenotypic differentiation of an Andean intermediate altitude population

    PubMed Central

    Eichstaedt, Christina A; Antão, Tiago; Cardona, Alexia; Pagani, Luca; Kivisild, Toomas; Mormina, Maru

    2015-01-01

    Highland populations living permanently under hypobaric hypoxia have been subject of extensive research because of the relevance of their physiological adaptations for the understanding of human health and disease. In this context, what is considered high altitude is a matter of interpretation and while the adaptive processes at high altitude (above 3000 m) are well documented, the effects of moderate altitude (below 3000 m) on the phenotype are less well established. In this study, we compare physiological and anthropometric characteristics as well as genetic variations in two Andean populations: the Calchaquíes (2300 m) and neighboring Collas (3500 m). We compare their phenotype and genotype to the sea-level Wichí population. We measured physiological (heart rate, oxygen saturation, respiration rate, and lung function) as well as anthropometric traits (height, sitting height, weight, forearm, and tibia length). We conducted genome-wide genotyping on a subset of the sample (n = 74) and performed various scans for positive selection. At the phenotypic level (n = 179), increased lung capacity stood out in both Andean groups, whereas a growth reduction in distal limbs was only observed at high altitude. At the genome level, Calchaquíes revealed strong signals around PRKG1, suggesting that the nitric oxide pathway may be a target of selection. PRKG1 was highlighted by one of four selection tests among the top five genes using the population branch statistic. Selection tests results of Collas were reported previously. Overall, our study shows that some phenotypic and genetic differentiation occurs at intermediate altitude in response to moderate lifelong selection pressures. PMID:25948820

  7. Genetic variability and differentiation among populations of the Azorean endemic gymnosperm Juniperus brevifolia: baseline information for a conservation and restoration perspective.

    PubMed

    Silva, Luís; Elias, Rui B; Moura, Mónica; Meimberg, Harald; Dias, Eduardo

    2011-12-01

    The Azorean endemic gymnosperm Juniperus brevifolia (Seub.) Antoine is a top priority species for conservation in Macaronesia, based on its ecological significance in natural plant communities. To evaluate genetic variability and differentiation among J. brevifolia populations from the Azorean archipelago, we studied 15 ISSR and 15 RAPD markers in 178 individuals from 18 populations. The average number of polymorphic bands per population was 65 for both ISSR and RAPD. The majority of genetic variability was found within populations and among populations within islands, and this partitioning of variability was confirmed by AMOVA. The large majority of population pairwise F(ST) values were above 0.3 and below 0.6. The degree of population genetic differentiation in J. brevifolia was relatively high compared with other species, including Juniperus spp. The genetic differentiation among populations suggests that provenance should be considered when formulating augmentation or reintroduction strategies.

  8. Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulphide.

    PubMed

    Plath, M; Hauswaldt, J S; Moll, K; Tobler, M; García De León, F J; Schlupp, I; Tiedemann, R

    2007-03-01

    We investigated genetic differentiation and migration patterns in a small livebearing fish, Poecilia mexicana, inhabiting a sulfidic Mexican limestone cave (Cueva del Azufre). We examined fish from three different cave chambers, the sulfidic surface creek draining the cave (El Azufre) and a nearby surface creek without the toxic hydrogen sulphide (Arroyo Cristal). Using microsatellite analysis of 10 unlinked loci, we found pronounced genetic differentiation among the three major habitats: Arroyo Cristal, El Azufre and the cave. Genetic differentiation was also found within the cave between different pools. An estimation of first-generation migrants suggests that (i) migration is unidirectional, out of the cave, and (ii) migration among different cave chambers occurs to some extent. We investigated if the pattern of genetic differentiation is also reflected in a morphological trait, eye size. Relatively large eyes were found in surface habitats, small eyes in the anterior cave chambers, and the smallest eyes were detected in the innermost cave chamber (XIII). This pattern shows some congruence with a previously proposed morphocline in eye size. However, our data do not support the proposed mechanism for this morphocline, namely that it would be maintained by migration from both directions into the middle cave chambers. This would have led to an increased variance in eye size in the middle cave chambers, which we did not find. Restricted gene flow between the cave and the surface can be explained by local adaptations to extreme environmental conditions, namely H2S and absence of light. Within the cave system, habitat properties are patchy, and genetic differentiation between cave chambers despite migration could indicate local adaptation at an even smaller scale.

  9. Genetic Variation and Population Structure in Native Americans

    PubMed Central

    Ramachandran, Sohini; Ray, Nicolas; Bedoya, Gabriel; Rojas, Winston; Parra, Maria V; Molina, Julio A; Gallo, Carla; Mazzotti, Guido; Poletti, Giovanni; Hill, Kim; Hurtado, Ana M; Labuda, Damian; Klitz, William; Barrantes, Ramiro; Bortolini, Maria Cátira; Salzano, Francisco M; Petzl-Erler, Maria Luiza; Tsuneto, Luiza T; Llop, Elena; Rothhammer, Francisco; Excoffier, Laurent; Feldman, Marcus W; Rosenberg, Noah A; Ruiz-Linares, Andrés

    2007-01-01

    We examined genetic diversity and population structure in the American landmass using 678 autosomal microsatellite markers genotyped in 422 individuals representing 24 Native American populations sampled from North, Central, and South America. These data were analyzed jointly with similar data available in 54 other indigenous populations worldwide, including an additional five Native American groups. The Native American populations have lower genetic diversity and greater differentiation than populations from other continental regions. We observe gradients both of decreasing genetic diversity as a function of geographic distance from the Bering Strait and of decreasing genetic similarity to Siberians—signals of the southward dispersal of human populations from the northwestern tip of the Americas. We also observe evidence of: (1) a higher level of diversity and lower level of population structure in western South America compared to eastern South America, (2) a relative lack of differentiation between Mesoamerican and Andean populations, (3) a scenario in which coastal routes were easier for migrating peoples to traverse in comparison with inland routes, and (4) a partial agreement on a local scale between genetic similarity and the linguistic classification of populations. These findings offer new insights into the process of population dispersal and differentiation during the peopling of the Americas. PMID:18039031

  10. Evidence for Inbreeding and Genetic Differentiation among Geographic Populations of the Saprophytic Mushroom Trogia venenata from Southwestern China.

    PubMed

    Mi, Fei; Zhang, Ying; Yang, Dan; Tang, Xiaozhao; Wang, Pengfei; He, Xiaoxia; Zhang, Yunrun; Dong, Jianyong; Cao, Yang; Liu, Chunli; Zhang, Ke-Qin; Xu, Jianping

    2016-01-01

    During the past 40 years, more than 400 Sudden Unexplained Deaths (SUDs) have occurred in Yunnan, southwestern China. Epidemiological and toxicological analyses suggested that a newly discovered mushroom called Trogia venenata was the leading culprit for SUDs. At present, relatively little is known about the genetics and natural history of this mushroom. In this study, we analyzed the sequence variation at four DNA fragments among 232 fruiting bodies of T. venenata collected from seven locations. Our ITS sequence analyses confirmed that all the isolates belonged to the same species. The widespread presence of sequence heterozygosity within many strains at each of three protein-coding genes suggested that the fruiting bodies were diploid, dikaryotic or heterokaryotic. Within individual geographic populations, we found significant deviations of genotype frequencies from Hardy-Weinberg expectations, with the overall observed heterozygosity lower than that expected under random mating, consistent with prevalent inbreeding within local populations. The geographic populations were overall genetically differentiated. Interestingly, while a positive correlation was found between population genetic distance and geographic distance, there was little correlation between genetic distance and barium concentration difference for the geographic populations. Our results suggest frequent inbreeding, geographic structuring, and limited gene flow among geographic populations of T. venenata from southwestern China.

  11. Evidence for Inbreeding and Genetic Differentiation among Geographic Populations of the Saprophytic Mushroom Trogia venenata from Southwestern China

    PubMed Central

    Yang, Dan; Tang, Xiaozhao; Wang, Pengfei; He, Xiaoxia; Zhang, Yunrun; Dong, Jianyong; Cao, Yang; Liu, Chunli; Zhang, Ke-Qin; Xu, Jianping

    2016-01-01

    During the past 40 years, more than 400 Sudden Unexplained Deaths (SUDs) have occurred in Yunnan, southwestern China. Epidemiological and toxicological analyses suggested that a newly discovered mushroom called Trogia venenata was the leading culprit for SUDs. At present, relatively little is known about the genetics and natural history of this mushroom. In this study, we analyzed the sequence variation at four DNA fragments among 232 fruiting bodies of T. venenata collected from seven locations. Our ITS sequence analyses confirmed that all the isolates belonged to the same species. The widespread presence of sequence heterozygosity within many strains at each of three protein-coding genes suggested that the fruiting bodies were diploid, dikaryotic or heterokaryotic. Within individual geographic populations, we found significant deviations of genotype frequencies from Hardy-Weinberg expectations, with the overall observed heterozygosity lower than that expected under random mating, consistent with prevalent inbreeding within local populations. The geographic populations were overall genetically differentiated. Interestingly, while a positive correlation was found between population genetic distance and geographic distance, there was little correlation between genetic distance and barium concentration difference for the geographic populations. Our results suggest frequent inbreeding, geographic structuring, and limited gene flow among geographic populations of T. venenata from southwestern China. PMID:26890380

  12. Bottlenecks drive temporal and spatial genetic changes in alpine caddisfly metapopulations.

    PubMed

    Shama, Lisa N S; Kubow, Karen B; Jokela, Jukka; Robinson, Christopher T

    2011-09-27

    Extinction and re-colonisation of local populations is common in ephemeral habitats such as temporary streams. In most cases, such population turnover leads to reduced genetic diversity within populations and increased genetic differentiation among populations due to stochastic founder events, genetic drift, and bottlenecks associated with re-colonisation. Here, we examined the spatio-temporal genetic structure of 8 alpine caddisfly populations inhabiting permanent and temporary streams from four valleys in two regions of the Swiss Alps in years before and after a major stream drying event, the European heat wave in summer 2003. We found that population turnover after 2003 led to a loss of allelic richness and gene diversity but not to significant changes in observed heterozygosity. Within all valleys, permanent and temporary streams in any given year were not differentiated, suggesting considerable gene flow and admixture between streams with differing hydroperiods. Large changes in allele frequencies after 2003 resulted in a substantial increase in genetic differentiation among valleys within one to two years (1-2 generations) driven primarily by drift and immigration. Signatures of genetic bottlenecks were detected in all 8 populations after 2003 using the M-ratio method, but in no populations when using a heterozygosity excess method, indicating differential sensitivity of bottleneck detection methods. We conclude that genetic differentiation among A. uncatus populations changed markedly both temporally and spatially in response to the extreme climate event in 2003. Our results highlight the magnitude of temporal population genetic changes in response to extreme events. More specifically, our results show that extreme events can cause rapid genetic divergence in metapopulations. Further studies are needed to determine if recovery from this perturbation through gradual mixing of diverged populations by migration and gene flow leads to the pre-climate event state

  13. The consistent differential expression of genetic pathways following exposure of an industrial Pseudomonas aeruginosa strain to preservatives and a laundry detergent formulation.

    PubMed

    Green, Angharad E; Amézquita, Alejandro; Le Marc, Yvan; Bull, Matthew J; Connor, Thomas R; Mahenthiralingam, Eshwar

    2018-05-01

    Pseudomonas aeruginosa is a common contaminant associated with product recalls in the home and personal care industry. Preservation systems are used to prevent spoilage and protect consumers, but greater knowledge is needed of preservative resistance mechanisms used by P. aeruginosa contaminants. We aimed to identify genetic pathways associated with preservative exposure by using an industrial P. aeruginosa strain and implementing RNA-Seq to understand gene expression changes in response to industry relevant conditions. The consistent differential expression of five genetic pathways during exposure to multiple industrial growth conditions associated with benzisothiazolone (BIT) and phenoxyethanol (POE) preservatives, and a laundry detergent (LD) formulation, was observed. A MexPQ-OpmE Resistance Nodulation Division efflux pump system was commonly upregulated in response to POE, a combination of BIT and POE, and LD together with BIT. In response to all industry conditions, a putative sialic acid transporter and isoprenoid biosynthesis gnyRDBHAL operon demonstrated consistent upregulation. Two operons phnBA and pqsEDCBA involved in Pseudomonas quinolone signaling production and quorum-sensing were also consistently downregulated during exposure to all the industry conditions. The ability to identify consistently differentially expressed genetic pathways in P. aeruginosa can inform the development of future targeted preservation systems that maintain product safety and minimise resistance development.

  14. The consistent differential expression of genetic pathways following exposure of an industrial Pseudomonas aeruginosa strain to preservatives and a laundry detergent formulation

    PubMed Central

    Amézquita, Alejandro; Le Marc, Yvan; Bull, Matthew J; Connor, Thomas R; Mahenthiralingam, Eshwar

    2018-01-01

    Abstract Pseudomonas aeruginosa is a common contaminant associated with product recalls in the home and personal care industry. Preservation systems are used to prevent spoilage and protect consumers, but greater knowledge is needed of preservative resistance mechanisms used by P. aeruginosa contaminants. We aimed to identify genetic pathways associated with preservative exposure by using an industrial P. aeruginosa strain and implementing RNA-Seq to understand gene expression changes in response to industry relevant conditions. The consistent differential expression of five genetic pathways during exposure to multiple industrial growth conditions associated with benzisothiazolone (BIT) and phenoxyethanol (POE) preservatives, and a laundry detergent (LD) formulation, was observed. A MexPQ-OpmE Resistance Nodulation Division efflux pump system was commonly upregulated in response to POE, a combination of BIT and POE, and LD together with BIT. In response to all industry conditions, a putative sialic acid transporter and isoprenoid biosynthesis gnyRDBHAL operon demonstrated consistent upregulation. Two operons phnBA and pqsEDCBA involved in Pseudomonas quinolone signaling production and quorum-sensing were also consistently downregulated during exposure to all the industry conditions. The ability to identify consistently differentially expressed genetic pathways in P. aeruginosa can inform the development of future targeted preservation systems that maintain product safety and minimise resistance development. PMID:29548026

  15. Cytochrome b based genetic differentiation of Indian wild pig (Sus scrofa cristatus) and domestic pig (Sus scrofa domestica) and its use in wildlife forensics.

    PubMed

    Gupta, Sandeep Kumar; Kumar, Ajit; Hussain, Syed Ainul; Vipin; Singh, Lalji

    2013-06-01

    The Indian wild pig (Sus scrofa cristatus) is a protected species and listed in the Indian Wildlife (Protection) Act, 1972. The wild pig is often hunted illegally and sold in market as meat warranting punishment under law. To avoid confusion in identification of these two subspecies during wildlife forensic examinations, we describe genetic differentiation of Indian wild and domestic pigs using a molecular technique. Analysis of sequence generated from the partial fragment (421bp) of mitochondrial DNA (mtDNA) cytochrome b (Cyt b) gene exhibited unambiguous (>3%) genetic variation between Indian wild and domestic pigs. We observed nine forensically informative nucleotide sequence (FINS) variations between Indian wild and domestic pigs. The overall genetic variation described in this study is helpful in forensic identification of the biological samples of wild and domestic pigs. It also helped in differentiating the Indian wild pig from other wild pig races. This study indicates that domestic pigs in India are not descendent of the Indian wild pig, however; they are closer to the other wild pig races found in Asia and Europe. Copyright © 2012 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches.

    PubMed

    Ai, Lin; Chen, Mu-Xin; Alasaad, Samer; Elsheikha, Hany M; Li, Juan; Li, Hai-Long; Lin, Rui-Qing; Zou, Feng-Cai; Zhu, Xing-Quan; Chen, Jia-Xu

    2011-06-10

    Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp..

  17. Genetic characterization, species differentiation and detection of Fasciola spp. by molecular approaches

    PubMed Central

    2011-01-01

    Liver flukes belonging to the genus Fasciola are among the causes of foodborne diseases of parasitic etiology. These parasites cause significant public health problems and substantial economic losses to the livestock industry. Therefore, it is important to definitively characterize the Fasciola species. Current phenotypic techniques fail to reflect the full extent of the diversity of Fasciola spp. In this respect, the use of molecular techniques to identify and differentiate Fasciola spp. offer considerable advantages. The advent of a variety of molecular genetic techniques also provides a powerful method to elucidate many aspects of Fasciola biology, epidemiology, and genetics. However, the discriminatory power of these molecular methods varies, as does the speed and ease of performance and cost. There is a need for the development of new methods to identify the mechanisms underpinning the origin and maintenance of genetic variation within and among Fasciola populations. The increasing application of the current and new methods will yield a much improved understanding of Fasciola epidemiology and evolution as well as more effective means of parasite control. Herein, we provide an overview of the molecular techniques that are being used for the genetic characterization, detection and genotyping of Fasciola spp.. PMID:21658284

  18. Genetic and Epigenetic Regulation of Human Cardiac Reprogramming and Differentiation in Regenerative Medicine

    PubMed Central

    Burridge, Paul W.; Sharma, Arun; Wu, Joseph C.

    2016-01-01

    Regeneration or replacement of lost cardiomyocytes within the heart has the potential to revolutionize cardiovascular medicine. Numerous methodologies have been used to achieve this aim, including the engraftment of bone marrow- and heart-derived cells as well as the identification of modulators of adult cardiomyocyte proliferation. Recently, the conversion of human somatic cells into induced pluripotent stem cells and induced cardiomyocyte-like cells has transformed potential approaches toward this goal, and the engraftment of cardiac progenitors derived from human embryonic stem cells into patients is now feasible. Here we review recent advances in our understanding of the genetic and epigenetic control of human cardiogenesis, cardiac differentiation, and the induced reprogramming of somatic cells to cardiomyocytes. We also cover genetic programs for inducing the proliferation of endogenous cardiomyocytes and discuss the genetic state of cells used in cardiac regenerative medicine. PMID:26631515

  19. Sewage treatment plant associated genetic differentiation in the blue mussel from the Baltic Sea and Swedish west coast

    PubMed Central

    Lönn, Mikael; Lind, Emma E.; Świeżak, Justyna; Smolarz, Katarzyna; Grahn, Mats

    2016-01-01

    Human-derived environmental pollutants and nutrients that reach the aquatic environment through sewage effluents, agricultural and industrial processes are constantly contributing to environmental changes that serve as drivers for adaptive responses and evolutionary changes in many taxa. In this study, we examined how two types of point sources of aquatic environmental pollution, harbors and sewage treatment plants, affect gene diversity and genetic differentiation in the blue mussel in the Baltic Sea area and off the Swedish west coast (Skagerrak). Reference sites (REF) were geographically paired with sites from sewage treatments plant (STP) and harbors (HAR) with a nested sampling scheme, and genetic differentiation was evaluated using a high-resolution marker amplified fragment length polymorphism (AFLP). This study showed that genetic composition in the Baltic Sea blue mussel was associated with exposure to sewage treatment plant effluents. In addition, mussel populations from harbors were genetically divergent, in contrast to the sewage treatment plant populations, suggesting that there is an effect of pollution from harbors but that the direction is divergent and site specific, while the pollution effect from sewage treatment plants on the genetic composition of blue mussel populations acts in the same direction in the investigated sites. PMID:27812424

  20. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection.

    PubMed

    García-Ruiz, Adriana; Cole, John B; VanRaden, Paul M; Wiggans, George R; Ruiz-López, Felipe J; Van Tassell, Curtis P

    2016-07-12

    Seven years after the introduction of genomic selection in the United States, it is now possible to evaluate the impact of this technology on the population. Selection differential(s) (SD) and generation interval(s) (GI) were characterized in a four-path selection model that included sire(s) of bulls (SB), sire(s) of cows (SC), dam(s) of bulls (DB), and dam(s) of cows (DC). Changes in SD over time were estimated for milk, fat, and protein yield; somatic cell score (SCS); productive life (PL); and daughter pregnancy rate (DPR) for the Holstein breed. In the period following implementation of genomic selection, dramatic reductions were seen in GI, especially the SB and SC paths. The SB GI reduced from ∼7 y to less than 2.5 y, and the DB GI fell from about 4 y to nearly 2.5 y. SD were relatively stable for yield traits, although modest gains were noted in recent years. The most dramatic response to genomic selection was observed for the lowly heritable traits DPR, PL, and SCS. Genetic trends changed from close to zero to large and favorable, resulting in rapid genetic improvement in fertility, lifespan, and health in a breed where these traits eroded over time. These results clearly demonstrate the positive impact of genomic selection in US dairy cattle, even though this technology has only been in use for a short time. Based on the four-path selection model, rates of genetic gain per year increased from ∼50-100% for yield traits and from threefold to fourfold for lowly heritable traits.

  1. Genetics in the art and art in genetics.

    PubMed

    Bukvic, Nenad; Elling, John W

    2015-01-15

    "Healing is best accomplished when art and science are conjoined, when body and spirit are probed together", says Bernard Lown, in his book "The Lost Art of Healing". Art has long been a witness to disease either through diseases which affected artists or diseases afflicting objects of their art. In particular, artists have often portrayed genetic disorders and malformations in their work. Sometimes genetic disorders have mystical significance; other times simply have intrinsic interest. Recognizing genetic disorders is also an art form. From the very beginning of my work as a Medical Geneticist I have composed personal "algorithms" to piece together evidence of genetics syndromes and diseases from the observable signs and symptoms. In this paper we apply some 'gestalt' Genetic Syndrome Diagnostic algorithms to virtual patients found in some art masterpieces. In some the diagnosis is clear and in others the artists' depiction only supports a speculative differential diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Genetic differentiation of sockeye salmon subpopulations from a geologically young Alaskan lake system

    USGS Publications Warehouse

    Burger, C.V.; Spearman, William J.; Cronin, M.A.

    1997-01-01

    The Tustumena lake drainage in southcentral Alaska is glacially turbid and geologically young (<2,000 years old). Previous field studies identified at least three subpopulations of sockeye salmon Oncorhynchus nerka at Tustumena Lake, based on the distribution and timing of spawners. The subpopulations included early-run salmon that spawned in six clearwater tributaries of the lake (mid August), lake shoreline spawners (late August), and late-run fish that spawned in the lake's outlet, the Kasilof River (late September). Our objective was to determine the degree of genetic differentiation among these subpopulations based on restriction enzyme analyses of the cytochrome b gene of mitochondrial DNA and analyses of four polymorphic allozyme loci. Mitochondrial DNA haplotype frequencies for outlet-spawning sockeye salmon differed significantly from those of all other subpopulations. The most common (36%) haplotype in the outlet subpopulation did not occur elsewhere, thus suggesting little or no gene flow between outlet spawners and other spatially close subpopulations at Tustumena Lake. Allele frequencies at two allozyme loci also indicated a degree of differentiation of the outlet subpopulation from the shoreline and tributary subpopulations. Allele frequencies for three tributary subpopulations were temporally stable over approximately 20 years (based on a comparison to previously published results) despite initiation of a hatchery program in two of the tributaries during the intervening period. Collectively, our results are consistent with the hypothesis that significant genetic differentiation has occurred within the Tustumena Lake drainage since deglaciation approximately 2,000 years ago.

  3. Uniform Selection as a Primary Force Reducing Population Genetic Differentiation of Cavitation Resistance across a Species Range

    PubMed Central

    Lamy, Jean-Baptiste; Bouffier, Laurent; Burlett, Régis; Plomion, Christophe; Cochard, Hervé; Delzon, Sylvain

    2011-01-01

    Background Cavitation resistance to water stress-induced embolism determines plant survival during drought. This adaptive trait has been described as highly variable in a wide range of tree species, but little is known about the extent of genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for evaluation of its inclusion in breeding programs. Methodology We assessed cavitation resistance (P 50), growth and carbon isotope composition in six Pinus pinaster populations in a provenance and progeny trial. We estimated the heritability of cavitation resistance and compared the distribution of neutral markers (F ST) and quantitative genetic differentiation (Q ST), for retrospective identification of the evolutionary forces acting on these traits. Results/Discussion In contrast to growth and carbon isotope composition, no population differentiation was found for cavitation resistance. Heritability was higher than for the other traits, with a low additive genetic variance (h2 ns = 0.43±0.18, CVA = 4.4%). Q ST was significantly lower than F ST, indicating uniform selection for P 50, rather than genetic drift. Putative mechanisms underlying QST

  4. Genetic differentiation of eastern wolves in Algonquin Park despite bridging gene flow between coyotes and grey wolves.

    PubMed

    Rutledge, L Y; Garroway, C J; Loveless, K M; Patterson, B R

    2010-12-01

    Distinguishing genetically differentiated populations within hybrid zones and determining the mechanisms by which introgression occurs are crucial for setting effective conservation policy. Extensive hybridization among grey wolves (Canis lupus), eastern wolves (C. lycaon) and coyotes (C. latrans) in eastern North America has blurred species distinctions, creating a Canis hybrid swarm. Using complementary genetic markers, we tested the hypotheses that eastern wolves have acted as a conduit of sex-biased gene flow between grey wolves and coyotes, and that eastern wolves in Algonquin Provincial Park (APP) have differentiated following a history of introgression. Mitochondrial, Y chromosome and autosomal microsatellite genetic data provided genotypes for 217 canids from three geographic regions in Ontario, Canada: northeastern Ontario, APP and southern Ontario. Coyote mitochondrial DNA (mtDNA) haplotypes were common across regions but coyote-specific Y chromosome haplotypes were absent; grey wolf mtDNA was absent from southern regions, whereas grey wolf Y chromosome haplotypes were present in all three regions. Genetic structuring analyses revealed three distinct clusters within a genetic cline, suggesting some gene flow among species. In APP, however, 78.4% of all breeders and 11 of 15 known breeding pairs had assignment probability of Q0.8 to the Algonquin cluster, and the proportion of eastern wolf Y chromosome haplotypes in APP breeding males was higher than expected from random mating within the park (P<0.02). The data indicate that Algonquin wolves remain genetically distinct despite providing a sex-biased genetic bridge between coyotes and grey wolves. We speculate that ongoing hybridization within the park is limited by pre-mating reproductive barriers.

  5. Contrasting geographic patterns of genetic differentiation in body size and development time with reproductive isolation in Dendroctonus ponderosae (Coleoptera: Curculionidae, Scolytinae)

    Treesearch

    Ryan R. Bracewell; Michael E. Pfrender; Karen E. Mock; Barbara J. Bentz

    2013-01-01

    Body size and development time are two critical phenotypic traits that can be highly adaptive in insects. Recent population genetic analyses and crossing experiments with the mountain pine beetle (Dendroctonus ponderosae Hopkins) have described substantial levels of neutral molecular genetic differentiation, genetic differences in phenotypic traits, and reproductive...

  6. Effects of climatic gradients on genetic differentiation of Caragana on the Ordos Plateau, China

    Treesearch

    Jiuyan Yang; Samuel A. Cushman; Jie Yang; Mingbo Yang; Tiejun Bao

    2013-01-01

    The genus Caragana (Fabr.) in the Ordos Plateau of Inner Mongolia, China, provides a strong opportunity to investigate patterns of genetic differentiation along steep climatic gradients, and to identify the environmental factors most likely to be responsible for driving the radiation. This study used a factorial, multi-model approach to evaluate alternative hypotheses...

  7. Genetic analysis of the Venezuelan Criollo horse.

    PubMed

    Cothran, E G; Canelon, J L; Luis, C; Conant, E; Juras, R

    2011-10-07

    Various horse populations in the Americas have an origin in Spain; they are remnants of the first livestock introduced to the continent early in the colonial period (16th and 17th centuries). We evaluated genetic variability within the Venezuelan Criollo horse and its relationship with other horse breeds. We observed high levels of genetic diversity within the Criollo breed. Significant population differentiation was observed between all South American breeds. The Venezuelan Criollo horse showed high levels of genetic diversity, and from a conservation standpoint, there is no immediate danger of losing variation unless there is a large drop in population size.

  8. Extensive genetic differentiation detected within a model marsupial, the tammar wallaby (Notamacropus eugenii)

    PubMed Central

    Miller, Emily J.; Neaves, Linda E.; Zenger, Kyall R.; Herbert, Catherine A.

    2017-01-01

    The tammar wallaby (Notamacropus eugenii) is one of the most intensively studied of all macropodids and was the first Australasian marsupial to have its genome sequenced. However, comparatively little is known about genetic diversity and differentiation amongst the morphologically distinct allopatric populations of tammar wallabies found in Western (WA) and South Australia (SA). Here we compare autosomal and Y-linked microsatellite genotypes, as well as sequence data (~600 bp) from the mitochondrial DNA (mtDNA) control region (CR) in tammar wallabies from across its distribution. Levels of diversity at autosomal microsatellite loci were typically high in the WA mainland and Kangaroo Island (SA) populations (A = 8.9–10.6; He = 0.77–0.78) but significantly reduced in other endemic island populations (A = 3.8–4.1; He = 0.41–0.48). Autosomal and Y-linked microsatellite loci revealed a pattern of significant differentiation amongst populations, especially between SA and WA. The Kangaroo Island and introduced New Zealand population showed limited differentiation. Multiple divergent mtDNA CR haplotypes were identified within both SA and WA populations. The CR haplotypes of tammar wallabies from SA and WA show reciprocal monophyly and are highly divergent (14.5%), with levels of sequence divergence more typical of different species. Within WA tammar wallabies, island populations each have unique clusters of highly related CR haplotypes and each is most closely related to different WA mainland haplotypes. Y-linked microsatellite haplotypes show a similar pattern of divergence although levels of diversity are lower. In light of these differences, we suggest that two subspecies of tammar wallaby be recognized; Notamacropus eugenii eugenii in SA and N. eugenii derbianus in WA. The extensive neutral genetic diversity and inter-population differentiation identified within tammar wallabies should further increase the species value and usefulness as a model organism. PMID

  9. Low genetic differentiation in a sedentary bird: house sparrow population genetics in a contiguous landscape

    PubMed Central

    Kekkonen, J; Seppä, P; Hanski, I K; Jensen, H; Väisänen, R A; Brommer, J E

    2011-01-01

    The house sparrow Passer domesticus has been declining in abundance in many localities, including Finland. We studied the genetic diversity and differentiation of the house sparrow populations across Finland in the 1980s, at the onset of the species' decline in abundance. We genotyped 472 adult males (the less dispersive sex) from 13 locations in Finland (covering a range of 400 × 800 km) and one in Sweden (Stockholm) for 13 polymorphic microsatellite markers. Our analysis of Finnish ringing records showed that natal dispersal distances are limited (90% <16 km), which confirmed earlier finding from other countries. The Finnish populations were panmictic, and genetically very homogeneous and the limited dispersal was sufficiently large to maintain their connectivity. However, all Finnish populations differed significantly from the Stockholm population, even though direct geographical distance to it was often smaller than among Finnish populations. Hence, the open sea between Finland and Sweden appears to form a dispersal barrier for this species, whereas dispersal is much less constrained across the Finnish mainland (which lacks geographical barriers). Our findings provide a benchmark for conservation biologists and emphasize the influence of landscape structure on gene flow. PMID:20372181

  10. Patterns of genetic differentiation at MHC class I genes and microsatellites identify conservation units in the giant panda.

    PubMed

    Zhu, Ying; Wan, Qiu-Hong; Yu, Bin; Ge, Yun-Fa; Fang, Sheng-Guo

    2013-10-22

    Evaluating patterns of genetic variation is important to identify conservation units (i.e., evolutionarily significant units [ESUs], management units [MUs], and adaptive units [AUs]) in endangered species. While neutral markers could be used to infer population history, their application in the estimation of adaptive variation is limited. The capacity to adapt to various environments is vital for the long-term survival of endangered species. Hence, analysis of adaptive loci, such as the major histocompatibility complex (MHC) genes, is critical for conservation genetics studies. Here, we investigated 4 classical MHC class I genes (Aime-C, Aime-F, Aime-I, and Aime-L) and 8 microsatellites to infer patterns of genetic variation in the giant panda (Ailuropoda melanoleuca) and to further define conservation units. Overall, we identified 24 haplotypes (9 for Aime-C, 1 for Aime-F, 7 for Aime-I, and 7 for Aime-L) from 218 individuals obtained from 6 populations of giant panda. We found that the Xiaoxiangling population had the highest genetic variation at microsatellites among the 6 giant panda populations and higher genetic variation at Aime-MHC class I genes than other larger populations (Qinling, Qionglai, and Minshan populations). Differentiation index (FST)-based phylogenetic and Bayesian clustering analyses for Aime-MHC-I and microsatellite loci both supported that most populations were highly differentiated. The Qinling population was the most genetically differentiated. The giant panda showed a relatively higher level of genetic diversity at MHC class I genes compared with endangered felids. Using all of the loci, we found that the 6 giant panda populations fell into 2 ESUs: Qinling and non-Qinling populations. We defined 3 MUs based on microsatellites: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. We also recommended 3 possible AUs based on MHC loci: Qinling, Minshan-Qionglai, and Daxiangling-Xiaoxiangling-Liangshan. Furthermore, we recommend

  11. Modeling Noisy Data with Differential Equations Using Observed and Expected Matrices

    ERIC Educational Resources Information Center

    Deboeck, Pascal R.; Boker, Steven M.

    2010-01-01

    Complex intraindividual variability observed in psychology may be well described using differential equations. It is difficult, however, to apply differential equation models in psychological contexts, as time series are frequently short, poorly sampled, and have large proportions of measurement and dynamic error. Furthermore, current methods for…

  12. Species differentiation on a dynamic landscape: shifts in metapopulation genetic structure using the chronology of the Hawaiian Archipelago

    USGS Publications Warehouse

    Roderick, George K.; Croucher, Peter J.P.; Vandergast, Amy G.; Gillespie, Rosemary G.

    2012-01-01

    Species formation during adaptive radiation often occurs in the context of a changing environment. The establishment and arrangement of populations, in space and time, sets up ecological and genetic processes that dictate the rate and pattern of differentiation. Here, we focus on how a dynamic habitat can affect genetic structure, and ultimately, differentiation among populations. We make use of the chronology and geographical history provided by the Hawaiian archipelago to examine the initial stages of population establishment and genetic divergence. We use data from a set of 6 spider lineages that differ in habitat affinities, some preferring low elevation habitats with a longer history of connection, others being more specialized for high elevation and/or wet forest, some with more general habitat affinities. We show that habitat preferences associated with lineages are important in ecological and genetic structuring. Lineages that have more restricted habitat preferences are subject to repeated episodes of isolation and fragmentation as a result of lava flows and vegetation succession. The initial dynamic set up by the landscape translates over time into discrete lineages. Further work is needed to understand how genetic changes interact with a changing set of ecological interactions amongst a shifting mosaic of landscapes to achieve species formation.

  13. Drift, selection, or migration? Processes affecting genetic differentiation and variation along a latitudinal gradient in an amphibian.

    PubMed

    Cortázar-Chinarro, Maria; Lattenkamp, Ella Z; Meyer-Lucht, Yvonne; Luquet, Emilien; Laurila, Anssi; Höglund, Jacob

    2017-08-14

    Past events like fluctuations in population size and post-glacial colonization processes may influence the relative importance of genetic drift, migration and selection when determining the present day patterns of genetic variation. We disentangle how drift, selection and migration shape neutral and adaptive genetic variation in 12 moor frog populations along a 1700 km latitudinal gradient. We studied genetic differentiation and variation at a MHC exon II locus and a set of 18 microsatellites. Using outlier analyses, we identified the MHC II exon 2 (corresponding to the β-2 domain) locus and one microsatellite locus (RCO8640) to be subject to diversifying selection, while five microsatellite loci showed signals of stabilizing selection among populations. STRUCTURE and DAPC analyses on the neutral microsatellites assigned populations to a northern and a southern cluster, reflecting two different post-glacial colonization routes found in previous studies. Genetic variation overall was lower in the northern cluster. The signature of selection on MHC exon II was weaker in the northern cluster, possibly as a consequence of smaller and more fragmented populations. Our results show that historical demographic processes combined with selection and drift have led to a complex pattern of differentiation along the gradient where some loci are more divergent among populations than predicted from drift expectations due to diversifying selection, while other loci are more uniform among populations due to stabilizing selection. Importantly, both overall and MHC genetic variation are lower at northern latitudes. Due to lower evolutionary potential, the low genetic variation in northern populations may increase the risk of extinction when confronted with emerging pathogens and climate change.

  14. Geographic patterns of genetic differentiation among killer whales in the northern North Pacific.

    PubMed

    Parsons, Kim M; Durban, John W; Burdin, Alexander M; Burkanov, Vladimir N; Pitman, Robert L; Barlow, Jay; Barrett-Lennard, Lance G; LeDuc, Richard G; Robertson, Kelly M; Matkin, Craig O; Wade, Paul R

    2013-01-01

    The difficulties associated with detecting population boundaries have long constrained the conservation and management of highly mobile, wide-ranging marine species, such as killer whales (Orcinus orca). In this study, we use data from 26 nuclear microsatellite loci and mitochondrial DNA sequences (988bp) to test a priori hypotheses about population subdivisions generated from a decade of killer whale surveys across the northern North Pacific. A total of 462 remote skin biopsies were collected from wild killer whales primarily between 2001 and 2010 from the northern Gulf of Alaska to the Sea of Okhotsk, representing both the piscivorous "resident" and the mammal-eating "transient" (or Bigg's) killer whales. Divergence of the 2 ecotypes was supported by both mtDNA and microsatellites. Geographic patterns of genetic differentiation were supported by significant regions of genetic discontinuity, providing evidence of population structuring within both ecotypes and corroborating direct observations of restricted movements of individual whales. In the Aleutian Islands (Alaska), subpopulations, or groups with significantly different mtDNA and microsatellite allele frequencies, were largely delimited by major oceanographic boundaries for resident killer whales. Although Amchitka Pass represented a major subdivision for transient killer whales between the central and western Aleutian Islands, several smaller subpopulations were evident throughout the eastern Aleutians and Bering Sea. Support for seasonally sympatric transient subpopulations around Unimak Island suggests isolating mechanisms other than geographic distance within this highly mobile top predator.

  15. Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection

    PubMed Central

    García-Ruiz, Adriana; Cole, John B.; VanRaden, Paul M.; Wiggans, George R.; Ruiz-López, Felipe J.; Van Tassell, Curtis P.

    2016-01-01

    Seven years after the introduction of genomic selection in the United States, it is now possible to evaluate the impact of this technology on the population. Selection differential(s) (SD) and generation interval(s) (GI) were characterized in a four-path selection model that included sire(s) of bulls (SB), sire(s) of cows (SC), dam(s) of bulls (DB), and dam(s) of cows (DC). Changes in SD over time were estimated for milk, fat, and protein yield; somatic cell score (SCS); productive life (PL); and daughter pregnancy rate (DPR) for the Holstein breed. In the period following implementation of genomic selection, dramatic reductions were seen in GI, especially the SB and SC paths. The SB GI reduced from ∼7 y to less than 2.5 y, and the DB GI fell from about 4 y to nearly 2.5 y. SD were relatively stable for yield traits, although modest gains were noted in recent years. The most dramatic response to genomic selection was observed for the lowly heritable traits DPR, PL, and SCS. Genetic trends changed from close to zero to large and favorable, resulting in rapid genetic improvement in fertility, lifespan, and health in a breed where these traits eroded over time. These results clearly demonstrate the positive impact of genomic selection in US dairy cattle, even though this technology has only been in use for a short time. Based on the four-path selection model, rates of genetic gain per year increased from ∼50–100% for yield traits and from threefold to fourfold for lowly heritable traits. PMID:27354521

  16. [Genogeographic variability and genetic differentiation of the root vole (Microtus oeconomus Pallas, 1776, Cricetidae, Rodentia) from the Kuril Islands].

    PubMed

    Frisman, L V; Kartavtseva, I V; Kostenko, V A; Sheremet'eva, I N; Cherniavskiĭ, F B

    2003-10-01

    Electrophoretic analysis of 12 enzyme systems and 3 nonenzyme proteins (in all, 24 interpretable loci) was carried out for Microtus oeconomus from ten Kuril islands, Kamchatka Peninsula, and the vicinity of the city of Magadan. Gene geographic variation was examined and the coefficients of genetic variation and differentiation were estimated. The inter-population allozyme differentiation was low (DNEI, 1972 not higher than 0.053) and caused by variation in the allele frequencies of polymorphic loci. The greatest genetic distances were found between the populations belonging to different subspecies. Allozyme differentiation of Far Eastern M. oeconomus and M. fortis are discussed in relation to the data on the age of the island isolation and paleontological records. Karyological analysis (G-, C-, and NOR-banding) demonstrated the absence of differences between M. oeconomus from Kamchatka and the vicinity of Magadan.

  17. Comprehensive analyses of imprinted differentially methylated regions reveal epigenetic and genetic characteristics in hepatoblastoma

    PubMed Central

    2013-01-01

    Background Aberrant methylation at imprinted differentially methylated regions (DMRs) in human 11p15.5 has been reported in many tumors including hepatoblastoma. However, the methylation status of imprinted DMRs in imprinted loci scattered through the human genome has not been analyzed yet in any tumors. Methods The methylation statuses of 33 imprinted DMRs were analyzed in 12 hepatoblastomas and adjacent normal liver tissue by MALDI-TOF MS and pyrosequencing. Uniparental disomy (UPD) and copy number abnormalities were investigated with DNA polymorphisms. Results Among 33 DMRs analyzed, 18 showed aberrant methylation in at least 1 tumor. There was large deviation in the incidence of aberrant methylation among the DMRs. KvDMR1 and IGF2-DMR0 were the most frequently hypomethylated DMRs. INPP5Fv2-DMR and RB1-DMR were hypermethylated with high frequencies. Hypomethylation was observed at certain DMRs not only in tumors but also in a small number of adjacent histologically normal liver tissue, whereas hypermethylation was observed only in tumor samples. The methylation levels of long interspersed nuclear element-1 (LINE-1) did not show large differences between tumor tissue and normal liver controls. Chromosomal abnormalities were also found in some tumors. 11p15.5 and 20q13.3 loci showed the frequent occurrence of both genetic and epigenetic alterations. Conclusions Our analyses revealed tumor-specific aberrant hypermethylation at some imprinted DMRs in 12 hepatoblastomas with additional suggestion for the possibility of hypomethylation prior to tumor development. Some loci showed both genetic and epigenetic alterations with high frequencies. These findings will aid in understanding the development of hepatoblastoma. PMID:24373183

  18. Genetic differences in osteogenic differentiation potency in the thoracic ossification of the ligamentum flavum under cyclic mechanical stress.

    PubMed

    Ning, Shanglong; Chen, Zhongqiang; Fan, Dongwei; Sun, Chuiguo; Zhang, Chi; Zeng, Yan; Li, Weishi; Hou, Xiaofei; Qu, Xiaochen; Ma, Yunlong; Yu, Huilei

    2017-01-01

    Mechanical stress and genetic factors play important roles in the occurrence of thoracic ossification of ligament flavum (TOLF), which can occur at one, two, or multiple levels of the spine. It is unclear whether single- and multiple-level TOLF differ in terms of osteogenic differentiation potency and osteogenesis-related gene expression under cyclic mechanical stress. This was addressed in the present study using patients with non‑TOLF and single‑ and multiple‑level TOLF (n=8 per group). Primary ligament cells were cultured and osteogenesis was induced by application of cyclic mechanical stress. Osteogenic differentiation was assessed by evaluating alkaline phosphatase (ALP) activity and the mRNA and protein expression of osteogenesis‑related genes, including ALP, bone morphogenetic protein 2 (BMP2), Runt‑related transcription factor‑2 (Runx‑2), osterix, osteopontin (OPN) and osteocalcin. The application of cyclic mechanical stress resulted in higher ALP activity in the multiple‑level than in the single‑level TOLF group, whereas no changes were observed in the non‑TOLF group. The ALP, BMP2, OPN and osterix mRNA levels were higher in the multiple‑level as compared to the single‑level TOLF group, and the levels of all osteogenesis-related genes, apart from Runx2, were higher in the multiple‑level as compared to the non‑TOLF group. The osterix and ALP protein levels were higher in the multiple‑level TOLF group than in the other 2 groups, and were increased with the longer duration of stress. These results highlight the differences in osteogenic differentiation potency between single‑ and multiple‑level TOLF that may be related to the different pathogenesis and genetic background.

  19. Genomic single-nucleotide polymorphisms confirm that Gunnison and Greater sage-grouse are genetically well differentiated and that the Bi-State population is distinct

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Cornman, Robert S.; Jones, Kenneth L.; Fike, Jennifer

    2015-01-01

    Sage-grouse are iconic, declining inhabitants of sagebrush habitats in western North America, and their management depends on an understanding of genetic variation across the landscape. Two distinct species of sage-grouse have been recognized, Greater (Centrocercus urophasianus) and Gunnison sage-grouse (C. minimus), based on morphology, behavior, and variation at neutral genetic markers. A parapatric group of Greater Sage-Grouse along the border of California and Nevada ("Bi-State") is also genetically distinct at the same neutral genetic markers, yet not different in behavior or morphology. Because delineating taxonomic boundaries and defining conservation units is often difficult in recently diverged taxa and can be further complicated by highly skewed mating systems, we took advantage of new genomic methods that improve our ability to characterize genetic variation at a much finer resolution. We identified thousands of single-nucleotide polymorphisms (SNPs) among Gunnison, Greater, and Bi-State sage-grouse and used them to comprehensively examine levels of genetic diversity and differentiation among these groups. The pairwise multilocus fixation index (FST) was high (0.49) between Gunnison and Greater sage-grouse, and both principal coordinates analysis and model-based clustering grouped samples unequivocally by species. Standing genetic variation was lower within the Gunnison Sage-Grouse. The Bi-State population was also significantly differentiated from Greater Sage-Grouse, albeit more weakly (FST = 0.09), and genetic clustering results were consistent with reduced gene flow with Greater Sage-Grouse. No comparable genetic divisions were found within the Greater Sage-Grouse sample, which spanned the southern half of the range. Thus, we provide much stronger genetic evidence supporting the recognition of Gunnison Sage-Grouse as a distinct species with low genetic diversity. Further, our work confirms that the Bi-State population is differentiated from other

  20. Locus-specific genetic differentiation at Rw among warfarin-resistant rat (Rattus norvegicus) populations.

    PubMed Central

    Kohn, Michael H; Pelz, Hans-Joachim; Wayne, Robert K

    2003-01-01

    Populations may diverge at fitness-related genes as a result of adaptation to local conditions. The ability to detect this divergence by marker-based genomic scans depends on the relative magnitudes of selection, recombination, and migration. We survey rat (Rattus norvegicus) populations to assess the effect that local selection with anticoagulant rodenticides has had on microsatellite marker variation and differentiation at the warfarin resistance gene (Rw) relative to the effect on the genomic background. Initially, using a small sample of 16 rats, we demonstrate tight linkage of microsatellite D1Rat219 to Rw by association mapping of genotypes expressing an anticoagulant-rodenticide-insensitive vitamin K 2,3-epoxide reductase (VKOR). Then, using allele frequencies at D1Rat219, we show that predicted and observed resistance levels in 27 populations correspond, suggesting intense and recent selection for resistance. A contrast of F(ST) values between D1Rat219 and the genomic background revealed that rodenticide selection has overwhelmed drift-mediated population structure only at Rw. A case-controlled design distinguished these locus-specific effects of selection at Rw from background levels of differentiation more effectively than a population-controlled approach. Our results support the notion that an analysis of locus-specific population genetic structure may assist the discovery and mapping of novel candidate loci that are the object of selection or may provide supporting evidence for previously identified loci. PMID:12871915

  1. Gone with the currents: lack of genetic differentiation at the circum-continental scale in the Antarctic krill Euphausia superba

    PubMed Central

    2011-01-01

    Background Southern Ocean fauna represent a significant amount of global biodiversity, whose origin may be linked to glacial cycles determining local extinction/eradication with ice advance, survival of refugee populations and post-glacial re-colonization. This pattern implies high potential for differentiation in benthic shelf species with limited dispersal, yet consequences for pelagic organisms are less clear. The present study investigates levels of genetic variation and population structure of the Antarctic krill Euphausia superba using mitochondrial DNA and EST-linked microsatellite markers for an unprecedentedly comprehensive sampling of its populations over a circum-Antarctic range. Results MtDNA (ND1) sequences and EST-linked microsatellite markers indicated no clear sign of genetic structure among populations over large geographic scales, despite considerable power to detect differences inferred from forward-time simulations. Based on ND1, few instances of genetic heterogeneity, not significant after correction for multiple tests, were detected between geographic or temporal samples. Neutrality tests and mismatch distribution based on mtDNA sequences revealed strong evidence of past population expansion. Significant positive values of the parameter g (a measure of population growth) were obtained from microsatellite markers using a coalescent-based genealogical method and suggested a recent start (60 000 - 40 000 years ago) for the expansion. Conclusions The results provide evidence of lack of genetic heterogeneity of Antarctic krill at large geographic scales and unequivocal support for recent population expansion. Lack of genetic structuring likely reflects the tight link between krill and circum-Antarctic ocean currents and is consistent with the hypothesis that differentiation processes in Antarctic species are largely influenced by dispersal potential, whereas small-scale spatial and temporal differentiation might be due to local conditions leading

  2. Phenotypic and genetic differentiation among yellow monkeyflower populations from thermal and non-thermal soils in Yellowstone National Park.

    PubMed

    Lekberg, Ylva; Roskilly, Beth; Hendrick, Margaret F; Zabinski, Catherine A; Barr, Camille M; Fishman, Lila

    2012-09-01

    In flowering plants, soil heterogeneity can generate divergent natural selection over fine spatial scales, and thus promote local adaptation in the absence of geographic barriers to gene flow. Here, we investigate phenotypic and genetic differentiation in one of the few flowering plants that thrives in both geothermal and non-thermal soils in Yellowstone National Park (YNP). Yellow monkeyflowers (Mimulus guttatus) growing at two geothermal ("thermal") sites in YNP were distinct in growth form and phenology from paired populations growing nearby (<500 m distant) in non-thermal soils. In simulated thermal and non-thermal environments, thermal plants remained significantly divergent from non-thermal plants in vegetative, floral, mating system, and phenological traits. Plants from both thermal populations flowered closer to the ground, allocated relatively more to sexual reproduction, were more likely to initiate flowering under short daylengths, and made smaller flowers that could efficiently self-fertilize without pollinators. These shared differences are consistent with local adaptation to life in the ephemeral window for growth and reproduction created by winter and spring snowmelt on hot soils. In contrast, habitat type (thermal vs. non-thermal) explained little of the genetic variation at neutral markers. Instead, we found that one thermal population (Agrostis Headquarters; AHQ-T) was strongly differentiated from all other populations (all F (ST) > 0.34), which were only weakly differentiated from each other (all F (ST) < 0.07). Phenotypic differentiation of thermal M. guttatus, but little population genetic evidence of long-term ecotypic divergence, encourages further investigations of the potential for fine-scale adaptation and reproductive isolation across the geothermal gradient in Yellowstone.

  3. Conservation and genetic characterisation of common bean landraces from Cilento region (southern Italy): high differentiation in spite of low genetic diversity.

    PubMed

    De Luca, Daniele; Cennamo, Paola; Del Guacchio, Emanuele; Di Novella, Riccardo; Caputo, Paolo

    2018-02-01

    Since its introduction from Central-South America to Italy almost 500 years ago, the common bean (Phaseolus vulgaris L.) was largely cultivated across the peninsula in hundreds of different landraces. However, globalisation and technological modernisation of agricultural practices in the last decades promoted the cultivation of few varieties at the expense of traditional and local agro-ecotypes, which have been confined to local markets or have completely disappeared. The aim of this study was to evaluate the genetic diversity and differentiation in 12 common bean landraces once largely cultivated in the Cilento region (Campania region, southern Italy), and now the object of a recovery program to save them from extinction. The analysis conducted using 13 nuclear microsatellite loci in 140 individuals revealed a high degree of homozygosity within each landrace and a strong genetic differentiation that was reflected in the success in assigning individuals to the source landrace. On the contrary, internal transcribed spacers 1 and 2, analysed in one individual per landrace, were highly similar among common bean landraces but allowed the identification of a cowpea variety (Vigna unguiculata Walp.), a crop largely cultivated in the Old World before the arrival of common bean from Americas. In conclusion, our study highlighted that conservation of landraces is important not only for the cultural and socio-economic value that they have for local communities, but also because the time and conditions in which they have been selected have led to that genetic distinctiveness that is at the basis of many potential agronomical applications and dietary benefits.

  4. Genetic differentiation associated with host plants and geography among six widespread species of South American Blepharoneura fruit flies (Tephritidae).

    PubMed

    Ottens, K; Winkler, I S; Lewis, M L; Scheffer, S J; Gomes-Costa, G A; Condon, M A; Forbes, A A

    2017-04-01

    Tropical herbivorous insects are astonishingly diverse, and many are highly host-specific. Much evidence suggests that herbivorous insect diversity is a function of host plant diversity; yet, the diversity of some lineages exceeds the diversity of plants. Although most species of herbivorous fruit flies in the Neotropical genus Blepharoneura are strongly host-specific (they deposit their eggs in a single host plant species and flower sex), some species are collected from multiple hosts or flowers and these may represent examples of lineages that are diversifying via changes in host use. Here, we investigate patterns of diversification within six geographically widespread Blepharoneura species that have been collected and reared from at least two host plant species or host plant parts. We use microsatellites to (1) test for evidence of local genetic differentiation associated with different sympatric hosts (different plant species or flower sexes) and (2) examine geographic patterns of genetic differentiation across multiple South American collection sites. In four of the six fly species, we find evidence of local genetic differences between flies collected from different hosts. All six species show evidence of geographic structure, with consistent differences between flies collected in the Guiana Shield and flies collected in Amazonia. Continent-wide analyses reveal - in all but one instance - that genetically differentiated flies collected in sympatry from different host species or different sex flowers are not one another's closest relatives, indicating that genetic differences often arise in allopatry before, or at least coincident with, the evolution of novel host use. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  5. Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti–dsDNA Autoantibody Production

    PubMed Central

    Chung, Sharon A.; Taylor, Kimberly E.; Graham, Robert R.; Nititham, Joanne; Lee, Annette T.; Ortmann, Ward A.; Jacob, Chaim O.; Alarcón-Riquelme, Marta E.; Tsao, Betty P.; Harley, John B.; Gaffney, Patrick M.; Moser, Kathy L.; Petri, Michelle; Demirci, F. Yesim; Kamboh, M. Ilyas; Manzi, Susan; Gregersen, Peter K.; Langefeld, Carl D.; Behrens, Timothy W.; Criswell, Lindsey A.

    2011-01-01

    Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti–dsDNA autoantibody production, a SLE–related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti–dsDNA autoantibody positive (anti–dsDNA +, n = 811) and anti–dsDNA autoantibody negative (anti–dsDNA –, n = 906) SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti–dsDNA + SLE. Far fewer and weaker associations were observed for anti–dsDNA – SLE. For example, rs7574865 in STAT4 had an OR for anti–dsDNA + SLE of 1.77 (95% CI 1.57–1.99, p = 2.0E-20) compared to an OR for anti–dsDNA – SLE of 1.26 (95% CI 1.12–1.41, p = 2.4E-04), with pheterogeneity<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti–dsDNA + SLE and were not associated with anti–dsDNA – SLE. In conclusion, we identified differential genetic associations with SLE based on anti–dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti–dsDNA – SLE. PMID

  6. Population genetic structure of rare and endangered plants using molecular markers

    USGS Publications Warehouse

    Raji, Jennifer; Atkinson, Carter T.

    2013-01-01

    This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings

  7. Using genetic data to strengthen causal inference in observational research.

    PubMed

    Pingault, Jean-Baptiste; O'Reilly, Paul F; Schoeler, Tabea; Ploubidis, George B; Rijsdijk, Frühling; Dudbridge, Frank

    2018-06-05

    Causal inference is essential across the biomedical, behavioural and social sciences.By progressing from confounded statistical associations to evidence of causal relationships, causal inference can reveal complex pathways underlying traits and diseases and help to prioritize targets for intervention. Recent progress in genetic epidemiology - including statistical innovation, massive genotyped data sets and novel computational tools for deep data mining - has fostered the intense development of methods exploiting genetic data and relatedness to strengthen causal inference in observational research. In this Review, we describe how such genetically informed methods differ in their rationale, applicability and inherent limitations and outline how they should be integrated in the future to offer a rich causal inference toolbox.

  8. If F(ST) does not measure neutral genetic differentiation, then comparing it with Q(ST) is misleading. Or is it?

    PubMed

    Edelaar, Pim; Björklund, Mats

    2011-05-01

    The comparison between neutral genetic differentiation (F(ST) ) and quantitative genetic differentiation (Q(ST) ) is commonly used to test for signatures of selection in population divergence. However, there is an ongoing discussion about what F(ST) actually measures, even resulting in some alternative metrics to express neutral genetic differentiation. If there is a problem with F(ST) , this could have repercussions for its comparison with Q(ST) as well. We show that as the mutation rate of the neutral marker increases, F(ST) decreases: a higher within-population heterozygosity (He) yields a lower F(ST) value. However, the same is true for Q(ST) : a higher mutation rate for the underlying QTL also results in a lower Q(ST) estimate. The effect of mutation rate is equivalent in Q(ST) and F(ST) . Hence, the comparison between Q(ST) and F(ST) remains valid, if one uses neutral markers whose mutation rates are not too high compared to those of quantitative traits. Usage of highly variable neutral markers such as hypervariable microsatellites can lead to serious biases and the incorrect inference that divergent selection has acted on populations. Much of the discussion on F(ST) seems to stem from the misunderstanding that it measures the differentiation of populations, whereas it actually measures the fixation of alleles. In their capacity as measures of population differentiation, Hedrick's G'(ST) and Jost's D reach their maximum value of 1 when populations do not share alleles even when there remains variation within populations, which invalidates them for comparisons with Q(ST) . © 2011 Blackwell Publishing Ltd.

  9. The new genetics and informed consent: differentiating choice to preserve autonomy.

    PubMed

    Bunnik, Eline M; de Jong, Antina; Nijsingh, Niels; de Wert, Guido M W R

    2013-07-01

    The advent of new genetic and genomic technologies may cause friction with the principle of respect for autonomy and demands a rethinking of traditional interpretations of the concept of informed consent. Technologies such as whole-genome sequencing and micro-array based analysis enable genome-wide testing for many heterogeneous abnormalities and predispositions simultaneously. This may challenge the feasibility of providing adequate pre-test information and achieving autonomous decision-making. At a symposium held at the 11th World Congress of Bioethics in June 2012 (Rotterdam), organized by the International Association of Bioethics, these challenges were presented for three different areas in which these so-called 'new genetics' technologies are increasingly being applied: newborn screening, prenatal screening strategies and commercial personal genome testing. In this article, we build upon the existing ethical framework for a responsible set-up of testing and screening offers and reinterpret some of its criteria in the light of the new genetics. As we will argue, the scope of a responsible testing or screening offer should align with the purpose(s) of testing and with the principle of respect for autonomy for all stakeholders involved, including (future) children. Informed consent is a prerequisite but requires a new approach. We present preliminary and general directions for an individualized or differentiated set-up of the testing offer and for the informed consent process. With this article we wish to contribute to the formation of new ideas on how to tackle the issues of autonomy and informed consent for (public) healthcare and direct-to-consumer applications of the new genetics. © 2013 John Wiley & Sons Ltd.

  10. Great influence of geographic isolation on the genetic differentiation of Myriophyllum spicatum under a steep environmental gradient

    PubMed Central

    Wu, Zhigang; Yu, Dan; Wang, Zhong; Li, Xing; Xu, Xinwei

    2015-01-01

    Understanding how natural processes affect population genetic structures is an important issue in evolutionary biology. One effective method is to assess the relative importance of environmental and geographical factors in the genetic structure of populations. In this study, we examined the spatial genetic variation of thirteen Myriophyllum spicatum populations from the Qinghai-Tibetan Plateau (QTP) and adjacent highlands (Yunnan-Guizhou Plateau, YGP) by using microsatellite loci and environmental and geographical factors. Bioclim layers, hydrological properties and elevation were considered as environmental variables and reduced by principal component analysis. The genetic isolation by geographic distance (IBD) was tested by Mantel tests and the relative importance of environmental variables on population genetic differentiation was determined by a partial Mantel test and multiple matrix regression with randomization (MMRR). Two genetic clusters corresponding to the QTP and YGP were identified. Both tests and MMRR revealed a significant and strong correlation between genetic divergence and geographic isolation under the influence of environmental heterogeneity at the overall and finer spatial scales. Our findings suggested the dominant role of geography on the evolution of M. spicatum under a steep environmental gradient in the alpine landscape as a result of dispersal limitation and genetic drift. PMID:26494202

  11. Genetic differentiation and hybrid identification using microsatellite markers in closely related wild species

    PubMed Central

    Turchetto, Caroline; Segatto, Ana Lúcia A.; Beduschi, Júlia; Bonatto, Sandro L.; Freitas, Loreta B.

    2015-01-01

    Identifying the genetic basis of speciation is critical for understanding the evolutionary history of closely related wild species. Recently diverged species facilitate the study of speciation because many genetic and morphological characteristics are still shared by the organisms under study. The Petunia genus grows in South American grasslands and comprises both recently diverged wild species and commercial species. In this work, we analysed two closely related species: Petunia exserta, which has a narrow endemic range and grows exclusively in rocky shelters, and Petunia axillaris, which is widely distributed and comprises three allopatric subspecies. Petunia axillaris ssp. axillaris and P. exserta occur in sympatry, and putative hybrids between them have been identified. Here, we analysed 14 expressed sequence tag-simple sequence repeats (EST-SSRs) in 126 wild individuals and 13 putative morphological hybrids with the goals of identifying differentially encoded alleles to characterize their natural genetic diversity, establishing a genetic profile for each taxon and to verify the presence of hybridization signal. Overall, 143 alleles were identified and all taxa contained private alleles. Four major groups were identified in clustering analyses, which indicated that there are genetic distinctions among the groups. The markers evaluated here will be useful in evolutionary studies involving these species and may help categorize individuals by species, thus enabling the identification of hybrids between both their putative taxa. The individuals with intermediate morphology presented private alleles of their both putative parental species, although they showed a level of genetic mixing that was comparable with some of the individuals with typical P. exserta morphology. The EST-SSR markers scattered throughout the Petunia genome are very efficient tools for characterizing the genetic diversity in wild taxa of this genus and aid in identifying interspecific hybrids

  12. Genetic Correction and Hepatic Differentiation of Hemophilia B-specific Human Induced Pluripotent Stem Cells.

    PubMed

    He, Qiong; Wang, Hui-Hui; Cheng, Tao; Yuan, Wei-Ping; Ma, Yu-Po; Jiang, Yong-Ping; Ren, Zhi-Hua

    2017-09-27

    Objective To genetically correct a disease-causing point mutation in human induced pluripotent stem cells (iPSCs) derived from a hemophilia B patient. Methods First, the disease-causing mutation was detected by sequencing the encoding area of human coagulation factor IX (F IX) gene. Genomic DNA was extracted from the iPSCs, and the primers were designed to amplify the eight exons of F IX. Next, the point mutation in those iPSCs was genetically corrected using CRISPR/Cas9 technology in the presence of a 129-nucleotide homologous repair template that contained two synonymous mutations. Then, top 8 potential off-target sites were subsequently analyzed using Sanger sequencing. Finally, the corrected clones were differentiated into hepatocyte-like cells, and the secretion of F IX was validated by immunocytochemistry and ELISA assay. Results The cell line bore a missense mutation in the 6 th coding exon (c.676 C>T) of F IX gene. Correction of the point mutation was achieved via CRISPR/Cas9 technology in situ with a high efficacy at about 22% (10/45) and no off-target effects detected in the corrected iPSC clones. F IX secretion, which was further visualized by immunocytochemistry and quantified by ELISA in vitro, reached about 6 ng/ml on day 21 of differentiation procedure. Conclusions Mutations in human disease-specific iPSCs could be precisely corrected by CRISPR/Cas9 technology, and corrected cells still maintained hepatic differentiation capability. Our findings might throw a light on iPSC-based personalized therapies in the clinical application, especially for hemophilia B.

  13. Genetic, epigenetic, and HPLC fingerprint differentiation between natural and ex situ populations of Rhodiola sachalinensis from Changbai Mountain, China.

    PubMed

    Zhao, Wei; Shi, Xiaozheng; Li, Jiangnan; Guo, Wei; Liu, Chengbai; Chen, Xia

    2014-01-01

    Rhodiola sachalinensis is an endangered species with important medicinal value. We used inter-simple sequence repeat (ISSR) and methylation-sensitive amplified polymorphism (MSAP) markers to analyze genetic and epigenetic differentiation in different populations of R. sachalinensis, including three natural populations and an ex situ population. Chromatographic fingerprint was used to reveal HPLC fingerprint differentiation. According to our results, the ex situ population of R. sachalinensis has higher level genetic diversity and greater HPLC fingerprint variation than natural populations, but shows lower epigenetic diversity. Most genetic variation (54.88%) was found to be distributed within populations, and epigenetic variation was primarily distributed among populations (63.87%). UPGMA cluster analysis of ISSR and MSAP data showed identical results, with individuals from each given population grouping together. The results of UPGMA cluster analysis of HPLC fingerprint patterns was significantly different from results obtained from ISSR and MSAP data. Correlation analysis revealed close relationships among altitude, genetic structure, epigenetic structure, and HPLC fingerprint patterns (R2 = 0.98 for genetic and epigenetic distance; R2 = 0.90 for DNA methylation level and altitude; R2 = -0.95 for HPLC fingerprint and altitude). Taken together, our results indicate that ex situ population of R. sachalinensis show significantly different genetic and epigenetic population structures and HPLC fingerprint patterns. Along with other potential explanations, these findings suggest that the ex situ environmental factors caused by different altitude play an important role in keeping hereditary characteristic of R. sachalinensis.

  14. Differential Antidepressant-Like Response to Lithium Treatment between Mouse Strains: Effects of Sex, Maternal Care, and Mixed Genetic Background

    PubMed Central

    Can, Adem; Piantadosi, Sean C.; Gould, Todd D.

    2013-01-01

    Background Lithium is a mood stabilizer with both antidepressant and antimanic properties, though its mechanism of action is unclear. Identifying the genetic factors that influence lithium's therapeutic actions will be an important step to assist in identifying such mechanisms. We previously reported that lithium treatment of male mice has antidepressant-like effects in the C57BL/6J strain but that such effects were absent in the BALB/cJ strain. Objectives To assess the roles of both genetic, and non-genetic factors such as sex and non-shared environmental factors that may mediate differential behavioral responses to lithium. Methods Mice were treated with lithium for ten days and then tested in the forced swim test followed by lithium discontinuation and retesting to assess effects of lithium withdrawal. We also assessed effects of sex and cross-fostering on lithium response between the C57BL/6J and BALB/cJ strains, and antidepressant-like effects of lithium in the hybrid CB6F1/J strain that is derived from C57BL/6J and BALB/cJ parental strains. Results Neither sex nor maternal care significantly influenced the differential antidepressant-like profile of lithium. Withdrawal from lithium treatment reversed antidepressant-like effects in the C57BL/6J strain, but had no effects in BALB/cJ mice. Lithium treatment did not result in antidepressant-like effects in the CB6F1/J strain. Conclusions Genetic factors are likely primarily responsible for differential antidepressant-like effects of lithium in the C57BL/6J and BALB/cJ strains. Future studies identifying such genetic factors may help to elucidate the neurobiological mechanisms of lithium's therapeutic actions. PMID:23503701

  15. Genetics of the Shimokita macaque population suggest an ancient bottleneck.

    PubMed

    Kawamoto, Yoshi; Tomari, Ken-ichiro; Kawai, Shizuka; Kawamoto, Sakie

    2008-01-01

    The macaque population of the Shimokita Peninsula represents the northernmost distribution of this species and is isolated from other populations in the Tohoku region of Japan. A previous protein-based study revealed a high level of genetic variability in this population and considerable differentiation from other populations. In order to reassess the genetic features of the Shimokita macaques, we examined 11 autosomal microsatellite loci and three Y chromosomal microsatellite loci. We observed considerable differentiation from other Japanese populations of macaques, but in contrast to the previous results, we observed significantly lower genetic variability in this population. There was a weak indication of a population bottleneck, suggesting a decay over time from an excess of heterozygotes that might be expected in the initial stages of a bottleneck. This may indicate that an ancient bottleneck occurred during the warm period after the last glacial period rather than a recent bottleneck due to hunting in modern times. The frequencies of private alleles were exceptionally high in the Shimokita population, suggesting that the difference in variability as determined in various studies was due to accidental sampling of marker loci with low power to resolve genetic variations in the protein-based studies. The assessments of interpopulation differentiation as determined using autosomal and Y chromosomal markers were highly correlated, and using both types of markers the Shimokita population was found to be the most differentiated of the study populations, probably due to infrequent gene flow with surrounding populations.

  16. Range-wide genetic differentiation among North American great gray owls (Strix nebulosa) reveals a distinct lineage limited to the Sierra Nevada, California

    Treesearch

    J.M. Hull; J.J. Keane; W.K. Savage; S.A. Godwin; J. Shafer; E.P. Jepsen; R. Gerhardt; C. Stermer; H.B. Ernest

    2010-01-01

    Investigations of regional genetic differentiation are essential for describing phylogeographic patterns and informing management efforts for species of conservation concern. In this context, we investigated genetic diversity and evolutionary relationships among great gray owl (Strix nebulosa) populations in western North America, which...

  17. African diversity from the HLA point of view: influence of genetic drift, geography, linguistics, and natural selection.

    PubMed

    Sanchez-Mazas, A

    2001-09-01

    This study investigates the influence of different evolutionary factors on the patterns of human leukocyte antigen (HLA) genetic diversity within sub-Saharan Africa, and between Africa, Europe, and East Asia. This is done by comparing the significance of several statistics computed on equivalent population data sets tested for two HLA class II loci, DRB1 and DPB1, which strongly differ from each other by the shape of their allelic distributions. Similar results are found for the two loci concerning highly significant correlations between geographic and genetic distances at the world scale, high levels of genetic diversity within sub-Saharan Africa and East Asia, and low within Europe, and low genetic differentiations among the three broad continental areas, with no special divergence of Africa. On the other hand, DPB1 behaves as a neutral polymorphism, although a significant excess of heterozygotes is often observed for DRB1. Whereas the pattern observed for DPB1 is explained by geographic differentiations and genetic drift in isolated populations, balancing selection is likely to have prevented genetic differentiations among populations at the DRB1 locus. However, this selective effect did not disrupt the high correlation found between DRB1 and geography at the world scale, nor between DRB1 and linguistic differentiations at the African level.

  18. Tracing early stages of species differentiation: Ecological, morphological and genetic divergence of Galápagos sea lion populations

    PubMed Central

    2008-01-01

    Background Oceans are high gene flow environments that are traditionally believed to hamper the build-up of genetic divergence. Despite this, divergence appears to occur occasionally at surprisingly small scales. The Galápagos archipelago provides an ideal opportunity to examine the evolutionary processes of local divergence in an isolated marine environment. Galápagos sea lions (Zalophus wollebaeki) are top predators in this unique setting and have an essentially unlimited dispersal capacity across the entire species range. In theory, this should oppose any genetic differentiation. Results We find significant ecological, morphological and genetic divergence between the western colonies and colonies from the central region of the archipelago that are exposed to different ecological conditions. Stable isotope analyses indicate that western animals use different food sources than those from the central area. This is likely due to niche partitioning with the second Galápagos eared seal species, the Galápagos fur seal (Arctocephalus galapagoensis) that exclusively dwells in the west. Stable isotope patterns correlate with significant differences in foraging-related skull morphology. Analyses of mitochondrial sequences as well as microsatellites reveal signs of initial genetic differentiation. Conclusion Our results suggest a key role of intra- as well as inter-specific niche segregation in the evolution of genetic structure among populations of a highly mobile species under conditions of free movement. Given the monophyletic arrival of the sea lions on the archipelago, our study challenges the view that geographical barriers are strictly needed for the build-up of genetic divergence. The study further raises the interesting prospect that in social, colonially breeding mammals additional forces, such as social structure or feeding traditions, might bear on the genetic partitioning of populations. PMID:18485220

  19. Spatial extent of analysis influences observed patterns of population genetic structure in a widespread darter species (Percidae)

    USGS Publications Warehouse

    Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.

    2018-01-01

    Connectivity among stream fish populations allows for exchange of genetic material and helps maintain genetic diversity, adaptive potential and population stability over time. Changes in species demographics and population connectivity have the potential to permanently alter the genetic patterns of stream fish, although these changes through space and time are variable and understudied in small‐bodied freshwater fish.As a spatially widespread, common species of benthic freshwater fish, the variegate darter (Etheostoma variatum) is a model species for documenting how patterns of genetic structure and diversity respond to increasing isolation due to large dams and how scale of study may shape our understanding of these patterns. We sampled variegate darters from 34 sites across their range in the North American Ohio River basin and examined how patterns of genetic structure and diversity within and between populations responded to historical population changes and dams within and between populations.Spatial scale and configuration of genetic structure varied across the eight identified populations, from tributaries within a watershed, to a single watershed, to multiple watersheds that encompass Ohio River mainstem habitats. This multiwatershed pattern of population structuring suggests genetic dispersal across large distances was and may continue to be common, although some populations remain isolated despite no apparent structural dispersal barriers. Populations with low effective population sizes and evidence of past population bottlenecks showed low allelic richness, but diversity patterns were not related to watershed size, a surrogate for habitat availability. Pairwise genetic differentiation (FST) increased with fluvial distance and was related to both historic and contemporary processes. Genetic diversity changes were influenced by underlying population size and stability, and while instream barriers were not strong determinants of genetic structuring or

  20. [Genetic Differentiation of Sockeye Salmon Oncorhynchus nerka from Kamchatka River Basin and the Lake-River Systems of the West Coast of the Bering Sea as Inferred from Data on Single Nucleotide Polymorphism].

    PubMed

    Khrustaleva, A M; Klovach, N V; Vedischeva, E V; Seeb, J E

    2015-10-01

    The variability of 45 single nucleotide polymorphism loci (SNP) was studied in sockeye salmon from the Kamchatka River basin and four lake-river systems of the west coast of the Bering Sea. Based on the genetic differentiation estimates for the largest sockeye salmon populations of Eastern Kamchatka and Chukotka, the examined samples were combined into two regional groups represented by the population of the Kamchatka River drainage, which included numerous local subpopulations and seasonal races, and the northern population grouping from the rivers of Olutorsko-Navarinsky raion, wherein the sockeye salmon from Maynypilginskaya Lake-River system was relatively isolated. Considerable divergence was observed between the island (Sarannoe Lake, Bering Island) and continental populations. Genetic heterogeneity was revealed and groups of early- and late-maturing individuals were isolated in the sample of late-run sockeye salmon from Kamchatka River. In Apuka River, subdivision of the spawning run into two genetically distinct spatial and temporal groupings was also observed. The results suggest that the differentiation of sockeye salmon samples by single nucleotide substitution frequencies was largely due to differences in the direction and strength of local selection at some loci in the population complexes and intrapopulation groupings from the examined river basins of Eastern Kamchatka, Chukotka, and Commander Islands.

  1. Mathematics is differentially related to reading comprehension and word decoding: Evidence from a genetically-sensitive design

    PubMed Central

    Harlaar, Nicole; Kovas, Yulia; Dale, Philip S.; Petrill, Stephen A.; Plomin, Robert

    2013-01-01

    Although evidence suggests that individual differences in reading and mathematics skills are correlated, this relationship has typically only been studied in relation to word decoding or global measures of reading. It is unclear whether mathematics is differentially related to word decoding and reading comprehension. The current study examined these relationships at both a phenotypic and etiological level in a population-based cohort of 5162 twin pairs at age 12. Multivariate genetic analyses of latent phenotypic factors of mathematics, word decoding and reading comprehension revealed substantial genetic and shared environmental correlations among all three domains. However, the phenotypic and genetic correlations between mathematics and reading comprehension were significantly greater than between mathematics and word decoding. Independent of mathematics, there was also evidence for genetic and nonshared environmental links between word decoding and reading comprehension. These findings indicate that word decoding and reading comprehension have partly distinct relationships with mathematics in the middle school years. PMID:24319294

  2. Mathematics is differentially related to reading comprehension and word decoding: Evidence from a genetically-sensitive design.

    PubMed

    Harlaar, Nicole; Kovas, Yulia; Dale, Philip S; Petrill, Stephen A; Plomin, Robert

    2012-08-01

    Although evidence suggests that individual differences in reading and mathematics skills are correlated, this relationship has typically only been studied in relation to word decoding or global measures of reading. It is unclear whether mathematics is differentially related to word decoding and reading comprehension. The current study examined these relationships at both a phenotypic and etiological level in a population-based cohort of 5162 twin pairs at age 12. Multivariate genetic analyses of latent phenotypic factors of mathematics, word decoding and reading comprehension revealed substantial genetic and shared environmental correlations among all three domains. However, the phenotypic and genetic correlations between mathematics and reading comprehension were significantly greater than between mathematics and word decoding. Independent of mathematics, there was also evidence for genetic and nonshared environmental links between word decoding and reading comprehension. These findings indicate that word decoding and reading comprehension have partly distinct relationships with mathematics in the middle school years.

  3. Differential association of family subsystem negativity on siblings' maladjustment: using behavior genetic methods to test process theory.

    PubMed

    Feinberg, Mark E; Reiss, David; Neiderhiser, Jenae M; Hetherington, E Mavis

    2005-12-01

    This study investigated the family context of adolescent sibling similarity and differentiation in maladjustment (antisocial behavior and depression) by examining negativity in different subsystems. Two hypotheses were proposed: (1) Parental and sibling negativity tends to diffuse through the family system, especially because of the high level of reciprocity in sibling relationships, leading to sibling similarity; and (2) interparental (coparenting) conflict disrupts cohesive functioning and thereby motivates and facilitates sibling differentiation and niche picking. To control for the effects of similar genes between siblings, the authors used behavioral genetic models with a genetically informed sample of 720 two-parent families, each with at least 2 adolescent siblings. Results for the differences in shared environmental influences across groups high and low in each of the domains of family negativity provided partial support for the hypotheses. The results further understanding of influences on individual differences and support a theory of how parent-child and interparental relationships intersect with sibling relationship dynamics. Copyright 2006 APA, all rights reserved).

  4. Accurate population genetic measurements require cryptic species identification in corals

    NASA Astrophysics Data System (ADS)

    Sheets, Elizabeth A.; Warner, Patricia A.; Palumbi, Stephen R.

    2018-06-01

    Correct identification of closely related species is important for reliable measures of gene flow. Incorrectly lumping individuals of different species together has been shown to over- or underestimate population differentiation, but examples highlighting when these different results are observed in empirical datasets are rare. Using 199 single nucleotide polymorphisms, we assigned 768 individuals in the Acropora hyacinthus and A. cytherea morphospecies complexes to each of eight previously identified cryptic genetic species and measured intraspecific genetic differentiation across three geographic scales (within reefs, among reefs within an archipelago, and among Pacific archipelagos). We then compared these calculations to estimated genetic differentiation at each scale with all cryptic genetic species mixed as if we could not tell them apart. At the reef scale, correct genetic species identification yielded lower F ST estimates and fewer significant comparisons than when species were mixed, raising estimates of short-scale gene flow. In contrast, correct genetic species identification at large spatial scales yielded higher F ST measurements than mixed-species comparisons, lowering estimates of long-term gene flow among archipelagos. A meta-analysis of published population genetic studies in corals found similar results: F ST estimates at small spatial scales were lower and significance was found less often in studies that controlled for cryptic species. Our results and these prior datasets controlling for cryptic species suggest that genetic differentiation among local reefs may be lower than what has generally been reported in the literature. Not properly controlling for cryptic species structure can bias population genetic analyses in different directions across spatial scales, and this has important implications for conservation strategies that rely on these estimates.

  5. Weak genetic differentiation in cobia, Rachycentron canadum from Indian waters as inferred from mitochondrial DNA ATPase 6 and 8 genes.

    PubMed

    Joy, Linu; Mohitha, C; Divya, P R; Gopalakrishnan, A; Basheer, V S; Jena, J K

    2016-07-01

    Cobia, Rachycentron canadum, is an economically important migratory fish distributed in tropical waters worldwide and is a candidate fish species for aquaculture practices. The genetic stock structure of R. canadum distributed along the Indian waters was identified using mitochondrial ATPase 6 and 8 genes. A total of 842 bp sequence of ATPase 6/8 genes obtained in this study revealed 15 haplotypes with mean low nucleotide diversity (π = 0.001) and high haplotype diversity (h = 0.785). AMOVA indicated the genetic differentiation of 90.47% for individuals within the population. This is well supported by co-efficient of genetic differentiation (FST) values obtained for pairwise populations that were low and non-significant with an overall value of 0.002. The parsimony network tree revealed star-like phylogeny and all the haplotypes were connected with each other by single mutational event. The findings of the present study indicated the panmixia nature of the species which can be managed as a unit stock in Indian waters.

  6. Population genetics and evaluation of genetic evidence for subspecies in the Semipalmated Sandpiper (Calidris pusilla)

    USGS Publications Warehouse

    Miller, Mark P.; Gratto-Trevor, Cheri; Haig, Susan M.; Mizrahi, David S.; Mitchell, Melanie M.; Mullins, Thomas D.

    2013-01-01

    Semipalmated Sandpipers (Calidris pusilla) are among the most common North American shorebirds. Breeding in Arctic North America, this species displays regional differences in migratory pathways and possesses longitudinal bill length variation. Previous investigations suggested that genetic structure may occur within Semipalmated Sandpipers and that three subspecies corresponding to western, central, and eastern breeding groups exist. In this study, mitochondrial control region sequences and nuclear microsatellite loci were used to analyze DNA of birds (microsatellites: n = 120; mtDNA: n = 114) sampled from seven North American locations. Analyses designed to quantify genetic structure and diversity patterns, evaluate genetic evidence for population size changes, and determine if genetic data support the existence of Semipalmated Sandpiper subspecies were performed. Genetic structure based only on the mtDNA data was observed, whereas the microsatellite loci provided no evidence of genetic differentiation. Differentiation among locations and regions reflected allele frequency differences rather than separate phylogenetic groups, and similar levels of genetic diversity were noted. Combined, the two data sets provided no evidence to support the existence of subspecies and were not useful for determining migratory connectivity between breeding sites and wintering grounds. Birds from western and central groups displayed signatures of population expansions, whereas the eastern group was more consistent with a stable overall population. Results of this analysis suggest that the eastern group was the source of individuals that colonized the central and western regions currently utilized by Semipalmated Sandpipers.

  7. Genetic, Epigenetic, and HPLC Fingerprint Differentiation between Natural and Ex Situ Populations of Rhodiola sachalinensis from Changbai Mountain, China

    PubMed Central

    Zhao, Wei; Shi, Xiaozheng; Li, Jiangnan; Guo, Wei; Liu, Chengbai; Chen, Xia

    2014-01-01

    Rhodiola sachalinensis is an endangered species with important medicinal value. We used inter-simple sequence repeat (ISSR) and methylation-sensitive amplified polymorphism (MSAP) markers to analyze genetic and epigenetic differentiation in different populations of R. sachalinensis, including three natural populations and an ex situ population. Chromatographic fingerprint was used to reveal HPLC fingerprint differentiation. According to our results, the ex situ population of R. sachalinensis has higher level genetic diversity and greater HPLC fingerprint variation than natural populations, but shows lower epigenetic diversity. Most genetic variation (54.88%) was found to be distributed within populations, and epigenetic variation was primarily distributed among populations (63.87%). UPGMA cluster analysis of ISSR and MSAP data showed identical results, with individuals from each given population grouping together. The results of UPGMA cluster analysis of HPLC fingerprint patterns was significantly different from results obtained from ISSR and MSAP data. Correlation analysis revealed close relationships among altitude, genetic structure, epigenetic structure, and HPLC fingerprint patterns (R2 = 0.98 for genetic and epigenetic distance; R2 = 0.90 for DNA methylation level and altitude; R2 = –0.95 for HPLC fingerprint and altitude). Taken together, our results indicate that ex situ population of R. sachalinensis show significantly different genetic and epigenetic population structures and HPLC fingerprint patterns. Along with other potential explanations, these findings suggest that the ex situ environmental factors caused by different altitude play an important role in keeping hereditary characteristic of R. sachalinensis. PMID:25386983

  8. Medulloblastoma with myogenic and/or melanotic differentiation does not align immunohistochemically with the genetically defined molecular subgroups.

    PubMed

    Gupta, Kirti; Jogunoori, Swathi; Satapathy, Ayusman; Salunke, Pravin; Kumar, Narendra; Radotra, Bishan Dass; Vasishta, Rakesh Kumar

    2018-05-01

    The World Health Organization classification of central nervous system neoplasms (2016 update) recognizes 4 histological variants and genetically defined molecular subgroups within medulloblastoma (MB). MB with myogenic differentiation is one of the rare variants, which is usually recognized as a pattern alongside the known histological variants. Because of its rarity, less is known about its molecular landscape and importantly about its placement in the current molecular schema. We aimed to analyze this rare variant for expression of 3 immunohistochemical markers conventionally used in molecular stratification of MB. Demographic profile and imaging details with survival outcome were also analyzed. Sixty-five MB cases were molecularly stratified using immunohistochemical markers (YAP1, GAB1, β-catenin). MB with myogenic differentiation and MB cases showing variable immunoreactivity with the above 3 antibodies were further evaluated for smooth muscle actin, desmin, myogenin, and HMB45. Seven cases were categorized as MB with myogenic and/or melanotic differentiation. Age ranged from 2 to 40 years with a male-to-female ratio of 1:1.3. In 4 cases, myogenic or melanotic differentiation was evident on histology, whereas in 3, differentiation was highlighted only with muscle markers. Interestingly, all 7 cases showed variable immunoreactivity with 3 molecular markers and did not follow the conventionally accepted algorithm used for molecular stratification. Follow-up period ranged from 9 to 57 months. Overall survival revealed a varied pattern, with 3 deaths and 4 patients being alive with no evidence of disease at last follow-up. Our results provide evidence that these variants are distinct and do not align immunohistochemically with the currently recognized genetic subgroups. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Genetic differentiation in spite of high gene flow in the dominant rainforest tree of southeastern Australia, Nothofagus cunninghamii.

    PubMed

    Duncan, C J; Worth, J R P; Jordan, G J; Jones, R C; Vaillancourt, R E

    2016-01-01

    Nothofagus cunninghamii is a long-lived, wind-pollinated tree species that dominates the cool temperate rainforests of southeastern Australia. The species' distribution is more or less continuous in western Tasmania but is fragmented elsewhere. However, it is unknown whether this fragmentation has affected the species' genetic architecture. Thus, we examined N. cunninghamii using 12 nuclear microsatellites and 633 individuals from 18 populations spanning the species' natural range. Typical of wind-pollinated trees, there was low range-wide genetic structure (FST=0.04) consistent with significant gene flow across most of the species' range. However, gene flow was not high enough to overcome the effects of drift across some disjunctions. Victorian populations (separated from Tasmania by the 240 km wide Bass Strait) formed a genetic group distinct from Tasmanian populations, had lower diversity (mean allelic richness (Ar)=5.4 in Victoria versus 6.9 in Tasmania) and were significantly more differentiated from one another than those in Tasmania (FST=0.045 in Victoria versus 0.012 in Tasmania). Evidence for bottlenecking was found in small populations that were at least 20 km from other populations. Interestingly, we found little divergence in microsatellite markers between the extremes of genetically based morphological and physiological altitudinal clines suggesting adaptive differentiation is strongly driven by selection because it is likely to be occurring in the presence of gene flow. Even though the cool temperate rainforests of Australia are highly relictual, the species is relatively robust to population fragmentation due to high levels of genetic diversity and gene flow, especially in Tasmania.

  10. Geographical distance and local environmental conditions drive the genetic population structure of a freshwater microalga (Bathycoccaceae; Chlorophyta) in Patagonian lakes.

    PubMed

    Fernández, Leonardo D; Hernández, Cristián E; Schiaffino, M Romina; Izaguirre, Irina; Lara, Enrique

    2017-10-01

    The patterns and mechanisms underlying the genetic structure of microbial populations remain unresolved. Herein we investigated the role played by two non-mutually exclusive models (i.e. isolation by distance and isolation by environment) in shaping the genetic structure of lacustrine populations of a microalga (a freshwater Bathycoccaceae) in the Argentinean Patagonia. To our knowledge, this was the first study to investigate the genetic population structure in a South American microorganism. Population-level analyses based on ITS1-5.8S-ITS2 sequences revealed high levels of nucleotide and haplotype diversity within and among populations. Fixation index and a spatially explicit Bayesian analysis confirmed the occurrence of genetically distinct microalga populations in Patagonia. Isolation by distance and isolation by environment accounted for 38.5% and 17.7% of the genetic structure observed, respectively, whereas together these models accounted for 41% of the genetic differentiation. While our results highlighted isolation by distance and isolation by environment as important mechanisms in driving the genetic population structure of the microalga studied, none of these models (either alone or together) could explain the entire genetic differentiation observed. The unexplained variation in the genetic differentiation observed could be the result of founder events combined with rapid local adaptations, as proposed by the monopolisation hypothesis. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Insight into podocyte differentiation from the study of human genetic disease: nail-patella syndrome and transcriptional regulation in podocytes.

    PubMed

    Morello, Roy; Lee, Brendan

    2002-05-01

    In recent years, our understanding of the molecular basis of kidney development has benefited from the study of rare genetic diseases affecting renal function. This has especially been the case with the differentiation of the highly specialized podocyte in the pathogenesis of human disorders and mouse phenotypes affecting the renal filtration barrier. This filtration barrier represents the end product of a complex series of signaling events that produce a tripartite structure consisting of interdigitating podocyte foot processes with intervening slit diaphragms, the glomerular basement membrane, and the fenestrated endothelial cell. Dysregulation of unique cytoskeletal and extracellular matrix proteins in genetic forms of nephrotic syndrome has shown how specific structural proteins contribute to podocyte function and differentiation. However, much less is known about the transcriptional determinants that both specify and maintain this differentiated cell. Our studies of a skeletal malformation syndrome, nail-patella syndrome, have shown how the LIM homeodomain transcription factor, Lmx1b, contributes to transcriptional regulation of glomerular basement membrane collagen expression by podocytes. Moreover, they raise intriguing questions about more global transcriptional regulation of podocyte morphogenesis.

  12. Large genetic differentiation and low variation in vector competence for dengue and yellow fever viruses of Aedes albopictus from Brazil, the United States, and the Cayman Islands.

    PubMed

    Lourenço de Oliveira, Ricardo; Vazeille, Marie; de Filippis, Ana Maria Bispo; Failloux, Anna-Bella

    2003-07-01

    We conducted a population genetic analysis of Aedes albopictus collected from 20 sites in Brazil, the United States (Florida, Georgia, and Illinois), and the Cayman Islands. Using isoenzyme analysis, we examined genetic diversity and patterns of gene flow. High genetic differentiation was found among Brazilian samples, and between them and North American samples. Regression analysis of genetic differentiation according to geographic distances indicated that Ae. albopictus samples from Florida were genetically isolated by distance. Infection rates with dengue and yellow fever viruses showed greater differences between two Brazilian samples than between the two North American samples or between a Brazilian sample and a North American sample. Introductions and establishments of new Ae. albopictus populations in the Americas are still in progress, shaping population genetic composition and potentially modifying both dengue and yellow fever transmission patterns.

  13. Population genetic structure of Diaphorina citri Kuwayama (Hemiptera: Liviidae): host-driven genetic differentiation in China.

    PubMed

    Meng, Lixue; Wang, Yongmo; Wei, Wen-Hua; Zhang, Hongyu

    2018-01-24

    The Asian citrus psyllid Diaphorina citri Kuwayama is a major pest in citrus production, transmitting Candidatus Liberibacter asiaticus. It has spread widely across eastern and southern China. Unfortunately, little is known about the genetic diversity and population structure of D. citri, making pest control difficult. In this study, nine specifically developed SSR markers and three known mitochondrial DNA were used for population genetics study of D. citri using 225 samples collected from all 7 distribution regions in China. Based on the SSR data, D. citri was found highly diverse with a mean observed heterozygosity of 0.50, and three subgroups were structured by host plant: (i) Shatangju, NF mandarin and Ponkan; (ii) Murraya paniculata and Lemon; (iii) Citrus unshiu, Bingtangcheng, Summer orange and Navel. No significant genetic differences were found with mtDNA data. We suggested the host-associated divergence is likely to have occurred very recently. A unimodal distribution of paired differences, the negative and significant Tajima's D and Fu's F S parameters among mtDNA suggested a recent demographic expansion. The extensive citrus cultivation and increased suitable living habitat was recommended as a key for this expansion event.

  14. Tracing the first step to speciation: ecological and genetic differentiation of a salamander population in a small forest.

    PubMed

    Steinfartz, Sebastian; Weitere, Markus; Tautz, Diethard

    2007-11-01

    Mechanisms and processes of ecologically driven adaptive speciation are best studied in natural situations where the splitting process is still occurring, i.e. before complete reproductive isolation is achieved. Here, we present a case of an early stage of adaptive differentiation under sympatric conditions in the fire salamander, Salamandra salamandra, that allows inferring the underlying processes for the split. Larvae of S. salamandra normally mature in small streams until metamorphosis, but in an old, continuous forest area near Bonn (the Kottenforst), we found salamander larvae not only in small streams but also in shallow ponds, which are ecologically very different from small streams. Common-environment experiments with larvae from both habitat types reveal specific adaptations to these different ecological conditions. Mitochondrial and microsatellite analyses show that the two ecologically differentiated groups also show signs of genetic differentiation. A parallel analysis of animals from a neighbouring much larger forest area (the Eifel), in which larvae mature only in streams, shows no signs of genetic differentiation, indicating that gene flow between ecologically similar types can occur over large distances. Hence, geographical factors cannot explain the differential larval habitat adaptations in the Kottenforst, in particular since adult life and mating of S. salamandra is strictly terrestrial and not associated with larval habitats. We propose therefore that the evolution of these adaptations was coupled with the evolution of cues for assortative mating which would be in line with models of sympatric speciation that suggest a co-evolution of habitat adaptations and associated mating signals.

  15. Genetic implications of bottleneck effects of differing severities on genetic diversity in naturally recovering populations: An example from Hawaiian coot and Hawaiian gallinule

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Wilson, Robert E.; Underwood, Jared G.

    2017-01-01

    The evolutionary trajectory of populations through time is influenced by the interplay of forces (biological, evolutionary, and anthropogenic) acting on the standing genetic variation. We used microsatellite and mitochondrial loci to examine the influence of population declines, of varying severity, on genetic diversity within two Hawaiian endemic waterbirds, the Hawaiian coot and Hawaiian gallinule, by comparing historical (samples collected in the late 1800s and early 1900s) and modern (collected in 2012–2013) populations. Population declines simultaneously experienced by Hawaiian coots and Hawaiian gallinules differentially shaped the evolutionary trajectory of these two populations. Within Hawaiian coot, large reductions (between −38.4% and −51.4%) in mitochondrial diversity were observed, although minimal differences were observed in the distribution of allelic and haplotypic frequencies between sampled time periods. Conversely, for Hawaiian gallinule, allelic frequencies were strongly differentiated between time periods, signatures of a genetic bottleneck were detected, and biases in means of the effective population size were observed at microsatellite loci. The strength of the decline appears to have had a greater influence on genetic diversity within Hawaiian gallinule than Hawaiian coot, coincident with the reduction in census size. These species exhibit similar life history characteristics and generation times; therefore, we hypothesize that differences in behavior and colonization history are likely playing a large role in how allelic and haplotypic frequencies are being shaped through time. Furthermore, differences in patterns of genetic diversity within Hawaiian coot and Hawaiian gallinule highlight the influence of demographic and evolutionary processes in shaping how species respond genetically to ecological stressors.

  16. Elucidating the multiple genetic lineages and population genetic structure of the brooding coral Seriatopora (Scleractinia: Pocilloporidae) in the Ryukyu Archipelago

    NASA Astrophysics Data System (ADS)

    Nakajima, Yuichi; Nishikawa, Akira; Iguchi, Akira; Nagata, Tomofumi; Uyeno, Daisuke; Sakai, Kazuhiko; Mitarai, Satoshi

    2017-06-01

    The elucidation of species diversity and connectivity is essential for conserving coral reef communities and for understanding the characteristics of coral populations. To assess the species diversity, intraspecific genetic diversity, and genetic differentiation among populations of the brooding coral Seriatopora spp., we conducted phylogenetic and population genetic analyses using a mitochondrial DNA control region and microsatellites at ten sites in the Ryukyu Archipelago, Japan. At least three genetic lineages of Seriatopora (Seriatopora-A, -B, and -C) were detected in our specimens. We collected colonies morphologically similar to Seriatopora hystrix, but these may have included multiple, genetically distinct species. Although sexual reproduction maintains the populations of all the genetic lineages, Seriatopora-A and Seriatopora-C had lower genetic diversity than Seriatopora-B. We detected significant genetic differentiation in Seriatopora-B among the three populations as follows: pairwise F ST = 0.064-0.116 (all P = 0.001), pairwise G''ST = 0.107-0.209 (all P = 0.001). Additionally, only one migrant from an unsampled population was genetically identified within Seriatopora-B. Because the peak of the settlement of Seriatopora larvae is within 1 d and almost all larvae are settled within 5 d of spawning, our observations may be related to low dispersal ability. Populations of Seriatopora in the Ryukyu Archipelago will probably not recover unless there is substantial new recruitment from distant populations.

  17. Lifting the Differentiation Embargo.

    PubMed

    Latif, Anne-Louise; Holyoake, Tessa L

    2016-09-22

    Effective differentiation therapy for acute myeloid leukemia (AML) has been restricted to a small subset of patients with one defined genetic abnormality. Using an unbiased small molecule screen, Sykes et al. now identify a mechanism of de-repression of differentiation in several models of AML driven by distinct genetic drivers. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Clustering and genetic differentiation of the normocyte binding protein (nbpxa) of Plasmodium knowlesi clinical isolates from Peninsular Malaysia and Malaysia Borneo.

    PubMed

    Ahmed, Md Atique; Fong, Mun Yik; Lau, Yee Ling; Yusof, Ruhani

    2016-04-26

    The zoonotic malaria parasite Plasmodium knowlesi has become an emerging threat to South East Asian countries particular in Malaysia. A recent study from Sarawak (Malaysian Borneo) discovered two distinct normocyte binding protein xa (Pknbpxa) types of P. knowlesi. In the present study, the Pknbpxa of clinical isolates from Peninsular Malaysia and Sabah (Malaysian Borneo) were investigated for the presence of Pknbpxa types and natural selection force acting on the gene. Blood samples were collected from 47 clinical samples from Peninsular Malaysia (n = 35) and Sabah (Malaysian Borneo, n = 12) were used in the study. The Pknbpxa gene was successfully amplified and directly sequenced from 38 of the samples (n = 31, Peninsular Malaysia and n = 7, Sabah, Malaysian Borneo). The Pknbpxa sequences of P. knowlesi isolates from Sarawak (Malaysian Borneo) were retrieved from GenBank and included in the analysis. Polymorphism, genetic diversity and natural selection of Pknbpxa sequences were analysed using DNAsp v 5.10, MEGA5. Phylogentics of Pknbpxa sequences was analysed using MrBayes v3.2 and Splits Tree v4.13.1. The pairwise F ST indices were used to determine the genetic differentiation between the Pknbpxa types and was calculated using Arlequin 3.5.1.3. Analyses of the sequences revealed Pknbpxa dimorphism throughout Malaysia indicating co-existence of the two types (Type-1 and Type-2) of Pknbpxa. More importantly, a third type (Type 3) closely related to Type 2 Pknbpxa was also detected. This third type was found only in the isolates originating from Peninsular Malaysia. Negative natural selection was observed, suggesting functional constrains within the Pknbpxa types. This study revealed the existence of three Pknbpxa types in Malaysia. Types 1 and 2 were found not only in Malaysian Borneo (Sarawak and Sabah) but also in Peninsular Malaysia. A third type which was specific only to samples originating from Peninsular Malaysia was discovered. Further genetic

  19. Genetic Variation and Population Differentiation in a Medical Herb Houttuynia cordata in China Revealed by Inter-Simple Sequence Repeats (ISSRs)

    PubMed Central

    Wei, Lin; Wu, Xian-Jin

    2012-01-01

    Houttuynia cordata is an important traditional Chinese herb with unresolved genetics and taxonomy, which lead to potential problems in the conservation and utilization of the resource. Inter-simple sequence repeat (ISSR) markers were used to assess the level and distribution of genetic diversity in 226 individuals from 15 populations of H. cordata in China. ISSR analysis revealed low genetic variations within populations but high genetic differentiations among populations. This genetic structure probably mainly reflects the historical association among populations. Genetic cluster analysis showed that the basal clade is composed of populations from Southwest China, and the other populations have continuous and eastward distributions. The structure of genetic diversity in H. cordata demonstrated that this species might have survived in Southwest China during the glacial age, and subsequently experienced an eastern postglacial expansion. Based on the results of genetic analysis, it was proposed that as many as possible targeted populations for conservation be included. PMID:22942696

  20. Genetic variation and population differentiation in a medical herb Houttuynia cordata in China revealed by inter-simple sequence repeats (ISSRs).

    PubMed

    Wei, Lin; Wu, Xian-Jin

    2012-01-01

    Houttuynia cordata is an important traditional Chinese herb with unresolved genetics and taxonomy, which lead to potential problems in the conservation and utilization of the resource. Inter-simple sequence repeat (ISSR) markers were used to assess the level and distribution of genetic diversity in 226 individuals from 15 populations of H. cordata in China. ISSR analysis revealed low genetic variations within populations but high genetic differentiations among populations. This genetic structure probably mainly reflects the historical association among populations. Genetic cluster analysis showed that the basal clade is composed of populations from Southwest China, and the other populations have continuous and eastward distributions. The structure of genetic diversity in H. cordata demonstrated that this species might have survived in Southwest China during the glacial age, and subsequently experienced an eastern postglacial expansion. Based on the results of genetic analysis, it was proposed that as many as possible targeted populations for conservation be included.

  1. Genetic architecture and balancing selection: the life and death of differentiated variants.

    PubMed

    Llaurens, Violaine; Whibley, Annabel; Joron, Mathieu

    2017-05-01

    Balancing selection describes any form of natural selection, which results in the persistence of multiple variants of a trait at intermediate frequencies within populations. By offering up a snapshot of multiple co-occurring functional variants and their interactions, systems under balancing selection can reveal the evolutionary mechanisms favouring the emergence and persistence of adaptive variation in natural populations. We here focus on the mechanisms by which several functional variants for a given trait can arise, a process typically requiring multiple epistatic mutations. We highlight how balancing selection can favour specific features in the genetic architecture and review the evolutionary and molecular mechanisms shaping this architecture. First, balancing selection affects the number of loci underlying differentiated traits and their respective effects. Control by one or few loci favours the persistence of differentiated functional variants by limiting intergenic recombination, or its impact, and may sometimes lead to the evolution of supergenes. Chromosomal rearrangements, particularly inversions, preventing adaptive combinations from being dissociated are increasingly being noted as features of such systems. Similarly, due to the frequency of heterozygotes maintained by balancing selection, dominance may be a key property of adaptive variants. High heterozygosity and limited recombination also influence associated genetic load, as linked recessive deleterious mutations may be sheltered. The capture of deleterious elements in a locus under balancing selection may reinforce polymorphism by further promoting heterozygotes. Finally, according to recent genomewide scans, balanced polymorphism might be more pervasive than generally thought. We stress the need for both functional and ecological studies to characterize the evolutionary mechanisms operating in these systems. © 2017 John Wiley & Sons Ltd.

  2. Genetic variation and bill size dimorphism in a passerine bird, the reed bunting Emberiza schoeniclus.

    PubMed

    Grapputo, A; Pilastro, A; Marin, G

    1998-09-01

    In passerine birds morphological differentiation in bill size within species is not commonly observed. Bill size is usually associated with a trophic niche, and strong differences in it may reflect the process of genetic differentiation and, possibly, speciation. We used both mitochondrial DNA (mtDNA) and nuclear microsatellites to study genetic variation between two subspecies of reed bunting, Emberiza schoeniclus schoeniclus and E.s. intermedia, along their distributional boundary in western Europe. These two subspecies are characterized by a high dimorphism in bill size and, although breeding populations of the two subspecies are found very close to each other in northern Italy, apparently no interbreeding occurs. The observed morphological pattern between the two subspecies may be maintained by geographically varying selective forces or, alternatively, may be the result of a long geographical separation followed by a secondary contact. MtDNA sequences of cytochrome b and ND5 (515 bp) showed little variation and did not discriminate between the two subspecies, indicating a divergence time of less than 500 000 years. The analysis of four microsatellite loci suggested a clear, although weak, degree of genetic differentiation in the large- and small-billed populations, as indicated by FST and RST values and genetic distances. The correlation between bill size and genetic distance between populations remained significant after accounting for the geographical distances between sampling localities. Altogether, these results indicate a very recent genetic differentiation between the two bill morphs and suggest that a strong selection for large bills in the southern part of the breeding range is probably involved in maintaining the geographical differentiation of this species.

  3. Genetic differentiation and forensic efficiency evaluation for Chinese Salar ethnic minority based on a 5-dye multiplex insertion and deletion panel.

    PubMed

    Ma, Ruilin; Shen, Chunmei; Wei, Yuanyuan; Jin, Xiaoye; Guo, Yuxin; Mu, Yuling; Sun, Siqi; Chen, Chong; Cui, Wei; Wei, Zhaoming; Lian, Zhenmin

    2018-06-20

    The present study investigated the genetic diversities of 30 autosomal insertion and deletion (InDel) loci of Investigator DIPplex kit (Qiagen) in Chinese Salar ethnic minority and explored the genetic relationships between the studied Salar group and other populations. The allelic frequencies of deletion alleles at the 30 InDel loci were in the range of 0.1739 (HLD64) to 0.8478 (HLD39). The discrimination power, polymorphism information content and probability of exclusion ranged from 0.4101 (HLD39) to 0.6447 (HLD136), 0.2247 (HLD39) to 0.3750 (HLD92) and 0.0400 (HLD39) to 0.2806 (HLD92), respectively. The observed and expected heterozygosity were in the range of 0.2348 (HLD39) to 0.5913 (HLD92), and 0.2580 (HLD39) to 0.5000 (HLD92), respectively. The cumulative discrimination power and probability of exclusion of the 30 loci reached 0.999999999993418 and 0.99039, respectively. The results of population genetic differentiation comparisons revealed that Salar group had similar allele distributions with Qinghai Tibetan, Xibe and Yi groups. Population Bayesian cluster analysis showed that there were similar ancestry components between Salar group and most Chinese populations. Besides, the principal components analysis and phylogenetic reconstructions further indicated that Salar group had intimate genetic relationships with Qinghai Tibetan and Xibe groups. In short, the results of the current studies indicated the genetic distributions of the 30 InDel loci in Salar group were relatively high genetic polymorphisms, which could be used in forensic individual identifications and as a supplementary tool for complex paternity testing. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Genetic variation and differentiation of bison (Bison bison) subspecies and cattle (Bos taurus) breeds and subspecies.

    PubMed

    Cronin, Matthew A; MacNeil, Michael D; Vu, Ninh; Leesburg, Vicki; Blackburn, Harvey D; Derr, James N

    2013-01-01

    The genetic relationship of American plains bison (Bison bison bison) and wood bison (Bison bison athabascae) was quantified and compared with that among breeds and subspecies of cattle. Plains bison from 9 herds (N = 136), wood bison from 3 herds (N = 65), taurine cattle (Bos taurus taurus) from 14 breeds (N = 244), and indicine cattle (Bos taurus indicus) from 2 breeds (N = 53) were genotyped for 29 polymorphic microsatellite loci. Bayesian cluster analyses indicate 3 groups, 2 of which are plains bison and 1 of which is wood bison with some admixture, and genetic distances do not show plains bison and wood bison as distinct groups. Differentiation of wood bison and plains bison is also significantly less than that of cattle breeds and subspecies. These and other genetic data and historical interbreeding of bison do not support recognition of extant plains bison and wood bison as phylogenetically distinct subspecies.

  5. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits.

    PubMed

    Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu

    2016-12-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.

  6. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits

    PubMed Central

    Yadav, Anupama; Dhole, Kaustubh

    2016-01-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852

  7. Epigenetic and genetic variation among three separate introductions of the house sparrow (Passer domesticus) into Australia

    PubMed Central

    Schrey, A.; Ragsdale, A.; Griffith, S. C.

    2018-01-01

    Invasive populations are often associated with low levels of genetic diversity owing to population bottlenecks at the initial stages of invasion. Despite this, the ability of invasive species to adapt rapidly in response to novel environments is well documented. Epigenetic mechanisms have recently been proposed to facilitate the success of invasive species by compensating for reduced levels of genetic variation. Here, we use methylation sensitive-amplification fragment length polymorphism and microsatellite analyses to compare levels of epigenetic and genetic diversity and differentiation across 15 sites in the introduced Australian house sparrow population. We find patterns of epigenetic and genetic differentiation that are consistent with historical descriptions of three distinct, introductions events. However unlike genetic differentiation, epigenetic differentiation was higher among sample sites than among invasion clusters, suggesting that patterns of epigenetic variation are more strongly influenced by local environmental stimuli or sequential founder events than the initial diversity in the introduction population. Interestingly, we fail to detect correlations between pairwise site comparisons of epigenetic and genetic differentiation, suggesting that some of the observed epigenetic variation has arisen independently of genetic variation. We also fail to detect the potentially compensatory relationship between epigenetic and genetic diversity that has been detected in a more recent house sparrow invasion in Africa. We discuss the potential for this relationship to be obscured by recovered genetic diversity in more established populations, and highlight the importance of incorporating introduction history into population-wide epigenetic analyses. PMID:29765671

  8. Genetic differentiation in natural populations of Lutzomyia longipalpis (Lutz & Neiva) (Diptera: Psychodidae) with different phenotypic spot patterns on tergites in males.

    PubMed

    Silva, M H; Nascimento, M D S B; Leonardo, F S; Rebêlo, J M M; Pereira, S R F

    2011-01-01

    Entomological surveys in the state of Maranhão have recorded morphologically distinct populations of Lutzomyia longipalpis (Lutz & Neiva). Some populations have one pair of spots (1S) on the fourth tergite, while others have two pairs (2S) on the third and fourth tergites of males. In the present study we investigated the degree of genetic polymorphism among four populations in the municipalities of Caxias, Codó and Raposa, in the state of Maranhão, Brazil, by using RAPD (Random Amplified Polymorphic DNA) markers. A total of 35 loci were identified, of which 30 were polymorphic. The highest polymorphism was observed with primer OPA 4, which produced 11 different profiles. Genetic diversity was assessed using grouping methods that produced a dendrogram in which the genotypes could be clearly separated into two main clades according to the number of spots on the male abdominal tergites. One cluster contained the populations from Caxias and Codó, and the other was formed by the populations from Raposa and Codó. The results of our RAPD analysis showed a clear separation between the populations with one and two pairs of spots. The epidemiologic significance of this genetic differentiation should be investigated in future studies.

  9. Immunogenetic Variation and Differential Pathogen Exposure in Free-Ranging Cheetahs across Namibian Farmlands

    PubMed Central

    Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Hofer, Heribert; Sommer, Simone

    2012-01-01

    Background Genes under selection provide ecologically important information useful for conservation issues. Major histocompatibility complex (MHC) class I and II genes are essential for the immune defence against pathogens from intracellular (e.g. viruses) and extracellular (e.g. helminths) origins, respectively. Serosurvey studies in Namibian cheetahs (Acinonyx juabuts) revealed higher exposure to viral pathogens in individuals from north-central than east-central regions. Here we examined whether the observed differences in exposure to viruses influence the patterns of genetic variation and differentiation at MHC loci in 88 free-ranging Namibian cheetahs. Methodology/Principal Findings Genetic variation at MHC I and II loci was assessed through single-stranded conformation polymorphism (SSCP) analysis and sequencing. While the overall allelic diversity did not differ, we observed a high genetic differentiation at MHC class I loci between cheetahs from north-central and east-central Namibia. No such differentiation in MHC class II and neutral markers were found. Conclusions/Significance Our results suggest that MHC class I variation mirrors the variation in selection pressure imposed by viruses in free-ranging cheetahs across Namibian farmland. This is of high significance for future management and conservation programs of this species. PMID:23145096

  10. Immunogenetic variation and differential pathogen exposure in free-ranging cheetahs across Namibian farmlands.

    PubMed

    Castro-Prieto, Aines; Wachter, Bettina; Melzheimer, Joerg; Thalwitzer, Susanne; Hofer, Heribert; Sommer, Simone

    2012-01-01

    Genes under selection provide ecologically important information useful for conservation issues. Major histocompatibility complex (MHC) class I and II genes are essential for the immune defence against pathogens from intracellular (e.g. viruses) and extracellular (e.g. helminths) origins, respectively. Serosurvey studies in Namibian cheetahs (Acinonyx juabuts) revealed higher exposure to viral pathogens in individuals from north-central than east-central regions. Here we examined whether the observed differences in exposure to viruses influence the patterns of genetic variation and differentiation at MHC loci in 88 free-ranging Namibian cheetahs. Genetic variation at MHC I and II loci was assessed through single-stranded conformation polymorphism (SSCP) analysis and sequencing. While the overall allelic diversity did not differ, we observed a high genetic differentiation at MHC class I loci between cheetahs from north-central and east-central Namibia. No such differentiation in MHC class II and neutral markers were found. Our results suggest that MHC class I variation mirrors the variation in selection pressure imposed by viruses in free-ranging cheetahs across Namibian farmland. This is of high significance for future management and conservation programs of this species.

  11. Genetic differentiation of Mexican Holstein cattle and its relationship with Canadian and U.S. Holsteins

    PubMed Central

    García-Ruiz, Adriana; Ruiz-López, Felipe de J.; Van Tassell, Curtis P.; Montaldo, Hugo H.; Huson, Heather J.

    2015-01-01

    The Mexican Holstein (HO) industry has imported Canadian and US (CAN + USA) HO germplasm for use in two different production systems, the conventional (Conv) and the low income (Lowi) system. The objective of this work was to study the genetic composition and differentiation of the Mexican HO cattle, considering the production system in which they perform and their relationship with the Canadian and US HO populations. The analysis included information from 149, 303, and 173 unrelated or with unknown pedigree HO animals from the Conv, Lowi, and CAN + USA populations, respectively. Canadian and US Jersey (JE) and Brown Swiss (BS) genotypes (162 and 86, respectively) were used to determine if Mexican HOs were hybridized with either of these breeds. After quality control filtering, a total of 6,617 out of 6,836 single nucleotide polymorphism markers were used. To describe the genetic diversity across the populations, principal component (PC), admixture composition, and linkage disequilibrium (LD; r2) analyses were performed. Through the PC analysis, HO × JE and HO × BS crossbreeding was detected in the Lowi system. The Conv system appeared to be in between Lowi and CAN + USA populations. Admixture analysis differentiated between the genetic composition of the Conv and Lowi systems, and five ancestry groups associated to sire’s country of origin were identified. The minimum distance between markers to estimate a useful LD was found to be 54.5 kb for the Mexican HO populations. At this average distance, the persistence of phase across autosomes of Conv and Lowi systems was 0.94, for Conv and CAN + USA was 0.92 and for the Lowi and CAN + USA was 0.91. Results supported the flow of germplasm among populations being Conv a source for Lowi, and dependent on migration from CAN + USA. Mexican HO cattle in Conv and Lowi populations share common ancestry with CAN + USA but have different genetic signatures. PMID:25709615

  12. Genetic differentiation of Mexican Holstein cattle and its relationship with Canadian and U.S. Holsteins.

    PubMed

    García-Ruiz, Adriana; Ruiz-López, Felipe de J; Van Tassell, Curtis P; Montaldo, Hugo H; Huson, Heather J

    2015-01-01

    The Mexican Holstein (HO) industry has imported Canadian and US (CAN + USA) HO germplasm for use in two different production systems, the conventional (Conv) and the low income (Lowi) system. The objective of this work was to study the genetic composition and differentiation of the Mexican HO cattle, considering the production system in which they perform and their relationship with the Canadian and US HO populations. The analysis included information from 149, 303, and 173 unrelated or with unknown pedigree HO animals from the Conv, Lowi, and CAN + USA populations, respectively. Canadian and US Jersey (JE) and Brown Swiss (BS) genotypes (162 and 86, respectively) were used to determine if Mexican HOs were hybridized with either of these breeds. After quality control filtering, a total of 6,617 out of 6,836 single nucleotide polymorphism markers were used. To describe the genetic diversity across the populations, principal component (PC), admixture composition, and linkage disequilibrium (LD; r(2) ) analyses were performed. Through the PC analysis, HO × JE and HO × BS crossbreeding was detected in the Lowi system. The Conv system appeared to be in between Lowi and CAN + USA populations. Admixture analysis differentiated between the genetic composition of the Conv and Lowi systems, and five ancestry groups associated to sire's country of origin were identified. The minimum distance between markers to estimate a useful LD was found to be 54.5 kb for the Mexican HO populations. At this average distance, the persistence of phase across autosomes of Conv and Lowi systems was 0.94, for Conv and CAN + USA was 0.92 and for the Lowi and CAN + USA was 0.91. Results supported the flow of germplasm among populations being Conv a source for Lowi, and dependent on migration from CAN + USA. Mexican HO cattle in Conv and Lowi populations share common ancestry with CAN + USA but have different genetic signatures.

  13. Interethnic genetic differentiation: HLA class I antigens in the population of Mongolia.

    PubMed

    Chimge, Nyam-Osorin; Batsuuri, Jamiyangiin

    1999-09-01

    A total of 1668 individuals representing 10 major Mongolian ethnic groups were serologically typed for HLA-A, -B, and -C antigens. Antigens A2, A24, B61, B51, B58, Cw3, Cw7, and Cw6 were the most frequent specificities in Mongolians and no case of B42 was noted in all ethnic groups. The cluster analysis of Principal Components I and II shows that Mongolian speaking groups form one cluster vs Turkic-speaking Kazakhs. The analysis reveals a low, but significant differentiation of Mongolian ethnic groups as measured by F(ST) = 0.0100 (P < 0.001). Gene diversity analysis shows that the genetic diversity of the Mongolian population can be attributed largely to its ethnic component, which makes up 64% of total genetic variation. The low degree of interpopulation variation and high level of intrapopulation diversity can be explained by the nomadic way of life of this indigenous population. Three-locus haplotypes A24-B61-Cw3, A33-B58-Cw3 are the most common haplotypic associations in Mongolians. The presence of antigens characteristic of Mongoloid, Caucasoid, and Negroid populations in Mongolians suggests a unique genetic background of this indigenous population. The three-locus haplotype distribution among Mongolians relative to other world populations supports the migration of ancient people from Central Asia to the New World, Korean Peninsula, and Southeast Asia. Am. J. Hum. Biol. 11:603-618, 1999. Copyright 1999 Wiley-Liss, Inc.

  14. Eco-geographical differentiation among Colombian populations of the Chagas disease vector Triatoma dimidiata (Hemiptera: Reduviidae).

    PubMed

    Gómez-Palacio, Andrés; Triana, Omar; Jaramillo-O, Nicolás; Dotson, Ellen M; Marcet, Paula L

    2013-12-01

    Triatoma dimidiata is currently the main vector of Chagas disease in Mexico, most Central American countries and several zones of Ecuador and Colombia. Although this species has been the subject of several recent phylogeographic studies, the relationship among different populations within the species remains unclear. To elucidate the population genetic structure of T. dimidiata in Colombia, we analyzed individuals from distinct geographical locations using the cytochrome c oxidase subunit 1 gene and 7 microsatellite loci. A clear genetic differentiation was observed among specimens from three Colombian eco-geographical regions: Inter Andean Valleys, Caribbean Plains and Sierra Nevada de Santa Marta mountain (SNSM). Additionally, evidence of genetic subdivision was found within the Caribbean Plains region as well as moderate gene flow between the populations from the Caribbean Plains and SNSM regions. The genetic differentiation found among Colombian populations correlates, albeit weakly, with an isolation-by-distance model (IBD). The genetic heterogeneity among Colombian populations correlates with the eco-epidemiological and morphological traits observed in this species across regions within the country. Such genetic and epidemiological diversity should be taken into consideration for the development of vector control strategies and entomological surveillance. Copyright © 2013. Published by Elsevier B.V.

  15. Eco-geographical differentiation among Colombian populations of the Chagas disease vector Triatoma dimidiata (Hemiptera: Reduviidae)

    PubMed Central

    Gómez-Palacio, Andrés; Triana, Omar; Jaramillo-O, Nicolás; Dotson, Ellen M.; Marcet, Paula L.

    2016-01-01

    Triatoma dimidiata is currently the main vector of Chagas disease in Mexico, most Central American countries and several zones of Ecuador and Colombia. Although this species has been the subject of several recent phylogeographic studies, the relationship among different populations within the species remains unclear. To elucidate the population genetic structure of T. dimidiata in Colombia, we analyzed individuals from distinct geographical locations using the cytochrome c oxidase subunit 1 gene and 7 microsatellite loci. A clear genetic differentiation was observed among specimens from three Colombian eco-geographical regions: Inter Andean Valleys, Caribbean Plains and Sierra Nevada de Santa Marta mountain (SNSM). Additionally, evidence of genetic subdivision was found within the Caribbean Plains region as well as moderate gene flow between the populations from the Caribbean Plains and SNSM regions. The genetic differentiation found among Colombian populations correlates, albeit weakly, with an isolation-by-distance model (IBD). The genetic heterogeneity among Colombian populations correlates with the eco-epidemiological and morphological traits observed in this species across regions within the country. Such genetic and epidemiological diversity should be taken into consideration for the development of vector control strategies and entomological surveillance. PMID:24035810

  16. Maternal genetic effects on adaptive divergence between anadromous and resident brook charr during early life history.

    PubMed

    Perry, G M L; Audet, C; Bernatchez, L

    2005-09-01

    The importance of directional selection relative to neutral evolution may be determined by comparing quantitative genetic variation in phenotype (Q(ST)) to variation at neutral molecular markers (F(ST)). Quantitative divergence between salmonid life history types is often considerable, but ontogenetic changes in the significance of major sources of genetic variance during post-hatch development suggest that selective differentiation varies by developmental stage. In this study, we tested the hypothesis that maternal genetic differentiation between anadromous and resident brook charr (Salvelinus fontinalis Mitchill) populations for early quantitative traits (embryonic size/growth, survival, egg number and developmental time) would be greater than neutral genetic differentiation, but that the maternal genetic basis for differentiation would be higher for pre-resorption traits than post-resorption traits. Quantitative genetic divergence between anadromous (seawater migratory) and resident Laval River (Québec) brook charr based on maternal genetic variance was high (Q(ST) > 0.4) for embryonic length, yolk sac volume, embryonic growth rate and time to first response to feeding relative to neutral genetic differentiation [F(ST) = 0.153 (0.071-0.214)], with anadromous females having positive genetic coefficients for all of the above characters. However, Q(ST) was essentially zero for all traits post-resorption of the yolk sac. Our results indicate that the observed divergence between resident and anadromous brook charr has been driven by directional selection, and may therefore be adaptive. Moreover, they provide among the first evidence that the relative importance of selective differentiation may be highly context-specific, and varies by genetic contributions to phenotype by parental sex at specific points in offspring ontogeny. This in turn suggests that interpretations of Q(ST)-F(ST) comparisons may be improved by considering the structure of quantitative genetic

  17. [Genetics of tremor].

    PubMed

    Kuhlenbäumer, G; Hopfner, F

    2018-04-01

    Tremor is a symptom of many diseases and can constitute a disease of its own: essential tremor. The genetics of essential tremor and differential diagnosis of monogenic diseases with the symptom tremor. Literature search and search of clinical genetics databases, e.g. OMIM, GeneReviews, MDSGene and the German Neurological Society (DGN) guidelines. The genetics of essential tremor remain unresolved in spite of large, adequately powered studies. Tremor is a symptom of differential diagnostic value in many movement disorders. A slight tremor might have been missed or not reported in many descriptions of movement disorders. Progress in the genetics of essential tremor probably requires a more detailed phenotyping allowing stratification into phenotypically defined subgroups. Tremor should always be included in the examination and description of movement disorders even if tremor is not a cardinal symptom. Tremor might be helpful in the differential diagnosis of hereditary dystonia, hereditary ataxia, spastic paraplegia and other movement disorders.

  18. Genetic differentiation in life history traits and thermal stress performance across a heterogeneous dune landscape in Arabidopsis lyrata.

    PubMed

    Wos, Guillaume; Willi, Yvonne

    2018-05-26

    Over very short spatial scales, the habitat of a species can differ in multiple abiotic and biotic factors. These factors may impose natural selection on several traits and can cause genetic differentiation within a population. We studied multivariate genetic differentiation in a plant species of a sand dune landscape by linking environmental variation with differences in genotypic trait values and gene expression levels to find traits and candidate genes of microgeographical adaptation. Maternal seed families of Arabidopsis lyrata were collected in Saugatuck Dunes State Park, Michigan, USA, and environmental parameters were recorded at each collection site. Offspring plants were raised in climate chambers and exposed to one of three temperature treatments: regular occurrence of frost, heat, or constant control conditions. Several traits were assessed: plant growth, time to flowering, and frost and heat resistance. The strongest trait-environment association was between a fast switch to sexual reproduction and weaker growth under frost, and growing in the open, away from trees. The second strongest association was between the trait combination of small plant size and early flowering under control conditions combined with large size under frost, and the combination of environmental conditions of growing close to trees, at low vegetation cover, on dune bottoms. Gene expression analysis by RNA-seq revealed candidate genes involved in multivariate trait differentiation. The results support the hypothesis that in natural populations, many environmental factors impose selection, and that they affect multiple traits, with the relative direction of trait change being complex. The results highlight that heterogeneity in the selection environment over small spatial scales is a main driver of the maintenance of adaptive genetic variation within populations.

  19. Differential methylation between ethnic sub-groups reflects the effect of genetic ancestry and environmental exposures

    PubMed Central

    Galanter, Joshua M; Gignoux, Christopher R; Oh, Sam S; Torgerson, Dara; Pino-Yanes, Maria; Thakur, Neeta; Eng, Celeste; Hu, Donglei; Huntsman, Scott; Farber, Harold J; Avila, Pedro C; Brigino-Buenaventura, Emerita; LeNoir, Michael A; Meade, Kelly; Serebrisky, Denise; Rodríguez-Cintrón, William; Kumar, Rajesh; Rodríguez-Santana, Jose R; Seibold, Max A; Borrell, Luisa N; Burchard, Esteban G; Zaitlen, Noah

    2017-01-01

    Populations are often divided categorically into distinct racial/ethnic groups based on social rather than biological constructs. Genetic ancestry has been suggested as an alternative to this categorization. Herein, we typed over 450,000 CpG sites in whole blood of 573 individuals of diverse Hispanic origin who also had high-density genotype data. We found that both self-identified ethnicity and genetically determined ancestry were each significantly associated with methylation levels at 916 and 194 CpGs, respectively, and that shared genomic ancestry accounted for a median of 75.7% (IQR 45.8% to 92%) of the variance in methylation associated with ethnicity. There was a significant enrichment (p=4.2×10-64) of ethnicity-associated sites amongst loci previously associated environmental exposures, particularly maternal smoking during pregnancy. We conclude that differential methylation between ethnic groups is partially explained by the shared genetic ancestry but that environmental factors not captured by ancestry significantly contribute to variation in methylation. DOI: http://dx.doi.org/10.7554/eLife.20532.001 PMID:28044981

  20. Limited genetic differentiation among breeding, molting, and wintering groups of the threatened Steller's eider: The role of historic and contemporary factors

    USGS Publications Warehouse

    Pearce, J.M.; Talbot, S.L.; Petersen, M.R.; Rearick, J.R.

    2005-01-01

    Due to declines in the Alaska breeding population, the Steller's eider (Polysticta stelleri) was listed as threatened in North America in 1997. Periodic non-breeding in Russia and Alaska has hampered field-based assessments of behavioral patterns critical to recovery plans, such as levels of breeding site fidelity and movements among three regional populations: Atlantic-Russia, Pacific-Russia and Alaska. Therefore, we analyzed samples from across the species range with seven nuclear microsatellite DNA loci and cytochrome b mitochondrial (mt)DNA sequence data to infer levels of interchange among sampling areas and patterns of site fidelity. Results demonstrated low levels of population differentiation within Atlantic and Pacific nesting areas, with higher levels observed between these regions, but only for mtDNA. Bayesian analysis of microsatellite data from wintering and molting birds showed no signs of sub-population structure, even though band-recovery data suggests multiple breeding areas are present. We observed higher estimates of F-statistics for female mtDNA data versus male data, suggesting female-biased natal site fidelity. Summary statistics for mtDNA were consistent with models of historic population expansion. Lack of spatial structure in Steller's eiders may result largely from insufficient time since historic population expansions for behaviors, such as natal site fidelity, to isolate breeding areas genetically. However, other behaviors such as the periodic non-breeding observed in Steller's eiders may also play a more contemporary role in genetic homogeneity, especially for microsatellite loci. 

  1. Genetic Differentiation of North-East Argentina Populations Based on 30 Binary X Chromosome Markers.

    PubMed

    Di Santo Meztler, Gabriela P; Del Palacio, Santiago; Esteban, María E; Armoa, Isaías; Argüelles, Carina F; Catanesi, Cecilia I

    2018-01-01

    Alu insertions, INDELs, and SNPs in the X chromosome can be useful not only for revealing relationships among populations but also for identification purposes. We present data of 10 Alu insertions, 5 INDELs, and 15 SNPs of X-chromosome from three Argentinian north-east cities in order to gain insight into the genetic diversity of the X chromosome within this region of the country. Data from 198 unrelated individuals belonging to Posadas, Corrientes, and Eldorado cities were genotyped for Ya5DP62, Yb8DP49, Ya5DP3, Ya5NBC37, Ya5DP77, Ya5NBC491, Ya5DP4, Ya5DP13, Yb8NBC634, and Yb8NBC102 Alu insertions, for MID193, MID1705, MID3754, MID3756 and MID1540 Indels and for rs6639398, rs5986751, rs5964206, rs9781645, rs2209420, rs1299087, rs318173, rs933315, rs1991961, rs4825889, rs1781116, rs1937193, rs1781104, rs149910, and rs652 SNPs. No deviations from Hardy-Weinberg equilibrium were observed for Posadas and Corrientes. However, Eldorado showed significant values, and it was found to have an internal substructuring with two groups of different origin, one showing higher similarity with European countries, and the other with more similarities to Posadas and Corrientes. F st pairwise genetic distances emerged for some markers among the studied populations and also between our data and those from other countries and continents. Of particular interest, Alu insertions demonstrated the most differences, and could be of use in ancestry studies for these populations, while INDELs and SNPs variation were informative for differentiation within the country.

  2. Analysis of Pvama1 genes from China-Myanmar border reveals little regional genetic differentiation of Plasmodium vivax populations.

    PubMed

    Zhu, Xiaotong; Zhao, Pan; Wang, Si; Liu, Fei; Liu, Jun; Wang, Jian; Yang, Zhaoqing; Yan, Guiyun; Fan, Qi; Cao, Yaming; Cui, Liwang

    2016-11-29

    With the premise of diminishing parasite genetic diversity following the reduction of malaria incidence, the analysis of polymorphic antigenic markers may provide important information about the impact of malaria control on local parasite populations. Here we evaluated the genetic diversity of Plasmodium vivax apical membrane antigen 1 (Pvama1) gene in a parasite population from the China-Myanmar border and compared it with global P. vivax populations. We performed evolutionary analysis to examine the genetic diversity, natural selection, and population differentiation of 73 Pvama1 sequences acquired from the China-Myanmar border as well as 615 publically available Pvama1 sequences from seven global P. vivax populations. A total of 308 Pvama1 haplotypes were identified among the global P. vivax isolates. The overall nucleotide diversity of Pvama1 gene among the 73 China-Myanmar border parasite isolates was 0.008 with 41 haplotypes being identified (Hd = 0.958). Domain I (DI) harbored the majority (26/33) of the polymorphic sites. The McDonald Kreitman test showed a significant positive selection across the ectodomain and the DI of Pvama1. The fixation index (F ST ) estimation between the China-Myanmar border, Thailand (0.01) and Myanmar (0.10) showed only slight geographical genetic differentiation. Notably, the Sal-I haplotype was not detected in any of the analyzed global isolates, whereas the Belem strain was restricted to the Thai population. The detected mutations are mapped outside the overlapped region of the predicted B-cell epitopes and intrinsically unstructured/disordered regions. This study revealed high levels of genetic diversity of Pvama1 in the P. vivax parasite population from the China-Myanmar border with DI displaying stronger diversifying selection than other domains. There were low levels of population subdivision among parasite populations from the Greater Mekong Subregion.

  3. Genetic drift and collective dispersal can result in chaotic genetic patchiness.

    PubMed

    Broquet, Thomas; Viard, Frédérique; Yearsley, Jonathan M

    2013-06-01

    Chaotic genetic patchiness denotes unexpected patterns of genetic differentiation that are observed at a fine scale and are not stable in time. These patterns have been described in marine species with free-living larvae, but are unexpected because they occur at a scale below the dispersal range of pelagic larvae. At the scale where most larvae are immigrants, theory predicts spatially homogeneous, temporally stable genetic variation. Empirical studies have suggested that genetic drift interacts with complex dispersal patterns to create chaotic genetic patchiness. Here we use a co-ancestry model and individual-based simulations to test this idea. We found that chaotic genetic patterns (qualified by global FST and spatio-temporal variation in FST's between pairs of samples) arise from the combined effects of (1) genetic drift created by the small local effective population sizes of the sessile phase and variance in contribution among breeding groups and (2) collective dispersal of related individuals in the larval phase. Simulations show that patchiness levels qualitatively comparable to empirical results can be produced by a combination of strong variance in reproductive success and mild collective dispersal. These results call for empirical studies of the effective number of breeders producing larval cohorts, and population genetics at the larval stage. © 2012 The Author(s). Evolution © 2012 The Society for the Study of Evolution.

  4. Genetic and morphologic differentiation of Bolbophorus confusus and B. levantinus (Digenea: Diplostomatidae), based on rDNA SSU polymorphism and SEM.

    PubMed

    Dzikowski, R; Levy, M G; Poore, M F; Flowers, J R; Paperna, I

    2003-12-29

    Metacercariae of Bolbophorus species are serious pathogens of farmed fish. Molecular diagnostic tools, capable of identifying and differentiating these parasites, may assist in the development of rationale control strategies. The rDNA 18S (small sub-unit: SSU) genes of adult B. confusus and B. levantinus obtained from a pelican, Pelecanus onocrotalus, and a night heron, Nycticorax nycticorax, respectively, were amplified, sequenced, and aligned. Based on this alignment, we developed a genetic differentiation assay between B. confusus and B. levantinus. These 2 species were compared genetically with the North American species B. damnificus and Bolbophorus sp. ('Type 2'). The relationship between species is outlined and discussed. In addition to the molecular study, specimens of B. confusus and B. levantinus were compared morphologically, using scanning electron microscopy. Morphologic analysis revealed interspecific differences in details of the holdfast organ and the position of the acetabulum.

  5. Genetic structure and isolation by distance in a landrace of Thai rice

    PubMed Central

    Pusadee, Tonapha; Jamjod, Sansanee; Chiang, Yu-Chung; Rerkasem, Benjavan; Schaal, Barbara A.

    2009-01-01

    Rice is among the 3 most important crops worldwide. While much of the world's rice harvest is based on modern high-yield varieties, traditional varieties of rice grown by indigenous groups have great importance as a resource for future crop improvement. These local landraces represent an intermediate stage of domestication between a wild ancestor and modern varieties and they serve as reservoirs of genetic variation. Such genetic variation is influenced both by natural processes such as selection and drift, and by the agriculture practices of local farmers. How these processes interact to shape and change the population genetics of landrace rice is unknown. Here, we determine the population genetic structure of a single variety of landrace rice, Bue Chomee, cultivated by Karen people of Thailand. Microsatellite markers reveal high level of genetic variation despite predominant inbreeding in the crop. Bue Chomee rice shows slight but significant genetic differentiation among Karen villages. Moreover, genetically determined traits such as flowering time can vary significantly among villages. An unanticipated result was the overall pattern of genetic differentiation across villages which conforms to an isolation by distance model of differentiation. Isolation by distance is observed in natural plant species where the likelihood of gene flow is inversely related to distance. In Karen rice, gene flow is the result of farmers' seed sharing networks. Taken together, these data suggest that landrace rice is a dynamic genetic system that responds to evolutionary forces, both natural and those imposed by humans. PMID:19651617

  6. Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea–Baltic Sea salinity gradient

    PubMed Central

    Sjöqvist, C; Godhe, A; Jonsson, P R; Sundqvist, L; Kremp, A

    2015-01-01

    Drivers of population genetic structure are still poorly understood in marine micro-organisms. We exploited the North Sea–Baltic Sea transition for investigating the seascape genetics of a marine diatom, Skeletonema marinoi. Eight polymorphic microsatellite loci were analysed in 354 individuals from ten locations to analyse population structure of the species along a 1500-km-long salinity gradient ranging from 3 to 30 psu. To test for salinity adaptation, salinity reaction norms were determined for sets of strains originating from three different salinity regimes of the gradient. Modelled oceanographic connectivity was compared to directional relative migration by correlation analyses to examine oceanographic drivers. Population genetic analyses showed distinct genetic divergence of a low-salinity Baltic Sea population and a high-salinity North Sea population, coinciding with the most evident physical dispersal barrier in the area, the Danish Straits. Baltic Sea populations displayed reduced genetic diversity compared to North Sea populations. Growth optima of low salinity isolates were significantly lower than those of strains from higher native salinities, indicating local salinity adaptation. Although the North Sea–Baltic Sea transition was identified as a barrier to gene flow, migration between Baltic Sea and North Sea populations occurred. However, the presence of differentiated neutral markers on each side of the transition zone suggests that migrants are maladapted. It is concluded that local salinity adaptation, supported by oceanographic connectivity patterns creating an asymmetric migration pattern between the Baltic Sea and the North Sea, determines genetic differentiation patterns in the transition zone. PMID:25892181

  7. Genetic differentiation in Pyrenophora teres f. teres populations from Syria and Tunisia as assessed by AFLP markers.

    PubMed

    Bouajila, A; Zoghlami, N; Murad, S; Baum, M; Ghorbel, A; Nazari, K

    2013-06-01

    To investigate the level of genetic differentiation and diversity among Pyrenophora teres isolate populations originating from different agro-ecological areas of Syria and Tunisia and to determine the potential of AFLP profiling in genotyping Pyrenophora teres f. teres. In this study, AFLP markers have been employed to identify patterns of population structure in 20 Pyrenophora teres f. teres populations from Syria and Tunisia. Ninety-four isolates were studied by the use of a protocol that involved stringent PCR amplification of fragments derived from digestion of genomic DNA with restriction enzymes EcoRI and MesI. Based on 401 amplified polymorphic DNA markers (AFLP), variance analyses indicated that most of the variation was partitioned within rather than between populations. Genotypic diversity (GD) was high for populations from Rihane, local landraces and different agro-ecological zones (GD = 0·75-0·86). There was high genetic differentiation among pathogen populations from different host populations in Syria (Gst  = 0·31, ht = 0·190) and Tunisia (Gst  = 0·39, ht = 0·263), which may be partly explained by the low gene flow around the areas sampled. A phenetic tree revealed three groups with high bootstrap values (55, 68, 76) and reflected the grouping of isolates based on host, or agro-ecological areas. AFLP profiling is an effective method for typing the genetically diverse pathogen Pyrenophora teres f. teres. The study represents a comparative analysis of the genetic diversity in P. teres isolates from two countries spanning two continents and also shows that several distinct P. teres genotypes may be found in a given environment. The implications of these findings for Pyrenophora teres f. teres evolutionary potential and net blotch-resistance breeding in Syria and Tunisia were also discussed. © 2012 The Society for Applied Microbiology.

  8. Examining maternal effects and genetic differentiation in P. flexilis and P. aristata to improve success of conservation actions

    Treesearch

    Erin M. Borgman

    2013-01-01

    As the climate changes and invasive species continue to spread, proactive management may be needed to conserve native plant populations. Selecting appropriate plant material for restoration or other actions that will sustain populations is an integral part of any such plan and must take into account genetic differentiation to limit maladaptation. Common garden studies...

  9. Genetic structure of the world's polar bear populations.

    PubMed

    Paetkau, D; Amstrup, S C; Born, E W; Calvert, W; Derocher, A E; Garner, G W; Messier, F; Stirling, I; Taylor, M K; Wiig, O; Strobeck, C

    1999-10-01

    We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals.

  10. Genetic structure of the world's polar bear populations

    USGS Publications Warehouse

    Paetkau, David; Amstrup, Steven C.; Born, E.W.; Calvert, W.; Derocher, A.E.; Garner, G.W.; Messier, F.; Stirling, I.; Taylor, M.K.; Wiig, O.; Strobeck, C.

    1999-01-01

    We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals.

  11. Genetic testing in heritable cardiac arrhythmia syndromes: differentiating pathogenic mutations from background genetic noise.

    PubMed

    Giudicessi, John R; Ackerman, Michael J

    2013-01-01

    In this review, we summarize the basic principles governing rare variant interpretation in the heritable cardiac arrhythmia syndromes, focusing on recent advances that have led to disease-specific approaches to the interpretation of positive genetic testing results. Elucidation of the genetic substrates underlying heritable cardiac arrhythmia syndromes has unearthed new arrhythmogenic mechanisms and given rise to a number of clinically meaningful genotype-phenotype correlations. As such, genetic testing for these disorders now carries important diagnostic, prognostic, and therapeutic implications. Recent large-scale systematic studies designed to explore the background genetic 'noise' rate associated with these genetic tests have provided important insights and enhanced how positive genetic testing results are interpreted for these potentially lethal, yet highly treatable, cardiovascular disorders. Clinically available genetic tests for heritable cardiac arrhythmia syndromes allow the identification of potentially at-risk family members and contribute to the risk-stratification and selection of therapeutic interventions in affected individuals. The systematic evaluation of the 'signal-to-noise' ratio associated with these genetic tests has proven critical and essential to assessing the probability that a given variant represents a rare pathogenic mutation or an equally rare, yet innocuous, genetic bystander.

  12. Psychopathic Personality Traits and Environmental Contexts: Differential Correlates, Gender Differences, and Genetic Mediation

    PubMed Central

    Hicks, Brian M.; Carlson, Marie D.; Blonigen, Daniel M.; Patrick, Christopher J.; Iacono, William G.; MGue, Matt

    2011-01-01

    Theorists have speculated that primary psychopathy (or Factor 1 affective-interpersonal features) is prominently heritable whereas secondary psychopathy (or Factor 2 social deviance) is more environmentally determined. We tested this differential heritability hypothesis using a large adolescent twin sample. Trait-based proxies of primary and secondary psychopathic tendencies were assessed using Multidimensional Personality Questionnaire (MPQ; Tellegen & Waller, 2008) estimates of Fearless Dominance and Impulsive Antisociality, respectively (Benning et al., 2005). The environmental contexts of family, school, peers, and stressful life events were assessed using multiple raters and methods. Consistent with prior research, MPQ Impulsive Antisociality was robustly associated with each environmental risk factor, and these associations were significantly greater than those for MPQ Fearless Dominance. However, MPQ Fearless Dominance and Impulsive Antisociality exhibited similar heritability, and genetic effects mediated the associations between MPQ Impulsive Antisociality and the environmental measures. Results were largely consistent across male and female twins. We conclude that gene-environment correlations rather than main effects of genes and environments account for the differential environmental correlates of primary and secondary psychopathy. PMID:22452762

  13. Low Genetic Differentiation across Three Major Ocean Populations of the Whale Shark, Rhincodon typus

    PubMed Central

    Schmidt, Jennifer V.; Schmidt, Claudia L.; Ozer, Fusun; Ernst, Robin E.; Feldheim, Kevin A.; Ashley, Mary V.; Levine, Marie

    2009-01-01

    Background Whale sharks are a declining species for which little biological data is available. While these animals are protected in many parts of their range, they are fished legally and illegally in some countries. Baseline biological and ecological data are needed to allow the formulation of an effective conservation plan for whale sharks. It is not known, for example, whether the whale shark is represented by a single worldwide panmictic population or by numerous, reproductively isolated populations. Genetic analysis of population structure is one essential component of the baseline data required for whale shark conservation. Methodology/Principal Findings We have identified 8 polymorphic microsatellites in the whale shark and used these markers to assess genetic variation and population structure in a panel of whale sharks covering a broad geographic region. This is the first record of microsatellite loci in the whale shark, which displayed an average of 9 alleles per locus and mean Ho = 0.66 and He = 0.69. All but one of the eight loci meet the expectations of Hardy-Weinberg equilibrium. Analysis of these loci in whale sharks representing three major portions of their range, the Pacific (P), Caribbean (C), and Indian (I) Oceans, determined that there is little population differentiation between animals sampled in different geographic regions, indicating historical gene flow between populations. FST values for inter-ocean comparisons were low (P×C = 0.0387, C×I = 0.0296 and P×I = −0.0022), and only C×I approached statistical significance (p = 0.0495). Conclusions/Significance We have shown only low levels of genetic differentiation between geographically distinct whale shark populations. Existing satellite tracking data have revealed both regional and long-range migration of whale sharks throughout their range, which supports the finding of gene flow between populations. Whale sharks traverse geographic and political boundaries

  14. A genetic framework controlling the differentiation of intestinal stem cells during regeneration in Drosophila

    PubMed Central

    Boquete, Jean-Philippe

    2017-01-01

    The speed of stem cell differentiation has to be properly coupled with self-renewal, both under basal conditions for tissue maintenance and during regeneration for tissue repair. Using the Drosophila midgut model, we analyze at the cellular and molecular levels the differentiation program required for robust regeneration. We observe that the intestinal stem cell (ISC) and its differentiating daughter, the enteroblast (EB), form extended cell-cell contacts in regenerating intestines. The contact between progenitors is stabilized by cell adhesion molecules, and can be dynamically remodeled to elicit optimal juxtacrine Notch signaling to determine the speed of progenitor differentiation. Notably, increasing the adhesion property of progenitors by expressing Connectin is sufficient to induce rapid progenitor differentiation. We further demonstrate that JAK/STAT signaling, Sox21a and GATAe form a functional relay to orchestrate EB differentiation. Thus, our study provides new insights into the complex and sequential events that are required for rapid differentiation following stem cell division during tissue replenishment. PMID:28662029

  15. Population Genetic Structure and Colonisation History of the Tool-Using New Caledonian Crow

    PubMed Central

    Abdelkrim, Jawad; Hunt, Gavin R.; Gray, Russell D.; Gemmell, Neil J.

    2012-01-01

    New Caledonian crows exhibit considerable variation in tool making between populations. Here, we present the first study of the species’ genetic structure over its geographical distribution. We collected feathers from crows on mainland Grande Terre, the inshore island of Toupéti, and the nearby island of Maré where it is believed birds were introduced after European colonisation. We used nine microsatellite markers to establish the genotypes of 136 crows from these islands and classical population genetic tools as well as Approximate Bayesian Computations to explore the distribution of genetic diversity. We found that New Caledonian crows most likely separate into three main distinct clusters: Grande Terre, Toupéti and Maré. Furthermore, Toupéti and Maré crows represent a subset of the genetic diversity observed on Grande Terre, confirming their mainland origin. The genetic data are compatible with a colonisation of Maré taking place after European colonisation around 1900. Importantly, we observed (1) moderate, but significant, genetic differentiation across Grande Terre, and (2) that the degree of differentiation between populations on the mainland increases with geographic distance. These data indicate that despite individual crows’ potential ability to disperse over large distances, most gene flow occurs over short distances. The temporal and spatial patterns described provide a basis for further hypothesis testing and investigation of the geographical variation observed in the tool skills of these crows. PMID:22590576

  16. Population Genetics of a Trochid Gastropod Broadens Picture of Caribbean Sea Connectivity

    PubMed Central

    Díaz-Ferguson, Edgardo; Haney, Robert; Wares, John; Silliman, Brian

    2010-01-01

    Background Regional genetic connectivity models are critical for successful conservation and management of marine species. Even though rocky shore invertebrates have been used as model systems to understand genetic structure in some marine environments, our understanding of connectivity in Caribbean communities is based overwhelmingly on studies of tropical fishes and corals. In this study, we investigate population connectivity and diversity of Cittarium pica, an abundant rocky shore trochid gastropod that is commercially harvested across its natural range, from the Bahamas to Venezuela. Methodology/Principal Findings We tested for genetic structure using DNA sequence variation at the mitochondrial COI and 16S loci, AMOVA and distance-based methods. We found substantial differentiation among Caribbean sites. Yet, genetic differentiation was associated only with larger geographic scales within the Caribbean, and the pattern of differentiation only partially matched previous assessments of Caribbean connectivity, including those based on larval dispersal from hydrodynamic models. For instance, the Bahamas, considered an independent region by previous hydrodynamic studies, showed strong association with Eastern Caribbean sites in our study. Further, Bonaire (located in the east and close to the meridional division of the Caribbean basin) seems to be isolated from other Eastern sites. Conclusions/Significance The significant genetic structure and observed in C. pica has some commonalities in pattern with more commonly sampled taxa, but presents features, such as the differentiation of Bonaire, that appear unique. Further, the level of differentiation, together with regional patterns of diversity, has important implications for the application of conservation and management strategies in this commercially harvested species. PMID:20844767

  17. Osteoblastic differentiation of human and equine adult bone marrow-derived mesenchymal stem cells when BMP-2 or BMP-7 homodimer genetic modification is compared to BMP-2/7 heterodimer genetic modification in the presence and absence of dexamethasone.

    PubMed

    Carpenter, Ryan S; Goodrich, Laurie R; Frisbie, David D; Kisiday, John D; Carbone, Beth; McIlwraith, C Wayne; Centeno, Christopher J; Hidaka, Chisa

    2010-10-01

    Bone marrow-derived mesenchymal stem cells (BMDMSCs) have been targeted for use in enhancement of bone healing; and their osteogenic potential may be further augmented by genes encoding bone morphogenetic proteins (BMP's). The purpose of this study was to compare the effect of genetic modification of human and equine BMDMSCs with BMP-2 or -7 or BMP-2 and -7 on their osteoblastogenic differentiation in the presence or absence of dexamethasone. The BMDMSCs were harvested from the iliac crest of three human donors and tuber coxae of three equine donors. Monolayer cells were genetically modified using adenovirus vectors encoding BMP-2, -7 or both and cultured in the presence or absence of dexamethasone. Expression of BMPs was confirmed by enzyme linked immunosorbent assay (ELISA). To evaluate osteoblastic differentiation, cellular morphology was assessed every other day and expression and secretion of alkaline phosphatase (ALP), as well as expression levels of osteonectin (OSTN), osteocalcin (OCN), and runt-related transcription factor-2 (Runx2) were measured for up to 14 days. Human and equine BMDMSCs showed a capacity for osteogenic differentiation regardless of genetic modification or dexamethasone supplementation. Dexamethasone supplementation was more important for osteoblastogenic differentiation of equine BMDMSCs than human BMDMSCs. Genetic modification of BMDMSCs increased ALP secretion with AdBMP-2 homodimer having the greatest effect in both human and equine cells compared to AdBMP 7 or AdBMP 2/7. BMP protein elution rates reached their maximal concentration between day 4 and 8 and remained relatively stable thereafter, suggesting that genetically modified BMDMSCs could be useful for cell-based delivery of BMPs to a site of bone formation. Published by Wiley Periodicals, Inc. J Orthop Res 28:1330-1337, 2010.

  18. Population Genetic Structure in Hyacinth Macaws (Anodorhynchus hyacinthinus) and Identification of the Probable Origin of Confiscated Individuals.

    PubMed

    Presti, Flavia T; Guedes, Neiva M R; Antas, Paulo T Z; Miyaki, Cristina Y

    2015-01-01

    Understanding the intraspecific genetic composition of populations in different geographic locations is important for the conservation of species. If genetic variability is structured, conservation strategies should seek to preserve the diversity of units. Also, origin of individuals can be determined, which is important for guiding actions against animal trafficking. The hyacinth macaw (Anodorhynchus hyacinthinus) is located in allopatric regions, vulnerable to extinction and suffering animal trafficking pressure. Therefore, we characterized its population genetic structure based on 10 microsatellites from 98 individuals and 2123bp of mitochondrial sequence (ND5, cytochrome b, and ND2) from 80 individuals. Moderate to high levels of differentiation were observed among 3 geographic regions of Brazil: the north/northeast of the country, the north Pantanal, and the south Pantanal. Differentiation between the 2 regions within the Pantanal was not expected, as they are relatively close and there is no known barrier to macaw movement between these regions. These genetically differentiated groups were estimated to have diverged 16000 to 42000 years ago. The low genetic variability observed seems not to be the result of past bottlenecks, although a star-shaped haplotype network and the mismatch distribution suggest that there was recent demographic expansion in the north and northeast. Environmental changes in the Holocene could have caused this expansion. Given the genetic structure observed, the most probable regions of origin of 24 confiscated individuals were identified. Thus, these data helped to trace illegal traffic routes and identify natural populations that are being illegally harvested. © The American Genetic Association 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Genetic and Chemical Screenings Identify HDAC3 as a Key Regulator in Hepatic Differentiation of Human Pluripotent Stem Cells.

    PubMed

    Li, Shuang; Li, Mushan; Liu, Xiaojian; Yang, Yuanyuan; Wei, Yuda; Chen, Yanhao; Qiu, Yan; Zhou, Tingting; Feng, Zhuanghui; Ma, Danjun; Fang, Jing; Ying, Hao; Wang, Hui; Musunuru, Kiran; Shao, Zhen; Zhao, Yongxu; Ding, Qiurong

    2018-05-24

    Hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) offer a promising cell resource for disease modeling and transplantation. However, differentiated HLCs exhibit an immature phenotype and comprise a heterogeneous population. Thus, a better understanding of HLC differentiation will improve the likelihood of future application. Here, by taking advantage of CRISPR-Cas9-based genome-wide screening technology and a high-throughput hPSC screening platform with a reporter readout, we identified several potential genetic regulators of HLC differentiation. By using a chemical screening approach within our platform, we also identified compounds that can further promote HLC differentiation and preserve the characteristics of in vitro cultured primary hepatocytes. Remarkably, both screenings identified histone deacetylase 3 (HDAC3) as a key regulator in hepatic differentiation. Mechanistically, HDAC3 formed a complex with liver transcriptional factors, e.g., HNF4, and co-regulated the transcriptional program during hepatic differentiation. This study highlights a broadly useful approach for studying and optimizing hPSC differentiation. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Genetic diversity based on SSR analysis of the cultured snakehead fish, Channa argus, (Channidae) in China.

    PubMed

    Zhu, S-R; Li, J-L; Xie, N; Zhu, L-M; Wang, Q; Yue, G-H

    2014-02-13

    The snakehead fish Channa argus is an important food fish in China. We identified six microsatellite loci for C. argus. These six microsatellite loci and four other microsatellite markers were used to analyze genetic diversity in four cultured populations of C. argus (SD, JX, HN, and ZJ) and determine their relationships. A total of 154 alleles were detected at the 10 microsatellite loci. The average expected and observed heterozygosities varied from 0.70-0.84 and 0.69-0.83, respectively, and polymorphism information content ranged between 0.66 and 0.82 in the four populations, indicating high genetic diversity. Population JX deviated from mutation-drift equilibrium and may have experienced a recent bottleneck. Analysis of pairwise genetic differentiation revealed FST values that ranged from 0.028 to 0.100, which indicates a moderate level of genetic differentiation. The largest distances were observed between populations HN and SD, whereas the smallest distances were obtained between populations HN and JX. Genetic clustering analysis demonstrated that the ZJ and HN populations probably share the same origin. This information about the genetic diversity within each of the four populations, and their genetic relationships will be useful for future genetic improvement of C. argus through selective breeding.

  1. Evaluation of genetic population structure of smallmouth bass in the Susquehanna River basin, Pennsylvania

    USGS Publications Warehouse

    Schall, Megan K.; Bartron, Meredith L.; Wertz, Timothy; Niles, Jonathan M.; Shaw, Cassidy H.; Wagner, Tyler

    2017-01-01

    The Smallmouth Bass Micropterus dolomieu was introduced into the Susquehanna River basin, Pennsylvania, nearly 150 years ago. Since introduction, it has become an economically and ecologically important species that supports popular recreational fisheries. It is also one of the most abundant top predators in the system. Currently, there is no information on the level of genetic diversity or genetic structuring that may have occurred since introduction. An understanding of genetic diversity is important for the delineation of management units and investigation of gene flow at various management scales. The goals of this research were to investigate population genetic structure of Smallmouth Bass at sites within the Susquehanna River basin and to assess genetic differentiation relative to Smallmouth Bass at an out-of-basin site (Allegheny River, Pennsylvania) located within the species’ native range. During spring 2015, fin clips (n = 1,034) were collected from adults at 11 river sites and 13 tributary sites in the Susquehanna River basin and at one site on the Allegheny River. Fin clips were genotyped at 12 polymorphic microsatellite loci. Based on our results, adults sampled throughout the Susquehanna River basin did not represent separate genetic populations. There were only subtle differences in genetic diversity among sites (mean pairwise genetic differentiation index FST = 0.012), and there was an overall lack of population differentiation (K = 3 admixed populations). The greatest genetic differentiation was observed between fish collected from the out-of-basin site and those from the Susquehanna River basin sites. Knowledge that separate genetic populations of Smallmouth Bass do not exist in the Susquehanna River basin is valuable information for fisheries management in addition to providing baseline genetic data on an introduced sport fish population.

  2. Genetic diversity of the NE Atlantic sea urchin Strongylocentrotus droebachiensis unveils chaotic genetic patchiness possibly linked to local selective pressure.

    PubMed

    Norderhaug, K M; Anglès d'Auriac, M B; Fagerli, C W; Gundersen, H; Christie, H; Dahl, K; Hobæk, A

    We compared the genetic differentiation in the green sea urchin Strongylocentrotus droebachiensis from discrete populations on the NE Atlantic coast. By using eight recently developed microsatellite markers, genetic structure was compared between populations from the Danish Strait in the south to the Barents Sea in the north (56-79°N). Urchins are spread by pelagic larvae and may be transported long distances by northwards-going ocean currents. Two main superimposed patterns were identified. The first showed a subtle but significant genetic differentiation from the southernmost to the northernmost of the studied populations and could be explained by an isolation by distance model. The second pattern included two coastal populations in mid-Norway (65°N), NH and NS, as well as the northernmost population of continental Norway (71°N) FV. They showed a high degree of differentiation from all other populations. The explanation to the second pattern is most likely chaotic genetic patchiness caused by introgression from another species, S. pallidus, into S. droebachiensis resulting from selective pressure. Ongoing sea urchin collapse and kelp forests recovery are observed in the area of NH, NS and FV populations. High gene flow between populations spanning more than 22° in latitude suggests a high risk of new grazing events to occur rapidly in the future if conditions for sea urchins are favourable. On the other hand, the possibility of hybridization in association with collapsing populations may be used as an early warning indicator for monitoring purposes.

  3. Divergence in morphology, but not habitat use, despite low genetic differentiation among insular populations of the lizard Anolis lemurinus in Honduras

    USGS Publications Warehouse

    Logan, M.L.; Montgomery, Chad E.; Boback, Scott M.; Reed, R.N.; Campbell, J.A.

    2012-01-01

    Studies of recently isolated populations are useful because observed differences can often be attributed to current environmental variation. Two populations of the lizard Anolis lemurinus have been isolated on the islands of Cayo Menor and Cayo Mayor in the Cayos Cochinos Archipelago of Honduras for less than 15 000 y. We measured 12 morphometric and 10 habitat-use variables on 220 lizards across these islands in 2 y, 2008 and 2009. The goals of our study were (1) to explore patterns of sexual dimorphism, and (2) to test the hypothesis that differences in environment among islands may have driven divergence in morphology and habitat use despite genetic homogeneity among populations. Although we found no differences among sexes in habitat use, males had narrower pelvic girdles and longer toe pads on both islands. Between islands, males differed in morphology, but neither males nor females differed in habitat use. Our data suggest that either recent selection has operated differentially on males despite low genetic dill'erentiation, or that they display phenotypic plasticity in response to environmental variation. We suggest that patterns may be driven by variation in intrapopulation density or differences in predator diversity among islands.

  4. In search for genetic determinants of clinically meaningful differential cardiovascular event reduction by pravastatin in the PHArmacogenetic study of Statins in the Elderly at risk (PHASE)/PROSPER study.

    PubMed

    Postmus, Iris; Johnson, Paul C D; Trompet, Stella; de Craen, Anton J M; Slagboom, P Eline; Devlin, James J; Shiffman, Dov; Sacks, Frank M; Kearney, Patricia M; Stott, David J; Buckley, Brendan M; Sattar, Naveed; Ford, Ian; Westendorp, Rudi G J; Jukema, J Wouter

    2014-07-01

    Statin therapy is widely used in the prevention and treatment of cardiovascular events and is associated with significant risk reductions. However, there is considerable variation in response to statin therapy both in terms of LDL cholesterol reduction and clinical outcomes. It has been hypothesized that genetic variation contributes importantly to this individual drug response. We investigated the interaction between genetic variants and pravastatin or placebo therapy on the incidence of cardiovascular events by performing a genome-wide association study in the participants of the PROspective Study of Pravastatin in the Elderly at Risk for vascular disease--PHArmacogenetic study of Statins in the Elderly at risk (PROSPER/PHASE) study (n = 5244). We did not observe genome-wide significant associations with a clinically meaningful differential cardiovascular event reduction by pravastatin therapy. In addition, SNPs with p-values lower than 1 × 10(-4) were assessed for replication in a case-only analysis within two randomized placebo controlled pravastatin trials, CARE (n = 711) and WOSCOPS (n = 522). rs7102569, on chromosome 11 near the ODZ4 gene, was replicated in the CARE study (p = 0.008), however the direction of effect was opposite. This SNP was not associated in WOSCOPS. In addition, none of the SNPs replicated significantly after correcting for multiple testing. We could not identify genetic variation that was significantly associated at genome-wide level with a clinically meaningful differential event reduction by pravastatin treatment in a large prospective study. We therefore assume that in daily practice the use of genetic characteristics to personalize pravastatin treatment to improve prevention of cardiovascular disease will be limited. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Genetic and Morphological Differentiation of the Indo-West Pacific Intertidal Barnacle Chthamalus malayensis

    PubMed Central

    Tsang, Ling Ming; Wu, Tsz Huen; Shih, Hsi-Te; Williams, Gray A.; Chu, Ka Hou; Chan, Benny K.K.

    2012-01-01

    Chthamalus malayensis is a common intertidal acorn barnacle widely distributed in the Indo-West Pacific. Analysis of sequences of mitochondrial cytochrome c oxidase subunit I reveals four genetically differentiated clades with almost allopatric distribution in this region. The four clades exhibit morphological differences in arthropodal characters, including the number of conical spines and number of setules of the basal guard setae on the cirri. These characters are, however, highly variable within each clade; such that the absolute range of the number of conical spines and setules overlaps between clades, and therefore, these are not diagnostic characters for taxonomic identification. The geographic distribution of the four clades displays a strong relationship between surface temperatures of the sea and ocean-current realms. The Indo-Malay (IM) clade is widespread in the tropical, equatorial region, including the Indian Ocean, Malay Peninsula, and North Borneo. The South China (SC) and Taiwan (TW) clades are found in tropical to subtropical regions, with the former distributed along the coasts of southern China, Vietnam, Thailand, and the western Philippines under the influence of the South China Warm Current. The TW clade is endemic to Taiwan, while the Christmas Island (CI) clade is confined to CI. There was weak or no population subdivision observed within these clades, suggesting high gene flow within the range of the clades. The clades demonstrate clear signatures of recent demographic expansion that predated the Last Glacial Maximum (LGM), but they have maintained a relatively stable effective population in the past 100,000 years. The persistence of intertidal fauna through the LGM may, therefore, be a common biogeographic pattern. The lack of genetic subdivision in the IM clade across the Indian and Pacific Oceans may be attributed to recent expansion of ranges and the fact that a mutation-drift equilibrium has not been reached, or the relaxed habitat

  6. Patterns of Genetic Variation across Altitude in Three Plant Species of Semi-Dry Grasslands

    PubMed Central

    Hahn, Thomas; Kettle, Chris J.; Ghazoul, Jaboury; Frei, Esther R.; Matter, Philippe; Pluess, Andrea R.

    2012-01-01

    Background Environmental gradients caused by altitudinal gradients may affect genetic variation within and among plant populations and inbreeding within populations. Populations in the upper range periphery of a species may be important source populations for range shifts to higher altitude in response to climate change. In this study we investigate patterns of population genetic variation at upper peripheral and lower more central altitudes in three common plant species of semi-dry grasslands in montane landscapes. Methodology/Principal Findings In Briza media, Trifolium montanum and Ranunculus bulbosus genetic diversity, inbreeding and genetic relatedness of individuals within populations and genetic differentiation among populations was characterized using AFLP markers. Populations were sampled in the Swiss Alps at 1800 (upper periphery of the study organisms) and at 1200 m a.s.l. Genetic diversity was not affected by altitude and only in B. media inbreeding was greater at higher altitudes. Genetic differentiation was slightly greater among populations at higher altitudes in B. media and individuals within populations were more related to each other compared to individuals in lower altitude populations. A similar but less strong pattern of differentiation and relatedness was observed in T. montanum, while in R. bulbosus there was no effect of altitude. Estimations of population size and isolation of populations were similar, both at higher and lower altitudes. Conclusions/Significance Our results suggest that altitude does not affect genetic diversity in the grassland species under study. Genetic differentiation of populations increased only slightly at higher elevation, probably due to extensive (historic) gene flow among altitudes. Potentially pre-adapted genes might therefore spread easily across altitudes. Our study indicates that populations at the upper periphery are not genetically depauperate or isolated and thus may be important source populations for

  7. Use of a Differential Observing Response to Expand Restricted Stimulus Control

    ERIC Educational Resources Information Center

    Walpole, Carrie Wallace; Roscoe, Eileen M.; Dube, William V.

    2007-01-01

    This study extends previous work on the use of differential observing responses (DOR) to remediate atypically restricted stimulus control. A participant with autism had high matching-to-sample accuracy scores with printed words that had no letters in common (e.g., "cat," "lid," "bug") but poor accuracy with words that had two letters in common…

  8. Chemical and genetic blockade of HDACs enhances osteogenic differentiation of human adipose tissue-derived stem cells by oppositely affecting osteogenic and adipogenic transcription factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maroni, Paola; Brini, Anna Teresa; Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Universita degli Studi di Milano, Milano

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Acetylation affected hASCs osteodifferentiation through Runx2-PPAR{gamma}. Black-Right-Pointing-Pointer HDACs knocking-down favoured the commitment effect of osteogenic medium. Black-Right-Pointing-Pointer HDACs silencing early activated Runx2 and ALP. Black-Right-Pointing-Pointer PPAR{gamma} reduction and calcium/collagen deposition occurred later. Black-Right-Pointing-Pointer Runx2/PPAR{gamma} target genes were modulated in line with HDACs role in osteo-commitment. -- Abstract: The human adipose-tissue derived stem/stromal cells (hASCs) are an interesting source for bone-tissue engineering applications. Our aim was to clarify in hASCs the role of acetylation in the control of Runt-related transcription factor 2 (Runx2) and Peroxisome proliferator activated receptor (PPAR) {gamma}. These key osteogenic and adipogenic transcription factors are oppositelymore » involved in osteo-differentiation. The hASCs, committed or not towards bone lineage with osteoinductive medium, were exposed to HDACs chemical blockade with Trichostatin A (TSA) or were genetically silenced for HDACs. Alkaline phosphatase (ALP) and collagen/calcium deposition, considered as early and late osteogenic markers, were evaluated concomitantly as index of osteo-differentiation. TSA pretreatment, useful experimental protocol to analyse pan-HDAC-chemical inhibition, and switch to osteogenic medium induced early-osteoblast maturation gene Runx2, while transiently decreased PPAR{gamma} and scarcely affected late-differentiation markers. Time-dependent effects were observed after knocking-down of HDAC1 and 3: Runx2 and ALP underwent early activation, followed by late-osteogenic markers increase and by PPAR{gamma}/ALP activity diminutions mostly after HDAC3 silencing. HDAC1 and 3 genetic blockade increased and decreased Runx2 and PPAR{gamma} target genes, respectively. Noteworthy, HDACs knocking-down favoured the commitment effect of osteogenic medium. Our

  9. Genetic variability in captive populations of the stingless bee Tetragonisca angustula.

    PubMed

    Santiago, Leandro R; Francisco, Flávio O; Jaffé, Rodolfo; Arias, Maria C

    2016-08-01

    Low genetic variability has normally been considered a consequence of animal husbandry and a major contributing factor to declining bee populations. Here, we performed a molecular analysis of captive and wild populations of the stingless bee Tetragonisca angustula, one of the most commonly kept species across South America. Microsatellite analyses showed similar genetic variability between wild and captive populations However, captive populations showed lower mitochondrial genetic variability. Male-mediated gene flow, transport and division of nests are suggested as the most probable explanations for the observed patterns of genetic structure. We conclude that increasing the number of colonies kept through nest divisions does not negatively affect nuclear genetic variability, which seems to be maintained by small-scale male dispersal and human-mediated nest transport. However, the transport of nests from distant localities should be practiced with caution given the high genetic differentiation observed between samples from western and eastern areas. The high genetic structure verified is the result of a long-term evolutionary process, and bees from distant localities may represent unique evolutionary lineages.

  10. Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cegelski, Christine C.; Campbell, Matthew R.

    2006-05-30

    Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 majormore » river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.« less

  11. Genetic differentiation of the pine wilt disease vector Monochamus alternatus (Coleoptera: Cerambycidae) over a mountain range - revealed from microsatellite DNA markers.

    PubMed

    Shoda-Kagaya, E

    2007-04-01

    To study the dispersal process of the pine sawyer Monochamus alternatus (Hope) in frontier populations, a microsatellite marker-based genetic analysis was performed on expanding populations at the northern limit of its range in Japan. In Asian countries, M. alternatus is the main vector of pine wilt disease, the most serious forest disease in Japan. Sawyers were collected from nine sites near the frontier of the pine wilt disease damage area. A mountain range divides the population into western and eastern sides. Five microsatellite loci were examined and a total of 188 individuals was genotyped from each locus with the number of alleles ranged from two to nine. The mean observed heterozygosity for all loci varied from 0.282 to 0.480 in the nine sites, with an overall mean of 0.364. None of the populations have experienced a significant bottleneck. Significant differentiation was found across the mountain range, but the genetic composition was similar amongst populations of each side. It is believed that the mountain range acts as a geographical barrier to dispersal and that gene flow without a geographical barrier is high. On the west side of the mountain range, a pattern of isolation by distance was detected. This was likely to be caused by secondary contact of different colonizing routes on a small spatial scale. Based on these data, a process linking genetic structure at local (kilometres) and regional spatial scales (hundreds of kilometres) was proposed.

  12. Competitive advantage and higher fitness in native populations of genetically structured planktonic diatoms.

    PubMed

    Sildever, Sirje; Sefbom, Josefin; Lips, Inga; Godhe, Anna

    2016-12-01

    It has been shown that the planktonic diatom Skeletonema from neighbouring areas are genetically differentiated despite absence of physical dispersal barriers. We revisited two sites, Mariager Fjord and Kattegat, NE Atlantic, and isolated new strains. Microsatellite genotyping and F-statistics revealed that the populations were genetically differentiated. An experiment was designed to investigate if populations are locally adapted and have a native competitive advantage. Ten strains from each location were grown individually in native and foreign water to investigate differences in produced biomass. Additionally, we mixed six pairs, one strain from each site, and let them grow together in native and foreign water. Strains from Mariager Fjord and Kattegat produced higher biomass in native water. In the competition experiment, strains from both sites displayed higher relative abundance and demonstrated competitive advantage in their native water. The cause of the differentiated growth is unknown, but could possibly be attributed to differences in silica concentration or viruses in the two water types. Our data show that dispersal potential does not influence the genetic structure of the populations. We conclude that genetic adaptation has not been overruled by gene flow, but instead the responses to different selection conditions are enforcing the observed genetic structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Genetic Investigation into the Paradoxical Differential Risk of Atrial Fibrillation Among Blacks and Whites

    PubMed Central

    Roberts, Jason D.; Hu, Donglei; Heckbert, Susan R.; Alonso, Alvaro; Dewland, Thomas A.; Vittinghoff, Eric; Liu, Yongmei; Psaty, Bruce M.; Olgin, Jeffrey E.; Magnani, Jared W.; Huntsman, Scott; Burchard, Esteban G.; Arking, Dan E.; Bibbins-Domingo, Kirsten; Harris, Tamara B.; Perez, Marco V.; Ziv, Elad; Marcus, Gregory M.

    2017-01-01

    Importance Whites have a higher risk of atrial fibrillation (AF) relative to Blacks, despite a lower prevalence of risk factors. This difference may be due, at least in part, to genetic factors. Objective To determine whether 9 single nucleotide polymorphisms (SNPs) associated with AF account for this paradoxical differential racial risk. We also used admixture mapping to search genome wide for loci that may account for this phenomenon. Design, Setting, and Participants Genome wide admixture analysis and candidate SNP study involving 3 population-based cohort studies initiated between 1987 and 1997, including the Cardiovascular Health Study (CHS; n=3,969), the Atherosclerosis Risk in Communities Study (ARIC; n=12,341), and the Health, Aging, and Body Composition Study (Health ABC; n=1,015). Main Outcomes and Measures Incident AF systematically ascertained using clinic visit ECGs, hospital discharge diagnosis codes, death certificates and Medicare claims data. Results Cox proportional hazards models and the proportion of treatment effect method were utilized to determine the impact of 9 AF-risk SNPs among participants from CHS and ARIC. A single SNP, rs10824026 (chromosome 10: position 73661450), was found to significantly mediate 11.4% (95% CI 2.9–29.9%) and 31.7% (95% CI 16.0–53.0%) of the higher risk in Whites compared to Blacks in CHS and ARIC, respectively. Admixture mapping was performed in a meta-analysis of Black participants within CHS (n=811), ARIC (n=3,112), and Health ABC (n=1,015). No loci that reached the pre-specified statistical threshold for genome-wide significance were identified. Conclusions and Relevance The rs10824026 SNP on chromosome 10q22 mediates a modest proportion of the increased risk of AF among Whites relative to Blacks, potentially through an impact on gene expression levels of MYOZ1. No additional genetic variants accounting for a significant portion of the differential racial risk of AF were identified with genome wide admixture

  14. Differentiated Storytelling: From Focused Observation to Strategic Teaching

    ERIC Educational Resources Information Center

    Abilock, Debbie, Ed.

    2008-01-01

    Differentiated teaching focuses on the student--the varying needs, interests and abilities in the classroom--in order to design curriculum which results in student understanding through application. Some differentiation implementations are little more than tweaks, but if one is ambitious, differentiation modifications can require substantial time…

  15. Genetic structure among greater white-fronted goose populations of the Pacific Flyway

    USGS Publications Warehouse

    Ely, Craig R.; Wilson, Robert E.; Talbot, Sandra L.

    2017-01-01

    An understanding of the genetic structure of populations in the wild is essential for long-term conservation and stewardship in the face of environmental change. Knowledge of the present-day distribution of genetic lineages (phylogeography) of a species is especially important for organisms that are exploited or utilize habitats that may be jeopardized by human intervention, including climate change. Here, we describe mitochondrial (mtDNA) and nuclear genetic (microsatellite) diversity among three populations of a migratory bird, the greater white-fronted goose (Anser albifrons), which breeds discontinuously in western and southwestern Alaska and winters in the Pacific Flyway of North America. Significant genetic structure was evident at both marker types. All three populations were differentiated for mtDNA, whereas microsatellite analysis only differentiated geese from the Cook Inlet Basin. In sexual reproducing species, nonrandom mate selection, when occurring in concert with fine-scale resource partitioning, can lead to phenotypic and genetic divergence as we observed in our study. If mate selection does not occur at the time of reproduction, which is not uncommon in long-lived organisms, then mechanisms influencing the true availability of potential mates may be obscured, and the degree of genetic and phenotypic diversity may appear incongruous with presumed patterns of gene flow. Previous investigations revealed population-specific behavioral, temporal, and spatial mechanisms that likely influence the amount of gene flow measured among greater white-fronted goose populations. The degree of observed genetic structuring aligns well with our current understanding of population differences pertaining to seasonal movements, social structure, pairing behavior, and resource partitioning.

  16. Testing the depth-differentiation hypothesis in a deepwater octocoral

    USGS Publications Warehouse

    Quattrini, Andrea; Baums, Iliana B.; Shank, Timothy M.; Morrison, Cheryl L.; Cordes, Erik E.

    2015-01-01

    The depth-differentiation hypothesis proposes that the bathyal region is a source of genetic diversity and an area where there is a high rate of species formation. Genetic differentiation should thus occur over relatively small vertical distances, particularly along the upper continental slope (200–1000 m) where oceanography varies greatly over small differences in depth. To test whether genetic differentiation within deepwater octocorals is greater over vertical rather than geographical distances, Callogorgia delta was targeted. This species commonly occurs throughout the northern Gulf of Mexico at depths ranging from 400 to 900 m. We found significant genetic differentiation (FST = 0.042) across seven sites spanning 400 km of distance and 400 m of depth. A pattern of isolation by depth emerged, but geographical distance between sites may further limit gene flow. Water mass boundaries may serve to isolate populations across depth; however, adaptive divergence with depth is also a possible scenario. Microsatellite markers also revealed significant genetic differentiation (FST = 0.434) between C. delta and a closely related species, Callogorgia americana, demonstrating the utility of microsatellites in species delimitation of octocorals. Results provided support for the depth-differentiation hypothesis, strengthening the notion that factors covarying with depth serve as isolation mechanisms in deep-sea populations.

  17. Genetic variation in the endangered Southwestern Willow Flycatcher

    USGS Publications Warehouse

    Busch, Joseph; Miller, Mark P.; Paxton, E.H.; Sogge, M.K.; Keim, Paul

    2000-01-01

    The Southwestern Willow Flycatcher (Empidonax traillii extimus) is an endangered Neotropical migrant that breeds in isolated remnants of dense riparian habitat in the southwestern United States. We estimated genetic variation at 20 breeding sites of the Southwestern Willow Flycatcher (290 individuals) using 38 amplified fragment length polymorphisms (AFLPs). Our results suggest that considerable genetic diversity exists within the subspecies and within local breeding sites. Statistical analyses of genetic variation revealed only slight, although significant, differentiation among breeding sites (Mantel's r = 0.0705, P < 0.0005; θ = 0.0816, 95% CI = 0.0608 to 0.1034; ΦST = 0.0458, P < 0.001). UPGMA cluster analysis of the AFLP markers indicates that extensive gene flow has occurred among breeding sites. No one site stood out as being genetically unique or isolated. Therefore, the small level of genetic structure that we detected may not be biologically significant. Ongoing field studies are consistent with this conclusion. Of the banded birds that were resighted or recaptured in Arizona during the 1996 to 1998 breeding seasons, one-third moved between breeding sites and two-thirds were philopatric. Low differentiation may be the result of historically high rangewide diversity followed by recent geographic isolation of breeding sites, although observational data indicate that gene flow is a current phenomenon. Our data suggest that breeding groups of E. t. extimus act as a metapopulation.

  18. Differential influences of local subpopulations on regional diversity and differentiation for greater sage-grouse (Centrocercus urophasianus)

    USGS Publications Warehouse

    Row, Jeffery R.; Oyler-McCance, Sara J.; Fedy, Brad C.

    2016-01-01

    The distribution of spatial genetic variation across a region can shape evolutionary dynamics and impact population persistence. Local population dynamics and among-population dispersal rates are strong drivers of this spatial genetic variation, yet for many species we lack a clear understanding of how these population processes interact in space to shape within-species genetic variation. Here, we used extensive genetic and demographic data from 10 subpopulations of greater sage-grouse to parameterize a simulated approximate Bayesian computation (ABC) model and (i) test for regional differences in population density and dispersal rates for greater sage-grouse subpopulations in Wyoming, and (ii) quantify how these differences impact subpopulation regional influence on genetic variation. We found a close match between observed and simulated data under our parameterized model and strong variation in density and dispersal rates across Wyoming. Sensitivity analyses suggested that changes in dispersal (via landscape resistance) had a greater influence on regional differentiation, whereas changes in density had a greater influence on mean diversity across all subpopulations. Local subpopulations, however, varied in their regional influence on genetic variation. Decreases in the size and dispersal rates of central populations with low overall and net immigration (i.e. population sources) had the greatest negative impact on genetic variation. Overall, our results provide insight into the interactions among demography, dispersal and genetic variation and highlight the potential of ABC to disentangle the complexity of regional population dynamics and project the genetic impact of changing conditions.

  19. Genetically encoded sensors enable real-time observation of metabolite production

    PubMed Central

    Rogers, Jameson K.; Church, George M.

    2016-01-01

    Engineering cells to produce valuable metabolic products is hindered by the slow and laborious methods available for evaluating product concentration. Consequently, many designs go unevaluated, and the dynamics of product formation over time go unobserved. In this work, we develop a framework for observing product formation in real time without the need for sample preparation or laborious analytical methods. We use genetically encoded biosensors derived from small-molecule responsive transcription factors to provide a fluorescent readout that is proportional to the intracellular concentration of a target metabolite. Combining an appropriate biosensor with cells designed to produce a metabolic product allows us to track product formation by observing fluorescence. With individual cells exhibiting fluorescent intensities proportional to the amount of metabolite they produce, high-throughput methods can be used to rank the quality of genetic variants or production conditions. We observe production of several renewable plastic precursors with fluorescent readouts and demonstrate that higher fluorescence is indeed an indicator of higher product titer. Using fluorescence as a guide, we identify process parameters that produce 3-hydroxypropionate at 4.2 g/L, 23-fold higher than previously reported. We also report, to our knowledge, the first engineered route from glucose to acrylate, a plastic precursor with global sales of $14 billion. Finally, we monitor the production of glucarate, a replacement for environmentally damaging detergents, and muconate, a renewable precursor to polyethylene terephthalate and nylon with combined markets of $51 billion, in real time, demonstrating that our method is applicable to a wide range of molecules. PMID:26858408

  20. Genetically encoded sensors enable real-time observation of metabolite production

    DOE PAGES

    Rogers, Jameson K.; Church, George M.

    2016-02-08

    Here, engineering cells to produce valuable metabolic products is hindered by the slow and laborious methods available for evaluating product concentration. Consequently, many designs go unevaluated, and the dynamics of product formation over time go unobserved. In this work, we develop a framework for observing product formation in real time without the need for sample preparation or laborious analytical methods. We use genetically encoded biosensors derived from small-molecule responsive transcription factors to provide a fluorescent readout that is proportional to the intracellular concentration of a target metabolite. Combining an appropriate biosensor with cells designed to produce a metabolic product allowsmore » us to track product formation by observing fluorescence. With individual cells exhibiting fluorescent intensities proportional to the amount of metabolite they produce, high-throughput methods can be used to rank the quality of genetic variants or production conditions. We observe production of several renewable plastic precursors with fluorescent readouts and demonstrate that higher fluorescence is indeed an indicator of higher product titer. Using fluorescence as a guide, we identify process parameters that produce 3-hydroxypropionate at 4.2 g/L, 23-fold higher than previously reported. We also report, to our knowledge, the first engineered route from glucose to acrylate, a plastic precursor with global sales of 14 billion. Finally, we monitor the production of glucarate, a replacement for environmentally damaging detergents, and muconate, a renewable precursor to polyethylene terephthalate and nylon with combined markets of 51 billion, in real time, demonstrating that our method is applicable to a wide range of molecules.« less

  1. Genetic variation, climate models and the ecological genetics of Larix occidentalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehfeldt, G.E.

    1995-12-31

    Provenance tests of 138 populations of Larix occidentalis revealed genetic differentiation for eight variables describing growth, phenology, tolerance to spring frosts, effects of Meria laricis needle cast, and survival. Geographic variables accounted for as much as 34% of the variance among Rocky Mountain populations. Patterns of genetic variation were dominated by the effects of latitude and elevation, with populations from the north and from high elevations having the lowest growth potential, the least tolerance to the needle cast, and the lowest survival. However, the slope of the geographic clines was relatively flat. Populations in the same geographic area, for instance,more » need to be separated by about 500 m in elevation before genetic differentiation can be expected.« less

  2. New Interview and Observation Measures of the Broader Autism Phenotype: Group Differentiation

    ERIC Educational Resources Information Center

    de Jonge, Maretha; Parr, Jeremy; Rutter, Michael; Wallace, Simon; Kemner, Chantal; Bailey, Anthony; van Engeland, Herman; Pickles, Andrew

    2015-01-01

    To identify the broader autism phenotype (BAP), the Family History Interview subject and informant versions and an observational tool (Impression of Interviewee), were developed. This study investigated whether the instruments differentiated between parents of children with autism, and parents of children with Down syndrome (DS). The BAP scores of…

  3. Genetic analysis of Mexican Criollo cattle populations.

    PubMed

    Ulloa-Arvizu, R; Gayosso-Vázquez, A; Ramos-Kuri, M; Estrada, F J; Montaño, M; Alonso, R A

    2008-10-01

    The objective of this study was to evaluate the genetic structure of Mexican Criollo cattle populations using microsatellite genetic markers. DNA samples were collected from 168 animals from four Mexican Criollo cattle populations, geographically isolated in remote areas of Sierra Madre Occidental (West Highlands). Also were included samples from two breeds with Iberian origin: the fighting bull (n = 24) and the milking central American Criollo (n = 24) and one Asiatic breed: Guzerat (n = 32). Genetic analysis consisted of the estimation of the genetic diversity in each population by the allele number and the average expected heterozygosity found in nine microsatellite loci. Furthermore, genetic relationships among the populations were defined by their genetic distances. Our data shows that Mexican cattle populations have a relatively high level of genetic diversity based either on the mean number of alleles (10.2-13.6) and on the expected heterozygosity (0.71-0.85). The degree of observed homozygosity within the Criollo populations was remarkable and probably caused by inbreeding (reduced effective population size) possibly due to reproductive structure within populations. Our data shows that considerable genetic differentiation has been occurred among the Criollo cattle populations in different regions of Mexico.

  4. [Genetic variation and differentiation in striped field mouse Apodemus agrarius inferred from RAPD-PCR analysis].

    PubMed

    Atopkin, D M; Bogdanov, A S; Chelomina, G N

    2007-06-01

    Genetic variation and differentiation of the trans-Palearctic species Apodemus agrarius (striped field mouse), whose range consists of two large isolates-European-Siberian and Far Eastern-Chinese, were examined using RAPD-PCR analysis. The material from the both parts of the range was examined (41 individual of A. agrarius from 18 localities of Russia, Ukraine, Moldova, and Kazakhstan); the Far-Eastern part was represented by samples from the Amur region, Khabarovsk krai, and Primorye (Russia). Differences in frequencies of polymorphic RAPD loci were found between the European-Siberian and the Far Eastern population groups of striped field mouse. No "fixed" differences between them in RAPD spectra were found, and none of the used statistical methods permitted to distinguish with absolute certainty animals from the two range parts. Thus, genetic isolation of the European-Siberian and the Far Eastern population groups of A. agrarius is not strict. These results support the hypothesis on recent dispersal of striped field mouse from East to West Palearctics (during the Holocene climatic optimum, 7000 to 4500 years ago) and subsequent disjunction of the species range (not earlier than 4000-4500 years ago). The Far Eastern population group is more polymorphic than the European-Siberian one, while genetic heterogeneity is more uniformly distributed within it. This is probably explained by both historical events that happened during the species dispersal in the past, and different environmental conditions for the species in different parts of its range. The Far Eastern population group inhabits the area close to the distribution center of A. agrarius. It is likely that this group preserved genetic variation of the formerly integral ancestral form, while some amount of genetic polymorphism could be lost during the species colonization of the Siberian and European areas. To date, the settlement density and population number in general are higher than within the European

  5. Genetic diversity in aspen and its relation to arthropod abundance

    PubMed Central

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2015-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen. PMID:25674097

  6. Preimplantation genetic haplotyping a new application for diagnosis of translocation carrier's embryos- preliminary observations of two robertsonian translocation carrier families.

    PubMed

    Shamash, Jana; Rienstein, Shlomit; Wolf-Reznik, Haike; Pras, Elon; Dekel, Michal; Litmanovitch, Talia; Brengauz, Masha; Goldman, Boleslav; Yonath, Hagith; Dor, Jehoshua; Levron, Jacob; Aviram-Goldring, Ayala

    2011-01-01

    Preimplantation genetic diagnosis using fluorescence in-situ hybridization (PGD-FISH) is currently the most common reproductive solution for translocation carriers. However, this technique usually does not differentiate between embryos carrying the balanced form of the translocation and those carrying the homologous normal chromosomes. We developed a new application of preimplantation genetic haplotyping (PGH) that can identify and distinguish between all forms of the translocation status in cleavage stage embryos prior to implantation. Polymorphic markers were used to identify and differentiate between the alleles that carry the translocation and those that are the normal homologous chromosomes. Embryos from two families of robertsonian translocation carriers were successfully analyzed using polymorphic markers haplotyping. Our preliminary results indicate that the PGH is capable of distinguishing between normal, balanced and unbalanced translocation carrier embryos. This method will improve PGD and will enable translocation carriers to avoid transmission of the translocation and the associated medical complications to offspring.

  7. Genetic differentiation and phylogeny relationships of functional ApoVLDL-II gene in red jungle fowl and domestic chicken populations.

    PubMed

    Musa, Hassan H; Cheng, Jin H; Bao, Wen B; Li, Bi C; Mekki, Dafaalla M; Chen, Guo H

    2007-08-01

    A total of 243 individuals from Red Jungle Fowl (Gallus gallus spadiceus), Rugao, Anka, Wenchang and Silikes chicken populations were used for polymorphism analysis in functional apoVLDL-II gene by Restriction fragment length polymorphism and single strand conformation polymorphism markers. The results show that Anka population has highest gene diversity and Shannon information index, while Red jungle fowl shows highest effective number of allele. In addition, the higher coefficient of genetic differentiation (Gst) across all loci in apoVLDL-II was indicating that high variation is proportioned among populations. As expected total gene diversity (Ht) has upper estimate compared with within population genetic diversity (Hs) across all loci. The mean Gst value across all loci was (0.194) indicating about 19.4% of total genetic variation could be explained by breeds differences, while the remaining 80.6% was accounted for differences among individuals. The average apoVLDL-II gene flow across all loci in five chicken populations was 1.189. The estimates of genetic identity and distance confirm that these genes are significantly different between genetically fat and lean population, because fat type breed Anka shows highest distance with the other Silikes and Rugao whish are genetically lean. In addition, Wenchang and Red jungle fowl were found more closely and genetically related than the other breeds with 49.4% bootstrapping percentages, then they were related to Silikes by 100% bootstrapping percentages followed by Rugao and finally all of them are related with exotic fat breed Anka.

  8. Observation of room temperature negative differential resistance in multi-layer heterostructures of quantum dots and conducting polymers.

    PubMed

    Kannan, V; Kim, M R; Chae, Y S; Ramana, Ch V V; Rhee, J K

    2011-01-14

    Multi-layer heterostructure negative differential resistance devices based on poly-[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylenevinylene] (MEH-PPV) conducting polymer and CdSe quantum dots is reported. The conducting polymer MEH-PPV acts as a barrier while CdSe quantum dots form the well layer. The devices exhibit negative differential resistance (NDR) at low voltages. For these devices, strong negative differential resistance is observed at room temperature. A maximum value of 51 for the peak-to-valley ratio of current is reported. Tunneling of electrons through the discrete quantum confined states in the CdSe quantum dots is believed to be responsible for the multiple peaks observed in the I-V measurement. Depending on the observed NDR signature, operating mechanisms are explored based on resonant tunneling and Coulomb blockade effects.

  9. The fine-scale genetic structure and evolution of the Japanese population.

    PubMed

    Takeuchi, Fumihiko; Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua; Teo, Yik-Ying; Kato, Norihiro

    2017-01-01

    The contemporary Japanese populations largely consist of three genetically distinct groups-Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics.

  10. The fine-scale genetic structure and evolution of the Japanese population

    PubMed Central

    Katsuya, Tomohiro; Kimura, Ryosuke; Nabika, Toru; Isomura, Minoru; Ohkubo, Takayoshi; Tabara, Yasuharu; Yamamoto, Ken; Yokota, Mitsuhiro; Liu, Xuanyao; Saw, Woei-Yuh; Mamatyusupu, Dolikun; Yang, Wenjun; Xu, Shuhua

    2017-01-01

    The contemporary Japanese populations largely consist of three genetically distinct groups—Hondo, Ryukyu and Ainu. By principal-component analysis, while the three groups can be clearly separated, the Hondo people, comprising 99% of the Japanese, form one almost indistinguishable cluster. To understand fine-scale genetic structure, we applied powerful haplotype-based statistical methods to genome-wide single nucleotide polymorphism data from 1600 Japanese individuals, sampled from eight distinct regions in Japan. We then combined the Japanese data with 26 other Asian populations data to analyze the shared ancestry and genetic differentiation. We found that the Japanese could be separated into nine genetic clusters in our dataset, showing a marked concordance with geography; and that major components of ancestry profile of Japanese were from the Korean and Han Chinese clusters. We also detected and dated admixture in the Japanese. While genetic differentiation between Ryukyu and Hondo was suggested to be caused in part by positive selection, genetic differentiation among the Hondo clusters appeared to result principally from genetic drift. Notably, in Asians, we found the possibility that positive selection accentuated genetic differentiation among distant populations but attenuated genetic differentiation among close populations. These findings are significant for studies of human evolution and medical genetics. PMID:29091727

  11. Revisiting AFLP fingerprinting for an unbiased assessment of genetic structure and differentiation of taurine and zebu cattle

    PubMed Central

    2014-01-01

    Background Descendants from the extinct aurochs (Bos primigenius), taurine (Bos taurus) and zebu cattle (Bos indicus) were domesticated 10,000 years ago in Southwestern and Southern Asia, respectively, and colonized the world undergoing complex events of admixture and selection. Molecular data, in particular genome-wide single nucleotide polymorphism (SNP) markers, can complement historic and archaeological records to elucidate these past events. However, SNP ascertainment in cattle has been optimized for taurine breeds, imposing limitations to the study of diversity in zebu cattle. As amplified fragment length polymorphism (AFLP) markers are discovered and genotyped as the samples are assayed, this type of marker is free of ascertainment bias. In order to obtain unbiased assessments of genetic differentiation and structure in taurine and zebu cattle, we analyzed a dataset of 135 AFLP markers in 1,593 samples from 13 zebu and 58 taurine breeds, representing nine continental areas. Results We found a geographical pattern of expected heterozygosity in European taurine breeds decreasing with the distance from the domestication centre, arguing against a large-scale introgression from European or African aurochs. Zebu cattle were found to be at least as diverse as taurine cattle. Western African zebu cattle were found to have diverged more from Indian zebu than South American zebu. Model-based clustering and ancestry informative markers analyses suggested that this is due to taurine introgression. Although a large part of South American zebu cattle also descend from taurine cows, we did not detect significant levels of taurine ancestry in these breeds, probably because of systematic backcrossing with zebu bulls. Furthermore, limited zebu introgression was found in Podolian taurine breeds in Italy. Conclusions The assessment of cattle diversity reported here contributes an unbiased global view to genetic differentiation and structure of taurine and zebu cattle

  12. Genetic diversity and differentiation patterns in Micromeria from the Canary Islands are congruent with multiple colonization dynamics and the establishment of species syngameons.

    PubMed

    Curto, M; Puppo, P; Kratschmer, S; Meimberg, H

    2017-08-22

    Especially on islands closer to the mainland, such as the Canary Islands, different lineages that originated by multiple colonization events could have merged by hybridization, which then could have promoted radiation events (Herben et al., J Ecol 93: 572-575, 2005; Saunders and Gibson, J Ecol 93: 649-652, 2005; Caujapé-Castells, Jesters, red queens, boomerangs and surfers: a molecular outlook on the diversity of the Canarian endemic flora, 2011). This is an alternative to the scenario where evolution is mostly driven by drift (Silvertown, J Ecol 92: 168-173, 2004; Silvertown et al., J Ecol 93: 653-657, 2005). In the former case hybridization should be reflected in the genetic structure and diversity patterns of island species. In the present work we investigate Micromeria from the Canary Islands by extensively studying their phylogeographic pattern based on 15 microsatellite loci and 945 samples. These results are interpreted according to the hypotheses outlined above. Genetic structure assessment allowed us to genetically differentiate most Micromeria species and supported their current classification. We found that populations on younger islands were significantly more genetically diverse and less differentiated than those on older islands. Moreover, we found that genetic distance on younger islands was in accordance with an isolation-by-distance pattern, while on the older islands this was not the case. We also found evidence of introgression among species and islands. These results are congruent with a scenario of multiple colonizations during the expansion onto new islands. Hybridization contributes to the grouping of multiple lineages into highly diverse populations. Thus, in our case, islands receive several colonization events from different sources, which are combined into sink populations. This mechanism is in accordance with the surfing syngameon hypothesis. Contrary to the surfing syngameon current form, our results may reflect a slightly different

  13. Genetic Diversity and Population Structure of Theileria annulata in Oman

    PubMed Central

    Al-Hamidhi, Salama; H. Tageldin, Mohammed.; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H.; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Background Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Methods Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. Results We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST

  14. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    PubMed

    Al-Hamidhi, Salama; H Tageldin, Mohammed; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075, θ = 0.07) were

  15. The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland.

    PubMed

    Mullins, Jacinta; McDevitt, Allan D; Kowalczyk, Rafał; Ruczyńska, Iwona; Górny, Marcin; Wójcik, Jan M

    2014-01-01

    The red fox ( Vulpes vulpes ) has the widest global distribution among terrestrial carnivore species, occupying most of the Northern Hemisphere in its native range. Because it carries diseases that can be transmitted to humans and domestic animals, it is important to gather information about their movements and dispersal in their natural habitat but it is difficult to do so at a broad scale with trapping and telemetry. In this study, we have described the genetic diversity and structure of red fox populations in six areas of north-eastern Poland, based on samples collected from 2002-2003. We tested 22 microsatellite loci isolated from the dog and the red fox genome to select a panel of nine polymorphic loci suitable for this study. Genetic differentiation between the six studied populations was low to moderate and analysis in Structure revealed a panmictic population in the region. Spatial autocorrelation among all individuals showed a pattern of decreasing relatedness with increasing distance and this was not significantly negative until 93 km, indicating a pattern of isolation-by-distance over a large area. However, there was no correlation between genetic distance and either Euclidean distance or least-cost path distance at the population level. There was a significant relationship between genetic distance and the proportion of large forests and water along the Euclidean distances. These types of habitats may influence dispersal paths taken by red foxes, which is useful information in terms of wildlife disease management.

  16. [Genetic diversity and genetic structure of endangered wild Sinopodophyllum emodi by start codon targeted polymorphism].

    PubMed

    Chen, Da-Xia; Zhao, Ji-Feng; Liu, Xiang; Wang, Chang-Hua; Zhang, Zhi-Wei; Qin, Song-Yun; Zhong, Guo-Yue

    2013-01-01

    Revealed the genetic diversity level and genetic structure characteristics in Sinopodophyllum emodi, a rare and endangered species in China. We detected the genetic polymorphism within and among six wild populations (45 individuals) by the approach of Start Codon Targeted (SCoT) Polymorphism. The associated genetic parameters were calculated by POP-GENE1.31 and the relationship was constructed based on UPGMA method. A total of 350 bands were scored by 27 primers and 284 bands of them were polymorphic. The average polymorphic bands of each primer were 10.52. At species level, there was a high level of genetic diversity among six populations (PPB = 79.27%, N(e) = 1.332 7, H = 0.210 9 and H(sp) = 0.328 6). At population level, the genetic diversity level was low (PPB = 10.48% (4.00% -23.71%), N(e) = 1.048 7 (1.020 7-1.103 7), H = 0.029 7 (0.012 9-0.063 1), H(pop) = 0.046 2 (0.019 9-0.098 6). The Nei's coefficient of genetic differentiation was 0.841 1, which was consistent with the Shannon's coefficient of genetic differentiation (0.849 4). Two calculated methods all showed that most of the genetic variation existed among populations. The gene flow (N(m) = 0.094 4) was less among populations, indicating that the degree of genetic differentiation was higher. Genetic similarity coefficient were changed from 0.570 8 to 0.978 7. By clustering analysis, the tested populations were divided into two classes and had a tendency that the same geographical origin or material of similar habitats clustered into one group. The genetic diversity of samples of S. emodi is high,which laid a certain foundation for effective protection and improvement of germplasm resources.

  17. Modeling delay in genetic networks: From delay birth-death processes to delay stochastic differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Chinmaya; López, José Manuel; Azencott, Robert

    Delay is an important and ubiquitous aspect of many biochemical processes. For example, delay plays a central role in the dynamics of genetic regulatory networks as it stems from the sequential assembly of first mRNA and then protein. Genetic regulatory networks are therefore frequently modeled as stochastic birth-death processes with delay. Here, we examine the relationship between delay birth-death processes and their appropriate approximating delay chemical Langevin equations. We prove a quantitative bound on the error between the pathwise realizations of these two processes. Our results hold for both fixed delay and distributed delay. Simulations demonstrate that the delay chemicalmore » Langevin approximation is accurate even at moderate system sizes. It captures dynamical features such as the oscillatory behavior in negative feedback circuits, cross-correlations between nodes in a network, and spatial and temporal information in two commonly studied motifs of metastability in biochemical systems. Overall, these results provide a foundation for using delay stochastic differential equations to approximate the dynamics of birth-death processes with delay.« less

  18. North-South differentiation and a region of high diversity in European wolves (Canis lupus).

    PubMed

    Stronen, Astrid V; Jędrzejewska, Bogumiła; Pertoldi, Cino; Demontis, Ditte; Randi, Ettore; Niedziałkowska, Magdalena; Pilot, Małgorzata; Sidorovich, Vadim E; Dykyy, Ihor; Kusak, Josip; Tsingarska, Elena; Kojola, Ilpo; Karamanlidis, Alexandros A; Ornicans, Aivars; Lobkov, Vladimir A; Dumenko, Vitalii; Czarnomska, Sylwia D

    2013-01-01

    European wolves (Canis lupus) show population genetic structure in the absence of geographic barriers, and across relatively short distances for this highly mobile species. Additional information on the location of and divergence between population clusters is required, particularly because wolves are currently recolonizing parts of Europe. We evaluated genetic structure in 177 wolves from 11 countries using over 67K single nucleotide polymorphism (SNP) loci. The results supported previous findings of an isolated Italian population with lower genetic diversity than that observed across other areas of Europe. Wolves from the remaining countries were primarily structured in a north-south axis, with Croatia, Bulgaria, and Greece (Dinaric-Balkan) differentiated from northcentral wolves that included individuals from Finland, Latvia, Belarus, Poland and Russia. Carpathian Mountain wolves in central Europe had genotypes intermediate between those identified in northcentral Europe and the Dinaric-Balkan cluster. Overall, individual genotypes from northcentral Europe suggested high levels of admixture. We observed high diversity within Belarus, with wolves from western and northern Belarus representing the two most differentiated groups within northcentral Europe. Our results support the presence of at least three major clusters (Italy, Carpathians, Dinaric-Balkan) in southern and central Europe. Individuals from Croatia also appeared differentiated from wolves in Greece and Bulgaria. Expansion from glacial refugia, adaptation to local environments, and human-related factors such as landscape fragmentation and frequent killing of wolves in some areas may have contributed to the observed patterns. Our findings can help inform conservation management of these apex predators and the ecosystems of which they are part.

  19. North-South Differentiation and a Region of High Diversity in European Wolves (Canis lupus)

    PubMed Central

    Stronen, Astrid V.; Jędrzejewska, Bogumiła; Pertoldi, Cino; Demontis, Ditte; Randi, Ettore; Niedziałkowska, Magdalena; Pilot, Małgorzata; Sidorovich, Vadim E.; Dykyy, Ihor; Kusak, Josip; Tsingarska, Elena; Kojola, Ilpo; Karamanlidis, Alexandros A.; Ornicans, Aivars; Lobkov, Vladimir A.; Dumenko, Vitalii; Czarnomska, Sylwia D.

    2013-01-01

    European wolves (Canis lupus) show population genetic structure in the absence of geographic barriers, and across relatively short distances for this highly mobile species. Additional information on the location of and divergence between population clusters is required, particularly because wolves are currently recolonizing parts of Europe. We evaluated genetic structure in 177 wolves from 11 countries using over 67K single nucleotide polymorphism (SNP) loci. The results supported previous findings of an isolated Italian population with lower genetic diversity than that observed across other areas of Europe. Wolves from the remaining countries were primarily structured in a north-south axis, with Croatia, Bulgaria, and Greece (Dinaric-Balkan) differentiated from northcentral wolves that included individuals from Finland, Latvia, Belarus, Poland and Russia. Carpathian Mountain wolves in central Europe had genotypes intermediate between those identified in northcentral Europe and the Dinaric-Balkan cluster. Overall, individual genotypes from northcentral Europe suggested high levels of admixture. We observed high diversity within Belarus, with wolves from western and northern Belarus representing the two most differentiated groups within northcentral Europe. Our results support the presence of at least three major clusters (Italy, Carpathians, Dinaric-Balkan) in southern and central Europe. Individuals from Croatia also appeared differentiated from wolves in Greece and Bulgaria. Expansion from glacial refugia, adaptation to local environments, and human-related factors such as landscape fragmentation and frequent killing of wolves in some areas may have contributed to the observed patterns. Our findings can help inform conservation management of these apex predators and the ecosystems of which they are part. PMID:24146871

  20. Genetic differentiation of Octopus minor (Mollusca, Cephalopoda) off the northern coast of China as revealed by amplified fragment length polymorphisms.

    PubMed

    Yang, J M; Sun, G H; Zheng, X D; Ren, L H; Wang, W J; Li, G R; Sun, B C

    2015-12-02

    Octopus minor (Sasaki, 1920) is an economically important cephalopod that is found in the northern coastal waters of China. In this study, we investigated genetic differentiation in fishery populations using amplified fragment length polymorphisms (AFLPs). A total of 150 individuals were collected from five locations: Dalian (DL), Yan-tai (YT), Qingdao (QD), Lianyungang (LY), and Zhoushan (ZS), and 243 reproducible bands were amplified using five AFLP primer combinations. The percentage of polymorphic bands ranged from 53.33 to 76.08%. Nei's genetic identity ranged from 0.9139 to 0.9713, and the genetic distance ranged from 0.0291 to 0.0900. A phylogenetic tree was constructed using the unweighted pair group method with arithmetic mean, based on the genetic distance. The DL and YT populations originated from one clade, while the QD, LY, and ZS populations originated from another. The results indicate that the O. minor stock consisted of two genetic populations with an overall significantly analogous FST value (0.1088, P < 0.05). Most of the variance was within populations. These findings will be important for more sustainable octopus fisheries, so that this marine resource can be conserved for its long-term utilization.

  1. Nuclear microsatellites reveal contrasting patterns of genetic structure between western and southeastern European populations of the common ash (Fraxinus excelsior L.).

    PubMed

    Heuertz, Myriam; Hausman, Jean-François; Hardy, Olivier J; Vendramin, Giovanni G; Frascaria-Lacoste, Nathalie; Vekemans, Xavier

    2004-05-01

    To determine extant patterns of population genetic structure in common ash and gain insight into postglacial recolonization processes, we applied multilocus-based Bayesian approaches to data from 36 European populations genotyped at five nuclear microsatellite loci. We identified two contrasting patterns in terms of population genetic structure: (1) a large area from the British Isles to Lithuania throughout central Europe constituted effectively a single deme, whereas (2) strong genetic differentiation occurred over short distances in Sweden and southeastern Europe. Concomitant geographical variation was observed in estimates of allelic richness and genetic diversity, which were lowest in populations from southeastern Europe, that is, in regions close to putative ice age refuges, but high in western and central Europe, that is, in more recently recolonized areas. We suggest that in southeastern Europe, restricted postglacial gene flow caused by a rapid expansion of refuge populations in a mountainous topography is responsible for the observed strong genetic structure. In contrast, admixture of previously differentiated gene pools and high gene flow at the onset of postglacial recolonization of western and central Europe would have homogenized the genetic structure and raised the levels of genetic diversity above values in the refuges.

  2. Genetic diversity of Syrian Arabian horses.

    PubMed

    Almarzook, S; Reissmann, M; Arends, D; Brockmann, G A

    2017-08-01

    Although Arabian horses have been bred in strains for centuries and pedigrees have been recorded in studbooks, to date, little is known about the genetic diversity within and between these strains. In this study, we tested if the three main strains of Syrian Arabian horses descend from three founders as suggested by the studbook. We examined 48 horses representing Saglawi (n = 18), Kahlawi (n = 16) and Hamdani (n = 14) strains using the Equine SNP70K BeadChip. For comparison, an additional 24 Arabian horses from the USA and three Przewalski's horses as an out group were added. Observed heterozygosis (H o ) ranged between 0.30 and 0.32, expected heterozygosity (H e ) between 0.30 and 0.31 and inbreeding coefficients (F is ) between -0.02 and -0.05, indicating high genetic diversity within Syrian strains. Likewise, the genetic differentiation between the three Syrian strains was very low (F st  < 0.05). Hierarchical clustering showed a clear distinction between Arabian and Przewalski's horses. Among Arabian horses, we found three clusters containing either horses from the USA or horses from Syria or horses from Syria and the USA together. Individuals from the same Syrian Arabian horse strain were spread across different sub-clusters. When analyzing Syrian Arabian horses alone, the best population differentiation was found with three distinct clusters. In contrast to expectations from the studbook, these clusters did not coincide with strain affiliation. Although this finding supports the hypothesis of three founders, the genetic information is not consistent with the currently used strain designation system. The information can be used to reconsider the current breeding practice. Beyond that, Syrian Arabian horses are an important reservoir for genetic diversity. © 2017 Stichting International Foundation for Animal Genetics.

  3. Genetic diversity and population structure of an insular tree, Santalum austrocaledonicum in New Caledonian archipelago.

    PubMed

    Bottin, L; Verhaegen, D; Tassin, J; Olivieri, I; Vaillant, A; Bouvet, J M

    2005-06-01

    We present a study of the genetic diversity and structure of a tropical tree in an insular system. Santalum austrocaledonicum is endemic to the archipelago of New Caledonia and is exploited for oil extraction from heartwood. A total of 431 individuals over 17 populations were analysed for eight polymorphic microsatellite loci. The number of alleles per locus ranged from 3 to 33 and the observed heterozygosity per population ranged from 0.01 in Mare to 0.74 in Ile des Pins. The genetic diversity was lowest in the most recent islands, the Loyautes, and highest in the oldest island, Grande Terre, as well as the nearby small Ile des Pins. Significant departures from panmixia were observed for some loci-population combinations (per population FIS = 0-0.03 on Grande-Terre and Ile des Pins, and 0-0.67 on Loyautes). A strong genetic differentiation among all islands was observed (FST = 0.22), and the amount of differentiation increased with geographic distance in Iles Loyaute and in Grande Terre. At both population and island levels, island age and isolation seem to be the main factors influencing the amount of genetic diversity. In particular, populations from recent islands had large average FIS that could not be entirely explained by null alleles or a Wahlund effect. This result suggests that, at least in some populations, selfing occurred extensively. Conclusively, our results indicate a strong influence of insularity on the genetic diversity and structure of Santalum austrocaledonicum.

  4. Fragmentation reduces regional-scale spatial genetic structure in a wind-pollinated tree because genetic barriers are removed.

    PubMed

    Wang, Rong; Compton, Stephen G; Shi, Yi-Su; Chen, Xiao-Yong

    2012-09-01

    Gene flow strongly influences the regional genetic structuring of plant populations. Seed and pollen dispersal patterns can respond differently to the increased isolation resulting from habitat fragmentation, with unpredictable consequences for gene flow and population structuring. In a recently fragmented landscape we compared the pre- and post-fragmentation genetic structure of populations of a tree species where pollen and seed dispersal respond differentially to forest fragmentation generated by flooding. Castanopsis sclerophylla is wind-pollinated, with seeds that are dispersed by gravity and rodents. Using microsatellites, we found no significant difference in genetic diversity between pre- and post-fragmentation cohorts. Significant genetic structure was observed in pre-fragmentation cohorts, due to an unknown genetic barrier that had isolated one small population. Among post-fragmentation cohorts this genetic barrier had disappeared and genetic structure was significantly weakened. The strengths of genetic structuring were at a similar level in both cohorts, suggesting that overall gene flow of C. sclerophylla has been unchanged by fragmentation at the regional scale. Fragmentation has blocked seed dispersal among habitats, but this appears to have been compensated for by enhanced pollen dispersal, as indicated by the disappearance of a genetic barrier, probably as a result of increased wind speeds and easier pollen movement over water. Extensive pollen flow can counteract some negative effects of fragmentation and assist the long-term persistence of small remnant populations.

  5. Correlation between human observer performance and model observer performance in differential phase contrast CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ke; Garrett, John; Chen, Guang-Hong

    2013-11-15

    Purpose: With the recently expanding interest and developments in x-ray differential phase contrast CT (DPC-CT), the evaluation of its task-specific detection performance and comparison with the corresponding absorption CT under a given radiation dose constraint become increasingly important. Mathematical model observers are often used to quantify the performance of imaging systems, but their correlations with actual human observers need to be confirmed for each new imaging method. This work is an investigation of the effects of stochastic DPC-CT noise on the correlation of detection performance between model and human observers with signal-known-exactly (SKE) detection tasks.Methods: The detectabilities of different objectsmore » (five disks with different diameters and two breast lesion masses) embedded in an experimental DPC-CT noise background were assessed using both model and human observers. The detectability of the disk and lesion signals was then measured using five types of model observers including the prewhitening ideal observer, the nonprewhitening (NPW) observer, the nonprewhitening observer with eye filter and internal noise (NPWEi), the prewhitening observer with eye filter and internal noise (PWEi), and the channelized Hotelling observer (CHO). The same objects were also evaluated by four human observers using the two-alternative forced choice method. The results from the model observer experiment were quantitatively compared to the human observer results to assess the correlation between the two techniques.Results: The contrast-to-detail (CD) curve generated by the human observers for the disk-detection experiments shows that the required contrast to detect a disk is inversely proportional to the square root of the disk size. Based on the CD curves, the ideal and NPW observers tend to systematically overestimate the performance of the human observers. The NPWEi and PWEi observers did not predict human performance well either, as the slopes of

  6. Human neutral genetic variation and forensic STR data.

    PubMed

    Silva, Nuno M; Pereira, Luísa; Poloni, Estella S; Currat, Mathias

    2012-01-01

    The forensic genetics field is generating extensive population data on polymorphism of short tandem repeats (STR) markers in globally distributed samples. In this study we explored and quantified the informative power of these datasets to address issues related to human evolution and diversity, by using two online resources: an allele frequency dataset representing 141 populations summing up to almost 26 thousand individuals; a genotype dataset consisting of 42 populations and more than 11 thousand individuals. We show that the genetic relationships between populations based on forensic STRs are best explained by geography, as observed when analysing other worldwide datasets generated specifically to study human diversity. However, the global level of genetic differentiation between populations (as measured by a fixation index) is about half the value estimated with those other datasets, which contain a much higher number of markers but much less individuals. We suggest that the main factor explaining this difference is an ascertainment bias in forensics data resulting from the choice of markers for individual identification. We show that this choice results in average low variance of heterozygosity across world regions, and hence in low differentiation among populations. Thus, the forensic genetic markers currently produced for the purpose of individual assignment and identification allow the detection of the patterns of neutral genetic structure that characterize the human population but they do underestimate the levels of this genetic structure compared to the datasets of STRs (or other kinds of markers) generated specifically to study the diversity of human populations.

  7. Limited overwater dispersal and genetic differentiation of the snake-eyed skink (Cryptoblepharus nigropunctatus) in the Oceanic Ogasawara Islands, Japan.

    PubMed

    Hayashi, Fumio; Shima, Akina; Horikoshi, Kazuo; Kawakami, Kazuto; Segawa, Ryoko D; Aotsuka, Tadashi; Suzuki, Tadashi

    2009-08-01

    The genetic differentiation and speciation of lizards on oceanic islands may be affected by their rate of overwater dispersal. Cryptoblepharus is one of the most geographically widespread scincid lizards throughout the Indo-Pacific and Australian regions. Cryptoblepharus nigropunctatus is the northernmost species of the genus, dwelling on several small Pacific islands. To examine the colonization history of this lizard, mitochondrial 16S rDNA and D-loop sequences were compared among populations of the Ogasawara Islands consisting of four island groups (the Muko-jima, Chichi-jima, Haha-jima, and Kazan groups), and an isolated island, Minamitori-shima (Marcus Island). These four groups and Minamitori-shima have not been connected to each other because each is surrounded by deep sea (>100 m). DNA analyses showed that the lizard populations on individual islands had each representative haplotypes. The ancestors of C. nigropunctatus probably arrived on the islands from the southern Pacific Ocean via wave dispersal and differentiated to produce the present state. They appear to have dispersed from their origin along two independent pathways: one between Kitaiwo-to (Kazan group) and the Muko-jima and Chichi-jima groups, and the other among the Minamitori-shima, Minamiiwo-to (Kazan group), and Haha-jima groups. Limited long-distance overwater dispersal may be responsible for the genetic structure of the C. nigropunctatus populations on these oceanic islands. However, among the small islands within the same island group, D-loop haplotypes were shared and the local genetic diversity was usually high, suggesting frequent gene flow across the same group of islands.

  8. Variation in sclerophylly among Iberian populations of Quercus coccifera L. is associated with genetic differentiation across contrasting environments.

    PubMed

    Rubio de Casas, R; Vargas, P; Pérez-Corona, E; Cano, E; Manrique, E; García-Verdugo, C; Balaguer, L

    2009-05-01

    Evergreen oaks are an emblematic element of the Mediterranean vegetation and have a leaf phenotype that seems to have remained unchanged since the Miocene. We hypothesise that variation of the sclerophyll phenotype among Iberian populations of Quercus coccifera is partly due to an ulterior process of ecotypic differentiation. We analysed the genetic structure of nine Iberian populations using ISSR fingerprints, and their leaf phenotypes using mean and intracanopy plasticity values of eight morphological (leaf angle, area, spinescence, lobation and specific area) and biochemical traits (VAZ pool, chlorophyll and beta-carotene content). Climate and soil were also characterised at the population sites. Significant genetic and phenotypic differences were found among populations and between NE Iberia and the rest of the populations of the peninsula. Mean phenotypes showed a strong and independent correlation with both genetic and geographic distances. Northeastern plants were smaller, less plastic, with smaller, spinier and thicker leaves, a phenotype consistent with the stressful conditions that prevailed in the steppe environments of the refugia within this geographic area during glaciations. These genetic, phenotypic, geographic and environmental patterns are consistent with previously reported palaeoecological and common evidence. Such consistency leads us to conclude that there has been a Quaternary divergence within the sclerophyllous syndrome that was at least partially driven by ecological factors.

  9. The fine scale genetic structure of the British population

    PubMed Central

    Davison, Dan; Boumertit, Abdelhamid; Day, Tammy; Hutnik, Katarzyna; Royrvik, Ellen C; Cunliffe, Barry; Lawson, Daniel J; Falush, Daniel; Freeman, Colin; Pirinen, Matti; Myers, Simon; Robinson, Mark; Donnelly, Peter; Bodmer, Walter

    2015-01-01

    Summary Fine-scale genetic variation between human populations is interesting as a signature of historical demographic events and because of its potential for confounding disease studies. We use haplotype-based statistical methods to analyse genome-wide SNP data from a carefully chosen geographically diverse sample of 2,039 individuals from the United Kingdom (UK). This reveals a rich and detailed pattern of genetic differentiation with remarkable concordance between genetic clusters and geography. The regional genetic differentiation and differing patterns of shared ancestry with 6,209 individuals from across Europe carry clear signals of historical demographic events. We estimate the genetic contribution to SE England from Anglo-Saxon migrations to be under half, identify the regions not carrying genetic material from these migrations, suggest significant pre-Roman but post-Mesolithic movement into SE England from the Continent, and show that in non-Saxon parts of the UK there exist genetically differentiated subgroups rather than a general “Celtic” population. PMID:25788095

  10. Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country.

    PubMed

    Pumpaibool, Tepanata; Arnathau, Céline; Durand, Patrick; Kanchanakhan, Naowarat; Siripoon, Napaporn; Suegorn, Aree; Sitthi-Amorn, Chitr; Renaud, François; Harnyuttanakorn, Pongchai

    2009-07-14

    The population structure of the causative agents of human malaria, Plasmodium sp., including the most serious agent Plasmodium falciparum, depends on the local epidemiological and demographic situations, such as the incidence of infected people, the vector transmission intensity and migration of inhabitants (i.e. exchange between sites). Analysing the structure of P. falciparum populations at a large scale, such as continents, or with markers that are subject to non-neutral selection, can lead to a masking and misunderstanding of the effective process of transmission. Thus, knowledge of the genetic structure and organization of P. falciparum populations in a particular area with neutral genetic markers is needed to understand which epidemiological factors should be targeted for disease control. Limited reports are available on the population genetic diversity and structure of P. falciparum in Thailand, and this is of particular concern at the Thai-Myanmar and Thai-Cambodian borders, where there is a reported high resistance to anti-malarial drugs, for example mefloquine, with little understanding of its potential gene flow. The diversity and genetic differentiation of P. falciparum populations were analysed using 12 polymorphic apparently neutral microsatellite loci distributed on eight of the 14 different chromosomes. Samples were collected from seven provinces in the western, eastern and southern parts of Thailand. A strong difference in the nuclear genetic structure was observed between most of the assayed populations. The genetic diversity was comparable to the intermediate level observed in low P. falciparum transmission areas (average HS = 0.65 +/- 0.17), where the lowest is observed in South America and the highest in Africa. However, uniquely the Yala province, had only a single multilocus genotype present in all samples, leading to a strong geographic differentiation when compared to the other Thai populations during this study. Comparison of the genetic

  11. Genetic affinities of north and northeastern populations of India: inference from HLA-based study.

    PubMed

    Agrawal, S; Srivastava, S K; Borkar, M; Chaudhuri, T K

    2008-08-01

    India is like a microcosm of the world in terms of its diversity; religion, climate and ethnicity which leads to genetic variations in the populations. As a highly polymorphic marker, the human leukocyte antigen (HLA) system plays an important role in the genetic differentiation studies. To assess the genetic diversity of HLA class II loci, we studied a total of 1336 individuals from north India using DNA-based techniques. The study included four endogamous castes (Kayastha, Mathurs, Rastogies and Vaishyas), two inbreeding Muslim populations (Shias and Sunnis) from north India and three northeast Indian populations (Lachung, Mech and Rajbanshi). A total of 36 alleles were observed at DRB1 locus in both Hindu castes and Muslims from north, while 21 alleles were seen in northeast Indians. At the DQA1 locus, the number of alleles ranged from 11 to 17 in the studied populations. The total number of alleles at DQB1 was 19, 12 and 20 in the studied castes, Muslims and northeastern populations, respectively. The most frequent haplotypes observed in all the studied populations were DRB1*0701-DQA1*0201-DQB1*0201 and DRB1*1501-DQA1*0103-DQB1*0601. Upon comparing our results with other world populations, we observed the presence of Caucasoid element in north Indian population. However, differential admixturing among Sunnis and Shias with the other north Indians was evident. Northeastern populations showed genetic affinity with Mongoloids from southeast Asia. When genetic distances were calculated, we found the north Indians and northeastern populations to be markedly unrelated.

  12. Geographic strain differentiation of Schistosoma japonicum in the Philippines using microsatellite markers

    PubMed Central

    Moendeg, Kharleezelle J.; Angeles, Jose Ma M.; Nakao, Ryo; Leonardo, Lydia R.; Fontanilla, Ian Kendrich C.; Goto, Yasuyuki; Kirinoki, Masashi; Villacorte, Elena A.; Rivera, Pilarita T.; Inoue, Noboru; Chigusa, Yuichi

    2017-01-01

    Background Microsatellites have been found to be useful in determining genetic diversities of various medically-important parasites which can be used as basis for an effective disease management and control program. In Asia and Africa, the identification of different geographical strains of Schistosoma japonicum, S. haematobium and S. mansoni as determined through microsatellites could pave the way for a better understanding of the transmission epidemiology of the parasite. Thus, the present study aims to apply microsatellite markers in analyzing the populations of S. japonicum from different endemic areas in the Philippines for possible strain differentiation. Methodology/ Principal findings Experimental mice were infected using the cercariae of S. japonicum collected from infected Oncomelania hupensis quadrasi snails in seven endemic municipalities. Adult worms were harvested from infected mice after 45 days of infection and their DNA analyzed against ten previously characterized microsatellite loci. High genetic diversity was observed in areas with high endemicity. The degree of genetic differentiation of the parasite population between endemic areas varies. Geographical separation was considered as one of the factors accounting for the observed difference between populations. Two subgroups have been observed in one of the study sites, suggesting that co-infection with several genotypes of the parasite might be present in the population. Clustering analysis showed no particular spatial structuring between parasite populations from different endemic areas. This result could possibly suggest varying degrees of effects of the ongoing control programs and the existing gene flow in the populations, which might be attributed to migration and active movement of infected hosts from one endemic area to another. Conclusions/ Significance Based on the results of the study, it is reasonable to conclude that genetic diversity could be one possible criterion to assess the

  13. Analysis of genetic diversity and phylogenetic relationships among red jungle fowls and Chinese domestic fowls.

    PubMed

    Bao, WenBin; Chen, GuoHong; Li, BiChun; Wu, XinSheng; Shu, JingTing; Wu, ShengLong; Xu, Qi; Weigend, Steffen

    2008-06-01

    Genetic diversity and phylogenetic relationships among 568 individuals of two red jungle fowl subspecies (Gallus gallus spadiceus in China and Gallus gallus gallus in Thailand) and 14 Chinese domestic chicken breeds were evaluated with 29 microstaellite loci, the genetic variability within population and genetic differentiation among population were estimated, and then genetic diversity and phylogenetic relationships were analyzed among red jungle fowls and Chinese domestic fowls. A total of 286 alleles were detected in 16 population with 29 microsatellite markers and the average number of the alleles observed in 29 microsatellite loci was 9.86+/-6.36. The overall expected heterozygosity of all population was 0.6708+/-0.0251, and the number of population deviated from Hardy-Weinberg equilibrium per locus ranged from 0 to 7. In the whole population, the average of genetic differentiation among population, measured as FST value, was 16.7% (P<0.001), and all loci contributed significantly (P<0.001) to this differentiation. It can also be seen that the deficit of heterozygotes was very high (0.015) (P<0.01). Reynolds' distance values varied between 0.036 (Xiaoshan chicken-Luyuan chicken pair) and 0.330 (G. gallus gallus-Gushi chicken pair). The Nm value ranged from 0.533 (between G. gallus gallus and Gushi chicken) to 5.833 (between Xiaoshan chicken and Luyuan chicken). An unrooted consensus tree was constructed using the neighbour-joining method and the Reynolds' genetic distance. The heavy-body sized chicken breeds, Luyuan chicken, Xiaoshan chicken, Beijing Fatty chicken, Henan Game chicken, Huainan Partridge and Langshan chicken formed one branch, and it had a close genetic relationship between Xiaoshan chicken-Luyuan chicken pair and Chahua chicken-Tibetan chicken pair. Chahua chicken and Tibetan chicken had closer genetic relationship with these two subspecies of red jungle fowl than other domestic chicken breeds. G. gallus spadiceus showed closer phylogenetic

  14. Quantification of the genetic change in the transition of Rhodnius pallescens Barber, 1932 (Hemiptera: Reduviidae) from field to laboratory.

    PubMed

    Gómez-Sucerquia, Leysa Jackeline; Triana-Chávez, Omar; Jaramillo-Ocampo, Nicolás

    2009-09-01

    Previous studies have reported genetic differences between wild-caught sylvatic, domestic and laboratory pop-ulations of several Triatominae species. The differences between sylvatic and laboratory colonies parallel are similar to the differences observed between sylvatic and domestic populations. Laboratory colonies are frequently used as references for field populations, but the consequences of founder events on the genetic makeup of laboratory or domestic populations are rarely quantified. Our goal was to quantify the genetic change in Rhodnius pallescens populations artificially submitted to founder effects via laboratory colonization. We compared the genetic makeup of two sylvatic populations and their laboratory descendants using a panel of 10 microsatellite markers. Both sylvatic populations were initially collected from palm trees, but the colonies differed in the number of founder insects and amount of time kept in the laboratory. We evaluated allelic polymorphism, differences between expected and observed heterozygosity, estimates of population differentiation (Fst) and inbreeding (Fis, Fit) and cluster analyses based on Nei's distances. We found a unique genetic structure for each sample population, with significant differentiation between the field insects and each of the laboratory generations. These analyses showed strong founder effects and showed that genetic drift had led to a genetic equilibrium over several generations of isolation. Our results suggest that laboratory colonies of R. pallescens have a different genetic structure than their wild relatives and similar processes likely affect other Triatominae laboratory stocks.

  15. Genetic continuity across a deeply divergent linguistic contact zone in North Maluku, Indonesia

    PubMed Central

    2011-01-01

    Background The islands of North Maluku, Indonesia occupy a central position in the major prehistoric dispersal streams that shaped the peoples of Island Southeast Asia and the Pacific. Within this region a linguistic contact zone exists where speakers of Papuan and Austronesian languages reside in close proximity. Here we use population genetic data to assess the extent to which North Maluku populations experienced admixture of Asian genetic material, and whether linguistic boundaries reflect genetic differentiation today. Results Autosomal and X-linked markers reveal overall Asian admixture of 67% in North Maluku, demonstrating a substantial contribution of genetic material into the region from Asia. We observe no evidence of population structure associated with ethnicity or language affiliation. Conclusions Our data support a model of widespread Asian admixture in North Maluku, likely mediated by the expansion of Austronesian-speaking peoples into the region during the mid Holocene. In North Maluku there is no genetic differentiation in terms of Austronesian- versus Papuan-speakers, suggesting extensive gene flow across linguistic boundaries. In a regional context, our results illuminate a major genetic divide at the Molucca Sea, between the islands of Sulawesi and North Maluku. West of this divide, populations exhibit predominantly Asian ancestry, with very little contribution of Papuan genetic material. East of the Molucca Sea, populations show diminished rates of Asian admixture and substantial persistence of Papuan genetic diversity. PMID:22098696

  16. Genetic continuity across a deeply divergent linguistic contact zone in North Maluku, Indonesia.

    PubMed

    Wilder, Jason A; Cox, Murray P; Paquette, Andrew M; Alford, Regan; Satyagraha, Ari W; Harahap, Alida; Sudoyo, Herawati

    2011-11-18

    The islands of North Maluku, Indonesia occupy a central position in the major prehistoric dispersal streams that shaped the peoples of Island Southeast Asia and the Pacific. Within this region a linguistic contact zone exists where speakers of Papuan and Austronesian languages reside in close proximity. Here we use population genetic data to assess the extent to which North Maluku populations experienced admixture of Asian genetic material, and whether linguistic boundaries reflect genetic differentiation today. Autosomal and X-linked markers reveal overall Asian admixture of 67% in North Maluku, demonstrating a substantial contribution of genetic material into the region from Asia. We observe no evidence of population structure associated with ethnicity or language affiliation. Our data support a model of widespread Asian admixture in North Maluku, likely mediated by the expansion of Austronesian-speaking peoples into the region during the mid Holocene. In North Maluku there is no genetic differentiation in terms of Austronesian- versus Papuan-speakers, suggesting extensive gene flow across linguistic boundaries. In a regional context, our results illuminate a major genetic divide at the Molucca Sea, between the islands of Sulawesi and North Maluku. West of this divide, populations exhibit predominantly Asian ancestry, with very little contribution of Papuan genetic material. East of the Molucca Sea, populations show diminished rates of Asian admixture and substantial persistence of Papuan genetic diversity.

  17. Genetic differentiation in blue shark, Prionace glauca, from the central Pacific Ocean, as inferred by mitochondrial cytochrome b region.

    PubMed

    Li, Weiwen; Dai, Xiaojie; Zhu, Jiangfeng; Tian, Siquan; He, Shan; Wu, Feng

    2017-07-01

    Six hundred and ninety-seven base pairs of cytochrome b gene of mtDNA was sequenced and analyzed for 78 blue shark Prionace glauca individuals from three sampled locations in the central Pacific Ocean (CPO). In total, three polymorphic sites were detected which defined four haplotypes. The haplotype diversity (h) ranged from 0.517 to 0.768, and nucleotide diversity (π) was between 0.0007 and 0.0011. Analysis of molecular variance indicated a non-significant differentiation among subpopulations. Furthermore, pairwise F ST score analysis revealed a non-significant differentiation among three sampled regions. Generally, low genetic differences were found between different geographic locations in the CPO. This study suggests a single panmictic population of P. glauca in the CPO.

  18. Parenting and adolescents' psychological adjustment: Longitudinal moderation by adolescents' genetic sensitivity.

    PubMed

    Stocker, Clare M; Masarik, April S; Widaman, Keith F; Reeb, Ben T; Boardman, Jason D; Smolen, Andrew; Neppl, Tricia K; Conger, Katherine J

    2017-10-01

    We examined whether adolescents' genetic sensitivity, measured by a polygenic index score, moderated the longitudinal associations between parenting and adolescents' psychological adjustment. The sample included 323 mothers, fathers, and adolescents (177 female, 146 male; Time 1 [T1] average age = 12.61 years, SD = 0.54 years; Time 2 [T2] average age = 13.59 years, SD = 0.59 years). Parents' warmth and hostility were rated by trained, independent observers using videotapes of family discussions. Adolescents reported their symptoms of anxiety, depressed mood, and hostility at T1 and T2. The results from autoregressive linear regression models showed that adolescents' genetic sensitivity moderated associations between observations of both mothers' and fathers' T1 parenting and adolescents' T2 composite maladjustment, depression, anxiety, and hostility. Compared to adolescents with low genetic sensitivity, adolescents with high genetic sensitivity had worse adjustment outcomes when parenting was low on warmth and high on hostility. When parenting was characterized by high warmth and low hostility, adolescents with high genetic sensitivity had better adjustment outcomes than their counterparts with low genetic sensitivity. The results support the differential susceptibility model and highlight the complex ways that genes and environment interact to influence development.

  19. Genetic change and rates of cladogenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avise, J.C.; Ayala, F.J.

    1975-12-01

    Models are introduced which predict ratios of mean levels of genetic divergence in species-rich versus species-poor phylads under two competing assumptions: (1) genetic differentiation is a function of time, unrelated to the number of cladogenetic events and (2) genetic differentiation is proportional to the number of speciation events in the group. The models are simple, general, and biologically real, but not precise. They lead to qualitatively distinct predictions about levels of genetic divergence depending upon the relationship between rates of speciation and amount of genetic change. When genetic distance between species is a function of time, mean genetic distances inmore » speciose and depauperate phylads of equal evolutionary age are very similar. On the contrary, when genetic distance is a function of the number of speciations in the history of a phylad, the ratio of mean genetic distances separating species in speciose versus depauperate phylads is greater than one, and increases rapidly as the frequency of speciations in one group relative to the other increases. The models may be tested with data from natural populations to assess (1) possible correlations between rates of anagenesis and cladogenesis and (2) the amount of genetic differentiation accompanying the speciation process. The data collected in electrophoretic surveys and other kinds of studies can be used to test the predictions of the models. For this purpose genetic distances need to be measured in speciose and depauperate phylads of equal evolutionary age. The limited information presently available agrees better with the model predicting that genetic change is primarily a function of time, and is not correlated with rates of speciation. Further testing of the models is, however, required before firm conclusions can be drawn. (auth)« less

  20. Characterization of the genetic profile of five Danish dog breeds.

    PubMed

    Pertoldi, C; Kristensen, T N; Loeschcke, V; Berg, P; Praebel, A; Stronen, A V; Proschowsky, H F; Fredholm, M

    2013-11-01

    This investigation presents results from a genetic characterization of 5 Danish dog breeds genotyped on the CanineHD BeadChip microarray with 170,000 SNP. The breeds investigated were 1) Danish Spitz (DS; n=8), 2) Danish-Swedish Farm Dog (DSF; n=18), 3) Broholmer (BR; n=22), 4) Old Danish Pointing Dog (ODP; n=24), and 5) Greenland Dog (GD; n=23). The aims of the investigation were to characterize the genetic profile of the abovementioned dog breeds by quantifying the genetic differentiation among them and the degree of genetic homogeneity within breeds. The genetic profile was determined by means of principal component analysis (PCA) and through a Bayesian clustering method. Both the PCA and the Bayesian clustering method revealed a clear genetic separation of the 5 breeds. The level of genetic variation within the breeds varied. The expected heterozygosity (HE) as well as the degree of polymorphism (P%) ranked the dog breeds in the order DS>DSF>BR>ODP>GD. Interestingly, the breed with a tenfold higher census population size compared to the other breeds, the Greenland Dog, had the lowest within-breed genetic variation, emphasizing that census size is a poor predictor of genetic variation. The observed differences in variation among and within dog breeds may be related to factors such as genetic drift, founder effects, genetic admixture, and population bottlenecks. We further examined whether the observed genetic patterns in the 5 dog breeds can be used to design breeding strategies for the preservation of the genetic pool of these dog breeds.

  1. The heterogeneous HLA genetic makeup of the Swiss population.

    PubMed

    Buhler, Stéphane; Nunes, José Manuel; Nicoloso, Grazia; Tiercy, Jean-Marie; Sanchez-Mazas, Alicia

    2012-01-01

    This study aims at investigating the HLA molecular variation across Switzerland in order to determine possible regional differences, which would be highly relevant to several purposes: optimizing donor recruitment strategies in hematopoietic stem cell transplantation (HSCT), providing reliable reference data in HLA and disease association studies, and understanding the population genetic background(s) of this culturally heterogeneous country. HLA molecular data of more than 20,000 HSCT donors from 9-13 recruitment centers of the whole country were analyzed. Allele and haplotype frequencies were estimated by using new computer tools adapted to the heterogeneity and ambiguity of the data. Non-parametric and resampling statistical tests were performed to assess Hardy-Weinberg equilibrium, selective neutrality and linkage disequilibrium among different loci, both in each recruitment center and in the whole national registry. Genetic variation was explored through genetic distance and hierarchical analysis of variance taking into account both geographic and linguistic subdivisions in Switzerland. The results indicate a heterogeneous genetic makeup of the Swiss population: first, allele frequencies estimated on the whole national registry strongly deviate from Hardy-Weinberg equilibrium, by contrast with the results obtained for individual centers; second, a pronounced differentiation is observed for Ticino, Graubünden, and, to a lesser extent, Wallis, suggesting that the Alps represent(ed) a barrier to gene flow; finally, although cultural (linguistic) boundaries do not represent a main genetic differentiation factor in Switzerland, the genetic relatedness between population from south-eastern Switzerland and Italy agrees with historical and linguistic data. Overall, this study justifies the maintenance of a decentralized donor recruitment structure in Switzerland allowing increasing the genetic diversity of the national--and hence global--donor registry. It also

  2. The Heterogeneous HLA Genetic Makeup of the Swiss Population

    PubMed Central

    Buhler, Stéphane; Nunes, José Manuel; Nicoloso, Grazia; Tiercy, Jean-Marie; Sanchez-Mazas, Alicia

    2012-01-01

    This study aims at investigating the HLA molecular variation across Switzerland in order to determine possible regional differences, which would be highly relevant to several purposes: optimizing donor recruitment strategies in hematopoietic stem cell transplantation (HSCT), providing reliable reference data in HLA and disease association studies, and understanding the population genetic background(s) of this culturally heterogeneous country. HLA molecular data of more than 20,000 HSCT donors from 9–13 recruitment centers of the whole country were analyzed. Allele and haplotype frequencies were estimated by using new computer tools adapted to the heterogeneity and ambiguity of the data. Non-parametric and resampling statistical tests were performed to assess Hardy-Weinberg equilibrium, selective neutrality and linkage disequilibrium among different loci, both in each recruitment center and in the whole national registry. Genetic variation was explored through genetic distance and hierarchical analysis of variance taking into account both geographic and linguistic subdivisions in Switzerland. The results indicate a heterogeneous genetic makeup of the Swiss population: first, allele frequencies estimated on the whole national registry strongly deviate from Hardy-Weinberg equilibrium, by contrast with the results obtained for individual centers; second, a pronounced differentiation is observed for Ticino, Graubünden, and, to a lesser extent, Wallis, suggesting that the Alps represent(ed) a barrier to gene flow; finally, although cultural (linguistic) boundaries do not represent a main genetic differentiation factor in Switzerland, the genetic relatedness between population from south-eastern Switzerland and Italy agrees with historical and linguistic data. Overall, this study justifies the maintenance of a decentralized donor recruitment structure in Switzerland allowing increasing the genetic diversity of the national—and hence global—donor registry. It also

  3. Comparing population structure as inferred from genealogical versus genetic information.

    PubMed

    Colonna, Vincenza; Nutile, Teresa; Ferrucci, Ronald R; Fardella, Giulio; Aversano, Mario; Barbujani, Guido; Ciullo, Marina

    2009-12-01

    Algorithms for inferring population structure from genetic data (ie, population assignment methods) have shown to effectively recognize genetic clusters in human populations. However, their performance in identifying groups of genealogically related individuals, especially in scanty-differentiated populations, has not been tested empirically thus far. For this study, we had access to both genealogical and genetic data from two closely related, isolated villages in southern Italy. We found that nearly all living individuals were included in a single pedigree, with multiple inbreeding loops. Despite F(st) between villages being a low 0.008, genetic clustering analysis identified two clusters roughly corresponding to the two villages. Average kinship between individuals (estimated from genealogies) increased at increasing values of group membership (estimated from the genetic data), showing that the observed genetic clusters represent individuals who are more closely related to each other than to random members of the population. Further, average kinship within clusters and F(st) between clusters increases with increasingly stringent membership threshold requirements. We conclude that a limited number of genetic markers is sufficient to detect structuring, and that the results of genetic analyses faithfully mirror the structuring inferred from detailed analyses of population genealogies, even when F(st) values are low, as in the case of the two villages. We then estimate the impact of observed levels of population structure on association studies using simulated data.

  4. Comparing population structure as inferred from genealogical versus genetic information

    PubMed Central

    Colonna, Vincenza; Nutile, Teresa; Ferrucci, Ronald R; Fardella, Giulio; Aversano, Mario; Barbujani, Guido; Ciullo, Marina

    2009-01-01

    Algorithms for inferring population structure from genetic data (ie, population assignment methods) have shown to effectively recognize genetic clusters in human populations. However, their performance in identifying groups of genealogically related individuals, especially in scanty-differentiated populations, has not been tested empirically thus far. For this study, we had access to both genealogical and genetic data from two closely related, isolated villages in southern Italy. We found that nearly all living individuals were included in a single pedigree, with multiple inbreeding loops. Despite Fst between villages being a low 0.008, genetic clustering analysis identified two clusters roughly corresponding to the two villages. Average kinship between individuals (estimated from genealogies) increased at increasing values of group membership (estimated from the genetic data), showing that the observed genetic clusters represent individuals who are more closely related to each other than to random members of the population. Further, average kinship within clusters and Fst between clusters increases with increasingly stringent membership threshold requirements. We conclude that a limited number of genetic markers is sufficient to detect structuring, and that the results of genetic analyses faithfully mirror the structuring inferred from detailed analyses of population genealogies, even when Fst values are low, as in the case of the two villages. We then estimate the impact of observed levels of population structure on association studies using simulated data. PMID:19550436

  5. Genetic characterization of Neotropical Jabiru Storks: Insights for conservation

    USGS Publications Warehouse

    Lopes, I.F.; Haig, S.M.; Lama, S.N.D.

    2010-01-01

    Jabiru Stork (Jabiru mycteria is listed under Appendix I of CITES and considered threatened in Central America. The first population genetic analysis of Jabiru Storks was carried out using mitochondrial DNA (mtDNA) control region sequences (520 bp) and five heterologous microsatellite loci. Samples were collected from the field (N = 49) and museum skins (N = 22) in Central (mainly Belize, Nicaragua and Costa Rica) and South America (Colombia, Venezuela, Peru and Brazil). A decline of mtDNA diversity was observed in comparisons between past (N = 20) and present (N = 40) samples collected in Central America and northern South America. Similar levels of microsatellite loci diversity were observed among contemporary samples. Lower levels of mtDNA variability were observed in samples from Central America and northern South America when compared to the Brazilian Pantanal region. Significant levels of genetic differentiation were found between contemporary locations sampled, whereas non-significant results were observed for historic samples. The non-geographic association of haplotypes observed at the cladograms and the recent divergence times estimated between locations are indicative of an evolutionary history of a large population size with limited population structure. Reconnection of populations via increased gene flow, particularly in Central America, is recommended if genetic structure and status are to be restored.

  6. Population genetic structure and direct observations reveal sex-reversed patterns of dispersal in a cooperative bird.

    PubMed

    Harrison, Xavier A; York, Jennifer E; Young, Andrew J

    2014-12-01

    Sex-biased dispersal is pervasive and has diverse evolutionary implications, but the fundamental drivers of dispersal sex biases remain unresolved. This is due in part to limited diversity within taxonomic groups in the direction of dispersal sex biases, which leaves hypothesis testing critically dependent upon identifying rare reversals of taxonomic norms. Here, we use a combination of observational and genetic data to demonstrate a rare reversal of the avian sex bias in dispersal in the cooperatively breeding white-browed sparrow weaver (Plocepasser mahali). Direct observations revealed that (i) natal philopatry was rare, with both sexes typically dispersing locally to breed, and (ii), unusually for birds, males bred at significantly greater distances from their natal group than females. Population genetic analyses confirmed these patterns, as (i) corrected Assignment index (AIc), FST tests and isolation-by-distance metrics were all indicative of longer dispersal distances among males than females, and (ii) spatial autocorrelation analysis indicated stronger within-group genetic structure among females than males. Examining the spatial scale of extra-group mating highlighted that the resulting 'sperm dispersal' could have acted in concert with individual dispersal to generate these genetic patterns, but gamete dispersal alone cannot account entirely for the sex differences in genetic structure observed. That leading hypotheses for the evolution of dispersal sex biases cannot readily account for these sex-reversed patterns of dispersal in white-browed sparrow weavers highlights the continued need for attention to alternative explanations for this enigmatic phenomenon. We highlight the potential importance of sex differences in the distances over which dispersal opportunities can be detected. © 2014 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  7. Impact of Child Sex Abuse on Adult Psychopathology: A Genetically and Epigenetically Informed Investigation

    PubMed Central

    Beach, Steven R. H.; Brody, Gene H.; Lei, Man Kit; Gibbons, Frederick X.; Gerrard, Meg; Simons, Ronald L.; Cutrona, Carolyn E.; Philibert, Robert A.

    2013-01-01

    Genetic, environmental, and epigenetic influences and their transactions were examined in a sample of 155 women from the Iowa Adoptee sample (IAS) who had been removed from their biological parents shortly after birth, and assessed when participants were an average of 41.10 years old. We observed an interactive effect of child sex abuse (CSA) and biological parent psychopathology (i.e., genetic load) on substance abuse as well as a main effect of CSA on substance abuse in adulthood. We also observed main effects of CSA and genetic load on depression and on antisocial characteristics. As predicted, CSA, but not genetic load or later substance abuse, was associated with epigenetic change. In addition, the interaction between genetic load and CSA predicted epigenetic change, indicating a potential genetic basis for differential impact of CSA on epigenetic change. Finally, epigenetic change partially mediated the effect of CSA on antisocial characteristics. The results suggest the relevance of genetic and epigenetic processes for future theorizing regarding marital and family precursors of several forms of adult psychopathology. Implications for preventive intervention are discussed. PMID:23421829

  8. Social interactions predict genetic diversification: an experimental manipulation in shorebirds.

    PubMed

    Cunningham, Charles; Parra, Jorge E; Coals, Lucy; Beltrán, Marcela; Zefania, Sama; Székely, Tamás

    2018-01-01

    Mating strategy and social behavior influence gene flow and hence affect levels of genetic differentiation and potentially speciation. Previous genetic analyses of closely related plovers Charadrius spp. found strikingly different population genetic structure in Madagascar: Kittlitz's plovers are spatially homogenous whereas white-fronted plovers have well segregated and geographically distinct populations. Here, we test the hypotheses that Kittlitz's plovers are spatially interconnected and have extensive social interactions that facilitate gene flow, whereas white-fronted plovers are spatially discrete and have limited social interactions. By experimentally removing mates from breeding pairs and observing the movements of mate-searching plovers in both species, we compare the spatial behavior of Kittlitz's and white-fronted plovers within a breeding season. The behavior of experimental birds was largely consistent with expectations: Kittlitz's plovers travelled further, sought new mates in larger areas, and interacted with more individuals than white-fronted plovers, however there was no difference in breeding dispersal. These results suggest that mating strategies, through spatial behavior and social interactions, are predictors of gene flow and thus genetic differentiation and speciation. Our study highlights the importance of using social behavior to understand gene flow. However, further work is needed to investigate the relative importance of social structure, as well as intra- and inter-season dispersal, in influencing the genetic structures of populations.

  9. Societies drifting apart? Behavioural, genetic and chemical differentiation between supercolonies in the yellow crazy ant Anoplolepis gracilipes.

    PubMed

    Drescher, Jochen; Blüthgen, Nico; Schmitt, Thomas; Bühler, Jana; Feldhaar, Heike

    2010-10-22

    In populations of most social insects, gene flow is maintained through mating between reproductive individuals from different colonies in periodic nuptial flights followed by dispersal of the fertilized foundresses. Some ant species, however, form large polygynous supercolonies, in which mating takes place within the maternal nest (intranidal mating) and fertilized queens disperse within or along the boundary of the supercolony, leading to supercolony growth (colony budding). As a consequence, gene flow is largely confined within supercolonies. Over time, such supercolonies may diverge genetically and, thus, also in recognition cues (cuticular hydrocarbons, CHC's) by a combination of genetic drift and accumulation of colony-specific, neutral mutations. We tested this hypothesis for six supercolonies of the invasive ant Anoplolepis gracilipes in north-east Borneo. Within supercolonies, workers from different nests tolerated each other, were closely related and showed highly similar CHC profiles. Between supercolonies, aggression ranged from tolerance to mortal encounters and was negatively correlated with relatedness and CHC profile similarity. Supercolonies were genetically and chemically distinct, with mutually aggressive supercolony pairs sharing only 33.1%±17.5% (mean ± SD) of their alleles across six microsatellite loci and 73.8%±11.6% of the compounds in their CHC profile. Moreover, the proportion of alleles that differed between supercolony pairs was positively correlated to the proportion of qualitatively different CHC compounds. These qualitatively differing CHC compounds were found across various substance classes including alkanes, alkenes and mono-, di- and trimethyl-branched alkanes. We conclude that positive feedback between genetic, chemical and behavioural traits may further enhance supercolony differentiation through genetic drift and neutral evolution, and may drive colonies towards different evolutionary pathways, possibly including speciation.

  10. Habitat predictors of genetic diversity for two sympatric wetland-breeding amphibian species.

    PubMed

    McKee, Anna M; Maerz, John C; Smith, Lora L; Glenn, Travis C

    2017-08-01

    Population genetic diversity is widely accepted as important to the conservation and management of wildlife. However, habitat features may differentially affect evolutionary processes that facilitate population genetic diversity among sympatric species. We measured genetic diversity for two pond-breeding amphibian species (Dwarf salamanders, Eurycea quadridigitata ; and Southern Leopard frogs, Lithobates sphenocephalus ) to understand how habitat characteristics and spatial scale affect genetic diversity across a landscape. Samples were collected from wetlands on a longleaf pine reserve in Georgia. We genotyped microsatellite loci for both species to assess population structures and determine which habitat features were most closely associated with observed heterozygosity and rarefied allelic richness. Both species exhibited significant population genetic structure; however, structure in Southern Leopard frogs was driven primarily by one outlier site. Dwarf salamander allelic richness was greater at sites with less surrounding road area within 0.5 km and more wetland area within 1.0 and 2.5 km, and heterozygosity was greater at sites with more wetland area within 0.5 km. In contrast, neither measure of Southern Leopard frog genetic diversity was associated with any habitat features at any scale we evaluated. Genetic diversity in the Dwarf salamander was strongly associated with land cover variables up to 2.5 km away from breeding wetlands, and/or results suggest that minimizing roads in wetland buffers may be beneficial to the maintenance of population genetic diversity. This study suggests that patterns of genetic differentiation and genetic diversity have associations with different habitat features across different spatial scales for two syntopic pond-breeding amphibian species.

  11. High genetic diversity in the offshore island populations of the tephritid fruit fly Bactrocera dorsalis.

    PubMed

    Yi, Chunyan; Zheng, Chunyan; Zeng, Ling; Xu, Yijuan

    2016-10-13

    Geographic isolation is an important factor that limit species dispersal and thereby affects genetic diversity. Because islands are often small and surrounded by a natural water barrier to dispersal, they generally form discrete isolated habitats. Therefore, islands may play a key role in the distribution of the genetic diversity of insects, including flies. To characterize the genetic structure of island populations of Bactrocera dorsalis, we analyzed a dataset containing both microsatellite and mtDNA loci of B. dorsalis samples collected from six offshore islands in Southern China. The microsatellite data revealed a high level of genetic diversity among these six island populations based on observed heterozygosity (Ho), expected heterozygosity (H E ), Nei's standard genetic distance (D), genetic identity (I) and the percentage of polymorphic loci (PIC). These island populations had low F ST values (F ST  = 0.04161), and only 4.16 % of the total genetic variation in the species was found on these islands, as determined by an analysis of molecular variance. Based on the mtDNA COI data, high nucleotide diversity (0.9655) and haplotype diversity (0.00680) were observed in all six island populations. F-statistics showed that the six island populations exhibited low or medium levels of genetic differentiation among some island populations. To investigate the population differentiation between the sampled locations, a factorial correspondence analysis and both the unweighted pair-group method with arithmetic mean and Bayesian clustering methods were used to analyze the microsatellite data. The results showed that Hebao Island, Weizhou Island and Dong'ao Island were grouped together in one clade. Another clade consisted of Shangchuan Island and Naozhou Island, and a final, separate clade contained only the Wailingding Island population. Phylogenetic analysis of the mtDNA COI sequences revealed that the populations on each of these six islands were closely related to

  12. Endothelial cells genetically selected from differentiating mouse embryonic stem cells incorporate at sites of neovascularization in vivo.

    PubMed

    Marchetti, Sandrine; Gimond, Clotilde; Iljin, Kristiina; Bourcier, Christine; Alitalo, Kari; Pouysségur, Jacques; Pagès, Gilles

    2002-05-15

    Large scale purification of endothelial cells is of great interest as it could improve tissue transplantation, reperfusion of ischemic tissues and treatment of pathologies in which an endothelial cell dysfunction exists. In this study, we describe a novel genetic approach that selects for endothelial cells from differentiating embryonic stem (ES) cells. Our strategy is based on the establishment of ES-cell clones that carry an integrated puromycin resistance gene under the control of a vascular endothelium-specific promoter, tie-1. Using EGFP as a reporter gene, we first confirmed the endothelial specificity of the tie-1 promoter in the embryoid body model and in cells differentiated in 2D cultures. Subsequently, tie-1-EGFP ES cells were used as recipients for the tie-1-driven puror transgene. The resulting stable clones were expanded and differentiated for seven days in the presence of VEGF before puromycin selection. As expected, puromycin-resistant cells were positive for EGFP and also expressed several endothelial markers, including CD31, CD34, VEGFR-1, VEGFR-2, Tie-1, VE-cadherin and ICAM-2. Release from the puromycin selection resulted in the appearance of alpha-smooth muscle actin-positive cells. Such cells became more numerous when the population was cultured on laminin-1 or in the presence of TGF-beta1, two known inducers of smooth muscle cell differentiation. The hypothesis that endothelial cells or their progenitors may differentiate towards a smooth muscle cell phenotype was further supported by the presence of cells expressing both CD31 and alpha-smooth muscle actin markers. Finally, we show that purified endothelial cells can incorporate into the neovasculature of transplanted tumors in nude mice. Taken together, these results suggest that application of endothelial lineage selection to differentiating ES cells may become a useful approach for future pro-angiogenic and endothelial cell replacement therapies.

  13. The differential effect of genetic variation on soluble CD14 levels in human plasma and milk.

    PubMed

    Guerra, Stefano; Carla Lohman, I; LeVan, Tricia D; Wright, Anne L; Martinez, Fernando D; Halonen, Marilyn

    2004-09-01

    The protein CD14 is a pattern recognition receptor for bacterial lipopolysaccharide (LPS). Whether genetic variation has the same influence on soluble CD14 (sCD14) levels in human plasma and milk remains to be determined. We measured sCD14 levels in plasma during pregnancy (n = 196) and in milk in the postpartum (n = 152) for women genotyped for the single nucleotide polymorphisms (SNPs) at positions -1619, -550, and -159 from the transcription start site of the CD14 gene. Plasma- and milk-sCD14 levels differed significantly both by CD14/-1619 and CD14/-550 genotypes and by haplotypes. Most interestingly, sCD14 levels were regulated differentially by the same genetic variants in plasma and milk, with the CD14/-550T allele and the corresponding are ATC haplotype associated with high sCD14 in milk but low sCD14 in plasma. A correlation between sCD14 levels in plasma and milk was absent (r = 0.091, P = NS). Our findings suggest the existence of cell-specific regulation mechanisms of CD14 gene expression.

  14. Genetic Diversity and Differentiation of Colletotrichum spp. Isolates Associated with Leguminosae Using Multigene Loci, RAPD and ISSR

    PubMed Central

    Mahmodi, Farshid; Kadir, J. B.; Puteh, A.; Pourdad, S. S.; Nasehi, A.; Soleimani, N.

    2014-01-01

    Genetic diversity and differentiation of 50 Colletotrichum spp. isolates from legume crops studied through multigene loci, RAPD and ISSR analysis. DNA sequence comparisons by six genes (ITS, ACT, Tub2, CHS-1, GAPDH, and HIS3) verified species identity of C. truncatum, C. dematium and C. gloeosporiodes and identity C. capsici as a synonym of C. truncatum. Based on the matrix distance analysis of multigene sequences, the Colletotrichum species showed diverse degrees of intera and interspecific divergence (0.0 to 1.4%) and (15.5–19.9), respectively. A multilocus molecular phylogenetic analysis clustered Colletotrichum spp. isolates into 3 well-defined clades, representing three distinct species; C. truncatum, C. dematium and C. gloeosporioides. The ISSR and RAPD and cluster analysis exhibited a high degree of variability among different isolates and permitted the grouping of isolates of Colletotrichum spp. into three distinct clusters. Distinct populations of Colletotrichum spp. isolates were genetically in accordance with host specificity and inconsistent with geographical origins. The large population of C. truncatum showed greater amounts of genetic diversity than smaller populations of C. dematium and C. gloeosporioides species. Results of ISSR and RAPD markers were congruent, but the effective maker ratio and the number of private alleles were greater in ISSR markers. PMID:25288981

  15. Geographical structuring of Trypanosoma cruzi populations from Chilean Triatoma infestans triatomines and their genetic relationship with other Latino American counterparts

    PubMed Central

    Venegas, J; Rojas, T; DÍaz, F; Miranda, S; Jercic, M I; González, C; Coñoepán, W; Pichuantes, S; RodrÍguez, J; Gajardo, M; Sánchez, G

    2011-01-01

    In order to obtain more information about the population structure of Chilean Trypanosoma cruzi, and their genetic relationship with other Latino American counterparts, we performed the study of T. cruzi samples detected in the midgut content of Triatoma infestans insects from three endemic regions of Chile. The genetic characteristics of these samples were analysed using microsatellite markers and PCR conditions that allow the detection of predominant T. cruzi clones directly in triatomine midgut content. Population genetic analyses using the Fisher’s exact method, analysis of molecular variance (AMOVA) and the determination of FST showed that the northern T. cruzi population sample was genetically differentiated from the two southern population counterparts. Further analysis showed that the cause of this genetic differentiation was the asymmetrical distribution of TcIII T. cruzi predominant clones. Considering all triatomines from the three regions, the most frequent predominant lineages were TcIII (38%), followed by TcI (34%) and hybrid (8%). No TcII lineage was observed along the predominant T. cruzi clones. The best phylogenetic reconstruction using the shared allelic genetic distance was concordant with the population genetic analysis and tree topology previously described studying foreign samples. The correlation studies showed that the lineage TcIII from the III region was genetically differentiated from the other two, and this differentiation was correlated with geographical distance including Chilean and mainly Brazilian samples. It will be interesting to investigate whether this geographical structure may be related with different clinical manifestation of Chagas disease. PMID:22325822

  16. Genetic absence of PD-1 promotes accumulation of terminally differentiated exhausted CD8+ T cells

    PubMed Central

    Odorizzi, Pamela M.; Pauken, Kristen E.; Paley, Michael A.; Sharpe, Arlene

    2015-01-01

    Programmed Death-1 (PD-1) has received considerable attention as a key regulator of CD8+ T cell exhaustion during chronic infection and cancer because blockade of this pathway partially reverses T cell dysfunction. Although the PD-1 pathway is critical in regulating established “exhausted” CD8+ T cells (TEX cells), it is unclear whether PD-1 directly causes T cell exhaustion. We show that PD-1 is not required for the induction of exhaustion in mice with chronic lymphocytic choriomeningitis virus (LCMV) infection. In fact, some aspects of exhaustion are more severe with genetic deletion of PD-1 from the onset of infection. Increased proliferation between days 8 and 14 postinfection is associated with subsequent decreased CD8+ T cell survival and disruption of a critical proliferative hierarchy necessary to maintain exhausted populations long term. Ultimately, the absence of PD-1 leads to the accumulation of more cytotoxic, but terminally differentiated, CD8+ TEX cells. These results demonstrate that CD8+ T cell exhaustion can occur in the absence of PD-1. They also highlight a novel role for PD-1 in preserving TEX cell populations from overstimulation, excessive proliferation, and terminal differentiation. PMID:26034050

  17. Genetics Home Reference: lactose intolerance

    MedlinePlus

    ... or Free article on PubMed Central Järvelä IE. Molecular genetics of adult-type hypolactasia. Ann Med. 2005;37( ... Citation on PubMed Robayo-Torres CC, Nichols BL. Molecular differentiation of congenital lactase ... Bulletins Genetics Home Reference Celebrates Its ...

  18. Genetic variation in steelhead of Oregon and northern California

    USGS Publications Warehouse

    Reisenbichler, R.R.; McIntyre, J.D.; Solazzi, M.F.; Landino, S.W

    1992-01-01

    Steelhead Oncorhynchus mykiss from various sites between the Columbia River and the Mad River, California, were genetically characterized at 10 protein-coding loci or pairs of loci by starch gel electrophoresis. Fish from coastal streams differed from fish east of the Cascade Mountains and from fish of the Willamette River (a tributary of the Columbia River, west of the Cascade Mountains). Coastal steelhead from the northern part of the study area differed from those in the southern part. Genetic differentiation within and among drainages was not statistically significant; however, gene diversity analysis and the life history of steelhead suggested that fish from different drainages should be considered as separate populations. Genetic variation among fish in separate drainages was similar to that reported in northwestern Washington and less than that reported in British Columbia. Allele frequencies varied significantly among year-classes. Genetic variation within samples accounted for 98.3% of the total genetic variation observed in this study. Most hatchery populations differed from wild populations, suggesting that conservation of genetic diversity among and within wild populations could be facilitated by altering hatchery programs.

  19. Transcriptome study of differential expression in schizophrenia

    PubMed Central

    Sanders, Alan R.; Göring, Harald H. H.; Duan, Jubao; Drigalenko, Eugene I.; Moy, Winton; Freda, Jessica; He, Deli; Shi, Jianxin; Gejman, Pablo V.

    2013-01-01

    Schizophrenia genome-wide association studies (GWAS) have identified common SNPs, rare copy number variants (CNVs) and a large polygenic contribution to illness risk, but biological mechanisms remain unclear. Bioinformatic analyses of significantly associated genetic variants point to a large role for regulatory variants. To identify gene expression abnormalities in schizophrenia, we generated whole-genome gene expression profiles using microarrays on lymphoblastoid cell lines (LCLs) from 413 cases and 446 controls. Regression analysis identified 95 transcripts differentially expressed by affection status at a genome-wide false discovery rate (FDR) of 0.05, while simultaneously controlling for confounding effects. These transcripts represented 89 genes with functions such as neurotransmission, gene regulation, cell cycle progression, differentiation, apoptosis, microRNA (miRNA) processing and immunity. This functional diversity is consistent with schizophrenia's likely significant pathophysiological heterogeneity. The overall enrichment of immune-related genes among those differentially expressed by affection status is consistent with hypothesized immune contributions to schizophrenia risk. The observed differential expression of extended major histocompatibility complex (xMHC) region histones (HIST1H2BD, HIST1H2BC, HIST1H2BH, HIST1H2BG and HIST1H4K) converges with the genetic evidence from GWAS, which find the xMHC to be the most significant susceptibility locus. Among the differentially expressed immune-related genes, B3GNT2 is implicated in autoimmune disorders previously tied to schizophrenia risk (rheumatoid arthritis and Graves’ disease), and DICER1 is pivotal in miRNA processing potentially linking to miRNA alterations in schizophrenia (e.g. MIR137, the second strongest GWAS finding). Our analysis provides novel candidate genes for further study to assess their potential contribution to schizophrenia. PMID:23904455

  20. The genetic network controlling plasma cell differentiation.

    PubMed

    Nutt, Stephen L; Taubenheim, Nadine; Hasbold, Jhagvaral; Corcoran, Lynn M; Hodgkin, Philip D

    2011-10-01

    Upon activation by antigen, mature B cells undergo immunoglobulin class switch recombination and differentiate into antibody-secreting plasma cells, the endpoint of the B cell developmental lineage. Careful quantitation of these processes, which are stochastic, independent and strongly linked to the division history of the cell, has revealed that populations of B cells behave in a highly predictable manner. Considerable progress has also been made in the last few years in understanding the gene regulatory network that controls the B cell to plasma cell transition. The mutually exclusive transcriptomes of B cells and plasma cells are maintained by the antagonistic influences of two groups of transcription factors, those that maintain the B cell program, including Pax5, Bach2 and Bcl6, and those that promote and facilitate plasma cell differentiation, notably Irf4, Blimp1 and Xbp1. In this review, we discuss progress in the definition of both the transcriptional and cellular events occurring during late B cell differentiation, as integrating these two approaches is crucial to defining a regulatory network that faithfully reflects the stochastic features and complexity of the humoral immune response. 2011 Elsevier Ltd. All rights reserved.

  1. Analysis of genetic diversity of rapeseed genetic resources in Japan and core collection construction

    PubMed Central

    Chen, Ruikun; Hara, Takashi; Ohsawa, Ryo; Yoshioka, Yosuke

    2017-01-01

    Diversity analysis of rapeseed accessions preserved in the Japanese Genebank can provide valuable information for breeding programs. In this study, 582 accessions were genotyped with 30 SSR markers covering all 19 rapeseed chromosomes. These markers amplified 311 alleles (10.37 alleles per marker; range, 3–39). The genetic diversity of Japanese accessions was lower than that of overseas accessions. Analysis of molecular variance indicated significant genetic differentiation between Japanese and overseas accessions. Small but significant differences were found among geographical groups in Japan, and genetic differentiation tended to increase with geographical distance. STRUCTURE analysis indicated the presence of two main genetic clusters in the NARO rapeseed collection. With the membership probabilities threshold, 227 accessions mostly originating from overseas were assigned to one subgroup, and 276 accessions mostly originating from Japan were assigned to the other subgroup. The remaining 79 accessions are assigned to admixed group. The core collection constructed comprises 96 accessions of diverse origin. It represents the whole collection well and thus it may be useful for rapeseed genetic research and breeding programs. The core collection improves the efficiency of management, evaluation, and utilization of genetic resources. PMID:28744177

  2. Genetic structure of populations and differentiation in forest trees

    Treesearch

    Raymond P. Guries; F. Thomas Ledig

    1981-01-01

    Electrophoretic techniques permit population biologists to analyze genetic structure of natural populations by using large numbers of allozyme loci. Several methods of analysis have been applied to allozyme data, including chi-square contingency tests, F-statistics, and genetic distance. This paper compares such statistics for pitch pine (Pinus rigida...

  3. Genetic differential susceptibility in literacy-delayed children: a randomized controlled trial on emergent literacy in kindergarten.

    PubMed

    Plak, Rachel D; Kegel, Cornelia A T; Bus, Adriana G

    2015-02-01

    In this randomized controlled trial, 508 5-year-old kindergarten children participated, of whom 257 were delayed in literacy skills because they belonged to the lowest quartile of a national standard literacy test. We tested the hypothesis that some children are more susceptible to school-entry educational interventions than their peers due to their genetic makeup, and thus whether the dopamine receptor D4 gene moderated intervention effects. Children were randomly assigned to a control condition or one of two interventions involving computer programs tailored to the literacy needs of delayed pupils: Living Letters for alphabetic knowledge and Living Books for text comprehension. Effects of Living Books met the criteria of differential susceptibility. For carriers of the dopamine receptor D4 gene seven-repeat allele (about one-third of the delayed group), the Living Books program was an important addition to the common core curriculum in kindergarten (effect size d = 0.56), whereas the program did not affect the other children (d = -0.09). The same seven-repeat carriers benefited more from Living Letters than did the noncarriers, as reflected in effect sizes of 0.63 and 0.34, respectively, although such differences did not fulfill the statistical criteria for differential susceptibility. The implications of differential susceptibility for education and regarding the crucial question "what works for whom?" are discussed.

  4. Genetic Engineering of Trypanosoma (Dutonella) vivax and In Vitro Differentiation under Axenic Conditions

    PubMed Central

    D'Archivio, Simon; Medina, Mathieu; Cosson, Alain; Chamond, Nathalie; Rotureau, Brice; Minoprio, Paola; Goyard, Sophie

    2011-01-01

    Trypanosoma vivax is one of the most common parasites responsible for animal trypanosomosis, and although this disease is widespread in Africa and Latin America, very few studies have been conducted on the parasite's biology. This is in part due to the fact that no reproducible experimental methods had been developed to maintain the different evolutive forms of this trypanosome under laboratory conditions. Appropriate protocols were developed in the 1990s for the axenic maintenance of three major animal Trypanosoma species: T. b. brucei, T. congolense and T. vivax. These pioneer studies rapidly led to the successful genetic manipulation of T. b. brucei and T. congolense. Advances were made in the understanding of these parasites' biology and virulence, and new drug targets were identified. By contrast, challenging in vitro conditions have been developed for T. vivax in the past, and this per se has contributed to defer both its genetic manipulation and subsequent gene function studies. Here we report on the optimization of non-infective T. vivax epimastigote axenic cultures and on the process of parasite in vitro differentiation into metacyclic infective forms. We have also constructed the first T. vivax specific expression vector that drives constitutive expression of the luciferase reporter gene. This vector was then used to establish and optimize epimastigote transfection. We then developed highly reproducible conditions that can be used to obtain and select stably transfected mutants that continue metacyclogenesis and are infectious in immunocompetent rodents. PMID:22216367

  5. Genetic differentiation and phylogeography of Mediterranean-North Eastern Atlantic blue shark (Prionace glauca, L. 1758) using mitochondrial DNA: panmixia or complex stock structure?

    PubMed Central

    Damalas, Dimitrios; Martinsohn, Jann; Zanzi, Antonella; Mariani, Stefano; Sperone, Emilio; Micarelli, Primo; Garibaldi, Fulvio; Megalofonou, Persefoni; Bargelloni, Luca; Franch, Rafaella; Macias, David; Prodöhl, Paulo; Fitzpatrick, Séan; Stagioni, Marco; Tinti, Fausto; Cariani, Alessia

    2017-01-01

    Background The blue shark (Prionace glauca, Linnaeus 1758) is one of the most abundant epipelagic shark inhabiting all the oceans except the poles, including the Mediterranean Sea, but its genetic structure has not been confirmed at basin and interoceanic distances. Past tagging programs in the Atlantic Ocean failed to find evidence of migration of blue sharks between the Mediterranean and the adjacent Atlantic, despite the extreme vagility of the species. Although the high rate of by-catch in the Mediterranean basin, to date no genetic study on Mediterranean blue shark was carried out, which constitutes a significant knowledge gap, considering that this population is classified as “Critically Endangered”, unlike its open-ocean counterpart. Methods Blue shark phylogeography and demography in the Mediterranean Sea and North-Eastern Atlantic Ocean were inferred using two mitochondrial genes (Cytb and control region) amplified from 207 and 170 individuals respectively, collected from six localities across the Mediterranean and two from the North-Eastern Atlantic. Results Although no obvious pattern of geographical differentiation was apparent from the haplotype network, Φst analyses indicated significant genetic structure among four geographical groups. Demographic analyses suggest that these populations have experienced a constant population expansion in the last 0.4–0.1 million of years. Discussion The weak, but significant, differences in Mediterranean and adjacent North-eastern Atlantic blue sharks revealed a complex phylogeographic structure, which appears to reject the assumption of panmixia across the study area, but also supports a certain degree of population connectivity across the Strait of Gibraltar, despite the lack of evidence of migratory movements observed by tagging data. Analyses of spatial genetic structure in relation to sex-ratio and size could indicate some level of sex/stage biased migratory behaviour. PMID:29230359

  6. Genetic differentiation and phylogeography of Mediterranean-North Eastern Atlantic blue shark (Prionace glauca, L. 1758) using mitochondrial DNA: panmixia or complex stock structure?

    PubMed

    Leone, Agostino; Urso, Ilenia; Damalas, Dimitrios; Martinsohn, Jann; Zanzi, Antonella; Mariani, Stefano; Sperone, Emilio; Micarelli, Primo; Garibaldi, Fulvio; Megalofonou, Persefoni; Bargelloni, Luca; Franch, Rafaella; Macias, David; Prodöhl, Paulo; Fitzpatrick, Séan; Stagioni, Marco; Tinti, Fausto; Cariani, Alessia

    2017-01-01

    The blue shark ( Prionace glauca , Linnaeus 1758) is one of the most abundant epipelagic shark inhabiting all the oceans except the poles, including the Mediterranean Sea, but its genetic structure has not been confirmed at basin and interoceanic distances. Past tagging programs in the Atlantic Ocean failed to find evidence of migration of blue sharks between the Mediterranean and the adjacent Atlantic, despite the extreme vagility of the species. Although the high rate of by-catch in the Mediterranean basin, to date no genetic study on Mediterranean blue shark was carried out, which constitutes a significant knowledge gap, considering that this population is classified as "Critically Endangered", unlike its open-ocean counterpart. Blue shark phylogeography and demography in the Mediterranean Sea and North-Eastern Atlantic Ocean were inferred using two mitochondrial genes (Cytb and control region) amplified from 207 and 170 individuals respectively, collected from six localities across the Mediterranean and two from the North-Eastern Atlantic. Although no obvious pattern of geographical differentiation was apparent from the haplotype network, Φst analyses indicated significant genetic structure among four geographical groups. Demographic analyses suggest that these populations have experienced a constant population expansion in the last 0.4-0.1 million of years. The weak, but significant, differences in Mediterranean and adjacent North-eastern Atlantic blue sharks revealed a complex phylogeographic structure, which appears to reject the assumption of panmixia across the study area, but also supports a certain degree of population connectivity across the Strait of Gibraltar, despite the lack of evidence of migratory movements observed by tagging data. Analyses of spatial genetic structure in relation to sex-ratio and size could indicate some level of sex/stage biased migratory behaviour.

  7. Population-genetic models of sex-limited genomic imprinting.

    PubMed

    Kelly, S Thomas; Spencer, Hamish G

    2017-06-01

    Genomic imprinting is a form of epigenetic modification involving parent-of-origin-dependent gene expression, usually the inactivation of one gene copy in some tissues, at least, for some part of the diploid life cycle. Occurring at a number of loci in mammals and flowering plants, this mode of non-Mendelian expression can be viewed more generally as parentally-specific differential gene expression. The effects of natural selection on genetic variation at imprinted loci have previously been examined in a several population-genetic models. Here we expand the existing one-locus, two-allele population-genetic models of viability selection with genomic imprinting to include sex-limited imprinting, i.e., imprinted expression occurring only in one sex, and differential viability between the sexes. We first consider models of complete inactivation of either parental allele and these models are subsequently generalized to incorporate differential expression. Stable polymorphic equilibrium was possible without heterozygote advantage as observed in some prior models of imprinting in both sexes. In contrast to these latter models, in the sex-limited case it was critical whether the paternally inherited or maternally inherited allele was inactivated. The parental origin of inactivated alleles had a different impact on how the population responded to the different selection pressures between the sexes. Under the same fitness parameters, imprinting in the other sex altered the number of possible equilibrium states and their stability. When the parental origin of imprinted alleles and the sex in which they are inactive differ, an allele cannot be inactivated in consecutive generations. The system dynamics became more complex with more equilibrium points emerging. Our results show that selection can interact with epigenetic factors to maintain genetic variation in previously unanticipated ways. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. It's not too late for the harpy eagle (Harpia harpyja): high levels of genetic diversity and differentiation can fuel conservation programs.

    PubMed

    Lerner, Heather R L; Johnson, Jeff A; Lindsay, Alec R; Kiff, Lloyd F; Mindell, David P

    2009-10-05

    The harpy eagle (Harpia harpyja) is the largest Neotropical bird of prey and is threatened by human persecution and habitat loss and fragmentation. Current conservation strategies include local education, captive rearing and reintroduction, and protection or creation of trans-national habitat blocks and corridors. Baseline genetic data prior to reintroduction of captive-bred stock is essential for guiding such efforts but has not been gathered previously. We assessed levels of genetic diversity, population structure and demographic history for harpy eagles using samples collected throughout a large portion of their geographic distribution in Central America (n = 32) and South America (n = 31). Based on 417 bp of mitochondrial control region sequence data, relatively high levels of haplotype and nucleotide diversity were estimated for both Central and South America, although haplotype diversity was significantly higher for South America. Historical restriction of gene flow across the Andes (i.e. between our Central and South American subgroups) is supported by coalescent analyses, the haplotype network and significant F(ST) values, however reciprocally monophyletic lineages do not correspond to geographical locations in maximum likelihood analyses. A sudden population expansion for South America is indicated by a mismatch distribution analysis, and further supported by significant (p<0.05) negative values of Fu and Li's D(F) and F, and Fu's F(S). This expansion, estimated at approximately 60 000 years BP (99 000-36 000 years BP 95% CI), encompasses a transition from a warm and dry time period prior to 50 000 years BP to an interval of maximum precipitation (50 000-36 000 years BP). Notably, this time period precedes the climatic and habitat changes associated with the last glacial maximum. In contrast, a multimodal distribution of haplotypes was observed for Central America suggesting either population equilibrium or a recent decline. High levels of mitochondrial

  9. It's not too Late for the Harpy Eagle (Harpia harpyja): High Levels Of Genetic Diversity and Differentiation Can Fuel Conservation Programs

    PubMed Central

    Lerner, Heather R. L.; Johnson, Jeff A.; Lindsay, Alec R.; Kiff, Lloyd F.; Mindell, David P.

    2009-01-01

    Background The harpy eagle (Harpia harpyja) is the largest Neotropical bird of prey and is threatened by human persecution and habitat loss and fragmentation. Current conservation strategies include local education, captive rearing and reintroduction, and protection or creation of trans-national habitat blocks and corridors. Baseline genetic data prior to reintroduction of captive-bred stock is essential for guiding such efforts but has not been gathered previously. Methodology/Findings We assessed levels of genetic diversity, population structure and demographic history for harpy eagles using samples collected throughout a large portion of their geographic distribution in Central America (n = 32) and South America (n = 31). Based on 417 bp of mitochondrial control region sequence data, relatively high levels of haplotype and nucleotide diversity were estimated for both Central and South America, although haplotype diversity was significantly higher for South America. Historical restriction of gene flow across the Andes (i.e. between our Central and South American subgroups) is supported by coalescent analyses, the haplotype network and significant F ST values, however reciprocally monophyletic lineages do not correspond to geographical locations in maximum likelihood analyses. A sudden population expansion for South America is indicated by a mismatch distribution analysis, and further supported by significant (p<0.05) negative values of Fu and Li's DF and F, and Fu's F S. This expansion, estimated at approximately 60 000 years BP (99 000–36 000 years BP 95% CI), encompasses a transition from a warm and dry time period prior to 50 000 years BP to an interval of maximum precipitation (50 000–36 000 years BP). Notably, this time period precedes the climatic and habitat changes associated with the last glacial maximum. In contrast, a multimodal distribution of haplotypes was observed for Central America suggesting either population equilibrium or a recent

  10. Genetic evidence for differential selection of grain and embryo weight during wheat evolution under domestication

    PubMed Central

    Golan, Guy; Oksenberg, Adi; Peleg, Zvi

    2015-01-01

    Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts. PMID:26019253

  11. Detectability index of differential phase contrast CT compared with conventional CT: a preliminary channelized Hotelling observer study

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2013-03-01

    Under the framework of model observer with signal and background exactly known (SKE/BKE), we investigate the detectability of differential phase contrast CT compared with that of the conventional attenuation-based CT. Using the channelized Hotelling observer and the radially symmetric difference-of-Gaussians channel template , we investigate the detectability index and its variation over the dimension of object and detector cells. The preliminary data show that the differential phase contrast CT outperforms the conventional attenuation-based CT significantly in the detectability index while both the object to be detected and the cell of detector used for data acquisition are relatively small. However, the differential phase contrast CT's dominance in the detectability index diminishes with increasing dimension of either object or detector cell, and virtually disappears while the dimension of object or detector cell approaches a threshold, respectively. It is hoped that the preliminary data reported in this paper may provide insightful understanding of the differential phase contrast CT's characteristic in the detectability index and its comparison with that of the conventional attenuation-based CT.

  12. Differential absorption lidar observation on small-time-scale features of water vapor in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Kong, Wei; Li, Jiatang; Liu, Hao; Chen, Tao; Hong, Guanglie; Shu, Rong

    2017-11-01

    Observation on small-time-scale features of water vapor density is essential for turbulence, convection and many other fast atmospheric processes study. For the high signal-to-noise signal of elastic signal acquired by differential absorption lidar, it has great potential for all-day water vapor turbulence observation. This paper presents a set of differential absorption lidar at 935nm developed by Shanghai Institute of Technical Physics of the Chinese Academy of Science for water vapor turbulence observation. A case at the midday is presented to demonstrate the daytime observation ability of this system. "Autocovariance method" is used to separate the contribution of water vapor fluctuation from random error. The results show that the relative error is less than 10% at temporal and spatial resolution of 10 seconds and 60 meters in the ABL. This indicate that the system has excellent performance for daytime water vapor turbulence observation.

  13. A planktonic diatom displays genetic structure over small spatial scales.

    PubMed

    Sefbom, Josefin; Kremp, Anke; Rengefors, Karin; Jonsson, Per R; Sjöqvist, Conny; Godhe, Anna

    2018-04-03

    Marine planktonic microalgae have potentially global dispersal, yet reduced gene flow has been confirmed repeatedly for several species. Over larger distances (>200 km) geographic isolation and restricted oceanographic connectivity have been recognized as instrumental in driving population divergence. Here we investigated whether similar patterns, that is, structured populations governed by geographic isolation and/or oceanographic connectivity, can be observed at smaller (6-152 km) geographic scales. To test this we established 425 clonal cultures of the planktonic diatom Skeletonema marinoi collected from 11 locations in the Archipelago Sea (northern Baltic Sea). The region is characterized by a complex topography, entailing several mixing regions of which four were included in the sampling area. Using eight microsatellite markers and conventional F-statistics, significant genetic differentiation was observed between several sites. Moreover, Bayesian cluster analysis revealed the co-occurrence of two genetic groups spread throughout the area. However, geographic isolation and oceanographic connectivity could not explain the genetic patterns observed. Our data reveal hierarchical genetic structuring whereby despite high dispersal potential, significantly diverged populations have developed over small spatial scales. Our results suggest that biological characteristics and historical events may be more important in generating barriers to gene flow than physical barriers at small spatial scales. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Distinct genetic differentiation and species diversification within two marine nematodes with different habitat preference in Antarctic sediments.

    PubMed

    Hauquier, Freija; Leliaert, Frederik; Rigaux, Annelien; Derycke, Sofie; Vanreusel, Ann

    2017-05-30

    Dispersal ability, population genetic structure and species divergence in marine nematodes are still poorly understood, especially in remote areas such as the Southern Ocean. We investigated genetic differentiation of species and populations of the free-living endobenthic nematode genera Sabatieria and Desmodora using nuclear 18S rDNA, internal transcribed spacer (ITS) rDNA, and mitochondrial cytochrome oxidase I (COI) gene sequences. Specimens were collected at continental shelf depths (200-500 m) near the Antarctic Peninsula, Scotia Arc and eastern side of the Weddell Sea. The two nematode genera co-occurred at all sampled locations, but with different vertical distribution in the sediment. A combination of phylogenetic (GMYC, Bayesian Inference, Maximum Likelihood) and population genetic (AMOVA) analyses were used for species delimitation and assessment of gene flow between sampling locations. Sequence analyses resulted in the delimitation of four divergent species lineages in Sabatieria, two of which could not be discriminated morphologically and most likely constitute cryptic species. Two species were recognised in Desmodora, one of which showed large intraspecific morphological variation. Both genera comprised species that were restricted to one side of the Weddell Sea and species that were widely spread across it. Population genetic structuring was highly significant and more pronounced in the deeper sediment-dwelling Sabatieria species, which are generally less prone to resuspension and passive dispersal in the water column than surface Desmodora species. Our results indicate that gene flow is restricted at large geographic distance in the Southern Ocean, which casts doubt on the efficiency of the Weddell gyre and Antarctic Circumpolar Current in facilitating circum-Antarctic nematode species distributions. We also show that genetic structuring and cryptic speciation can be very different in nematode species isolated from the same geographic area, but with

  15. Genetic diversity and population structure of the endangered Namaqua Afrikaner sheep.

    PubMed

    Qwabe, Sithembele O; van Marle-Köster, Este; Visser, Carina

    2013-02-01

    The Namaqua Afrikaner is an endangered sheep breed indigenous to South Africa, primarily used in smallholder farming systems. Genetic characterization is essential for the breed's conservation and utilization. In this study, a genetic characterization was performed on 144 Namaqua Afrikaner sheep kept at the Karakul Experimental Station (KES), Carnarvon Experimental Station (CES), and a private farm Welgeluk (WGK) using 22 microsatellite markers. The mean number of alleles observed was low (3.7 for KES, 3.9 for CES, and 4.2 for WGK). Expected heterozygosity values across loci ranged between 46 % for WGK, 48 % for KES, and 55 % for CES, indicating low to moderate genetic variation. The analysis of molecular variance revealed that 89.5 % of the genetic variation was due to differences within populations. The population structure confirmed the differentiation of three clusters with high relationships between the CES and WGK populations. In the population structure comparison with Pedi and South African Mutton Merino sheep, limited hybridization between the Namaqua Afrikaner sheep and both of these breeds was observed. The results of this study will serve as a reference for genetic management and conservation of Namaqua Afrikaner sheep.

  16. Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: a perspective for genetic association studies.

    PubMed

    García-Lor, Andrés; Luro, François; Navarro, Luis; Ollitrault, Patrick

    2012-01-01

    Genetic stratification associated with domestication history is a key parameter for estimating the pertinence of genetic association study within a gene pool. Previous molecular and phenotypic studies have shown that most of the diversity of cultivated citrus results from recombination between three main species: C. medica (citron), C. reticulata (mandarin) and C. maxima (pummelo). However, the precise contribution of each of these basic species to the genomes of secondary cultivated species, such as C. sinensis (sweet orange), C. limon (lemon), C. aurantium (sour orange), C. paradisi (grapefruit) and recent hybrids is unknown. Our study focused on: (1) the development of insertion-deletion (InDel) markers and their comparison with SSR markers for use in genetic diversity and phylogenetic studies; (2) the analysis of the contributions of basic taxa to the genomes of secondary species and modern cultivars and (3) the description of the organisation of the Citrus gene pool, to evaluate how genetic association studies should be done at the cultivated Citrus gene pool level. InDel markers appear to be better phylogenetic markers for tracing the contributions of the three ancestral species, whereas SSR markers are more useful for intraspecific diversity analysis. Most of the genetic organisation of the Citrus gene pool is related to the differentiation between C. reticulata, C. maxima and C. medica. High and generalised LD was observed, probably due to the initial differentiation between the basic species and a limited number of interspecific recombinations. This structure precludes association genetic studies at the genus level without developing additional recombinant populations from interspecific hybrids. Association genetic studies should also be affordable at intraspecific level in a less structured pool such as C. reticulata.

  17. Genetic divergence in the small Indian mongoose (Herpestes auropunctatus), a widely distributed invasive species.

    PubMed

    Thulin, Carl-Gustaf; Simberloff, Daniel; Barun, Arijana; McCracken, Gary; Pascal, Michel; Islam, M Anwarul

    2006-11-01

    The combination of founder events, random drift and new selective forces experienced by introduced species typically lowers genetic variation and induces differentiation from the ancestral population. Here, we investigate microsatellite differentiation between introduced and native populations of the small Indian mongoose (Herpestes auropunctatus). Many expectations based on introduction history, such as loss of alleles and relationships among populations, are confirmed. Nevertheless, when applying population assignment methods to our data, we observe a few specimens that are incorrectly assigned and/or appear to have a mixed ancestry, despite estimates of substantial population differentiation. Thus, we suggest that population assignments of individuals should be viewed as tentative and that there should be agreement among different algorithms before assignments are applied in conservation or management. Further, we find no congruence between previously reported morphological differentiation and the sorting of microsatellite variation. Some introduced populations have retained much genetic variation while others have not, irrespective of morphology. Finally, we find alleles from the sympatric grey mongoose (Herpestes edwardsii) in one small Indian mongoose within the native range, suggesting an alternative explanation for morphological differentiation involving a shift in female preferences in allopatry.

  18. Genetic diversity shaped by historical and recent factors in the live-bearing twoline skiffia Neotoca bilineata.

    PubMed

    Ornelas-García, C P; Alda, F; Díaz-Pardo, E; Gutiérrez-Hernández, A; Doadrio, I

    2012-11-01

    The endangered twoline skiffia Neotoca bilineata, a viviparous fish of the subfamily Goodeinae, endemic to central Mexico (inhabiting two basins, Cuitzeo and Lerma-Santiago) was evaluated using genetic and habitat information. The genetic variation of all remaining populations of the species was analysed using both mitochondrial and microsatellite markers and their habitat conditions were assessed using a water quality index (I(WQ)). An 80% local extinction was found across the distribution of N. bilineata. The species was found in three of the 16 historical localities plus one previously unreported site. Most areas inhabited by the remaining populations had I(WQ) scores unsuitable for the conservation of freshwater biodiversity. Populations showed low but significant genetic differentiation with both markers (mtDNA φ(ST) = 0.076, P < 0.001; microsatellite F(ST) = 0.314, P < 0.001). Borbollon, in the Cuitzeo Basin, showed the highest level of differentiation and was identified as a single genetic unit by Bayesian assignment methods. Rio Grande de Morelia and Salamanca populations showed the highest genetic diversity and also a high migration rate facilitated by an artificial channel that connected the two basins. Overall, high genetic diversity values were observed compared with other freshwater fishes (average N(a) = 16 alleles and loci and mean ±S.D. H(o) = 0.63 ± 0.10 and nucleotide diversity π = 0.006). This suggests that the observed genetic diversity has not diminished as rapidly as the species' habitat destruction. No evidence of correlation between habitat conditions and genetic diversity was found. The current pattern of genetic diversity may be the result of both historical factors and recent modifications of the hydrological system. The main threat to the species may be the rapid habitat deterioration and associated demographic stochasticity rather than genetic factors. © 2012 The Authors. Journal of Fish Biology © 2012 The Fisheries Society of the

  19. Observation of negative differential resistance in mesoscopic graphene oxide devices.

    PubMed

    Rathi, Servin; Lee, Inyeal; Kang, Moonshik; Lim, Dongsuk; Lee, Yoontae; Yamacli, Serhan; Joh, Han-Ik; Kim, Seongsu; Kim, Sang-Woo; Yun, Sun Jin; Choi, Sukwon; Kim, Gil-Ho

    2018-05-08

    The fractions of various functional groups in graphene oxide (GO) are directly related to its electrical and chemical properties and can be controlled by various reduction methods like thermal, chemical and optical. However, a method with sufficient controllability to regulate the reduction process has been missing. In this work, a hybrid method of thermal and joule heating processes is demonstrated where a progressive control of the ratio of various functional groups can be achieved in a localized area. With this precise control of carbon-oxygen ratio, negative differential resistance (NDR) is observed in the current-voltage characteristics of a two-terminal device in the ambient environment due to charge-activated electrochemical reactions at the GO surface. This experimental observation correlates with the optical and chemical characterizations. This NDR behavior offers new opportunities for the fabrication and application of such novel electronic devices in a wide range of devices applications including switches and oscillators.

  20. Evaluating two-dimensional electrophoresis profiles of the protein phaseolin as markers of genetic differentiation and seed protein quality in common bean (Phaseolus vulgaris L.).

    PubMed

    López-Pedrouso, María; Bernal, Javier; Franco, Daniel; Zapata, Carlos

    2014-07-23

    High-resolution two-dimensional electrophoresis (2-DE) profiles of the protein phaseolin, the major seed storage protein of common bean, display great number of spots with differentially glycosylated and phosphorylated α- and β-type polypeptides. This work aims to test whether these complex profiles can be useful markers of genetic differentiation and seed protein quality in bean populations. The 2-DE phaseolin profile and the amino acid composition were examined in bean seeds from 18 domesticated and wild accessions belonging to the Mesoamerican and Andean gene pools. We found that proteomic distances based on 2-DE profiles were successful in identifying the accessions belonging to each gene pool and outliers distantly related. In addition, accessions identified as outliers from proteomic distances showed the highest levels of methionine content, an essential amino acid deficient in bean seeds. These findings suggest that 2-DE phaseolin profiles provide valuable information with potential of being used in common bean genetic improvement.

  1. Inferring genetic connectivity in real populations, exemplified by coastal and oceanic Atlantic cod.

    PubMed

    Spies, Ingrid; Hauser, Lorenz; Jorde, Per Erik; Knutsen, Halvor; Punt, André E; Rogers, Lauren A; Stenseth, Nils Chr

    2018-05-08

    Genetic data are commonly used to estimate connectivity between putative populations, but translating them to demographic dispersal rates is complicated. Theoretical equations that infer a migration rate based on the genetic estimator F ST , such as Wright's equation, F ST ≈ 1/(4 N e m + 1), make assumptions that do not apply to most real populations. How complexities inherent to real populations affect migration was exemplified by Atlantic cod in the North Sea and Skagerrak and was examined within an age-structured model that incorporated genetic markers. Migration was determined under various scenarios by varying the number of simulated migrants until the mean simulated level of genetic differentiation matched a fixed level of genetic differentiation equal to empirical estimates. Parameters that decreased the N e / N t ratio (where N e is the effective and N t is the total population size), such as high fishing mortality and high fishing gear selectivity, increased the number of migrants required to achieve empirical levels of genetic differentiation. Higher maturity-at-age and lower selectivity increased N e / N t and decreased migration when genetic differentiation was fixed. Changes in natural mortality, fishing gear selectivity, and maturity-at-age within expected limits had a moderate effect on migration when genetic differentiation was held constant. Changes in population size had the greatest effect on the number of migrants to achieve fixed levels of F ST , particularly when genetic differentiation was low, F ST ≈ 10 -3 Highly variable migration patterns, compared with constant migration, resulted in higher variance in genetic differentiation and higher extreme values. Results are compared with and provide insight into the use of theoretical equations to estimate migration among real populations. Copyright © 2018 the Author(s). Published by PNAS.

  2. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines

    PubMed Central

    Sayson, S. L.; Gloria-Soria, A.; Powell, J. R.; Edillo, F. E.

    2015-01-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011–2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST = 0.018; FST = 0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season. PMID:26335470

  3. Parenting and adolescents’ psychological adjustment: Longitudinal moderation by adolescents’ genetic sensitivity

    PubMed Central

    Stocker, Clare M.; Masarik, April S.; Widaman, Keith F.; Reeb, Ben T.; Boardman, Jason D.; Smolen, Andrew; Neppl, Tricia K.; Conger, Katherine J.

    2017-01-01

    We examined whether adolescents’ genetic sensitivity, measured by a polygenic index score, moderated the longitudinal associations between parenting and adolescents’ internalizing and externalizing problems. The sample included 323 mothers, fathers, and adolescents (177 female, 146 male; Time 1 [T1] average age = 12.61 [SD = 0.54] years, Time 2 [T2] average age = 13.59 [SD = 0.59] years). Parents’ warmth and hostility were rated by trained, independent observers using videotapes of family discussions. Adolescents reported their symptoms of anxiety, depressed mood, and hostility at T1 and T2. Results from autoregressive linear regression models showed that adolescents’ genetic sensitivity moderated associations between observations of mothers’ T1 parenting and adolescents’ T2 symptoms of depression, anxiety, and hostility. For fathers, the same pattern was found for adolescents’ anxiety and hostility, but not for depressed mood. Compared to adolescents with low genetic sensitivity, adolescents with high genetic sensitivity had worse adjustment outcomes when parenting was low on warmth and high on hostility. When parenting was characterized by high warmth and low hostility, adolescents with high genetic sensitivity had better adjustment outcomes than their counterparts with low genetic sensitivity. Results support the differential susceptibility model and highlight the complex ways that genes and environment interact to influence development. PMID:28027713

  4. Niger-wide assessment of in situ sorghum genetic diversity with microsatellite markers.

    PubMed

    Deu, M; Sagnard, F; Chantereau, J; Calatayud, C; Hérault, D; Mariac, C; Pham, J-L; Vigouroux, Y; Kapran, I; Traore, P S; Mamadou, A; Gerard, B; Ndjeunga, J; Bezançon, G

    2008-05-01

    Understanding the geographical, environmental and social patterns of genetic diversity on different spatial scales is key to the sustainable in situ management of genetic resources. However, few surveys have been conducted on crop genetic diversity using exhaustive in situ germplasm collections on a country scale and such data are missing for sorghum in sub-Saharan Africa, its centre of origin. We report here a genetic analysis of 484 sorghum varieties collected in 79 villages evenly distributed across Niger, using 28 microsatellite markers. We found a high level of SSR diversity in Niger. Diversity varied between eastern and western Niger, and allelic richness was lower in the eastern part of the country. Genetic differentiation between botanical races was the first structuring factor (Fst = 0.19), but the geographical distribution and the ethnic group to which farmers belonged were also significantly associated with genetic diversity partitioning. Gene pools are poorly differentiated among climatic zones. The geographical situation of Niger, where typical western African (guinea), central African (caudatum) and eastern Sahelian African (durra) sorghum races converge, explained the high observed genetic diversity and was responsible for the interactions among the ethnic, geographical and botanical structure revealed in our study. After correcting for the structure of botanical races, spatial correlation of genetic diversity was still detected within 100 km, which may hint at limited seed exchanges between farmers. Sorghum domestication history, in relation to the spatial organisation of human societies, is therefore key information for sorghum in situ conservation programs in sub-Saharan Africa.

  5. Genetic diversity of resin yielder Pinus merkusii from West Java - Indonesia revealed by microsatellites marker

    NASA Astrophysics Data System (ADS)

    Susilowati, A.; Rachmat, H. H.; Siregar, I. Z.; Supriyanto

    2018-02-01

    Phenotypic observation of resin yielder Pinus merkusii showed higher value of genetic variation and narrow sense heritability values for resin production trait. This result indicated that genetic factor played as dominant aspect. However, further observation using molecular marker would still be needed to overcome the weakness of phenotypic observation. This study was carried out in order to characterize the genetic diversity and genetic differentiation of resin yielder genotype candidate P.merkusii using microsatellite markers and to characterize the genetic structure in the resin yielder populations. Seventy needle and inner bark samples were collected from resin yielder in Cijambu Seedling Seed Orchard (SSO) Sumedang, West Java and further divided into two genotype candidates (lower and high resin yielder). Seven microsatellites loci (pm01, pm04, pm05, pm07, pm08, pm09a, pm12, pde5 and SPAC 11.6) were used for detection of genetic diversity. Results showed that genetic diversity in higher resin candidates was (0.551), slightly different compared lower candidates (0.545). However, cluster analysis determined that higher resin yielder grouped with lower one. Molecular variation was found to be low among populations (21%) and high among individuals within the populations (79%). Private alleles were detected both in higher yielder and also normal population.

  6. Assessing the Genetic Influence of Ancient Sociopolitical Structure: Micro-differentiation Patterns in the Population of Asturias (Northern Spain)

    PubMed Central

    Pardiñas, Antonio F.; Roca, Agustín; García-Vazquez, Eva; López, Belén

    2012-01-01

    The human populations of the Iberian Peninsula are the varied result of a complex mixture of cultures throughout history, and are separated by clear social, cultural, linguistic or geographic barriers. The stronger genetic differences between closely related populations occur in the northern third of Spain, a phenomenon commonly known as “micro-differentiation”. It has been argued and discussed how this form of genetic structuring can be related to both the rugged landscape and the ancient societies of Northern Iberia, but this is difficult to test in most regions due to the intense human mobility of previous centuries. Nevertheless, the Spanish autonomous community of Asturias shows a complex history which hints of a certain isolation of its population. This, joined together with a difficult terrain full of deep valleys and steep mountains, makes it suitable for performing a study of genetic structure, based on mitochondrial DNA and Y-Chromosome markers. Our analyses do not only show that there are micro-differentiation patterns inside the Asturian territory, but that these patterns are strikingly similar between both uniparental markers. The inference of barriers to gene flow also indicates that Asturian populations from the coastal north and the mountainous south seem to be relatively isolated from the rest of the territory. These findings are discussed in light of historic and geographic data and, coupled with previous evidence, show that the origin of the current genetic patterning might indeed lie in Roman and Pre-Roman sociopolitical divisions. PMID:23209673

  7. GENETIC STRUCTURE OF NORWAY SPRUCE (PICEA ABIES): CONCORDANCE OF MORPHOLOGICAL AND ALLOZYMIC VARIATION.

    PubMed

    Lagercrantz, Ulf; Ryman, Nils

    1990-02-01

    This study describes the population structure of Norway spruce (Picea abies) as revealed by protein polymorphisms and morphological variation. Electrophoretically detectable genetic variability was examined at 22 protein loci in 70 populations from the natural range of the species in Europe. Like other conifers, Norway spruce exhibits a relatively large amount of genetic variability and little differentiation among populations. Sixteen polymorphic loci (73%) segregate for a total of 51 alleles, and average heterozygosity per population is 0.115. Approximately 5% of the total genetic diversity is explained by differences between populations (G ST = 0.052), and Nei's standard genetic distance is less than 0.04 in all cases. We suggest that the population structure largely reflects relatively recent historical events related to the last glaciation and that Norway spruce is still in a process of adaptation and differentiation. There is a clear geographic pattern in the variation of allele frequencies. A major part of the allelefrequency variation can be accounted for by a few synthetic variables (principal components), and 80% of the variation of the first principal component is "explained" by latitude and longitude. The central European populations are consistently depauperate of genetic variability, most likely as an effect of severe restrictions of population size during the last glaciation. The pattern of differentiation at protein loci is very similar to that observed for seven morphological traits examined. This similarity suggests that the same evolutionary forces have acted upon both sets of characters. © 1990 The Society for the Study of Evolution.

  8. Genetic structure of Onchidium "struma" (Mollusca: Gastropoda: Eupulmonata) from the coastal area of China based on mtCO I.

    PubMed

    Zhou, Na; Shen, Heding; Chen, Cheng; Sun, Bianna; Zheng, Pei; Wang, Chengnuan

    2016-01-01

    The genetic diversity and population genetic structure of Onchidium "struma" were investigated using mitochondrial cytochrome c oxidase subunit I (CO I) gene sequences. A total of 240 individuals representing 10 collection sites from across a large portion of its known range were included in the analysis. Overall, 42 haplotypes were defined and 97 polymorphic sites were observed. The O. "struma" populations had high haplotype diversity (0.9280) and nucleotide diversity (0.0404). We inferred that the early maturity and extensive survival habitat led to high genetic diversity of O. "struma" populations in China. Bayesian analysis and SAMOVA analysis showed significant genetic differentiation among populations and all populations were divided into two groups, (HK and HN) versus (GY, DF, CX, CN, ND and XM). The Mantel test revealed no significant correlation between geographic distance and genetic distance (r = 0.251; p = 0.058). Restricted gene flow caused by a shorter term pelagic veliger stage and limited dispersal potential were inferred to result in genetic differentiation among populations based on nested analysis. HK population might be an invasive species by artificial transplantation.

  9. Diachronic investigations of mitochondrial and Y-chromosomal genetic markers in pre-Columbian Andean highlanders from South Peru.

    PubMed

    Fehren-Schmitz, Lars; Warnberg, Ole; Reindel, Markus; Seidenberg, Verena; Tomasto-Cagigao, Elsa; Isla-Cuadrado, Johny; Hummel, Susanne; Herrmann, Bernd

    2011-03-01

    This study examines the reciprocal effects of cultural evolution, and population dynamics in pre-Columbian southern Peru by the analysis of DNA from pre-Columbian populations that lived in the fringe area between the Andean highlands and the Pacific coast. The main objective is to reveal whether the transition from the Middle Horizon (MH: 650-1000 AD) to the Late Intermediate Period (LIP: 1000-1400 AD) was accompanied or influenced by population dynamic processes. Tooth samples from 90 individuals from several archaeological sites, dating to the MH and LIP, in the research area were collected to analyse mitochodrial, and Y-chromosomal genetic markers. Coding region polymorphisms were successfully analysed and replicated for 72 individuals, as were control region sequences for 65 individuals and Y-chromosomal single nucleotide polymorphisms (SNPs) for 19 individuals, and these were compared to a large set of ancient and modern indigenous South American populations. The diachronic comparison of the upper valley samples from both time periods reveals no genetic discontinuities accompanying the cultural dynamic processes. A high genetic affinity for other ancient and modern highland populations can be observed, suggesting genetic continuity in the Andean highlands at the latest from the MH. A significant matrilineal differentiation to ancient Peruvian coastal populations can be observed suggesting a differential population history. © 2010 The Authors Annals of Human Genetics © 2010 Blackwell Publishing Ltd/University College London.

  10. Contrasting patterns of genetic and phenotypic differentiation in two invasive salmonids in the southern hemisphere

    PubMed Central

    Monzón-Argüello, Catalina; Consuegra, Sofia; Gajardo, Gonzalo; Marco-Rius, Francisco; Fowler, Daniel M; DeFaveri, Jacquelin; Garcia de Leaniz, Carlos

    2014-01-01

    Invasion success may be expected to increase with residence time (i.e., time since first introduction) and secondary releases (i.e., those that follow the original introduction), but this has rarely been tested in natural fish populations. We compared genetic and phenotypic divergence in rainbow trout and brown trout in Chile and the Falkland Islands to test the prediction that adaptive divergence, measured as PST/FST, would increase with residence time and secondary releases. We also explored whether interspecific competition between invaders could drive phenotypic divergence. Residence time had no significant effect on genetic diversity, phenotypic divergence, effective population size, or signatures of expansion of invasive trout. In contrast, secondary releases had a major effect on trout invasions, and rainbow trout populations mostly affected by aquaculture escapees showed significant divergence from less affected populations. Coexistence with brown trout had a positive effect on phenotypic divergence of rainbow trout. Our results highlight an important role of secondary releases in shaping fish invasions, but do not support the contention that older invaders are more differentiated than younger ones. They also suggest that exotic trout may not have yet developed local adaptations in these recently invaded habitats, at least with respect to growth-related traits. PMID:25469171

  11. Influence of language and ancestry on genetic structure of contiguous populations: A microsatellite based study on populations of Orissa

    PubMed Central

    Sahoo, Sanghamitra; Kashyap, VK

    2005-01-01

    Background We have examined genetic diversity at fifteen autosomal microsatellite loci in seven predominant populations of Orissa to decipher whether populations inhabiting the same geographic region can be differentiated on the basis of language or ancestry. The studied populations have diverse historical accounts of their origin, belong to two major ethnic groups and different linguistic families. Caucasoid caste populations are speakers of Indo-European language and comprise Brahmins, Khandayat, Karan and Gope, while the three Australoid tribal populations include two Austric speakers: Juang and Saora and a Dravidian speaking population, Paroja. These divergent groups provide a varied substratum for understanding variation of genetic patterns in a geographical area resulting from differential admixture between migrants groups and aboriginals, and the influence of this admixture on population stratification. Results The allele distribution pattern showed uniformity in the studied groups with approximately 81% genetic variability within populations. The coefficient of gene differentiation was found to be significantly higher in tribes (0.014) than caste groups (0.004). Genetic variance between the groups was 0.34% in both ethnic and linguistic clusters and statistically significant only in the ethnic apportionment. Although the populations were genetically close (FST = 0.010), the contemporary caste and tribal groups formed distinct clusters in both Principal-Component plot and Neighbor-Joining tree. In the phylogenetic tree, the Orissa Brahmins showed close affinity to populations of North India, while Khandayat and Gope clustered with the tribal groups, suggesting a possibility of their origin from indigenous people. Conclusions The extent of genetic differentiation in the contemporary caste and tribal groups of Orissa is highly significant and constitutes two distinct genetic clusters. Based on our observations, we suggest that since genetic distances and

  12. Genetic variation and population structure of the mixed-mating cactus, Melocactus curvispinus (Cactaceae).

    PubMed

    Nassar, J M; Hamrick, J L; Fleming, T H

    2001-07-01

    Genetic diversity was measured in the mixed-mating cactus, Melocactus curvispinus, in Venezuela. Allozyme diversity was surveyed in 19 putative loci over 18 populations. Compared to other plant taxa, this cactus is rich in polymorphic loci (Ps=89.5%), with high numbers of alleles per polymorphic locus (APs=3.82), but moderate levels of heterozygosity (Hes=0.145). Substantial levels of inbreeding were detected across loci and populations at macrogeographic (FIS=0.348) and regional levels (FIS=0.194-0.402). Moderate levels of genetic differentiation among populations were detected at macrogeographical (FST=0.193) and regional (FST=0.084-0.187) scales, suggesting that gene flow is relatively restricted, but increases within regions without topographic barriers. The population genetic structure observed for this cactus was attributed to, at least, three factors: short-distance pollination and seed dispersal, the mixed-mating condition of the species, and genetic drift. High genetic identities between populations (I=0.942) supported the conspecific nature of all populations surveyed. The levels and patterns of genetic structure observed for M. curvispinus were consistent with its mating system and gene dispersal mechanisms.

  13. A Genetic Algorithm Method for Direct estimation of paleostress states from heterogeneous fault-slip observations

    NASA Astrophysics Data System (ADS)

    Srivastava, D. C.

    2016-12-01

    A Genetic Algorithm Method for Direct estimation of paleostress states from heterogeneous fault-slip observationsDeepak C. Srivastava, Prithvi Thakur and Pravin K. GuptaDepartment of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247667, India. Abstract Paleostress estimation from a group of heterogeneous fault-slip observations entails first the classification of the observations into homogeneous fault sets and then a separate inversion of each homogeneous set. This study combines these two issues into a nonlinear inverse problem and proposes a heuristic search method that inverts the heterogeneous fault-slip observations. The method estimates different paleostress states in a group of heterogeneous fault-slip observations and classifies it into homogeneous sets as a byproduct. It uses the genetic algorithm operators, elitism, selection, encoding, crossover and mutation. These processes translate into a guided search that finds successively fitter solutions and operate iteratively until the termination criteria is met and the globally fittest stress tensors are obtained. We explain the basic steps of the algorithm on a working example and demonstrate validity of the method on several synthetic and a natural group of heterogeneous fault-slip observations. The method is independent of any user-defined bias or any entrapment of solution in a local optimum. It succeeds even in the difficult situations where other classification methods are found to fail.

  14. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    PubMed

    Zong, Jian-Wei; Zhao, Tian-Tian; Ma, Qing-Hua; Liang, Li-Song; Wang, Gui-Xi

    2015-01-01

    Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance. These

  15. Population genetic structure of the African elephant in Uganda based on variation at mitochondrial and nuclear loci: evidence for male-biased gene flow.

    PubMed

    Nyakaana, S; Arctander, P

    1999-07-01

    A drastic decline has occurred in the size of the Uganda elephant population in the last 40 years, exacerbated by two main factors; an increase in the size of the human population and poaching for ivory. One of the attendant consequences of such a decline is a reduction in the amount of genetic diversity in the surviving populations due to increased effects of random genetic drift. Information about the amount of genetic variation within and between the remaining populations is vital for their future conservation and management. The genetic structure of the African elephant in Uganda was examined using nucleotide variation of mitochondrial control region sequences and four nuclear microsatellite loci in 72 individuals from three localities. Eleven mitochondrial DNA (mtDNA) haplotypes were observed, nine of which were geographically localized. We found significant genetic differentiation between the three populations at the mitochondrial locus while three out of the four microsatellite loci differentiated KV and QE, one locus differentiated KV and MF and no loci differentiated MF and QE. Expected heterozygosity at the four loci varied between 0.51 and 0.84 while nucleotide diversity at the mitochondrial locus was 1.4%. Incongruent patterns of genetic variation within and between populations were revealed by the two genetic systems, and we have explained these in terms of the differences in the effective population sizes of the two genomes and male-biased gene flow between populations.

  16. Analysis of East Asia Genetic Substructure Using Genome-Wide SNP Arrays

    PubMed Central

    Tian, Chao; Kosoy, Roman; Lee, Annette; Ransom, Michael; Belmont, John W.; Gregersen, Peter K.; Seldin, Michael F.

    2008-01-01

    Accounting for population genetic substructure is important in reducing type 1 errors in genetic studies of complex disease. As efforts to understand complex genetic disease are expanded to different continental populations the understanding of genetic substructure within these continents will be useful in design and execution of association tests. In this study, population differentiation (Fst) and Principal Components Analyses (PCA) are examined using >200 K genotypes from multiple populations of East Asian ancestry. The population groups included those from the Human Genome Diversity Panel [Cambodian, Yi, Daur, Mongolian, Lahu, Dai, Hezhen, Miaozu, Naxi, Oroqen, She, Tu, Tujia, Naxi, Xibo, and Yakut], HapMap [ Han Chinese (CHB) and Japanese (JPT)], and East Asian or East Asian American subjects of Vietnamese, Korean, Filipino and Chinese ancestry. Paired Fst (Wei and Cockerham) showed close relationships between CHB and several large East Asian population groups (CHB/Korean, 0.0019; CHB/JPT, 00651; CHB/Vietnamese, 0.0065) with larger separation with Filipino (CHB/Filipino, 0.014). Low levels of differentiation were also observed between Dai and Vietnamese (0.0045) and between Vietnamese and Cambodian (0.0062). Similarly, small Fst's were observed among different presumed Han Chinese populations originating in different regions of mainland of China and Taiwan (Fst's <0.0025 with CHB). For PCA, the first two PC's showed a pattern of relationships that closely followed the geographic distribution of the different East Asian populations. PCA showed substructure both between different East Asian groups and within the Han Chinese population. These studies have also identified a subset of East Asian substructure ancestry informative markers (EASTASAIMS) that may be useful for future complex genetic disease association studies in reducing type 1 errors and in identifying homogeneous groups that may increase the power of such studies. PMID:19057645

  17. Genetic evidence for differential selection of grain and embryo weight during wheat evolution under domestication.

    PubMed

    Golan, Guy; Oksenberg, Adi; Peleg, Zvi

    2015-09-01

    Wheat is one of the Neolithic founder crops domesticated ~10 500 years ago. Following the domestication episode, its evolution under domestication has resulted in various genetic modifications. Grain weight, embryo weight, and the interaction between those factors were examined among domesticated durum wheat and its direct progenitor, wild emmer wheat. Experimental data show that grain weight has increased over the course of wheat evolution without any parallel change in embryo weight, resulting in a significantly reduced (30%) embryo weight/grain weight ratio in domesticated wheat. The genetic factors associated with these modifications were further investigated using a population of recombinant inbred substitution lines that segregated for chromosome 2A. A cluster of loci affecting grain weight and shape was identified on the long arm of chromosome 2AL. Interestingly, a novel locus controlling embryo weight was mapped on chromosome 2AS, on which the wild emmer allele promotes heavier embryos and greater seedling vigour. To the best of our knowledge, this is the first report of a QTL for embryo weight in wheat. The results suggest a differential selection of grain and embryo weight during the evolution of domesticated wheat. It is argued that conscious selection by early farmers favouring larger grains and smaller embryos appears to have resulted in a significant change in endosperm weight/embryo weight ratio in the domesticated wheat. Exposing the genetic factors associated with endosperm and embryo size improves our understanding of the evolutionary dynamics of wheat under domestication and is likely to be useful for future wheat-breeding efforts. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  18. The Effect of Recurrent Floods on Genetic Composition of Marble Trout Populations

    PubMed Central

    Pujolar, José Martin; Vincenzi, Simone; Zane, Lorenzo; Jesensek, Dusan; De Leo, Giulio A.; Crivelli, Alain J.

    2011-01-01

    A changing global climate can threaten the diversity of species and ecosystems. We explore the consequences of catastrophic disturbances in determining the evolutionary and demographic histories of secluded marble trout populations in Slovenian streams subjected to weather extremes, in particular recurrent flash floods and debris flows causing massive mortalities. Using microsatellite data, a pattern of extreme genetic differentiation was found among populations (global F ST of 0.716), which exceeds the highest values reported in freshwater fish. All locations showed low levels of genetic diversity as evidenced by low heterozygosities and a mean of only 2 alleles per locus, with few or no rare alleles. Many loci showed a discontinuous allele distribution, with missing alleles across the allele size range, suggestive of a population contraction. Accordingly, bottleneck episodes were inferred for all samples with a reduction in population size of 3–4 orders of magnitude. The reduced level of genetic diversity observed in all populations implies a strong impact of genetic drift, and suggests that along with limited gene flow, genetic differentiation might have been exacerbated by recurrent mortalities likely caused by flash flood and debris flows. Due to its low evolutionary potential the species might fail to cope with an intensification and altered frequency of flash flood events predicted to occur with climate change. PMID:21931617

  19. Natural Allelic Diversity, Genetic Structure and Linkage Disequilibrium Pattern in Wild Chickpea

    PubMed Central

    Kujur, Alice; Das, Shouvik; Badoni, Saurabh; Kumar, Vinod; Singh, Mohar; Bansal, Kailash C.; Tyagi, Akhilesh K.; Parida, Swarup K.

    2014-01-01

    Characterization of natural allelic diversity and understanding the genetic structure and linkage disequilibrium (LD) pattern in wild germplasm accessions by large-scale genotyping of informative microsatellite and single nucleotide polymorphism (SNP) markers is requisite to facilitate chickpea genetic improvement. Large-scale validation and high-throughput genotyping of genome-wide physically mapped 478 genic and genomic microsatellite markers and 380 transcription factor gene-derived SNP markers using gel-based assay, fluorescent dye-labelled automated fragment analyser and matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass array have been performed. Outcome revealed their high genotyping success rate (97.5%) and existence of a high level of natural allelic diversity among 94 wild and cultivated Cicer accessions. High intra- and inter-specific polymorphic potential and wider molecular diversity (11–94%) along with a broader genetic base (13–78%) specifically in the functional genic regions of wild accessions was assayed by mapped markers. It suggested their utility in monitoring introgression and transferring target trait-specific genomic (gene) regions from wild to cultivated gene pool for the genetic enhancement. Distinct species/gene pool-wise differentiation, admixed domestication pattern, and differential genome-wide recombination and LD estimates/decay observed in a six structured population of wild and cultivated accessions using mapped markers further signifies their usefulness in chickpea genetics, genomics and breeding. PMID:25222488

  20. Admixture patterns and genetic differentiation in negrito groups from West Malaysia estimated from genome-wide SNP data.

    PubMed

    Jinam, Timothy A; Phipps, Maude E; Saitou, Naruya

    2013-01-01

    Southeast Asia houses various culturally and linguistically diverse ethnic groups. In Malaysia, where the Malay, Chinese, and Indian ethnic groups form the majority, there exist minority groups such as the "negritos" who are believed to be descendants of the earliest settlers of Southeast Asia. Here we report patterns of genetic substructure and admixture in two Malaysian negrito populations (Jehai and Kensiu), using ~50,000 genome-wide single-nucleotide polymorphism (SNP) data. We found traces of recent admixture in both the negrito populations, particularly in the Jehai, with the Malay through principal component analysis and STRUCTURE analysis software, which suggested that the admixture was as recent as one generation ago. We also identified significantly differentiated nonsynonymous SNPs and haplotype blocks related to intracellular transport, metabolic processes, and detection of stimulus. These results highlight the different levels of admixture experienced by the two Malaysian negritos. Delineating admixture and differentiated genomic regions should be of importance in designing and interpretation of molecular anthropology and disease association studies. Copyright © 2013 Wayne State University Press, Detroit, Michigan 48201-1309.

  1. Genetic evidence supports song learning in the three-wattled bellbird Procnias tricarunculata (Cotingidae).

    PubMed

    Saranathan, Vinodkumar; Hamilton, Deborah; Powell, George V N; Kroodsma, Donald E; Prum, Richard O

    2007-09-01

    Vocal learning is thought to have evolved in three clades of birds (parrots, hummingbirds, and oscine passerines), and three clades of mammals (whales, bats, and primates). Behavioural data indicate that, unlike other suboscine passerines, the three-wattled bellbird Procnias tricarunculata (Cotingidae) is capable of vocal learning. Procnias tricarunculata shows conspicuous vocal ontogeny, striking geographical variation in song, and rapid temporal change in song within a population. Deprivation studies of vocal development in P. tricarunculata are impractical. Here, we report evidence from mitochondrial DNA sequences and nuclear microsatellite loci that genetic variation within and among the four allopatric breeding populations of P. tricarunculata is not congruent with variation in vocal behaviour. Sequences of the mitochondrial DNA control region document extensive haplotype sharing among localities and song types, and no phylogenetic resolution of geographical populations or behavioural groups. The vocally differentiated, allopatric breeding populations of P. tricarunculata are only weakly genetically differentiated populations, and are not distinct taxa. Mitochondrial DNA and microsatellite variation show small (2.9% and 13.5%, respectively) but significant correlation with geographical distance, but no significant residual variation by song type. Estimates of the strength of selection that would be needed to maintain the observed geographical pattern in vocal differentiation if songs were genetically based are unreasonably high, further discrediting the hypothesis of a genetic origin of vocal variation. These data support a fourth, phylogenetically independent origin of avian vocal learning in Procnias. Geographical variations in P. tricarunculata vocal behaviour are likely culturally evolved dialects.

  2. Diet- and Genetically-Induced Obesity Differentially Affect the Fecal Microbiome and Metabolome in Apc1638N Mice

    PubMed Central

    Parnell, Laurence D.; Iyer, Lakshmanan K.; Liu, Zhenhua; Kane, Anne V.; Chen, C-Y. Oliver; Tai, Albert K.; Bowman, Thomas A.; Obin, Martin S.; Mason, Joel B.; Greenberg, Andrew S.; Choi, Sang-Woon; Selhub, Jacob; Paul, Ligi; Crott, Jimmy W.

    2015-01-01

    Obesity is a risk factor for colorectal cancer (CRC), and alterations in the colonic microbiome and metabolome may be mechanistically involved in this relationship. The relative contribution of diet and obesity per se are unclear. We compared the effect of diet- and genetically-induced obesity on the intestinal microbiome and metabolome in a mouse model of CRC. Apc1638N mice were made obese by either high fat (HF) feeding or the presence of the Leprdb/db (DbDb) mutation. Intestinal tumors were quantified and stool microbiome and metabolome were profiled. Genetic obesity, and to a lesser extent HF feeding, promoted intestinal tumorigenesis. Each induced distinct microbial patterns: taxa enriched in HF were mostly Firmicutes (6 of 8) while those enriched in DbDb were split between Firmicutes (7 of 12) and Proteobacteria (5 of 12). Parabecteroides distasonis was lower in tumor-bearing mice and its abundance was inversely associated with colonic Il1b production (p<0.05). HF and genetic obesity altered the abundance of 49 and 40 fecal metabolites respectively, with 5 in common. Of these 5, adenosine was also lower in obese and in tumor-bearing mice (p<0.05) and its concentration was inversely associated with colonic Il1b and Tnf production (p<0.05). HF and genetic obesity differentially alter the intestinal microbiome and metabolome. A depletion of adenosine and P.distasonis in tumor-bearing mice could play a mechanistic role in tumor formation. Adenosine and P. distasonis have previously been shown to be anti-inflammatory in the colon and we postulate their reduction could promote tumorigenesis by de-repressing inflammation. PMID:26284788

  3. Diet- and Genetically-Induced Obesity Differentially Affect the Fecal Microbiome and Metabolome in Apc1638N Mice.

    PubMed

    Pfalzer, Anna C; Nesbeth, Paula-Dene C; Parnell, Laurence D; Iyer, Lakshmanan K; Liu, Zhenhua; Kane, Anne V; Chen, C-Y Oliver; Tai, Albert K; Bowman, Thomas A; Obin, Martin S; Mason, Joel B; Greenberg, Andrew S; Choi, Sang-Woon; Selhub, Jacob; Paul, Ligi; Crott, Jimmy W

    2015-01-01

    Obesity is a risk factor for colorectal cancer (CRC), and alterations in the colonic microbiome and metabolome may be mechanistically involved in this relationship. The relative contribution of diet and obesity per se are unclear. We compared the effect of diet- and genetically-induced obesity on the intestinal microbiome and metabolome in a mouse model of CRC. Apc1638N mice were made obese by either high fat (HF) feeding or the presence of the Leprdb/db (DbDb) mutation. Intestinal tumors were quantified and stool microbiome and metabolome were profiled. Genetic obesity, and to a lesser extent HF feeding, promoted intestinal tumorigenesis. Each induced distinct microbial patterns: taxa enriched in HF were mostly Firmicutes (6 of 8) while those enriched in DbDb were split between Firmicutes (7 of 12) and Proteobacteria (5 of 12). Parabecteroides distasonis was lower in tumor-bearing mice and its abundance was inversely associated with colonic Il1b production (p<0.05). HF and genetic obesity altered the abundance of 49 and 40 fecal metabolites respectively, with 5 in common. Of these 5, adenosine was also lower in obese and in tumor-bearing mice (p<0.05) and its concentration was inversely associated with colonic Il1b and Tnf production (p<0.05). HF and genetic obesity differentially alter the intestinal microbiome and metabolome. A depletion of adenosine and P.distasonis in tumor-bearing mice could play a mechanistic role in tumor formation. Adenosine and P. distasonis have previously been shown to be anti-inflammatory in the colon and we postulate their reduction could promote tumorigenesis by de-repressing inflammation.

  4. Genetic differentiation of spring-spawning and fall-spawning male Atlantic sturgeon in the James River, Virginia

    PubMed Central

    Balazik, Matthew T.; Farrae, Daniel J.; Darden, Tanya L.; Garman, Greg C.

    2017-01-01

    Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus, Acipenseridae) populations are currently at severely depleted levels due to historic overfishing, habitat loss, and pollution. The importance of biologically correct stock structure for effective conservation and management efforts is well known. Recent improvements in our understanding of Atlantic sturgeon migrations, movement, and the occurrence of putative dual spawning groups leads to questions regarding the true stock structure of this endangered species. In the James River, VA specifically, captures of spawning Atlantic sturgeon and accompanying telemetry data suggest there are two discrete spawning groups of Atlantic sturgeon. The two putative spawning groups were genetically evaluated using a powerful microsatellite marker suite to determine if they are genetically distinct. Specifically, this study evaluates the genetic structure, characterizes the genetic diversity, estimates effective population size, and measures inbreeding of Atlantic sturgeon in the James River. The results indicate that fall and spring spawning James River Atlantic sturgeon groups are genetically distinct (overall FST = 0.048, F’ST = 0.181) with little admixture between the groups. The observed levels of genetic diversity and effective population sizes along with the lack of detected inbreeding all indicated that the James River has two genetically healthy populations of Atlantic sturgeon. The study also demonstrates that samples from adult Atlantic sturgeon, with proper sample selection criteria, can be informative when creating reference population databases. The presence of two genetically-distinct spawning groups of Atlantic sturgeon within the James River raises concerns about the current genetic assignment used by managers. Other nearby rivers may also have dual spawning groups that either are not accounted for or are pooled in reference databases. Our results represent the second documentation of genetically distinct dual

  5. Genetic structure and signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos).

    PubMed

    Momigliano, P; Harcourt, R; Robbins, W D; Jaiteh, V; Mahardika, G N; Sembiring, A; Stow, A

    2017-09-01

    With overfishing reducing the abundance of marine predators in multiple marine ecosystems, knowledge of genetic structure and local adaptation may provide valuable information to assist sustainable management. Despite recent technological advances, most studies on sharks have used small sets of neutral markers to describe their genetic structure. We used 5517 nuclear single-nucleotide polymorphisms (SNPs) and a mitochondrial DNA (mtDNA) gene to characterize patterns of genetic structure and detect signatures of selection in grey reef sharks (Carcharhinus amblyrhynchos). Using samples from Australia, Indonesia and oceanic reefs in the Indian Ocean, we established that large oceanic distances represent barriers to gene flow, whereas genetic differentiation on continental shelves follows an isolation by distance model. In Australia and Indonesia differentiation at nuclear SNPs was weak, with coral reefs acting as stepping stones maintaining connectivity across large distances. Differentiation of mtDNA was stronger, and more pronounced in females, suggesting sex-biased dispersal. Four independent tests identified a set of loci putatively under selection, indicating that grey reef sharks in eastern Australia are likely under different selective pressures to those in western Australia and Indonesia. Genetic distances averaged across all loci were uncorrelated with genetic distances calculated from outlier loci, supporting the conclusion that different processes underpin genetic divergence in these two data sets. This pattern of heterogeneous genomic differentiation, suggestive of local adaptation, has implications for the conservation of grey reef sharks; furthermore, it highlights that marine species showing little genetic differentiation at neutral loci may exhibit patterns of cryptic genetic structure driven by local selection.

  6. An analysis of genetic architecture in populations of Ponderosa Pine

    Treesearch

    Yan B. Linhart; Jeffry B. Mitton; Kareen B. Sturgeon; Martha L. Davis

    1981-01-01

    Patterns of genetic variation were studied in three populations of ponderosa pine in Colorado by using electrophoretically variable protein loci. Significant genetic differences were found between separate clusters of trees and between age classes within populations. In addition, data indicate that differential cone production and differential animal damage have...

  7. Phylogeography of Pinus armandii and Its Relatives: Heterogeneous Contributions of Geography and Climate Changes to the Genetic Differentiation and Diversification of Chinese White Pines

    PubMed Central

    Liu, Liu; Hao, Zhen-Zhen; Liu, Yan-Yan; Wei, Xiao-Xin; Cun, Yu-Zhi; Wang, Xiao-Quan

    2014-01-01

    Geographic barriers and Quaternary climate changes are two major forces driving the evolution, speciation, and genetic structuring of extant organisms. In this study, we used Pinus armandii and eleven other Asian white pines (subsection Strobus, subgenus Pinus) to explore the influences of geographic factors and Pleistocene climatic oscillations on species in South China, a region known to be centers of plant endemism and biodiversity hotspots. Range-wide patterns of genetic variation were investigated using chloroplast and mitochondrial DNA markers, with extensive sampling throughout the entire range of P. armandii. Both cpDNA and mtDNA revealed that P. armandii exhibits high levels of genetic diversity and significant population differentiation. Three geographically distinct subdivisions corresponding to the Qinling-Daba Mountains (QDM), Himalaya-Hengduan Mountains (HHM) and Yungui Plateau (YGP) were revealed in mainland China by cpDNA. Their break zone was located in the southeastern margin of the Qinghai-Tibetan Plateau (QTP). A series of massive mountains, induced by the QTP uplift, imposed significant geographic barriers to genetic exchange. The disjunct distribution patterns of ancestral haplotypes suggest that a large continuous population of the white pines may have existed from southwest to subtropical China. Repeated range shifts in response to the Pleistocene glaciations led to the isolation and diversification of the subtropical species. The two Taiwanese white pines share a common ancestor with the species in mainland China and obtain their chloroplasts via long-distance pollen dispersal from North Asian pines. Distinct genetic patterns were detected in populations from the Qinling-Daba Mountains, Yungui Plateau, Himalaya-Hengduan Mountains, and subtropical China, indicating significant contributions of geographic factors to the genetic differentiation in white pines. Our study depicts a clear picture of the evolutionary history of Chinese white pines

  8. Range overlap and individual movements during breeding season influence genetic relationships of caribou herds in south-central Alaska

    USGS Publications Warehouse

    Roffler, Gretchen H.; Adams, Layne G.; Talbot, Sandra L.; Sage, George K.; Dale, Bruce W.

    2012-01-01

    North American caribou (Rangifer tarandus) herds commonly exhibit little nuclear genetic differentiation among adjacent herds, although available evidence supports strong demographic separation, even for herds with seasonal range overlap. During 1997–2003, we studied the Mentasta and Nelchina caribou herds in south-central Alaska using radiotelemetry to determine individual movements and range overlap during the breeding season, and nuclear and mitochondrial DNA (mtDNA) markers to assess levels of genetic differentiation. Although the herds were considered discrete because females calved in separate regions, individual movements and breeding-range overlap in some years provided opportunity for male-mediated gene flow, even without demographic interchange. Telemetry results revealed strong female philopatry, and little evidence of female emigration despite overlapping seasonal distributions. Analyses of 13 microsatellites indicated the Mentasta and Nelchina herds were not significantly differentiated using both traditional population-based analyses and individual-based Bayesian clustering analyses. However, we observed mtDNA differentiation between the 2 herds (FSTM = 0.041, P

  9. Fire increases variance in genetic characteristics of Florida Sand Skink (Plestiodon reynoldsi) local populations.

    PubMed

    Schrey, Aaron W; Fox, Alicia M; Mushinsky, Henry R; McCoy, Earl D

    2011-01-01

    Fire is a complex event that maintains many ecological systems. The Florida Sand Skink (Plestiodon reynoldsi) is precinctive to Florida Scrub, a habitat that is maintained by infrequent fire. We characterize the effect of fire on genetic diversity and genetic differentiation at eight microsatellite loci in the Florida Sand Skink (n=470) collected from 30 replicate sites over three 'time since last fire' categories at the Archbold Biological Station. Long unburned sites had greater allelic richness and expected heterozygosity than either recently or intermediately burned sites. More recently, burned sites had greater standard deviations of allelic richness and private allelic richness. Expected heterozygosity positively correlated with 'time since fire' (r=0.36, P=0.05) and abundance (r=0.53, P=0.002). There was a significant spatial component to genetic differentiation, and results indicate individuals rarely disperse >1 km. Genetic differentiation was positively correlated with geographic distance in long unburned units (r=0.59, P=0.04), yet this relationship was disrupted by fire in recently (r=0.00, 1) and intermediately (r= -0.81, 0.05) burned areas. Simulations indicate that demographic changes to a local population could have generated the observed differences among 'time since fire' categories. Our findings indicate that infrequent fire may be beneficial to the Florida Sand Skink and that local populations begin to recover from changes attributable to the fire after 10 years. Too frequent fires may reduce genetic diversity because it may take multiple generations for local populations to recover. © 2010 Blackwell Publishing Ltd.

  10. Genetic diversity and patterns of population structure in Creole goats from the Americas.

    PubMed

    Ginja, C; Gama, L T; Martínez, A; Sevane, N; Martin-Burriel, I; Lanari, M R; Revidatti, M A; Aranguren-Méndez, J A; Bedotti, D O; Ribeiro, M N; Sponenberg, P; Aguirre, E L; Alvarez-Franco, L A; Menezes, M P C; Chacón, E; Galarza, A; Gómez-Urviola, N; Martínez-López, O R; Pimenta-Filho, E C; da Rocha, L L; Stemmer, A; Landi, V; Delgado-Bermejo, J V

    2017-06-01

    Biodiversity studies are more efficient when large numbers of breeds belonging to several countries are involved, as they allow for an in-depth analysis of the within- and between-breed components of genetic diversity. A set of 21 microsatellites was used to investigate the genetic composition of 24 Creole goat breeds (910 animals) from 10 countries to estimate levels of genetic variability, infer population structure and understand genetic relationships among populations across the American continent. Three commercial transboundary breeds were included in the analyses to investigate admixture with Creole goats. Overall, the genetic diversity of Creole populations (mean number of alleles = 5.82 ± 1.14, observed heterozygosity = 0.585 ± 0.074) was moderate and slightly lower than what was detected in other studies with breeds from other regions. The Bayesian clustering analysis without prior information on source populations identified 22 breed clusters. Three groups comprised more than one population, namely from Brazil (Azul and Graúna; Moxotó and Repartida) and Argentina (Long and shorthair Chilluda, Pampeana Colorada and Angora-type goat). Substructure was found in Criolla Paraguaya. When prior information on sample origin was considered, 92% of the individuals were assigned to the source population (threshold q ≥ 0.700). Creole breeds are well-differentiated entities (mean coefficient of genetic differentiation = 0.111 ± 0.048, with the exception of isolated island populations). Dilution from admixture with commercial transboundary breeds appears to be negligible. Significant levels of inbreeding were detected (inbreeding coefficient > 0 in most Creole goat populations, P < 0.05). Our results provide a broad perspective on the extant genetic diversity of Creole goats, however further studies are needed to understand whether the observed geographical patterns of population structure may reflect the mode of goat colonization in the

  11. Genetic variation in westslope cutthroat trout Oncorhynchusclarkii lewisi: implications for conservation

    USGS Publications Warehouse

    Daniel P. Drinan,; Kalinowski, Steven T.; Vu, Ninh V.; Shepard, Bradley B.; Muhlfeld, Clint C.; Campbell, Matthew R.

    2011-01-01

    Twenty-five populations of westslope cutthroat trout from throughout their native range were genotyped at 20 microsatellite loci to describe the genetic structure of westslope cutthroat trout. The most genetic diversity (heterozygosity, allelic richness, and private alleles) existed in populations from the Snake River drainage, while populations from the Missouri River drainage had the least. Neighbor-joining trees grouped populations according to major river drainages. A great amount of genetic differentiation was present among and within all drainages. Based on Nei’s DS, populations in the Snake River were the most differentiated, while populations in the Missouri River were the least. This pattern of differentiation is consistent with a history of sequential founding events through which westslope cutthroat trout may have experienced a genetic bottleneck as they colonized each river basin from the Snake to the Clark Fork to the Missouri river. These data should serve as a starting point for a discussion on management units and possible distinct population segments. Given the current threats to the persistence of westslope cutthroat trout, and the substantial genetic differentiation between populations, these topics warrant attention.

  12. Isolation-by-distance in landscapes: considerations for landscape genetics

    PubMed Central

    van Strien, M J; Holderegger, R; Van Heck, H J

    2015-01-01

    In landscape genetics, isolation-by-distance (IBD) is regarded as a baseline pattern that is obtained without additional effects of landscape elements on gene flow. However, the configuration of suitable habitat patches determines deme topology, which in turn should affect rates of gene flow. IBD patterns can be characterized either by monotonically increasing pairwise genetic differentiation (for example, FST) with increasing interdeme geographic distance (case-I pattern) or by monotonically increasing pairwise genetic differentiation up to a certain geographical distance beyond which no correlation is detectable anymore (case-IV pattern). We investigated if landscape configuration influenced the rate at which a case-IV pattern changed to a case-I pattern. We also determined at what interdeme distance the highest correlation was measured between genetic differentiation and geographic distance and whether this distance corresponded to the maximum migration distance. We set up a population genetic simulation study and assessed the development of IBD patterns for several habitat configurations and maximum migration distances. We show that the rate and likelihood of the transition of case-IV to case-I FST–distance relationships was strongly influenced by habitat configuration and maximum migration distance. We also found that the maximum correlation between genetic differentiation and geographic distance was not related to the maximum migration distance and was measured across all deme pairs in a case-I pattern and, for a case-IV pattern, at the distance where the FST–distance curve flattens out. We argue that in landscape genetics, separate analyses should be performed to either assess IBD or the landscape effects on gene flow. PMID:25052412

  13. Transcription in space--environmental vs. genetic effects on differential immune gene expression.

    PubMed

    Lenz, Tobias L

    2015-09-01

    Understanding how organisms adapt to their local environment is one of the key goals in molecular ecology. Adaptation can be achieved through qualitative changes in the coding sequence and/or quantitative changes in gene expression, where the optimal dosage of a gene's product in a given environment is being selected for. Differences in gene expression among populations inhabiting distinct environments can be suggestive of locally adapted gene regulation and have thus been studied in different species (Whitehead & Crawford ; Hodgins-Davis & Townsend ). However, in contrast to a gene's coding sequence, its expression level at a given point in time may depend on various factors, including the current environment. Although critical for understanding the extent of local adaptation, it is usually difficult to disentangle the heritable differences in gene regulation from environmental effects. In this issue of Molecular Ecology, Stutz et al. () describe an experiment in which they reciprocally transplanted three-spined sticklebacks (Gasterosteus aculeatus) between independent pairs of small and large lakes. Their experimental design allows them to attribute differences in gene expression among sticklebacks either to lake of origin or destination lake. Interestingly, they find that translocated sticklebacks show a pattern of gene expression more similar to individuals from the destination lake than to individuals from the lake of origin, suggesting that expression of the targeted genes is more strongly regulated by environmental effects than by genetics. The environmental effect by itself is not entirely surprising; however, the relative extent of it is. Especially when put in the context of local adaptation and population differentiation, as done here, these findings cast a new light onto the heritability of differential gene expression and specifically its relative importance during population divergence and ultimately ecological speciation. © 2015 John Wiley & Sons

  14. Phylogeography and population genetic structure of double-crested cormorants (Phalacrocorax auritus)

    USGS Publications Warehouse

    Mercer, Dacey; Haig, Susan M.; Roby, Daniel D.

    2013-01-01

    is genetically divergent from other populations in North America (net sequence divergence = 5.85 %;UST for mitochondrial control region = 0.708; FST for microsatellite loci = 0.052). Historical records, contemporary population estimates, and field observations are consistent with recognition of the Alaskan subspecies as distinct and potentially of conservation interest. Our data also indicated the presence of another divergent lineage, associated with the southwestern portion of the species range, as evidenced by highly unique haplotypes sampled in southern California. In contrast, there was little support for recognition of subspecies within the conterminous U.S. and Canada. Rather than genetically distinct regions corresponding to the putative subspecies [P. a. albociliatus (Pacific), P. a. auritus (Interior and North Atlantic), and P. a. floridanus (Southeast)], we observed a distribution of genetic variation consistent with a pattern of isolation by distance. This pattern implies that genetic differences across the range are due to geographic distance, rather than discrete subspecific breaks. Although three of the four traditional subspecies were not genetically distinct, possible demographic separation, habitat differences, and documented declines at some colonies within the regions, suggests that the Pacific and possibly North Atlantic portions of the breeding range may warrant differential consideration from the Interior and Southeast breeding regions.

  15. Analysis of genetic diversity in Bolivian llama populations using microsatellites.

    PubMed

    Barreta, J; Gutiérrez-Gil, B; Iñiguez, V; Romero, F; Saavedra, V; Chiri, R; Rodríguez, T; Arranz, J J

    2013-08-01

    South American camelids (SACs) have a major role in the maintenance and potential future of rural Andean human populations. More than 60% of the 3.7 million llamas living worldwide are found in Bolivia. Due to the lack of studies focusing on genetic diversity in Bolivian llamas, this analysis investigates both the genetic diversity and structure of 12 regional groups of llamas that span the greater part of the range of distribution for this species in Bolivia. The analysis of 42 microsatellite markers in the considered regional groups showed that, in general, there were high levels of polymorphism (a total of 506 detected alleles; average PIC across per marker: 0.66), which are comparable with those reported for other populations of domestic SACs. The estimated diversity parameters indicated that there was high intrapopulational genetic variation (average number of alleles and average expected heterozygosity per marker: 12.04 and 0.68, respectively) and weak genetic differentiation among populations (FST range: 0.003-0.052). In agreement with these estimates, Bolivian llamas showed a weak genetic structure and an intense gene flow between all the studied regional groups, which is due to the exchange of reproductive males between the different flocks. Interestingly, the groups for which the largest pairwise FST estimates were observed, Sud Lípez and Nor Lípez, showed a certain level of genetic differentiation that is probably due to the pattern of geographic isolation and limited communication infrastructures of these southern localities. Overall, the population parameters reported here may serve as a reference when establishing conservation policies that address Bolivian llama populations. © 2012 Blackwell Verlag GmbH.

  16. Type 2 Diabetes Risk Alleles Demonstrate Extreme Directional Differentiation among Human Populations, Compared to Other Diseases

    PubMed Central

    Chen, Rong; Corona, Erik; Sikora, Martin; Dudley, Joel T.; Morgan, Alex A.; Moreno-Estrada, Andres; Nilsen, Geoffrey B.; Ruau, David; Lincoln, Stephen E.; Bustamante, Carlos D.; Butte, Atul J.

    2012-01-01

    Many disease-susceptible SNPs exhibit significant disparity in ancestral and derived allele frequencies across worldwide populations. While previous studies have examined population differentiation of alleles at specific SNPs, global ethnic patterns of ensembles of disease risk alleles across human diseases are unexamined. To examine these patterns, we manually curated ethnic disease association data from 5,065 papers on human genetic studies representing 1,495 diseases, recording the precise risk alleles and their measured population frequencies and estimated effect sizes. We systematically compared the population frequencies of cross-ethnic risk alleles for each disease across 1,397 individuals from 11 HapMap populations, 1,064 individuals from 53 HGDP populations, and 49 individuals with whole-genome sequences from 10 populations. Type 2 diabetes (T2D) demonstrated extreme directional differentiation of risk allele frequencies across human populations, compared with null distributions of European-frequency matched control genomic alleles and risk alleles for other diseases. Most T2D risk alleles share a consistent pattern of decreasing frequencies along human migration into East Asia. Furthermore, we show that these patterns contribute to disparities in predicted genetic risk across 1,397 HapMap individuals, T2D genetic risk being consistently higher for individuals in the African populations and lower in the Asian populations, irrespective of the ethnicity considered in the initial discovery of risk alleles. We observed a similar pattern in the distribution of T2D Genetic Risk Scores, which are associated with an increased risk of developing diabetes in the Diabetes Prevention Program cohort, for the same individuals. This disparity may be attributable to the promotion of energy storage and usage appropriate to environments and inconsistent energy intake. Our results indicate that the differential frequencies of T2D risk alleles may contribute to the observed

  17. Genetic documentation of filial cannibalism in nature

    PubMed Central

    DeWoody, J. Andrew; Fletcher, Dean E.; Wilkins, S. David; Avise, John C.

    2001-01-01

    Cannibalism is widespread in natural populations of fishes, where the stomachs of adults frequently contain conspecific juveniles. Furthermore, field observations suggest that guardian males routinely eat offspring from their own nests. However, recent genetic paternity analyses have shown that fish nests often contain embryos not sired by the nest-tending male (because of cuckoldry events, egg thievery, or nest piracy). Such findings, coupled with the fact that several fish species have known capabilities for distinguishing kin from nonkin, raise the possibility that cannibalism by guardian males is directed primarily or exclusively toward unrelated embryos in their nests. Here, we test this hypothesis by collecting freshly cannibalized embryos from the stomachs of several nest-tending darter and sunfish males in nature and determining their genetic parentage by using polymorphic microsatellite markers. Our molecular results clearly indicate that guardian males do indeed consume their own genetic offspring, even when unrelated (foster) embryos are present within the nest. These data provide genetic documentation of filial cannibalism in nature. Furthermore, they suggest that the phenomenon may result, at least in part, from an inability of guardians to differentiate between kin and nonkin within their own nests. PMID:11309508

  18. Spatiotemporal Dynamics of Genetic Variation in the Iberian Lynx along Its Path to Extinction Reconstructed with Ancient DNA

    PubMed Central

    Casas-Marce, Mireia; Marmesat, Elena; Soriano, Laura; Martínez-Cruz, Begoña; Lucena-Perez, Maria; Nocete, Francisco; Rodríguez-Hidalgo, Antonio; Canals, Antoni; Nadal, Jordi; Detry, Cleia; Bernáldez-Sánchez, Eloísa; Fernández-Rodríguez, Carlos; Pérez-Ripoll, Manuel; Stiller, Mathias; Hofreiter, Michael; Rodríguez, Alejandro; Revilla, Eloy; Delibes, Miguel; Godoy, José A.

    2017-01-01

    Abstract There is the tendency to assume that endangered species have been both genetically and demographically healthier in the past, so that any genetic erosion observed today was caused by their recent decline. The Iberian lynx (Lynx pardinus) suffered a dramatic and continuous decline during the 20th century, and now shows extremely low genome- and species-wide genetic diversity among other signs of genomic erosion. We analyze ancient (N = 10), historical (N = 245), and contemporary (N = 172) samples with microsatellite and mitogenome data to reconstruct the species' demography and investigate patterns of genetic variation across space and time. Iberian lynx populations transitioned from low but significantly higher genetic diversity than today and shallow geographical differentiation millennia ago, through a structured metapopulation with varying levels of diversity during the last centuries, to two extremely genetically depauperate and differentiated remnant populations by 2002. The historical subpopulations show varying extents of genetic drift in relation to their recent size and time in isolation, but these do not predict whether the populations persisted or went finally extinct. In conclusion, current genetic patterns were mainly shaped by genetic drift, supporting the current admixture of the two genetic pools and calling for a comprehensive genetic management of the ongoing conservation program. This study illustrates how a retrospective analysis of demographic and genetic patterns of endangered species can shed light onto their evolutionary history and this, in turn, can inform conservation actions. PMID:28962023

  19. Differential Experience of Siblings in the Same Family.

    ERIC Educational Resources Information Center

    Daniels, Denise; Plomin, Robert

    1985-01-01

    Used the Sibling Inventory of Differential Experience with 396 adolescent and young adult children to determine the extent to which genetic differences between siblings or sibling differences in family constellation variables were responsible for differential experiences. (HOD)

  20. Molecular population genetics of inversion breakpoint regions in Drosophila pseudoobscura.

    PubMed

    Wallace, Andre G; Detweiler, Don; Schaeffer, Stephen W

    2013-07-08

    Paracentric inversions in populations can have a profound effect on the pattern and organization of nucleotide variability along a chromosome. Regions near inversion breakpoints are expected to have greater levels of differentiation because of reduced genetic exchange between different gene arrangements whereas central regions in the inverted segments are predicted to have lower levels of nucleotide differentiation due to greater levels of genetic flux among different karyotypes. We used the inversion polymorphism on the third chromosome of Drosophila pseudoobscura to test these predictions with an analysis of nucleotide diversity of 18 genetic markers near and away from inversion breakpoints. We tested hypotheses about how the presence of different chromosomal arrangements affects the pattern and organization of nucleotide variation. Overall, markers in the distal segment of the chromosome had greater levels of nucleotide heterozygosity than markers within the proximal segment of the chromosome. In addition, our results rejected the hypothesis that the breakpoints of derived inversions will have lower levels of nucleotide variability than breakpoints of ancestral inversions, even when strains with gene conversion events were removed. High levels of linkage disequilibrium were observed within all 11 breakpoint regions as well as between the ends of most proximal and distal breakpoints. The central region of the chromosome had the greatest levels of linkage disequilibrium compared with the proximal and distal regions because this is the region that experiences the highest level of recombination suppression. These data do not fully support the idea that genetic exchange is the sole force that influences genetic variation on inverted chromosomes.

  1. Aphid specialization on different summer hosts is associated with strong genetic differentiation and unequal symbiont communities despite a common mating habitat.

    PubMed

    Vorburger, C; Herzog, J; Rouchet, R

    2017-04-01

    Specialization on different host plants can promote evolutionary diversification of herbivorous insects. Work on pea aphids (Acyrthosiphon pisum) has contributed significantly to the understanding of this process, demonstrating that populations associated with different host plants exhibit performance trade-offs across hosts, show adaptive host choice and genetic differentiation and possess different communities of bacterial endosymbionts. Populations specialized on different secondary host plants during the parthenogenetic summer generations are also described for the black bean aphid (Aphis fabae complex) and are usually treated as different (morphologically cryptic) subspecies. In contrast to pea aphids, however, host choice and mate choice are decoupled in black bean aphids, because populations from different summer hosts return to the same primary host plant to mate and lay overwintering eggs. This could counteract evolutionary divergence, and it is currently unknown to what extent black bean aphids using different summer hosts are indeed differentiated. We addressed this question by microsatellite genotyping and endosymbiont screening of black bean aphids collected in summer from the goosefoot Chenopodium album (subspecies A. f. fabae) and from thistles of the genus Cirsium (subspecies A. f. cirsiiacanthoides) across numerous sites in Switzerland and France. Our results show clearly that aphids from Cirsium and Chenopodium exhibit strong and geographically consistent genetic differentiation and that they differ in their frequencies of infection with particular endosymbionts. The dependence on a joint winter host has thus not prevented the evolutionary divergence into summer host-adapted populations that appear to have evolved mechanisms of reproductive isolation within a common mating habitat. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  2. Investigating the Genetic Diversity, Population Differentiation and Population Dynamics of Cycas segmentifida (Cycadaceae) Endemic to Southwest China by Multiple Molecular Markers

    PubMed Central

    Feng, Xiuyan; Liu, Jian; Chiang, Yu-Chung; Gong, Xun

    2017-01-01

    Climate change, species dispersal ability and habitat fragmentation are major factors influencing species distribution and genetic diversity, especially for the range-restricted and threatened taxa. Here, using four sequences of chloroplast DNAs (cpDNAs), three nuclear genes (nDNAs) and 12 nuclear microsatellites (SSRs), we investigated the genetic diversity, genetic structure, divergence time and population dynamics of Cycas segmentifida D. Y. Wang and C. Y. Deng, a threatened cycad species endemic to Southwest China. High levels of genetic diversity and genetic differentiation were revealed in C. segmentifida. Haplotypes of networks showed two evolutionary units in C. segmentifida, with the exception of the nuclear gene GTP network. Meanwhile, the UPGMA tree, structure and PCoA analyses suggested that 14 populations of C. segmentifida were divided into two clades. There was significant effect of isolation by distance (IBD) in this species. However, this species did not display a significant phylogeographic structure. The divergence time estimation suggested that its haplotypes diverged during the Middle Pleistocene. Additionally, the population dynamics inferred from different DNA sequences analyses were discordant. Bottleneck analysis showed that populations of C. segmentifida did not experience any recent bottleneck effect, but rather pointed to a contraction of its effective population size over time. Furthermore, our results suggested that the population BM which held an intact population structure and occupied undisturbed habitat was at the Hardy–Weinberg equilibrium, implying that this population is a free-mating system. These genetic features provide important information for the sustainable management of C. segmentifida. PMID:28580005

  3. Amphibian population genetics in agricultural landscapes: does viniculture drive the population structuring of the European common frog (Rana temporaria)?

    PubMed

    Lenhardt, Patrick P; Brühl, Carsten A; Leeb, Christoph; Theissinger, Kathrin

    2017-01-01

    genetic exchange and causing genetic differentiation of pond populations in agricultural areas. In viniculture, pesticides could be a driving factor for the observed genetic impoverishment, since pesticides are more frequently applied than any other management measure and can be highly toxic for terrestrial life stages of amphibians.

  4. Genetic characterization of Common Eiders breeding in the Yukon-Kuskokwim Delta, Alaska

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Talbot, Sandra L.; McCracken, Kevin G.

    2007-01-01

    We assessed population genetic subdivision among four colonies of Common Eiders (Somateria mollissima v-nigrum) breeding in the Yukon-Kuskokwim Delta (YKD), Alaska, using microsatellite genotypes and DNA sequences with differing modes of inheritance. Significant, albeit low, levels of genetic differentiation were observed between mainland populations and Kigigak Island for nuclear intron lamin A and mitochondrial DNA (mtDNA) control region. Intercolony variation in haplotypic frequencies also was observed at mtDNA. Positive growth signatures assayed from microsatellites, nuclear introns, and mtDNA indicate recent colonization of the YKD, and may explain the low levels of structuring observed. Gene flow estimates based on microsatellites, nuclear introns, and mtDNA suggest asymmetrical gene flow between mainland colonies and Kigigak Island, with more individuals on average dispersing from mainland populations to Kigigak Island than vice versa. The directionality of gene flow observed may be explained by the colonization of the YKD from northern glacial refugia or by YKD metapopulation dynamics.

  5. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum.

    PubMed

    Costantini, Federica; Carlesi, Lorenzo; Abbiati, Marco

    2013-01-01

    While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58-118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.

  6. Relevance of genetics for conservation policies: the case of Minorcan cork oaks

    PubMed Central

    Lorenzo, Zaida; Burgarella, Concetta; de Heredia, Unai López; Lumaret, Roselyne; Petit, Rémy J.; Soto, Álvaro; Gil, Luis

    2009-01-01

    Background and Aims Marginal populations of widely distributed species can be of high conservation interest when they hold a significant or unique portion of the genetic diversity of the species. However, such genetic information is frequently lacking. Here the relevance of genetic surveys to develop efficient conservation strategies for such populations is illustrated using cork oak (Quercus suber) from Minorca (Balearic Islands, Spain) as a case study. Cork oak is highly endangered on the island, where no more than 67 individuals live in small, isolated stands in siliceous sites. As a consequence, it was recently granted protected status. Methods Two Bayesian clustering approaches were used to analyse the genetic structure of the Minorcan population, on the basis of nuclear microsatellite data. The different groups within the island were also compared with additional island and continental populations surrounding Minorca. Key Results Very high genetic diversity was found, with values comparable with those observed in continental parts of the species' range. Furthermore, the Minorcan oak stands were highly differentiated from one another and were genetically related to different continental populations of France and Spain. Conclusions The high levels of genetic diversity and inter-stands differentiation make Minorcan cork oak eligible for specific conservation efforts. The relationship of Minorcan stands to different continental populations in France and Spain probably reflects multiple colonization events. However, discrepancy between chloroplast DNA- and nuclear DNA-based groups does not support a simple scenario of recent introduction. Gene exchanges between neighbouring cork oak stands and with holm oak have created specific and exceptional genetic combinations. They also constitute a wide range of potential genetic resources for research on adaptation to new environmental conditions. Conservation guidelines that take into account these findings are provided

  7. Genetic diversity in wild populations of Paulownia fortune.

    PubMed

    Li, H Y; Ru, G X; Zhang, J; Lu, Y Y

    2014-11-01

    The genetic diversities of 16 Paulownia fortunei populations involving 143 individuals collected from 6 provinces in China were analyzed using amplified fragment length polymorphism (AFLP). A total of 9 primer pairs with 1169 polymorphic loci were screened out, and each pair possessed 132 bands on average. The percentage of polymorphic bands (98.57%), the effective number of alleles (1.2138-1.2726), Nei's genetic diversity (0.1566-0.1887), and Shannon's information index (0.2692-0.3117) indicated a plentiful genetic diversity and different among Paulownia fortunei populations. The genetic differentiation coefficient between populations was 0.2386, while the gene flow was 1.0954, and the low gene exchange promoted genetic differentiation. Analysis of variance indicated that genetic variation mainly occurred within populations (81.62% of total variation) rather than among populations (18.38%). The 16 populations were divided by unweighted pair-group method with arithmetic means (UPGMA) into 4 groups with obvious regionalism, in which the populations with close geographical locations (latitude) were clustered together.

  8. Dynamics and heterogeneity of a fate determinant during transition towards cell differentiation

    DOE PAGES

    Pelaez, Nicolas; Gavalda-Miralles, Arnau; Wang, Bao; ...

    2015-11-19

    Yan is an ETS-domain transcription factor responsible for maintaining Drosophila eye cells in a multipotent state. Yan is at the core of a regulatory network that determines the time and place in which cells transit from multipotency to one of several differentiated lineages. Using a fluorescent reporter for Yan expression, we observed a biphasic distribution of Yan in multipotent cells, with a rapid inductive phase and slow decay phase. Transitions to various differentiated states occurred over the course of this dynamic process, suggesting that Yan expression level does not strongly determine cell potential. Consistent with this conclusion, perturbing Yan expressionmore » by varying gene dosage had no effect on cell fate transitions. However, we observed that as cells transited to differentiation, Yan expression became highly heterogeneous and this heterogeneity was transient. Signals received via the EGF Receptor were necessary for the transience in Yan noise since genetic loss caused sustained noise. As a result, since these signals are essential for eye cells to differentiate, we suggest that dynamic heterogeneity of Yan is a necessary element of the transition process, and cell states are stabilized through noise reduction.« less

  9. Genetic Analysis of Termite Colonies in Wisconsin.

    PubMed

    Arango, R A; Marschalek, D A; Green, F; Raffa, K F; Berres, M E

    2015-06-01

    The objective of this study was to document current areas of subterranean termite activity in Wisconsin and to evaluate genetic characteristics of these northern, peripheral colonies. Here, amplified fragment-length polymorphism was used to characterize levels of inbreeding, expected heterozygosity, and percent polymorphism within colonies as well as genetic structure among populations sampled. Genetic analysis revealed two species of termites occur in Wisconsin, Reticulitermes flavipes (Kollar) and Reticulitermes tibialis Banks, both found in the southern half of the state. Colonies of both species in Wisconsin are thought to represent the northern boundary of their current distributions. Measurements of within colony genetic variation showed the proportion of polymorphic loci to be between 52.9-63.9% and expected heterozygosity to range from 0.122-0.189. Consistent with geographical isolation, strong intercolony genetic differences were observed, with over 50% of FST values above 0.25 and the remaining showing moderate levels of genetic differentiation. Combined with low levels of inbreeding in most collection locations (FIS 0.042-0.123), we hypothesize termites were introduced numerous times in the state, likely by anthropogenic means. We discuss the potential effects of these genetic characteristics on successful colony establishment of termites along the northern boundary compared with termites in the core region of their distribution. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  10. Cell differentiation modeled via a coupled two-switch regulatory network

    NASA Astrophysics Data System (ADS)

    Schittler, D.; Hasenauer, J.; Allgöwer, F.; Waldherr, S.

    2010-12-01

    Mesenchymal stem cells can give rise to bone and other tissue cells, but their differentiation still escapes full control. In this paper we address this issue by mathematical modeling. We present a model for a genetic switch determining the cell fate of progenitor cells which can differentiate into osteoblasts (bone cells) or chondrocytes (cartilage cells). The model consists of two switch mechanisms and reproduces the experimentally observed three stable equilibrium states: a progenitor, an osteogenic, and a chondrogenic state. Conventionally, the loss of an intermediate (progenitor) state and the entailed attraction to one of two opposite (differentiated) states is modeled as a result of changing parameters. In our model in contrast, we achieve this by distributing the differentiation process to two functional switch parts acting in concert: one triggering differentiation and the other determining cell fate. Via stability and bifurcation analysis, we investigate the effects of biochemical stimuli associated with different system inputs. We employ our model to generate differentiation scenarios on the single cell as well as on the cell population level. The single cell scenarios allow to reconstruct the switching upon extrinsic signals, whereas the cell population scenarios provide a framework to identify the impact of intrinsic properties and the limiting factors for successful differentiation.

  11. Differential gene expression in the endometrium reveals cytoskeletal and immunological genes in lactating dairy cows genetically divergent for fertility traits.

    PubMed

    Moran, Bruce; Butler, Stephen T; Moore, Stephen G; MacHugh, David E; Creevey, Christopher J

    2017-02-01

    Profitable milk production in dairy cows requires good reproductive performance. Calving interval is a trait used to measure reproductive efficiency. Herein we used a novel lactating Holstein cow model of fertility that displayed genetic and phenotypic divergence in calving interval, a trait used to define reproductive performance using a national breeding index in Ireland. Cows had similar genetic merit for milk production traits, but either very good genetic merit for fertility (Fert+; n=7) or very poor genetic merit for fertility (Fert-; n=6). We tested the hypothesis that Fert+ cows would have a corresponding detectable difference in endometrial gene expression compared with the Fert- cows. To do this, we sequenced the transcriptome of endometrial biopsies collected on Day 7 of the oestrous cycle (non-pregnant). This is an important stage for uterine remodelling and initiation of histotroph secretion. Significant differential expression (false discovery rate-adjusted P<0.1) of 403 genes between Fert+ and Fert- cows was found. A novel network-based functional analysis highlighted 123 genes from three physiologically relevant networks of the endometrium: (1) actin and cytoskeletal components; (2) immune function; and (3) ion transportation. In particular, our results indicate an overall downregulation of inflammation-related genes and an upregulation of multiple ion transporters and gated-voltage channels and cytoskeletal genes in Fert+ cows. These three topics, which are discussed in terms of the uterus and in the context of fertility, provide molecular evidence for an association between gene expression in the uterine environment and genetic merit for fertility in dairy cows.

  12. The influence of life-history strategy on genetic differentiation and lineage divergence in darters (Percidae: Etheostomatinae).

    PubMed

    Fluker, Brook L; Kuhajda, Bernard R; Harris, Phillip M

    2014-11-01

    Recent studies determined that darters with specialized breeding strategies can exhibit deep lineage divergence over fine geographic scales without apparent physical barriers to gene flow. However, the extent to which intrinsic characteristics interact with extrinsic factors to influence population divergence and lineage diversification in darters is not well understood. This study employed comparative phylogeographic and population genetic methods to investigate the influence of life history on gene flow, dispersal ability, and lineage divergence in two sympatric sister darters with differing breeding strategies. Our results revealed highly disparate phylogeographic histories, patterns of genetic structure, and dispersal abilities between the two species suggesting that life history may contribute to lineage diversification in darters, especially by limiting dispersal among large river courses. Both species also showed striking differences in demographic history, indicating that extrinsic factors differentially affected each species during the Pleistocene. Collectively, our results indicate that intrinsic and extrinsic factors have influenced levels of gene flow among populations within both species examined. However, we suggest that life-history strategy may play a more important role in lineage diversification in darters than previously appreciated, a finding that has potentially important implications for understanding diversification of the rich North American freshwater fish fauna. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  13. Synthesis and assessment of date palm genetic diversity studies

    USDA-ARS?s Scientific Manuscript database

    A thorough assessment of genetic diversity and population differentiation of Phoenix dactylifera are critical for its dynamic conservation and sustainable utilization of its genetic diversity. Estimates of genetic diversity based on phenotypic, biochemical and molecular markers; and fruit quality tr...

  14. [Mitochondrial DNA genetic differentiation of the muksun Coregonus muksun (Pallas) and related Siberian species of Coregonus (Coredonidae, Salmoniformes)].

    PubMed

    Baldina, S N; Gordon, N Iu; Politov, D V

    2008-07-01

    Restriction enzyme analysis of the mitochondrial DNA (mtDNA) fragment encoding subunit 1 of the NADH dehydrogenase complex (ND-1) amplified via polymerase chain reaction (PCR) has been used to obtain data on genetic differentiation of muksun Coregonus muksun (Pallas) populations. Population polymorphism with respect to the restriction sites of 18 endonucleases has been described. It has been demonstrated that the muksun is genetically related to the pidschian C. pidschian (Gmelin), its sympatric species in Siberian waters. Analysis of the median network of mtDNA haplotypes has shown that haplotypes of muksun from various Siberian basins form a common group with haplotypes of pidschian of the Arctic Ocean basin, some frequent haplotypes been found in both forms. This raises the question as to the validity of the muksun as a species. Differences within this group of haplotypes are much smaller than those typical of species of the genus Coregonus. The possibility of a hybrid origin of the muksun from a pidschian-like ancestor and species of the cisco-peled (C. sardinella-C. peled) complex is discussed.

  15. Worldwide variation in hip fracture incidence weakly aligns with genetic divergence between populations.

    PubMed

    Wallace, I J; Botigué, L R; Lin, M; Smaers, J B; Henn, B M; Grine, F E

    2016-09-01

    This study investigates the influence of genetic differentiation in determining worldwide heterogeneity in osteoporosis-related hip fracture rates. The results indicate that global variation in fracture incidence exceeds that expected on the basis of random genetic variance. Worldwide, the incidence of osteoporotic hip fractures varies considerably. This variability is believed to relate mainly to non-genetic factors. It is conceivable, however, that genetic susceptibility indeed differs across populations. Here, we present the first quantitative assessment of the effects of genetic differentiation on global variability in hip fracture rates. We investigate the observed variance in publically reported age-standardized rates of hip fracture among 28 populations from around the world relative to the expected variance given the phylogenetic relatedness of these populations. The extent to which these variances are similar constitutes a "phylogenetic signal," which was measured using the K statistic. Population genetic divergence was calculated using a robust array of genome-wide single nucleotide polymorphisms. While phylogenetic signal is maximized when K > 1, a K value of only 0.103 was detected in the combined-sex fracture rate pattern across the 28 populations, indicating that fracture rates vary more than expected based on phylogenetic relationships. When fracture rates for the sexes were analyzed separately, the degree of phylogenetic signal was also found to be small (females: K = 0.102; males: K = 0.081). The lack of a strong phylogenetic signal underscores the importance of factors other than stochastic genetic diversity in shaping worldwide heterogeneity in hip fracture incidence.

  16. Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis.

    PubMed

    Tao, Wenjing; Chen, Jinlin; Tan, Dejie; Yang, Jing; Sun, Lina; Wei, Jing; Conte, Matthew A; Kocher, Thomas D; Wang, Deshou

    2018-05-15

    The factors determining sex in teleosts are diverse. Great efforts have been made to characterize the underlying genetic network in various species. However, only seven master sex-determining genes have been identified in teleosts. While the function of a few genes involved in sex determination and differentiation has been studied, we are far from fully understanding how genes interact to coordinate in this process. To enable systematic insights into fish sexual differentiation, we generated a dynamic co-expression network from tilapia gonadal transcriptomes at 5, 20, 30, 40, 90, and 180 dah (days after hatching), plus 45 and 90 dat (days after treatment) and linked gene expression profiles to both development and sexual differentiation. Transcriptomic profiles of female and male gonads at 5 and 20 dah exhibited high similarities except for a small number of genes that were involved in sex determination, while drastic changes were observed from 90 to 180 dah, with a group of differently expressed genes which were involved in gonadal differentiation and gametogenesis. Weighted gene correlation network analysis identified changes in the expression of Borealin, Gtsf1, tesk1, Zar1, Cdn15, and Rpl that were correlated with the expression of genes previously known to be involved in sex differentiation, such as Foxl2, Cyp19a1a, Gsdf, Dmrt1, and Amh. Global gonadal gene expression kinetics during sex determination and differentiation have been extensively profiled in tilapia. These findings provide insights into the genetic framework underlying sex determination and sexual differentiation, and expand our current understanding of developmental pathways during teleost sex determination.

  17. Oncogenic RAS Enables DNA Damage- and p53-Dependent Differentiation of Acute Myeloid Leukemia Cells in Response to Chemotherapy

    PubMed Central

    Meyer, Mona; Rübsamen, Daniela; Slany, Robert; Illmer, Thomas; Stabla, Kathleen; Roth, Petra; Stiewe, Thorsten

    2009-01-01

    Acute myeloid leukemia (AML) is a clonal disease originating from myeloid progenitor cells with a heterogeneous genetic background. High-dose cytarabine is used as the standard consolidation chemotherapy. Oncogenic RAS mutations are frequently observed in AML, and are associated with beneficial response to cytarabine. Why AML-patients with oncogenic RAS benefit most from high-dose cytarabine post-remission therapy is not well understood. Here we used bone marrow cells expressing a conditional MLL-ENL-ER oncogene to investigate the interaction of oncogenic RAS and chemotherapeutic agents. We show that oncogenic RAS synergizes with cytotoxic agents such as cytarabine in activation of DNA damage checkpoints, resulting in a p53-dependent genetic program that reduces clonogenicity and increases myeloid differentiation. Our data can explain the beneficial effects observed for AML patients with oncogenic RAS treated with higher dosages of cytarabine and suggest that induction of p53-dependent differentiation, e.g. by interfering with Mdm2-mediated degradation, may be a rational approach to increase cure rate in response to chemotherapy. The data also support the notion that the therapeutic success of cytotoxic drugs may depend on their ability to promote the differentiation of tumor-initiating cells. PMID:19890398

  18. Evaluation of Genetic Diversity, Population Structure, and Relationship Between Legendary Vechur Cattle and Crossbred Cattle of Kerala State, India.

    PubMed

    Radhika, G; Aravindakshan, T V; Jinty, S; Ramya, K

    2018-01-02

    The legendary Vechur cattle of Kerala, described as a very short breed, and the crossbred (CB) Sunandini cattle population exhibited great phenotypic variation; hence, the present study attempted to analyze the genetic diversity existing between them. A set of 14 polymorphic microsatellites were chosen from FAO-ISAG panel and amplified from genomic DNA isolated from blood samples of 30 Vechur and 64 unrelated crossbred cattle, using fluorescent labeled primers. Both populations revealed high genetic diversity as evidenced from high observed number of alleles, Polymorphic Information Content and expected heterozygosity. Observed heterozygosity was lesser (0.699) than expected (0.752) in Vechur population which was further supported by positive F IS value of 0.1149, indicating slight level of inbreeding in Vechur population. Overall, F ST value was 0.065, which means genetic differentiation between crossbred and Vechur population was 6.5%, indicating that the crossbred cattle must have differentiated into a definite population that is different from the indigenous Vechur cows. Structure analysis indicated that the two populations showed distinct differences, with two underlying clusters. The present study supports the separation between Taurine and Zebu cattle and throws light onto the genetic diversity and relationship between native Vechur and crossbred cattle populations in Kerala state.

  19. Desmoglein-1/Erbin interaction suppresses ERK activation to support epidermal differentiation

    PubMed Central

    Harmon, Robert M.; Simpson, Cory L.; Johnson, Jodi L.; Koetsier, Jennifer L.; Dubash, Adi D.; Najor, Nicole A.; Sarig, Ofer; Sprecher, Eli; Green, Kathleen J.

    2013-01-01

    Genetic disorders of the Ras/MAPK pathway, termed RASopathies, produce numerous abnormalities, including cutaneous keratodermas. The desmosomal cadherin, desmoglein-1 (DSG1), promotes keratinocyte differentiation by attenuating MAPK/ERK signaling and is linked to striate palmoplantar keratoderma (SPPK). This raises the possibility that cutaneous defects associated with SPPK and RASopathies share certain molecular faults. To identify intermediates responsible for executing the inhibition of ERK by DSG1, we conducted a yeast 2-hybrid screen. The screen revealed that Erbin (also known as ERBB2IP), a known ERK regulator, binds DSG1. Erbin silencing disrupted keratinocyte differentiation in culture, mimicking aspects of DSG1 deficiency. Furthermore, ERK inhibition and the induction of differentiation markers by DSG1 required both Erbin and DSG1 domains that participate in binding Erbin. Erbin blocks ERK signaling by interacting with and disrupting Ras-Raf scaffolds mediated by SHOC2, a protein genetically linked to the RASopathy, Noonan-like syndrome with loose anagen hair (NS/LAH). DSG1 overexpression enhanced this inhibitory function, increasing Erbin-SHOC2 interactions and decreasing Ras-SHOC2 interactions. Conversely, analysis of epidermis from DSG1-deficient patients with SPPK demonstrated increased Ras-SHOC2 colocalization and decreased Erbin-SHOC2 colocalization, offering a possible explanation for the observed epidermal defects. These findings suggest a mechanism by which DSG1 and Erbin cooperate to repress MAPK signaling and promote keratinocyte differentiation. PMID:23524970

  20. High temperatures reveal cryptic genetic variation in a polymorphic female sperm storage organ.

    PubMed

    Berger, David; Bauerfeind, Stephanie Sandra; Blanckenhorn, Wolf Ulrich; Schäfer, Martin Andreas

    2011-10-01

    Variation in female reproductive morphology may play a decisive role in reproductive isolation by affecting the relative fertilization success of alternative male phenotypes. Yet, knowledge of how environmental variation may influence the development of the female reproductive tract and thus alter the arena of postcopulatory sexual selection is limited. Yellow dung fly females possess either three or four sperm storage compartments, a polymorphism with documented influence on sperm precedence. We performed a quantitative genetics study including 12 populations reared at three developmental temperatures complemented by extensive field data to show that warm developmental temperatures increase the frequency of females with four compartments, revealing striking hidden genetic variation for the polymorphism. Systematic genetic differentiation in growth rate and spermathecal number along latitude, and phenotypic covariance between the traits across temperature treatments suggest that the genetic architecture underlying the polymorphism is shaped by selection on metabolic rate. Our findings illustrate how temperature can modulate the preconditions for sexual selection by differentially exposing novel variation in reproductive morphology. This implies that environmental change may substantially alter the dynamics of sexual selection. We further discuss how temperature-dependent developmental plasticity may have contributed to observed rapid evolutionary transitions in spermathecal morphology. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  1. Population Genetic Analysis of Theileria annulata from Six Geographical Regions in China, Determined on the Basis of Micro- and Mini-satellite Markers

    PubMed Central

    Yin, Fangyuan; Liu, Zhijie; Liu, Junlong; Liu, Aihong; Salih, Diaeldin A.; Li, Youquan; Liu, Guangyuan; Luo, Jianxun; Guan, Guiquan; Yin, Hong

    2018-01-01

    Theileria annulata, a tick-borne apicomplexan protozoan, causes a lymphoproliferative disease of cattle with high prevalence in tropical and sub-tropical regions. Understanding the genetic diversity and structure of local populations will provide more fundamental knowledge for the population genetics and epidemics of protozoa. In this study, 78 samples of T. annulata collected from cattle/yaks representing 6 different geographic populations in China were genotyped using eight micro- and mini-satellite markers. High genetic variation within population, moderate genetic differentiation, and high level of diversity co-occurring with significant linkage disequilibrium were observed, which indicates there is gene flow between these populations in spite of the existence of reproductive and geographical barriers among populations. Furthermore, some degree of genetic differentiation was also found between samples from China and Oman. These findings provide a first glimpse of the genetic diversity of the T. annulata populations in China, and might contribute to the knowledge of distribution, dynamics, and epidemiology of T. annulata populations and optimize the management strategies for control. PMID:29515624

  2. Genetic diversity and structure of a rare endemic cactus and an assessment of its genetic relationship with a more common congener.

    PubMed

    Rayamajhi, Niraj; Sharma, Jyotsna

    2018-06-01

    Endemic, obligate outcrossing plant species with narrow geographic distributions and disjunct populations are prone to loss of genetic diversity. Simultaneously, delineating clear species boundaries is important for targeted conservation efforts. The rare and endemic cactus, Sclerocactus brevihamatus subsp. tobuschii (SBT), has a parapatric relationship with Sclerocactus brevihamatus subsp. brevihamatus (SBB) but genetic distance between the two taxa is unknown. We: (1) developed taxon-specific polymorphic microsatellites, (2) assessed genetic diversity within and among nine populations of SBT, and within one population of SBB, and (3) estimated the genetic relationship between the two subspecies. Within-population genetic diversity of SBT was moderate to high (mean H o  = 0.37; mean H e  = 0.59). Indirect estimate of inbreeding corrected for null alleles (F is-INEst ) was low for SBT, ranging from 0.03 to 0.14 (mean F is-INEst  = 0.07). Genetic differentiation among populations of SBT was low based on F st (0.08) and AMOVA (Ф PT  = 0.10). Lack of genetic and spatial correlation in SBT populations coupled with the presence of private alleles and bottleneck events in several populations suggests that reproductive isolation is occurring but that sufficient time may not have yet passed to manifest strong differentiation. Cluster analyses segregated the 10 populations into three distinct groups, and separated SBB genotypes clearly. Results suggest that while hybridization between the two subspecies may occur, SBT is clearly differentiated genetically from SBB to retain its current taxonomic status.

  3. Genetic consequences of trumpeter swan (Cygnus buccinator) reintroductions

    USGS Publications Warehouse

    Ransler, F.A.; Quinn, T.W.; Oyler-McCance, S.J.

    2011-01-01

    Relocation programs are often initiated to restore threatened species to previously occupied portions of their range. A primary challenge of restoration efforts is to translocate individuals in a way that prevents loss of genetic diversity and decreases differentiation relative to source populations-a challenge that becomes increasingly difficult when remnant populations of the species are already genetically depauperate. Trumpeter swans were previously extirpated in the entire eastern half of their range. Physical translocations of birds over the last 70 years have restored the species to portions of its historical range. Despite the long history of management, there has been little monitoring of the genetic outcomes of these restoration attempts. We assessed the consequences of this reintroduction program by comparing patterns of genetic variation at 17 microsatellite loci across four restoration flocks (three wild-released, one captive) and their source populations. We found that a wild-released population established from a single source displayed a trend toward reduced genetic diversity relative to and significant genetic differentiation from its source population, though small founder population effects may also explain this pattern. Wild-released flocks restored from multiple populations maintained source levels of genetic variation and lacked significant differentiation from at least one of their sources. Further, the flock originating from a single source revealed significantly lower levels of genetic variation than those established from multiple sources. The distribution of genetic variation in the captive flock was similar to its source. While the case of trumpeter swans provides evidence that restorations from multiple versus single source populations may better preserve natural levels of genetic diversity, more studies are needed to understand the general applicability of this management strategy. ?? 2010 Springer Science+Business Media B.V. (outside

  4. Differential pleiotropy and HOX functional organization.

    PubMed

    Sivanantharajah, Lovesha; Percival-Smith, Anthony

    2015-02-01

    Key studies led to the idea that transcription factors are composed of defined modular protein motifs or domains, each with separable, unique function. During evolution, the recombination of these modular domains could give rise to transcription factors with new properties, as has been shown using recombinant molecules. This archetypic, modular view of transcription factor organization is based on the analyses of a few transcription factors such as GAL4, which may represent extreme exemplars rather than an archetype or the norm. Recent work with a set of Homeotic selector (HOX) proteins has revealed differential pleiotropy: the observation that highly-conserved HOX protein motifs and domains make small, additive, tissue specific contributions to HOX activity. Many of these differentially pleiotropic HOX motifs may represent plastic sequence elements called short linear motifs (SLiMs). The coupling of differential pleiotropy with SLiMs, suggests that protein sequence changes in HOX transcription factors may have had a greater impact on morphological diversity during evolution than previously believed. Furthermore, differential pleiotropy may be the genetic consequence of an ensemble nature of HOX transcription factor allostery, where HOX proteins exist as an ensemble of states with the capacity to integrate an extensive array of developmental information. Given a new structural model for HOX functional domain organization, the properties of the archetypic TF may require reassessment. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats

    PubMed Central

    Wilson, David M.; Brasser, Susan M.

    2011-01-01

    In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S1) or relatively low (S0) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S1 neurons that were larger than those in S0 cells. Although responses to ethanol by S1 cells did not differ between lines, neuronal firing rates to ethanol in S0 cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol. PMID:21918002

  6. Differential neural representation of oral ethanol by central taste-sensitive neurons in ethanol-preferring and genetically heterogeneous rats.

    PubMed

    Lemon, Christian H; Wilson, David M; Brasser, Susan M

    2011-12-01

    In randomly bred rats, orally applied ethanol stimulates neural substrates for appetitive sweet taste. To study associations between ethanol's oral sensory characteristics and genetically mediated ethanol preference, we made electrophysiological recordings of oral responses (spike density) by taste-sensitive nucleus tractus solitarii neurons in anesthetized selectively bred ethanol-preferring (P) rats and their genetically heterogeneous Wistar (W) control strain. Stimuli (25 total) included ethanol [3%, 5%, 10%, 15%, 25%, and 40% (vol/vol)], a sucrose series (0.01, 0.03, 0.1, 0.3, 0.5, and 1 M), and other sweet, salt, acidic, and bitter stimuli; 50 P and 39 W neurons were sampled. k-means clustering applied to the sucrose response series identified cells showing high (S(1)) or relatively low (S(0)) sensitivity to sucrose. A three-way factorial analysis revealed that activity to ethanol was influenced by a neuron's sensitivity to sucrose, ethanol concentration, and rat line (P = 0.01). Ethanol produced concentration-dependent responses in S(1) neurons that were larger than those in S(0) cells. Although responses to ethanol by S(1) cells did not differ between lines, neuronal firing rates to ethanol in S(0) cells increased across concentration only in P rats. Correlation and multivariate analyses revealed that ethanol evoked responses in W neurons that were strongly and selectively associated with activity to sweet stimuli, whereas responses to ethanol by P neurons were not easily associated with activity to representative sweet, sodium salt, acidic, or bitter stimuli. These findings show differential central neural representation of oral ethanol between genetically heterogeneous rats and P rats genetically selected to prefer alcohol.

  7. Population genetic structure and genetic diversity of Chinese pomfret at the coast of the East China Sea and the South China Sea.

    PubMed

    Sun, Peng; Tang, Baojun; Yin, Fei

    2018-05-01

    The Chinese pomfret Pampus chinensis is one of the most economic and ecological important marine fish species in China. In the present study, the population genetic structure and genetic diversity of P. chinensis were evaluated from a total sample size of 180 individuals representing six populations from the East China Sea and the South China Sea using mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 24 variable sites (including 3 singleton sites and 21 parsimony information sites) were observed, and 18 haplotypes were defined. The haplotype diversity (Hd) of the populations ranged from 0.559 to 0.775, and the nucleotide diversity (π) ranged from 0.330 to 1.090%. Analysis of molecular variance (AMOVA) reveals that the main variation (66.02%) was among individuals within populations. The average pairwise differences and ϕ ST values indicated significant genetic differentiation between Dongxing population and the other populations. The results of the present study are helpful for the sustainable management and utilization of this species.

  8. Genetic differentiation and selection against migrants in evolutionarily replicated extreme environments.

    PubMed

    Plath, Martin; Pfenninger, Markus; Lerp, Hannes; Riesch, Rüdiger; Eschenbrenner, Christoph; Slattery, Patrick A; Bierbach, David; Herrmann, Nina; Schulte, Matthias; Arias-Rodriguez, Lenin; Rimber Indy, Jeane; Passow, Courtney; Tobler, Michael

    2013-09-01

    We investigated mechanisms of reproductive isolation in livebearing fishes (genus Poecilia) inhabiting sulfidic and nonsulfidic habitats in three replicate river drainages. Although sulfide spring fish convergently evolved divergent phenotypes, it was unclear if mechanisms of reproductive isolation also evolved convergently. Using microsatellites, we found strongly reduced gene flow between adjacent populations from different habitat types, suggesting that local adaptation to sulfidic habitats repeatedly caused the emergence of reproductive isolation. Reciprocal translocation experiments indicate strong selection against immigrants into sulfidic waters, but also variation among drainages in the strength of selection against immigrants into nonsulfidic waters. Mate choice experiments revealed the evolution of assortative mating preferences in females from nonsulfidic but not from sulfidic habitats. The inferred strength of sexual selection against immigrants (RI(s)) was negatively correlated with the strength of natural selection (RI(m)), a pattern that could be attributed to reinforcement, whereby natural selection strengthens behavioral isolation due to reduced hybrid fitness. Overall, reproductive isolation and genetic differentiation appear to be replicated and direct consequences of local adaptation to sulfide spring environments, but the relative contributions of different mechanisms of reproductive isolation vary across these evolutionarily independent replicates, highlighting both convergent and nonconvergent evolutionary trajectories of populations in each drainage. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  9. Observational and Genetic Associations of Resting Heart Rate With Aortic Valve Calcium.

    PubMed

    Whelton, Seamus P; Mauer, Andreas C; Pencina, Karol M; Massaro, Joseph M; D'Agostino, Ralph B; Fox, Caroline S; Hoffmann, Udo; Michos, Erin D; Peloso, Gina M; Dufresne, Line; Engert, James C; Kathiresan, Sekar; Budoff, Matthew; Post, Wendy S; Thanassoulis, George; O'Donnell, Christopher J

    2018-05-15

    It is unknown if lifelong exposure to increased hemodynamic stress from an elevated resting heart rate (HR) may contribute to aortic valve calcium (AVC). We performed multivariate regression analyses using data from 1,266 Framingham Heart Study (FHS) Offspring cohort participants and 6,764 Multi-Ethnic Study of Atherosclerosis (MESA) participants. We constructed a genetic risk score (GRS) for HR using summary-level data in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) AVC Consortium to investigate if there was evidence in favor of a causal relation. AVC was present in 39% of FHS Offspring cohort participants and in 13% of MESA cohort participants. In multivariate adjusted models, participants in the highest resting HR quartiles had significantly greater prevalence of AVC, with a prevalence ratio of 1.19 (95% confidence interval [CI] 0.99 to 1.44) for the FHS Offspring cohort and 1.32 (95% CI 1.12 to 1.63) for the MESA cohort, compared with those in the lowest quartile. There was a similar increase in the prevalence of AVC per standard deviation increase in resting HR in both FHS Offspring (prevalence ratio 1.08, 95% CI 1.01 to 1.15) and MESA (1.10, 95% CI 1.03 to 1.17). In contrast with these observational findings, a HR associated GRS was not significantly associated with AVC. Although our observational analysis indicates that a higher resting HR is associated with AVC, our genetic results do not support a causal relation. Unmeasured environmental and/or lifestyle factors associated with both increased resting HR and AVC that are not fully explained by covariates in our observational models may account for the association between resting HR and AVC. Copyright © 2018. Published by Elsevier Inc.

  10. FINE-SCALE GENETIC DIFFERENTIATION BETWEEN CONTAMINANT-TOLERANT AND CONTAMINANT SENSITIVE FISH POPULATIONS

    EPA Science Inventory

    Studies have suggested that environmental contaminants can act as selective forces on exposed populations of wildlife species. Chronically exposed populations have shown reduced genetic diversity and/or demonstrated other genetic changes. We evaluated the genetic structure of pop...

  11. Genetic diversity of Brazilian natural populations of Anthonomus grandis Boheman (Coleoptera: Curculionidae), the major cotton pest in the New World.

    PubMed

    Martins, W F S; Ayres, C F J; Lucena, W A

    2007-01-27

    Twenty-five RAPD loci and 6 isozyme loci were studied to characterize the genetic variability of natural populations of Anthonomus grandis from two agroecosystems of Brazil. The random-amplified polymorphic DNA data disclosed a polymorphism that varied from 52 to 84% and a heterozygosity of 0.189 to 0.347. The index of genetic differentiation (GST) among the six populations was 0.258. The analysis of isozymes showed a polymorphism and a heterozygosity ranging from 25 to 100% and 0.174 to 0.277, respectively. The genetic differentiation (FST) among the populations obtained by isozyme data was 0.544. It was possible to observe rare alleles in the populations from the Northeast region. The markers examined allowed us to distinguish populations from large-scale, intensive farming region (cotton belts) versus populations from areas of small-scale farming

  12. Diversity and distribution of genetic variation in gammarids: Comparing patterns between invasive and non-invasive species.

    PubMed

    Baltazar-Soares, Miguel; Paiva, Filipa; Chen, Yiyong; Zhan, Aibin; Briski, Elizabeta

    2017-10-01

    Biological invasions are worldwide phenomena that have reached alarming levels among aquatic species. There are key challenges to understand the factors behind invasion propensity of non-native populations in invasion biology. Interestingly, interpretations cannot be expanded to higher taxonomic levels due to the fact that in the same genus, there are species that are notorious invaders and those that never spread outside their native range. Such variation in invasion propensity offers the possibility to explore, at fine-scale taxonomic level, the existence of specific characteristics that might predict the variability in invasion success. In this work, we explored this possibility from a molecular perspective. The objective was to provide a better understanding of the genetic diversity distribution in the native range of species that exhibit contrasting invasive propensities. For this purpose, we used a total of 784 sequences of the cytochrome c oxidase subunit I of mitochondrial DNA (mtDNA-COI) collected from seven Gammaroidea, a superfamily of Amphipoda that includes species that are both successful invaders ( Gammarus tigrinus , Pontogammarus maeoticus, and Obesogammarus crassus ) and strictly restricted to their native regions ( Gammarus locusta , Gammarus salinus , Gammarus zaddachi, and Gammarus oceanicus ). Despite that genetic diversity did not differ between invasive and non-invasive species, we observed that populations of non-invasive species showed a higher degree of genetic differentiation. Furthermore, we found that both geographic and evolutionary distances might explain genetic differentiation in both non-native and native ranges. This suggests that the lack of population genetic structure may facilitate the distribution of mutations that despite arising in the native range may be beneficial in invasive ranges. The fact that evolutionary distances explained genetic differentiation more often than geographic distances points toward that deep lineage

  13. Lack of congruence between morphometric evolution and genetic differentiation suggests a recent dispersal and local habitat adaptation of the Madeiran lizard Lacerta dugesii

    PubMed Central

    Brehm, António; Khadem, Mahnaz; Jesus, José; Andrade, Paula; Vicente, Luis

    2001-01-01

    Genetic differentiation among nine populations of the endemic lizard Lacerta dugesii Milne-Edwards 1829 (Lacertidae) from four groups of islands constituting the Archipelago of Madeira, was investigated by protein electrophoresis at 23 enzyme loci. Among twenty polymorphic loci, the total genetic diversity was due primarily to intra-population variation. The allele and genotypic frequencies among populations showed some heterogeneity, allowing the species to present a structuring pattern compatible with their geographical clustering. Some evidence suggests that selection acting on some loci in different ecological conditions may be responsible for the clustering of the populations studied. There was no apparent isolation effect expected under an "island" model of population divergence, and no correlation was found between genetic and geographic distances among populations. Morphological variation of the proposed three L. dugesii subspecies is not congruent with the allozyme analysis. This most probably suggests a rapid colonization of the islands followed by a strong effect of selection operating over the morphological characters used to define the subspecies. PMID:11742635

  14. Climate variables explain neutral and adaptive variation within salmonid metapopulations: The importance of replication in landscape genetics

    USGS Publications Warehouse

    Hand, Brian K.; Muhlfeld, Clint C.; Wade, Alisa A.; Kovach, Ryan; Whited, Diane C.; Narum, Shawn R.; Matala, Andrew P.; Ackerman, Michael W.; Garner, B. A.; Kimball, John S; Stanford, Jack A.; Luikart, Gordon

    2016-01-01

    Understanding how environmental variation influences population genetic structure is important for conservation management because it can reveal how human stressors influence population connectivity, genetic diversity and persistence. We used riverscape genetics modelling to assess whether climatic and habitat variables were related to neutral and adaptive patterns of genetic differentiation (population-specific and pairwise FST) within five metapopulations (79 populations, 4583 individuals) of steelhead trout (Oncorhynchus mykiss) in the Columbia River Basin, USA. Using 151 putatively neutral and 29 candidate adaptive SNP loci, we found that climate-related variables (winter precipitation, summer maximum temperature, winter highest 5% flow events and summer mean flow) best explained neutral and adaptive patterns of genetic differentiation within metapopulations, suggesting that climatic variation likely influences both demography (neutral variation) and local adaptation (adaptive variation). However, we did not observe consistent relationships between climate variables and FST across all metapopulations, underscoring the need for replication when extrapolating results from one scale to another (e.g. basin-wide to the metapopulation scale). Sensitivity analysis (leave-one-population-out) revealed consistent relationships between climate variables and FST within three metapopulations; however, these patterns were not consistent in two metapopulations likely due to small sample sizes (N = 10). These results provide correlative evidence that climatic variation has shaped the genetic structure of steelhead populations and highlight the need for replication and sensitivity analyses in land and riverscape genetics.

  15. Robustly detecting differential expression in RNA sequencing data using observation weights

    PubMed Central

    Zhou, Xiaobei; Lindsay, Helen; Robinson, Mark D.

    2014-01-01

    A popular approach for comparing gene expression levels between (replicated) conditions of RNA sequencing data relies on counting reads that map to features of interest. Within such count-based methods, many flexible and advanced statistical approaches now exist and offer the ability to adjust for covariates (e.g. batch effects). Often, these methods include some sort of ‘sharing of information’ across features to improve inferences in small samples. It is important to achieve an appropriate tradeoff between statistical power and protection against outliers. Here, we study the robustness of existing approaches for count-based differential expression analysis and propose a new strategy based on observation weights that can be used within existing frameworks. The results suggest that outliers can have a global effect on differential analyses. We demonstrate the effectiveness of our new approach with real data and simulated data that reflects properties of real datasets (e.g. dispersion-mean trend) and develop an extensible framework for comprehensive testing of current and future methods. In addition, we explore the origin of such outliers, in some cases highlighting additional biological or technical factors within the experiment. Further details can be downloaded from the project website: http://imlspenticton.uzh.ch/robinson_lab/edgeR_robust/. PMID:24753412

  16. Analysis of the Genetic Basis of Disease in the Context of Worldwide Human Relationships and Migration

    PubMed Central

    Corona, Erik; Chen, Rong; Sikora, Martin; Morgan, Alexander A.; Patel, Chirag J.; Ramesh, Aditya; Bustamante, Carlos D.; Butte, Atul J.

    2013-01-01

    Genetic diversity across different human populations can enhance understanding of the genetic basis of disease. We calculated the genetic risk of 102 diseases in 1,043 unrelated individuals across 51 populations of the Human Genome Diversity Panel. We found that genetic risk for type 2 diabetes and pancreatic cancer decreased as humans migrated toward East Asia. In addition, biliary liver cirrhosis, alopecia areata, bladder cancer, inflammatory bowel disease, membranous nephropathy, systemic lupus erythematosus, systemic sclerosis, ulcerative colitis, and vitiligo have undergone genetic risk differentiation. This analysis represents a large-scale attempt to characterize genetic risk differentiation in the context of migration. We anticipate that our findings will enable detailed analysis pertaining to the driving forces behind genetic risk differentiation. PMID:23717210

  17. Genetic drift and the population history of the Irish travellers.

    PubMed

    Relethford, John H; Crawford, Michael H

    2013-02-01

    The Irish Travellers are an itinerant group in Ireland that has been socially isolated. Two hypotheses have been proposed concerning the genetic origin of the Travellers: (1) they are genetically related to Roma populations in Europe that share a nomadic lifestyle or (2) they are of Irish origin, and genetic differences from the rest of Ireland reflect genetic drift. These hypotheses were tested using data on 33 alleles from 12 red blood cell polymorphism loci. Comparison with other European, Roma, and Indian populations shows that the Travellers are genetically distinct from the Roma and Indian populations and most genetically similar to Ireland, in agreement with earlier genetic analyses of the Travellers. However, the Travellers are still genetically distinct from other Irish populations, which could reflect some external gene flow and/or the action of genetic drift in a small group that was descended from a small number of founders. In order to test the drift hypothesis, we analyzed genetic distances comparing the Travellers to four geographic regions in Ireland. These distances were then compared with adjusted distances that account for differential genetic drift using a method developed by Relethford (Hum Biol 68 (1996) 29-44). The unadjusted distances show the genetic distinctiveness of the Travellers. After adjustment for the expected effects of genetic drift, the Travellers are equidistant from the other Irish samples, showing their Irish origins and population history. The observed genetic differences are thus a reflection of genetic drift, and there is no evidence of any external gene flow. Copyright © 2012 Wiley Periodicals, Inc.

  18. Population genetic structure of Attalea vitrivir Zona (Arecaceae) in fragmented areas of southeast Brazil.

    PubMed

    Santos, R R M; Cavallari, M M; Pimenta, M A S; Abreu, A G; Costa, M R; Guedes, M L

    2015-06-11

    Attalea vitrivir Zona (synonym Orbignya oleifera) is one of the six species of Arecaceae known as "babassu". This species is used to make cosmetics, food, and detergents due to the high concentration of oil in the seeds. It is found only in fragmented areas of southern Bahia State and northern Minas Gerais State, southeast Brazil, and this fragmentation has affected both its ecological and genetic characteristics. We evaluated the genetic diversity and population genetic structure of A. vitrivir in six areas of two different regions at the extremes of its geographical range, in order to gain a better understanding of the factors that affect the distribution and partitioning of its diversity. Nine inter simple sequence repeat (ISSR) markers amplified 74 polymorphic bands, resulting in large diversity values (Shannon diversity index, 0.37-0.47; intrapopulation genetic diversity, 0.25-0.34). Analysis of molecular variance (AMOVA) revealed considerable differentiation between sampling sites (30.03%) and regions (12.08%), although most of the diversity was observed within sampling sites (69%). Further differentiation between sampling sites was noted more in the northern region than in the southern region, highlighting the genetic connectivity between the sampling sites within Rio Pandeiros Environmental Protection Area (southern region). The identification of two distinct genetic clusters (K = 2) corresponded to the northern and southern regions, and corroborated the AMOVA results. We suggest that the northern area, outside Rio Pandeiros Environmental Protection Area, must be included in future management plans for this species.

  19. Evolution of the Transmission-Blocking Vaccine Candidates Pvs28 and Pvs25 in Plasmodium vivax: Geographic Differentiation and Evidence of Positive Selection

    PubMed Central

    Cornejo, Omar E.; Durrego, Ester; Stanley, Craig E.; Castillo, Andreína I.; Herrera, Sócrates; Escalante, Ananias A.

    2016-01-01

    Transmission-blocking (TB) vaccines are considered an important tool for malaria control and elimination. Among all the antigens characterized as TB vaccines against Plasmodium vivax, the ookinete surface proteins Pvs28 and Pvs25 are leading candidates. These proteins likely originated by a gene duplication event that took place before the radiation of the known Plasmodium species to primates. We report an evolutionary genetic analysis of a worldwide sample of pvs28 and pvs25 alleles. Our results show that both genes display low levels of genetic polymorphism when compared to the merozoite surface antigens AMA-1 and MSP-1; however, both ookinete antigens can be as polymorphic as other merozoite antigens such as MSP-8 and MSP-10. We found that parasite populations in Asia and the Americas are geographically differentiated with comparable levels of genetic diversity and specific amino acid replacements found only in the Americas. Furthermore, the observed variation was mainly accumulated in the EGF2- and EGF3-like domains for P. vivax in both proteins. This pattern was shared by other closely related non-human primate parasites such as Plasmodium cynomolgi, suggesting that it could be functionally important. In addition, examination with a suite of evolutionary genetic analyses indicated that the observed patterns are consistent with positive natural selection acting on Pvs28 and Pvs25 polymorphisms. The geographic pattern of genetic differentiation and the evidence for positive selection strongly suggest that the functional consequences of the observed polymorphism should be evaluated during development of TBVs that include Pvs25 and Pvs28. PMID:27347876

  20. Genetic Diversity and Differentiation in Urban and Indigenous Populations of Mexico: Patterns of Mitochondrial DNA and Y-Chromosome Lineages.

    PubMed

    González-Sobrino, Blanca Z; Pintado-Cortina, Ana P; Sebastián-Medina, Leticia; Morales-Mandujano, Fabiola; Contreras, Alejandra V; Aguilar, Yasnaya E; Chávez-Benavides, Juan; Carrillo-Rodríguez, Aurelio; Silva-Zolezzi, Irma; Medrano-González, Luis

    2016-01-01

    Aside from the admixture between indigenous people and people from overseas, populations in Mexico changed drastically after the Spanish conquest of the sixteenth century, forming an intricate history that has been underutilized in understanding the genetic population structure of Mexicans. To infer historical processes of isolation, dispersal, and assimilation, we examined the phylogeography of mitochondrial (mt) DNA and Y-chromosome lineages in 3,026 individuals from 10 urban and nine indigenous populations by identifying single nucleotide polymorphisms. A geographic array with a predominance of Amerindian lineages was observed for mtDNA, with northern indigenous populations being divergent from the central and southern indigenous populations; urban populations showed low differentiation with isolation by distance. Y-chromosome variation distinguished urban and indigenous populations through the Amerindian haplogroup Q frequency. The MtDNA and the Y-chromosome together primarily distinguished urban and indigenous populations, with different geographic arrays for both. Gene flow across geographical distance and between the urban and indigenous realms appears to have altered the pre-Hispanic phylogeography in central and southern Mexico, mainly by displacement of women, while maintaining the indigenous isolation in the north, southeast, and Zapotec regions. Most Amerindian mtDNA diversity currently occurs in urban populations and appears to be reduced among indigenous people.

  1. Population connectivity and genetic structure of burbot (Lota lota) populations in the Wind River Basin, Wyoming

    USGS Publications Warehouse

    Underwood, Zachary E.; Mandeville, Elizabeth G.; Walters, Annika W.

    2016-01-01

    Burbot (Lota lota) occur in the Wind River Basin in central Wyoming, USA, at the southwestern extreme of the species’ native range in North America. The most stable and successful of these populations occur in six glacially carved mountain lakes on three different tributary streams and one large main stem impoundment (Boysen Reservoir) downstream from the tributary populations. Burbot are rarely found in connecting streams and rivers, which are relatively small and high gradient, with a variety of potential barriers to upstream movement of fish. We used high-throughput genomic sequence data for 11,197 SNPs to characterize the genetic diversity, population structure, and connectivity among burbot populations on the Wind River system. Fish from Boysen Reservoir and lower basin tributary populations were genetically differentiated from those in the upper basin tributary populations. In addition, fish within the same tributary streams fell within the same genetic clusters, suggesting there is movement of fish between lakes on the same tributaries but that populations within each tributary system are isolated and genetically distinct from other populations. Observed genetic differentiation corresponded to natural and anthropogenic barriers, highlighting the importance of barriers to fish population connectivity and gene flow in human-altered linked lake-stream habitats.

  2. Observation of negative differential capacitance (NDC) in Ti Schottky diodes on SiGe islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangel-Kuoppa, Victor-Tapio; Jantsch, Wolfgang; Tonkikh, Alexander

    2013-12-04

    The Negative Differential Capacitance (NDC) effect on Ti Schottky diodes formed on n-type Silicon samples with embedded Germanium Quantum Dots (QDs) is observed and reported. The NDC-effect is detected using capacitance-voltage (CV) method at temperatures below 200 K. It is explained by the capture of electrons in Germanium QDs. Our measurements reveal that each Ge QD captures in average eight electrons.

  3. Spatiotemporal Dynamics of Genetic Variation in the Iberian Lynx along Its Path to Extinction Reconstructed with Ancient DNA.

    PubMed

    Casas-Marce, Mireia; Marmesat, Elena; Soriano, Laura; Martínez-Cruz, Begoña; Lucena-Perez, Maria; Nocete, Francisco; Rodríguez-Hidalgo, Antonio; Canals, Antoni; Nadal, Jordi; Detry, Cleia; Bernáldez-Sánchez, Eloísa; Fernández-Rodríguez, Carlos; Pérez-Ripoll, Manuel; Stiller, Mathias; Hofreiter, Michael; Rodríguez, Alejandro; Revilla, Eloy; Delibes, Miguel; Godoy, José A

    2017-11-01

    There is the tendency to assume that endangered species have been both genetically and demographically healthier in the past, so that any genetic erosion observed today was caused by their recent decline. The Iberian lynx (Lynx pardinus) suffered a dramatic and continuous decline during the 20th century, and now shows extremely low genome- and species-wide genetic diversity among other signs of genomic erosion. We analyze ancient (N = 10), historical (N = 245), and contemporary (N = 172) samples with microsatellite and mitogenome data to reconstruct the species' demography and investigate patterns of genetic variation across space and time. Iberian lynx populations transitioned from low but significantly higher genetic diversity than today and shallow geographical differentiation millennia ago, through a structured metapopulation with varying levels of diversity during the last centuries, to two extremely genetically depauperate and differentiated remnant populations by 2002. The historical subpopulations show varying extents of genetic drift in relation to their recent size and time in isolation, but these do not predict whether the populations persisted or went finally extinct. In conclusion, current genetic patterns were mainly shaped by genetic drift, supporting the current admixture of the two genetic pools and calling for a comprehensive genetic management of the ongoing conservation program. This study illustrates how a retrospective analysis of demographic and genetic patterns of endangered species can shed light onto their evolutionary history and this, in turn, can inform conservation actions. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Seasonal Genetic Changes of Aedes aegypti (Diptera: Culicidae) Populations in Selected Sites of Cebu City, Philippines.

    PubMed

    Sayson, S L; Gloria-Soria, A; Powell, J R; Edillo, F E

    2015-07-01

    Aedes aegypti (L.) is the primary vector of dengue virus in the Philippines, where dengue is endemic. We examined the genetic changes of Ae. aegypti collected from three selected sites in Cebu city, Philippines, during the relatively wet (2011-2012) and dry seasons (2012 and 2013). A total of 493 Ae. aegypti adults, reared in the laboratory from field-collected larvae, were analyzed using 11 microsatellite loci. Seasonal variation was observed in allele frequencies and allelic richness. Average genetic differentiation (DEST=0.018; FST=0.029) in both dry seasons was higher, due to reduced Ne, than in the wet season (DEST=0.006; FST=0.009). Thus, average gene flow was higher in the wet season than in the dry seasons. However, the overall FST estimate (0.02) inclusive of the two seasons showed little genetic differentiation as supported by Bayesian clustering analysis. Results suggest that during the dry season the intense selection that causes a dramatic reduction of population size favors heterozygotes, leading to small pockets of mosquitoes (refuges) that exhibit random genetic differentiation. During the wet season, the genetic composition of the population is reconstituted by the expansion of the refuges that survived the preceding dry season. Source reduction of mosquitoes during the nonepidemic dry season is thus recommended to prevent dengue re-emergence in the subsequent wet season. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Correlation analysis of genetic diversity and population structure of Houttuynia cordata Thunb with regard to environment.

    PubMed

    Zhong, J; Wu, F-C; Qiu, P; Dai, L-J

    2016-08-12

    To study the levels of genetic diversity, and population structure, of Houttuynia cordata Thunb, the genetic background and relationships of populations were analyzed in terms of environmental factors. The genetic diversity and population structure of H. cordata were investigated using sequence-related amplified polymorphisms and correlation with environmental factors was analyzed using the SPSS software. Two thousand one hundred sixty-three sites were amplified from 41 pairs of primers, 1825 of which were polymorphic, and the percentage of polymorphic loci was 84.37%; the percentage of polymorphic sites was 72.14 and 67.77% at the species and population level, respectively. The observed number of alleles was 1.52 and 1.30 at species and population level, respectively. The effective number of alleles was 1.38 and 1.24 at species and population level, respectively. The Nei's diversity was 0.26 and 0.15 at species and population level, respectively. The Shannon's information index was 0.87 and 0.63 at species and population level, respectively. The genetic differentiation coefficient of populations was 0.51, and 12 populations were divided into three classes based on D = 0.20; the genetic diversities of different populations are correlated at different significance levels (P < 0.05) with environmental factors. Genetic differentiation existed among populations and the populations exhibited heteroplasmy.

  6. Genetic Structure in a Small Pelagic Fish Coincides with a Marine Protected Area: Seascape Genetics in Patagonian Fjords.

    PubMed

    Canales-Aguirre, Cristian B; Ferrada-Fuentes, Sandra; Galleguillos, Ricardo; Hernández, Cristián E

    2016-01-01

    Marine environmental variables can play an important role in promoting population genetic differentiation in marine organisms. Although fjord ecosystems have attracted much attention due to the great oscillation of environmental variables that produce heterogeneous habitats, species inhabiting this kind of ecosystem have received less attention. In this study, we used Sprattus fuegensis, a small pelagic species that populates the inner waters of the continental shelf, channels and fjords of Chilean Patagonia and Argentina, as a model species to test whether environmental variables of fjords relate to population genetic structure. A total of 282 individuals were analyzed from Chilean Patagonia with eight microsatellite loci. Bayesian and non-Bayesian analyses were conducted to describe the genetic variability of S. fuegensis and whether it shows spatial genetic structure. Results showed two well-differentiated genetic clusters along the Chilean Patagonia distribution (i.e. inside the embayment area called TicToc, and the rest of the fjords), but no spatial isolation by distance (IBD) pattern was found with a Mantel test analysis. Temperature and nitrate were correlated to the expected heterozygosities and explained the allelic frequency variation of data in the redundancy analyses. These results suggest that the singular genetic differences found in S. fuegensis from inside TicToc Bay (East of the Corcovado Gulf) are the result of larvae retention bya combination of oceanographic mesoscale processes (i.e. the west wind drift current reaches the continental shelf exactly in this zone), and the local geographical configuration (i.e. embayment area, islands, archipelagos). We propose that these features generated an isolated area in the Patagonian fjords that promoted genetic differentiation by drift and a singular biodiversity, adding support to the existence of the largest marine protected area (MPA) of continental Chile, which is the Tic-Toc MPA.

  7. Genetic Structure in a Small Pelagic Fish Coincides with a Marine Protected Area: Seascape Genetics in Patagonian Fjords

    PubMed Central

    Ferrada-Fuentes, Sandra; Galleguillos, Ricardo; Hernández, Cristián E.

    2016-01-01

    Marine environmental variables can play an important role in promoting population genetic differentiation in marine organisms. Although fjord ecosystems have attracted much attention due to the great oscillation of environmental variables that produce heterogeneous habitats, species inhabiting this kind of ecosystem have received less attention. In this study, we used Sprattus fuegensis, a small pelagic species that populates the inner waters of the continental shelf, channels and fjords of Chilean Patagonia and Argentina, as a model species to test whether environmental variables of fjords relate to population genetic structure. A total of 282 individuals were analyzed from Chilean Patagonia with eight microsatellite loci. Bayesian and non-Bayesian analyses were conducted to describe the genetic variability of S. fuegensis and whether it shows spatial genetic structure. Results showed two well-differentiated genetic clusters along the Chilean Patagonia distribution (i.e. inside the embayment area called TicToc, and the rest of the fjords), but no spatial isolation by distance (IBD) pattern was found with a Mantel test analysis. Temperature and nitrate were correlated to the expected heterozygosities and explained the allelic frequency variation of data in the redundancy analyses. These results suggest that the singular genetic differences found in S. fuegensis from inside TicToc Bay (East of the Corcovado Gulf) are the result of larvae retention bya combination of oceanographic mesoscale processes (i.e. the west wind drift current reaches the continental shelf exactly in this zone), and the local geographical configuration (i.e. embayment area, islands, archipelagos). We propose that these features generated an isolated area in the Patagonian fjords that promoted genetic differentiation by drift and a singular biodiversity, adding support to the existence of the largest marine protected area (MPA) of continental Chile, which is the Tic-Toc MPA. PMID:27505009

  8. Genetic mosaic in a marine species flock.

    PubMed

    McCartney, Michael A; Acevedo, Jenny; Heredia, Christine; Rico, Ciro; Quenoville, Brice; Bermingham, Eldredge; McMillan, W Owen

    2003-11-01

    We used molecular approaches to study the status of speciation in coral reef fishes known as hamlets (Serranidae: Hypoplectrus). Several hamlet morphospecies coexist on Caribbean reefs, and mate assortatively with respect to their strikingly distinct colour patterns. We provide evidence that, genetically, the hamlets display characteristics common in species flocks on land and in freshwaters. Substitutions within two mitochondrial DNA (mtDNA) protein-coding genes place hamlets within a monophyletic group relative to members of two related genera (Serranus and Diplectrum), and establish that the hamlet radiation must have been very recent. mtDNA distances separating hamlet morphospecies were slight (0.6 +/- 0.04%), yielding a coalescent estimate for the age of the hamlet flock of approximately 430 000 years. Morphospecies did not sort into distinct mtDNA haplotype phylogroups, and alleles at five hypervariable microsatellite loci were shared broadly across species boundaries. None the less, molecular variation was not distributed at random. Analyses of mtDNA haplotype frequencies and nested clades in haplotype networks revealed significant genetic differences between geographical regions and among colour morphospecies. We also observed significant microsatellite differentiation between geographical regions and in Puerto Rico, among colour morphospecies; the latter providing evidence for reproductive isolation between colour morphospecies at this locale. In our Panama collection, however, colour morphospecies were mostly genetically indistinguishable. This mosaic pattern of DNA differentiation implies a complex interaction between population history, mating behaviour and geography and suggests that porous boundaries separate species in this flock of brilliantly coloured coral reef fishes.

  9. mTOR complexes differentially orchestrates eosinophil development in allergy.

    PubMed

    Zhu, Chen; Xia, Lixia; Li, Fei; Zhou, Lingren; Weng, Qingyu; Li, Zhouyang; Wu, Yinfang; Mao, Yuanyuan; Zhang, Chao; Wu, Yanping; Li, Miao; Ying, Songmin; Chen, Zhihua; Shen, Huahao; Li, Wen

    2018-05-02

    Eosinophil infiltration is considered a hallmark in allergic airway inflammation, and the blockade of eosinophil differentiation may be an effective approach for treating eosinophil-related disorders. Mammalian target of rapamycin (mTOR) is a vital modulator in cell growth control and related diseases, and we have recently demonstrated that rapamycin can suppress eosinophil differentiation in allergic airway inflammation. Considering its critical role in haematopoiesis, we further investigated the role of mTOR in eosinophil differentiation in the context of asthmatic pathogenesis. Intriguingly, the inhibition of mTOR, either by genetic deletion or by another pharmacological inhibitor torin-1, accelerated the eosinophil development in the presence of IL-5. However, this was not observed to have any considerable effect on eosinophil apoptosis. The effect of mTOR in eosinophil differentiation was mediated by Erk signalling. Moreover, myeloid specific knockout of mTOR or Rheb further augmented allergic airway inflammation in mice after allergen exposure. Ablation of mTOR in myeloid cells also resulted in an increased number of eosinophil lineage-committed progenitors (Eops) in allergic mice. Collectively, our data uncovered the differential effects of mTOR in the regulation of eosinophil development, likely due to the distinct functions of mTOR complex 1 or 2, which thus exerts a pivotal implication in eosinophil-associated diseases.

  10. Mitochondrial genetic variability of Didelphis albiventris (Didelphimorphia, Didelphidae) in Brazilian localities

    PubMed Central

    Sousa, Luciene C.C.; Gontijo, Célia M.F.; Botelho, Helbert A.; Fonseca, Cleusa G.

    2012-01-01

    Didelphis albiventris is a well-known and common marsupial. Due to its high adaptability, this very widespread generalist species occurs under various environmental conditions, this even including protected regions and disturbed urban areas. We studied a 653 bp fragment of cytochrome oxidase c (COI) from 93 biological samples from seven Brazilian localities, with linear distances ranging between 58 and about 1800 km to analyze the effects of geographic distances on variability and genetic differentiation. The haplotype network presented nine haplotypes and two genetic clusters compatible with the two most distant geographic areas of the states of Minas Gerais, in the southeast, and Rio Grande do Sul, in the extreme south. As each cluster was characterized by low nucleotide and high haplotype diversities, their populations were obviously composed of closely related haplotypes. Surprisingly, moderate to high FST differentiation values and a very weak phylogeographic signal characterizes interpopulation comparisons within Minas Gerais interdemes, these being correlated with the presence of privative haplotypes. On a large rgeographic scale, a comparison between demes from Minas Gerais and Rio Grande do Sul presented high FST values and a robust phylogeographic pattern. This unexpected scenario implies that mtDNA gene flow was insufficient to maintain population cohesion, reflected by the observed high differentiation. PMID:22888303

  11. Molecular genetics of the hair follicle: the state of the art.

    PubMed

    Van Steensel, M A; Happle, R; Steijlen, P M

    2000-01-01

    For those who are interested in the biology of skin and its derivatives, these are interesting times indeed. In a mere 5 years, the field has been revolutionized by the application of molecular genetics to human congenital skin disorders. Where dermatology first was limited to observation and empirics, there are now DNA-diagnostics, rational drug design, and perhaps even gene therapy available soon. In particular, the study of rare human syndromes involving abnormalities of hair growth and structure has yielded new insights into the regulation of cell growth and differentiation in the hair follicle. As this structure shows a cyclic pattern of differentiation, it may give new information concerning the regulation of cell differentiation in general. This review covers the recent developments in this fast-moving field. First, we will give a short introduction to (structural) hair biology. Next, we will try to fit these data into the framework of what is already known and attempt to present a unified model for hair follicle growth and differentiation.

  12. Population genetic structure of moose (Alces alces) of South-central Alaska

    USGS Publications Warehouse

    Wilson, Robert E.; McDonough, John T.; Barboza, Perry S.; Talbot, Sandra L.; Farley, Sean D.

    2015-01-01

    The location of a population can influence its genetic structure and diversity by impacting the degree of isolation and connectivity to other populations. Populations at range margins are often thought to have less genetic variation and increased genetic structure, and a reduction in genetic diversity can have negative impacts on the health of a population. We explored the genetic diversity and connectivity between 3 peripheral populations of moose (Alces alces) with differing potential for connectivity to other areas within interior Alaska. Populations on the Kenai Peninsula and from the Anchorage region were found to be significantly differentiated (FST= 0.071, P < 0.0001) with lower levels of genetic diversity observed within the Kenai population. Bayesian analyses employing assignment methodologies uncovered little evidence of contemporary gene flow between Anchorage and Kenai, suggesting regional isolation. Although gene flow outside the peninsula is restricted, high levels of gene flow were detected within the Kenai that is explained by male-biased dispersal. Furthermore, gene flow estimates differed across time scales on the Kenai Peninsula which may have been influenced by demographic fluctuations correlated, at least in part, with habitat change.

  13. Quantifying Spatial Genetic Structuring in Mesophotic Populations of the Precious Coral Corallium rubrum

    PubMed Central

    Costantini, Federica; Carlesi, Lorenzo; Abbiati, Marco

    2013-01-01

    While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58–118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations. PMID:23646109

  14. Genetic diversity, genetic structure and demographic history of Cycas simplicipinna (Cycadaceae) assessed by DNA sequences and SSR markers

    PubMed Central

    2014-01-01

    Background Cycas simplicipinna (T. Smitinand) K. Hill. (Cycadaceae) is an endangered species in China. There were seven populations and 118 individuals that we could collect were genotyped in this study. Here, we assessed the genetic diversity, genetic structure and demographic history of this species. Results Analyses of data of DNA sequences (two maternally inherited intergenic spacers of chloroplast, cpDNA and one biparentally inherited internal transcribed spacer region ITS4-ITS5, nrDNA) and sixteen microsatellite loci (SSR) were conducted in the species. Of the 118 samples, 86 individuals from the seven populations were used for DNA sequencing and 115 individuals from six populations were used for the microsatellite study. We found high genetic diversity at the species level, low genetic diversity within each of the seven populations and high genetic differentiation among the populations. There was a clear genetic structure within populations of C. simplicipinna. A demographic history inferred from DNA sequencing data indicates that C. simplicipinna experienced a recent population contraction without retreating to a common refugium during the last glacial period. The results derived from SSR data also showed that C. simplicipinna underwent past effective population contraction, likely during the Pleistocene. Conclusions Some genetic features of C. simplicipinna such as having high genetic differentiation among the populations, a clear genetic structure and a recent population contraction could provide guidelines for protecting this endangered species from extinction. Furthermore, the genetic features with population dynamics of the species in our study would help provide insights and guidelines for protecting other endangered species effectively. PMID:25016306

  15. Genetic Variation of Beet Armyworm (Lepidoptera: Noctuidae) Populations Detected Using Microsatellite Markers in Iran.

    PubMed

    Golikhajeh, Neshat; Naseri, Bahram; Razmjou, Jabraeil; Hosseini, Reza; Aghbolaghi, Marzieh Asadi

    2018-05-28

    In order to understand the population genetic diversity and structure of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), a serious pest of sugar beet in Iran and the world, we genotyped 133 individuals from seven regions in Iran using four microsatellite loci. Significant difference was seen between the observed and expected heterozygosity in all loci. A lower observed heterozygosity than expected heterozygosity indicated a low heterozygosity in these populations. The value of F showed a high genetic differentiation, so that the mean of Fst was 0.21. Molecular analysis variance showed significant differences within and among populations with group variance accounted for 71 and 21%, respectively. No correlation was found between pair-wise Fst and geographic distance by Mantel test. Bayesian clustering analysis grouped all regions to two clusters. These data suggested that a combination of different factors, such as geographic distance, environmental condition, and physiological behavior in addition to genetic factors, could play an important role in forming variation within and between S. exigua populations.

  16. Genetic variation in westslope cutthroat trout Oncorhynchus clarkii lewisi: Implications for conservation

    USGS Publications Warehouse

    Drinan, D.P.; Kalinowski, S.T.; Vu, N.V.; Shepard, B.B.; Muhlfeld, C.C.; Campbell, M.R.

    2011-01-01

    Twenty-five populations of westslope cutthroat trout from throughout their native range were genotyped at 20 microsatellite loci to describe the genetic structure of westslope cutthroat trout. The most genetic diversity (heterozygosity, allelic richness, and private alleles) existed in populations from the Snake River drainage, while populations from the Missouri River drainage had the least. Neighbor-joining trees grouped populations according to major river drainages. A great amount of genetic differentiation was present among and within all drainages. Based on Nei's DS, populations in the Snake River were the most differentiated, while populations in the Missouri River were the least. This pattern of differentiation is consistent with a history of sequential founding events through which westslope cutthroat trout may have experienced a genetic bottleneck as they colonized each river basin from the Snake to the Clark Fork to the Missouri river. These data should serve as a starting point for a discussion on management units and possible distinct population segments. Given the current threats to the persistence of westslope cutthroat trout, and the substantial genetic differentiation between populations, these topics warrant attention. ?? 2011 Springer Science+Business Media B.V.

  17. An Evolution-Based Screen for Genetic Differentiation between Anopheles Sister Taxa Enriches for Detection of Functional Immune Factors

    PubMed Central

    Takashima, Eizo; Williams, Marni; Eiglmeier, Karin; Pain, Adrien; Guelbeogo, Wamdaogo M.; Gneme, Awa; Brito-Fravallo, Emma; Holm, Inge; Lavazec, Catherine; Sagnon, N’Fale; Baxter, Richard H.; Riehle, Michelle M.; Vernick, Kenneth D.

    2015-01-01

    Nucleotide variation patterns across species are shaped by the processes of natural selection, including exposure to environmental pathogens. We examined patterns of genetic variation in two sister species, Anopheles gambiae and Anopheles coluzzii, both efficient natural vectors of human malaria in West Africa. We used the differentiation signature displayed by a known coordinate selective sweep of immune genes APL1 and TEP1 in A. coluzzii to design a population genetic screen trained on the sweep, classified a panel of 26 potential immune genes for concordance with the signature, and functionally tested their immune phenotypes. The screen results were strongly predictive for genes with protective immune phenotypes: genes meeting the screen criteria were significantly more likely to display a functional phenotype against malaria infection than genes not meeting the criteria (p = 0.0005). Thus, an evolution-based screen can efficiently prioritize candidate genes for labor-intensive downstream functional testing, and safely allow the elimination of genes not meeting the screen criteria. The suite of immune genes with characteristics similar to the APL1-TEP1 selective sweep appears to be more widespread in the A. coluzzii genome than previously recognized. The immune gene differentiation may be a consequence of adaptation of A. coluzzii to new pathogens encountered in its niche expansion during the separation from A. gambiae, although the role, if any of natural selection by Plasmodium is unknown. Application of the screen allowed identification of new functional immune factors, and assignment of new functions to known factors. We describe biochemical binding interactions between immune proteins that underlie functional activity for malaria infection, which highlights the interplay between pathogen specificity and the structure of immune complexes. We also find that most malaria-protective immune factors display phenotypes for either human or rodent malaria, with

  18. Genetic characterization of commercial Saccharomyces cerevisiae isolates recovered from vineyard environments.

    PubMed

    Schuller, Dorit; Pereira, Leonor; Alves, Hugo; Cambon, Brigitte; Dequin, Sylvie; Casal, Margarida

    2007-08-01

    One hundred isolates of the commercial Saccharomyces cerevisiae strain Zymaflore VL1 were recovered from spontaneous fermentations carried out with grapes collected from vineyards located close to wineries in the Vinho Verde wine region of Portugal. Isolates were differentiated based on their mitochondrial DNA restriction patterns and the evaluation of genetic polymorphisms was carried out by microsatellite analysis, interdelta sequence typing and pulsed-field gel electrophoresis (PFGE). Genetic patterns were compared to those obtained for 30 isolates of the original commercialized Zymaflore VL1 strain. Among the 100 recovered isolates we found a high percentage of chromosomal size variations, most evident for the smaller chromosomes III and VI. Complete loss of heterozygosity was observed for two isolates that had also lost chromosomal heteromorphism; their growth and fermentative capacity in a synthetic must medium was also affected. A considerably higher number of variant patterns for interdelta sequence amplifications was obtained for grape-derived strains compared to the original VL1 isolates. Our data show that the long-term presence of strain VL1 in natural grapevine environments induced genetic changes that can be detected using different fingerprinting methods. The observed genetic changes may reflect adaptive mechanisms to changed environmental conditions that yeast cells encounter during their existence in nature. (c) 2007 John Wiley & Sons, Ltd.

  19. Genetic Differentiation of the Western Capercaillie Highlights the Importance of South-Eastern Europe for Understanding the Species Phylogeography

    PubMed Central

    Ballian, Dalibor; Kunovac, Saša; Zubić, Goran; Grubešić, Marijan; Zhelev, Petar; Paule, Ladislav; Grebenc, Tine; Kraigher, Hojka

    2011-01-01

    The Western Capercaillie (Tetrao urogallus L.) is a grouse species of open boreal or high altitude forests of Eurasia. It is endangered throughout most mountain range habitat areas in Europe. Two major genetically identifiable lineages of Western Capercaillie have been described to date: the southern lineage at the species' southernmost range of distribution in Europe, and the boreal lineage. We address the question of genetic differentiation of capercaillie populations from the Rhodope and Rila Mountains in Bulgaria, across the Dinaric Mountains to the Slovenian Alps. The two lineages' contact zone and resulting conservation strategies in this so-far understudied area of distribution have not been previously determined. The results of analysis of mitochondrial DNA control region sequences of 319 samples from the studied populations show that Alpine populations were composed exclusively of boreal lineage; Dinaric populations of both, but predominantly (96%) of boreal lineage; and Rhodope-Rila populations predominantly (>90%) of southern lineage individuals. The Bulgarian mountains were identified as the core area of the southern lineage, and the Dinaric Mountains as the western contact zone between both lineages in the Balkans. Bulgarian populations appeared genetically distinct from Alpine and Dinaric populations and exhibited characteristics of a long-term stationary population, suggesting that they should be considered as a glacial relict and probably a distinct subspecies. Although all of the studied populations suffered a decline in the past, the significantly lower level of genetic diversity when compared with the neighbouring Alpine and Bulgarian populations suggests that the isolated Dinaric capercaillie is particularly vulnerable to continuing population decline. The results are discussed in the context of conservation of the species in the Balkans, its principal threats and legal protection status. Potential conservation strategies should consider the

  20. Genetic structure and seed-mediated dispersal rates of an endangered shrub in a fragmented landscape: a case study for Juniperus communis in northwestern Europe.

    PubMed

    Vanden-Broeck, An; Gruwez, Robert; Cox, Karen; Adriaenssens, Sandy; Michalczyk, Inga M; Verheyen, Kris

    2011-08-22

    Population extinction risk in a fragmented landscape is related to the differential ability of the species to spread its genes across the landscape. The impact of landscape fragmentation on plant population dynamics will therefore vary across different spatial scales. We quantified successful seed-mediated dispersal of the dioecious shrub Juniperus communis in a fragmented landscape across northwestern Europe by using amplified fragment length polymorphism (AFLP) markers. Furthermore we investigated the genetic diversity and structure on two spatial scales: across northwestern Europe and across Flanders (northern Belgium). We also studied whether seed viability and populations size were correlated with genetic diversity. Unexpectedly, estimated seed-mediated dispersal rates were quite high and ranged between 3% and 14%. No population differentiation and no spatial genetic structure were detected on the local, Flemish scale. A significant low to moderate genetic differentiation between populations was detected at the regional, northwest European scale (PhiPT = 0.10). In general, geographically nearby populations were also genetically related. High levels of within-population genetic diversity were detected but no correlation was found between any genetic diversity parameter and population size or seed viability. In northwestern Europe, landscape fragmentation has lead to a weak isolation-by-distance pattern but not to genetic impoverishment of common juniper. Substantial rates of successful migration by seed-mediated gene flow indicate a high dispersal ability which could enable Juniperus communis to naturally colonize suitable habitats. However, it is not clear whether the observed levels of migration will suffice to counterbalance the effects of genetic drift in small populations on the long run.

  1. The effects of depth, distance, and the Mid-Atlantic Ridge on genetic differentiation of abyssal and hadal isopods (Macrostylidae)

    NASA Astrophysics Data System (ADS)

    Riehl, Torben; Lins, Lidia; Brandt, Angelika

    2018-02-01

    The largest habitat on Earth, the abyssal oceans below 3500 m depth, is commonly assumed to represent a continuous environment due to homogeneity of environmental factors and the lack of physical barriers. Yet, the presence of bathymetric features, such as Mid-Ocean Ridges, and hadal trenches provide a discontinuation. During the Vema-TRANSIT expedition in 2014/2015 to the tropical North Atlantic, a transatlantic transect was studied following the full extent of the Vema Fracture Zone in an east-west direction and including the Puerto Rico Trench (PRT). The aim of this study was to test whether large bathymetric features represent barriers to dispersal and may lead to differentiation and eventually speciation. In this study, these potential barriers included the Mid-Atlantic Ridge (MAR) and the transition ( 3000 m) from the hadal PRT to the adjacent abyss. Genetic differentiation and differences in community structure (species composition) from east and west of the MAR, as well as abyssal and hadal depth zones were tested for using the poor dispersers Macrostylidae (Crustacea, Isopoda) as a model Distribution patterns showed that certain macrostylid species have ranges extending more than 2000 km, in some cases across oceanic ridges and trench-abyss transitions. Contrastingly, there was a clear signal for geographic population structure coinciding with the east-west division of the Atlantic by the MAR as well as with the abyss-hadal zonation. These results support the hypotheses that depth gradients as well as oceanic ridges reduce dispersal even though barriers may not be absolute. Additionally, positive correlation between genetic- and geographic distances showed that the vast size of the deep sea itself is a factor responsible for creating diversity.

  2. Evidence for extensive genetic diversity and substructuring of the Babesia bovis metapopulation.

    PubMed

    Flores, D A; Minichiello, Y; Araujo, F R; Shkap, V; Benítez, D; Echaide, I; Rolls, P; Mosqueda, J; Pacheco, G M; Petterson, M; Florin-Christensen, M; Schnittger, L

    2013-11-01

    Babesia bovis is a tick-transmitted haemoprotozoan and a causative agent of bovine babesiosis, a cattle disease that causes significant economic loss in tropical and subtropical regions. A panel of nineteen micro- and minisatellite markers was used to estimate population genetic parameters of eighteen parasite isolates originating from different continents, countries and geographic regions including North America (Mexico, USA), South America (Argentina, Brazil), the Middle East (Israel) and Australia. For eleven of the eighteen isolates, a unique haplotype was inferred suggesting selection of a single genotype by either in vitro cultivation or amplification in splenectomized calves. Furthermore, a high genetic diversity (H = 0.780) over all marker loci was estimated. Linkage disequilibrium was observed in the total study group but also in sample subgroups from the Americas, Brazil, and Israel and Australia. In contrast, corresponding to their more confined geographic origin, samples from Israel and Argentina were each found to be in equilibrium suggestive of random mating and frequent genetic exchange. The genetic differentiation (F(ST)) of the total study group over all nineteen loci was estimated by analysis of variance (Θ) and Nei's estimation of heterozygosity (G(ST')) as 0.296 and 0.312, respectively. Thus, about 30% of the genetic diversity of the parasite population is associated with genetic differences between parasite isolates sampled from the different geographic regions. The pairwise similarity of multilocus genotypes (MLGs) was assessed and a neighbour-joining dendrogram generated. MLGs were found to cluster according to the country/continent of origin of isolates, but did not distinguish the attenuated from the pathogenic parasite state. The distant geographic origin of the isolates studied allows an initial glimpse into the large extent of genetic diversity and differentiation of the B. bovis population on a global scale. © 2013 Blackwell Verlag

  3. Spatial structure of morphological and neutral genetic variation in Brook Trout

    USGS Publications Warehouse

    Kazyak, David C.; Hilderbrand, Robert H.; Keller, Stephen R.; Colaw, Mark C.; Holloway, Amanda E.; Morgan, Raymond P.; King, Timothy L.

    2015-01-01

    Brook Trout Salvelinus fontinalis exhibit exceptional levels of life history variation, remarkable genetic variability, and fine-scale population structure. In many cases, neighboring populations may be highly differentiated from one another to an extent that is comparable with species-level distinctions in other taxa. Although genetic samples have been collected from hundreds of populations and tens of thousands of individuals, little is known about whether differentiation at neutral markers reflects phenotypic differences among Brook Trout populations. We compared differentiation in morphology and neutral molecular markers among populations from four geographically proximate locations (all within 24 km) to examine how genetic diversity covaries with morphology. We found significant differences among and/or within streams for all three morphological axes examined and identified the source stream of many individuals based on morphology (52.3% classification efficiency). Although molecular and morphological differentiation among streams ranged considerably (mean pairwise FST: 0.023–0.264; pairwise PST: 0.000–0.339), the two measures were not significantly correlated. While in some cases morphological characters appear to have diverged to a greater extent than expected by neutral genetic drift, many traits were conserved to a greater extent than were neutral genetic markers. Thus, while Brook Trout exhibit fine-scale spatial patterns in both morphology and neutral genetic diversity, these types of biological variabilities are being structured by different ecological and evolutionary processes. The relative influences of genetic drift versus selection and phenotypic plasticity in shaping morphology appear to vary among populations occupying nearby streams.

  4. Biodiversity of Costa Rican salamanders: Implications of high levels of genetic differentiation and phylogeographic structure for species formation

    PubMed Central

    García-París, Mario; Good, David A.; Parra-Olea, Gabriela; Wake, David B.

    2000-01-01

    Although salamanders are characteristic amphibians in Holarctic temperate habitats, in tropical regions they have diversified evolutionarily only in tropical America. An adaptive radiation centered in Middle America occurred late in the history of a single clade, the supergenus Bolitoglossa (Plethodontidae), and large numbers of species now occur in diverse habitats. Sublineages within this clade decrease in number from the northern to southern parts of Middle America, and in Costa Rica, there are but three. Despite this phylogenetic constraint, Costa Rica has many species; the number of salamander species on one local elevational transect in the Cordillera de Talamanca may be the largest for any such transect in the world. Extraordinary variation in sequences of the mitochondrial gene cytochrome b within a clade of the genus Bolitoglossa in Costa Rica reveals strong phylogeographic structure within a single species, Bolitoglossa pesrubra. Allozymic variation in 19 proteins reveals a pattern largely concordant with the mitochondrial DNA phylogeography. More species exist than are currently recognized. Diversification occurs in restricted geographic areas and involves sharp geographic and elevational differentiation and zonation. In their degree of genetic differentiation at a local scale, these species of the deep tropics exceed the known variation of extratropical salamanders, which also differ in being less restricted in elevational range. Salamanders display “tropicality” in that although speciose, they are usually local in distribution and rare. They display strong ecological and physiological differentiation that may contribute importantly to morphological divergence and species formation. PMID:10677512

  5. Cellular genetic therapy.

    PubMed

    Del Vecchio, F; Filareto, A; Spitalieri, P; Sangiuolo, F; Novelli, G

    2005-01-01

    Cellular genetic therapy is the ultimate frontier for those pathologies that are consequent to a specific nonfunctional cellular type. A viable cure for there kinds of diseases is the replacement of sick cells with healthy ones, which can be obtained from the same patient or a different donor. In fact, structures can be corrected and strengthened with the introduction of undifferentiated cells within specific target tissues, where they will specialize into the desired cellular types. Furthermore, consequent to the recent results obtained with the transdifferentiation experiments, a process that allows the in vitro differentiation of embryonic and adult stem cells, it has also became clear that many advantages may be obtained from the use of stem cells to produce drugs, vaccines, and therapeutic molecules. Since stem cells can sustain lineage potentials, the capacity for differentiation, and better tolerance for the introduction of exogenous genes, they are also considered as feasible therapeutic vehicles for gene therapy. In fact, it is strongly believed that the combination of cellular genetic and gene therapy approaches will definitely allow the development of new therapeutic strategies as well as the production of totipotent cell lines to be used as experimental models for the cure of genetic disorders.

  6. Low Genetic Diversity and Low Gene Flow Corresponded to a Weak Genetic Structure of Ruddy-Breasted Crake (Porzana fusca) in China.

    PubMed

    Zhu, Chaoying; Chen, Peng; Han, Yuqing; Ruan, Luzhang

    2018-05-12

    The Ruddy-breasted Crake (Porzana fusca) is an extremely poorly known species. Although it is not listed as globally endangered, in recent years, with the interference of climate change and human activities, its habitat is rapidly disappearing and its populations have been shrinking. There are two different life history traits for Ruddy-breasted Crake in China, i.e., non-migratory population in the south and migratory population in the north of China. In this study, mitochondrial control sequences and microsatellite datasets of 88 individuals sampled from 8 sites were applied to analyze their genetic diversity, genetic differentiation, and genetic structure. Our results indicated that low genetic diversity and genetic differentiation exit in most populations. The neutrality test suggested significantly negative Fu's Fs value, which, in combination with detection of the mismatch distribution, indicated that population expansion occurred in the interglacier approximately 98,000 years ago, and the time of the most recent common ancestor (TMRCA) was estimated to about 202,705 years ago. Gene flow analysis implied that the gene flow was low, but gene exchange was frequent among adjacent populations. Both phylogenetic and STRUCTURE analyses implied weak genetic structure. In general, the genetic diversity, gene flow, and genetic structure of Ruddy-breasted Crake were low.

  7. Evaluation of genetic diversity and population structure of West-Central Indian cattle breeds.

    PubMed

    Shah, Tejas M; Patel, Jaina S; Bhong, Chandrakant D; Doiphode, Aakash; Umrikar, Uday D; Parmar, Shivnandan S; Rank, Dharamshibhai N; Solanki, Jitendra V; Joshi, Chaitanya G

    2013-08-01

    Evaluations of genetic diversity in domestic livestock populations are necessary to implement region-specific conservation measures. We determined the genetic diversity and evolutionary relationships among eight geographically and phenotypically diverse cattle breeds indigenous to west-central India by genotyping these animals for 22 microsatellite loci. A total of 326 alleles were detected, and the expected heterozygosity ranged from 0.614 (Kenkatha) to 0.701 (Dangi). The mean number of alleles among the cattle breeds ranged from 7.182 (Khillar) to 9.409 (Gaolao). There were abundant genetic variations displayed within breeds, and the genetic differentiation was also high between the Indian cattle breeds, which displayed 15.9% of the total genetic differentiation among the different breeds. The genetic differentiation (pairwise FST ) among the eight Indian breeds varied from 0.0126 for the Kankrej-Malvi pair to 0.2667 for Khillar-Kenkatha pair. The phylogeny, principal components analysis, and structure analysis further supported close grouping of Kankrej, Malvi, Nimari and Gir; Gaolao and Kenkatha, whereas Dangi and Khillar remained at distance from other breeds. © 2012 The Authors, Animal Genetics © 2012 Stichting International Foundation for Animal Genetics.

  8. Genetic evidence for subspecies differentiation of the Himalayan marmot, Marmota himalayana, in the Qinghai-Tibet Plateau

    PubMed Central

    Lin, Gonghua; Li, Qian; Chen, Jiarui; Qin, Wen; Su, Jianping; Zhang, Tongzuo

    2017-01-01

    The primary host of plague in the Qinghai-Tibet Plateau (QTP), China, is Marmota himalayana, which plays an essential role in the maintenance, transmission, and prevalence of plague. To achieve a more clear insight into the differentiation of M. himalayana, complete cytochrome b (cyt b) gene and 11 microsatellite loci were analyzed for a total of 423 individuals from 43 localities in the northeast of the QTP. Phylogenetic analyses with maximum likelihood and Bayesian inference methods showed that all derived haplotypes diverged into two primary well-supported monophyletic lineages, I and II, which corresponded to the referential sequences of two recognized subspecies, M. h. himalayana and M. h. robusta, respectively. The divergence between the two lineages was estimated to be at about 1.03 million years ago, nearly synchronously with the divergence between M. baibacina and M. kastschenkoi and much earlier than that between M. vancouverensis and M. caligata. Genetic structure analyses based on the microsatellite dataset detected significant admixture between the two lineages in the mixed region, which verified the intraspecies level of the differentiation between the two lineages. Our results for the first time demonstrated the coexistence of M. h. himalayana and M. h. robusta, and also, determined the distribution range of the two subspecies in the northeast of QTP. We provided fundamental information for more effective plague control in the QTP. PMID:28809943

  9. Multivariate analysis in a genetic divergence study of Psidium guajava.

    PubMed

    Nogueira, A M; Ferreira, M F S; Guilhen, J H S; Ferreira, A

    2014-12-18

    The family Myrtaceae is widespread in the Atlantic Forest and is well-represented in the Espírito Santo State in Brazil. In the genus Psidium of this family, guava (Psidium guajava L.) is the most economically important species. Guava is widely cultivated in tropical and subtropical countries; however, the widespread cultivation of only a small number of guava tree cultivars may cause the genetic vulnerability of this crop, making the search for promising genotypes in natural populations important for breeding programs and conservation. In this study, the genetic diversity of 66 guava trees sampled in the southern region of Espírito Santo and in Caparaó, MG, Brazil were evaluated. A total of 28 morphological descriptors (11 quantitative and 17 multicategorical) and 18 microsatellite markers were used. Principal component, discriminant and cluster analyses, descriptive analyses, and genetic diversity analyses using simple sequence repeats were performed. Discrimination of accessions using molecular markers resulted in clustering of genotypes of the same origin, which was not observed using morphological data. Genetic diversity was detected between and within the localities evaluated, regardless of the methodology used. Genetic differentiation among the populations using morphological and molecular data indicated the importance of the study area for species conservation, genetic erosion estimation, and exploitation in breeding programs.

  10. Genetic diversity and differentiation in reef-building Millepora species, as revealed by cross-species amplification of fifteen novel microsatellite loci.

    PubMed

    Dubé, Caroline E; Planes, Serge; Zhou, Yuxiang; Berteaux-Lecellier, Véronique; Boissin, Emilie

    2017-01-01

    Quantifying the genetic diversity in natural populations is crucial to address ecological and evolutionary questions. Despite recent advances in whole-genome sequencing, microsatellite markers have remained one of the most powerful tools for a myriad of population genetic approaches. Here, we used the 454 sequencing technique to develop microsatellite loci in the fire coral Millepora platyphylla , an important reef-builder of Indo-Pacific reefs . We tested the cross-species amplification of these loci in five other species of the genus Millepora and analysed its success in correlation with the genetic distances between species using mitochondrial 16S sequences. We succeeded in discovering fifteen microsatellite loci in our target species M. platyphylla, among which twelve were polymorphic with 2-13 alleles and a mean observed heterozygosity of 0.411. Cross-species amplification in the five other Millepora species revealed a high probability of amplification success (71%) and polymorphism (59%) of the loci. Our results show no evidence of decreased heterozygosity with increasing genetic distance. However, only one locus enabled measures of genetic diversity in the Caribbean species M. complanata due to high proportions of null alleles for most of the microsatellites. This result indicates that our novel markers may only be useful for the Indo-Pacific species of Millepora. Measures of genetic diversity revealed significant linkage disequilibrium, moderate levels of observed heterozygosity (0.323-0.496) and heterozygote deficiencies for the Indo-Pacific species. The accessibility to new polymorphic microsatellite markers for hydrozoan Millepora species creates new opportunities for future research on processes driving the complexity of their colonisation success on many Indo-Pacific reefs.

  11. Microsatellite-based genetic diversity patterns in disjunct populations of a rare orchid.

    PubMed

    Pandey, Madhav; Richards, Matt; Sharma, Jyotsna

    2015-12-01

    We investigated the patterns of genetic diversity and structure in seven disjunct populations of a rare North American orchid, Cypripedium kentuckiense by including populations that represented the periphery and the center of the its range. Eight nuclear and two chloroplast microsatellites were used. Genetic diversity was low across the sampled populations of C. kentuckiense based on both nuclear (average An = 4.0, Ho = 0.436, He = 0.448) and cpDNA microsatellites (average An = 1.57, Nh = 1.57 and H = 0.133). The number of private alleles ranged from one to four per population with a total of 17 private alleles detected at five nuclear microsatellites. One private allele at one cpDNA microsatellite was also observed. Although the absolute values for nuclear microsatellite based population differentiation were low (Fst = 0.075; ϕPT = 0.24), they were statistically significant. Pairwise Fst values ranged from 0.038 to 0.123 and each comparison was significant. We also detected isolation by distance with nDNA microsatellites based on the Mantel test (r(2) = 0.209, P = 0.05). STRUCTURE analysis and the neighbor joining trees grouped the populations similarly whereby the geographically proximal populations were genetically similar. Our data indicate that the species is genetically depauperate but the diversity is distributed more or less equally across its range. Population differentiation and isolation by distance were detectable, which indicates that genetic isolation is beginning to manifest itself across the range in this rare species.

  12. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories

    PubMed Central

    Maside, Xulio; Gómez-Moracho, Tamara; Jara, Laura; Martín-Hernández, Raquel; De la Rúa, Pilar; Higes, Mariano; Bartolomé, Carolina

    2015-01-01

    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (< 4% of the variance), which suggests that the spread of this emergent pathogen throughout the A. mellifera worldwide population is a recent event. PMID:26720131

  13. Population Genetics of Nosema apis and Nosema ceranae: One Host (Apis mellifera) and Two Different Histories.

    PubMed

    Maside, Xulio; Gómez-Moracho, Tamara; Jara, Laura; Martín-Hernández, Raquel; De la Rúa, Pilar; Higes, Mariano; Bartolomé, Carolina

    2015-01-01

    Two microsporidians are known to infect honey bees: Nosema apis and Nosema ceranae. Whereas population genetics data for the latter have been released in the last few years, such information is still missing for N. apis. Here we analyze the patterns of nucleotide polymorphism at three single-copy loci (PTP2, PTP3 and RPB1) in a collection of Apis mellifera isolates from all over the world, naturally infected either with N. apis (N = 22) or N. ceranae (N = 23), to provide new insights into the genetic diversity, demography and evolution of N. apis, as well as to compare them with evidence from N. ceranae. Neutral variation in N. apis and N. ceranae is of the order of 1%. This amount of diversity suggests that there is no substantial differentiation between the genetic content of the two nuclei present in these parasites, and evidence for genetic recombination provides a putative mechanism for the flow of genetic information between chromosomes. The analysis of the frequency spectrum of neutral variants reveals a significant surplus of low frequency variants, particularly in N. ceranae, and suggests that the populations of the two pathogens are not in mutation-drift equilibrium and that they have experienced a population expansion. Most of the variation in both species occurs within honey bee colonies (between 62%-90% of the total genetic variance), although in N. apis there is evidence for differentiation between parasites isolated from distinct A. mellifera lineages (20%-34% of the total variance), specifically between those collected from lineages A and C (or M). This scenario is consistent with a long-term host-parasite relationship and contrasts with the lack of differentiation observed among host-lineages in N. ceranae (< 4% of the variance), which suggests that the spread of this emergent pathogen throughout the A. mellifera worldwide population is a recent event.

  14. Genetic and epigenetic variation in Spartina alterniflora following the Deepwater Horizon oil spill.

    PubMed

    Robertson, Marta; Schrey, Aaron; Shayter, Ashley; Moss, Christina J; Richards, Christina

    2017-09-01

    Catastrophic events offer unique opportunities to study rapid population response to stress in natural settings. In concert with genetic variation, epigenetic mechanisms may allow populations to persist through severe environmental challenges. In 2010, the Deepwater Horizon oil spill devastated large portions of the coastline along the Gulf of Mexico. However, the foundational salt marsh grass, Spartina alterniflora , showed high resilience to this strong environmental disturbance. Following the spill, we simultaneously examined the genetic and epigenetic structure of recovering populations of S. alterniflora to oil exposure. We quantified genetic and DNA methylation variation using amplified fragment length polymorphism and methylation sensitive fragment length polymorphism (MS-AFLP) to test the hypothesis that response to oil exposure in S. alterniflora resulted in genetically and epigenetically based population differentiation. We found high genetic and epigenetic variation within and among sites and found significant genetic differentiation between contaminated and uncontaminated sites, which may reflect nonrandom mortality in response to oil exposure. Additionally, despite a lack of genomewide patterns in DNA methylation between contaminated and uncontaminated sites, we found five MS-AFLP loci (12% of polymorphic MS-AFLP loci) that were correlated with oil exposure. Overall, our findings support genetically based differentiation correlated with exposure to the oil spill in this system, but also suggest a potential role for epigenetic mechanisms in population differentiation.

  15. Defining Differential Genetic Signatures in CXCR4- and the CCR5-Utilizing HIV-1 Co-Linear Sequences

    PubMed Central

    Aiamkitsumrit, Benjamas; Dampier, Will; Martin-Garcia, Julio; Nonnemacher, Michael R.; Pirrone, Vanessa; Ivanova, Tatyana; Zhong, Wen; Kilareski, Evelyn; Aldigun, Hazeez; Frantz, Brian; Rimbey, Matthew; Wojno, Adam; Passic, Shendra; Williams, Jean W.; Shah, Sonia; Blakey, Brandon; Parikh, Nirzari; Jacobson, Jeffrey M.; Moldover, Brian; Wigdahl, Brian

    2014-01-01

    The adaptation of human immunodeficiency virus type-1 (HIV-1) to an array of physiologic niches is advantaged by the plasticity of the viral genome, encoded proteins, and promoter. CXCR4-utilizing (X4) viruses preferentially, but not universally, infect CD4+ T cells, generating high levels of virus within activated HIV-1-infected T cells that can be detected in regional lymph nodes and peripheral blood. By comparison, the CCR5-utilizing (R5) viruses have a greater preference for cells of the monocyte-macrophage lineage; however, while R5 viruses also display a propensity to enter and replicate in T cells, they infect a smaller percentage of CD4+ T cells in comparison to X4 viruses. Additionally, R5 viruses have been associated with viral transmission and CNS disease and are also more prevalent during HIV-1 disease. Specific adaptive changes associated with X4 and R5 viruses were identified in co-linear viral sequences beyond the Env-V3. The in silico position-specific scoring matrix (PSSM) algorithm was used to define distinct groups of X4 and R5 sequences based solely on sequences in Env-V3. Bioinformatic tools were used to identify genetic signatures involving specific protein domains or long terminal repeat (LTR) transcription factor sites within co-linear viral protein R (Vpr), trans-activator of transcription (Tat), or LTR sequences that were preferentially associated with X4 or R5 Env-V3 sequences. A number of differential amino acid and nucleotide changes were identified across the co-linear Vpr, Tat, and LTR sequences, suggesting the presence of specific genetic signatures that preferentially associate with X4 or R5 viruses. Investigation of the genetic relatedness between X4 and R5 viruses utilizing phylogenetic analyses of complete sequences could not be used to definitively and uniquely identify groups of R5 or X4 sequences; in contrast, differences in the genetic diversities between X4 and R5 were readily identified within these co-linear sequences in

  16. Genetics of nonsyndromic obesity.

    PubMed

    Lee, Yung Seng

    2013-12-01

    Common obesity is widely regarded as a complex, multifactorial trait influenced by the 'obesogenic' environment, sedentary behavior, and genetic susceptibility contributed by common and rare genetic variants. This review describes the recent advances in understanding the role of genetics in obesity. New susceptibility loci and genetic variants are being uncovered, but the collective effect is relatively small and could not explain most of the BMI heritability. Yet-to-be identified common and rare variants, epistasis, and heritable epigenetic changes may account for part of the 'missing heritability'. Evidence is emerging about the role of epigenetics in determining obesity susceptibility, mediating developmental plasticity, which confers obesity risk from early life experiences. Genetic prediction scores derived from selected genetic variants, and also differential DNA methylation levels and methylation scores, have been shown to correlate with measures of obesity and response to weight loss intervention. Genetic variants, which confer susceptibility to obesity-related morbidities like nonalcoholic fatty liver disease, were also discovered recently. We can expect discovery of more rare genetic variants with the advent of whole exome and genome sequencing, and also greater understanding of epigenetic mechanisms by which environment influences genetic expression and which mediate the gene-environment interaction.

  17. Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation

    DTIC Science & Technology

    2015-10-01

    Award Number: W81XWH-13-1-0241 TITLE: Identifying that Regulate Neuroblastoma Cell Differentiation PRINCIPAL INVESTIGATOR: Dr. Liqin Du...inducing miRNA, miR- 449a. We examined the differentiation-inducing function of miR-449a in multiple neuroblastoma cell lines. We have demonstrated that...miR-449a functions as an inducer of cell differentiation in neuroblastoma cell lines with distinct genetic backgrounds, including the MYCN

  18. Genetic differentiation induced by spaceflight treatment of Cistanche deserticola and identification of inter-simple sequence repeat markers associated with its medicinal constituent contents

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Yang, D. Y.; Tu, P. F.; Tian, Y. Z.; Guo, Y. H.; Wang, X. M.; Li, X. B.

    2011-02-01

    The dried, fleshy stems of Cistanche deserticola (Orobanchaceae) are popular tonics in Traditional Chinese Medicine (TCM) to treat the inability of kidney in expelling extra fluid in the body, causing fluid retention, and reform reproductive system. However, the wild plants of C. deserticola have become endangered due to habitat downsizing and over-harvesting for its medicinal usages. The present research was carried out for the following purposes: (1) promoting the space-breeding research; (2) providing molecular evidence for agricultural selective breeding; and (3) protecting this endangered herbal medicine and conserving its genetic resources.In this study, plants were cultivated from seeds specifically treated in spaceflight for seven days, and sampled to screen positive mutants and identify ISSR markers associated with their medicinal constituents. As a result, nine out of the 94 ISSR primers were showed high polymorphism, and a total of 118 bands were generated, of which 80 were polymorphic, ranging from 250 to 2600 bp. The spaceflight mutants were found to have lower coefficient of gene differentiation (Gst = 0.0269), and higher gene flow (Nm = 18.0740) than those of the controls (Gst = 0.2067 and Nm = 1.9185). The results demonstrated that most of the genetic variation were harnessed within populations (>97%). The Analysis of Molecular Variance (AMOVA) revealed high genetic variation within populations (88.03%) and low genetic differentiation among regions (-18.83%) and populations (30.79%), respectively. The results also indicated a profound difference between spaceflight condition and that on the earth. The unique vacuum environment of spaceflight was suggested to induce DNA mutation and various variations of C. deserticola. In addition, six particular ISSR markers were identified, cloned and sequenced; one of them, CA41939-934, was found positively correlated with acteoside with correlation coefficient values of 0.264 (P < 0.05). Our work may provide a

  19. A Genome-Wide Test of the Differential Susceptibility Hypothesis Reveals a Genetic Predictor of Differential Response to Psychological Treatments for Child Anxiety Disorders

    PubMed Central

    Keers, Robert; Coleman, Jonathan R.I.; Lester, Kathryn J.; Roberts, Susanna; Breen, Gerome; Thastum, Mikael; Bögels, Susan; Schneider, Silvia; Heiervang, Einar; Meiser-Stedman, Richard; Nauta, Maaike; Creswell, Cathy; Thirlwall, Kerstin; Rapee, Ronald M.; Hudson, Jennifer L.; Lewis, Cathryn; Plomin, Robert; Eley, Thalia C.

    2016-01-01

    Background The differential susceptibly hypothesis suggests that certain genetic variants moderate the effects of both negative and positive environments on mental health and may therefore be important predictors of response to psychological treatments. Nevertheless, the identification of such variants has so far been limited to preselected candidate genes. In this study we extended the differential susceptibility hypothesis from a candidate gene to a genome-wide approach to test whether a polygenic score of environmental sensitivity predicted response to cognitive behavioural therapy (CBT) in children with anxiety disorders. Methods We identified variants associated with environmental sensitivity using a novel method in which within-pair variability in emotional problems in 1,026 monozygotic twin pairs was examined as a function of the pairs' genotype. We created a polygenic score of environmental sensitivity based on the whole-genome findings and tested the score as a moderator of parenting on emotional problems in 1,406 children and response to individual, group and brief parent-led CBT in 973 children with anxiety disorders. Results The polygenic score significantly moderated the effects of parenting on emotional problems and the effects of treatment. Individuals with a high score responded significantly better to individual CBT than group CBT or brief parent-led CBT (remission rates: 70.9, 55.5 and 41.6%, respectively). Conclusions Pending successful replication, our results should be considered exploratory. Nevertheless, if replicated, they suggest that individuals with the greatest environmental sensitivity may be more likely to develop emotional problems in adverse environments but also benefit more from the most intensive types of treatment. PMID:27043157

  20. Epigenetic Variability in the Genetically Uniform Forest Tree Species Pinus pinea L

    PubMed Central

    Sáez-Laguna, Enrique; Guevara, María-Ángeles; Díaz, Luis-Manuel; Sánchez-Gómez, David; Collada, Carmen; Aranda, Ismael; Cervera, María-Teresa

    2014-01-01

    There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees. PMID:25084460

  1. Epigenetic variability in the genetically uniform forest tree species Pinus pinea L.

    PubMed

    Sáez-Laguna, Enrique; Guevara, María-Ángeles; Díaz, Luis-Manuel; Sánchez-Gómez, David; Collada, Carmen; Aranda, Ismael; Cervera, María-Teresa

    2014-01-01

    There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.

  2. Genetic network inference as a series of discrimination tasks.

    PubMed

    Kimura, Shuhei; Nakayama, Satoshi; Hatakeyama, Mariko

    2009-04-01

    Genetic network inference methods based on sets of differential equations generally require a great deal of time, as the equations must be solved many times. To reduce the computational cost, researchers have proposed other methods for inferring genetic networks by solving sets of differential equations only a few times, or even without solving them at all. When we try to obtain reasonable network models using these methods, however, we must estimate the time derivatives of the gene expression levels with great precision. In this study, we propose a new method to overcome the drawbacks of inference methods based on sets of differential equations. Our method infers genetic networks by obtaining classifiers capable of predicting the signs of the derivatives of the gene expression levels. For this purpose, we defined a genetic network inference problem as a series of discrimination tasks, then solved the defined series of discrimination tasks with a linear programming machine. Our experimental results demonstrated that the proposed method is capable of correctly inferring genetic networks, and doing so more than 500 times faster than the other inference methods based on sets of differential equations. Next, we applied our method to actual expression data of the bacterial SOS DNA repair system. And finally, we demonstrated that our approach relates to the inference method based on the S-system model. Though our method provides no estimation of the kinetic parameters, it should be useful for researchers interested only in the network structure of a target system. Supplementary data are available at Bioinformatics online.

  3. Breeding system and demography shape population genetic structure across ecological and climatic zones in the African freshwater snail, Bulinus forskalii (Gastropoda, Pulmonata), intermediate host for schistosomes.

    PubMed

    Gow, J L; Noble, L R; Rollinson, D; Mimpfoundi, R; Jones, C S

    2004-11-01

    The role of breeding system and population bottlenecks in shaping the distribution of neutral genetic variation among populations inhabiting patchily distributed, ephemeral water bodies was examined for the hermaphroditic freshwater snail Bulinus forskalii, intermediate host for the medically important trematode Schistosoma guineensis. Levels of genetic variation at 11 microsatellite loci were assessed for 600 individuals sampled from 19 populations that span three ecological and climatic zones (ecozones) in Cameroon, West Africa. Significant heterozygote deficiencies and linkage disequilibria indicated very high selfing rates in these populations. Despite this and the large genetic differentiation detected between populations, high levels of genetic variation were harboured within these populations. The high level of gene flow inferred from assignment tests may be responsible for this pattern. Indeed, metapopulation dynamics, including high levels of gene flow as well as extinction/contraction and recolonization events, are invoked to account for the observed population structuring, which was not a consequence of isolation-by-distance. Because B. forskalii populations inhabiting the northern, Sahelian area are subject to more pronounced annual cycles of drought and flood than the southern equatorial ones, they were expected to be subject to population bottlenecks of increased frequency and severity and, therefore, show reduced genetic variability and elevated population differentiation. Contrary to predictions, the populations inhabiting the most northerly ecozone exhibited higher genetic diversity and lower genetic differentiation than those in the most southerly one, suggesting that elevated gene flow in this region is counteracting genetic drift.

  4. Microsatellite variation reveals weak genetic structure and retention of genetic variability in threatened Chinook salmon (Oncorhynchus tshawytscha) within a Snake River watershed

    USGS Publications Warehouse

    Neville, Helen; Issacs, Frank B.; Thurow, Russel; Dunham, J.B.; Rieman, B.

    2007-01-01

    Pacific salmon (Oncorhynchus spp.) have been central to the development of management concepts associated with evolutionarily significant units (ESUs), yet there are still relatively few studies of genetic diversity within threatened and endangered ESUs for salmon or other species. We analyzed genetic variation at 10 microsatellite loci to evaluate spatial population structure and genetic variability in indigenous Chinook salmon (Oncorhynchus tshawytscha) across a large wilderness basin within a Snake River ESU. Despite dramatic 20th century declines in abundance, these populations retained robust levels of genetic variability. No significant genetic bottlenecks were found, although the bottleneck metric (M ratio) was significantly correlated with average population size and variability. Weak but significant genetic structure existed among tributaries despite evidence of high levels of gene flow, with the strongest genetic differentiation mirroring the physical segregation of fish from two sub-basins. Despite the more recent colonization of one sub-basin and differences between sub-basins in the natural level of fragmentation, gene diversity and genetic differentiation were similar between sub-basins. Various factors, such as the (unknown) genetic contribution of precocial males, genetic compensation, lack of hatchery influence, and high levels of current gene flow may have contributed to the persistence of genetic variability in this system in spite of historical declines. This unique study of indigenous Chinook salmon underscores the importance of maintaining natural populations in interconnected and complex habitats to minimize losses of genetic diversity within ESUs.

  5. Genetic population structure of muskellunge in the Great Lakes

    USGS Publications Warehouse

    Kapuscinski, Kevin L.; Sloss, Brian L.; Farrell, John M.

    2013-01-01

    We quantified genetic relationships among Muskellunge Esox masquinongy from 15 locations in the Great Lakes to determine the extent and distribution of measurable population structure and to identify appropriate spatial scales for fishery management and genetic conservation. We hypothesized that Muskellunge from each area represented genetically distinct populations, which would be evident from analyses of genotype data. A total of 691 Muskellunge were sampled (n = 10–127/site) and genetic data were collected at 13 microsatellite loci. Results from a suite of analyses (including pairwise genetic differentiation, Bayesian admixture prediction, analysis of molecular variance, and tests of isolation by distance) indicated the presence of nine distinct genetic groups, including two that were approximately 50 km apart. Geographic proximity and low habitat complexity seemed to facilitate genetic similarity among areas, whereas Muskellunge from areas of greater habitat heterogeneity exhibited high differentiation. Muskellunge from most areas contained private alleles, and mean within-area genetic variation was similar to that reported for other freshwater fishes. Management programs aimed at conserving the broader diversity and long-term sustainability of Muskellunge could benefit by considering the genetically distinct groups as independent fisheries, and individual spawning and nursery habitats could subsequently be protected to conserve the evolutionary potential of Muskellunge.

  6. Fine-scaled human genetic structure revealed by SNP microarrays.

    PubMed

    Xing, Jinchuan; Watkins, W Scott; Witherspoon, David J; Zhang, Yuhua; Guthery, Stephen L; Thara, Rangaswamy; Mowry, Bryan J; Bulayeva, Kazima; Weiss, Robert B; Jorde, Lynn B

    2009-05-01

    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.

  7. Genetic Diversity Analysis of Highly Incomplete SNP Genotype Data with Imputations: An Empirical Assessment

    PubMed Central

    Fu, Yong-Bi

    2014-01-01

    Genotyping by sequencing (GBS) recently has emerged as a promising genomic approach for assessing genetic diversity on a genome-wide scale. However, concerns are not lacking about the uniquely large unbalance in GBS genotype data. Although some genotype imputation has been proposed to infer missing observations, little is known about the reliability of a genetic diversity analysis of GBS data, with up to 90% of observations missing. Here we performed an empirical assessment of accuracy in genetic diversity analysis of highly incomplete single nucleotide polymorphism genotypes with imputations. Three large single-nucleotide polymorphism genotype data sets for corn, wheat, and rice were acquired, and missing data with up to 90% of missing observations were randomly generated and then imputed for missing genotypes with three map-independent imputation methods. Estimating heterozygosity and inbreeding coefficient from original, missing, and imputed data revealed variable patterns of bias from assessed levels of missingness and genotype imputation, but the estimation biases were smaller for missing data without genotype imputation. The estimates of genetic differentiation were rather robust up to 90% of missing observations but became substantially biased when missing genotypes were imputed. The estimates of topology accuracy for four representative samples of interested groups generally were reduced with increased levels of missing genotypes. Probabilistic principal component analysis based imputation performed better in terms of topology accuracy than those analyses of missing data without genotype imputation. These findings are not only significant for understanding the reliability of the genetic diversity analysis with respect to large missing data and genotype imputation but also are instructive for performing a proper genetic diversity analysis of highly incomplete GBS or other genotype data. PMID:24626289

  8. A single mitochondrial haplotype and nuclear genetic differentiation in sympatric colour morphs of a riverine cichlid fish.

    PubMed

    Koblmüller, S; Sefc, K M; Duftner, N; Katongo, C; Tomljanovic, T; Sturmbauer, C

    2008-01-01

    Some of the diversity of lacustrine cichlid fishes has been ascribed to sympatric divergence, whereas diversification in rivers is generally driven by vicariance and geographic isolation. In the riverine Pseudocrenilabrus philander species complex, several morphologically highly distinct populations are restricted to particular river systems, sinkholes and springs in southern Africa. One of these populations consists of a prevalent yellow morph in sympatry with a less frequent blue morph, and no individuals bear intermediate phenotypes. Genetic variation in microsatellites and AFLP markers was very low in both morphs and one single mtDNA haplotype was fixed in all samples, indicating a very young evolutionary age and small effective population size. Nevertheless, the nuclear markers detected low but significant differentiation between the two morphs. The data suggest recent and perhaps sympatric divergence in the riverine habitat.

  9. Landscape genetics and the spatial distribution of chronic wasting disease

    USGS Publications Warehouse

    Blanchong, Julie A.; Samuel, M.D.; Scribner, K.T.; Weckworth, B.V.; Langenberg, J.A.; Filcek, K.B.

    2008-01-01

    Predicting the spread of wildlife disease is critical for identifying populations at risk, targeting surveillance and designing proactive management programmes. We used a landscape genetics approach to identify landscape features that influenced gene flow and the distribution of chronic wasting disease (CWD) in Wisconsin white-tailed deer. CWD prevalence was negatively correlated with genetic differentiation of study area deer from deer in the area of disease origin (core-area). Genetic differentiation was greatest, and CWD prevalence lowest, in areas separated from the core-area by the Wisconsin River, indicating that this river reduced deer gene flow and probably disease spread. Features of the landscape that influence host dispersal and spatial patterns of disease can be identified based on host spatial genetic structure. Landscape genetics may be used to predict high-risk populations based on their genetic connection to infected populations and to target disease surveillance, control and preventative activities. ?? 2007 The Royal Society.

  10. Support from the relationship of genetic and geographic distance in human populations for a serial founder effect originating in Africa

    PubMed Central

    Ramachandran, Sohini; Deshpande, Omkar; Roseman, Charles C.; Rosenberg, Noah A.; Feldman, Marcus W.; Cavalli-Sforza, L. Luca

    2005-01-01

    Equilibrium models of isolation by distance predict an increase in genetic differentiation with geographic distance. Here we find a linear relationship between genetic and geographic distance in a worldwide sample of human populations, with major deviations from the fitted line explicable by admixture or extreme isolation. A close relationship is shown to exist between the correlation of geographic distance and genetic differentiation (as measured by FST) and the geographic pattern of heterozygosity across populations. Considering a worldwide set of geographic locations as possible sources of the human expansion, we find that heterozygosities in the globally distributed populations of the data set are best explained by an expansion originating in Africa and that no geographic origin outside of Africa accounts as well for the observed patterns of genetic diversity. Although the relationship between FST and geographic distance has been interpreted in the past as the result of an equilibrium model of drift and dispersal, simulation shows that the geographic pattern of heterozygosities in this data set is consistent with a model of a serial founder effect starting at a single origin. Given this serial-founder scenario, the relationship between genetic and geographic distance allows us to derive bounds for the effects of drift and natural selection on human genetic variation. PMID:16243969

  11. [Clinical application of moving cupping therapy based on skin reaction observation and syndrome differentiation].

    PubMed

    Deng, Xiao-Lan; Chen, Bo; Chen, Ze-Lin

    2014-12-01

    The diagnostic evidence on clinical diseases and theoretic basis of moving cupping therapy were ex- plored in the paper. By the observation of the local reaction, such as skin appearance and color, the affected location, duration of sickness and nature of disease were judged. Different moving cupping methods were selected for different disorders. It was discovered that the property of syndromes should be recognized by the palpation on skin and muscle in the moving cupping therapy so that the pathogenesis and treating principle could be carefully determined. The moving cupping therapy is the important component of body surface therapy. Skin reaction observation and syndrome differentiation is the essential guidance of the moving cupping therapy.

  12. Modeling Host Genetic Regulation of Influenza Pathogenesis in the Collaborative Cross

    PubMed Central

    Ferris, Martin T.; Aylor, David L.; Bottomly, Daniel; Whitmore, Alan C.; Aicher, Lauri D.; Bell, Timothy A.; Bradel-Tretheway, Birgit; Bryan, Janine T.; Buus, Ryan J.; Gralinski, Lisa E.; Haagmans, Bart L.; McMillan, Leonard; Miller, Darla R.; Rosenzweig, Elizabeth; Valdar, William; Wang, Jeremy; Churchill, Gary A.; Threadgill, David W.; McWeeney, Shannon K.; Katze, Michael G.; Pardo-Manuel de Villena, Fernando; Baric, Ralph S.; Heise, Mark T.

    2013-01-01

    Genetic variation contributes to host responses and outcomes following infection by influenza A virus or other viral infections. Yet narrow windows of disease symptoms and confounding environmental factors have made it difficult to identify polymorphic genes that contribute to differential disease outcomes in human populations. Therefore, to control for these confounding environmental variables in a system that models the levels of genetic diversity found in outbred populations such as humans, we used incipient lines of the highly genetically diverse Collaborative Cross (CC) recombinant inbred (RI) panel (the pre-CC population) to study how genetic variation impacts influenza associated disease across a genetically diverse population. A wide range of variation in influenza disease related phenotypes including virus replication, virus-induced inflammation, and weight loss was observed. Many of the disease associated phenotypes were correlated, with viral replication and virus-induced inflammation being predictors of virus-induced weight loss. Despite these correlations, pre-CC mice with unique and novel disease phenotype combinations were observed. We also identified sets of transcripts (modules) that were correlated with aspects of disease. In order to identify how host genetic polymorphisms contribute to the observed variation in disease, we conducted quantitative trait loci (QTL) mapping. We identified several QTL contributing to specific aspects of the host response including virus-induced weight loss, titer, pulmonary edema, neutrophil recruitment to the airways, and transcriptional expression. Existing whole-genome sequence data was applied to identify high priority candidate genes within QTL regions. A key host response QTL was located at the site of the known anti-influenza Mx1 gene. We sequenced the coding regions of Mx1 in the eight CC founder strains, and identified a novel Mx1 allele that showed reduced ability to inhibit viral replication, while

  13. Large-scale pattern of genetic differentiation within African rainforest trees: insights on the roles of ecological gradients and past climate changes on the evolution of Erythrophleum spp (Fabaceae).

    PubMed

    Duminil, Jerome; Brown, Richard P; Ewédjè, Eben-Ezer B K; Mardulyn, Patrick; Doucet, Jean-Louis; Hardy, Olivier J

    2013-09-12

    The evolutionary events that have shaped biodiversity patterns in the African rainforests are still poorly documented. Past forest fragmentation and ecological gradients have been advocated as important drivers of genetic differentiation but their respective roles remain unclear. Using nuclear microsatellites (nSSRs) and chloroplast non-coding sequences (pDNA), we characterised the spatial genetic structure of Erythrophleum (Fabaceae) forest trees in West and Central Africa (Guinea Region, GR). This widespread genus displays a wide ecological amplitude and taxonomists recognize two forest tree species, E. ivorense and E. suaveolens, which are difficult to distinguish in the field and often confused. Bayesian-clustering applied on nSSRs of a blind sample of 648 specimens identified three major gene pools showing no or very limited introgression. They present parapatric distributions correlated to rainfall gradients and forest types. One gene pool is restricted to coastal evergreen forests and corresponds to E. ivorense; a second one is found in gallery forests from the dry forest zone of West Africa and North-West Cameroon and corresponds to West-African E. suaveolens; the third gene pool occurs in semi-evergreen forests and corresponds to Central African E. suaveolens. These gene pools have mostly unique pDNA haplotypes but they do not form reciprocally monophyletic clades. Nevertheless, pDNA molecular dating indicates that the divergence between E. ivorense and Central African E. suaveolens predates the Pleistocene. Further Bayesian-clustering applied within each major gene pool identified diffuse genetic discontinuities (minor gene pools displaying substantial introgression) at a latitude between 0 and 2°N in Central Africa for both species, and at a longitude between 5° and 8°E for E. ivorense. Moreover, we detected evidence of past population declines which are consistent with historical habitat fragmentation induced by Pleistocene climate changes. Overall

  14. Large-scale pattern of genetic differentiation within African rainforest trees: insights on the roles of ecological gradients and past climate changes on the evolution of Erythrophleum spp (Fabaceae)

    PubMed Central

    2013-01-01

    Background The evolutionary events that have shaped biodiversity patterns in the African rainforests are still poorly documented. Past forest fragmentation and ecological gradients have been advocated as important drivers of genetic differentiation but their respective roles remain unclear. Using nuclear microsatellites (nSSRs) and chloroplast non-coding sequences (pDNA), we characterised the spatial genetic structure of Erythrophleum (Fabaceae) forest trees in West and Central Africa (Guinea Region, GR). This widespread genus displays a wide ecological amplitude and taxonomists recognize two forest tree species, E. ivorense and E. suaveolens, which are difficult to distinguish in the field and often confused. Results Bayesian-clustering applied on nSSRs of a blind sample of 648 specimens identified three major gene pools showing no or very limited introgression. They present parapatric distributions correlated to rainfall gradients and forest types. One gene pool is restricted to coastal evergreen forests and corresponds to E. ivorense; a second one is found in gallery forests from the dry forest zone of West Africa and North-West Cameroon and corresponds to West-African E. suaveolens; the third gene pool occurs in semi-evergreen forests and corresponds to Central African E. suaveolens. These gene pools have mostly unique pDNA haplotypes but they do not form reciprocally monophyletic clades. Nevertheless, pDNA molecular dating indicates that the divergence between E. ivorense and Central African E. suaveolens predates the Pleistocene. Further Bayesian-clustering applied within each major gene pool identified diffuse genetic discontinuities (minor gene pools displaying substantial introgression) at a latitude between 0 and 2°N in Central Africa for both species, and at a longitude between 5° and 8°E for E. ivorense. Moreover, we detected evidence of past population declines which are consistent with historical habitat fragmentation induced by Pleistocene climate

  15. Steroids, aromatase and sex differentiation of the newt Pleurodeles waltl.

    PubMed

    Kuntz, S; Chardard, D; Chesnel, A; Grillier-Vuissoz, I; Flament, S

    2003-01-01

    In the newt Pleurodeles waltl, genetic sex determination obeys female heterogamety (female ZW, male ZZ). In this species as in most of non-mammalian vertebrates, steroid hormones play a key role in sexual differentiation of gonads. In that context, male to female sex reversal can be obtained by treatment of ZZ larvae with estradiol. Male to female sex reversal has also been observed following treatment of ZZ larvae with testosterone, a phenomenon that was called the "paradoxical effect". Female to male sex reversal occurs when ZW larvae are reared at 32 degrees C during a thermosensitive period (TSP) that takes place from stage 42 to stage 54 of development. Since steroids play an important part in sex differentiation, we focussed our studies on the estrogen-producing enzyme aromatase during normal sex differentiation as well as in experimentally induced sex reversal situations. Our results based on treatment with non-aromatizable androgens, aromatase activity measurements and aromatase expression studies demonstrate that aromatase (i) is differentially active in ZZ and ZW larvae, (ii) is involved in the paradoxical effect and (iii) might be a target of temperature. Thus, the gene encoding aromatase might be one of the master genes in the process leading to the differentiation of the gonad in Pleurodeles waltl. Copyright 2003 S. Karger AG, Basel

  16. Genetic differentiation of Alaska Chinook salmon: the missing link for migratory studies.

    PubMed

    Templin, William D; Seeb, James E; Jasper, James R; Barclay, Andrew W; Seeb, Lisa W

    2011-03-01

    Most information about Chinook salmon genetic diversity and life history originates from studies from the West Coast USA, western Canada and southeast Alaska; less is known about Chinook salmon from western and southcentral Alaska drainages. Populations in this large area are genetically distinct from populations to the south and represent an evolutionary legacy of unique genetic, phenotypic and life history diversity. More genetic information is necessary to advance mixed stock analysis applications for studies involving these populations. We assembled a comprehensive, open-access baseline of 45 single nucleotide polymorphisms (SNPs) from 172 populations ranging from Russia to California. We compare SNP data from representative populations throughout the range with particular emphasis on western and southcentral Alaska. We grouped populations into major lineages based upon genetic and geographic characteristics, evaluated the resolution for identifying the composition of admixtures and performed mixed stock analysis on Chinook salmon caught incidentally in the walleye pollock fishery in the Bering Sea. SNP data reveal complex genetic structure within Alaska and can be used in applications to address not only regional issues, but also migration pathways, bycatch studies on the high seas, and potential changes in the range of the species in response to climate change. © 2011 Blackwell Publishing Ltd.

  17. Intensive Management and Natural Genetic Variation in Red Deer (Cervus elaphus).

    PubMed

    Galarza, Juan A; Sánchez-Fernández, Beatriz; Fandos, Paulino; Soriguer, Ramón

    2017-07-01

    The current magnitude of big-game hunting has outpaced the natural growth of populations, making artificial breeding necessary to rapidly boost hunted populations. In this study, we evaluated if the rapid increase of red deer (Cervus elaphus) abundance, caused by the growing popularity of big-game hunting, has impacted the natural genetic diversity of the species. We compared several genetic diversity metrics between 37 fenced populations subject to intensive management and 21 wild free-ranging populations. We also included a historically protected population from a national park as a baseline for comparisons. Contrary to expectations, our results showed no significant differences in genetic diversity between wild and fenced populations. Relatively lower genetic diversity was observed in the protected population, although differences were not significant in most cases. Bottlenecks were detected in both wild and fenced populations, as well as in the protected population. Assignment tests identified individuals that did not belong to their population of origin, indicating anthropogenic movement. We discuss the most likely processes, which could have led to the observed high levels of genetic variability and lack of differentiation between wild and fenced populations and suggest cautionary points for future conservation. We illustrate our comparative approach in red deer. However, our results and interpretations can be largely applicable to most ungulates subject to big-game hunting as most of them share a common exploitation-recovery history as well as many ecological traits. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. "What is this genetics, anyway?" Understandings of genetics, illness causality and inheritance among British Pakistani users of genetic services.

    PubMed

    Shaw, Alison; Hurst, Jane A

    2008-08-01

    Misconceptions about basic genetic concepts and inheritance patterns may be widespread in the general population. This paper investigates understandings of genetics, illness causality and inheritance among British Pakistanis referred to a UK genetics clinic. During participant observation of genetics clinic consultations and semi-structured interviews in Urdu or English in respondents' homes, we identified an array of environmental, behavioral and spiritual understandings of the causes of medical and intellectual problems. Misconceptions about the location of genetic information in the body and of genetic mechanisms of inheritance were common, reflected the range of everyday theories observed for White British patients and included the belief that a child receives more genetic material from the father than the mother. Despite some participants' conversational use of genetic terminology, some patients had assimilated genetic information in ways that conflict with genetic theory with potentially serious clinical consequences. Additionally, skepticism of genetic theories of illness reflected a rejection of a dominant discourse of genetic risk that stigmatizes cousin marriages. Patients referred to genetics clinics may not easily surrender their lay or personal theories about the causes of their own or their child's condition and their understandings of genetic risk. Genetic counselors may need to identify, work with and at times challenge patients' understandings of illness causality and inheritance.

  19. Genetic Differentiation in a Sample from Northern Mexico City Detected by HLA System Analysis: Impact in the Study of Population Immunogenetics.

    PubMed

    Cortés, Eva D Juárez; Sieck, Miguel A Contreras; Perea, Agustín J Arriaga; Medrano, Rosa M Macías; Jaime, Anaí Balbuena; Martínez, Paola Everardo; Zúñiga, Joaquín; Alonzo, Víctor Acuña; Granados, Julio; Barquera, Rodrigo

    2017-07-01

    The major histocompatibility complex is directly involved in the immune response, and thus the genes coding for its proteins are useful markers for the study of genetic diversity, susceptibility to disease (autoimmunity and infections), transplant medicine, and pharmacogenetics, among others. The polymorphism of the system also allows researchers to use it as a proxy for population genetics analysis, such as genetic admixture and genetic structure. In order to determine the immunogenetic characteristics of a sample from the northern part of Mexico City and to use them to analyze the genetic differentiation from other admixed populations, including those from previous studies of Mexico City population, we analyzed molecular typing results of donors and patients from the Histocompatibility Laboratory of the Central Blood Bank of the Centro Médico Nacional La Raza selected according to their geographic origin. HLA-A, -B, -DRB1, and -DQB1 alleles were typed by polymerase chain reaction with sequence-specific primers. Allelic and haplotype frequencies, as well as population genetics parameters, were obtained by maximum likelihood methods. The most frequent haplotypes found were HLA-A * 02/-B * 39/-DRB1 * 04/-DQB1 * 03:02P, HLA-A * 02/-B * 35/-DRB1 * 04/-DQB1 * 03:02P, HLA-A * 68/-B * 39/-DRB1 * 04/-DQB1 * 03:02P, and HLA-A * 02/-B * 35/-DRB1 * 08/-DQB1 * 04. Importantly, the second most frequent haplotype found in our sample (HLA-A * 02/-B * 35/-DRB1 * 04/-DQB1 * 03:02P) has not been previously reported in any mixedancestry populations from Mexico but is commonly encountered in Native American human groups, which can reflect the impact of migration dynamics in the genetic conformation of the northern part of Mexico City, and the limitations of previous studies with regard to the genetic diversity of the analyzed groups. Differences found in haplotype frequencies demonstrated that large urban conglomerates cannot be analyzed as one homogeneous entity but, rather, should

  20. [Algorithm of toxigenic genetically altered Vibrio cholerae El Tor biovar strain identification].

    PubMed

    Smirnova, N I; Agafonov, D A; Zadnova, S P; Cherkasov, A V; Kutyrev, V V

    2014-01-01

    Development of an algorithm of genetically altered Vibrio cholerae biovar El Tor strai identification that ensures determination of serogroup, serovar and biovar of the studied isolate based on pheno- and genotypic properties, detection of genetically altered cholera El Tor causative agents, their differentiation by epidemic potential as well as evaluation of variability of key pathogenicity genes. Complex analysis of 28 natural V. cholerae strains was carried out by using traditional microbiological methods, PCR and fragmentary sequencing. An algorithm of toxigenic genetically altered V. cholerae biovar El Tor strain identification was developed that includes 4 stages: determination of serogroup, serovar and biovar based on phenotypic properties, confirmation of serogroup and biovar based on molecular-genetic properties determination of strains as genetically altered, differentiation of genetically altered strains by their epidemic potential and detection of ctxB and tcpA key pathogenicity gene polymorphism. The algorithm is based on the use of traditional microbiological methods, PCR and sequencing of gene fragments. The use of the developed algorithm will increase the effectiveness of detection of genetically altered variants of the cholera El Tor causative agent, their differentiation by epidemic potential and will ensure establishment of polymorphism of genes that code key pathogenicity factors for determination of origins of the strains and possible routes of introduction of the infection.