Sample records for observed high frequency

  1. The Importance of High Frequency Observations for the SKA

    NASA Astrophysics Data System (ADS)

    Welch, William J.

    2007-12-01

    The plan for the Square Kilometer Array (SKA) is one or more very large arrays operating in two or more contiguous frequency bands: roughly 15 - 90 MHz, 120 - 500 MHz, and 500 MHz - 25 GHz. The last band may be further divided into roughly 500 MHz - 1.5 GHz and 1.5 - 25 GHz. Construction costs may delay or forgo one or more of these bands. We argue that the entire high frequency band is of special importance for astronomy both in the local universe and at great distances and early times. One of the Key Science Projects, the Cradle of Life, requires high sensitivity and resolution at frequencies up to 20 GHz for the study of forming disks around new stars with disk opacities too great for millimeter wave observations. The larger issue of star formation, a poorly understood area, will also benefit from high sensitivity observations at short cm wavelengths. Magnetic field measurements through the Zeeman effect in the densest star forming gas are best done using tracers such as CCS at frequencies of 11 and 22 GHz. The wide frequency range of the SKA permits the observation of multiple rotational transitions of long chain molecules, providing accurate measures of both gas densities and temperatures. The wide field of view will permit large scale surveys of entire star forming clouds revealing, at high resolution, the formation of clusters of pre-protostellar stars and class 0-2 protostars in line radiation. The continuum cm wave radiation will reveal the growth of grains in disks. On the larger scale, observations of CO at high redshifts will trace the evolution of star formation and the formation of metals back to the Epic of Reionization.

  2. High Sensitive Scintillation Observations At Very Low Frequencies

    NASA Astrophysics Data System (ADS)

    Konovalenko, A. A.; Falkovich, I. S.; Kalinichenko, N. N.; Olyak, M. R.; Lecacheux, A.; Rosolen, C.; Bougeret, J.-L.; Rucker, H. O.; Tokarev, Yu.

    The observation of interplanetary scintillations of compact radio sources is powerful method of solar wind diagnostics. This method is developed mainly at decimeter- meter wavelengths. New possibilities are opened at extremely low frequencies (decameter waves) especially at large elongations. Now this approach is being actively developed using high effective decameter antennas UTR-2, URAN and Nancay Decameter Array. New class of back-end facility like high dynamic range, high resolution digital spectral processors, as well as dynamic spectra determination ideology give us new opportunities for distinguishing of the ionospheric and interplanetary scintillations and for observations of large number of radio sources, whith different angular sizes and elongations, even for the cases of rather weak objects.

  3. Discrete-time nonlinear damping backstepping control with observers for rejection of low and high frequency disturbances

    NASA Astrophysics Data System (ADS)

    Kim, Wonhee; Chen, Xu; Lee, Youngwoo; Chung, Chung Choo; Tomizuka, Masayoshi

    2018-05-01

    A discrete-time backstepping control algorithm is proposed for reference tracking of systems affected by both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. A discrete time DOB, which is constructed based on infinite impulse response filters is applied to compensate for narrow band disturbances at high frequencies. A discrete-time nonlinear damping backstepping controller with an augmented observer is proposed to track the desired output and to compensate for low frequency broadband disturbances along with a disturbance observer, for rejecting narrow band high frequency disturbances. This combination has the merit of simultaneously compensating both broadband disturbances at low frequencies and narrow band disturbances at high frequencies. The performance of the proposed method is validated via experiments.

  4. Ground Radar Polarimetric Observations of High-Frequency Earth-Space Communication Links

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Chandrasekar, V.; Benjamin, Andrew

    2002-01-01

    Strategic roadmaps for NASA's Human Exploration and Development of Space (REDS) enterprise support near-term high-frequency communication systems that provide moderate to high data rates with dependable service. Near-earth and human planetary exploration will baseline Ka-Band, but may ultimately require the use of even higher frequencies. Increased commercial demand on low-frequency earth-space bands has also led to increased interest in the use of higher frequencies in regions like K u - and K,- band. Data is taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), which operates at 13.8 GHz, and the true radar reflectivity profile is determined along the PR beam via low-frequency ground based polarimetric observations. The specific differential phase (Kdp) is measured along the beam and a theoretical model is used to determine the expected specific attenuation (k). This technique, called the k-Kdp method, uses a Fuzzy-Logic model to determine the hydrometeor type along the PR beam from which the appropriate k-Kdp relationship is used to determine k and, ultimately, the total path-integrated attenuation (PIA) on PR measurements. Measurements from PR and the NCAR S-POL radar were made during the TEFLUN-B experiment that took place near Melbourne, FL in 1998, and the TRMM-LBA campaign near Ji-Parana, Brazil in 1999.

  5. Theory and observations of high frequency Alfvén eigenmodes in low aspect ratio plasmas

    NASA Astrophysics Data System (ADS)

    Gorelenkov, N. N.; Fredrickson, E.; Belova, E.; Cheng, C. Z.; Gates, D.; Kaye, S.; White, R.

    2003-04-01

    New observations of sub-cyclotron frequency instability in low aspect ratio plasmas in national spherical torus experiments are reported. The frequencies of observed instabilities correlate with the characteristic Alfvén velocity of the plasma. A theory of localized compressional Alfvén eigenmodes (CAE) and global shear Alfvén eigenmodes (GAE) in low aspect ratio plasmas is presented to explain the observed high frequency instabilities. CAEs/GAEs are driven by the velocity space gradient of energetic super-Alfvénic beam ions via Doppler shifted cyclotron resonances. One of the main damping mechanisms of GAEs, the continuum damping, is treated perturbatively within the framework of ideal MHD. Properties of these cyclotron instability ions are presented.

  6. Unusually high frequency natural VLF radio emissions observed during daytime in Northern Finland

    NASA Astrophysics Data System (ADS)

    Manninen, Jyrki; Turunen, Tauno; Kleimenova, Natalia; Rycroft, Michael; Gromova, Liudmila; Sirviö, Iina

    2016-12-01

    Geomagnetic field variations and electromagnetic waves of different frequencies are ever present in the Earth’s environment in which the Earth’s fauna and flora have evolved and live. These waves are a very useful tool for studying and exploring the physics of plasma processes occurring in the magnetosphere and ionosphere. Here we present ground-based observations of natural electromagnetic emissions of magnetospheric origin at very low frequency (VLF, 3-30 kHz), which are neither heard nor seen in their spectrograms because they are hidden by strong impulsive signals (sferics) originating in lightning discharges. After filtering out the sferics, peculiar emissions are revealed in these digital recordings, made in Northern Finland, at unusually high frequencies in the VLF band. These recently revealed emissions, which are observed for several hours almost every day in winter, contain short (˜1-3 min) burst-like structures at frequencies above 4-6 kHz, even up to 15 kHz; fine structure on the 1 s time scale is also prevalent. It seems that these whistler mode emissions are generated deep inside the magnetosphere, but the detailed nature, generation region and propagation behaviour of these newly discovered high latitude VLF emissions remain unknown; however, further research on them may shed new light on wave-particle interactions occurring in the Earth’s radiation belts.

  7. Detection of High-Frequency Oscillations and Damping from Multi-slit Spectroscopic Observations of the Corona

    NASA Astrophysics Data System (ADS)

    Samanta, T.; Singh, J.; Sindhuja, G.; Banerjee, D.

    2016-01-01

    During the total solar eclipse of 11 July 2010, multi-slit spectroscopic observations of the solar corona were performed from Easter Island, Chile. To search for high-frequency waves, observations were taken at a high cadence in the green line at 5303 Å that is due to [Fe xiv] and the red line at 6374 Å that is due to [Fe x]. The data were analyzed to study the periodic variations in intensity, Doppler velocity, and line width using wavelet analysis. The data with high spectral and temporal resolution enabled us to study the rapid dynamical changes within coronal structures. We find that at certain locations, each parameter shows significant oscillation with periods ranging from 6 - 25 s. For the first time, we were able to detect damping of high-frequency oscillations with periods of about 10 s. If the observed damped oscillations are due to magnetohydrodynamic waves, then they can contribute significantly to the heating of the corona. From a statistical study we try to characterize the nature of the observed oscillations while considering the distribution of power in different line parameters.

  8. Experimental observation of the inductive electric field and related plasma nonuniformity in high frequency capacitive discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, S. K.; Chang, H. Y.

    To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with themore » theories of electromagnetic effects in large area and/or high frequency capacitive discharges.« less

  9. ALMA High Frequency Techniques

    NASA Astrophysics Data System (ADS)

    Meyer, J. D.; Mason, B.; Impellizzeri, V.; Kameno, S.; Fomalont, E.; Chibueze, J.; Takahashi, S.; Remijan, A.; Wilson, C.; ALMA Science Team

    2015-12-01

    The purpose of the ALMA High Frequency Campaign is to improve the quality and efficiency of science observing in Bands 8, 9, and 10 (385-950 GHz), the highest frequencies available to the ALMA project. To this end, we outline observing modes which we have demonstrated to improve high frequency calibration for the 12m array and the ACA, and we present the calibration of the total power antennas at these frequencies. Band-to-band (B2B) transfer and bandwidth switching (BWSW), techniques which improve the speed and accuracy of calibration at the highest frequencies, are most necessary in Bands 8, 9, and 10 due to the rarity of strong calibrators. These techniques successfully enable increased signal-to-noise on the calibrator sources (and better calibration solutions) by measuring the calibrators at lower frequencies (B2B) or in wider bandwidths (BWSW) compared to the science target. We have also demonstrated the stability of the bandpass shape to better than 2.4% for 1 hour, hidden behind random noise, in Band 9. Finally, total power observing using the dual sideband receivers in Bands 9 and 10 requires the separation of the two sidebands; this procedure has been demonstrated in Band 9 and is undergoing further testing in Band 10.

  10. High-Frequency Observation of Water Spectrum and Its Application in Monitoring of Dynamic Variation of Suspended Materials in the Hangzhou Bay.

    PubMed

    Dai, Qian; Pan, De-lu; He, Xian-qiang; Zhu, Qian-kun; Gong, Fang; Huang, Hai-qing

    2015-11-01

    In situ measurement of water spectrum is the basis of the validation of the ocean color remote sensing. The traditional method to obtain the water spectrum is based on the shipboard measurement at limited stations, which is difficult to meet the requirement of validation of ocean color remote sensing in the highly dynamic coastal waters. To overcome this shortage, continuously observing systems of water spectrum have been developed in the world. However, so far, there are still few high-frequency observation systems of the water spectrum in coastal waters, especially in the highly turbid and high-dynamic waters. Here, we established a high-frequency water-spectrum observing system based on tower in the Hangzhou Bay. The system measures the water spectrum at a step of 3 minutes, which can fully match the satellite observation. In this paper, we primarily developed a data processing method for the tower-based high-frequency water spectrum data, to realize automatic judgment of clear sky, sun glint, platform shadow, and weak illumination, etc. , and verified the processing results. The results show that the normalized water-leaving radiance spectra obtained through tower observation have relatively high consistency with the shipboard measurement results, with correlation coefficient of more than 0. 99, and average relative error of 9.96%. In addition, the long-term observation capability of the tower-based high-frequency water-spectrum observing system was evaluated, and the results show that although the system has run for one year, the normalized water-leaving radiance obtained by this system have good consistency with the synchronously measurement by Portable spectrometer ASD in respect of spectral shape and value, with correlation coefficient of more than 0.90 and average relative error of 6.48%. Moreover, the water spectra from high-frequency observation by the system can be used to effectively monitor the rapid dynamic variation in concentration of suspended

  11. EXPLORATION OF SOURCE FREQUENCY PHASE REFERENCING TECHNIQUES FOR ASTROMETRY AND OBSERVATIONS OF WEAK SOURCES WITH HIGH FREQUENCY SPACE VERY LONG BASELINE INTERFEROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rioja, M.; Dodson, R.; Malarecki, J.

    2011-11-15

    Space very long baseline interferometry (S-VLBI) observations at high frequencies hold the prospect of achieving the highest angular resolutions and astrometric accuracies, resulting from the long baselines between ground and satellite telescopes. Nevertheless, space-specific issues, such as limited accuracy in the satellite orbit reconstruction and constraints on the satellite antenna pointing operations, limit the application of conventional phase referencing. We investigate the feasibility of an alternative technique, source frequency phase referencing (SFPR), to the S-VLBI domain. With these investigations we aim to contribute to the design of the next generation of S-VLBI missions. We have used both analytical and simulationmore » studies to characterize the performance of SFPR in S-VLBI observations, applied to astrometry and increased coherence time, and compared these to results obtained using conventional phase referencing. The observing configurations use the specifications of the ASTRO-G mission for their starting point. Our results show that the SFPR technique enables astrometry at 43 GHz, using alternating observations with 22 GHz, regardless of the orbit errors, for most weathers and under a wide variety of conditions. The same applies to the increased coherence time for the detection of weak sources. Our studies show that the capability to carry out simultaneous dual frequency observations enables application to higher frequencies, and a general improvement of the performance in all cases, hence we recommend its consideration for S-VLBI programs.« less

  12. Observation of frequency cutoff for self-excited dust acoustic waves

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Zhdanov, S. K.; Morfill, G. E.; Kim, S.-H.; Heinrich, J.; Merlino, R. L.

    2009-11-01

    Complex (dusty) plasmas consist of fine solid particles suspended in a weakly ionized gas. Complex plasmas are excellent model systems to study wave phenomena down to the level of individual ``atoms''. Spontaneously excited dust acoustic waves were observed with high temporal resolution in a suspension of micron-size kaolin particles in a dc discharge in argon. Wave activity was found at frequencies as high as 400 Hz. At high wave numbers, the wave dispersion relation was acoustic-like (frequency proportional to wave number). At low wave numbers, the wave frequency did not tend to zero, but reached a cutoff frequency fc instead. The value of fc declined with distance from the anode. We propose a simple model that explains the observed cutoff by particle confinement in plasma. The existence of a cutoff frequency is very important for the propagation of waves: the waves excited above fc are propagating, and those below fc are evanescent.

  13. Experimental observation of standing wave effect in low-pressure very-high-frequency capacitive discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yong-Xin; Gao, Fei; Liu, Jia

    2014-07-28

    Radial uniformity measurements of plasma density were carried out by using a floating double probe in a cylindrical (21 cm in electrode diameter) capacitive discharge reactor driven over a wide range of frequencies (27–220 MHz). At low rf power, a multiple-node structure of standing wave effect was observed at 130 MHz. The secondary density peak caused by the standing wave effect became pronounced and shifts toward the axis as the driving frequency further to increase, indicative of a much more shortened standing-wave wavelength. With increasing rf power, the secondary density peak shift toward the radial edge, namely, the standing-wave wavelength was increased,more » in good qualitative agreement with the previous theory and simulation results. At higher pressures and high frequencies, the rf power was primarily deposited at the periphery of the electrode, due to the fact that the waves were strongly damped as they propagated from the discharge edge into the center.« less

  14. Ionospheric modifications in high frequency heating experiments

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer P.

    2015-01-01

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  15. Evaluation on surface current observing network of high frequency ground wave radars in the Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Yin, Xunqiang; Shi, Junqiang; Qiao, Fangli

    2018-05-01

    Due to the high cost of ocean observation system, the scientific design of observation network becomes much important. The current network of the high frequency radar system in the Gulf of Thailand has been studied using a three-dimensional coastal ocean model. At first, the observations from current radars have been assimilated into this coastal model and the forecast results have improved due to the data assimilation. But the results also show that further optimization of the observing network is necessary. And then, a series of experiments were carried out to assess the performance of the existing high frequency ground wave radar surface current observation system. The simulated surface current data in three regions were assimilated sequentially using an efficient ensemble Kalman filter data assimilation scheme. The experimental results showed that the coastal surface current observation system plays a positive role in improving the numerical simulation of the currents. Compared with the control experiment without assimilation, the simulation precision of surface and subsurface current had been improved after assimilated the surface currents observed at current networks. However, the improvement for three observing regions was quite different and current observing network in the Gulf of Thailand is not effective and a further optimization is required. Based on these evaluations, a manual scheme has been designed by discarding the redundant and inefficient locations and adding new stations where the performance after data assimilation is still low. For comparison, an objective scheme based on the idea of data assimilation has been obtained. Results show that all the two schemes of observing network perform better than the original network and optimal scheme-based data assimilation is much superior to the manual scheme that based on the evaluation of original observing network in the Gulf of Thailand. The distributions of the optimal network of radars could be a

  16. Variation of Static-PPP Positioning Accuracy Using GPS-Single Frequency Observations (Aswan, Egypt)

    NASA Astrophysics Data System (ADS)

    Farah, Ashraf

    2017-06-01

    Precise Point Positioning (PPP) is a technique used for position computation with a high accuracy using only one GNSS receiver. It depends on highly accurate satellite position and clock data rather than broadcast ephemeries. PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of collected observations. PPP-(dual frequency receivers) offers comparable accuracy to differential GPS. PPP-single frequency receivers has many applications such as infrastructure, hydrography and precision agriculture. PPP using low cost GPS single-frequency receivers is an area of great interest for millions of users in developing countries such as Egypt. This research presents a study for the variability of single frequency static GPS-PPP precision based on different observation durations.

  17. High-Frequency Peaks in the Power Spectrum of Solar Velocity Observations from the GOLF Experiment

    NASA Astrophysics Data System (ADS)

    García, R. A.; Pallé, P. L.; Turck-Chièze, S.; Osaki, Y.; Shibahashi, H.; Jefferies, S. M.; Boumier, P.; Gabriel, A. H.; Grec, G.; Robillot, J. M.; Cortés, T. Roca; Ulrich, R. K.

    1998-09-01

    The power spectrum of more than 630 days of full-disk solar velocity data, provided by the GOLF spectrophotometer aboard the Solar and Heliospheric Observatory, has revealed the presence of modelike structure well beyond the acoustic cutoff frequency for the solar atmosphere (νac~5.4 mHz). Similar data produced by full-disk instruments deployed in Earth-based networks (BiSON and IRIS) had not shown any peak structure above νac: this is probably due to the higher levels of noise that are inherent in Earth-based experiments. We show that the observed peak structure (νac<=ν<=7.5 mHz) can be explained by a simple two-wave interference model if the high-frequency waves are partially reflected at the back side of the Sun.

  18. High Frequency Radio Observations of the Reactivated Magnetar PSR J1622-4950

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron B.; Majid, Walid A.; Prince, Thomas A.; Horiuchi, Shinji; Kocz, Jonathon; Lazio, T. J. W.; Naudet, Charles J.

    2017-07-01

    Radio emission from the magnetar PSR J1622-4950 was recently reported to have resumed (Camilo et al., ATel #10346). We have carried out Target of Opportunity (ToO) radio observations of PSR J1622-4950 at S-band (2.3 GHz) and X-band (8.4 GHz) using the 70-m diameter Deep Space Network (DSN) radio dish (DSS-43) in Canberra, Australia. We report on our single polarization mode observations of PSR J1622-4950 spanning 5 hours on 23 May 2017 starting at 16:03:32 UTC. Pulsations were detected at a period of 4.327308(1) s. We measure a mean flux density of 3.8(8)/0.41(8) mJy at S/X-band, from which we derive a spectral index of -1.7(2). We note that PSR J1622-4950's spectral behavior is now consistent with the majority of pulsars, which have a mean spectral index of -1.8(2) (Maron et al. (2000)). The result by Maron et al. (2000) is used here because they included more high frequency pulsar spectra than other studies to characterize the underlying spectral index distribution over a wide frequency range. The mean flux density at S-band has now increased by an order of magnitude compared to previous flux density measurements by Scholz et al. (2017) during the magnetar's quiescent state. Furthermore, the spectral index has steepened compared to a nearly flat spectral index from flux density measurements between 1.4 and 24 GHz prior to the disappearance of the radio emission (Levin et al. (2010); Keith et al. (2011); Levin et al. (2012); Anderson et al. (2012); Scholz et al. (2017)). We are continuing to monitor changes in PSR J1622-4950's radio spectrum at both S-band and X-band. We thank the DSN (Deep Space Network) and Canberra Deep Space Communication Complex (CDSCC) teams for scheduling these observations.

  19. High-spectral resolution solar microwave observations

    NASA Technical Reports Server (NTRS)

    Hurford, G. J.

    1986-01-01

    The application of high-spectral resolution microwave observations to the study of solar activity is discussed with particular emphasis on the frequency dependence of microwave emission from solar active regions. A shell model of gyroresonance emission from active regions is described which suggest that high-spectral resolution, spatially-resolved observations can provide quantitative information about the magnetic field distribution at the base of the corona. Corresponding observations of a single sunspot with the Owens Valley frequency-agile interferometer at 56 frequencies between 1.2 and 14 Ghs are presented. The overall form of the observed size and brightness temperature spectra was consistent with expectations based on the shell model, although there were differences of potential physical significance. The merits and weaknesses of microwave spectroscopy as a technique for measuring magnetic fields in the solar corona are briefly discussed.

  20. Observations of High-frequency Internal Wave Energy Offshore of Point Loma, California

    NASA Astrophysics Data System (ADS)

    Rhee, K.; Crosby, S. C.; Fiedler, J. W.

    2016-12-01

    As coastally directed internal wave energy shoals in shallow water, the resulting bores can transport cold, dense, nutrient-rich waters shoreward, influencing local fauna and ultimately dissipating tidal energy into heat. Understanding the mechanisms, propagation, and resultant transport is crucial for determining the physical-biological interactions along our coasts. We observed significant internal wave energy offshore of Point Loma, San Diego using a thermistor chain moored in 22m depth. Temperature observations spaced 1.5m apart from 0 to 18m were sampled at 2Hz and recorded for a period of ten days during July 2016. Temperature, salinity, oxygen, and nutrient profiles were obtained at 3 stations further offshore during deployment and recovery cruises. At the time of mooring deployment, thermocline depth was 10 to 20m. During recovery we observed a significant decrease of thermocline depth, which was likely caused by surface mixing during a strong wind event. During the 10-day deployment we observed many high frequency (5 to 10 minute periods) internal waves events. In addition, we noticed rapid temperature changes (4oC in less than a minute) suggestive of internal bores; however, other events appeared to be linear, possibly indicating unbroken internal waves. Here, we examine the critical slope for linear mode-1 propagation, the correlation of these events with tidal ebb and flow, and infer how a deeper mixed layer effects internal wave propagation.

  1. Masking of low-frequency signals by high-frequency, high-level narrow bands of noisea

    PubMed Central

    Patra, Harisadhan; Roup, Christina M.; Feth, Lawrence L.

    2011-01-01

    Low-frequency masking by intense high-frequency noise bands, referred to as remote masking (RM), was the first evidence to challenge energy-detection models of signal detection. Its underlying mechanisms remain unknown. RM was measured in five normal-hearing young-adults at 250, 350, 500, and 700 Hz using equal-power, spectrally matched random-phase noise (RPN) and low-noise noise (LNN) narrowband maskers. RM was also measured using equal-power, two-tone complex (TC2) and eight-tone complex (TC8). Maskers were centered at 3000 Hz with one or two equivalent rectangular bandwidths (ERBs). Masker levels varied from 80 to 95 dB sound pressure level in 5 dB steps. LNN produced negligible masking for all conditions. An increase in bandwidth in RPN yielded greater masking over a wider frequency region. Masking for TC2 was limited to 350 and 700 Hz for one ERB but shifted to only 700 Hz for two ERBs. A spread of masking to 500 and 700 Hz was observed for TC8 when the bandwidth was increased from one to two ERBs. Results suggest that high-frequency noise bands at high levels could generate significant low-frequency masking. It is possible that listeners experience significant RM due to the amplification of various competing noises that might have significant implications for speech perception in noise. PMID:21361445

  2. Linking snowflake microstructure to multi-frequency radar observations

    NASA Astrophysics Data System (ADS)

    Leinonen, J.; Moisseev, D.; Nousiainen, T.

    2013-04-01

    Spherical or spheroidal particle shape models are commonly used to calculate numerically the radar backscattering properties of aggregate snowflakes. A more complicated and computationally intensive approach is to use detailed models of snowflake structure together with numerical scattering models that can operate on arbitrary particle shapes. Recent studies have shown that there can be significant differences between the results of these approaches. In this paper, an analytical model, based on the Rayleigh-Gans scattering theory, is formulated to explain this discrepancy in terms of the effect of discrete ice crystals that constitute the snowflake. The ice crystals cause small-scale inhomogeneities whose effects can be understood through the density autocorrelation function of the particle mass, which the Rayleigh-Gans theory connects to the function that gives the radar reflectivity as a function of frequency. The derived model is a weighted sum of two Gaussian functions. A term that corresponds to the average shape of the particle, similar to that given by the spheroidal shape model, dominates at low frequencies. At high frequencies, that term vanishes and is gradually replaced by the effect of the ice crystal monomers. The autocorrelation-based description of snowflake microstructure appears to be sufficient for multi-frequency radar studies. The link between multi-frequency radar observations and the particle microstructure can thus be used to infer particle properties from the observations.

  3. High Frequency Variations of Earth Rotation Parameters from GPS and GLONASS Observations

    PubMed Central

    Wei, Erhu; Jin, Shuanggen; Wan, Lihua; Liu, Wenjie; Yang, Yali; Hu, Zhenghong

    2015-01-01

    The Earth's rotation undergoes changes with the influence of geophysical factors, such as Earth's surface fluid mass redistribution of the atmosphere, ocean and hydrology. However, variations of Earth Rotation Parameters (ERP) are still not well understood, particularly the short-period variations (e.g., diurnal and semi-diurnal variations) and their causes. In this paper, the hourly time series of Earth Rotation Parameters are estimated using Global Positioning System (GPS), Global Navigation Satellite System (GLONASS), and combining GPS and GLONASS data collected from nearly 80 sites from 1 November 2012 to 10 April 2014. These new observations with combining different satellite systems can help to decorrelate orbit biases and ERP, which improve estimation of ERP. The high frequency variations of ERP are analyzed using a de-trending method. The maximum of total diurnal and semidiurnal variations are within one milli-arcseconds (mas) in Polar Motion (PM) and 0.5 milli-seconds (ms) in UT1-UTC. The semidiurnal and diurnal variations are mainly related to the ocean tides. Furthermore, the impacts of satellite orbit and time interval used to determinate ERP on the amplitudes of tidal terms are analyzed. We obtain some small terms that are not described in the ocean tide model of the IERS Conventions 2010, which may be caused by the strategies and models we used or the signal noises as well as artifacts. In addition, there are also small differences on the amplitudes between our results and IERS convention. This might be a result of other geophysical excitations, such as the high-frequency variations in atmospheric angular momentum (AAM) and hydrological angular momentum (HAM), which needs more detailed analysis with more geophysical data in the future. PMID:25635416

  4. High frequency oscillations in brain hemodynamic response

    NASA Astrophysics Data System (ADS)

    Akin, Ata; Bolay, Hayrunnisa

    2007-07-01

    Tight autoregulation of vessel tone guarantees proper delivery of nutrients to the tissues. This regulation is maintained at a more delicate level in the brain since any decrease in the supply of glucose and oxygen to neuronal tissues might lead to unrecoverable injury. Functional near infrared spectroscopy has been proposed as a new tool to monitor the cerebrovascular response during cognitive activity. We have observed that during a Stroop task three distinct oscillatory patterns govern the control of the cerebrovascular reactivity: very low frequency (0.02-0.05 Hz), low frequency (0.08-0.12 Hz) and high frequency (0.12-0.18 Hz). High frequency oscillations have been shown to be related to stress level of the subjects. Our findings indicate that as the stress level is increased so does the energy of the high frequency component indicating a higher stimulation from the autonomic nervous system.

  5. HFT events - Shallow moonquakes. [High-Frequency Teleseismic

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.

    1977-01-01

    A few large distant seismic events of distinctly high signal frequency, designated HFT (high-frequency teleseismic) events, are observed yearly by the Apollo lunar seismic network. Their sources are located on or near the surface of the moon, leaving a large gap in seismic activity between the zones of HFT sources and deep moonquakes. No strong regularities are found in either their spatial or temporal distributions. Several working hypotheses for the identity of these sources have advanced, but many characteristics of the events seem to favor a hypothesis that they are shallow moonquakes. Simultaneous observations of other lunar phenomena may eventually enable the determination of their true identity.

  6. Estimation of High-Frequency Earth-Space Radio Wave Signals via Ground-Based Polarimetric Radar Observations

    NASA Technical Reports Server (NTRS)

    Bolen, Steve; Chandrasekar, V.

    2002-01-01

    Expanding human presence in space, and enabling the commercialization of this frontier, is part of the strategic goals for NASA's Human Exploration and Development of Space (HEDS) enterprise. Future near-Earth and planetary missions will support the use of high-frequency Earth-space communication systems. Additionally, increased commercial demand on low-frequency Earth-space links in the S- and C-band spectra have led to increased interest in the use of higher frequencies in regions like Ku and Ka-band. Attenuation of high-frequency signals, due to a precipitating medium, can be quite severe and can cause considerable disruptions in a communications link that traverses such a medium. Previously, ground radar measurements were made along the Earth-space path and compared to satellite beacon data that was transmitted to a ground station. In this paper, quantitative estimation of the attenuation along the propagation path is made via inter-comparisons of radar data taken from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and ground-based polarimetric radar observations. Theoretical relationships between the expected specific attenuation (k) of spaceborne measurements with ground-based measurements of reflectivity (Zh) and differential propagation phase shift (Kdp) are developed for various hydrometeors that could be present along the propagation path, which are used to estimate the two-way path-integrated attenuation (PIA) on the PR return echo. Resolution volume matching and alignment of the radar systems is performed, and a direct comparison of PR return echo with ground radar attenuation estimates is made directly on a beam-by-beam basis. The technique is validated using data collected from the TExas and Florida UNderflights (TEFLUN-B) experiment and the TRMM large Biosphere-Atmosphere experiment in Amazonia (LBA) campaign. Attenuation estimation derived from this method can be used for strategiC planning of communication systems for

  7. Frequency and mode identification of γ Doradus from photometric and spectroscopic observations*

    NASA Astrophysics Data System (ADS)

    Brunsden, E.; Pollard, K. R.; Wright, D. J.; De Cat, P.; Cottrell, P. L.

    2018-04-01

    The prototype star for the γ Doradus class of pulsating variables was studied employing photometric and spectroscopic observations to determine the frequencies and modes of pulsation. The four frequencies found are self-consistent between the observation types and almost identical to those found in previous studies (1.3641 d-1, 1.8783 d-1, 1.4742 d-1, and 1.3209 d-1). Three of the frequencies are classified as l, m = (1, 1) pulsations and the other is ambiguous between l, m = (2, 0) and (2, -2) modes. Two frequencies are shown to be stable over 20 yr since their first identification. The agreement in ground-based work makes this star an excellent calibrator between high-precision photometry and spectroscopy with the upcoming TESS observations and a potential standard for continued asteroseismic modelling.

  8. Broadband high-frequency waves and intermittent energy conversion at dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Yang, J.; Cao, J.; Fu, H.; Wang, T.; Liu, W.; Yao, Z., Sr.

    2017-12-01

    Dipolarization front (DF) is a sharp boundary most probably separating the reconnection jet from the background plasma sheet. So far at this boundary, the observed waves are mainly in low-frequency range (e.g., magnetosonic waves and lower hybrid waves). Few high-frequency waves are observed in this region. In this paper, we report the broadband high-frequency wave emissions at the DF. These waves, having frequencies extending from the electron cyclotron frequency fce, up to the electron plasma frequency fpe, could contribute 10% to the in situ measurement of intermittent energy conversion at the DF layer. Their generation may be attributed to electron beams, which are simultaneously observed at the DF as well. Furthermore, we find intermittent energy conversion is primarily to the broadband fluctuations in the lower hybrid frequency range although the net energy conversion is small.

  9. Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves

    NASA Astrophysics Data System (ADS)

    Grach, S. M.; Sergeev, E. N.; Mishin, E. V.; Shindin, A. V.

    2016-11-01

    A review is given of the current state-of-the-art of experimental studies and the theoretical understanding of nonlinear phenomena that occur in the ionospheric F-layer irradiated by high-power high-frequency ground-based transmitters. The main focus is on the dynamic features of high-frequency turbulence (plasma waves) and low-frequency turbulence (density irregularities of various scales) that have been studied in experiments at the Sura and HAARP heating facilities operated in temporal and frequency regimes specially designed with consideration of the characteristic properties of nonlinear processes in the perturbed ionosphere using modern radio receivers and optical instruments. Experimental results are compared with theoretical turbulence models for a magnetized collisional plasma in a high-frequency electromagnetic field, allowing the identification of the processes responsible for the observed features of artificial ionospheric turbulence.

  10. High Frequency Radar Observations of Tidal Current Variability in the Lower Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Updyke, T. G.; Dusek, G.; Atkinson, L. P.

    2016-02-01

    Analysis of eight years of high frequency radar surface current observations in the lower Chesapeake Bay is presented with a focus on the variability of the tidal component of the surface circulation which accounts for a majority of the variance of the surface flow (typically 70-80% for the middle of the radar footprint). Variations in amplitude and phase of the major tidal constituents are examined in the context of water level, wind and river discharge data. Comparisons are made with harmonic analysis results from long-term records of current data measured by three current profilers operated by NOAA as part of the Chesapeake Bay Physical Oceanographic Real-Time System (PORTS). Preliminary results indicate that there is significant spatial variability in the M2 amplitude over the HF radar grid as well as temporal variability when harmonic analysis is performed using bi-monthly time segments over the course of the record.

  11. Instantaneous Frequency Analysis on Nonlinear EMIC Emissions: Arase Observation

    NASA Astrophysics Data System (ADS)

    Shoji, M.; Yoshizumi, M.; Omura, Y.; Kasaba, Y.; Ishisaka, K.; Matsuda, S.; Kasahara, Y.; Yagitani, S.; Matsuoka, A.; Teramoto, M.; Takashima, T.; Shinohara, I.

    2017-12-01

    In the inner magnetosphere, electromagnetic ion cyclotron (EMIC) waves cause nonlinear interactions with energetic protons. The waves drastically modify the proton distribution function, resulting in the particle loss in the radiation belt. Arase spacecraft, launched in late 2016, observed a nonlinear EMIC falling tone emission in the high magnetic latitude (MLAT) region of the inner magnetosphere. The wave growth with sub-packet structures of the falling tone emission is found by waveform data from PWE/EFD instrument. The evolution of the instantaneous frequency of the electric field of the EMIC falling tone emission is analyzed by Hilbert-Huang transform (HHT). We find several sub-packets with rising frequency in the falling tone wave. A self-consistent hybrid simulation suggested the complicate frequency evolution of the EMIC sub-packet emissions in the generation region. The intrinsic mode functions of Arase data derived from HHT are compared with the simulation data. The origin of the falling tone emission in the high MLAT region is also discussed.

  12. Noise measurements during high-frequency oscillatory and conventional mechanical ventilation.

    PubMed

    Berens, R J; Weigle, C G

    1995-10-01

    To evaluate the noise levels with high-frequency oscillatory ventilation and conventional mechanical ventilation. An observational, prospective study. Pediatric intensive care unit. The caretakers and environment of the pediatric intensive care unit. High-frequency oscillatory and conventional mechanical ventilation. Caretakers evaluated noise using a visual analog scale. Noise was measured with a decibel meter and an octave band frequency filter. There was twice as much noise perceived by the caretakers and as measured on the decibel A scale. All measures showed significantly greater noise, especially at low frequencies, with high-frequency oscillatory ventilation. High-frequency oscillatory ventilation exposes the patient to twice as much noise as does the use of conventional mechanical ventilation.

  13. Active Control of High-Speed Free Jets Using High-Frequency Excitation

    NASA Astrophysics Data System (ADS)

    Upadhyay, Puja

    global suppression of turbulence intensities for all axial locations, also evidenced by a longer potential core and overall reduced jet spreading. The resulting impact on the noise signature is estimated via far-field acoustic measurements. Noise reduction was observed at low to moderate frequencies for all observation angles. Direct comparison of these results with that of steady microjet injection revealed some notable differences in the initial development of streamwise vorticity and the redistribution of peak turbulence in the azimuthal direction. However, despite significant differences in the near nozzle aerodynamics, the downstream evolution of the jet appeared to approach near similar conditions with both high-frequency and steady microjet injection. Moreover, the impact on far-field noise was also comparable between the two injection methods as well as with others reported in the literature. Finally, for jets at higher Mach numbers and elevated temperatures, the effect of control was observed to vary with jet conditions. While the impact of the two control mechanisms were fairly comparable on non-shock containing jets, high-frequency forcing was observed to produce significantly larger reductions in screech and broadband shock-associated noise (BBSN) at select under-expanded jet conditions. The observed variations in control effects at different jet conditions call for further investigation.

  14. Solar observations with a low frequency radio telescope

    NASA Astrophysics Data System (ADS)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  15. Simultaneous multi-frequency imaging observations of solar microwave bursts

    NASA Technical Reports Server (NTRS)

    Kundu, M. R.; White, S. M.; Schmahl, E. J.

    1989-01-01

    The results of simultaneous two-frequency imaging observations of solar microwave bursts with the Very Large Array are reviewed. Simultaneous 2 and 6 cm observations have been made of bursts which are optically thin at both frequencies, or optically thick at the lower frequency. In the latter case, the source structure may differ at the two frequencies, but the two sources usually seem to be related. However, this is not always true of simultaneous 6 and 20 cm observations. The results have implications for the analysis of nonimaging radio data of solar and stellar flares.

  16. Modulation of high frequency noise by engine tones of small boats.

    PubMed

    Pollara, Alexander; Sutin, Alexander; Salloum, Hady

    2017-07-01

    The effect of modulation of high frequency ship noise by propeller rotation frequencies is well known. This modulation is observed with the Detection of Envelope Modulation on Noise (DEMON) algorithm. Analysis of the DEMON spectrum allows the revolutions per minute and number of blades of the propeller to be determined. This work shows that the high frequency noise of a small boat can also be modulated by engine frequencies. Prior studies have not reported high frequency noise amplitude modulated at engine frequencies. This modulation is likely produced by bubbles from the engine exhaust system.

  17. High-frequency, high-intensity photoionization

    NASA Astrophysics Data System (ADS)

    Reiss, H. R.

    1996-02-01

    Two analytical methods for computing ionization by high-frequency fields are compared. Predicted ionization rates compare well, but energy predictions for the onset of ionization differ radically. The difference is shown to arise from the use of a transformation in one of the methods that alters the zero from which energy is measured. This alteration leads to an apparent energy threshold for ionization that can, especially in the stabilization regime, differ strongly from the laboratory measurement. It is concluded that channel closings in intense-field ionization can occur at high as well as low frequencies. It is also found that the stabilization phenomenon at high frequencies, very prominent for hydrogen, is absent in a short-range potential.

  18. High frequency ultrasound with color Doppler in dermatology*

    PubMed Central

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  19. High-frequency and time resolution rocket observations of structured low- and medium-frequency whistler mode emissions in the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    LaBelle, J.; McAdams, K. L.; Trimpi, M. L.

    High bandwidth electric field waveform measurements on a recent auroral sounding rocket reveal structured whistler mode signals at 400-800 kHz. These are observed intermittently between 300 and 500 km with spectral densities 0-10 dB above the detection threshold of 1.5×10-11V2/m2Hz. The lack of correlation with local particle measurements suggests a remote source. The signals are composed of discrete structures, in one case having bandwidths of about 10 kHz and exhibiting rapid frequency variations of the order of 200 kHz per 100 ms. In one case, emissions near the harmonic of the whistler mode signals are detected simultaneously. Current theories of auroral zone whistler mode emissions have not been applied to explain quantitatively the fine structure of these signals, which resemble auroral kilometric radiation (AKR) rather than auroral hiss.

  20. Handling the satellite inter-frequency biases in triple-frequency observations

    NASA Astrophysics Data System (ADS)

    Zhao, Lewen; Ye, Shirong; Song, Jia

    2017-04-01

    The new generation of GNSS satellites, including BDS, Galileo, modernized GPS, and GLONASS, transmit navigation sdata at more frequencies. Multi-frequency signals open new prospects for precise positioning, but satellite code and phase inter-frequency biases (IFB) induced by the third frequency need to be handled. Satellite code IFB can be corrected using products estimated by different strategies, the theoretical and numerical compatibility of these methods need to be proved. Furthermore, a new type of phase IFB, which changes with the relative sun-spacecraft-earth geometry, has been observed. It is necessary to investigate the cause and possible impacts of phase Time-variant IFB (TIFB). Therefore, we present systematic analysis to illustrate the relevancy between satellite clocks and phase TIFB, and compare the handling strategies of the code and phase IFB in triple-frequency positioning. First, the un-differenced L1/L2 satellite clock corrections considering the hardware delays are derived. And IFB induced by the dual-frequency satellite clocks to triple-frequency PPP model is detailed. The analysis shows that estimated satellite clocks actually contain the time-variant phase hardware delays, which can be compensated in L1/L2 ionosphere-free combinations. However, the time-variant hardware delays will lead to TIFB if the third frequency is used. Then, the methods used to correct the code and phase IFB are discussed. Standard point positioning (SPP) and precise point positioning (PPP) using BDS observations are carried out to validate the improvement of different IFB correction strategies. Experiments show that code IFB derived from DCB or geometry-free and ionosphere-free combination show an agreement of 0.3 ns for all satellites. Positioning results and error distribution with two different code IFB correcting strategies achieve similar tendency, which shows their substitutability. The original and wavelet filtered phase TIFB long-term series show significant

  1. Parkinsonian Rest Tremor Is Associated With Modulations of Subthalamic High-Frequency Oscillations.

    PubMed

    Hirschmann, Jan; Butz, Markus; Hartmann, Christian J; Hoogenboom, Nienke; Özkurt, Tolga E; Vesper, Jan; Wojtecki, Lars; Schnitzler, Alfons

    2016-10-01

    High frequency oscillations (>200 Hz) have been observed in the basal ganglia of PD patients and were shown to be modulated by the administration of levodopa and voluntary movement. The objective of this study was to test whether the power of high-frequency oscillations in the STN is associated with spontaneous manifestation of parkinsonian rest tremor. The electromyogram of both forearms and local field potentials from the STN were recorded in 11 PD patients (10 men, age 58 [9.4] years, disease duration 9.2 [6.3] years). Patients were recorded at rest and while performing repetitive hand movements before and after levodopa intake. High-frequency oscillation power was compared across epochs containing rest tremor, tremor-free rest, or voluntary movement and related to the tremor cycle. We observed prominent slow (200-300 Hz) and fast (300-400 Hz) high-frequency oscillations. The ratio between slow and fast high-frequency oscillation power increased when tremor became manifest. This increase was consistent across nuclei (94%) and occurred in medication ON and OFF. The ratio outperformed other potential markers of tremor, such as power at individual tremor frequency, beta power, or low gamma power. For voluntary movement, we did not observe a significant difference when compared with rest or rest tremor. Finally, rhythmic modulations of high-frequency oscillation power occurred within the tremor cycle. Subthalamic high-frequency oscillation power is closely linked to the occurrence of parkinsonian rest tremor. The balance between slow and fast high-frequency oscillation power combines information on motor and medication state. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.

  2. Identification of flexible structures by frequency-domain observability range context

    NASA Astrophysics Data System (ADS)

    Hopkins, M. A.

    2013-04-01

    The well known frequency-domain observability range space extraction (FORSE) algorithm provides a powerful multivariable system-identification tool with inherent flexibility, to create state-space models from frequency-response data (FRD). This paper presents a method of using FORSE to create "context models" of a lightly damped system, from which models of individual resonant modes can be extracted. Further, it shows how to combine the extracted models of many individual modes into one large state-space model. Using this method, the author has created very high-order state-space models that accurately match measured FRD over very broad bandwidths, i.e., resonant peaks spread across five orders-of-magnitude of frequency bandwidth.

  3. Dynamic Observation of the Morphological Changes in Paraurethral Ducts Infected with Gonococci in Men before and after Ceftriaxone Therapy Using High-Frequency Ultrasound.

    PubMed

    Fan, Wenge; Zhang, Qingsong; Ye, Xun; Fan, Zhijiang

    2018-01-01

    To observe the morphological changes in paraurethral ducts infected with gonococci in men before and after the administration of the ceftriaxone therapy using high-frequency ultrasound and determine its clinical significance. Thirty-two male patients with gonococcal paraurethral duct infection were enrolled. Their lesions were examined using an ACUSON X300 ultrasound system before and after they were subjected to ceftriaxone therapy. The paraurethral duct was completely closed 3-4 days after ceftriaxone treatment in 30 patients. Paraurethral duct closure began from the blind end and proceeded gradually towards its orifice; during closure, the paraurethral duct diameter showed no apparent change. These 30 patients whose paraurethral ducts closed were considered cured. In the remaining 2 patients, the length and diameter of the paraurethral ducts showed no change before and after ceftriaxone treatment; one patient was unresponsive to ceftriaxone treatment, and the other had secondary dilatation of the paraurethral duct. These 2 patients were cured after surgery. High-frequency ultrasound enables dynamic observation of the morphological changes in paraurethral ducts infected with gonococci before and after ceftriaxone therapy. High-frequency ultrasound can provide valuable information for incision, drainage, and wedge resection of paraurethral ducts. © 2017 S. Karger AG, Basel.

  4. High Frequency High Spectral Resolution Focal Plane Arrays for AtLAST

    NASA Astrophysics Data System (ADS)

    Baryshev, Andrey

    2018-01-01

    Large collecting area single dish telescope such as ATLAST will be especially effective for medium (R 1000) and high (R 50000) spectral resolution observations. Large focal plane array is a natural solution to increase mapping speed. For medium resolution direct detectors with filter banks (KIDs) and or heterodyne technology can be employed. We will analyze performance limits of comparable KID and SIS focal plane array taking into account quantum limit and high background condition of terrestrial observing site. For large heterodyne focal plane arrays, a high current density AlN junctions open possibility of large instantaneous bandwidth >40%. This and possible multi frequency band FPSs presents a practical challenge for spatial sampling and scanning strategies. We will discuss phase array feeds as a possible solution, including a modular back-end system, which can be shared between KID and SIS based FPA. Finally we will discuss achievable sensitivities and pixel co unts for a high frequency (>500 GHz) FPAs and address main technical challenges: LO distribution, wire counts, bias line multiplexing, and monolithic vs. discrete mixer component integration.

  5. Harnessing high-dimensional hyperentanglement through a biphoton frequency comb

    NASA Astrophysics Data System (ADS)

    Xie, Zhenda; Zhong, Tian; Shrestha, Sajan; Xu, Xinan; Liang, Junlin; Gong, Yan-Xiao; Bienfang, Joshua C.; Restelli, Alessandro; Shapiro, Jeffrey H.; Wong, Franco N. C.; Wei Wong, Chee

    2015-08-01

    Quantum entanglement is a fundamental resource for secure information processing and communications, and hyperentanglement or high-dimensional entanglement has been separately proposed for its high data capacity and error resilience. The continuous-variable nature of the energy-time entanglement makes it an ideal candidate for efficient high-dimensional coding with minimal limitations. Here, we demonstrate the first simultaneous high-dimensional hyperentanglement using a biphoton frequency comb to harness the full potential in both the energy and time domain. Long-postulated Hong-Ou-Mandel quantum revival is exhibited, with up to 19 time-bins and 96.5% visibilities. We further witness the high-dimensional energy-time entanglement through Franson revivals, observed periodically at integer time-bins, with 97.8% visibility. This qudit state is observed to simultaneously violate the generalized Bell inequality by up to 10.95 standard deviations while observing recurrent Clauser-Horne-Shimony-Holt S-parameters up to 2.76. Our biphoton frequency comb provides a platform for photon-efficient quantum communications towards the ultimate channel capacity through energy-time-polarization high-dimensional encoding.

  6. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  7. High precision pulsar timing and spin frequency second derivatives

    NASA Astrophysics Data System (ADS)

    Liu, X. J.; Bassa, C. G.; Stappers, B. W.

    2018-05-01

    We investigate the impact of intrinsic, kinematic and gravitational effects on high precision pulsar timing. We present an analytical derivation and a numerical computation of the impact of these effects on the first and second derivative of the pulsar spin frequency. In addition, in the presence of white noise, we derive an expression to determine the expected measurement uncertainty of a second derivative of the spin frequency for a given timing precision, observing cadence and timing baseline and find that it strongly depends on the latter (∝t-7/2). We show that for pulsars with significant proper motion, the spin frequency second derivative is dominated by a term dependent on the radial velocity of the pulsar. Considering the data sets from three Pulsar Timing Arrays, we find that for PSR J0437-4715 a detectable spin frequency second derivative will be present if the absolute value of the radial velocity exceeds 33 km s-1. Similarly, at the current timing precision and cadence, continued timing observations of PSR J1909-3744 for about another eleven years, will allow the measurement of its frequency second derivative and determine the radial velocity with an accuracy better than 14 km s-1. With the ever increasing timing precision and observing baselines, the impact of the, largely unknown, radial velocities of pulsars on high precision pulsar timing can not be neglected.

  8. Technologies for Low Frequency Radio Observations of the Cosmic Dawn

    NASA Technical Reports Server (NTRS)

    Jones, Dayton L.

    2014-01-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts greater than about 20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface.

  9. High-frequency Oscillations in Small Magnetic Elements Observed with Sunrise/SuFI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafarzadeh, S.; Solanki, S. K.; Cameron, R. H.

    2017-04-01

    We characterize waves in small magnetic elements and investigate their propagation in the lower solar atmosphere from observations at high spatial and temporal resolution. We use the wavelet transform to analyze oscillations of both horizontal displacement and intensity in magnetic bright points found in the 300 nm and the Ca ii H 396.8 nm passbands of the filter imager on board the Sunrise balloon-borne solar observatory. Phase differences between the oscillations at the two atmospheric layers corresponding to the two passbands reveal upward propagating waves at high frequencies (up to 30 mHz). Weak signatures of standing as well as downward propagating waves are alsomore » obtained. Both compressible and incompressible (kink) waves are found in the small-scale magnetic features. The two types of waves have different, though overlapping, period distributions. Two independent estimates give a height difference of approximately 450 ± 100 km between the two atmospheric layers sampled by the employed spectral bands. This value, together with the determined short travel times of the transverse and longitudinal waves provide us with phase speeds of 29 ± 2 km s{sup −1} and 31 ± 2 km s{sup −1}, respectively. We speculate that these phase speeds may not reflect the true propagation speeds of the waves. Thus, effects such as the refraction of fast longitudinal waves may contribute to an overestimate of the phase speed.« less

  10. High frequency and large deposition of acid fog on high elevation forest.

    PubMed

    Igawa, Manabu; Matsumura, Ko; Okochi, Hiroshi

    2002-01-01

    We have collected and analyzed fogwater on the mountainside of Mt. Oyama (1252 m) in the Tanzawa Mountains of Japan and observed the fog event frequency from the base of the mountain with a video camera. The fog event frequency increased with elevation and was observed to be present 46% of the year at the summit. The water deposition via throughfall increased with elevation because of the increase in fogwater interception and was about twice that via rain at the summit, where the air pollutant deposition via throughfall was several times that via rainwater. The dry deposition and the deposition via fogwater were dominant factors in the total ion deposition at high elevation sites. In a fog event, nitric acid, the major acid component on the mountain, is formed during the transport of the air mass from the base of the mountain along the mountainside, where gases including nitric acid deposit and are scavenged by fogwater. Therefore, high acidity caused by nitric acid and relatively low ion strength are observed in the fogwater at high elevation sites.

  11. High frequency testing of rubber mounts.

    PubMed

    Vahdati, Nader; Saunders, L Ken Lauderbaugh

    2002-04-01

    Rubber and fluid-filled rubber engine mounts are commonly used in automotive and aerospace applications to provide reduced cabin noise and vibration, and/or motion accommodations. In certain applications, the rubber mount may operate at frequencies as high as 5000 Hz. Therefore, dynamic stiffness of the mount needs to be known in this frequency range. Commercial high frequency test machines are practically nonexistent, and the best high frequency test machine on the market is only capable of frequencies as high as 1000 Hz. In this paper, a high frequency test machine is described that allows test engineers to study the high frequency performance of rubber mounts at frequencies up to 5000 Hz.

  12. Music students: conventional hearing thresholds and at high frequencies.

    PubMed

    Lüders, Débora; Gonçalves, Cláudia Giglio de Oliveira; Lacerda, Adriana Bender de Moreira; Ribas, Ângela; Conto, Juliana de

    2014-01-01

    Research has shown that hearing loss in musicians may cause difficulty in timbre recognition and tuning of instruments. To analyze the hearing thresholds from 250 Hz to 16,000 Hz in a group of music students and compare them to a non-musician group in order to determine whether high-frequency audiometry is a useful tool in the early detection of hearing impairment. Study design was a retrospective observational cohort. Conventional and high-frequency audiometry was performed in 42 music students (Madsen Itera II audiometer and TDH39P headphones for conventional audiometry, and HDA 200 headphones for high-frequency audiometry). Of the 42 students, 38.1% were female students and 61.9% were male students, with a mean age of 26 years. At conventional audiometry, 92.85% had hearing thresholds within normal limits; but even within the normal limits, the worst results were observed in the left ear for all frequencies, except for 4000 Hz; compared to the non-musician group, the worst results occurred at 500 Hz in the left ear, and at 250 Hz, 6000 Hz, 9000 Hz, 10,000 Hz, and 11,200 Hz in both the ears. The periodic evaluation of high-frequency thresholds may be useful in the early detection of hearing loss in musicians. Copyright © 2014 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  13. High-Frequency Observations of Temperature and Dissolved Oxygen Reveal Under-Ice Convection in a Large Lake

    NASA Astrophysics Data System (ADS)

    Yang, Bernard; Young, Joelle; Brown, Laura; Wells, Mathew

    2017-12-01

    Detailed observations of thermal structure over an entire winter in a large lake reveal the presence of large (10-20 m) overturns under the ice, driven by diurnal solar heating. Convection can occur in the early winter, but the most vigorous convection occurred near the end of winter. Both periods are when our lake ice model suggest thinner ice that would have been transparent. This under-ice convection led to a deepening of the mixed layer over time, consistent with previous short-term studies. During periods of vigorous convection under the ice at the end of winter, the dissolved oxygen had become supersaturated from the surface to 23 m below the surface, suggesting abundant algal growth. Analysis of our high-frequency observations over the entire winter of 2015 using the Thorpe-scale method quantified the scale of mixing. Furthermore, it revealed that changes in oxygen concentrations are closely related to the intensity of mixing.

  14. Sources and characteristics of medium-scale traveling ionospheric disturbances observed by high-frequency radars in the North American sector

    NASA Astrophysics Data System (ADS)

    Frissell, N. A.; Baker, J. B. H.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.

    2016-04-01

    Medium-scale traveling ionospheric disturbances (MSTIDs) are wave-like ionospheric perturbations routinely observed by high-frequency radars. We focus on a class of MSTIDs observed during the winter daytime at high latitudes and midlatitudes. The source of these MSTIDs remains uncertain, with the two primary candidates being space weather and lower atmospheric processes. We surveyed observations from four high-latitude and six midlatitude Super Dual Auroral Radar Network radars in the North American sector from November to May 2012 to 2015. The MSTIDs observed have horizontal wavelengths between ˜150 and 650 km and horizontal velocities between ˜75 and 325 m s-1. In local fall and winter seasons the majority of MSTIDs propagated equatorward, with bearings ranging from ˜125° to 225° geographic azimuth. No clear correlation with space weather activity as parameterized by AE and SYM-H could be identified. Rather, MSTID observations were found to have a strong correlation with polar vortex dynamics on two timescales. First, a seasonal timescale follows the annual development and decay of the polar vortex. Second, a shorter 2-4 week timescale again corresponds to synoptic polar vortex variability, including stratospheric warmings. Additionally, statistical analysis shows that MSTIDs are more likely during periods of strong polar vortex. Direct comparison of the MSTID observations with stratospheric zonal winds suggests that a wind filtering mechanism may be responsible for the strong correlation. Collectively, these observations suggest that polar atmospheric processes, rather than space weather activity, are primarily responsible for controlling the occurrence of high-latitude and midlatitude winter daytime MSTIDs.

  15. Sources and Characteristics of Medium Scale Traveling Ionospheric Disturbances Observed by High Frequency Radars in the North American Sector

    NASA Astrophysics Data System (ADS)

    Frissell, N. A.; Baker, J. B.; Ruohoniemi, J. M.; Greenwald, R. A.; Gerrard, A. J.; Miller, E. S.; West, M. L.

    2016-12-01

    Medium-scale traveling ionospheric disturbances (MSTIDs) are wave-like ionospheric perturbations routinely observed by high-frequency radars. We focus on a class of MSTIDs observed during the winter daytime at high latitudes and midlatitudes. The source of these MSTIDs remains uncertain, with the two primary candidates being space weather and lower atmospheric processes. We surveyed observations from four high-latitude and six midlatitude Super Dual Auroral Radar Network radars in the North American sector from November to May 2012 to 2015. The MSTIDs observed have horizontal wavelengths between 150 and 650 km and horizontal velocities between 75 and 325 m/s. In local fall and winter seasons the majority of MSTIDs propagated equatorward, with bearings ranging from 125° to 225° geographic azimuth. No clear correlation with space weather activity as parameterized by AE and SYM-H could be identified. Rather, MSTID observations were found to have a strong correlation with polar vortex dynamics on two timescales. First, a seasonal timescale follows the annual development and decay of the polar vortex. Second, a shorter 2-4 week timescale again corresponds to synoptic polar vortex variability, including stratospheric warmings. Additionally, statistical analysis shows that MSTIDs are more likely during periods of strong polar vortex. Direct comparison of the MSTID observations with stratospheric zonal winds suggests that a wind filtering mechanism may be responsible for the strong correlation. Collectively, these observations suggest that polar atmospheric processes, rather than space weather activity, are primarily responsible for controlling the occurrence of high-latitude and midlatitude winter daytime MSTIDs.

  16. Experimental observation of multi-scale interactions among kink /tearing modes and high-frequency fluctuations in the HL-2A core NBI plasmas

    NASA Astrophysics Data System (ADS)

    Chen, W.; Jiang, M.; Xu, Y.; Shi, P. W.; Yu, L. M.; Ding, X. T.; Shi, Z. B.; Ji, X. Q.; Yu, D. L.; Li, Y. G.; Yang, Z. C.; Zhong, W. L.; Qiu, Z. Y.; Li, J. Q.; Dong, J. Q.; Yang, Q. W.; Liu, Yi.; Yan, L. W.; Xu, M.; Duan, X. R.

    2017-11-01

    Multi-scale interactions have been observed recently in the HL-2A core NBI plasmas, including the synchronous coupling between m/n=1/1 kink mode and m/n=2/1 tearing mode, nonlinear couplings of TAE/BAE and m/n=2/1 TM near q=2 surface, AITG/KBM/BAE and m/n=1/1 kink mode near q=1 surface, and between m/n=1/1 kink mode and high-frequency turbulence. Experimental results suggest that several couplings can exist simultaneously, Alfvenic fluctuations have an important contribution to the high-frequency turbulence spectra, and the couplings reveal the electromagnetic character. Multi-scale interactions via the nonlinear modulation process maybe enhance plasma transport and trigger sawtooth-crash onset.

  17. SCINTILLATION ARCS IN LOW-FREQUENCY OBSERVATIONS OF THE TIMING-ARRAY MILLISECOND PULSAR PSR J0437–4715

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, N. D. R.; Ord, S. M.; Tremblay, S. E.

    2016-02-10

    Low-frequency observations of pulsars provide a powerful means for probing the microstructure in the turbulent interstellar medium (ISM). Here we report on high-resolution dynamic spectral analysis of our observations of the timing-array millisecond pulsar PSR J0437–4715 with the Murchison Widefield Array (MWA), enabled by our recently commissioned tied-array beam processing pipeline for voltage data recorded from the high time resolution mode of the MWA. A secondary spectral analysis reveals faint parabolic arcs akin to those seen in high-frequency observations of pulsars with the Green Bank and Arecibo telescopes. Data from Parkes observations at a higher frequency of 732 MHz revealmore » a similar parabolic feature with a curvature that scales approximately as the square of the observing wavelength (λ{sup 2}) to the MWA's frequency of 192 MHz. Our analysis suggests that scattering toward PSR J0437–4715 predominantly arises from a compact region about 115 pc from the Earth, which matches well with the expected location of the edge of the Local Bubble that envelopes the local Solar neighborhood. As well as demonstrating new and improved pulsar science capabilities of the MWA, our analysis underscores the potential of low-frequency pulsar observations for gaining valuable insights into the local ISM and for characterizing the ISM toward timing-array pulsars.« less

  18. Observation of High-Frequency Electrostatic Waves in the Vicinity of the Reconnection Ion Diffusion Region by the Spacecraft of the Magnetospheric Multiscale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Zhou, M.; Ashour-Abdalla, M.; Berchem, J.; Walker, R. J.; Liang, H.; El-Alaoui, M.; Goldstein, M. L.; Lindqvist, P.-A.; Marklund, G.; Khotyaintsev, Y. V.; hide

    2016-01-01

    We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.

  19. Pulsed-High Field/High-Frequency EPR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fuhs, Michael; Moebius, Klaus

    Pulsed high-field/high-frequency electron paramagnetic resonance (EPR) spectroscopy is used to disentangle many kinds of different effects often obscured in continuous wave (cw) EPR spectra at lower magnetic fields/microwave frequencies. While the high magnetic field increases the resolution of G tensors and of nuclear Larmor frequencies, the high frequencies allow for higher time resolution for molecular dynamics as well as for transient paramagnetic intermediates studied with time-resolved EPR. Pulsed EPR methods are used for example for relaxation-time studies, and pulsed Electron Nuclear DOuble Resonance (ENDOR) is used to resolve unresolved hyperfine structure hidden in inhomogeneous linewidths. In the present article we introduce the basic concepts and selected applications to structure and mobility studies on electron transfer systems, reaction centers of photosynthesis as well as biomimetic models. The article concludes with an introduction to stochastic EPR which makes use of an other concept for investigating resonance systems in order to increase the excitation bandwidth of pulsed EPR. The limited excitation bandwidth of pulses at high frequency is one of the main limitations which, so far, made Fourier transform methods hardly feasible.

  20. High-resolution vertical velocities and their power spectrum observed with the MAARSY radar - Part 1: frequency spectrum

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Rapp, Markus; Stober, Gunter; Latteck, Ralph

    2018-04-01

    The Middle Atmosphere Alomar Radar System (MAARSY) installed at the island of Andøya has been run for continuous probing of atmospheric winds in the upper troposphere and lower stratosphere (UTLS) region. In the current study, we present high-resolution wind measurements during the period between 2010 and 2013 with MAARSY. The spectral analysis applying the Lomb-Scargle periodogram method has been carried out to determine the frequency spectra of vertical wind velocity. From a total of 522 days of observations, the statistics of the spectral slope have been derived and show a dependence on the background wind conditions. It is a general feature that the observed spectra of vertical velocity during active periods (with wind velocity > 10 m s-1) are much steeper than during quiet periods (with wind velocity < 10 m s-1). The distribution of spectral slopes is roughly symmetric with a maximum at -5/3 during active periods, whereas a very asymmetric distribution with a maximum at around -1 is observed during quiet periods. The slope profiles along altitudes reveal a significant height dependence for both conditions, i.e., the spectra become shallower with increasing altitudes in the upper troposphere and maintain roughly a constant slope in the lower stratosphere. With both wind conditions considered together the general spectra are obtained and their slopes are compared with the background horizontal winds. The comparisons show that the observed spectra become steeper with increasing wind velocities under quiet conditions, approach a spectral slope of -5/3 at a wind velocity of 10 m s-1 and then roughly maintain this slope (-5/3) for even stronger winds. Our findings show an overall agreement with previous studies; furthermore, they provide a more complete climatology of frequency spectra of vertical wind velocities under different wind conditions.

  1. Source parameters and effects of bandwidth and local geology on high- frequency ground motions observed for aftershocks of the northeastern Ohio earthquake of 31 January 1986

    USGS Publications Warehouse

    Glassmoyer, G.; Borcherdt, R.D.

    1990-01-01

    A 10-station array (GEOS) yielded recordings of exceptional bandwidth (400 sps) and resolution (up to 96 dB) for the aftershocks of the moderate (mb???4.9) earthquake that occurred on 31 January 1986 near Painesville, Ohio. Nine aftershocks were recorded with seismic moments ranging between 9 ?? 1016 and 3 ?? 1019 dyne-cm (MW: 0.6 to 2.3). The aftershock recordings at a site underlain by ???8m of lakeshore sediments show significant levels of high-frequency soil amplification of vertical motion at frequencies near 8, 20 and 70 Hz. Viscoelastic models for P and SV waves incident at the base of the sediments yield estimates of vertical P-wave response consistent with the observed high-frequency site resonances, but suggest additional detailed shear-wave logs are needed to account for observed S-wave response. -from Authors

  2. First dynamic model of dissolved organic carbon derived directly from high-frequency observations through contiguous storms.

    PubMed

    Jones, Timothy D; Chappell, Nick A; Tych, Wlodek

    2014-11-18

    The first dynamic model of dissolved organic carbon (DOC) export in streams derived directly from high frequency (subhourly) observations sampled at a regular interval through contiguous storms is presented. The optimal model, identified using the recently developed RIVC algorithm, captured the rapid dynamics of DOC load from 15 min monitored rainfall with high simulation efficiencies and constrained uncertainty with a second-order (two-pathway) structure. Most of the DOC export in the four headwater basins studied was associated with the faster hydrometric pathway (also modeled in parallel), and was soon exhausted in the slower pathway. A delay in the DOC mobilization became apparent as the ambient temperatures increased. These features of the component pathways were quantified in the dynamic response characteristics (DRCs) identified by RIVC. The model and associated DRCs are intended as a foundation for a better understanding of storm-related DOC dynamics and predictability, given the increasing availability of subhourly DOC concentration data.

  3. High frequency-heated air turbojet

    NASA Technical Reports Server (NTRS)

    Miron, J. H. D.

    1986-01-01

    A description is given of a method to heat air coming from a turbojet compressor to a temperature necessary to produce required expansion without requiring fuel. This is done by high frequency heating, which heats the walls corresponding to the combustion chamber in existing jets, by mounting high frequency coils in them. The current transformer and high frequency generator to be used are discussed.

  4. Simple equations guide high-frequency surface-wave investigation techniques

    USGS Publications Warehouse

    Xia, J.; Xu, Y.; Chen, C.; Kaufmann, R.D.; Luo, Y.

    2006-01-01

    We discuss five useful equations related to high-frequency surface-wave techniques and their implications in practice. These equations are theoretical results from published literature regarding source selection, data-acquisition parameters, resolution of a dispersion curve image in the frequency-velocity domain, and the cut-off frequency of high modes. The first equation suggests Rayleigh waves appear in the shortest offset when a source is located on the ground surface, which supports our observations that surface impact sources are the best source for surface-wave techniques. The second and third equations, based on the layered earth model, reveal a relationship between the optimal nearest offset in Rayleigh-wave data acquisition and seismic setting - the observed maximum and minimum phase velocities, and the maximum wavelength. Comparison among data acquired with different offsets at one test site confirms the better data were acquired with the suggested optimal nearest offset. The fourth equation illustrates that resolution of a dispersion curve image at a given frequency is directly proportional to the product of a length of a geophone array and the frequency. We used real-world data to verify the fourth equation. The last equation shows that the cut-off frequency of high modes of Love waves for a two-layer model is determined by shear-wave velocities and the thickness of the top layer. We applied this equation to Rayleigh waves and multi-layer models with the average velocity and obtained encouraging results. This equation not only endows with a criterion to distinguish high modes from numerical artifacts but also provides a straightforward means to resolve the depth to the half space of a layered earth model. ?? 2005 Elsevier Ltd. All rights reserved.

  5. Observations of frequency shift associated with schooling fish

    NASA Astrophysics Data System (ADS)

    Diachok, Orest

    2003-04-01

    The number of sardines per school, N, is nominally 10000 and the separation between sardines in school, s, is nominally 1 fish length, L.s is much smaller than the wavelength at f (the resonance frequency of individuals), which suggests that schools may exhibit acoustic properties of bubble clouds. Long-term, broadband transmission loss measurements at a shallow-water site in the Gulf of Lion revealed absorption lines due to dispersed sardines at 1.3 kHz at 20 m at night and 2.7 kHz at 65 m at dawn. Temporal changes in observed values of f were consistent with concurrent echo sounder observations of the vertical migration of sardines, and theoretical computations based on laboratory measurements of swim bladder dimensions. The measured resonance frequency of sardines in schools during daytime, 1.7 kHz at 65 m, was 0.6f at the same depth at dawn. The observed frequency shift is consistent with a hybrid model of the fundamental resonance frequency of a bubble cloud, which is based on theories developed by Feuillade, Nero, and Love (1996) and dAgostino and Brennan (1988), and s=0.8 L and N=5000 fish per school. [Work supported by ONR.

  6. Multiple-Station Observation of Frequency Dependence and Polarization Characteristics of ELF/VLF waves generated via Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; Cohen, M.; Moore, R. C.

    2014-12-01

    Generation of Extremely Low Frequency (ELF) and Very Low Frequency (VLF) signals through ionospheric modification has been practiced for many years. Heating the lower ionosphere with high power HF waves allows for modulation of natural current systems. Our experiments were carried out at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. In this experiment, the ionosphere was heated with a vertical amplitude modulating signal and the modulation frequency was changed sequentially within an array of 40 frequencies followed by a frequency ramp. The observed magnetic field amplitude and polarization of the generated ELF/VLF signals were analyzed for multiple sites and as a function of modulation frequency. Our three observation sites: Chistochina, Paxson and Paradise are located within 36km (azimuth 47.7°), 50.2km (azimuth -20°) and 99km (azimuth 80.3°) respectively. We show that the peak amplitudes observed as a function of frequency result from vertical resonance in the Earth-ionosphere waveguide and can be used to diagnose the D-region profile. Polarization analysis showed that out of the three sites Paxson shows the highest circularity in the magnetic field polarization, compared to Chistochina and Paradise which show highly linear polarizations. The experimental results were compared with a theoretical simulation model results and it was clear that in both cases, the modulated Hall current dominates the observed signals at Chistochina and Paradise sites and at Paxson there is an equal contribution from Hall and Pedersen currents. The Chistochina site shows the highest magnetic field amplitudes in both experimental and simulation environments. Depending upon the experimental and simulation observations at the three sites, a radiation pattern for the HAARP ionospheric heater can be mapped

  7. Three-frequency BDS precise point positioning ambiguity resolution based on raw observables

    NASA Astrophysics Data System (ADS)

    Li, Pan; Zhang, Xiaohong; Ge, Maorong; Schuh, Harald

    2018-02-01

    All BeiDou navigation satellite system (BDS) satellites are transmitting signals on three frequencies, which brings new opportunity and challenges for high-accuracy precise point positioning (PPP) with ambiguity resolution (AR). This paper proposes an effective uncalibrated phase delay (UPD) estimation and AR strategy which is based on a raw PPP model. First, triple-frequency raw PPP models are developed. The observation model and stochastic model are designed and extended to accommodate the third frequency. Then, the UPD is parameterized in raw frequency form while estimating with the high-precision and low-noise integer linear combination of float ambiguity which are derived by ambiguity decorrelation. Third, with UPD corrected, the LAMBDA method is used for resolving full or partial ambiguities which can be fixed. This method can be easily and flexibly extended for dual-, triple- or even more frequency. To verify the effectiveness and performance of triple-frequency PPP AR, tests with real BDS data from 90 stations lasting for 21 days were performed in static mode. Data were processed with three strategies: BDS triple-frequency ambiguity-float PPP, BDS triple-frequency PPP with dual-frequency (B1/B2) and three-frequency AR, respectively. Numerous experiment results showed that compared with the ambiguity-float solution, the performance in terms of convergence time and positioning biases can be significantly improved by AR. Among three groups of solutions, the triple-frequency PPP AR achieved the best performance. Compared with dual-frequency AR, additional the third frequency could apparently improve the position estimations during the initialization phase and under constraint environments when the dual-frequency PPP AR is limited by few satellite numbers.

  8. Observation of frequency up-conversion in the propagation of a high-power microwave pulse in a self-generated plasma

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Zhang, Y. S.; Ren, A.

    1990-01-01

    A chamber experiment is conducted to study the propagation of a high-power microwave pulse. The results show that the pulse is experiencing frequency up-shift while ionizing the background air if the initial carrier frequency of the pulse is higher than the electron plasma frequency at the incident boundary. Such a frequency autoconversion process may lead to reflectionless propagation of a high-power microwave pulse through the atmosphere.

  9. Hard X-ray and high-frequency decimetric radio observations of the 4 April 2002 solar flare

    NASA Astrophysics Data System (ADS)

    Kane, S. R.; Sawant, H. S.; Cecatto, J. R.; Andrade, M. C.; Fernandes, F. C. R.; Karlicky, M.; Meszarosova, H.

    Hard X-ray and high frequency decimetric type III radio bursts have been observed in association with the soft X-raysolar flare (GOES class M 6.1) on 4 April 2002 (˜1532 UT). The flare apparently occurred ˜ 6 degrees behind the east limb of the Sun in the active region NOAA 9898. Hard X-ray spectra and images were obtained by the X-ray imager on RHESSI during the impulsive phase of the flare. The Brazilian Solar Spectroscope and Ondrejov Radio Telescopes recorded type III bursts in 800-1400 MHz range in association with the flare. The images of the 3-6, 6-12, 12-25, and 25-50 keV X-ray sources, obtained simultaneously by RHESSI during the early impulsive phase of the flare, show that all the four X-ray sources were essentially at the same location well above the limb of the Sun. During the early impulsive phase, the X-ray spectrum over 8-30 keV range was consistent with a power law with a negative exponent of ˜ 6. The radio spectra show drifting radio structures with emission in a relatively narrow (Δf ≤ 200 MHz) frequency range indicating injection of energetic electrons into a plasmoid which is slowly drifting upwards in the corona.

  10. High-frequency lunar teleseismic events

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Dorman, J.; Duennebier, F.; Ewing, M.; Lammlein, D.; Latham, G.

    1974-01-01

    A small number of seismic signals, including some of the strongest observed to date, have been identified as representing a fourth principal category of natural lunar seismic events with characteristics distinct from those produced by normal meteoroid impacts, deep moonquakes, and thermal moonquakes. These signals are much richer in high frequencies than other events observed at comparable distances, and display relatively impulsive P- and S-wave beginnings, indicating negligible seismic-wave scattering near the source. Source depths of these events may range between 0 and perhaps 300 km. These and other characteristics could represent either (1) meteoroids impacting upon outcrops of competent lunar crystal rock, (2) rare impacting objects that penetrate to competent rock below a scattering zone, or (3) shallow tectonic moonquakes.

  11. High-frequency Oscillations in the Atmosphere above a Sunspot Umbra

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Deng, Hui; Li, Bo; Feng, Song; Bai, Xianyong; Deng, Linhua; Yang, Yunfei; Xue, Zhike; Wang, Rui

    2018-03-01

    We use high spatial and temporal resolution observations, simultaneously obtained with the New Vacuum Solar Telescope and Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory, to investigate the high-frequency oscillations above a sunspot umbra. A novel time–frequency analysis method, namely, the synchrosqueezing transform (SST), is employed to represent their power spectra and to reconstruct the high-frequency signals at different solar atmospheric layers. A validation study with synthetic signals demonstrates that SST is capable of resolving weak signals even when their strength is comparable to the high-frequency noise. The power spectra, obtained from both SST and the Fourier transform, of the entire umbral region indicate that there are significant enhancements between 10 and 14 mHz (labeled as 12 mHz) at different atmospheric layers. Analyzing the spectrum of a photospheric region far away from the umbra demonstrates that this 12 mHz component exists only inside the umbra. The animation based on the reconstructed 12 mHz component in AIA 171 Å illustrates that an intermittently propagating wave first emerges near the footpoints of coronal fan structures, and then propagates outward along the structures. A time–distance diagram, coupled with a subsonic wave speed (∼49 km s‑1), highlights the fact that these coronal perturbations are best described as upwardly propagating magnetoacoustic slow waves. Thus, we first reveal the high-frequency oscillations with a period around one minute in imaging observations at different height above an umbra, and these oscillations seem to be related to the umbral perturbations in the photosphere.

  12. Energy Spectra and High Frequency Oscillations in 4U 0614+091

    NASA Technical Reports Server (NTRS)

    Ford, E. C.; Kaaret, P.; Chen, K.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.

    1997-01-01

    We investigate the behavior of the high frequency quasi-periodic oscillations (QPOs) in 4U 0614+091, combining timing and spectral analysis of RXTE (Rossi X-ray Timing Explorer) observations. The energy spectrum of the source can be described by a power law plus a blackbody component. The blackbody has a variable temperature (kT approximately 0.8 to 1.4 keV) and accounts for 10 to 25% of the total energy flux. The power law flux and photon index also vary (F approximately 0.8 to 1.6 x 10(exp -9) erg/sq cm.s and alpha approximately 2.0 to 2.8 respectively). We find a robust correlation of the frequency of the higher frequency QPO with the flux of the blackbody. The source follows the same relation even in observations separated by several months. The QPO frequency does not have a similarly unique correlation with the total flux or the flux of the power law component. The RMS amplitudes of the higher frequency QPO rise with energy but are consistent with a constant for the lower frequency QPO. These results may be interpreted in terms of a beat frequency model for the production of the high frequency QPOs.

  13. High-Frequency, High-Temperature Fretting Experiments

    NASA Technical Reports Server (NTRS)

    Matlik, J. F.; Farris, T. N.; Haake, F. K.; Swanson, G. R.; Duke, G. C.

    2005-01-01

    Fretting is a structural damage mechanism observed when two nominally clamped surfaces are subjected to an oscillatory loading. A critical location for fretting induced damage has been identified at the blade/disk and blade/damper interfaces of gas turbine engine turbomachinery and space propulsion components. The high-temperature, high-frequency loading environment seen by these components lead to severe stress gradients at the edge-of-contact. These contact stresses drive crack nucleation and propagation in fretting and are very sensitive to the geometry of the contacting bodies, the contact loads, materials, temperature, and contact surface tribology (friction). To diagnose the threat that small and relatively undetectable fretting cracks pose to damage tolerance and structural integrity of in-service components, the objective of this work is to develop a well-characterized experimental fretting rig capable of investigating fretting behavior of advanced aerospace alloys subjected to load and temperature conditions representative of such turbomachinery components.

  14. Variations of High-Latitude Geomagnetic Pulsation Frequencies: A Comparison of Time-of-Flight Estimates and IMAGE Magnetometer Observations

    NASA Astrophysics Data System (ADS)

    Sandhu, J. K.; Yeoman, T. K.; James, M. K.; Rae, I. J.; Fear, R. C.

    2018-01-01

    The fundamental eigenfrequencies of standing Alfvén waves on closed geomagnetic field lines are estimated for the region spanning 5.9≤L < 9.5 over all MLT (Magnetic Local Time). The T96 magnetic field model and a realistic empirical plasma mass density model are employed using the time-of-flight approximation, refining previous calculations that assumed a relatively simplistic mass density model. An assessment of the implications of using different mass density models in the time-of-flight calculations is presented. The calculated frequencies exhibit dependences on field line footprint magnetic latitude and MLT, which are attributed to both magnetic field configuration and spatial variations in mass density. In order to assess the validity of the time-of-flight calculated frequencies, the estimates are compared to observations of FLR (Field Line Resonance) frequencies. Using IMAGE (International Monitor for Auroral Geomagnetic Effects) ground magnetometer observations obtained between 2001 and 2012, an automated FLR identification method is developed, based on the cross-phase technique. The average FLR frequency is determined, including variations with footprint latitude and MLT, and compared to the time-of-flight analysis. The results show agreement in the latitudinal and local time dependences. Furthermore, with the use of the realistic mass density model in the time-of-flight calculations, closer agreement with the observed FLR frequencies is obtained. The study is limited by the latitudinal coverage of the IMAGE magnetometer array, and future work will aim to extend the ground magnetometer data used to include additional magnetometer arrays.

  15. Observed emotion frequency versus intensity as predictors of socioemotional maladjustment.

    PubMed

    Hernández, Maciel M; Eisenberg, Nancy; Valiente, Carlos; Spinrad, Tracy L; VanSchyndel, Sarah K; Diaz, Anjolii; Berger, Rebecca H; Silva, Kassondra M; Southworth, Jody; Piña, Armando A

    2015-12-01

    The purpose of this study was to assess whether observed emotional frequency (the proportion of instances an emotion was observed) and intensity (the strength of an emotion when it was observed) uniquely predicted kindergartners' (N = 301) internalizing and externalizing problems. Analyses were tested in a structural equation modeling (SEM) framework with data from multireporters (reports of problem behaviors from teachers and parents) and naturalistic observations of emotion in the fall semester. For observed positive emotion, both frequency and intensity negatively predicted parent- or teacher-reported internalizing symptoms. Anger frequency positively predicted parent- and teacher-reported externalizing symptoms, whereas anger intensity positively predicted parent- and teacher-reported externalizing and parent-reported internalizing symptoms. The findings support the importance of examining both aspects of emotion when predicting maladjustment. (c) 2015 APA, all rights reserved).

  16. Technologies for low radio frequency observations of the Cosmic Dawn

    NASA Astrophysics Data System (ADS)

    Jones, D. L.

    2014-03-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts z > ~20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface. In addition, recent results from laboratory testing of low frequency receiver designs are presented. Finally, several concepts for space-based imaging interferometers utilizing deployable low frequency antennas are described. Some of these concepts involve large numbers of antennas and consequently a large digital cross-correlator will be needed. JPL has studied correlator architectures that greatly reduce the DC power required for this step, which can dominate the power consumption of real-time signal processing. Strengths and weaknesses of each mission concept are discussed in the context of the additional technology development required.

  17. High-frequency coherent edge fluctuations in a high-pedestal-pressure quiescent H-mode plasma.

    PubMed

    Yan, Z; McKee, G R; Groebner, R J; Snyder, P B; Osborne, T H; Burrell, K H

    2011-07-29

    A set of high frequency coherent (HFC) modes (f=80-250 kHz) is observed with beam emission spectroscopy measurements of density fluctuations in the pedestal of a strongly shaped quiescent H-mode plasma on DIII-D, with characteristics predicted for kinetic ballooning modes (KBM): propagation in the ion-diamagnetic drift direction; a frequency near 0.2-0.3 times the ion-diamagnetic frequency; inferred toroidal mode numbers of n∼10-25; poloidal wave numbers of k(θ)∼0.17-0.4 cm(-1); and high measured decorrelation rates (τ(c)(-1)∼ω(s)∼0.5×10(6) s(-1)). Their appearance correlates with saturation of the pedestal pressure. © 2011 American Physical Society

  18. LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKinley, B.; Briggs, F.; Kaplan, D. L.

    2013-01-01

    A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of themore » Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system.« less

  19. Low-frequency high-definition power Doppler in visualizing and defining fetal pulmonary venous connections.

    PubMed

    Liu, Lin; He, Yihua; Li, Zhian; Gu, Xiaoyan; Zhang, Ye; Zhang, Lianzhong

    2014-07-01

    The use of low-frequency high-definition power Doppler in assessing and defining pulmonary venous connections was investigated. Study A included 260 fetuses at gestational ages ranging from 18 to 36 weeks. Pulmonary veins were assessed by performing two-dimensional B-mode imaging, color Doppler flow imaging (CDFI), and low-frequency high-definition power Doppler. A score of 1 was assigned if one pulmonary vein was visualized, 2 if two pulmonary veins were visualized, 3 if three pulmonary veins were visualized, and 4 if four pulmonary veins were visualized. The detection rate between Exam-1 and Exam-2 (intra-observer variability) and between Exam-1 and Exam-3 (inter-observer variability) was compared. In study B, five cases with abnormal pulmonary venous connection were diagnosed and compared to their anatomical examination. In study A, there was a significant difference between CDFI and low-frequency high-definition power Doppler for the four pulmonary veins observed (P < 0.05). The detection rate of each pulmonary vein when employing low-frequency high-definition power Doppler was higher than that when employing two-dimensional B-mode imaging or CDFI. There was no significant difference between the intra- and inter-observer variabilities using low-frequency high-definition power Doppler display of pulmonary veins (P > 0.05). The coefficient correlation between Exam-1 and Exam-2 was 0.844, and the coefficient correlation between Exam-1 and Exam-3 was 0.821. In study B, one case of total anomalous pulmonary venous return and four cases of partial anomalous pulmonary venous return were diagnosed by low-frequency high-definition power Doppler and confirmed by autopsy. The assessment of pulmonary venous connections by low-frequency high-definition power Doppler is advantageous. Pulmonary venous anatomy can and should be monitored during fetal heart examination.

  20. High-frequency response and the possibilities of frequency-tunable narrow-band terahertz amplification in resonant tunneling nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapaev, V. V., E-mail: kapaev@sci.lebedev.ru; Kopaev, Yu. V.; Savinov, S. A.

    2013-03-15

    The characteristics of the high-frequency response of single- and double-well resonant tunneling structures in a dc electric field are investigated on the basis of the numerical solution of a time-dependent Schroedinger equation with open boundary conditions. The frequency dependence of the real part of high frequency conductivity (high-frequency response) in In{sub 0.53}Ga{sub 0.47}As/AlAs/InP structures is analyzed in detail for various values of the dc voltage V{sub dc} in the negative differential resistance (NDR) region. It is shown that double-well three-barrier structures are promising for the design of terahertz-band oscillators. The presence of two resonant states with close energies in suchmore » structures leads to a resonant (in frequency) response whose frequency is determined by the energy difference between these levels and can be controlled by varying the parameters of the structure. It is shown that, in principle, such structures admit narrow-band amplification, tuning of the amplification frequency, and a fine control of the amplification (oscillation) frequency in a wide range of terahertz frequencies by varying a dc electric voltage applied to the structure. Starting from a certain width of the central intermediate barrier in double-well structures, one can observe a collapse of resonances, where the structure behaves like a single-well system. This phenomenon imposes a lower limit on the oscillation frequency in three-barrier resonant tunneling structures.« less

  1. High frequency pressure oscillator for microcryocoolers.

    PubMed

    Vanapalli, S; ter Brake, H J M; Jansen, H V; Zhao, Y; Holland, H J; Burger, J F; Elwenspoek, M C

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5 MPa and compression volume of about 22.6 mm(3) when operating the actuator with a peak-to-peak sinusoidal voltage of 100 V at a frequency of 1 kHz. The electrical power input was 2.73 W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  2. High frequency pressure oscillator for microcryocoolers

    NASA Astrophysics Data System (ADS)

    Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  3. Frequency optimization in the eddy current test for high purity niobium

    NASA Astrophysics Data System (ADS)

    Joung, Mijoung; Jung, Yoochul; Kim, Hyungjin

    2017-01-01

    The eddy current test (ECT) is frequently used as a non-destructive method to check for the defects of high purity niobium (RRR300, Residual Resistivity Ratio) in a superconducting radio frequency (SRF) cavity. Determining an optimal frequency corresponding to specific material properties and probe specification is a very important step. The ECT experiments for high purity Nb were performed to determine the optimal frequency using the standard sample of high purity Nb having artificial defects. The target depth was considered with the treatment step that the niobium receives as the SRF cavity material. The results were analysed via the selectivity that led to a specific result, depending on the size of the defects. According to the results, the optimal frequency was determined to be 200 kHz, and a few features of the ECT for the high purity Nb were observed.

  4. Binaural beats at high frequencies.

    PubMed

    McFadden, D; Pasanen, E G

    1975-10-24

    Binaural beats have long been believed to be audible only at low frequencies, but an interaction reminiscent of a binaural beat can sometimes be heard when different two-tone complexes of high frequency are presented to the two ears. The primary requirement is that the frequency separation in the complex at one ear be slightly different from that in the other--that is, that there be a small interaural difference in the envelope periodicities. This finding is in accord with other recent demonstrations that the auditory system is not deaf to interaural time differences at high frequencies.

  5. Kinematic-PPP using Single/Dual Frequency Observations from (GPS, GLONASS and GPS/GLONASS) Constellations for Hydrography

    NASA Astrophysics Data System (ADS)

    Farah, Ashraf

    2018-03-01

    Global Positioning System (GPS) technology is ideally suited for inshore and offshore positioning because of its high accuracy and the short observation time required for a position fix. Precise point positioning (PPP) is a technique used for position computation with a high accuracy using a single GNSS receiver. It relies on highly accurate satellite position and clock data that can be acquired from different sources such as the International GNSS Service (IGS). PPP precision varies based on positioning technique (static or kinematic), observations type (single or dual frequency) and the duration of observations among other factors. PPP offers comparable accuracy to differential GPS with safe in cost and time. For many years, PPP users depended on GPS (American system) which considered the solely reliable system. GLONASS's contribution in PPP techniques was limited due to fail in maintaining full constellation. Yet, GLONASS limited observations could be integrated into GPS-based PPP to improve availability and precision. As GLONASS reached its full constellation early 2013, there is a wide interest in PPP systems based on GLONASS only and independent of GPS. This paper investigates the performance of kinematic PPP solution for the hydrographic applications in the Nile river (Aswan, Egypt) based on GPS, GLONASS and GPS/GLONASS constellations. The study investigates also the effect of using two different observation types; single-frequency and dual frequency observations from the tested constellations.

  6. Generalized Doppler and aberration kernel for frequency-dependent cosmological observables

    NASA Astrophysics Data System (ADS)

    Yasini, Siavash; Pierpaoli, Elena

    2017-11-01

    We introduce a frequency-dependent Doppler and aberration transformation kernel for the harmonic multipoles of a general cosmological observable with spin weight s , Doppler weight d and arbitrary frequency spectrum. In the context of cosmic microwave background (CMB) studies, the frequency-dependent formalism allows to correct for the motion-induced aberration and Doppler effects on individual frequency maps with different masks. It also permits to deboost background radiations with non-blackbody frequency spectra, like extragalactic foregrounds and CMB spectra with primordial spectral distortions. The formalism can also be used to correct individual E and B polarization modes and account for motion-induced E/B mixing of polarized observables with d ≠1 at different frequencies. We apply the generalized aberration kernel on polarized and unpolarized specific intensity at 100 and 217 GHz and show that the motion-induced effects typically increase with the frequency of observation. In all-sky CMB experiments, the frequency-dependence of the motion-induced effects for a blackbody spectrum are overall negligible. However in a cut-sky analysis, ignoring the frequency dependence can lead to percent level error in the polarized and unpolarized power spectra over all angular scales. In the specific cut-sky used in our analysis (b >4 5 ° ,fsky≃14 % ), and for the dipole-inferred velocity β =0.00123 typically attributed to our peculiar motion, the Doppler and aberration effects can change polarized and unpolarized power spectra of specific intensity in the CMB rest frame by 1 - 2 % , but we find the polarization cross-leakage between E and B modes to be negligible.

  7. Spectropolarimetric Observations of Solar Noise Storms at Low Frequencies

    NASA Astrophysics Data System (ADS)

    Mugundhan, V.; Ramesh, R.; Kathiravan, C.; Gireesh, G. V. S.; Hegde, Aathira

    2018-03-01

    A new high-resolution radio spectropolarimeter instrument operating in the frequency range of 15 - 85 MHz has recently been commissioned at the Radio Astronomy Field Station of the Indian Institute of Astrophysics at Gauribidanur, 100 km north of Bangalore, India. We describe the design and construction of this instrument. We present observations of a solar radio noise storm associated with Active Region (AR) 12567 in the frequency range of {≈} 15 - 85 MHz during 18 and 19 July 2016, observed using this instrument in the meridian-transit mode. This is the first report that we are aware of in which both the burst and continuum properties are derived simultaneously. Spectral indices and degree of polarization of both the continuum radiation and bursts are estimated. It is found that i) Type I storm bursts have a spectral index of {≈} {+}3.5, ii) the spectral index of the background continuum is ≈+2.9, iii) the transition frequency between Type I and Type III storms occurs at ≈55 MHz, iv) Type III bursts have an average spectral index of ≈-2.7, v) the spectral index of the Type III continuum is ≈-1.6, and vi) the degree of circular polarization of all Type I (Type III) bursts is ≈90% (30%). The results obtained here indicate that the continuum emission is due to bursts occurring in rapid succession. We find that the derived parameters for Type I bursts are consistent with suprathermal electron acceleration theory and those of Type III favor fundamental plasma emission.

  8. High Frequency Radar Astronomy With HAARP

    DTIC Science & Technology

    2003-01-01

    High Frequency Radar Astronomy With HAARP Paul Rodriguez Naval Research Laboratory Information Technology Division Washington, DC 20375, USA Edward...a period of several years, the High frequency Active Auroral Research Program ( HAARP ) transmitting array near Gakona, Alaska, has increased in total...high frequency (HF) radar facility used for research purposes. The basic science objective of HAARP is to study nonlinear effects associated with

  9. Testing the high turbulence level breakdown of low-frequency gyrokinetics against high-frequency cyclokinetic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Zhao, E-mail: zhao.deng@foxmail.com; Waltz, R. E.

    2015-05-15

    This paper presents numerical simulations of the nonlinear cyclokinetic equations in the cyclotron harmonic representation [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Simulations are done with a local flux-tube geometry and with the parallel motion and variation suppressed using a newly developed rCYCLO code. Cyclokinetic simulations dynamically follow the high-frequency ion gyro-phase motion which is nonlinearly coupled into the low-frequency drift-waves possibly interrupting and suppressing gyro-averaging and increasing the transport over gyrokinetic levels. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the breakdown of gyrokinetics at high turbulence levels is quantitatively testedmore » over a range of relative ion cyclotron frequency 10 < Ω*{sup  }< 100 where Ω*{sup  }= 1/ρ*, and ρ* is the relative ion gyroradius. The gyrokinetic linear mode rates closely match the cyclokinetic low-frequency rates for Ω*{sup  }> 5. Gyrokinetic transport recovers cyclokinetic transport at high relative ion cyclotron frequency (Ω*{sup  }≥ 50) and low turbulence level as required. Cyclokinetic transport is found to be lower than gyrokinetic transport at high turbulence levels and low-Ω* values with stable ion cyclotron (IC) modes. The gyrokinetic approximation is found to break down when the density perturbations exceed 20%. For cyclokinetic simulations with sufficiently unstable IC modes and sufficiently low Ω*{sup  }∼ 10, the high-frequency component of cyclokinetic transport level can exceed the gyrokinetic transport level. However, the low-frequency component of the cyclokinetic transport and turbulence level does not exceed that of gyrokinetics. At higher and more physically relevant Ω*{sup  }≥ 50 values and physically realistic IC driving rates, the low-frequency component of the cyclokinetic transport and turbulence level is still smaller than that of

  10. On High and Low Starting Frequencies of Type II Radio Bursts

    NASA Astrophysics Data System (ADS)

    Sharma, J.; Mittal, N.

    2017-06-01

    We have studied the characteristics of type II radio burst during the period May 1996 to March 2015, for the solar cycle 23 and 24, observed by WIND/WAVES radio instrument. A total of 642 events were recorded by the instrument during the study period. We have divided the events with two starting frequency range (high > 1 MHz; low ≤ 1MHz) as type II1 (i.e., 1-16 MHz) radio burst and type II2 (i.e., 20 KHz - 1020 KHz) radio burst which constitute the DH and km type II radio burst observed by WIND spacecraft, and determined their time and frequency characteristics. The mean drift rate of type II1 and type II2 radio bursts is 29.76 × 10-4 MHz/s and 0.17 × 10-4 MHz/s respectively, which shows that type II1 with high start frequency hase larger drift rate than the type II2 with low starting frequencies. We have also reported that the start frequency and the drift rate of type II1 are in good correlation, with a linear correlation coefficient of 0.58.

  11. High-frequency energy in singing and speech

    NASA Astrophysics Data System (ADS)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  12. Science highlights from high-sensitivity pulsar observations with the MWA

    NASA Astrophysics Data System (ADS)

    McSweeney, Samuel; Bhat, Ramesh; Tremblay, Steven; Ord, Stephen

    2016-01-01

    Pulsars are exquisite probes of the turbulent interstellar medium (ISM), capable of resolving structures down to tens of thousands of kilometres. Understanding the ISM is important for many areas of astrophysics, such as galactic dynamics, the chemical evolution of the galaxy, and the identification of timing noise in the search for gravitational waves using pulsar timing arrays. Low frequency observations of pulsars are key, because the strength of propagation effects scales strongly with frequency.We present the Murchison Widefield Array (MWA) as a key science tool for making high quality observations of pulsars at low frequencies (~80-300 MHz). Recently commissioned software for making tied-array beams and the MWA's high time resolution voltage capture system (VCS) allow an order of magnitude increase in sensitivity, vital for pulsar and other time-domain science. A pipeline has now been developed for observing the scintillation patterns of important pulsars at low frequencies, including a new computational technique for measuring the curvature of parabolic arcs in noisy secondary spectra. A program of MWA observations is being undertaken to sample a large number of millisecond pulsars. We present recent highlights including PSR J0437-4715, which yielded a new measurement of scattering screen distance of ~120 pc from Earth, consistent with a Parkes observation at ~730 MHz, and matching the predicted perimeter of the Local Bubble.

  13. The relative immunity of high-frequency transposed stimuli to low-frequency binaural interference

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2004-05-01

    We have recently demonstrated that high-frequency transposed stimuli, having envelopes designed to provide high-frequency channels with information similar to that normally available in only low-frequency channels, yield threshold-ITDs and extents of laterality comparable to those obtained with conventional low-frequency stimuli. This enhanced potency of ITDs conveyed by high-frequency transposed stimuli, as compared to conventional high-frequency stimuli, suggested to us that ITDs conveyed by transposed stimuli might be relatively immune to the presence of low-frequency binaural interferers. To investigate this issue, threshold-ITDs and extents of laterality were measured with a variety of conventional and transposed targets centered at 4 kHz. The targets were presented either in the presence or absence of a simultaneously gated diotic noise centered at 500 Hz, the interferer. As expected, the presence of the low-frequency interferer resulted in substantially elevated threshold-ITDs and reduced extents of laterality for the conventional high-frequency stimuli. In contrast, these interference effects were either greatly attenuated or absent for ITDs conveyed by the high-frequency transposed targets. The results will be discussed in the context of current models of binaural interference. [Work supported by NIH DC 04147, NIH DC04073, NIH DC 002304.

  14. High-Resolution Audio with Inaudible High-Frequency Components Induces a Relaxed Attentional State without Conscious Awareness.

    PubMed

    Kuribayashi, Ryuma; Nittono, Hiroshi

    2017-01-01

    High-resolution audio has a higher sampling frequency and a greater bit depth than conventional low-resolution audio such as compact disks. The higher sampling frequency enables inaudible sound components (above 20 kHz) that are cut off in low-resolution audio to be reproduced. Previous studies of high-resolution audio have mainly focused on the effect of such high-frequency components. It is known that alpha-band power in a human electroencephalogram (EEG) is larger when the inaudible high-frequency components are present than when they are absent. Traditionally, alpha-band EEG activity has been associated with arousal level. However, no previous studies have explored whether sound sources with high-frequency components affect the arousal level of listeners. The present study examined this possibility by having 22 participants listen to two types of a 400-s musical excerpt of French Suite No. 5 by J. S. Bach (on cembalo, 24-bit quantization, 192 kHz A/D sampling), with or without inaudible high-frequency components, while performing a visual vigilance task. High-alpha (10.5-13 Hz) and low-beta (13-20 Hz) EEG powers were larger for the excerpt with high-frequency components than for the excerpt without them. Reaction times and error rates did not change during the task and were not different between the excerpts. The amplitude of the P3 component elicited by target stimuli in the vigilance task increased in the second half of the listening period for the excerpt with high-frequency components, whereas no such P3 amplitude change was observed for the other excerpt without them. The participants did not distinguish between these excerpts in terms of sound quality. Only a subjective rating of inactive pleasantness after listening was higher for the excerpt with high-frequency components than for the other excerpt. The present study shows that high-resolution audio that retains high-frequency components has an advantage over similar and indistinguishable digital sound

  15. Solar Influences on the Return Direction of High-Frequency Radar Backscatter

    NASA Astrophysics Data System (ADS)

    Burrell, Angeline G.; Perry, Gareth W.; Yeoman, Timothy K.; Milan, Stephen E.; Stoneback, Russell

    2018-04-01

    Coherent-scatter, high-frequency, phased-array radars create narrow beams through the use of constructive and destructive interference patterns. This formation method leads to the creation of a secondary beam, or lobe, that is sent out behind the radar. This study investigates the relative importance of the beams in front of and behind the high-frequency radar located in Hankasalmi, Finland, using observations taken over a solar cycle, as well as coincident observations from Hankasalmi and the Enhanced Polar Outflow Probe Radio Receiver Instrument. These observations show that the relative strength of the front and rear beams is frequency dependent, with the relative amount of power sent to the front lobe increasing with increasing frequency. At the range of frequencies used by Hankasalmi, both front and rear beams are always present, though the main beam is always stronger than the rear lobe. Because signals are always transmitted to the front and rear of the radar, it is always possible to receive backscatter from both return directions. Examining the return direction as a function of local time, season, and solar cycle shows that the dominant return direction depends primarily on the local ionospheric structure. Diurnal changes in plasma density typically cause an increase in the amount of groundscatter returning from the rear lobe at night, though the strength of this variation has a seasonal dependence. Solar cycle variations are also seen in the groundscatter return direction, modifying the existing local time and seasonal variations.

  16. POST-OUTBURST RADIO OBSERVATIONS OF THE HIGH MAGNETIC FIELD PULSAR PSR J1119-6127

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majid, Walid A.; Pearlman, Aaron B.; Dobreva, Tatyana

    We have carried out high-frequency radio observations of the high magnetic field pulsar PSR J1119-6127 following its recent X-ray outburst. While initial observations showed no evidence of significant radio emission, subsequent observations detected pulsed emission across a large frequency band. In this Letter, we report on the initial disappearance of the pulsed emission and its prompt reactivation and dramatic evolution over several months of observation. The periodic pulse profile at S -band (2.3 GHz) after reactivation exhibits a multi-component emission structure, while the simultaneous X -band (8.4 GHz) profile shows a single emission peak. Single pulses were also detected atmore » S -band near the main emission peaks. We present measurements of the spectral index across a wide frequency bandwidth, which captures the underlying changes in the radio emission profile of the neutron star. The high-frequency radio detection, unusual emission profile, and observed variability suggest similarities with magnetars, which may independently link the high-energy outbursts to magnetar-like behavior.« less

  17. Interdigital pair bonding for high frequency (20-50 MHz) ultrasonic composite transducers.

    PubMed

    Liu, R; Harasiewicz, K A; Foster, F S

    2001-01-01

    Interdigital pair bonding is a novel methodology that enables the fabrication of high frequency piezoelectric composites with high volume fractions of the ceramic phase. This enhancement in ceramic volume fraction significantly reduces the dimensional scale of the epoxy phase and increases the related effective physical parameters of the composite, such as dielectric constant and the longitudinal sound velocity, which are major concerns in the development of high frequency piezoelectric composites. In this paper, a method called interdigital pair bonding (IPB) is used to prepare 1-3 piezoelectric composite with a pitch of 40 microns, a kerf of 4 microns, and a ceramic volume fraction of 81%. The composites prepared in this fashion exhibited a very pure thickness-mode resonance up to a frequency of 50 MHz. Unlike the 2-2 piezoelectric composites with the same ceramic and epoxy scales developed earlier, the anticipated lateral modes between 50 to 100 MHz were not observed in the current 1-3 composites. The mechanisms for the elimination of the lateral modes at high frequency are discussed. The effective electromechanical coupling coefficient of the composite was 0.72 at a frequency of 50 MHz. The composites showed a high longitudinal sound velocity of 4300 m/s and a high clamped dielectric constant of 1111 epsilon 0, which will benefit the development of high frequency ultrasonic transducers and especially high frequency transducer arrays for medical imaging.

  18. Observed hierarchy of student proficiency with period, frequency, and angular frequency

    NASA Astrophysics Data System (ADS)

    Young, Nicholas T.; Heckler, Andrew F.

    2018-01-01

    In the context of a generic harmonic oscillator, we investigated students' accuracy in determining the period, frequency, and angular frequency from mathematical and graphical representations. In a series of studies including interviews, free response tests, and multiple choice tests developed in an iterative process, we assessed students in both algebra-based and calculus-based, traditionally instructed university-level introductory physics courses. Using the results, we categorized nine skills necessary for proficiency in determining period, frequency, and angular frequency. Overall results reveal that, postinstruction, proficiency is quite low: only about 20%-40% of students mastered most of the nine skills. Next, we used a semiquantitative, intuitive method to investigate the hierarchical structure of the nine skills. We also employed the more formal item tree analysis method to verify this structure and found that the skills form a multilevel, nonlinear hierarchy, with mastery of some skills being prerequisite for mastery in other skills. Finally, we implemented a targeted, 30-min group-work activity to improve proficiency in these skills and found a 1 standard deviation gain in accuracy. Overall, the results suggest that many students currently lack these essential skills, targeted practice may lead to required mastery, and that the observed hierarchical structure in the skills suggests that instruction should especially attend to the skills lower in the hierarchy.

  19. High-frequency - Spinal Cord Stimulation.

    PubMed

    Rapcan, R; Mlaka, J; Venglarcik, M; Vinklerova, V; Gajdos, M; Illes, R

    2015-01-01

    Our clinical experience with high - frequency SCS for FBSS in patients with predominant low back pain is presented. After a trial period, 100 % (21 out of 21) of patients with FBSS with predominant low back pain reported a significant improvement in visual analog scale (VAS) pain score and underwent permanent implantation of the high - frequency SCS system. SCS trials lasted 7-14 days (median 9 days). SCS leads were mostly positioned at the T8-10 or T8-12 vertebral levels . We used both single and dual lead placement. VAS, patient satisfaction, patient performance status, opioid consumption and complication rate were assessed for the period of 12 months. The mean VAS score before implantation (8.7) compared to VAS 12 months after implantation (4.0) was significantly lower (CI95[3.9-5.4], p < 0.001). There was a significant improvement in performance status when comparing PS before implantation (3.0) and 12 months after implantation (1.8) (CI95[0.9-1.6], p < 0.001). The mean patient satisfaction scores (PSS) did not differ throughout the whole one year follow-up period. Our group of 21 patients with implanted high - frequency SCS systems reported significant low back pain and leg pain relief within the period of 12 months as well as significant improvement in their performance status. We had a special subgroup of 5 patients with regular change of frequencies between high frequency and conventional frequency (with paresthesia) also with significant leg and low back pain relief (Tab. 2, Fig. 1, Ref. 8). Text in PDF www.elis.sk.

  20. Eddy-driven low-frequency variability: physics and observability through altimetry

    NASA Astrophysics Data System (ADS)

    Penduff, Thierry; Sérazin, Guillaume; Arbic, Brian; Mueller, Malte; Richman, James G.; Shriver, Jay F.; Morten, Andrew J.; Scott, Robert B.

    2015-04-01

    Model studies have revealed the propensity of the eddying ocean circulation to generate strong low-frequency variability (LFV) intrinsically, i.e. without low-frequency atmospheric variability. In the present study, gridded satellite altimeter products, idealized quasi-geostrophic (QG) turbulent simulations, and realistic high-resolution global ocean simulations are used to study the spontaneous tendency of mesoscale (relatively high frequency and high wavenumber) kinetic energy to non-linearly cascade towards larger time and space scales. The QG model reveals that large-scale variability, arising from the well-known spatial inverse cascade, is associated with low frequencies. Low-frequency, low-wavenumber energy is maintained primarily by nonlinearities in the QG model, with forcing (by large-scale shear) and friction playing secondary roles. In realistic simulations, nonlinearities also generally drive kinetic energy to low frequencies and low wavenumbers. In some, but not all, regions of the gridded altimeter product, surface kinetic energy is also found to cascade toward low frequencies. Exercises conducted with the realistic model suggest that the spatial and temporal filtering inherent in the construction of gridded satellite altimeter maps may contribute to the discrepancies seen in some regions between the direction of frequency cascade in models versus gridded altimeter maps. Finally, the range of frequencies that are highly energized and engaged these cascades appears much greater than the range of highly energized and engaged wavenumbers. Global eddying simulations, performed in the context of the CHAOCEAN project in collaboration with the CAREER project, provide estimates of the range of timescales that these oceanic nonlinearities are likely to feed without external variability.

  1. Distributions of solar drift-pair bursts in frequency from decameter radio observations

    NASA Astrophysics Data System (ADS)

    Stanislavsky, Aleksander; Volvach, Yaroslav

    2017-04-01

    Statement of the Problem: Solar drift-pair (DP) bursts are one of interesting manifestations of solar activity. Observed during the solar storms of type III bursts, they demonstrate a very simple form on dynamic radio spectra as two short components separated in time, often the second component being the full repetition of the first. As is well known, type III bursts are produced by the accelerated electrons propagating along open magnetic field lines in solar corona. However, no each storm of type III bursts leads to any DP. The role of electron beams in the generation of DPs remains unclear. Solar DPs are detected by ground-based instruments at decameter and meter wavelengths, but each individual DP occupies only a limited bandwidth in the frequency range. The bursts drift in frequency, and their frequency drift rate can be both negative and positive (so-called the forward and reverse DPs), from -2 MHz/s to 6 MHz/s [1]. Besides, there are cases of vertical DPs, which occur simultaneously in all the frequencies within their bandwidth. It is difficult to interpret them by means of a moving source, as any exciting agent responsible for such bursts would travel with velocities faster than velocity of light [2]. Methodology & Experimental Orientation: New features of modern low-frequency radio astronomy allow us to study the empirical properties of DPs more deeply than ever before. Our results are based on the recent radio data (during 10-12 July of 2015) obtained with help of the UTR-2 radio telescope at frequencies 9-33 MHz with the time resolution of 50 ms and the frequency resolution of 4 kHz. We have identified 301 DP bursts in which 209 events were forward (FDP), and the rest were reverse (RDP). Results & Significance: According to the data, the occurrence of FDPs decreased at high frequencies, whereas the number of RDPs had an opposite tendency, they rarely occured at lower frequencies. During the observational session, at 20-25 MHz almost the same amount of

  2. The origin of high frequency radiation in earthquakes and the geometry of faulting

    NASA Astrophysics Data System (ADS)

    Madariaga, R.

    2004-12-01

    In a seminal paper of 1967 Kei Aki discovered the scaling law of earthquake spectra and showed that, among other things, the high frequency decay was of type omega-squared. This implies that high frequency displacement amplitudes are proportional to a characteristic length of the fault, and radiated energy scales with the cube of the fault dimension, just like seismic moment. Later in the seventies, it was found out that a simple explanation for this frequency dependence of spectra was that high frequencies were generated by stopping phases, waves emitted by changes in speed of the rupture front as it propagates along the fault, but this did not explain the scaling of high frequency waves with fault length. Earthquake energy balance is such that, ignoring attenuation, radiated energy is the change in strain energy minus energy released for overcoming friction. Until recently the latter was considered to be a material property that did not scale with fault size. Yet, in another classical paper Aki and Das estimated in the late 70s that energy release rate also scaled with earthquake size, because earthquakes were often stopped by barriers or changed rupture speed at them. This observation was independently confirmed in the late 90s by Ide and Takeo and Olsen et al who found that energy release rates for Kobe and Landers were in the order of a MJ/m2, implying that Gc necessarily scales with earthquake size, because if this was a material property, small earthquakes would never occur. Using both simple analytical and numerical models developed by Addia-Bedia and Aochi and Madariaga, we examine the consequence of these observations for the scaling of high frequency waves with fault size. We demonstrate using some classical results by Kostrov, Husseiny and Freund that high frequency energy flow measures energy release rate and is generated when ruptures change velocity (both direction and speed) at fault kinks or jogs. Our results explain why super shear ruptures are

  3. Estimation of snow in extratropical cyclones from multiple frequency airborne radar observations. An Expectation-Maximization approach

    NASA Astrophysics Data System (ADS)

    Grecu, M.; Tian, L.; Heymsfield, G. M.

    2017-12-01

    A major challenge in deriving accurate estimates of physical properties of falling snow particles from single frequency space- or airborne radar observations is that snow particles exhibit a large variety of shapes and their electromagnetic scattering characteristics are highly dependent on these shapes. Triple frequency (Ku-Ka-W) radar observations are expected to facilitate the derivation of more accurate snow estimates because specific snow particle shapes tend to have specific signatures in the associated two-dimensional dual-reflectivity-ratio (DFR) space. However, the derivation of accurate snow estimates from triple frequency radar observations is by no means a trivial task. This is because the radar observations can be subject to non-negligible attenuation (especially at W-band when super-cooled water is present), which may significantly impact the interpretation of the information in the DFR space. Moreover, the electromagnetic scattering properties of snow particles are computationally expensive to derive, which makes the derivation of reliable parameterizations usable in estimation methodologies challenging. In this study, we formulate an two-step Expectation Maximization (EM) methodology to derive accurate snow estimates in Extratropical Cyclones (ECTs) from triple frequency airborne radar observations. The Expectation (E) step consists of a least-squares triple frequency estimation procedure applied with given assumptions regarding the relationships between the density of snow particles and their sizes, while the Maximization (M) step consists of the optimization of the assumptions used in step E. The electromagnetic scattering properties of snow particles are derived using the Rayleigh-Gans approximation. The methodology is applied to triple frequency radar observations collected during the Olympic Mountains Experiment (OLYMPEX). Results show that snowfall estimates above the freezing level in ETCs consistent with the triple frequency radar

  4. High-Performance Optical Frequency References for Space

    NASA Astrophysics Data System (ADS)

    Schuldt, Thilo; Döringshoff, Klaus; Milke, Alexander; Sanjuan, Josep; Gohlke, Martin; Kovalchuk, Evgeny V.; Gürlebeck, Norman; Peters, Achim; Braxmaier, Claus

    2016-06-01

    A variety of future space missions rely on the availability of high-performance optical clocks with applications in fundamental physics, geoscience, Earth observation and navigation and ranging. Examples are the gravitational wave detector eLISA (evolved Laser Interferometer Space Antenna), the Earth gravity mission NGGM (Next Generation Gravity Mission) and missions, dedicated to tests of Special Relativity, e.g. by performing a Kennedy- Thorndike experiment testing the boost dependence of the speed of light. In this context we developed optical frequency references based on Doppler-free spectroscopy of molecular iodine; compactness and mechanical and thermal stability are main design criteria. With a setup on engineering model (EM) level we demonstrated a frequency stability of about 2·10-14 at an integration time of 1 s and below 6·10-15 at integration times between 100s and 1000s, determined from a beat-note measurement with a cavity stabilized laser where a linear drift was removed from the data. A cavity-based frequency reference with focus on improved long-term frequency stability is currently under development. A specific sixfold thermal shield design based on analytical methods and numerical calculations is presented.

  5. High-frequency filtering of strong-motion records

    USGS Publications Warehouse

    Douglas, J.; Boore, D.M.

    2011-01-01

    The influence of noise in strong-motion records is most problematic at low and high frequencies where the signal to noise ratio is commonly low compared to that in the mid-spectrum. The impact of low-frequency noise (5 Hz) on computed pseudo-absolute response spectral accelerations (PSAs). In contrast to the case of low-frequency noise our analysis shows that filtering to remove high-frequency noise is only necessary in certain situations and that PSAs can often be used up to 100 Hz even if much lower high-cut corner frequencies are required to remove the noise. This apparent contradiction can be explained by the fact that PSAs are often controlled by ground accelerations associated with much lower frequencies than the natural frequency of the oscillator because path and site attenuation (often modelled by Q and κ, respectively) have removed the highest frequencies. We demonstrate that if high-cut filters are to be used, then their corner frequencies should be selected on an individual basis, as has been done in a few recent studies.

  6. Killer whale (Orcinus orca) whistles from the western South Atlantic Ocean include high frequency signals.

    PubMed

    Andriolo, Artur; Reis, Sarah S; Amorim, Thiago O S; Sucunza, Federico; de Castro, Franciele R; Maia, Ygor Geyer; Zerbini, Alexandre N; Bortolotto, Guilherme A; Dalla Rosa, Luciano

    2015-09-01

    Acoustic parameters of killer whale (Orcinus orca) whistles were described for the western South Atlantic Ocean and highlight the occurrence of high frequency whistles. Killer whale signals were recorded on December of 2012, when a pod of four individuals was observed harassing a group of sperm whales. The high frequency whistles were highly stereotyped and were modulated mostly at ultrasonic frequencies. Compared to other contour types, the high frequency whistles are characterized by higher bandwidths, shorter durations, fewer harmonics, and higher sweep rates. The results add to the knowledge of vocal behavior of this species.

  7. Natural frequency identification of smart washer by using adaptive observer

    NASA Astrophysics Data System (ADS)

    Ito, Hitoshi; Okugawa, Masayuki

    2014-04-01

    Bolted joints are used in many machines/structures and some of them have been loosened during long time use, and unluckily these bolt loosening may cause a great accident of machines/structures system. These bolted joint, especially in important places, are main object of maintenance inspection. Maintenance inspection with human- involvement is desired to be improved owing to time-consuming, labor-intensive and high-cost. By remote and full automation monitoring of the bolt loosening, constantly monitoring of bolted joint is achieved. In order to detect loosening of bolted joints without human-involvement, applying a structural health monitoring technique and smart structures/materials concept is the key objective. In this study, a new method of bolt loosening detection by adopting a smart washer has been proposed, and the basic detection principle was discussed with numerical analysis about frequency equation of the system, was confirmed experimentally. The smart washer used in this study is in cantilever type with piezoelectric material, which adds the washer the self-sensing and actuation function. The principle used to detect the loosening of the bolts is a method of a bolt loosening detection noted that the natural frequency of a smart washer system is decreasing by the change of the bolt tightening axial tension. The feature of this proposed method is achieving to identify the natural frequency at current condition on demand by adopting the self-sensing and actuation function and system identification algorithm for varying the natural frequency depending the bolt tightening axial tension. A novel bolt loosening detection method by adopting adaptive observer is proposed in this paper. The numerical simulations are performed to verify the possibility of the adaptive observer-based loosening detection. Improvement of the detection accuracy for a bolt loosening is confirmed by adopting initial parameter and variable adaptive gain by numerical simulation.

  8. High frequency magnetostrictive transducers for waveguide applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daw, Joshua Earl; Taylor, Steven Cheney; Rempe, Joy Lynn

    A high frequency magnetostrictive transducer includes a magnetostrictive rod or wire inserted co-axially into a driving coil, wherein the driving coil includes a coil arrangement with a plurality of small coil segments along the magnetostrictive rod or wire; wherein frequency operation of the high frequency magnetostrictive transducer is controlled by a length of the small coil segments and a material type of the magnetostrictive rod or wire. This design of the high frequency magnetostrictive transducer retains the beneficial aspects of the magnetostrictive design, while reducing its primary drawback, lower frequency operation.

  9. Observation of the standing wave effect in large-area, very-high-frequency capacitively coupled plasmas by using a fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Han, Dao-Man; Liu, Yong-Xin; Gao, Fei; Wang, Xiang-Yu; Li, Ang; Xu, Jun; Jing, Zhen-Guo; Wang, You-Nian

    2018-06-01

    The large-area capacitive discharges driven at very high frequencies have been attracting much attention due to their wide applications in material etching and thin film deposition. However, in the regime, the standing wave effect (SWE) becomes a major limitation for plasma material processing uniformity. In this work, a fiber Bragg grating sensor was utilized for the observation of the SWE in a large-area capacitive discharge reactor by measuring the radial distribution of the neutral gas temperature T g. The influences of the RF power and the working pressure on the radial profiles of T g were studied. At a higher frequency (100 MHz) and a lower pressure (5 Pa), T g presents a center-peaked radial distribution, indicating a significant SWE. As the RF power increases, the central peak of T g becomes more evident due to the enhanced SWE. By contrast, at 100 MHz and a higher pressure (40 Pa), the radial distribution of T g shows an evident peak at the electrode edge and T g decays dramatically towards the discharge center because the electromagnetic waves are strongly damped as they are propagating from the edge to the center. At a lower frequency (27 MHz), only edge-high profiles of T g are observed for various pressures. For the sake of a comparison, a hairpin resonance probe was used to measure the radial distributions of the plasma density n p under the same condition. The radial profiles of T g are found to generally resemble those of n p under various conditions. Based on the experimental results, the neutral gas heating mechanism was analyzed.

  10. Modulating action of low frequency oscillations on high frequency instabilities in Hall thrusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liqiu, Wei, E-mail: weiliqiu@gmail.com, E-mail: weiliqiu@hit.edu.cn; Liang, Han; Ziyi, Yang

    2015-02-07

    It is found that the low frequency oscillations have modulating action on high frequency instabilities in Hall thrusters. The physical mechanism of this modulation is discussed and verified by numerical simulations. Theoretical analyses indicate that the wide-range fluctuations of plasma density and electric field associated with the low frequency oscillations affect the electron drift velocity and anomalous electron transport across the magnetic field. The amplitude and frequency of high frequency oscillations are modulated by low frequency oscillations, which show the periodic variation in the time scale of low frequency oscillations.

  11. Synthesis of High-Frequency Ground Motion Using Information Extracted from Low-Frequency Ground Motion

    NASA Astrophysics Data System (ADS)

    Iwaki, A.; Fujiwara, H.

    2012-12-01

    Broadband ground motion computations of scenario earthquakes are often based on hybrid methods that are the combinations of deterministic approach in lower frequency band and stochastic approach in higher frequency band. Typical computation methods for low-frequency and high-frequency (LF and HF, respectively) ground motions are the numerical simulations, such as finite-difference and finite-element methods based on three-dimensional velocity structure model, and the stochastic Green's function method, respectively. In such hybrid methods, LF and HF wave fields are generated through two different methods that are completely independent of each other, and are combined at the matching frequency. However, LF and HF wave fields are essentially not independent as long as they are from the same event. In this study, we focus on the relation among acceleration envelopes at different frequency bands, and attempt to synthesize HF ground motion using the information extracted from LF ground motion, aiming to propose a new method for broad-band strong motion prediction. Our study area is Kanto area, Japan. We use the K-NET and KiK-net surface acceleration data and compute RMS envelope at four frequency bands: 0.5-1.0 Hz, 1.0-2.0 Hz, 2.0-4.0 Hz, .0-8.0 Hz, and 8.0-16.0 Hz. Taking the ratio of the envelopes of adjacent bands, we find that the envelope ratios have stable shapes at each site. The empirical envelope-ratio characteristics are combined with low-frequency envelope of the target earthquake to synthesize HF ground motion. We have applied the method to M5-class earthquakes and a M7 target earthquake that occurred in the vicinity of Kanto area, and successfully reproduced the observed HF ground motion of the target earthquake. The method can be applied to a broad band ground motion simulation for a scenario earthquake by combining numerically-computed low-frequency (~1 Hz) ground motion with the empirical envelope ratio characteristics to generate broadband ground motion

  12. High-resolution station-based diurnal ionospheric total electron content (TEC) from dual-frequency GPS observations

    NASA Astrophysics Data System (ADS)

    ćepni, Murat S.; Potts, Laramie V.; Miima, John B.

    2013-09-01

    electron content (TEC) estimates derived from Global Navigation Satellite System (GNSS) signal delays provide a rich source of information about the Earth's ionosphere. Networks of Global Positioning System (GPS) receivers data can be used to represent the ionosphere by a Global Ionospheric Map (GIM). Data input for GIMs is dual-frequency GNSS-only or a mixture of GNSS and altimetry observations. Parameterization of GNSS-only GIMs approaches the ionosphere as a single-layer model (SLM) to determine GPS TEC models over a region. Limitations in GNSS-only GIM TEC are due largely to the nonhomogenous global distribution of GPS tracking stations with large data gaps over the oceans. The utility of slant GPS ionospheric-induced path delays for high temporal resolution from a single-station data rate offers better representation of TEC over a small region. A station-based vertical TEC (TECV) approach modifies the traditional single-layer model (SLM) GPS TEC method by introducing a zenith angle weighting (ZAW) filter to capture signal delays from mostly near-zenith satellite passes. Comparison with GIMs shows the station-dependent TEC (SD-TEC) model exhibits robust performance under variable space weather conditions. The SD-TEC model was applied to investigate ionospheric TEC variability during the geomagnetic storm event of 9 March 2012 at midlatitude station NJJJ located in New Jersey, USA. The high temporal resolution TEC results suggest TEC production and loss rate differences before, during, and after the storm.

  13. High Frequency Variations in Earth Orientation Derived From GNSS Observations

    NASA Astrophysics Data System (ADS)

    Weber, R.; Englich, S.; Snajdrova, K.; Boehm, J.

    2006-12-01

    Current observations gained by the space geodetic techniques, especially VLBI, GPS and SLR, allow for the determination of Earth Orientation Parameters (EOPs - polar motion, UT1/LOD, nutation offsets) with unprecedented accuracy and temporal resolution. This presentation focuses on contributions to the EOP recovery provided by satellite navigation systems (primarily GPS). The IGS (International GNSS Service), for example, currently provides daily polar motion with an accuracy of less than 0.1mas and LOD estimates with an accuracy of a few microseconds. To study more rapid variations in polar motion and LOD we established in a first step a high resolution (hourly resolution) ERP-time series from GPS observation data of the IGS network covering the period from begin of 2005 till March 2006. The calculations were carried out by means of the Bernese GPS Software V5.0 considering observations from a subset of 79 fairly stable stations out of the IGb00 reference frame sites. From these ERP time series the amplitudes of the major diurnal and semidiurnal variations caused by ocean tides are estimated. After correcting the series for ocean tides the remaining geodetic observed excitation is compared with variations of atmospheric excitation (AAM). To study the sensitivity of the estimates with respect to the applied mapping function we applied both the widely used NMF (Niell Mapping Function) and the VMF1 (Vienna Mapping Function 1). In addition, based on computations covering two months in 2005, the potential improvement due to the use of additional GLONASS data will be discussed. Finally, satellite techniques are also able to provide nutation offset rates with respect to the most recent nutation model. Based on GPS observations from 2005 we established nutation rate time series and subsequently derived the amplitudes of several nutation waves with periods less than 30 days. The results are compared to VLBI estimates processed by means of the OCCAM 6.1 software.

  14. Real-Time, High-Frequency QRS Electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; DePalma, Jude L.; Moradi, Saeed

    2003-01-01

    An electronic system that performs real-time analysis of the low-amplitude, high-frequency, ordinarily invisible components of the QRS portion of an electrocardiographic signal in real time has been developed. Whereas the signals readily visible on a conventional electrocardiogram (ECG) have amplitudes of the order of a millivolt and are characterized by frequencies <100 Hz, the ordinarily invisible components have amplitudes in the microvolt range and are characterized by frequencies from about 150 to about 250 Hz. Deviations of these high-frequency components from a normal pattern can be indicative of myocardial ischemia or myocardial infarction

  15. High Frequency Ground Motion from Finite Fault Rupture Simulations

    NASA Astrophysics Data System (ADS)

    Crempien, Jorge G. F.

    There are many tectonically active regions on earth with little or no recorded ground motions. The Eastern United States is a typical example of regions with active faults, but with low to medium seismicity that has prevented sufficient ground motion recordings. Because of this, it is necessary to use synthetic ground motion methods in order to estimate the earthquake hazard a region might have. Ground motion prediction equations for spectral acceleration typically have geometric attenuation proportional to the inverse of distance away from the fault. Earthquakes simulated with one-dimensional layered earth models have larger geometric attenuation than the observed ground motion recordings. We show that as incident angles of rays increase at welded boundaries between homogeneous flat layers, the transmitted rays decrease in amplitude dramatically. As the receiver distance increases away from the source, the angle of incidence of up-going rays increases, producing negligible transmitted ray amplitude, thus increasing the geometrical attenuation. To work around this problem we propose a model in which we separate wave propagation for low and high frequencies at a crossover frequency, typically 1Hz. The high-frequency portion of strong ground motion is computed with a homogeneous half-space and amplified with the available and more complex one- or three-dimensional crustal models using the quarter wavelength method. We also make use of seismic coda energy density observations as scattering impulse response functions. We incorporate scattering impulse response functions into our Green's functions by convolving the high-frequency homogeneous half-space Green's functions with normalized synthetic scatterograms to reproduce scattering physical effects in recorded seismograms. This method was validated against ground motion for earthquakes recorded in California and Japan, yielding results that capture the duration and spectral response of strong ground motion.

  16. Ictal high frequency oscillations distinguish two types of seizure territories in humans

    PubMed Central

    Weiss, Shennan A.; Banks, Garrett P.; McKhann, Guy M.; Goodman, Robert R.; Emerson, Ronald G.; Trevelyan, Andrew J.

    2013-01-01

    High frequency oscillations have been proposed as a clinically useful biomarker of seizure generating sites. We used a unique set of human microelectrode array recordings (four patients, 10 seizures), in which propagating seizure wavefronts could be readily identified, to investigate the basis of ictal high frequency activity at the cortical (subdural) surface. Sustained, repetitive transient increases in high gamma (80–150 Hz) amplitude, phase-locked to the low-frequency (1–25 Hz) ictal rhythm, correlated with strong multi-unit firing bursts synchronized across the core territory of the seizure. These repetitive high frequency oscillations were seen in recordings from subdural electrodes adjacent to the microelectrode array several seconds after seizure onset, following ictal wavefront passage. Conversely, microelectrode recordings demonstrating only low-level, heterogeneous neural firing correlated with a lack of high frequency oscillations in adjacent subdural recording sites, despite the presence of a strong low-frequency signature. Previously, we reported that this pattern indicates a failure of the seizure to invade the area, because of a feedforward inhibitory veto mechanism. Because multi-unit firing rate and high gamma amplitude are closely related, high frequency oscillations can be used as a surrogate marker to distinguish the core seizure territory from the surrounding penumbra. We developed an efficient measure to detect delayed-onset, sustained ictal high frequency oscillations based on cross-frequency coupling between high gamma amplitude and the low-frequency (1–25 Hz) ictal rhythm. When applied to the broader subdural recording, this measure consistently predicted the timing or failure of ictal invasion, and revealed a surprisingly small and slowly spreading seizure core surrounded by a far larger penumbral territory. Our findings thus establish an underlying neural mechanism for delayed-onset, sustained ictal high frequency oscillations, and

  17. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norin, L.; Leyser, T. B.; Nordblad, E.

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  18. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    PubMed

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA.

  19. Navy Applications of High-Frequency Acoustics

    NASA Astrophysics Data System (ADS)

    Cox, Henry

    2004-11-01

    Although the emphasis in underwater acoustics for the last few decades has been in low-frequency acoustics, motivated by long range detection of submarines, there has been a continuing use of high-frequency acoustics in traditional specialized applications such as bottom mapping, mine hunting, torpedo homing and under ice navigation. The attractive characteristics of high-frequency sonar, high spatial resolution, wide bandwidth, small size and relatively low cost must be balanced against the severe range limitation imposed by attenuation that increases approximately as frequency-squared. Many commercial applications of acoustics are ideally served by high-frequency active systems. The small size and low cost, coupled with the revolution in small powerful signal processing hardware has led to the consideration of more sophisticated systems. Driven by commercial applications, there are currently available several commercial-off-the-shelf products including acoustic modems for underwater communication, multi-beam fathometers, side scan sonars for bottom mapping, and even synthetic aperture side scan sonar. Much of the work in high frequency sonar today continues to be focused on specialized applications in which the application is emphasized over the underlying acoustics. Today's vision for the Navy of the future involves Autonomous Undersea Vehicles (AUVs) and off-board ASW sensors. High-frequency acoustics will play a central role in the fulfillment of this vision as a means of communication and as a sensor. The acoustic communication problems for moving AUVs and deep sensors are discussed. Explicit relationships are derived between the communication theoretic description of channel parameters in terms of time and Doppler spreads and ocean acoustic parameters, group velocities, phase velocities and horizontal wavenumbers. Finally the application of synthetic aperture sonar to the mine hunting problems is described.

  20. The Cerebellar Mossy Fiber Synapse as a Model for High-Frequency Transmission in the Mammalian CNS.

    PubMed

    Delvendahl, Igor; Hallermann, Stefan

    2016-11-01

    The speed of neuronal information processing depends on neuronal firing frequency. Here, we describe the evolutionary advantages and ubiquitous occurrence of high-frequency firing within the mammalian nervous system in general. The highest firing frequencies so far have been observed at the cerebellar mossy fiber to granule cell synapse. The mechanisms enabling high-frequency transmission at this synapse are reviewed and compared with other synapses. Finally, information coding of high-frequency signals at the mossy fiber synapse is discussed. The exceptionally high firing frequencies and amenability to high-resolution technical approaches both in vitro and in vivo establish the cerebellar mossy fiber synapse as an attractive model to investigate high-frequency signaling from the molecular up to the network level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. New high-frequency weldable polyolefin films.

    PubMed

    Kelch, R

    2000-05-01

    There is an increasing desire for plastic films that can be sealed using high-frequency energy. Tests on new high-frequency polyolefin film structures are reported, which compare them with the characteristics and performance of poly(vinyl chloride), ethylene-vinyl acetate and thermoplastic polyurethane films.

  2. Determining the frequency, depth and velocity of preferential flow by high frequency soil moisture monitoring

    NASA Astrophysics Data System (ADS)

    Hardie, Marcus; Lisson, Shaun; Doyle, Richard; Cotching, William

    2013-01-01

    Preferential flow in agricultural soils has been demonstrated to result in agrochemical mobilisation to shallow ground water. Land managers and environmental regulators need simple cost effective techniques for identifying soil - land use combinations in which preferential flow occurs. Existing techniques for identifying preferential flow have a range of limitations including; often being destructive, non in situ, small sampling volumes, or are subject to artificial boundary conditions. This study demonstrated that high frequency soil moisture monitoring using a multi-sensory capacitance probe mounted within a vertically rammed access tube, was able to determine the occurrence, depth, and wetting front velocity of preferential flow events following rainfall. Occurrence of preferential flow was not related to either rainfall intensity or rainfall amount, rather preferential flow occurred when antecedent soil moisture content was below 226 mm soil moisture storage (0-70 cm). Results indicate that high temporal frequency soil moisture monitoring may be used to identify soil type - land use combinations in which the presence of preferential flow increases the risk of shallow groundwater contamination by rapid transport of agrochemicals through the soil profile. However use of high frequency based soil moisture monitoring to determine agrochemical mobilisation risk may be limited by, inability to determine the volume of preferential flow, difficulty observing macropore flow at high antecedent soil moisture content, and creation of artificial voids during installation of access tubes in stony soils.

  3. Extrinsic and Intrinsic Frequency Dispersion of High-k Materials in Capacitance-Voltage Measurements

    PubMed Central

    Tao, J.; Zhao, C.Z.; Zhao, C.; Taechakumput, P.; Werner, M.; Taylor, S.; Chalker, P. R.

    2012-01-01

    In capacitance-voltage (C-V) measurements, frequency dispersion in high-k dielectrics is often observed. The frequency dependence of the dielectric constant (k-value), that is the intrinsic frequency dispersion, could not be assessed before suppressing the effects of extrinsic frequency dispersion, such as the effects of the lossy interfacial layer (between the high-k thin film and silicon substrate) and the parasitic effects. The effect of the lossy interfacial layer on frequency dispersion was investigated and modeled based on a dual frequency technique. The significance of parasitic effects (including series resistance and the back metal contact of the metal-oxide-semiconductor (MOS) capacitor) on frequency dispersion was also studied. The effect of surface roughness on frequency dispersion is also discussed. After taking extrinsic frequency dispersion into account, the relaxation behavior can be modeled using the Curie-von Schweidler (CS) law, the Kohlrausch-Williams-Watts (KWW) relationship and the Havriliak-Negami (HN) relationship. Dielectric relaxation mechanisms are also discussed. PMID:28817021

  4. High-frequency ECG

    NASA Technical Reports Server (NTRS)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  5. Real-time, high frequency QRS electrocardiograph

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2006-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as RAZs. RAZs are displayed as go, no-go signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  6. 40 MHz high-frequency ultrafast ultrasound imaging.

    PubMed

    Huang, Chih-Chung; Chen, Pei-Yu; Peng, Po-Hsun; Lee, Po-Yang

    2017-06-01

    Ultrafast high-frame-rate ultrasound imaging based on coherent-plane-wave compounding has been developed for many biomedical applications. Most coherent-plane-wave compounding systems typically operate at 3-15 MHz, and the image resolution for this frequency range is not sufficient for visualizing microstructure tissues. Therefore, the purpose of this study was to implement a high-frequency ultrafast ultrasound imaging operating at 40 MHz. The plane-wave compounding imaging and conventional multifocus B-mode imaging were performed using the Field II toolbox of MATLAB in simulation study. In experiments, plane-wave compounding images were obtained from a 256 channel ultrasound research platform with a 40 MHz array transducer. All images were produced by point-spread functions and cyst phantoms. The in vivo experiment was performed from zebrafish. Since high-frequency ultrasound exhibits a lower penetration, chirp excitation was applied to increase the imaging depth in simulation. The simulation results showed that a lateral resolution of up to 66.93 μm and a contrast of up to 56.41 dB were achieved when using 75-angles plane waves in compounding imaging. The experimental results showed that a lateral resolution of up to 74.83 μm and a contrast of up to 44.62 dB were achieved when using 75-angles plane waves in compounding imaging. The dead zone and compounding noise are about 1.2 mm and 2.0 mm in depth for experimental compounding imaging, respectively. The structure of zebrafish heart was observed clearly using plane-wave compounding imaging. The use of fewer than 23 angles for compounding allowed a frame rate higher than 1000 frames per second. However, the compounding imaging exhibits a similar lateral resolution of about 72 μm as the angle of plane wave is higher than 10 angles. This study shows the highest operational frequency for ultrafast high-frame-rate ultrasound imaging. © 2017 American Association of Physicists in Medicine.

  7. Frequencies of inaudible high-frequency sounds differentially affect brain activity: positive and negative hypersonic effects.

    PubMed

    Fukushima, Ariko; Yagi, Reiko; Kawai, Norie; Honda, Manabu; Nishina, Emi; Oohashi, Tsutomu

    2014-01-01

    The hypersonic effect is a phenomenon in which sounds containing significant quantities of non-stationary high-frequency components (HFCs) above the human audible range (max. 20 kHz) activate the midbrain and diencephalon and evoke various physiological, psychological and behavioral responses. Yet important issues remain unverified, especially the relationship existing between the frequency of HFCs and the emergence of the hypersonic effect. In this study, to investigate the relationship between the hypersonic effect and HFC frequencies, we divided an HFC (above 16 kHz) of recorded gamelan music into 12 band components and applied them to subjects along with an audible component (below 16 kHz) to observe changes in the alpha2 frequency component (10-13 Hz) of spontaneous EEGs measured from centro-parieto-occipital regions (Alpha-2 EEG), which we previously reported as an index of the hypersonic effect. Our results showed reciprocal directional changes in Alpha-2 EEGs depending on the frequency of the HFCs presented with audible low-frequency component (LFC). When an HFC above approximately 32 kHz was applied, Alpha-2 EEG increased significantly compared to when only audible sound was applied (positive hypersonic effect), while, when an HFC below approximately 32 kHz was applied, the Alpha-2 EEG decreased (negative hypersonic effect). These findings suggest that the emergence of the hypersonic effect depends on the frequencies of inaudible HFC.

  8. Recommended Rest Frequencies for Observed Interstellar Molecular Microwave Transitions - 2002 Revision

    National Institute of Standards and Technology Data Gateway

    SRD 116 NIST Recommended Rest Frequencies for Observed Interstellar Molecular Microwave Transitions - 2002 Revision (Web, free access)   Critically evaluated transition frequencies for the molecular transitions detected in interstellar and circumstellar clouds are presented.

  9. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, Howard D.

    1996-01-01

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device.

  10. High-frequency ground motion amplification during the 2011 Tohoku earthquake explained by soil dilatancy

    NASA Astrophysics Data System (ADS)

    Roten, D.; Fäh, D.; Bonilla, L. F.

    2013-05-01

    Ground motions of the 2011 Tohoku earthquake recorded at Onahama port (Iwaki, Fukushima prefecture) rank among the highest accelerations ever observed, with the peak amplitude of the 3-D acceleration vector approaching 2g. The response of the site was distinctively non-linear, as indicated by the presence of horizontal acceleration spikes which have been linked to cyclic mobility during similar observations. Compared to records of weak ground motions, the response of the site during the Mw 9.1 earthquake was characterized by increased amplification at frequencies above 10 Hz and in peak ground acceleration. This behaviour contrasts with the more common non-linear response encountered at non-liquefiable sites, which results in deamplification at higher frequencies. We simulate propagation of SH waves through the dense sand deposit using a non-linear finite difference code that is capable of modelling the development of excess pore water pressure. Dynamic soil parameters are calibrated using a direct search method that minimizes the difference between observed and simulated acceleration envelopes and response spectra. The finite difference simulations yield surface acceleration time-series that are consistent with the observations in shape and amplitude, pointing towards soil dilatancy as a likely explanation for the high-frequency pulses recorded at Onahama port. The simulations also suggest that the occurrence of high-frequency spikes coincided with a rapid increase in pore water pressure in the upper part of the sand deposit between 145 and 170 s. This sudden increase is possibly linked to a burst of high-frequency energy from a large slip patch below the Iwaki region.

  11. Evolutionary Model and Oscillation Frequencies for α Ursae Majoris: A Comparison with Observations

    NASA Astrophysics Data System (ADS)

    Guenther, D. B.; Demarque, P.; Buzasi, D.; Catanzarite, J.; Laher, R.; Conrow, T.; Kreidl, T.

    2000-02-01

    Inspired by the observations of low-amplitude oscillations of α Ursae Majoris A by Buzasi et al. using the WIRE satellite, a grid of stellar evolutionary tracks has been constructed to derive physically consistent interior models for the nearby red giant. The pulsation properties of these models were then calculated and compared with the observations. It is found that, by adopting the correct metallicity and for a normal helium abundance, only models in the mass range of 4.0-4.5 Msolar fall within the observational error box for α UMa A. This mass range is compatible, within the uncertainties, with the mass derived from the astrometric mass function. Analysis of the pulsation spectra of the models indicates that the observed α UMa oscillations can be most simply interpreted as radial (i.e., l=0) p-mode oscillations of low radial order n. The lowest frequencies observed by Buzasi et al. are compatible, within the observational errors, with model frequencies of radial orders n=0, 1, and 2 for models in the mass range of 4.0-4.5 Msolar. The higher frequencies observed can also be tentatively interpreted as higher n-valued radial p-modes, if we allow that some n-values are not presently observed. The theoretical l=1, 2, and 3 modes in the observed frequency range are g-modes with a mixed mode character, that is, with p-mode-like characteristics near the surface and g-mode-like characteristics in the interior. The calculated radial p-mode frequencies are nearly equally spaced, separated by 2-3 μHz. The nonradial modes are very densely packed throughout the observed frequency range and, even if excited to significant amplitudes at the surface, are unlikely to be resolved by the present observations.

  12. High frequency ultrasound: a new frontier for ultrasound.

    PubMed

    Shung, K; Cannata, Jonathan; Qifa Zhou, Member; Lee, Jungwoo

    2009-01-01

    High frequency ultrasonic imaging is considered by many to be the next frontier in ultrasonic imaging because higher frequencies yield much improved spatial resolution by sacrificing the depth of penetration. It has many clinical applications including visualizing blood vessel wall, anterior segments of the eye and skin. Another application is small animal imaging. Ultrasound is especially attractive in imaging the heart of a small animal like mouse which has a size in the mm range and a heart beat rate faster than 600 BPM. A majority of current commercial high frequency scanners often termed "ultrasonic backscatter microscope or UBM" acquire images by scanning single element transducers at frequencies between 50 to 80 MHz with a frame rate lower than 40 frames/s, making them less suitable for this application. High frequency linear arrays and linear array based ultrasonic imaging systems at frequencies higher than 30 MHz are being developed. The engineering of such arrays and development of high frequency imaging systems has been proven to be highly challenging. High frequency ultrasound may find other significant biomedical applications. The development of acoustic tweezers for manipulating microparticles is such an example.

  13. High-temperature, high-frequency fretting fatigue of a single crystal nickel alloy

    NASA Astrophysics Data System (ADS)

    Matlik, John Frederick

    investigations of aerospace components. A detailed description of the high-frequency, high-temperature fretting rig to be used in this investigation follows. Finally, development of a numerical submodeling technique for calculating the experimental contact traction and near-surface stresses is presented and correlated to the experimental fretting crack nucleation observations.

  14. High-frequency effects in antiferromagnetic Sr3Ir2O7

    NASA Astrophysics Data System (ADS)

    Williamson, Morgan; Seinige, Heidi; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John; Tsoi, Maxim

    Antiferromagnetic (AFM) spintronics is one of many promising routes for `beyond the CMOS' technologies where unique properties of AFM materials are exploited to achieve new and improved functionalities. AFMs are especially interesting for high-speed memory applications thanks to their high natural frequencies. Here we report the effects of high-frequency (microwave) currents on transport properties of antiferromagnetic Mott insulator Sr3Ir2O7. The microwaves at 3-7 GHz were found to affect the material's current-voltage characteristic and produce resonance-like features that we tentatively associate with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications. This work was supported in part by C-SPIN, one of six centers of STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA, by NSF Grants DMR-1207577, DMR-1265162, DMR-1600057, and DMR-1122603, and by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2015-CRG4-2626.

  15. High frequency, high power capacitor development

    NASA Astrophysics Data System (ADS)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  16. High frequency, high power capacitor development

    NASA Technical Reports Server (NTRS)

    White, C. W.; Hoffman, P. S.

    1983-01-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  17. Monitoring method and apparatus using high-frequency carrier

    DOEpatents

    Haynes, H.D.

    1996-04-30

    A method and apparatus for monitoring an electrical-motor-driven device by injecting a high frequency carrier signal onto the power line current. The method is accomplished by injecting a high frequency carrier signal onto an AC power line current. The AC power line current supplies the electrical-motor-driven device with electrical energy. As a result, electrical and mechanical characteristics of the electrical-motor-driven device modulate the high frequency carrier signal and the AC power line current. The high frequency carrier signal is then monitored, conditioned and demodulated. Finally, the modulated high frequency carrier signal is analyzed to ascertain the operating condition of the electrical-motor-driven device. 6 figs.

  18. Electromagnetic inhibition of high frequency thermal bonding machine

    NASA Astrophysics Data System (ADS)

    He, Hong; Zhang, Qing-qing; Li, Hang; Zhang, Da-jian; Hou, Ming-feng; Zhu, Xian-wei

    2011-12-01

    The traditional high frequency thermal bonding machine had serious radiation problems at dominant frequency, two times frequency and three times frequency. Combining with its working principle, the problems of electromagnetic compatibility were studied, three following measures were adopted: 1.At the head part of the high frequency thermal bonding machine, resonant circuit attenuator was designed. The notch groove and reaction field can make the radiation being undermined or absorbed; 2.The electromagnetic radiation shielding was made for the high frequency copper power feeder; 3.Redesigned the high-frequency oscillator circuit to reduce the output of harmonic oscillator. The test results showed that these measures can make the output according with the national standard of electromagnetic compatibility (GB4824-2004-2A), the problems of electromagnetic radiation leakage can be solved, and good social, environmental and economic benefits would be brought.

  19. Global Observations of Magnetospheric High-m Poloidal Waves During the 22 June 2015 Magnetic Storm

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Takahashi, K.; Singer, H. J.; Anderson, B. J.; Bromund, K.; Fischer, D.; hide

    2017-01-01

    We report global observations of high-m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m approximately 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step-like frequency changes along L. Each discrete L shell has a steady wave frequency and spans about 1 RE, suggesting that there exist a discrete number of drift-bounce resonance regions across L shells during storm times.

  20. Gender Identification Using High-Frequency Speech Energy: Effects of Increasing the Low-Frequency Limit.

    PubMed

    Donai, Jeremy J; Halbritter, Rachel M

    The purpose of this study was to investigate the ability of normal-hearing listeners to use high-frequency energy for gender identification from naturally produced speech signals. Two experiments were conducted using a repeated-measures design. Experiment 1 investigated the effects of increasing high-pass filter cutoff (i.e., increasing the low-frequency spectral limit) on gender identification from naturally produced vowel segments. Experiment 2 studied the effects of increasing high-pass filter cutoff on gender identification from naturally produced sentences. Confidence ratings for the gender identification task were also obtained for both experiments. Listeners in experiment 1 were capable of extracting talker gender information at levels significantly above chance from vowel segments high-pass filtered up to 8.5 kHz. Listeners in experiment 2 also performed above chance on the gender identification task from sentences high-pass filtered up to 12 kHz. Cumulatively, the results of both experiments provide evidence that normal-hearing listeners can utilize information from the very high-frequency region (above 4 to 5 kHz) of the speech signal for talker gender identification. These findings are at variance with current assumptions regarding the perceptual information regarding talker gender within this frequency region. The current results also corroborate and extend previous studies of the use of high-frequency speech energy for perceptual tasks. These findings have potential implications for the study of information contained within the high-frequency region of the speech spectrum and the role this region may play in navigating the auditory scene, particularly when the low-frequency portion of the spectrum is masked by environmental noise sources or for listeners with substantial hearing loss in the low-frequency region and better hearing sensitivity in the high-frequency region (i.e., reverse slope hearing loss).

  1. Initial report of the High Frequency Analyzer (HFA) onboard the ARASE (ERG) Satellite: Observations of the plasmasphere evolution and auroral kilometric radiation from the both hemisphere

    NASA Astrophysics Data System (ADS)

    Kumamoto, A.; Tsuchiya, F.; Kasahara, Y.; Kasaba, Y.; Kojima, H.; Yagitani, S.; Ishisaka, K.; Imachi, T.; Ozaki, M.; Matsuda, S.; Shoji, M.; Matsuoka, A.; Katoh, Y.; Miyoshi, Y.; Shinohara, I.; Obara, T.

    2017-12-01

    High Frequency Analyzer (HFA) is a subsystem of the Plasma Wave Experiment (PWE) onboard the ARASE (ERG, Exploration of energization and Radiation in Geospace) spacecraft for observation of radio and plasma waves in a frequency range from 0.01 to 10 MHz. In ARASE mission, HFA is expected to perform the following observations: (1) Upper hybrid resonance (UHR) waves in order to determine the electron number density around the spacecraft. (2) Magnetic field component of the chorus waves in a frequency range from 20 kHz to 100 kHz. (3) Radio and plasma waves excited via wave particle interactions and mode conversion processes in storm-time magnetosphere.HFA is operated in the following three observation modes: EE-mode, EB-mode, and PP-mode. In far-Earth region, HFA is operated in EE-mode. Spectrogram of two orthogonal or right and left-handed components of electric field in perpendicular directions to the spin axis of the spacecraft are obtained. In the near-Earth region, HFA is operated in EB-mode. Spectrogram of one components of electric field in perpendicular direction to the spin plane, and one component of the magnetic field in parallel direction to the spin axis are obtained. In EE and EB-modes, the frequency range from 0.01 to 10 MHz are covered with 480 frequency steps. The time resolution is 8 sec. We also prepared PP mode to measure the locations and structures of the plasmapause at higher resolution. In PP-mode, spectrogram of one electric field component in a frequency range from 0.01-0.4 MHz (PP1) or 0.1-1 MHz (PP2) can be obtained at time resolution of 1 sec.After the successful deployment of the wire antenna and search coils mast and initial checks, we could start routine observations and detect various radio and plasma wave phenomena such as upper hybrid resonance (UHR) waves, electrostatic electron cyclotron harmonic (ESCH) waves, auroral kilometric radiation (AKR), kilometric continuum (KC) and Type-III solar radio bursts. In the presentation, we

  2. High-frequency chaotic dynamics enabled by optical phase-conjugation

    PubMed Central

    Mercier, Émeric; Wolfersberger, Delphine; Sciamanna, Marc

    2016-01-01

    Wideband chaos is of interest for applications such as random number generation or encrypted communications, which typically use optical feedback in a semiconductor laser. Here, we show that replacing conventional optical feedback with phase-conjugate feedback improves the chaos bandwidth. In the range of achievable phase-conjugate mirror reflectivities, the bandwidth increase reaches 27% when compared with feedback from a conventional mirror. Experimental measurements of the time-resolved frequency dynamics on nanosecond time-scales show that the bandwidth enhancement is related to the onset of self-pulsing solutions at harmonics of the external-cavity frequency. In the observed regime, the system follows a chaotic itinerancy among these destabilized high-frequency external-cavity modes. The recorded features are unique to phase-conjugate feedback and distinguish it from the long-standing problem of time-delayed feedback dynamics. PMID:26739806

  3. High-efficiency frequency doubling of continuous-wave laser light.

    PubMed

    Ast, Stefan; Nia, Ramon Moghadas; Schönbeck, Axel; Lastzka, Nico; Steinlechner, Jessica; Eberle, Tobias; Mehmet, Moritz; Steinlechner, Sebastian; Schnabel, Roman

    2011-09-01

    We report on the observation of high-efficiency frequency doubling of 1550 nm continuous-wave laser light in a nonlinear cavity containing a periodically poled potassium titanyl phosphate crystal (PPKTP). The fundamental field had a power of 1.10 W and was converted into 1.05 W at 775 nm, yielding a total external conversion efficiency of 95±1%. The latter value is based on the measured depletion of the fundamental field being consistent with the absolute values derived from numerical simulations. According to our model, the conversion efficiency achieved was limited by the nonperfect mode matching into the nonlinear cavity and by the nonperfect impedance matching for the maximum input power available. Our result shows that cavity-assisted frequency conversion based on PPKTP is well suited for low-decoherence frequency conversion of quantum states of light.

  4. High-frequency hearing impairment assessed with cochlear microphonics.

    PubMed

    Zhang, Ming

    2012-09-01

    Cochlear microphonic (CM) measurements may potentially become a supplementary approach to otoacoustic emission (OAE) measurements for assessing low-frequency cochlear functions in the clinic. The objective of this study was to investigate the measurement of CMs in subjects with high-frequency hearing loss. Currently, CMs can be measured using electrocochleography (ECochG or ECoG) techniques. Both CMs and OAEs are cochlear responses, while auditory brainstem responses (ABRs) are not. However, there are inherent limitations associated with OAE measurements such as acoustic noise, which can conceal low-frequency OAEs measured in the clinic. However, CM measurements may not have these limitations. CMs were measured in human subjects using an ear canal electrode. The CMs were compared between the high-frequency hearing loss group and the normal-hearing control group. Distortion product OAEs (DPOAEs) and audiogram were also measured. The DPOAE and audiogram measurements indicate that the subjects were correctly selected for the two groups. Low-frequency CM waveforms (CMWs) can be measured using ear canal electrodes in high-frequency hearing loss subjects. The difference in amplitudes of CMWs between the high-frequency hearing loss group and the normal-hearing group is insignificant at low frequencies but significant at high frequencies.

  5. High Frequency Dynamic Nuclear Polarization

    PubMed Central

    Ni, Qing Zhe; Daviso, Eugenio; Can, Thach V.; Markhasin, Evgeny; Jawla, Sudheer K.; Swager, Timothy M.; Temkin, Richard J.; Herzfeld, Judith; Griffin, Robert G.

    2013-01-01

    Conspectus During the three decades 1980–2010, magic angle spinning (MAS) NMR developed into the method of choice to examine many chemical, physical and biological problems. In particular, a variety of dipolar recoupling methods to measure distances and torsion angles can now constrain molecular structures to high resolution. However, applications are often limited by the low sensitivity of the experiments, due in large part to the necessity of observing spectra of low-γ nuclei such as the I = ½ species 13C or 15N. The difficulty is still greater when quadrupolar nuclei, like 17O or 27Al, are involved. This problem has stimulated efforts to increase the sensitivity of MAS experiments. A particularly powerful approach is dynamic nuclear polarization (DNP) which takes advantage of the higher equilibrium polarization of electrons (which conventionally manifests in the great sensitivity advantage of EPR over NMR). In DNP, the sample is doped with a stable paramagnetic polarizing agent and irradiated with microwaves to transfer the high polarization in the electron spin reservoir to the nuclei of interest. The idea was first explored by Overhauser and Slichter in 1953. However, these experiments were carried out on static samples, at magnetic fields that are low by current standards. To be implemented in contemporary MAS NMR experiments, DNP requires microwave sources operating in the subterahertz regime — roughly 150–660 GHz — and cryogenic MAS probes. In addition, improvements were required in the polarizing agents, because the high concentrations of conventional radicals that are required to produce significant enhancements compromise spectral resolution. In the last two decades scientific and technical advances have addressed these problems and brought DNP to the point where it is achieving wide applicability. These advances include the development of high frequency gyrotron microwave sources operating in the subterahertz frequency range. In addition, low

  6. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  7. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  8. Reduced impedance and superconductivity of SnAgCu solder alloy at high frequency

    NASA Astrophysics Data System (ADS)

    Yao, Wei; Basaran, Cemal

    2012-10-01

    Skin effect of lead-free solder joints is investigated over a wide frequency band. Contrary to common believe that `effective impedance of solder alloys increases with frequency', resistance tends to saturate when frequency reaches a critical value, 10 MHz for SAC solder alloys. Negative surface impedance growth rate is observed when employs square waveform AC current loading at high current density. Further increased frequency causes a dramatic reduction of effective resistance. At 11 MHz with current density of 106 A/cm2, effective resistance of solder alloy drops to near zero value.

  9. [High frequency electrocoagulation for treating noninvoluting congenital hemangioma].

    PubMed

    Zhongqiang, Wang; Yafei, Wang; Jiashuang, Zhou; Quan, Zhou; Lijuan, Yang; Li, Wang

    2015-11-01

    To investigate the clinical efficiency of electrocoagulation for the treatment of noninvoluting congenital hemangioma. Sixteen infants with noninvoluting congenital hemangioma who were admitted to our hospital from January 2011 to June 2013 were included in this study. Color Doppler ultrasound was used to determine the hemangioma location, as well as its size and depth. High frequency electrocoagulation was adopted for the treatment. The output power was set at 10-20 W. The probes were inserted around the tumor or at the surface of the tumor. After switching on for 1-2 seconds, the direction and position of the probe was modulated until covering the whole tumor. After the treatment, the absorption of tumor was about 3-6 months. The efficiency was evaluated during the follow-up. Tumor atrophy was obvious after treatment in all patients. The temperature around the tumor mass was decreased, and the aberrant blood signals were decreased under the ultrasonic examination. Complete or partial atrophy were observed. The efficiency was graded as level I, II, III, IV in 0, 2, 9 and 5 patients, respectively. One patient showed local infection due to improper nursing, which was completely relieved after corresponding treatment. No severe adverse events were observed. High-frequency electrocoagulation is effective for treating noninvoluting congenital hemangioma through coagulating the aberrant blood vessels in the tumor, interrupting the vascular endothelial cell, blocking the aberrant blood flow, as well as leading to atrophy and absorption of tumor mass. Besides, no obvious scar is observed after the surgery.

  10. Eliminating spiral waves pinned to an anatomical obstacle in cardiac myocytes by high-frequency stimuli.

    PubMed

    Isomura, Akihiro; Hörning, Marcel; Agladze, Konstantin; Yoshikawa, Kenichi

    2008-12-01

    The unpinning of spiral waves by the application of high-frequency wave trains was studied in cultured cardiac myocytes. Successful unpinning was observed when the frequency of the paced waves exceeded a critical level. The unpinning process was analyzed by a numerical simulation with a model of cardiac tissue. The mechanism of unpinning by high-frequency stimuli is discussed in terms of local entrainment failure, through a reduction of the two-dimensional spatial characteristics into one dimension.

  11. Highly coherent tunable mid-infrared frequency comb pumped by supercontinuum at 1 µm

    NASA Astrophysics Data System (ADS)

    Jin, Lei; Yamanaka, Masahito; Sonnenschein, Volker; Tomita, Hideki; Iguchi, Tetsuo; Sato, Atsushi; Oh-hara, Toshinari; Nishizawa, Norihiko

    2017-01-01

    We report a tunable mid-infrared frequency comb working at 184 MHz, which is based on difference frequency generation in a periodically poled Mg-doped stoichiometric lithium tantalate (PPMgSLT) crystal pumped by high-power supercontinuum pulses. Supercontinuum pulses from two fibers with different dispersion properties were examined. With a photonic crystal fiber (PCF) having normal dispersion properties, a tunable wavelength range of 2.9-4.7 µm was achieved. With another PCF having zero dispersion at 1040 nm, a maximum power of 1.34 mW was observed at 3.9 µm. The high coherence of the pulses generated with this scheme was verified experimentally, and a fringe visibility of 0.90 was observed.

  12. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  13. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  14. High-frequency applications of high-temperature superconductor thin films

    NASA Astrophysics Data System (ADS)

    Klein, N.

    2002-10-01

    High-temperature superconducting thin films offer unique properties which can be utilized for a variety of high-frequency device applications in many areas related to the strongly progressing market of information technology. One important property is an exceptionally low level of microwave absorption at temperatures attainable with low power cryocoolers. This unique property has initiated the development of various novel type of microwave devices and commercialized subsystems with special emphasis on application in advanced microwave communication systems. The second important achievement related to efforts in oxide thin and multilayer technology was the reproducible fabrication of low-noise Josephson junctions in high-temperature superconducting thin films. As a consequence of this achievement, several novel nonlinear high-frequency devices, most of them exploiting the unique features of the ac Josephson effect, have been developed and found to exhibit challenging properties to be utilized in basic metrology and Terahertz technology. On the longer timescale, the achievements in integrated high-temperature superconductor circuit technology may offer a strong potential for the development of digital devices with possible clock frequencies in the range of 100 GHz.

  15. Detection of changes of high-frequency activity by statistical time-frequency analysis in epileptic spikes

    PubMed Central

    Kobayashi, Katsuhiro; Jacobs, Julia; Gotman, Jean

    2013-01-01

    Objective A novel type of statistical time-frequency analysis was developed to elucidate changes of high-frequency EEG activity associated with epileptic spikes. Methods The method uses the Gabor Transform and detects changes of power in comparison to background activity using t-statistics that are controlled by the false discovery rate (FDR) to correct type I error of multiple testing. The analysis was applied to EEGs recorded at 2000 Hz from three patients with mesial temporal lobe epilepsy. Results Spike-related increase of high-frequency oscillations (HFOs) was clearly shown in the FDR-controlled t-spectra: it was most dramatic in spikes recorded from the hippocampus when the hippocampus was the seizure onset zone (SOZ). Depression of fast activity was observed immediately after the spikes, especially consistently in the discharges from the hippocampal SOZ. It corresponded to the slow wave part in case of spike-and-slow-wave complexes, but it was noted even in spikes without apparent slow waves. In one patient, a gradual increase of power above 200 Hz preceded spikes. Conclusions FDR-controlled t-spectra clearly detected the spike-related changes of HFOs that were unclear in standard power spectra. Significance We developed a promising tool to study the HFOs that may be closely linked to the pathophysiology of epileptogenesis. PMID:19394892

  16. Fourier Spot Volatility Estimator: Asymptotic Normality and Efficiency with Liquid and Illiquid High-Frequency Data

    PubMed Central

    2015-01-01

    The recent availability of high frequency data has permitted more efficient ways of computing volatility. However, estimation of volatility from asset price observations is challenging because observed high frequency data are generally affected by noise-microstructure effects. We address this issue by using the Fourier estimator of instantaneous volatility introduced in Malliavin and Mancino 2002. We prove a central limit theorem for this estimator with optimal rate and asymptotic variance. An extensive simulation study shows the accuracy of the spot volatility estimates obtained using the Fourier estimator and its robustness even in the presence of different microstructure noise specifications. An empirical analysis on high frequency data (U.S. S&P500 and FIB 30 indices) illustrates how the Fourier spot volatility estimates can be successfully used to study intraday variations of volatility and to predict intraday Value at Risk. PMID:26421617

  17. Extremely high frequency RF effects on electronics.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit boardmore » traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.« less

  18. High-frequency Rayleigh-wave method

    USGS Publications Warehouse

    Xia, J.; Miller, R.D.; Xu, Y.; Luo, Y.; Chen, C.; Liu, J.; Ivanov, J.; Zeng, C.

    2009-01-01

    High-frequency (???2 Hz) Rayleigh-wave data acquired with a multichannel recording system have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave techniques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a non-invasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  19. High-efficiency water-loaded microwave antenna in ultra-high-frequency band

    NASA Astrophysics Data System (ADS)

    Gong, Zilun; Bartone, Chris; Yang, Fuyi; Yao, Jie

    2018-03-01

    High-index dielectrics are widely used in microwave antennas to control the radiation characteristics. Liquid water, with a high dielectric index at microwave frequency, is an interesting material to achieving tunable functionalities. Here, we demonstrate a water-loaded microwave antenna system that has high loss-tolerance and wideband tunability enabled by fluidity. Our simulation and experimental results show that the resonance frequency can be effectively tuned by the size of loading water. Furthermore, the antenna systems with water loading can achieve high radiation efficiency (>90%) in the ultra-high-frequency (0.3-3 GHz) band. This work brings about opportunities in realistic tunable microwave antenna designs enabled by liquid.

  20. High-Frequency Percussive Ventilation Revisited

    DTIC Science & Technology

    2010-01-01

    be implemented. ‡ Follow the reverse of the ventilation sequence if respiratory alkalosis develops—however, start at ventilation goal sequence 1 not at...High-frequency percussive ventilation (HFPV) has demonstrated a potential role as a rescue option for refractory acute respiratory distress syndrome...frequency percussive ventilation (HFPV) has demon- strated a potential role as a salvage option for refrac- tory acute respiratory distress syndrome

  1. Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm.

    PubMed

    Le, G; Chi, P J; Strangeway, R J; Russell, C T; Slavin, J A; Takahashi, K; Singer, H J; Anderson, B J; Bromund, K; Fischer, D; Kepko, E L; Magnes, W; Nakamura, R; Plaschke, F; Torbert, R B

    2017-04-28

    We report global observations of high- m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers ( m  ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step-like frequency changes along L . Each discrete L shell has a steady wave frequency and spans about 1  R E , suggesting that there exist a discrete number of drift-bounce resonance regions across L shells during storm times.

  2. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  3. High frequency x-ray generator basics.

    PubMed

    Sobol, Wlad T

    2002-02-01

    The purpose of this paper is to present basic functional principles of high frequency x-ray generators. The emphasis is put on physical concepts that determine the engineering solutions to the problem of efficient generation and control of high voltage power required to drive the x-ray tube. The physics of magnetically coupled circuits is discussed first, as a background for the discussion of engineering issues related to high-frequency power transformer design. Attention is paid to physical processes that influence such factors as size, efficiency, and reliability of a high voltage power transformer. The basic electrical circuit of a high frequency generator is analyzed next, with focus on functional principles. This section investigates the role and function of basic components, such as power supply, inverter, and voltage doubler. Essential electronic circuits of generator control are then examined, including regulation of voltage, current and timing of electrical power delivery to the x-ray tube. Finally, issues related to efficient feedback control, including basic design of the AEC circuitry are reviewed.

  4. High-frequency modulation of ion-acoustic waves.

    NASA Technical Reports Server (NTRS)

    Albright, N. W.

    1972-01-01

    A large amplitude, high-frequency electromagnetic oscillation is impressed on a nonrelativistic, collisionless plasma from an external source. The frequency is chosen to be far from the plasma frequency (in fact, lower). The resulting electron velocity distribution function strongly modifies the propagation of ion-acoustic waves parallel to the oscillating electric field. The complex frequency is calculated numerically.

  5. High-frequency electrostatic waves in the magnetosphere.

    NASA Technical Reports Server (NTRS)

    Young, T. S. T.

    1973-01-01

    High-frequency electrostatic microinstabilities in magnetospheric plasmas are considered in detail. Rather special plasma parameters are found to be required to match the theoretical wave spectrum with satellite observations in the magnetosphere. In particular, it is necessary to have a cold and a warm species of electrons such that (1) the warm component has an anomalous velocity distribution function that is nonmonotonic in the perpendicular component of velocity and is the source of free energy driving the instabilities, (2) the density ratio of the cold component to the hot component is greater than about 0.01, and (3) the temperature ratio of the two components for cases of high particle density is no less than 0.1. These requirements and the corresponding instability criteria are satisfied only in the trapping region; this is also the region in which the waves are most frequently observed. The range of unstable wavelengths and an estimate of the diffusion coefficient are also obtained. The wave are found to induce strong diffusion in velocity space for low-energy electrons during periods of moderate wave amplitude.

  6. 18.6 K single-stage high frequency multi-bypass coaxial pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Chen, Liubiao; Jin, Hai; Wang, Junjie; Zhou, Yuan; Zhu, Wenxiu; Zhou, Qiang

    2013-02-01

    A single-stage high frequency multi-bypass coaxial pulse tube cryocooler (PTC) has been developed for physical experiments. The performance characteristics are presented. At present, the cooler has reached the lowest temperature of 18.6 K with an electric input power of 268 W, which is the reported lowest temperature for single-stage high frequency PTC. The cooler typically provides 0.2 W at 20.6 K and 0.5 W at 24.1 K with the input power of 260 W at 300 K ambient temperature. The cooperation phase adjustment method of multi-bypass and double-inlet shows its advantages in experiments, they might be the best way to get temperature below 20 K for single-stage high frequency PTC. The temperature stability of the developed PTC is also observed.

  7. The Influence of High-Frequency Envelope Information on Low-Frequency Vowel Identification in Noise

    PubMed Central

    2016-01-01

    Vowel identification in noise using consonant-vowel-consonant (CVC) logatomes was used to investigate a possible interplay of speech information from different frequency regions. It was hypothesized that the periodicity conveyed by the temporal envelope of a high frequency stimulus can enhance the use of the information carried by auditory channels in the low-frequency region that share the same periodicity. It was further hypothesized that this acts as a strobe-like mechanism and would increase the signal-to-noise ratio for the voiced parts of the CVCs. In a first experiment, different high-frequency cues were provided to test this hypothesis, whereas a second experiment examined more closely the role of amplitude modulations and intact phase information within the high-frequency region (4–8 kHz). CVCs were either natural or vocoded speech (both limited to a low-pass cutoff-frequency of 2.5 kHz) and were presented in stationary 3-kHz low-pass filtered masking noise. The experimental results did not support the hypothesized use of periodicity information for aiding low-frequency perception. PMID:26730702

  8. Dynamics of liquid films exposed to high-frequency surface vibration

    NASA Astrophysics Data System (ADS)

    Manor, Ofer; Rezk, Amgad R.; Friend, James R.; Yeo, Leslie Y.

    2015-05-01

    We derive a generalized equation that governs the spreading of liquid films under high-frequency (MHz-order) substrate vibration in the form of propagating surface waves and show that this single relationship is universally sufficient to collectively describe the rich and diverse dynamic phenomena recently observed for the transport of oil films under such substrate excitation, in particular, Rayleigh surface acoustic waves. In contrast to low-frequency (Hz- to kHz-order) vibration-induced wetting phenomena, film spreading at such high frequencies arises from convective drift generated by the viscous periodic flow localized in a region characterized by the viscous penetration depth β-1≡(2μ /ρ ω ) 1 /2 adjacent to the substrate that is invoked directly by its vibration; μ and ρ are the viscosity and the density of the liquid, respectively, and ω is the excitation frequency. This convective drift is responsible for driving the spreading of thin films of thickness h ≪kl-1 , which spread self-similarly as t1 /4 along the direction of the drift corresponding to the propagation direction of the surface wave, kl being the wave number of the compressional acoustic wave that forms in the liquid due to leakage of the surface wave energy from the substrate into the liquid and t the time. Films of greater thicknesses h ˜kl-1≫β-1 , in contrast, are observed to spread with constant velocity but in a direction that opposes the drift and surface wave propagation due to the attenuation of the acoustic wave in the liquid. The universal equation derived allows for the collective prediction of the spreading of these thin and thick films in opposing directions.

  9. High Frequency QPOs due to Black Hole Spin

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.

  10. High-frequency underwater plasma discharge application in antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli ( E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  11. High Frequency Acoustic Propagation using Level Set Methods

    DTIC Science & Technology

    2007-01-01

    solution of the high frequency approximation to the wave equation. Traditional solutions to the Eikonal equation in high frequency acoustics are...the Eikonal equation derived from the high frequency approximation to the wave equation, ucuH ∇±=∇ )(),( xx , with the nonnegative function c(x...For simplicity, we only consider the case ucuH ∇+=∇ )(),( xx . Two difficulties must be addressed when solving the Eikonal equation in a fixed

  12. Apparatus for measuring high frequency currents

    NASA Technical Reports Server (NTRS)

    Hagmann, Mark J. (Inventor); Sutton, John F. (Inventor)

    2003-01-01

    An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.

  13. Electric-acoustic stimulation suppresses tinnitus in a subject with high-frequency single-sided deafness.

    PubMed

    Mertens, Griet; Van Rompaey, Vincent; Van de Heyning, Paul

    2018-05-17

    A suggested solution to suppress tinnitus is to restore the normal sensory input. This is based on the auditory deprivation hypothesis. It is known that hearing aids can provide sufficient activation of the auditory nervous system and reduce tinnitus in subjects with mild to moderate hearing loss and that cochlear implantation can reduce tinnitus in subjects with severe to profound hearing loss. This applies to subjects with single-sided deafness (SSD) or bilateral hearing loss. To investigate if electric-acoustic stimulation (EAS) can reduce severe tinnitus in a subject with residual hearing in the ipsilateral ear and contralateral normal hearing (high-frequency SSD) by restoring the auditory input. Tinnitus reduction was investigated for 1 year after implantation in a subject with high-frequency SSD, who uses EAS, and was compared to 11 subjects with a cochlear implant (CI) with SSD. The Visual Analogue Scale (VAS) and the Tinnitus Questionnaire (TQ) were administered pre-operatively and at 1, 3, 6, and 12 months after implantation. Significant tinnitus reduction was observed 1 month after implantation on the VAS in the subjects with SSD using a CI. Tinnitus reduction was also observed in the subject with high-frequency SSD using EAS. A further decrease was observed 3 months after implantation. The TQ and VAS scores remained stable up to 1 year after implantation. A CI can significantly reduce ipsilateral severe tinnitus in a subject with SSD. Ipsilateral severe tinnitus can also be reduced using EAS in subjects with high-frequency SSD.

  14. Simulation of Space-borne Radar Observation from High Resolution Cloud Model - for GPM Dual frequency Precipitation Radar -

    NASA Astrophysics Data System (ADS)

    Kim, H.; Meneghini, R.; Jones, J.; Liao, L.

    2011-12-01

    A comprehensive space-borne radar simulator has been developed to support active microwave sensor satellite missions. The two major objectives of this study are: 1) to develop a radar simulator optimized for the Dual-frequency Precipitation Radar (KuPR and KaPR) on the Global Precipitation Measurement Mission satellite (GPM-DPR) and 2) to generate the synthetic test datasets for DPR algorithm development. This simulator consists of two modules: a DPR scanning configuration module and a forward module that generates atmospheric and surface radar observations. To generate realistic DPR test data, the scanning configuration module specifies the technical characteristics of DPR sensor and emulates the scanning geometry of the DPR with a inner swath of about 120 km, which contains matched-beam data from both frequencies, and an outer swath from 120 to 245 km over which only Ku-band data will be acquired. The second module is a forward model used to compute radar observables (reflectivity, attenuation and polarimetric variables) from input model variables including temperature, pressure and water content (rain water, cloud water, cloud ice, snow, graupel and water vapor) over the radar resolution volume. Presently, the input data to the simulator come from the Goddard Cumulus Ensemble (GCE) and Weather Research and Forecast (WRF) models where a constant mass density is assumed for each species with a particle size distribution given by an exponential distribution with fixed intercept parameter (N0) and a slope parameter (Λ) determined from the equivalent water content. Although the model data do not presently contain mixed phase hydrometeors, the Yokoyama-Tanaka melting model is used along with the Bruggeman effective dielectric constant to replace rain and snow particles, where both are present, with mixed phase particles while preserving the snow/water fraction. For testing one of the DPR retrieval algorithms, the Surface Reference Technique (SRT), the simulator uses

  15. Gender and vocal production mode discrimination using the high frequencies for speech and singing

    PubMed Central

    Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.

    2014-01-01

    Humans routinely produce acoustical energy at frequencies above 6 kHz during vocalization, but this frequency range is often not represented in communication devices and speech perception research. Recent advancements toward high-definition (HD) voice and extended bandwidth hearing aids have increased the interest in the high frequencies. The potential perceptual information provided by high-frequency energy (HFE) is not well characterized. We found that humans can accomplish tasks of gender discrimination and vocal production mode discrimination (speech vs. singing) when presented with acoustic stimuli containing only HFE at both amplified and normal levels. Performance in these tasks was robust in the presence of low-frequency masking noise. No substantial learning effect was observed. Listeners also were able to identify the sung and spoken text (excerpts from “The Star-Spangled Banner”) with very few exposures. These results add to the increasing evidence that the high frequencies provide at least redundant information about the vocal signal, suggesting that its representation in communication devices (e.g., cell phones, hearing aids, and cochlear implants) and speech/voice synthesizers could improve these devices and benefit normal-hearing and hearing-impaired listeners. PMID:25400613

  16. High-frequency welding trials.

    PubMed

    Kelch, R

    2000-09-01

    The high-frequency weldability of a new family of polyolefin films is compared with that of conventional films made of other polymers. A comparison of the optimum weld parameters of all the films and the results of performance testing of all the pouches produced are reported.

  17. Development of miniature, high frequency pulse tube cryocoolers

    NASA Astrophysics Data System (ADS)

    Radebaugh, Ray; Garaway, Isaac; Veprik, Alexander M.

    2010-04-01

    Because acoustic power density is proportional to frequency, the size of pulse tube cryocoolers for a given refrigeration power can be reduced by operating them at higher frequencies. A frequency of about 60 Hz had been considered the maximum frequency that could be used while maintaining high efficiency. Recently, we have shown through modeling that by decreasing the volume and hydraulic diameter of the regenerator and increasing the average pressure, it is possible to maintain high efficiency even for frequencies of several hundred hertz. Subsequent experimental results have demonstrated high efficiencies for frequencies of 100 to 140 Hz. The very high power density achieved at higher pressures and higher frequencies leads to very short cooldown times and very compact devices. The use of even higher frequencies requires the development of special compressors designed for such conditions and the development of regenerator matrices with hydraulic diameters less than about 30 Μm. To demonstrate the advantages of higher frequency operation, we discuss here the development of a miniature pulse tube cryocooler designed to operate at 80 K with a frequency of 150 Hz and an average pressure of 5.0 MPa. The regenerator diameter and length are 4.4 mm and 27 mm, respectively. The lowest temperature achieved to date has been 97 K, but a net refrigeration power of 530 mW was achieved at 120 K. Acoustic mismatches with existing compressors significantly limit the efficiency, but necessary modifications to improve the acoustic impedance match between the compressor and the cold head are discussed briefly.

  18. Peak high-frequency HRV and peak alpha frequency higher in PTSD.

    PubMed

    Wahbeh, Helané; Oken, Barry S

    2013-03-01

    Posttraumatic stress disorder (PTSD) is difficult to treat and current PTSD treatments are not effective for all people. Despite limited evidence for its efficacy, some clinicians have implemented biofeedback for PTSD treatment. As a first step in constructing an effective biofeedback treatment program, we assessed respiration, electroencephalography (EEG) and heart rate variability (HRV) as potential biofeedback parameters for a future clinical trial. This cross-sectional study included 86 veterans; 59 with and 27 without PTSD. Data were collected on EEG measures, HRV, and respiration rate during an attentive resting state. Measures were analyzed to assess sensitivity to PTSD status and the relationship to PTSD symptoms. Peak alpha frequency was higher in the PTSD group (F(1,84) = 6.14, p = 0.01). Peak high-frequency HRV was lower in the PTSD group (F(2,78) = 26.5, p < 0.00005) when adjusting for respiration rate. All other EEG and HRV measures and respiration were not different between groups. Peak high-frequency HRV and peak alpha frequency are sensitive to PTSD status and may be potential biofeedback parameters for future PTSD clinical trials.

  19. Atmospheric-radiation boundary conditions for high-frequency waves in time-distance helioseismology

    NASA Astrophysics Data System (ADS)

    Fournier, D.; Leguèbe, M.; Hanson, C. S.; Gizon, L.; Barucq, H.; Chabassier, J.; Duruflé, M.

    2017-12-01

    The temporal covariance between seismic waves measured at two locations on the solar surface is the fundamental observable in time-distance helioseismology. Above the acoustic cut-off frequency ( 5.3 mHz), waves are not trapped in the solar interior and the covariance function can be used to probe the upper atmosphere. We wish to implement appropriate radiative boundary conditions for computing the propagation of high-frequency waves in the solar atmosphere. We consider recently developed and published radiative boundary conditions for atmospheres in which sound-speed is constant and density decreases exponentially with radius. We compute the cross-covariance function using a finite element method in spherical geometry and in the frequency domain. The ratio between first- and second-skip amplitudes in the time-distance diagram is used as a diagnostic to compare boundary conditions and to compare with observations. We find that a boundary condition applied 500 km above the photosphere and derived under the approximation of small angles of incidence accurately reproduces the "infinite atmosphere" solution for high-frequency waves. When the radiative boundary condition is applied 2 Mm above the photosphere, we find that the choice of atmospheric model affects the time-distance diagram. In particular, the time-distance diagram exhibits double-ridge structure when using a Vernazza Avrett Loeser atmospheric model.

  20. An inkjet vision measurement technique for high-frequency jetting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Kye-Si, E-mail: kskwon@sch.ac.kr; Jang, Min-Hyuck; Park, Ha Yeong

    2014-06-15

    Inkjet technology has been used as manufacturing a tool for printed electronics. To increase the productivity, the jetting frequency needs to be increased. When using high-frequency jetting, the printed pattern quality could be non-uniform since the jetting performance characteristics including the jetting speed and droplet volume could vary significantly with increases in jet frequency. Therefore, high-frequency jetting behavior must be evaluated properly for improvement. However, it is difficult to measure high-frequency jetting behavior using previous vision analysis methods, because subsequent droplets are close or even merged. In this paper, we present vision measurement techniques to evaluate the drop formation ofmore » high-frequency jetting. The proposed method is based on tracking target droplets such that subsequent droplets can be excluded in the image analysis by focusing on the target droplet. Finally, a frequency sweeping method for jetting speed and droplet volume is presented to understand the overall jetting frequency effects on jetting performance.« less

  1. High-frequency resonant-tunneling oscillators

    NASA Technical Reports Server (NTRS)

    Brown, E. R.; Parker, C. D.; Calawa, A. R.; Manfra, M. J.; Chen, C. L.

    1991-01-01

    Advances in high-frequency resonant-tunneling-diode (RTD) oscillators are described. Oscillations up to a frequency of 420 GHz have been achieved in the GaAs/AlAs system. Recent results obtained with In0.53Ga0.47As/AlAs and InAs/AlSb RTDs show a greatly increased power density and indicate the potential for fundamental oscillations up to about 1 THz. These results are consistent with a lumped-element equivalent circuit model of the RTD. The model shows that the maximum oscillation frequency of the GaAs/AlAs RTDs is limited primarily by series resistance, and that the power density is limited by low peak-to-valley current ratio.

  2. Frequency driven inversion of tunnel magnetoimpedance and observation of positive tunnel magnetocapacitance in magnetic tunnel junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parui, Subir, E-mail: s.parui@nanogune.eu, E-mail: l.hueso@nanogune.eu; Ribeiro, Mário; Atxabal, Ainhoa

    The relevance for modern computation of non-volatile high-frequency memories makes ac-transport measurements of magnetic tunnel junctions (MTJs) crucial for exploring this regime. Here, we demonstrate a frequency-mediated effect in which the tunnel magnetoimpedance reverses its sign in a classical Co/Al{sub 2}O{sub 3}/NiFe MTJ, whereas we only observe a gradual decrease in the tunnel magnetophase. Such effects are explained by the capacitive coupling of a parallel resistor and capacitor in the equivalent circuit model of the MTJ. Furthermore, we report a positive tunnel magnetocapacitance effect, suggesting the presence of a spin-capacitance at the two ferromagnet/tunnel-barrier interfaces. Our results are important formore » understanding spin transport phenomena at the high frequency regime in which the spin-polarized charge accumulation due to spin-dependent penetration depth at the two interfaces plays a crucial role.« less

  3. Carbon nanotube transistor based high-frequency electronics

    NASA Astrophysics Data System (ADS)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks.

  4. High-frequency plasma-heating apparatus

    DOEpatents

    Brambilla, Marco; Lallia, Pascal

    1978-01-01

    An array of adjacent wave guides feed high-frequency energy into a vacuum chamber in which a toroidal plasma is confined by a magnetic field, the wave guide array being located between two toroidal current windings. Waves are excited in the wave guide at a frequency substantially equal to the lower frequency hybrid wave of the plasma and a substantially equal phase shift is provided from one guide to the next between the waves therein. For plasmas of low peripheral density gradient, the guides are excited in the TE.sub.01 mode and the output electric field is parallel to the direction of the toroidal magnetic field. For exciting waves in plasmas of high peripheral density gradient, the guides are excited in the TM.sub.01 mode and the magnetic field at the wave guide outlets is parallel to the direction of the toroidal magnetic field. The wave excited at the outlet of the wave guide array is a progressive wave propagating in the direction opposite to that of the toroidal current and is, therefore, not absorbed by so-called "runaway" electrons.

  5. A PK-PD Model of Ketamine-Induced High-Frequency Oscillations

    PubMed Central

    Flores, Francisco J.; Ching, ShiNung; Hartnack, Katharine; Fath, Amanda B.; Purdon, Patrick L.; Wilson, Matthew A.; Brown, Emery N.

    2017-01-01

    Objective Ketamine is a widely used drug with clinical and research applications, and also known to be used as a recreational drug. Ketamine produces conspicuous changes in the electrocorticographic (ECoG) signals observed both in humans and rodents. In rodents, the intracranial ECoG displays a High-Frequency Oscillation (HFO) which power is modulated non-linearly by ketamine dose. Despite the widespread use of ketamine there is no model description of the relationship between the pharmacokinetic-pharmacodynamics (PK-PD) of ketamine and the observed HFO power. Approach In the present study, we developed a PK-PD model based on estimated ketamine concentration, its known pharmacological actions, and observed ECoG effects. The main pharmacological action of ketamine is antagonism of the NMDA receptor (NMDAR), which in rodents is accompanied by a high-frequency oscillation (HFO) observed in the ECoG. At high doses, however, ketamine also acts at non-NMDAR sites, produces loss of consciousness, and the transient disappearance of the HFO. We propose a two-compartment PK model that represents the concentration of ketamine, and a PD model based in opposing effects of the NMDAR and non-NMDAR actions on the HFO power. Main results We recorded ECoG from the cortex of rats after two doses of ketamine, and extracted the HFO power from the ECoG spectrograms. We fit the PK-PD model to the time course of the HFO power, and showed that the model reproduces the dose-dependent profile of the HFO power. The model provides good fits even in the presence of high variability in HFO power across animals. As expected, the model does not provide good fits to the HFO power after dosing the pure NMDAR antagonist MK-801. Significance Our study provides a simple model to relate the observed electrophysiological effects of ketamine to its actions at the molecular level at different concentrations. This will improve the study of ketamine and rodent models of schizophrenia to better understand the

  6. Mechanisms of high-frequency song generation in brachypterous crickets and the role of ghost frequencies.

    PubMed

    Robillard, Tony; Montealegre-Z, Fernando; Desutter-Grandcolas, Laure; Grandcolas, Philippe; Robert, Daniel

    2013-06-01

    Sound production in crickets relies on stridulation, the well-understood rubbing together of a pair of specialised wings. As the file of one wing slides over the scraper of the other, a series of rhythmic impacts causes harmonic oscillations, usually resulting in the radiation of pure tones delivered at low frequencies (2-8 kHz). In the short-winged crickets of the Lebinthini tribe, acoustic communication relies on signals with remarkably high frequencies (>8 kHz) and rich harmonic content. Using several species of the subfamily Eneopterinae, we characterised the morphological and mechanical specialisations supporting the production of high frequencies, and demonstrated that higher harmonics are exploited as dominant frequencies. These specialisations affect the structure of the stridulatory file, the motor control of stridulation and the resonance of the sound radiator. We placed these specialisations in a phylogenetic framework and show that they serve to exploit high-frequency vibrational modes pre-existing in the phylogenetic ancestor. In Eneopterinae, the lower frequency components are harmonically related to the dominant peak, suggesting they are relicts of ancestral carrier frequencies. Yet, such ghost frequencies still occur in the wings' free resonances, highlighting the fundamental mechanical constraints of sound radiation. These results support the hypothesis that such high-frequency songs evolved stepwise, by a form of punctuated evolution that could be related to functional constraints, rather than by only the progressive increase of the ancestral fundamental frequency.

  7. Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study.

    PubMed

    Cattell, C A; Breneman, A W; Thaller, S A; Wygant, J R; Kletzing, C A; Kurth, W S

    2015-09-28

    We show the first evidence for locally excited chorus at frequencies below 0.1  f ce (electron cyclotron frequency) in the outer radiation belt. A statistical study of chorus during geomagnetic storms observed by the Van Allen Probes found that frequencies are often dramatically lower than expected. The frequency at peak power suddenly stops tracking the equatorial 0.5  f ce and f / f ce decreases rapidly, often to frequencies well below 0.1  f ce (in situ and mapped to equator). These very low frequency waves are observed both when the satellites are close to the equatorial plane and at higher magnetic latitudes. Poynting flux is consistent with generation at the equator. Wave amplitudes can be up to 20 to 40 mV/m and 2 to 4 nT. We conclude that conditions during moderate to large storms can excite unusually low frequency chorus, which is resonant with more energetic electrons than typical chorus, with critical implications for understanding radiation belt evolution.

  8. High efficiency quantum cascade laser frequency comb.

    PubMed

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-03-06

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm -1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy.

  9. High efficiency quantum cascade laser frequency comb

    PubMed Central

    Lu, Quanyong; Wu, Donghai; Slivken, Steven; Razeghi, Manijeh

    2017-01-01

    An efficient mid-infrared frequency comb source is of great interest to high speed, high resolution spectroscopy and metrology. Here we demonstrate a mid-IR quantum cascade laser frequency comb with a high power output and narrow beatnote linewidth at room temperature. The active region was designed with a strong-coupling between the injector and the upper lasing level for high internal quantum efficiency and a broadband gain. The group velocity dispersion was engineered for efficient, broadband mode-locking via four wave mixing. The comb device exhibits a narrow intermode beatnote linewidth of 50.5 Hz and a maximum wall-plug efficiency of 6.5% covering a spectral coverage of 110 cm−1 at λ ~ 8 μm. The efficiency is improved by a factor of 6 compared with previous demonstrations. The high power efficiency and narrow beatnote linewidth will greatly expand the applications of quantum cascade laser frequency combs including high-precision remote sensing and spectroscopy. PMID:28262834

  10. High-frequency observations and source parameters of microearthquakes recorded at hard-rock sites

    USGS Publications Warehouse

    Cranswick, Edward; Wetmiller, Robert; Boatwright, John

    1985-01-01

    We have estimated the source parameters of 53 microearthquakes recorded in July 1983 which were aftershocks of the Miramichi, New Brunswick, earthquake that occurred on 9 January 1982. These events were recorded by local three-component digital seismographs at 400 sps/component from 2-Hz velocity transducers sited directly on glacially scoured crystalline basement outcrop. Hypocentral distances are typically less than 5 km, and the hypocenters and the seven digital seismograph stations established all lie essentially within the boundaries of a granitic pluton that encompasses the faults that ruptured during the main shock and major aftershocks. The P-wave velocity is typically 5 km/sec at the surface and at least 6 km/sec at depths greater than about 1 km.The events have S-wave corner frequencies in the band 10 to 40 Hz, and the calculated Brune model seismic moments range from 1015 to 1018 dyne-cm. The corresponding stress drops are generally less than 1.0 bars, but there is considerable evidence that the seismic-source signals have been modified by propagation and/or site-effects. The data indicate: (a) there is a velocity discontinuity at 0.5 km depth; (b) the top layer has strong scattering/attenuating properties; (c) some source-receiver paths differentiate the propagated signal; (d) there is a hard-rock-site P-wave “fmax” between 50 and 100 Hz; and (e) some hard-rock sites are characterized by P-wave resonance frequencies in the range 50 to 100 Hz. Comparison of this dataset with the January 1982 New Brunswick digital seismograms which were recorded at sites underlain by several meters of low-velocity surface sediments suggests that some of the hard-rock-site phenomena listed above can be explained in terms of a layer-over-a-half-space model. For microearthquakes, this result implies that spectrally determined source dimension scales with site dimension (thickness of the layer). More generally, it emphasizes that it is very difficult to accurately observe

  11. Validation of High Frequency (HF) Propagation Prediction Models in the Arctic region

    NASA Astrophysics Data System (ADS)

    Athieno, R.; Jayachandran, P. T.

    2014-12-01

    Despite the emergence of modern techniques for long distance communication, Ionospheric communication in the high frequency (HF) band (3-30 MHz) remains significant to both civilian and military users. However, the efficient use of the ever-varying ionosphere as a propagation medium is dependent on the reliability of ionospheric and HF propagation prediction models. Most available models are empirical implying that data collection has to be sufficiently large to provide good intended results. The models we present were developed with little data from the high latitudes which necessitates their validation. This paper presents the validation of three long term High Frequency (HF) propagation prediction models over a path within the Arctic region. Measurements of the Maximum Usable Frequency for a 3000 km range (MUF (3000) F2) for Resolute, Canada (74.75° N, 265.00° E), are obtained from hand-scaled ionograms generated by the Canadian Advanced Digital Ionosonde (CADI). The observations have been compared with predictions obtained from the Ionospheric Communication Enhanced Profile Analysis Program (ICEPAC), Voice of America Coverage Analysis Program (VOACAP) and International Telecommunication Union Recommendation 533 (ITU-REC533) for 2009, 2011, 2012 and 2013. A statistical analysis shows that the monthly predictions seem to reproduce the general features of the observations throughout the year though it is more evident in the winter and equinox months. Both predictions and observations show a diurnal and seasonal variation. The analysed models did not show large differences in their performances. However, there are noticeable differences across seasons for the entire period analysed: REC533 gives a better performance in winter months while VOACAP has a better performance for both equinox and summer months. VOACAP gives a better performance in the daily predictions compared to ICEPAC though, in general, the monthly predictions seem to agree more with the

  12. High-frequency matrix converter with square wave input

    DOEpatents

    Carr, Joseph Alexander; Balda, Juan Carlos

    2015-03-31

    A device for producing an alternating current output voltage from a high-frequency, square-wave input voltage comprising, high-frequency, square-wave input a matrix converter and a control system. The matrix converter comprises a plurality of electrical switches. The high-frequency input and the matrix converter are electrically connected to each other. The control system is connected to each switch of the matrix converter. The control system is electrically connected to the input of the matrix converter. The control system is configured to operate each electrical switch of the matrix converter converting a high-frequency, square-wave input voltage across the first input port of the matrix converter and the second input port of the matrix converter to an alternating current output voltage at the output of the matrix converter.

  13. Low-radio-frequency eclipses of the redback pulsar J2215+5135 observed in the image plane with LOFAR.

    PubMed

    Broderick, J W; Fender, R P; Breton, R P; Stewart, A J; Rowlinson, A; Swinbank, J D; Hessels, J W T; Staley, T D; van der Horst, A J; Bell, M E; Carbone, D; Cendes, Y; Corbel, S; Eislöffel, J; Falcke, H; Grießmeier, J-M; Hassall, T E; Jonker, P; Kramer, M; Kuniyoshi, M; Law, C J; Markoff, S; Molenaar, G J; Pietka, M; Scheers, L H A; Serylak, M; Stappers, B W; Ter Veen, S; van Leeuwen, J; Wijers, R A M J; Wijnands, R; Wise, M W; Zarka, P

    2016-07-01

    The eclipses of certain types of binary millisecond pulsars (i.e. 'black widows' and 'redbacks') are often studied using high-time-resolution, 'beamformed' radio observations. However, they may also be detected in images generated from interferometric data. As part of a larger imaging project to characterize the variable and transient sky at radio frequencies <200 MHz, we have blindly detected the redback system PSR J2215+5135 as a variable source of interest with the Low-Frequency Array (LOFAR). Using observations with cadences of two weeks - six months, we find preliminary evidence that the eclipse duration is frequency dependent (∝ν -0.4 ), such that the pulsar is eclipsed for longer at lower frequencies, in broad agreement with beamformed studies of other similar sources. Furthermore, the detection of the eclipses in imaging data suggests an eclipsing medium that absorbs the pulsed emission, rather than scattering it. Our study is also a demonstration of the prospects of finding pulsars in wide-field imaging surveys with the current generation of low-frequency radio telescopes.

  14. Frequency of extreme Sahelian storms tripled since 1982 in satellite observations.

    PubMed

    Taylor, Christopher M; Belušić, Danijel; Guichard, Françoise; Parker, Douglas J; Vischel, Théo; Bock, Olivier; Harris, Phil P; Janicot, Serge; Klein, Cornelia; Panthou, Gérémy

    2017-04-26

    The hydrological cycle is expected to intensify under global warming, with studies reporting more frequent extreme rain events in many regions of the world, and predicting increases in future flood frequency. Such early, predominantly mid-latitude observations are essential because of shortcomings within climate models in their depiction of convective rainfall. A globally important group of intense storms-mesoscale convective systems (MCSs)-poses a particular challenge, because they organize dynamically on spatial scales that cannot be resolved by conventional climate models. Here, we use 35 years of satellite observations from the West African Sahel to reveal a persistent increase in the frequency of the most intense MCSs. Sahelian storms are some of the most powerful on the planet, and rain gauges in this region have recorded a rise in 'extreme' daily rainfall totals. We find that intense MCS frequency is only weakly related to the multidecadal recovery of Sahel annual rainfall, but is highly correlated with global land temperatures. Analysis of trends across Africa reveals that MCS intensification is limited to a narrow band south of the Sahara desert. During this period, wet-season Sahelian temperatures have not risen, ruling out the possibility that rainfall has intensified in response to locally warmer conditions. On the other hand, the meridional temperature gradient spanning the Sahel has increased in recent decades, consistent with anthropogenic forcing driving enhanced Saharan warming. We argue that Saharan warming intensifies convection within Sahelian MCSs through increased wind shear and changes to the Saharan air layer. The meridional gradient is projected to strengthen throughout the twenty-first century, suggesting that the Sahel will experience particularly marked increases in extreme rain. The remarkably rapid intensification of Sahelian MCSs since the 1980s sheds new light on the response of organized tropical convection to global warming, and

  15. High-frequency underwater plasma discharge application in antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population onmore » the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.« less

  16. Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing

    DOE PAGES

    Lu, Hsuan-Hao; Lukens, Joseph M.; Peters, Nicholas A.; ...

    2018-01-18

    In this paper, we report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.99998±0.00003), requires only a single microwave drive tone for near-ideal performance, functions across the entire C band (1530–1570 nm), and can operate concurrently on multiple qubits spaced as tightly as four frequency modes apart, with no observable degradation in the fidelity. For qutrits, we implement a 3×3 extension of the Hadamard gate: the balanced tritter. This tritter—the first ever demonstrated for frequency modes—attains fidelitymore » 0.9989±0.0004. Finally, these gates represent important building blocks toward scalable, high-fidelity quantum information processing based on frequency encoding.« less

  17. Electro-Optic Frequency Beam Splitters and Tritters for High-Fidelity Photonic Quantum Information Processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Hsuan-Hao; Lukens, Joseph M.; Peters, Nicholas A.

    In this paper, we report the experimental realization of high-fidelity photonic quantum gates for frequency-encoded qubits and qutrits based on electro-optic modulation and Fourier-transform pulse shaping. Our frequency version of the Hadamard gate offers near-unity fidelity (0.99998±0.00003), requires only a single microwave drive tone for near-ideal performance, functions across the entire C band (1530–1570 nm), and can operate concurrently on multiple qubits spaced as tightly as four frequency modes apart, with no observable degradation in the fidelity. For qutrits, we implement a 3×3 extension of the Hadamard gate: the balanced tritter. This tritter—the first ever demonstrated for frequency modes—attains fidelitymore » 0.9989±0.0004. Finally, these gates represent important building blocks toward scalable, high-fidelity quantum information processing based on frequency encoding.« less

  18. A MEMS-based high frequency x-ray chopper.

    PubMed

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  19. Investigation of Barium Ferrite, Searching for Soft Magnetic Materials in High Frequency Applications

    NASA Astrophysics Data System (ADS)

    Wu, Shuang; Kanada, Isao; Mewes, Tim; Mewes, Claudia; Mankey, Gary; Ariake, Yusuke; Suzuki, Takao

    Soft ferrites have been extensively and intensively applied for high frequency device applications. Among them, Ba-ferrites substituted by Mn and Ti are particularly attractive as future soft magnetic material candidates for advanced high frequency device applications. However, very little has been known as to the intrinsic magnetic properties, such as damping parameter, which is crucial to develop high frequency devices. In the present study, much effort has been focused on fabrication of single crystal Ba-ferrites and measurements of damping parameter by FMR. Ba-ferrite samples consisted of many grains with various sizes have been prepared. The saturation magnetization and the magnetic anisotropy field of the sample are in reasonable agreement with the values in literature. The resonances positions in the FMR spectra over a wide frequency range also comply with theoretical predictions. However, the complex resonance shapes observed makes it difficult to extract dynamic magnetic property. Possible reasons are the demagnetization field originating from irregular sample shape or existence of multiple grains in the samples. S.W. acknowledges the support under the TDK Scholar Program.

  20. Peak High-Frequency HRV and Peak Alpha Frequency Higher in PTSD

    PubMed Central

    Oken, Barry S.

    2012-01-01

    Posttraumatic stress disorder (PTSD) is difficult to treat and current PTSD treatments are not effective for all people. Despite limited evidence for its efficacy, some clinicians have implemented biofeedback for PTSD treatment. As a first step in constructing an effective biofeedback treatment program, we assessed respiration, electroencephalography (EEG) and heart rate variability (HRV) as potential biofeedback parameters for a future clinical trial. This cross-sectional study included 86 veterans; 59 with and 27 without PTSD. Data were collected on EEG measures, HRV, and respiration rate during an attentive resting state. Measures were analyzed to assess sensitivity to PTSD status and the relationship to PTSD symptoms. Peak alpha frequency was higher in the PTSD group (F(1,84) = 6.14, p = 0.01). Peak high-frequency HRV was lower in the PTSD group (F(2,78) = 26.5, p<0.00005) when adjusting for respiration rate. All other EEG and HRV measures and respiration were not different between groups. Peak high-frequency HRV and peak alpha frequency are sensitive to PTSD status and may be potential biofeedback parameters for future PTSD clinical trials. PMID:23178990

  1. Measurement of high-degree solar oscillation frequencies

    NASA Technical Reports Server (NTRS)

    Bachmann, K. T.; Duvall, T. L., Jr.; Harvey, J. W.; Hill, F.

    1995-01-01

    We present m-averaged solar p- and f-mode oscillation frequencies over the frequency range nu greater than 1.8 and less than 5.0 mHz and the spherical harmonic degree range l greater than or equal to 100 and less than or equal to 1200 from full-disk, 1000 x 1024 pixel, Ca II intensity images collected 1993 June 22-25 with a temporal cadence of 60 s. We itemize the sources and magnitudes of statistical and systematic uncertainties and of small frequency corrections, and we show that our frequencies represent an improvement in accuracy and coverage over previous measurements. Our frequencies agree at the 2 micro Hz level with Mount Wilson frequencies determined for l less than or equal to 600 from full-disk images, and we find systematic offsets of 10-20 micro Hz with respect to frequencies measured from Big Bear and La Palma observations. We give evidence that these latter offsets are indicative of spatial scaling uncertainties associated with the analysis of partial-disk images. In comparison with theory, our p-mode frequencies agree within 10 micro Hz of frequencies predicted by the Los Alamos model but are as much as 100 micro Hz smaller than frequencies predicted by the Denmark and Yale models at degrees near 1000. We also find systematic differences between our n = 0 frequencies and the frequencies closely agreed upon by all three models.

  2. Sea level measurements using multi-frequency GPS and GLONASS observations

    NASA Astrophysics Data System (ADS)

    Löfgren, Johan S.; Haas, Rüdiger

    2014-12-01

    Global Positioning System (GPS) tide gauges have been realized in different configurations, e.g., with one zenith-looking antenna, using the multipath interference pattern for signal-to-noise ratio (SNR) analysis, or with one zenith- and one nadir-looking antenna, analyzing the difference in phase delay, to estimate the sea level height. In this study, for the first time, we use a true Global Navigation Satellite System (GNSS) tide gauge, installed at the Onsala Space Observatory. This GNSS tide gauge is recording both GPS and Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) signals and makes it possible to use both the one- and two-antenna analysis approach. Both the SNR analysis and the phase delay analysis were evaluated using dual-frequency GPS and GLONASS signals, i.e., frequencies in the L-band, during a 1-month-long campaign. The GNSS-derived sea level results were compared to independent sea level observations from a co-located pressure tide gauge and show a high correlation for both systems and frequency bands, with correlation coefficients of 0.86 to 0.97. The phase delay results show a better agreement with the tide gauge sea level than the SNR results, with root-mean-square differences of 3.5 cm (GPS L1 and L2) and 3.3/3.2 cm (GLONASS L1/L2 bands) compared to 4.0/9.0 cm (GPS L1/L2) and 4.7/8.9 cm (GLONASS L1/L2 bands). GPS and GLONASS show similar performance in the comparison, and the results prove that for the phase delay analysis, it is possible to use both frequencies, whereas for the SNR analysis, the L2 band should be avoided if other signals are available. Note that standard geodetic receivers using code-based tracking, i.e., tracking the un-encrypted C/A-code on L1 and using the manufacturers' proprietary tracking method for L2, were used. Signals with the new C/A-code on L2, the so-called L2 C , were not tracked. Using wind speed as an indicator for sea surface roughness, we find that the SNR analysis performs better in rough sea

  3. On the Importance of High Frequency Gravity Waves for Ice Nucleation in the Tropical Tropopause Layer

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.

    2016-01-01

    Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.

  4. Derivation of the Boltzmann Equation for Financial Brownian Motion: Direct Observation of the Collective Motion of High-Frequency Traders.

    PubMed

    Kanazawa, Kiyoshi; Sueshige, Takumi; Takayasu, Hideki; Takayasu, Misako

    2018-03-30

    A microscopic model is established for financial Brownian motion from the direct observation of the dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical framework parallel to molecular kinetic theory is developed for the systematic description of the financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of traders' trend-following behavior by tracking the trajectories of all individuals, which quantifies the collective motion of HFTs but has not been captured in conventional order-book models. We next introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling molecular kinetic theory: Boltzmann-like and Langevin-like equations are derived from the microscopic dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic model that has been directly validated through data analysis of the microscopic dynamics, exhibiting quantitative agreements with mesoscopic and macroscopic empirical results.

  5. Derivation of the Boltzmann Equation for Financial Brownian Motion: Direct Observation of the Collective Motion of High-Frequency Traders

    NASA Astrophysics Data System (ADS)

    Kanazawa, Kiyoshi; Sueshige, Takumi; Takayasu, Hideki; Takayasu, Misako

    2018-03-01

    A microscopic model is established for financial Brownian motion from the direct observation of the dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical framework parallel to molecular kinetic theory is developed for the systematic description of the financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of traders' trend-following behavior by tracking the trajectories of all individuals, which quantifies the collective motion of HFTs but has not been captured in conventional order-book models. We next introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling molecular kinetic theory: Boltzmann-like and Langevin-like equations are derived from the microscopic dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic model that has been directly validated through data analysis of the microscopic dynamics, exhibiting quantitative agreements with mesoscopic and macroscopic empirical results.

  6. High-frequency internal waves and thick bottom mixed layers observed by gliders in the Gulf Stream

    NASA Astrophysics Data System (ADS)

    Todd, Robert E.

    2017-06-01

    Autonomous underwater gliders are conducting high-resolution surveys within the Gulf Stream along the U.S. East Coast. Glider surveys reveal two mechanisms by which energy is extracted from the Gulf Stream as it flows over the Blake Plateau, a portion of the outer continental shelf between Florida and North Carolina where bottom depths are less than 1000 m. Internal waves with vertical velocities exceeding 0.1 m s-1 and frequencies just below the local buoyancy frequency are routinely found over the Blake Plateau, particularly near the Charleston Bump, a prominent topographic feature. These waves are likely internal lee waves generated by the subinertial Gulf Stream flow over the irregular bathymetry of the outer continental shelf. Bottom mixed layers with O(100) m thickness are also frequently encountered; these thick bottom mixed layers likely form in the lee of topography due to enhanced turbulence generated by O(1) m s-1 near-bottom flows.

  7. High-power radio-frequency attenuation device

    DOEpatents

    Kerns, Q.A.; Miller, H.W.

    1981-12-30

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  8. High power radio frequency attenuation device

    DOEpatents

    Kerns, Quentin A.; Miller, Harold W.

    1984-01-01

    A resistor device for attenuating radio frequency power includes a radio frequency conductor connected to a series of fins formed of high relative magnetic permeability material. The fins are dimensional to accommodate the skin depth of the current conduction therethrough, as well as an inner heat conducting portion where current does not travel. Thermal connections for air or water cooling are provided for the inner heat conducting portions of each fin. Also disclosed is a resistor device to selectively alternate unwanted radio frequency energy in a resonant cavity.

  9. Very high-frequency gravitational waves from magnetars and gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Wen, Hao; Li, Fang-Yu; Li, Jin; Fang, Zhen-Yun; Beckwith, Andrew

    2017-12-01

    Extremely powerful astrophysical electromagnetic (EM) systems could be possible sources of high-frequency gravitational waves (HFGWs). Here, based on properties of magnetars and gamma-ray bursts (GRBs), we address “Gamma-HFGWs” (with very high-frequency around 1020 Hz) caused by ultra-strong EM radiation (in the radiation-dominated phase of GRB fireballs) interacting with super-high magnetar surface magnetic fields (˜1011 T). By certain parameters of distance and power, the Gamma-HFGWs would have far field energy density Ω gw around 10-6, and they would cause perturbed signal EM waves of ˜10-20 W/m2 in a proposed HFGW detection system based on the EM response to GWs. Specially, Gamma-HFGWs would possess distinctive envelopes with characteristic shapes depending on the particular structures of surface magnetic fields of magnetars, which could be exclusive features helpful to distinguish them from background noise. Results obtained suggest that magnetars could be involved in possible astrophysical EM sources of GWs in the very high-frequency band, and Gamma-HFGWs could be potential targets for observations in the future. Supported by National Natural Science Foundation of China (11605015, 11375279, 11205254, 11647307) and the Fundamental Research Funds for the Central Universities (106112017CDJXY300003, 106112017CDJXFLX0014)

  10. High-Frequency Subband Compressed Sensing MRI Using Quadruplet Sampling

    PubMed Central

    Sung, Kyunghyun; Hargreaves, Brian A

    2013-01-01

    Purpose To presents and validates a new method that formalizes a direct link between k-space and wavelet domains to apply separate undersampling and reconstruction for high- and low-spatial-frequency k-space data. Theory and Methods High- and low-spatial-frequency regions are defined in k-space based on the separation of wavelet subbands, and the conventional compressed sensing (CS) problem is transformed into one of localized k-space estimation. To better exploit wavelet-domain sparsity, CS can be used for high-spatial-frequency regions while parallel imaging can be used for low-spatial-frequency regions. Fourier undersampling is also customized to better accommodate each reconstruction method: random undersampling for CS and regular undersampling for parallel imaging. Results Examples using the proposed method demonstrate successful reconstruction of both low-spatial-frequency content and fine structures in high-resolution 3D breast imaging with a net acceleration of 11 to 12. Conclusion The proposed method improves the reconstruction accuracy of high-spatial-frequency signal content and avoids incoherent artifacts in low-spatial-frequency regions. This new formulation also reduces the reconstruction time due to the smaller problem size. PMID:23280540

  11. Noisy Icebergs: Low Frequency Acoustic Noise Levels Observed off Palmyra Atoll

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Wiggins, S. M.; Sirovic, A.; Tournadre, J.; Oleson, E.; Haxel, J. H.; Dziak, R. P.

    2016-12-01

    Annually tens of thousands of icebergs from Antarctica drift into the open ocean. In late 2007, two unusually large icebergs, B15a and C19a, entered the Pacific region of the Southern Ocean, and began rapidly disintegrating. Approximately 1.5 years later in April 2009, both icebergs had completely fragmented. An unappreciated aspect of the destructive processes that occur while these large icebergs break apart is the high acoustic source levels that are generated and the contribution of those signals to the ocean soundscape throughout the southern hemisphere. Matsumoto et al. (2014) found evidence of B15a and C19a affecting low-frequency noise levels below 36 Hz at 8°N, 110°W in the eastern equatorial Pacific at a range of 7,500 km. Similar evidence for disintegrating icebergs affecting soundscapes at a similar range was observed in data from 2007-2009 High-frequency Acoustic Recording Package recordings by Scripps Institution of Oceanography near Palmyra atoll in the central equatorial Pacific. Noise levels rose in 2007 as the icebergs entered the Pacific and decreased as the destructive processes declined and the icebergs disintegrated in 2009. This suggests that iceberg sounds are a significant natural noise source in the global ocean, and the area affected by the destructive processes during their decomposition can be as large as the entire southern hemisphere.

  12. Airway Humidification During High-Frequency Percussive Ventilation

    DTIC Science & Technology

    2009-03-01

    Airway Humidification During High-Frequency Percussive Ventilation Patrick F Allan MD, Michael J Hollingsworth CRT, Gordon C Maniere CRT, Anthony K...about the risk of inadequate humidification during high- frequency percussive ventilation (HFPV). METHODS: We studied 5 humidifiers during HFPV with a...50 L/min, and the ConchaTherm Hi-Flow with VDR nebulizer) provided carinal humidification equivalent to the comparator setup, without regard to

  13. High-frequency and high-quality silicon carbide optomechanical microresonators

    PubMed Central

    Lu, Xiyuan; Lee, Jonathan Y.; Lin, Qiang

    2015-01-01

    Silicon carbide (SiC) exhibits excellent material properties attractive for broad applications. We demonstrate the first SiC optomechanical microresonators that integrate high mechanical frequency, high mechanical quality, and high optical quality into a single device. The radial-breathing mechanical mode has a mechanical frequency up to 1.69 GHz with a mechanical Q around 5500 in atmosphere, which corresponds to a fm · Qm product as high as 9.47 × 1012 Hz. The strong optomechanical coupling allows us to efficiently excite and probe the coherent mechanical oscillation by optical waves. The demonstrated devices, in combination with the superior thermal property, chemical inertness, and defect characteristics of SiC, show great potential for applications in metrology, sensing, and quantum photonics, particularly in harsh environments that are challenging for other device platforms. PMID:26585637

  14. MAGIC gamma-ray and multi-frequency observations of flat spectrum radio quasar PKS 1510-089 in early 2012

    DOE PAGES

    Aleksić, J.; Ansoldi, S.; Antonelli, L. A.; ...

    2014-09-17

    Aims. We report amongst more than fifty blazars detected in very high energy (VHE, E> 100 GeV) γ rays, only three belong to the subclass of flat spectrum radio quasars (FSRQs). The detection of FSRQs in the VHE range is challenging, mainly because of their soft spectra in the GeV-TeV regime. MAGIC observed PKS 1510-089 (z = 0.36) starting 2012 February 3 until April 3 during a high activity state in the high energy (HE, E> 100 MeV) γ-ray band observed by AGILE and Fermi. MAGIC observations result in the detection of a source with significance of 6.0 standard deviationsmore » (σ). We study the multi-frequency behaviour of the source at the epoch of MAGIC observation, collecting quasi-simultaneous data at radio and optical (GASP-WEBT and F-Gamma collaborations, REM, Steward, Perkins, Liverpool, OVRO, and VLBA telescopes), X-ray (Swift satellite), and HE γ-ray frequencies. Methods. We study the VHE γ-ray emission, together with the multi-frequency light curves, 43 GHz radio maps, and spectral energy distribution (SED) of the source. The quasi-simultaneous multi-frequency SED from the millimetre radio band to VHE γ rays is modelled with a one-zone inverse Compton model. We study two different origins of the seed photons for the inverse Compton scattering, namely the infrared torus and a slow sheath surrounding the jet around the Very Long Baseline Array (VLBA) core. Results. We find that the VHE γ-ray emission detected from PKS 1510-089 in 2012 February-April agrees with the previous VHE observations of the source from 2009 March-April. We find no statistically significant variability during the MAGIC observations on daily, weekly, or monthly time scales, while the other two known VHE FSRQs (3C 279 and PKS 1222+216) have shown daily scale to sub-hour variability. The γ-ray SED combining AGILE, Fermi and MAGIC data joins smoothly and shows no hint of a break. The multi-frequency light curves suggest a common origin for the millimetre radio and HE

  15. Assessing the high frequency behavior of non-polarizable electrodes for spectral induced polarization measurements

    NASA Astrophysics Data System (ADS)

    Abdulsamad, Feras; Florsch, Nicolas; Schmutz, Myriam; Camerlynck, Christian

    2016-12-01

    During the last decades, the usage of spectral induced polarization (SIP) measurements in hydrogeology and detecting environmental problems has been extensively increased. However, the physical mechanisms which are responsible for the induced polarization response over the usual frequency range (typically 1 mHz to 10-20 kHz) require better understanding. The phase shift observed at high frequencies is sometimes attributed to the so-called Maxwell-Wagner polarization which takes place when charges cross an interface. However, SIP measurements of tap water show a phase shift at frequencies higher than 1 kHz, where no Maxwell-Wagner polarization may occur. In this paper, we enlighten the possible origin of this phase shift and deduce its likely relationship with the types of the measuring electrodes. SIP Laboratory measurements of tap water using different types of measuring electrodes (polarizable and non-polarizable electrodes) are carried out to detect the origin of the phase shift at high frequencies and the influence of the measuring electrodes types on the observed complex resistivity. Sodium chloride is used to change the conductivity of the medium in order to quantify the solution conductivity role. The results of these measurements are clearly showing the impact of the measuring electrodes type on the measured phase spectrum while the influence on the amplitude spectrum is negligible. The phenomenon appearing on the phase spectrum at high frequency (> 1 kHz) whatever the electrode type is, the phase shows an increase compared to the theoretical response, and the discrepancy (at least in absolute value) increases with frequency, but it is less severe when medium conductivity is larger. Additionally, the frequency corner is shifted upward in frequency. The dependence of this phenomenon on the conductivity and the measuring electrodes type (electrode-electrolyte interface) seems to be due to some dielectric effects (as an electrical double layer of small

  16. Asynchronous BCI control using high-frequency SSVEP.

    PubMed

    Diez, Pablo F; Mut, Vicente A; Avila Perona, Enrique M; Laciar Leber, Eric

    2011-07-14

    Steady-State Visual Evoked Potential (SSVEP) is a visual cortical response evoked by repetitive stimuli with a light source flickering at frequencies above 4 Hz and could be classified into three ranges: low (up to 12 Hz), medium (12-30) and high frequency (> 30 Hz). SSVEP-based Brain-Computer Interfaces (BCI) are principally focused on the low and medium range of frequencies whereas there are only a few projects in the high-frequency range. However, they only evaluate the performance of different methods to extract SSVEP. This research proposed a high-frequency SSVEP-based asynchronous BCI in order to control the navigation of a mobile object on the screen through a scenario and to reach its final destination. This could help impaired people to navigate a robotic wheelchair. There were three different scenarios with different difficulty levels (easy, medium and difficult). The signal processing method is based on Fourier transform and three EEG measurement channels. The research obtained accuracies ranging in classification from 65% to 100% with Information Transfer Rate varying from 9.4 to 45 bits/min. Our proposed method allows all subjects participating in the study to control the mobile object and to reach a final target without prior training.

  17. The high frequency characteristics of laser reflection and visible light during solid state disk laser welding

    NASA Astrophysics Data System (ADS)

    Gao, Xiangdong; You, Deyong; Katayama, Seiji

    2015-07-01

    Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1-10 kHz and 10-125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status.

  18. High-frequency waves following PKP-CDIFF at distances greater than 155°

    NASA Astrophysics Data System (ADS)

    Nakanishi, Ichiro

    1990-04-01

    Using a seismic network in Hokkaido-Tohoku region, Japan we observe PKP waves in the distance range 152 to 157°from a deep earthquake in Argentina. The seismic network consists of 26 stations and provides us with a data set of dense distance sampling. The examination of amplitude variation of PKP-BC and PKP-Cdiff with distance locates the C-cusp at about 155.5° for a surface source for the path from Argentina to Japan. This C-cusp position suggests a P velocity of 10.27 km/s at the bottom of the outer core. The bandpass filtering of the data shows that high-frequency waves are observed following PKP-Cdiff at distances beyond the C-cusp. The waves are characterized by a dominant frequency of about 2 to 3 Hz, a long duration of oscillation until the arrival of PKP-AB, and an apparent onset slowness of about 4 s/deg, which is approximately equal to that of PKP-AB in the distance range. The onset time of the high-frequency waves seems to be consistent with the least time of the scattering of PKP-BC on the receiver side near the bottom of the upper mantle.

  19. Facile synthesis and high-frequency performance of CoFe2O4 nanocubes with different size

    NASA Astrophysics Data System (ADS)

    Song, Ningning; Gu, Shangzhi; Wu, Qiong; Li, Chenglin; Zhou, Jun; Zhang, Panpan; Wang, Wei; Yue, Ming

    2018-04-01

    Magnetic materials with significant permeability and high resonance frequency are a challenge due to the Snoek limit, but it is possible to achieve breakthroughs by inducing superparamagnetism in magnetic nanoparticles. Here, size-controlled monodisperse CoFe2O4 nanocubes (NCs) were successfully synthesized via a facile high-temperature organic-phase method. The superparamagnetic/ferrimagnetic relaxation induced high frequency properties of CoFe2O4 NCs controlled by particle size has been investigated. The resonance frequency of CoFe2O4 NCs increases from 6.0 GHz to 6.3 GHz with decreasing particle size from 40 to 19 nm. With further decreasing particle size to 13 nm, no resonance peak can be observed in the measured frequencies from 4 GHz to 10 GHz, which can be attributed to the superparamagnetic/ferromagnetic relaxation tuned by particle sizes. This finding opens up a straightforward avenue for optimizing high frequency properties of magnetic nanomaterials.

  20. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults

    USGS Publications Warehouse

    McLaskey, Gregory C.; Thomas, Amanda M.; Glaser, Steven D.; Nadeau, Robert M.

    2012-01-01

    Faults strengthen or heal with time in stationary contact and this healing may be an essential ingredient for the generation of earthquakes. In the laboratory, healing is thought to be the result of thermally activated mechanisms that weld together micrometre-sized asperity contacts on the fault surface, but the relationship between laboratory measures of fault healing and the seismically observable properties of earthquakes is at present not well defined. Here we report on laboratory experiments and seismological observations that show how the spectral properties of earthquakes vary as a function of fault healing time. In the laboratory, we find that increased healing causes a disproportionately large amount of high-frequency seismic radiation to be produced during fault rupture. We observe a similar connection between earthquake spectra and recurrence time for repeating earthquake sequences on natural faults. Healing rates depend on pressure, temperature and mineralogy, so the connection between seismicity and healing may help to explain recent observations of large megathrust earthquakes which indicate that energetic, high-frequency seismic radiation originates from locations that are distinct from the geodetically inferred locations of large-amplitude fault slip

  1. Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback.

    PubMed

    Illing, Lucas; Gauthier, Daniel J

    2006-09-01

    We report an experimental study of ultra-high-frequency chaotic dynamics generated in a delay-dynamical electronic device. It consists of a transistor-based nonlinearity, commercially-available amplifiers, and a transmission-line for feedback. The feedback is band-limited, allowing tuning of the characteristic time-scales of both the periodic and high-dimensional chaotic oscillations that can be generated with the device. As an example, periodic oscillations ranging from 48 to 913 MHz are demonstrated. We develop a model and use it to compare the experimentally observed Hopf bifurcation of the steady-state to existing theory [Illing and Gauthier, Physica D 210, 180 (2005)]. We find good quantitative agreement of the predicted and the measured bifurcation threshold, bifurcation type and oscillation frequency. Numerical integration of the model yields quasiperiodic and high dimensional chaotic solutions (Lyapunov dimension approximately 13), which match qualitatively the observed device dynamics.

  2. Frequency selection rule for high definition and high frame rate Lissajous scanning.

    PubMed

    Hwang, Kyungmin; Seo, Yeong-Hyeon; Ahn, Jinhyo; Kim, Pilhan; Jeong, Ki-Hun

    2017-10-26

    Lissajous microscanners are very attractive in compact laser scanning applications such as endomicroscopy or pro-projection display owing to high mechanical stability and low operating voltages. The scanning frequency serves as a critical factor for determining the scanning imaging quality. Here we report the selection rule of scanning frequencies that can realize high definition and high frame-rate (HDHF) full-repeated Lissajous scanning imaging. The fill factor (FF) monotonically increases with the total lobe number of a Lissajous curve, i.e., the sum of scanning frequencies divided by the great common divisor (GCD) of bi-axial scanning frequencies. The frames per second (FPS), called the pattern repeated rate or the frame rate, linearly increases with GCD. HDHF Lissajous scanning is achieved at the bi-axial scanning frequencies, where the GCD has the maximum value among various sets of the scanning frequencies satisfying the total lobe number for a target FF. Based on this selection rule, the experimental results clearly demonstrate that conventional Lissajous scanners substantially increase both FF and FPS by slightly modulating the scanning frequencies at near the resonance within the resonance bandwidth of a Lissajous scanner. This selection rule provides a new guideline for HDHF Lissajous scanning in compact laser scanning systems.

  3. High-frequency profile in adolescents and its relationship with the use of personal stereo devices.

    PubMed

    Silvestre, Renata Almeida Araújo; Ribas, Ângela; Hammerschmidt, Rogério; de Lacerda, Adriana Bender Moreira

    2016-01-01

    To analyze and correlate the audiometric findings of high frequencies (9-16 kHz) in adolescents with their hearing habits and attitudes, in order to prevent noise-induced hearing loss. This was a descriptive cross-sectional study, which included 125 adolescents in a sample of normal-hearing students, at a state school. The subjects performed high-frequency audiometry testing and answered a self-administered questionnaire addressing information on sound habits concerning the use of personal stereo devices. The sample was divided according to the exposure characteristics (time, duration, intensity, etc.) and the results were compared with the observed thresholds, through the difference in proportions test, chi-squared, Student's t-test, and ANOVA, all at a significance level of 0.05. Average high-frequency thresholds were registered below 15 dB HL and no significant correlation was found between high frequency audiometric findings and the degree of exposure. The prevalence of harmful sound habits due to the use of personal stereo devices is high in the adolescent population, but there was no correlation between exposure to high sound pressure levels through personal stereos and the high-frequency thresholds in this population. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  4. High Frequency Analyzer (HFA) of Plasma Wave Experiment (PWE) onboard the Arase spacecraft

    NASA Astrophysics Data System (ADS)

    Kumamoto, Atsushi; Tsuchiya, Fuminori; Kasahara, Yoshiya; Kasaba, Yasumasa; Kojima, Hirotsugu; Yagitani, Satoshi; Ishisaka, Keigo; Imachi, Tomohiko; Ozaki, Mitsunori; Matsuda, Shoya; Shoji, Masafumi; Matsuoka, Aayako; Katoh, Yuto; Miyoshi, Yoshizumi; Obara, Takahiro

    2018-05-01

    The High Frequency Analyzer (HFA) is a subsystem of the Plasma Wave Experiment onboard the Arase (ERG) spacecraft. The main purposes of the HFA include (1) determining the electron number density around the spacecraft from observations of upper hybrid resonance (UHR) waves, (2) measuring the electromagnetic field component of whistler-mode chorus in a frequency range above 20 kHz, and (3) observing radio and plasma waves excited in the storm-time magnetosphere. Two components of AC electric fields detected by Wire Probe Antenna and one component of AC magnetic fields detected by Magnetic Search Coils are fed to the HFA. By applying analog and digital signal processing in the HFA, the spectrograms of two electric fields (EE mode) or one electric field and one magnetic field (EB mode) in a frequency range from 10 kHz to 10 MHz are obtained at an interval of 8 s. For the observation of plasmapause, the HFA can also be operated in PP (plasmapause) mode, in which spectrograms of one electric field component below 1 MHz are obtained at an interval of 1 s. In the initial HFA operations from January to July, 2017, the following results are obtained: (1) UHR waves, auroral kilometric radiation (AKR), whistler-mode chorus, electrostatic electron cyclotron harmonic waves, and nonthermal terrestrial continuum radiation were observed by the HFA in geomagnetically quiet and disturbed conditions. (2) In the test operations of the polarization observations on June 10, 2017, the fundamental R-X and L-O mode AKR and the second-harmonic R-X mode AKR from different sources in the northern polar region were observed. (3) The semiautomatic UHR frequency identification by the computer and a human operator was applied to the HFA spectrograms. In the identification by the computer, we used an algorithm for narrowing down the candidates of UHR frequency by checking intensity and bandwidth. Then, the identified UHR frequency by the computer was checked and corrected if needed by the human

  5. Exploring the parahippocampal cortex response to high and low spatial frequency spaces.

    PubMed

    Zeidman, Peter; Mullally, Sinéad L; Schwarzkopf, Dietrich Samuel; Maguire, Eleanor A

    2012-05-30

    The posterior parahippocampal cortex (PHC) supports a range of cognitive functions, in particular scene processing. However, it has recently been suggested that PHC engagement during functional MRI simply reflects the representation of three-dimensional local space. If so, PHC should respond to space in the absence of scenes, geometric layout, objects or contextual associations. It has also been reported that PHC activation may be influenced by low-level visual properties of stimuli such as spatial frequency. Here, we tested whether PHC was responsive to the mere sense of space in highly simplified stimuli, and whether this was affected by their spatial frequency distribution. Participants were scanned using functional MRI while viewing depictions of simple three-dimensional space, and matched control stimuli that did not depict a space. Half the stimuli were low-pass filtered to ascertain the impact of spatial frequency. We observed a significant interaction between space and spatial frequency in bilateral PHC. Specifically, stimuli depicting space (more than nonspatial stimuli) engaged the right PHC when they featured high spatial frequencies. In contrast, the interaction in the left PHC did not show a preferential response to space. We conclude that a simple depiction of three-dimensional space that is devoid of objects, scene layouts or contextual associations is sufficient to robustly engage the right PHC, at least when high spatial frequencies are present. We suggest that coding for the presence of space may be a core function of PHC, and could explain its engagement in a range of tasks, including scene processing, where space is always present.

  6. Phase-locking behavior in a high-frequency gymnotiform weakly electric fish, Adontosternarchus.

    PubMed

    Kawasaki, Masashi; Leonard, John

    2017-02-01

    An apteronotid weakly electric fish, Adontosternarchus, emits high-frequency electric organ discharges (700-1500 Hz) which are stable in frequency if no other fish or artificial signals are present. When encountered with an artificial signal of higher frequency than the fish's discharge, the fish raised its discharge frequency and eventually matched its own frequency to that of the artificial signal. At this moment, phase locking was observed, where the timing of the fish's discharge was precisely stabilized at a particular phase of the artificial signal over a long period of time (up to minutes) with microsecond precision. Analyses of the phase-locking behaviors revealed that the phase values of the artificial stimulus at which the fish stabilizes the phase of its own discharge (called lock-in phases) have three populations between -180° and +180°. During the frequency rise and the phase-locking behavior, the electrosensory system is exposed to the mixture of feedback signals from its electric organ discharges and the artificial signal. Since the signal mixture modulates in both amplitude and phase, we explored whether amplitude or phase information participated in driving the phase-locking behavior, using a numerical model. The model which incorporates only amplitude information well predicted the three populations of lock-in phases. When phase information was removed from the electrosensory stimulus, phase-locking behavior was still observed. These results suggest that phase-locking behavior of Adontosternarchus requires amplitude information but not phase information available in the electrosensory stimulus.

  7. Center for High-Frequency Microelectronics

    DTIC Science & Technology

    1992-08-31

    34 IEEE Transactions on Electron Devices, 38, No. 6, pp. 1324-1333, June 1991. 185. C. C. Chen, R. K. Mains and G. I. Haddad, " High - Power Generation in...Weiss, J. Hu and W.-P. Hong, "Electronic 0 Properties of Power High Electron Mobility Transistors," Conference on Ballistic Electrons for Transistors...method at higher frequencies than previously believed. - Calculations of high - power generation modes in Si IMPATT devices in the 100-200 GHz range have

  8. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Dymond, Jr., Lauren E.; Gitsevich, Aleksandr; Grimm, William G.; Kipling, Kent; Kirkpatrick, Douglas A.; Ola, Samuel A.; Simpson, James E.; Trimble, William C.; Tsai, Peter; Turner, Brian P.

    2001-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and I or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to adjust the driving frequency of the oscillator.

  9. High frequency inductive lamp and power oscillator

    DOEpatents

    MacLennan, Donald A.; Turner, Brian P.; Dolan, James T.; Kirkpatrick, Douglas A.; Leng, Yongzhang

    2000-01-01

    A high frequency inductively coupled electrodeless lamp includes an excitation coil with an effective electrical length which is less than one half wavelength of a driving frequency applied thereto, preferably much less. The driving frequency may be greater than 100 MHz and is preferably as high as 915 MHz. Preferably, the excitation coil is configured as a non-helical, semi-cylindrical conductive surface having less than one turn, in the general shape of a wedding ring. At high frequencies, the current in the coil forms two loops which are spaced apart and parallel to each other. Configured appropriately, the coil approximates a Helmholtz configuration. The lamp preferably utilizes an bulb encased in a reflective ceramic cup with a pre-formed aperture defined therethrough. The ceramic cup may include structural features to aid in alignment and/or a flanged face to aid in thermal management. The lamp head is preferably an integrated lamp head comprising a metal matrix composite surrounding an insulating ceramic with the excitation integrally formed on the ceramic. A novel solid-state oscillator preferably provides RF power to the lamp. The oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

  10. Propagation of high frequency electrostatic surface waves along the planar interface between plasma and dusty plasma

    NASA Astrophysics Data System (ADS)

    Mishra, Rinku; Dey, M.

    2018-04-01

    An analytical model is developed that explains the propagation of a high frequency electrostatic surface wave along the interface of a plasma system where semi-infinite electron-ion plasma is interfaced with semi-infinite dusty plasma. The model emphasizes that the source of such high frequency waves is inherent in the presence of ion acoustic and dust ion acoustic/dust acoustic volume waves in electron-ion plasma and dusty plasma region. Wave dispersion relation is obtained for two distinct cases and the role of plasma parameters on wave dispersion is analyzed in short and long wavelength limits. The normalized surface wave frequency is seen to grow linearly for lower wave number but becomes constant for higher wave numbers in both the cases. It is observed that the normalized frequency depends on ion plasma frequencies when dust oscillation frequency is neglected.

  11. Assessment of Developing Intensity Duration Frequency Curves using Satellite Observations (Case Study)

    NASA Astrophysics Data System (ADS)

    Ombadi, Mohammed; Nguyen, Phu; Sorooshian, Soroosh

    2017-12-01

    Intensity Duration Frequency (IDF) curves are essential for the resilient design of infrastructures. Since their earlier development, IDF relationships have been derived using precipitation records from rainfall gauge stations. However, with the recent advancement in satellite observation of precipitation which provides near global coverage and high spatiotemporal resolution, it is worthy of attention to investigate the validity of utilizing the relatively short record length of satellite rainfall to generate robust IDF relationships. These satellite-based IDF can address the paucity of such information in the developing countries. Few studies have used satellite precipitation data in IDF development but mainly focused on merging satellite and gauge precipitation. In this study, however, IDF have been derived solely from satellite observations using PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record). The unique PERSIANN-CDR attributes of high spatial resolution (0.25°×0.25°), daily temporal resolution and a record dating back to 1983 allow for the investigation at fine resolution. The results are compared over most of the contiguous United States against NOAA Atlas 14. The impact of using different methods of sampling, distribution estimators and regionalization in the resulting relationships is investigated. Main challenges to estimate robust and accurate IDF from satellite observations are also highlighted.

  12. Power Supply for Variable Frequency Induction Heating Using MERS Soft-Switching High Frequency Inverter

    NASA Astrophysics Data System (ADS)

    Isobe, Takanori; Kitahara, Tadayuki; Fukutani, Kazuhiko; Shimada, Ryuichi

    Variable frequency induction heating has great potential for industrial heating applications due to the possibility of achieving heating distribution control; however, large-scale induction heating with variable frequency has not yet been introduced for practical use. This paper proposes a high frequency soft-switching inverter for induction heating that can achieve variable frequency operation. One challenge of variable frequency induction heating is increasing power electronics ratings. This paper indicates that its current source type dc-link configuration and soft-switching characteristics can make it possible to build a large-scale system with variable frequency capability. A 90-kVA 150-1000Hz variable frequency experimental power supply for steel strip induction heating was developed. Experiments confirmed the feasibility of variable frequency induction heating with proposed converter and the advantages of variable frequency operation.

  13. Adaptation in sound localization processing induced by interaural time difference in amplitude envelope at high frequencies.

    PubMed

    Kawashima, Takayuki; Sato, Takao

    2012-01-01

    When a second sound follows a long first sound, its location appears to be perceived away from the first one (the localization/lateralization aftereffect). This aftereffect has often been considered to reflect an efficient neural coding of sound locations in the auditory system. To understand determinants of the localization aftereffect, the current study examined whether it is induced by an interaural temporal difference (ITD) in the amplitude envelope of high frequency transposed tones (over 2 kHz), which is known to function as a sound localization cue. In Experiment 1, participants were required to adjust the position of a pointer to the perceived location of test stimuli before and after adaptation. Test and adapter stimuli were amplitude modulated (AM) sounds presented at high frequencies and their positional differences were manipulated solely by the envelope ITD. Results showed that the adapter's ITD systematically affected the perceived position of test sounds to the directions expected from the localization/lateralization aftereffect when the adapter was presented at ±600 µs ITD; a corresponding significant effect was not observed for a 0 µs ITD adapter. In Experiment 2, the observed adapter effect was confirmed using a forced-choice task. It was also found that adaptation to the AM sounds at high frequencies did not significantly change the perceived position of pure-tone test stimuli in the low frequency region (128 and 256 Hz). The findings in the current study indicate that ITD in the envelope at high frequencies induces the localization aftereffect. This suggests that ITD in the high frequency region is involved in adaptive plasticity of auditory localization processing.

  14. Parametric Study of High Frequency Pulse Detonation Tubes

    NASA Technical Reports Server (NTRS)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  15. A Resonantly Excited Disk-Oscillation Model of High-Frequency QPOs of Microquasars

    NASA Astrophysics Data System (ADS)

    Kato, Shoji

    2012-12-01

    A possible model of twin high-frequency QPOs (HF QPOs) of microquasars is examined. The disk is assumed to have global magnetic fields and to be deformed with a two-armed pattern. In this deformed disk, a set of a two-armed (m = 2) vertical p-mode oscillation and an axisymmetric (m = 0) g-mode oscillation is considered. They resonantly interact through the disk deformation when their frequencies are the same. This resonant interaction amplifies the set of the above oscillations in the case where these two oscillations have wave energies of opposite signs. These oscillations are assumed to be excited most efficiently in the case where the radial group velocities of these two waves vanish at the same place. The above set of oscillations is not unique, depending on the node number n, of oscillations in the vertical direction. We consider that the basic two sets of oscillations correspond to the twin QPOs. The frequencies of these oscillations depend on the disk parameters, such as the strength of the magnetic fields. For observational mass ranges of GRS 1915+ 105, GRO J1655-40, XTE J1550-564, and HEAO H1743-322, the spins of these sources are estimated. High spins of these sources can be described if the disks have weak poloidal magnetic fields as well as toroidal magnetic fields of moderate strength. In this model the 3:2 frequency ratio of high-frequency QPOs is not related to their excitation, but occurs by chance.

  16. Very High Frequency Epr: Instrument and Applications

    NASA Astrophysics Data System (ADS)

    Wang, Wei

    Most Electron Paramagnetic Resonance (EPR, also known as ESR or EMR) experiments are performed at conventional 9 GHz or 35 GHz frequency. But there are numerous situations in which a large increase in the microwave frequency (and/or magnetic field) will result in substantial increase in the information content in EPR spectra. This has motivated us to construct a very high frequency (VHF, 95 GHz) EPR spectrometer at Illinois EPR Research Center. Many advantages of VHF EPR are demonstrated through examples in Chapter 1. The spectrometer and some unique aspects of the instrument are described and documented in Chapter 2. Chapter 3 reports use of the VHF EPR technique to study the structure/spectral relationship of a homologous series of thiophenes, which may be constituents of coal. Two successful methods to generate the cation radicals of these organic sulfur compounds are found. The g matrices (tensors) of the thiophenic radicals are obtained for the first time. The small differences between anisotropic components of the g matrices can be unambiguously resolved. Correlations of the experimentally measured g matrices with the molecular and electronic structures are reported. The g shifts correlate linearly with lambda of their Huckel molecular orbitals; the largest g components are proportional to the pi spin densities on sulfur. In addition, the small proton hyperfine interactions of dibenzothiophene (DBT) are observed for the first time by continuous wave VHF EPR. A multifrequency approach, including auxiliary 2-4 GHz pulsed measurement, has shown that a single set of spin Hamiltonian parameters describes the spin system of DBT over a microwave frequency span of 3 to 95 GHz. These newly available, detailed, and accurate data provide a valuable opportunity to test, and perhaps to improve, the existing theoretical models for predictions on g matrices of organic radicals. Finally, Chapter 4 reports trial calculations of g matrices by several molecular orbital methods.

  17. Observation of the Mating Behavior of Honey Bee (Apis mellifera L.) Queens Using Radio-Frequency Identification (RFID): Factors Influencing the Duration and Frequency of Nuptial Flights

    PubMed Central

    Heidinger, Ina Monika Margret; Meixner, Marina Doris; Berg, Stefan; Büchler, Ralph

    2014-01-01

    We used radio-frequency identification (RFID) to record the duration and frequency of nuptial flights of honey bee queens (Apis mellifera carnica) at two mainland mating apiaries. We investigated the effect of a number of factors on flight duration and frequency: mating apiary, number of drone colonies, queen’s age and temperature. We found significant differences between the two locations concerning the number of flights on the first three days. We also observed an effect of the ambient temperature, with queens flying less often but longer at high temperatures compared to lower temperatures. Increasing the number of drone colonies from 33 to 80 colonies had no effect on the duration or on the frequency of nuptial flights. Since our results agree well with the results of previous studies, we suggest RFID as an appropriate tool to investigate the mating behavior of honey bee queens. PMID:26462822

  18. Satellite observations of type III solar radio bursts at low frequencies

    NASA Technical Reports Server (NTRS)

    Fainberg, J.; Stone, R. G.

    1974-01-01

    Type III solar radio bursts have been observed from 10 MHz to 10 kHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 earth radii to at least 1 AU from the sun. This review summarizes the morphology, characteristics, and analysis of individual as well as storms of bursts. Substantial evidence is available to show that the radio emission is observed at the second harmonic instead of the fundamental of the plasma frequency. This brings the density scale derived by radio observations into better agreement with direct solar wind density measurements at 1 AU and relaxes the requirement for type III propagation along large density-enhanced regions. This density scale with the measured direction of arrival of the radio burst allows the trajectory of the exciter path to be determined from 10 earth radii to 1 AU.

  19. Modeling the demand-price relations in a high-frequency foreign exchange market

    NASA Astrophysics Data System (ADS)

    Schmidt, Anatoly B.

    1999-09-01

    A stochastic nonlinear dynamics model is introduced in terms of observable variables (price and excess demand assumed to be proportional to the number of buyers) to describe a high-frequency foreign exchange market. It is shown how the fundamentalist and chartist patterns of the trader behavior affect the correlation between excess demand and exchange rates.

  20. High Frequency Plasma Generators for Ion Thrusters

    NASA Technical Reports Server (NTRS)

    Divergilio, W. F.; Goede, H.; Fosnight, V. V.

    1981-01-01

    The results of a one year program to experimentally adapt two new types of high frequency plasma generators to Argon ion thrusters and to analytically study a third high frequency source concept are presented. Conventional 30 cm two grid ion extraction was utilized or proposed for all three sources. The two plasma generating methods selected for experimental study were a radio frequency induction (RFI) source, operating at about 1 MHz, and an electron cyclotron heated (ECH) plasma source operating at about 5 GHz. Both sources utilize multi-linecusp permanent magnet configurations for plasma confinement. The plasma characteristics, plasma loading of the rf antenna, and the rf frequency dependence of source efficiency and antenna circuit efficiency are described for the RFI Multi-cusp source. In a series of tests of this source at Lewis Research Center, minimum discharge losses of 220+/-10 eV/ion were obtained with propellant utilization of .45 at a beam current of 3 amperes. Possible improvement modifications are discussed.

  1. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, Eric S.; Campbell, David V.

    1997-01-01

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer.

  2. On-clip high frequency reliability and failure test structures

    DOEpatents

    Snyder, E.S.; Campbell, D.V.

    1997-04-29

    Self-stressing test structures for realistic high frequency reliability characterizations. An on-chip high frequency oscillator, controlled by DC signals from off-chip, provides a range of high frequency pulses to test structures. The test structures provide information with regard to a variety of reliability failure mechanisms, including hot-carriers, electromigration, and oxide breakdown. The system is normally integrated at the wafer level to predict the failure mechanisms of the production integrated circuits on the same wafer. 22 figs.

  3. The Use of High-Frequency Percussive Ventilation for Whole-Lung Lavage: A Case Report.

    PubMed

    Kinthala, Sudhakar; Liang, Mark; Khusid, Felix; Harrison, Sebron

    2018-04-23

    Whole-lung lavage (WLL) remains the gold standard in the treatment of pulmonary alveolar proteinosis. However, anesthetic management during WLL can be challenging because of the risk of intraoperative hypoxemia and various cardiorespiratory complications of 1-lung ventilation. Here, we describe a novel strategy involving the application of high-frequency percussive ventilation using a volumetric diffusive respirator (VDR-4) during WLL in a 47-year-old woman with pulmonary alveolar proteinosis. Our observations suggest that high-frequency percussive ventilation is a potentially effective ventilation strategy during WLL that may reduce the risk of hypoxemia and facilitate lavage.

  4. High-frequency high-voltage high-power DC-to-DC converters

    NASA Astrophysics Data System (ADS)

    Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.

    1981-07-01

    The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.

  5. High-frequency high-voltage high-power DC-to-DC converters

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Owen, H. A., Jr.; Wilson, P. M.

    1981-01-01

    The current and voltage waveshapes associated with the power transitor and the power diode in an example current-or-voltage step-up (buck-boost) converter were analyzed to highlight the problems and possible tradeoffs involved in the design of high voltage high power converters operating at switching frequencies in the range of 100 Khz. Although the fast switching speeds of currently available power diodes and transistors permit converter operation at high switching frequencies, the resulting time rates of changes of current coupled with parasitic inductances in series with the semiconductor switches, produce large repetitive voltage transients across the semiconductor switches, potentially far in excess of the device voltage ratings. The need is established for semiconductor switch protection circuitry to control the peak voltages appearing across the semiconductor switches, as well as to provide the waveshaping action require for a given semiconductor device. The possible tradeoffs, as well as the factors affecting the tradeoffs that must be considered in order to maximize the efficiency of the converters are enumerated.

  6. High frequency modal identification on noisy high-speed camera data

    NASA Astrophysics Data System (ADS)

    Javh, Jaka; Slavič, Janko; Boltežar, Miha

    2018-01-01

    Vibration measurements using optical full-field systems based on high-speed footage are typically heavily burdened by noise, as the displacement amplitudes of the vibrating structures are often very small (in the range of micrometers, depending on the structure). The modal information is troublesome to measure as the structure's response is close to, or below, the noise level of the camera-based measurement system. This paper demonstrates modal parameter identification for such noisy measurements. It is shown that by using the Least-Squares Complex-Frequency method combined with the Least-Squares Frequency-Domain method, identification at high-frequencies is still possible. By additionally incorporating a more precise sensor to identify the eigenvalues, a hybrid accelerometer/high-speed camera mode shape identification is possible even below the noise floor. An accelerometer measurement is used to identify the eigenvalues, while the camera measurement is used to produce the full-field mode shapes close to 10 kHz. The identified modal parameters improve the quality of the measured modal data and serve as a reduced model of the structure's dynamics.

  7. Digital frequency offset-locked He–Ne laser system with high beat frequency stability, narrow optical linewidth and optical fibre output

    NASA Astrophysics Data System (ADS)

    Sternkopf, Christian; Manske, Eberhard

    2018-06-01

    We report on the enhancement of a previously-presented heterodyne laser source on the basis of two phase-locked loop (PLL) frequency coupled internal-mirror He–Ne lasers. Our new system consists of two digitally controlled He–Ne lasers with slightly different wavelengths, and offers high-frequency stability and very narrow optical linewidth. The digitally controlled system has been realized by using a FPGA controller and transconductance amplifiers. The light of both lasers was coupled into separate fibres for heterodyne interferometer applications. To enhance the laser performance we observed the sensitivity of both laser tubes to electromagnetic noise from various laser power supplies and frequency control systems. Furthermore, we describe how the linewidth of a frequency-controlled He–Ne laser can be reduced during precise frequency stabilisation. The digitally controlled laser source reaches a standard beat frequency deviation of less than 20 Hz (with 1 s gate time) and a spectral full width at half maximum (FWHM) of the beat signal less than 3 kHz. The laser source has enough optical output power to serve a fibre-coupled multi axis heterodyne interferometer. The system can be adjusted to output beat frequencies in the range of 0.1 MHz–20 MHz.

  8. Towards a High Temporal Frequency Grass Canopy Thermal IR Model for Background Signatures

    NASA Technical Reports Server (NTRS)

    Ballard, Jerrell R., Jr.; Smith, James A.; Koenig, George G.

    2004-01-01

    In this paper, we present our first results towards understanding high temporal frequency thermal infrared response from a dense plant canopy and compare the application of our model, driven both by slowly varying, time-averaged meteorological conditions and by high frequency measurements of local and within canopy profiles of relative humidity and wind speed, to high frequency thermal infrared observations. Previously, we have employed three-dimensional ray tracing to compute the intercepted and scattered radiation fluxes and for final scene rendering. For the turbulent fluxes, we employed simple resistance models for latent and sensible heat with one-dimensional profiles of relative humidity and wind speed. Our modeling approach has proven successful in capturing the directional and diurnal variation in background thermal infrared signatures. We hypothesize that at these scales, where the model is typically driven by time-averaged, local meteorological conditions, the primary source of thermal variance arises from the spatial distribution of sunlit and shaded foliage elements within the canopy and the associated radiative interactions. In recent experiments, we have begun to focus on the high temporal frequency response of plant canopies in the thermal infrared at 1 second to 5 minute intervals. At these scales, we hypothesize turbulent mixing plays a more dominant role. Our results indicate that in the high frequency domain, the vertical profile of temperature change is tightly coupled to the within canopy wind speed In the results reported here, the canopy cools from the top down with increased wind velocities and heats from the bottom up at low wind velocities. .

  9. High Power HF Excitation of Low Frequency Stimulated Electrostatic Waves in the Ionospheric Plasma over HAARP

    NASA Astrophysics Data System (ADS)

    Bernhardt, Paul; Selcher, Craig A.

    High Power electromagnetic (EM) waves transmitted from the HAARP facility in Alaska can excite low frequency electrostatic waves by several processes including (1) direct magnetized stimulated Brillouin scatter (MSBS) and (2) parametric decay of high frequency electrostatic waves into electron and ion Bernstein waves. Either an ion acoustic (IA) wave with a frequency less than the ion cyclotron frequency (fCI) or an electrostatic ion cyclotron (EIC) wave just above fCI can be produced by MSBS. The coupled equations describing the MSBS instabil-ity show that the production of both IA and EIC waves is strongly influenced by the wave propagation direction relative to the background magnetic field. Experimental observations of stimulated electromagnetic emissions (SEE) using the HAARP transmitter in Alaska have confirmed the theoretical predictions that only IA waves are excited for propagation along the magnetic zenith and that EIC waves can only be detected with oblique propagation angles. The electron temperature in the heated plasma is obtained from the IA spectrum offsets from the pump frequency. The ion composition can be determined from the measured EIC frequency. Near the second harmonic of the electron cyclotron frequency, the EM pump wave is converted into an electron Bernstein (EB) wave that decays into another EB wave and an ion Bernstein (IB) wave. Strong cyclotron resonance with the EB wave leads to acceleration of the electrons. Ground based SEE observations are related to the theory of low-frequency electrostatic wave generation.

  10. The Exponent of High-frequency Source Spectral Falloff and Contribution to Source Parameter Estimates

    NASA Astrophysics Data System (ADS)

    Kiuchi, R.; Mori, J. J.

    2015-12-01

    As a way to understand the characteristics of the earthquake source, studies of source parameters (such as radiated energy and stress drop) and their scaling are important. In order to estimate source parameters reliably, often we must use appropriate source spectrum models and the omega-square model is most frequently used. In this model, the spectrum is flat in lower frequencies and the falloff is proportional to the angular frequency squared. However, Some studies (e.g. Allmann and Shearer, 2009; Yagi et al., 2012) reported that the exponent of the high frequency falloff is other than -2. Therefore, in this study we estimate the source parameters using a spectral model for which the falloff exponent is not fixed. We analyze the mainshock and larger aftershocks of the 2008 Iwate-Miyagi Nairiku earthquake. Firstly, we calculate the P wave and SH wave spectra using empirical Green functions (EGF) to remove the path effect (such as attenuation) and site effect. For the EGF event, we select a smaller earthquake that is highly-correlated with the target event. In order to obtain the stable results, we calculate the spectral ratios using a multitaper spectrum analysis (Prieto et al., 2009). Then we take a geometric mean from multiple stations. Finally, using the obtained spectra ratios, we perform a grid search to determine the high frequency falloffs, as well as corner frequency of both of events. Our results indicate the high frequency falloff exponent is often less than 2.0. We do not observe any regional, focal mechanism, or depth dependencies for the falloff exponent. In addition, our estimated corner frequencies and falloff exponents are consistent between the P wave and SH wave analysis. In our presentation, we show differences in estimated source parameters using a fixed omega-square model and a model allowing variable high-frequency falloff.

  11. High frequency ultrasound imaging in pupillary block glaucoma.

    PubMed Central

    Aslanides, I M; Libre, P E; Silverman, R H; Reinstein, D Z; Lazzaro, D R; Rondeau, M J; Harmon, G K; Coleman, D J

    1995-01-01

    BACKGROUND--The diagnosis of pupillary block glaucoma requires sufficient clarity of the ocular media. This is particularly important for assessment of both the presence and patency of an iridotomy, and the determination of central anterior chamber depth. METHODS--High frequency ultrasonography was used in three patients with suspected pupillary block to determine iris configuration, posterior chamber volume, and ciliary body conformation. RESULTS--All patients demonstrated high frequency ultrasonographic findings consistent with pupillary block: iris bombé, a formed posterior chamber, and a lack of anterior rotation of the ciliary processes. CONCLUSION--High frequency ultrasound imaging appears to be a valuable adjunct in making or corroborating the diagnosis of pupillary block glaucoma. Images PMID:8534666

  12. High-frequency VLBI Imaging of Sgr A* and VX Sgr

    NASA Astrophysics Data System (ADS)

    Lu, R.-S.; Krichbaum, T. P.; Zensus, A. J.

    VLBI observations at millimeter wavelengths provide unprecedented high angular resolution and allow to image regions, which are self-absorbed at longer wavelengths. Here we present new results from a multi-frequency VLBA monitoring of SgrA* at 22, 43, and 86 GHz performed on 10 consecutive days in May 2007. We discuss the source structure of Sgr A* through the analysis of the closure phase and closure amplitude, of which the latter improves the calibration accuracy and shows indications of a non-Gaussian brightness distribution at the highest frequency. We also present preliminary maps of the maser emission lines (v=1, J=1-0, and J=2-1) in the circumstellar SiO maser of VX Sgr. This will put new constraints on the kinematics and the pumping mechanisms of SiO masers.

  13. Compact high voltage, high peak power, high frequency transformer for converter type modulator applications.

    PubMed

    Reghu, T; Mandloi, V; Shrivastava, Purushottam

    2016-04-01

    The design and development of a compact high voltage, high peak power, high frequency transformer for a converter type modulator of klystron amplifiers is presented. The transformer has been designed to operate at a frequency of 20 kHz and at a flux swing of ±0.6 T. Iron (Fe) based nanocrystalline material has been selected as a core for the construction of the transformer. The transformer employs a specially designed solid Teflon bobbin having 120 kV insulation for winding the high voltage secondary windings. The flux swing of the core has been experimentally found by plotting the hysteresis loop at actual operating conditions. Based on the design, a prototype transformer has been built which is per se a unique combination of high voltage, high frequency, and peak power specifications. The transformer was able to provide 58 kV (pk-pk) at the secondary with a peak power handling capability of 700 kVA. The transformation ratio was 1:17. The performance of the transformer is also presented and discussed.

  14. Improving mental task classification by adding high frequency band information.

    PubMed

    Zhang, Li; He, Wei; He, Chuanhong; Wang, Ping

    2010-02-01

    Features extracted from delta, theta, alpha, beta and gamma bands spanning low frequency range are commonly used to classify scalp-recorded electroencephalogram (EEG) for designing brain-computer interface (BCI) and higher frequencies are often neglected as noise. In this paper, we implemented an experimental validation to demonstrate that high frequency components could provide helpful information for improving the performance of the mental task based BCI. Electromyography (EMG) and electrooculography (EOG) artifacts were removed by using blind source separation (BSS) techniques. Frequency band powers and asymmetry ratios from the high frequency band (40-100 Hz) together with those from the lower frequency bands were used to represent EEG features. Finally, Fisher discriminant analysis (FDA) combining with Mahalanobis distance were used as the classifier. In this study, four types of classifications were performed using EEG signals recorded from four subjects during five mental tasks. We obtained significantly higher classification accuracy by adding the high frequency band features compared to using the low frequency bands alone, which demonstrated that the information in high frequency components from scalp-recorded EEG is valuable for the mental task based BCI.

  15. Frequency Compounded Imaging with a High-Frequency Dual Element Transducer

    PubMed Central

    Chang, Jin Ho; Kim, Hyung Ham; Lee, Jungwoo; Shung, K. Kirk

    2014-01-01

    This paper proposes a frequency compounding method to reduce speckle interferences, where a concentric annular type high-frequency dual element transducer is used to broaden the bandwidth of an imaging system. In frequency compounding methods, frequency division is carried out to obtain sub-band images containing uncorrelated speckles, which sacrifices axial resolution. Therefore, frequency compounding often deteriorates the target-detecting capability, quantified by the total signal-to-noise ratio (SNR), when the speckle’s SNR (SSNR) is not improved as much as the degraded axial resolution. However, this could be avoided if the effective bandwidth required for frequency compounding is increased. The primary goal of the proposed approach, hence, is to improve SSNR by a factor of two under the condition where axial resolution is degraded by a factor of less than two, which indicates the total SNR improvement to higher than 40% compared to that of an original image. Since the method here employs a dual element transducer operating at 20 and 40 MHz, the effective bandwidth necessary for frequency compounding becomes broadened. By dividing each spectrum of RF samples from both elements into two sub-bands, this method eventually enables four sets of the sub-band samples to contain uncorrelated speckles. This causes the axial resolution to be reduced by a factor of as low as 1.85, which means that this method would improve total SNR by at least 47 %. An in vitro experiment on an excised pig eye was performed to validate the proposed approach, and the results showed that the SSNR was improved from 2.081±0.365 in the original image to 4.206±0.635 in the final compounding image. PMID:19914674

  16. Frequency compounded imaging with a high-frequency dual element transducer.

    PubMed

    Chang, Jin Ho; Kim, Hyung Ham; Lee, Jungwoo; Shung, K Kirk

    2010-04-01

    This paper proposes a frequency compounding method to reduce speckle interferences, where a concentric annular type high-frequency dual element transducer is used to broaden the bandwidth of an imaging system. In frequency compounding methods, frequency division is carried out to obtain sub-band images containing uncorrelated speckles, which sacrifices axial resolution. Therefore, frequency compounding often deteriorates the target-detecting capability, quantified by the total signal-to-noise ratio (SNR), when the speckle's SNR (SSNR) is not improved as much as the degraded axial resolution. However, this could be avoided if the effective bandwidth required for frequency compounding is increased. The primary goal of the proposed approach, hence, is to improve SSNR by a factor of two under the condition where axial resolution is degraded by a factor of less than two, which indicates the total SNR improvement to higher than 40% compared to that of an original image. Since the method here employs a dual element transducer operating at 20 and 40MHz, the effective bandwidth necessary for frequency compounding becomes broadened. By dividing each spectrum of RF samples from both elements into two sub-bands, this method eventually enables four sets of the sub-band samples to contain uncorrelated speckles. This causes the axial resolution to be reduced by a factor of as low as 1.85, which means that this method would improve total SNR by at least 47%. An in vitro experiment on an excised pig eye was performed to validate the proposed approach, and the results showed that the SSNR was improved from 2.081+/-0.365 in the original image to 4.206+/-0.635 in the final compounding image. Copyright 2009 Elsevier B.V. All rights reserved.

  17. High-frequency graphene voltage amplifier.

    PubMed

    Han, Shu-Jen; Jenkins, Keith A; Valdes Garcia, Alberto; Franklin, Aaron D; Bol, Ageeth A; Haensch, Wilfried

    2011-09-14

    While graphene transistors have proven capable of delivering gigahertz-range cutoff frequencies, applying the devices to RF circuits has been largely hindered by the lack of current saturation in the zero band gap graphene. Herein, the first high-frequency voltage amplifier is demonstrated using large-area chemical vapor deposition grown graphene. The graphene field-effect transistor (GFET) has a 6-finger gate design with gate length of 500 nm. The graphene common-source amplifier exhibits ∼5 dB low frequency gain with the 3 dB bandwidth greater than 6 GHz. This first AC voltage gain demonstration of a GFET is attributed to the clear current saturation in the device, which is enabled by an ultrathin gate dielectric (4 nm HfO(2)) of the embedded gate structures. The device also shows extrinsic transconductance of 1.2 mS/μm at 1 V drain bias, the highest for graphene FETs using large-scale graphene reported to date.

  18. Excitation of high frequency pressure driven modes in non-axisymmetric equilibrium at high βpol in PBX-M

    NASA Astrophysics Data System (ADS)

    Sesnic, S.; Holland, A.; Kaita, R.; Kaye, S. M.; Okabayashi, M.; Takahashi, H.; Asakura, N.; Bell, R. E.; Bernabei, S.; Chance, M. S.; Duperrex, P.-A.; Fonck, R. J.; Gammel, G. M.; Greene, G. J.; Hatcher, R. E.; Jardin, S. C.; Jiang, T.; Kessel, C. E.; Kugel, H. W.; Leblanc, B.; Levinton, F. M.; Manickam, J.; Ono, M.; Paul, S. F.; Powell, E. T.; Qin, Y.; Roberts, D. W.; Sauthoff, N. R.

    1993-12-01

    High frequency pressure driven modes have been observed in high poloidal beta discharges in the Princeton Beta Experiment Modification (PBX-M). These modes are excited in a non-axisymmetric equilibrium characterized by a large, low frequency mt = 1/nt = 1 island, and they are capable of expelling fast ions. The modes reside on or very close to the q = 1 surface and have mode numbers with either mh = nh or (less probably) mh/nh = mh/(mh-1), with mh varying between 3 and 10. Occasionally these modes are simultaneously localized in the vicinity of the ml = 2/nl = 1 island. The high frequency modes near the q = 1 surface also exhibit a ballooning character, being significantly stronger on the large major radius side of the plasma. When a large mt = 1/nt = 1 island is present, the mode is poloidally localized in the immediate vicinity of the X point of the island. The modes occur exclusively in high beta beam heated discharges and are likely to be driven by the beam ions. They can thus be a manifestation of either a toroidicity induced shear Alfven eigenmode (TAE) at q = (2mh+1)/2nh, a kinetic ballooning mode, or some other type of pressure driven (high β) mode. Most of the data are consistent with the theoretical predictions for the TAE gap mode. Since the high frequency modes in PBX-M, however, are found exclusively on or in the immediate neighbourhood of magnetic surfaces with low rational numbers (q = 1, 2,...), other possibilities are not excluded

  19. Quality ratings of frequency-compressed speech by participants with extensive high-frequency dead regions in the cochlea

    PubMed Central

    Salorio-Corbetto, Marina; Baer, Thomas; Moore, Brian C. J.

    2017-01-01

    Abstract Objective: The objective was to assess the degradation of speech sound quality produced by frequency compression for listeners with extensive high-frequency dead regions (DRs). Design: Quality ratings were obtained using values of the starting frequency (Sf) of the frequency compression both below and above the estimated edge frequency, fe, of each DR. Thus, the value of Sf often fell below the lowest value currently used in clinical practice. Several compression ratios were used for each value of Sf. Stimuli were sentences processed via a prototype hearing aid based on Phonak Exélia Art P. Study sample: Five participants (eight ears) with extensive high-frequency DRs were tested. Results: Reductions of sound-quality produced by frequency compression were small to moderate. Ratings decreased significantly with decreasing Sf and increasing CR. The mean ratings were lowest for the lowest Sf and highest CR. Ratings varied across participants, with one participant rating frequency compression lower than no frequency compression even when Sf was above fe. Conclusions: Frequency compression degraded sound quality somewhat for this small group of participants with extensive high-frequency DRs. The degradation was greater for lower values of Sf relative to fe, and for greater values of CR. Results varied across participants. PMID:27724057

  20. High frequency power distribution system

    NASA Technical Reports Server (NTRS)

    Patel, Mikund R.

    1986-01-01

    The objective of this project was to provide the technology of high frequency, high power transmission lines to the 100 kW power range at 20 kHz frequency. In addition to the necessary design studies, a 150 m long, 600 V, 60 A transmission line was built, tested and delivered for full vacuum tests. The configuration analysis on five alternative configurations resulted in the final selection of the three parallel Litz straps configuration, which gave a virtually concentric design in the electromagnetic sense. Low inductance, low EMI and flexibility in handling are the key features of this configuration. The final design was made after a parametric study to minimize the losses, weight and inductance. The construction of the cable was completed with no major difficulties. The R,L,C parameters measured on the cable agreed well with the calculated values. The corona tests on insulation samples showed a safety factor of 3.

  1. Effectiveness of fixed-site high-frequency transcutaneous electrical nerve stimulation in chronic pain: a large-scale, observational study

    PubMed Central

    Kong, Xuan; Gozani, Shai N

    2018-01-01

    Objective The objective of this study was to assess the effectiveness of fixed-site high-frequency transcutaneous electrical nerve stimulation (FS-TENS) in a real-world chronic pain sample. Background There is a need for nonpharmacological treatment options for chronic pain. FS-TENS improved multisite chronic pain in a previous interventional study. Large observational studies are needed to further characterize its effectiveness. Methods This retrospective observational cohort study examined changes in chronic pain measures following 60 days of FS-TENS use. The study data were obtained from FS-TENS users who uploaded their device utilization and clinical data to an online database. The primary outcome measures were changes in pain intensity and pain interference with sleep, activity, and mood on an 11-point numerical rating scale. Dose–response associations were evaluated by stratifying subjects into low (≤30 days), intermediate (31–56 days), and high (≥57 days) utilization subgroups. FS-TENS effectiveness was quantified by baseline to follow-up group differences and a responder analysis (≥30% improvement in pain intensity or ≥2-point improvement in pain interference domains). Results Utilization and clinical data were collected from 11,900 people using FS-TENS for chronic pain, with 713 device users meeting the inclusion and exclusion criteria. Study subjects were generally older, overweight adults. Subjects reported multisite pain with a mean of 4.8 (standard deviation [SD] 2.5) pain sites. A total of 97.2% of subjects identified low back and/or lower extremity pain, and 72.9% of subjects reported upper body pain. All pain measures exhibited statistically significant group differences from baseline to 60-day follow-up. The largest changes were pain interference with activity (−0.99±2.69 points) and mood (−1.02±2.78 points). A total of 48.7% of subjects exhibited a clinically meaningful reduction in pain interference with activity or mood. This

  2. Exfoliated BN shell-based high-frequency magnetic core-shell materials.

    PubMed

    Zhang, Wei; Patel, Ketan; Ren, Shenqiang

    2017-09-14

    The miniaturization of electric machines demands high frequency magnetic materials with large magnetic-flux density and low energy loss to achieve a decreased dimension of high rotational speed motors. Herein, we report a solution-processed high frequency magnetic composite (containing a nanometal FeCo core and a boron nitride (BN) shell) that simultaneously exhibits high electrical resistivity and magnetic permeability. The frequency dependent complex initial permeability and the mechanical robustness of nanocomposites are intensely dependent on the content of BN insulating phase. The results shown here suggest that insulating magnetic nanocomposites have potential for application in next-generation high-frequency electric machines with large electrical resistivity and permeability.

  3. A High Power Frequency Doubled Fiber Laser

    NASA Technical Reports Server (NTRS)

    Thompson, Robert J.; Tu, Meirong; Aveline, Dave; Lundblad, Nathan; Maleki, Lute

    2003-01-01

    This viewgraph presentation reports on the development of a high power 780 nm laser suitable for space applications of laser cooling. A possible solution is to use frequency doubling of high power 1560 nm telecom lasers. The presentation shows a diagram of the frequency conversion, and a graph of the second harmonic generation in one crystal, and the use of the cascading crystals. Graphs show the second harmonic power as a function of distance between crystals, second harmonic power vs. pump power, tunability of laser systems.

  4. Ground and space observations of medium frequency auroral radio emissions

    NASA Astrophysics Data System (ADS)

    Broughton, Matthew C.

    The auroral zone is a rich source of natural radio emissions that can be observed in space and at ground-level. By studying these waves, scientists can gain insight into the plasma processes that generate them and use the near-Earth space environment as a large-scale plasma physics laboratory. This thesis uses both ground-level and in situ observations to study two kinds of natural radio emissions. First, we report observations of a new kind of auroral radio emission. The waves have frequencies ranging from 1.3-2.2 MHz, bandwidths ranging from 90-272 kHz, and durations ranging from 16-355 s. Spectral analysis of the waveform data has revealed that the emission has a complex combination of at least three kinds of fine structures. For model auroral electron distributions, calculations indicate that Langmuir waves could be excited at frequencies consistent with observations. The remainder of the thesis discusses auroral medium frequency (MF) burst, an impulsive, broadband natural radio emission observed at ground-level within a few minutes of local substorm onset. LaBelle [2011] proposed that MF burst originates as Langmuir/Z-mode waves on the topside of the ionosphere that subsequently mode convert to L-mode waves and propagate to ground-level. Using continuous waveform measurements and combined observations with the Sondrestrom Incoherent Scatter Radar, we have performed two tests of this mechanism. The results of these tests are consistent with the mechanism described in LaBelle [2011]. A survey of 8,624 half-orbits of the DEMETER spacecraft has revealed 68 observations of bursty MF waves. We have compared the wave properties of these waves to those of MF burst and have found that although it is uncertain, the balance of the evidence suggests that the bursty MF waves observed with DEMETER are the same phenomenon as the ground-level MF burst. Finally, we have used numerical simulations to model both the fine structure of MF burst and to estimate the attenuation the

  5. High Frequency Tail Characteristics in the Coastal Waters off Gopalpur, Northwest Bay of Bengal: A Nearshore Modelling Study

    NASA Astrophysics Data System (ADS)

    Umesh, P. A.; Bhaskaran, Prasad K.; Sandhya, K. G.; Nair, T. M. Balakrishnan

    2017-12-01

    Over the years, continued uncertainty amid - 4 and - 5 frequency exponent representation observed in the slope of the high-frequency tail of a wind-wave frequency spectrum is a major concern. To comprehend the nature of the high-frequency tail an effort has been made to assess the slope of the high-frequency tail with measured data recorded for 3 years off Gopalpur. The study demonstrates that the high-frequency slope of the spectra varied seasonally in the range of n = - 2.13 to - 3.48. The swell and wind sea parameters calculated by separation frequency method, shows that 64.6% of waves were dominant by swell and the rest 34.9% by sea annually. Single, double and multi-peaked spectra occur 12.23, 71.80 and 15.37% annually. To simulate wave spectra, the nested WAM-SWAN model is forced with ERA-Interim winds and 1D wave spectra comparisons, when performed, proved to be encouraging. From the comparisons of measured and theoretical spectra it is concluded that JONSWAP model could not describe the high-frequency tail of measured spectrum, as indicated by the very high Scatter Index ranging from 0.24 to 1.44. Whether there exists a correct slope for the high-frequency tail is still a question. Moreover, the philosophy of a unique slope at any coastal location remains uncertain for the wave modelling community.

  6. Haplotypic Background of a Private Allele at High Frequency in the Americas

    PubMed Central

    Schroeder, Kari B.; Jakobsson, Mattias; Crawford, Michael H.; Schurr, Theodore G.; Boca, Simina M.; Conrad, Donald F.; Tito, Raul Y.; Osipova, Ludmilla P.; Tarskaia, Larissa A.; Zhadanov, Sergey I.; Wall, Jeffrey D.; Pritchard, Jonathan K.; Malhi, Ripan S.; Smith, David G.; Rosenberg, Noah A.

    2009-01-01

    Recently, the observation of a high-frequency private allele, the 9-repeat allele at microsatellite D9S1120, in all sampled Native American and Western Beringian populations has been interpreted as evidence that all modern Native Americans descend primarily from a single founding population. However, this inference assumed that all copies of the 9-repeat allele were identical by descent and that the geographic distribution of this allele had not been influenced by natural selection. To investigate whether these assumptions are satisfied, we genotyped 34 single nucleotide polymorphisms across ∼500 kilobases (kb) around D9S1120 in 21 Native American and Western Beringian populations and 54 other worldwide populations. All chromosomes with the 9-repeat allele share the same haplotypic background in the vicinity of D9S1120, suggesting that all sampled copies of the 9-repeat allele are identical by descent. Ninety-one percent of these chromosomes share the same 76.26 kb haplotype, which we call the “American Modal Haplotype” (AMH). Three observations lead us to conclude that the high frequency and widespread distribution of the 9-repeat allele are unlikely to be the result of positive selection: 1) aside from its association with the 9-repeat allele, the AMH does not have a high frequency in the Americas, 2) the AMH is not unusually long for its frequency compared with other haplotypes in the Americas, and 3) in Latin American mestizo populations, the proportion of Native American ancestry at D9S1120 is not unusual compared with that observed at other genomewide microsatellites. Using a new method for estimating the time to the most recent common ancestor (MRCA) of all sampled copies of an allele on the basis of an estimate of the length of the genealogy descended from the MRCA, we calculate the mean time to the MRCA of the 9-repeat allele to be between 7,325 and 39,900 years, depending on the demographic model used. The results support the hypothesis that all

  7. Very low frequency radio events with a reduced intensity observed by the low-altitude DEMETER spacecraft

    NASA Astrophysics Data System (ADS)

    Záhlava, J.; Němec, F.; Santolík, O.; Kolmašová, I.; Parrot, M.; Rodger, C. J.

    2015-11-01

    We present results of a systematic study of unusual very low frequency (VLF) radio events with a reduced intensity observed in the frequency-time spectrograms measured by the low-orbiting Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions (DEMETER) spacecraft. They occur exclusively on the nightside. During these events, the intensity of fractional hop whistlers at specific frequencies is significantly reduced. These frequencies are usually above about 3.4 kHz (second Earth-ionosphere waveguide cutoff frequency), but about 20% of events extend down to about 1.7 kHz (first Earth-ionosphere waveguide cutoff frequency). The frequencies of a reduced intensity vary smoothly with time. We have inspected 6.5 years of DEMETER data, and we identified in total 1601 such events. We present a simple model of the event formation based on the wave propagation in the Earth-ionosphere waveguide. We apply the model to two selected events, and we demonstrate that the model is able to reproduce both the minimum frequencies of the events and their approximate frequency-time shapes. The overall geographic distribution of the events is shifted by about 3000 km westward and slightly southward with respect to the areas with high long-term average lightning activity. We demonstrate that this shift is related to the specific DEMETER orbit, and we suggest its qualitative explanation by the east-west asymmetry of the wave propagation in the Earth-ionosphere waveguide.

  8. [REACTIVE CHANGES IN SPINAL CORD MOTONEURONS AFTER SCIATIC NERVE INJURY AFTER HIGH-FREQUENCY ELECTROSURGICAL INSTRUMENT APPLICATION].

    PubMed

    Korsak, A; Chaikovsky, Yu; Sokurenko, L; Likhodiievskyi, V; Neverovskyi, A

    2016-02-01

    A new experimental model for tissues connection at peripheral nerve injury site in form of tissues welding was designed. In current study we investigated motoneuron state 1, 3, 6 and 12 weeks after peripheral nerve injury and surgical repair with high-frequency electrosurgical technology. Spinal cord sections was stained by Nissl method and observed with light microscopy. We found that postoperative period in animals from experimental groups characterized by qualitative changes in neurons from spinal motor centers that can be interpreted as compensatory processes as response to alteration. In animals from group with high-frequency electrosurgical technology usage stabilization processes passes more quickly comparatively to animals with epineural sutures. High-frequency electrosurgical technology usage provides less harmful effects on motoneurons than epineural suturing.

  9. FIBER OPTICS. ACOUSTOOPTICS: High-frequency magnetooptics of fiber waveguides

    NASA Astrophysics Data System (ADS)

    Antonov, S. N.; Bulyuk, A. N.; Vetoshko, P. M.; Shkerdin, G. N.

    1990-07-01

    An investigation is made of the hf distributed magnetooptic interaction in fiber waveguides associated with the Faraday effect observed under the conditions of both spatial and temporal phase matching between the normal modes of the waveguide and an external magentic field. Analytic expressions are obtained for the main relationships governing modulation of the state of polarization of light in a long fiber waveguide at high and ultrahigh frequencies. An analysis is made of several variants of hf magnetooptic modulators. It is shown that in the specific case when a 10-m long quartz fiber waveguide wound to form a cylindrical coil is placed inside the cavity of a coaxial microwave resonator and the microwave control power is 10 W, the efficiency of modulation of light should be 50%. The main theoretical predictions were supported by the reported experiments. These experiments showed that at a frequency of 80 MHz the modulation efficiency was 1% when the control power was 0.5 W.

  10. Simple method enabling pulse on command from high power, high frequency lasers

    NASA Astrophysics Data System (ADS)

    Baer, David J.; Marshall, Graham D.; Coutts, David W.; Mildren, Richard P.; Withford, Michael J.

    2006-09-01

    A method for addressing individual laser pulses in high repetition frequency systems using an intracavity optical chopper and novel electronic timing system is reported. This "pulse on command" capability is shown to enable free running and both subharmonic pulse rate and burst mode operation of a high power, high pulse frequency copper vapor laser while maintaining a fixed output pulse energy. We demonstrate that this technique can be used to improve feature finish when laser micromachining metal.

  11. Improving Ambiguity Resolution for Medium Baselines Using Combined GPS and BDS Dual/Triple-Frequency Observations

    PubMed Central

    Gao, Wang; Gao, Chengfa; Pan, Shuguo; Wang, Denghui; Deng, Jiadong

    2015-01-01

    The regional constellation of the BeiDou navigation satellite system (BDS) has been providing continuous positioning, navigation and timing services since 27 December 2012, covering China and the surrounding area. Real-time kinematic (RTK) positioning with combined BDS and GPS observations is feasible. Besides, all satellites of BDS can transmit triple-frequency signals. Using the advantages of multi-pseudorange and carrier observations from multi-systems and multi-frequencies is expected to be of much benefit for ambiguity resolution (AR). We propose an integrated AR strategy for medium baselines by using the combined GPS and BDS dual/triple-frequency observations. In the method, firstly the extra-wide-lane (EWL) ambiguities of triple-frequency system, i.e., BDS, are determined first. Then the dual-frequency WL ambiguities of BDS and GPS were resolved with the geometry-based model by using the BDS ambiguity-fixed EWL observations. After that, basic (i.e., L1/L2 or B1/B2) ambiguities of BDS and GPS are estimated together with the so-called ionosphere-constrained model, where the ambiguity-fixed WL observations are added to enhance the model strength. During both of the WL and basic AR, a partial ambiguity fixing (PAF) strategy is adopted to weaken the negative influence of new-rising or low-elevation satellites. Experiments were conducted and presented, in which the GPS/BDS dual/triple-frequency data were collected in Nanjing and Zhengzhou of China, with the baseline distance varying from about 28.6 to 51.9 km. The results indicate that, compared to the single triple-frequency BDS system, the combined system can significantly enhance the AR model strength, and thus improve AR performance for medium baselines with a 75.7% reduction of initialization time on average. Besides, more accurate and stable positioning results can also be derived by using the combined GPS/BDS system. PMID:26528977

  12. Improving Ambiguity Resolution for Medium Baselines Using Combined GPS and BDS Dual/Triple-Frequency Observations.

    PubMed

    Gao, Wang; Gao, Chengfa; Pan, Shuguo; Wang, Denghui; Deng, Jiadong

    2015-10-30

    The regional constellation of the BeiDou navigation satellite system (BDS) has been providing continuous positioning, navigation and timing services since 27 December 2012, covering China and the surrounding area. Real-time kinematic (RTK) positioning with combined BDS and GPS observations is feasible. Besides, all satellites of BDS can transmit triple-frequency signals. Using the advantages of multi-pseudorange and carrier observations from multi-systems and multi-frequencies is expected to be of much benefit for ambiguity resolution (AR). We propose an integrated AR strategy for medium baselines by using the combined GPS and BDS dual/triple-frequency observations. In the method, firstly the extra-wide-lane (EWL) ambiguities of triple-frequency system, i.e., BDS, are determined first. Then the dual-frequency WL ambiguities of BDS and GPS were resolved with the geometry-based model by using the BDS ambiguity-fixed EWL observations. After that, basic (i.e., L1/L2 or B1/B2) ambiguities of BDS and GPS are estimated together with the so-called ionosphere-constrained model, where the ambiguity-fixed WL observations are added to enhance the model strength. During both of the WL and basic AR, a partial ambiguity fixing (PAF) strategy is adopted to weaken the negative influence of new-rising or low-elevation satellites. Experiments were conducted and presented, in which the GPS/BDS dual/triple-frequency data were collected in Nanjing and Zhengzhou of China, with the baseline distance varying from about 28.6 to 51.9 km. The results indicate that, compared to the single triple-frequency BDS system, the combined system can significantly enhance the AR model strength, and thus improve AR performance for medium baselines with a 75.7% reduction of initialization time on average. Besides, more accurate and stable positioning results can also be derived by using the combined GPS/BDS system.

  13. High-frequency phosphorus and nitrate measurements for improved statutory water quality monitoring and management

    NASA Astrophysics Data System (ADS)

    Bieroza, Magdalena

    2017-04-01

    High-frequency nutrient (phosphorus and nitrogen) monitoring using wet-chemistry analysers and optical sensors has revolutionised the collection of biogeochemical data from streams, rivers and lakes. Matching the nutrient measurement time with timescales of hydrological responses has revealed biogeochemical patterns and nutrient hydrological responses not observed previously. Capturing a wider range of nutrient concentrations compared to traditional coarse resolution sampling enables more accurate estimation of mean concentrations and loads and thus improved water body classification. However, to date the scientific insights from the high-frequency nutrient monitoring studies have not been translated into policy and operational responses. The pertinent question is where and how often to measure nutrients to satisfy statutory monitoring requirements for the Water Framework Directive and the Nitrates Directive. Therefore this paper discusses how the reduced data uncertainty and improved process understanding obtained with the high-frequency measurements can improve statutory nutrient monitoring, using case studies from England and Sweden.

  14. Low-Magnitude, High-Frequency Vibration Fails to Accelerate Ligament Healing but Stimulates Collagen Synthesis in the Achilles Tendon.

    PubMed

    Thompson, William R; Keller, Benjamin V; Davis, Matthew L; Dahners, Laurence E; Weinhold, Paul S

    2015-05-01

    Low-magnitude, high-frequency vibration accelerates fracture and wound healing and prevents disuse atrophy in musculoskeletal tissues. To investigate the role of low-magnitude, high-frequency vibration as a treatment to accelerate healing of an acute ligament injury and to examine gene expression in the intact Achilles tendon of the injured limb after low-magnitude, high-frequency vibration. Controlled laboratory study. Complete surgical transection of the medial collateral ligament (MCL) was performed in 32 Sprague-Dawley rats, divided into control and low-magnitude, high-frequency vibration groups. Low-magnitude, high-frequency vibration started on postoperative day 2, and rats received vibration for 30 minutes a day for 12 days. All rats were sacrificed 2 weeks after the operation, and their intact and injured MCLs were biomechanically tested or used for histological analysis. Intact Achilles tendons from the injured limb were evaluated for differences in gene expression. Mechanical testing revealed no differences in the ultimate tensile load or the structural stiffness between the control and vibration groups for either the injured or intact MCL. Vibration exposure increased gene expression of collagen 1 alpha (3-fold), interleukin 6 (7-fold), cyclooxygenase 2 (5-fold), and bone morphogenetic protein 12 (4-fold) in the intact Achilles tendon when compared with control tendons ( P < .05). While no differences were observed in the mechanical or histological properties of the fully transected MCL after low-magnitude, high-frequency vibration treatment, significant enhancements in gene expression were observed in the intact Achilles tendon. These included collagen, several inflammatory cytokines, and growth factors critical for tendons. As low-magnitude, high-frequency vibration had no negative effects on ligament healing, vibration therapy may be a useful tool to accelerate healing of other tissues (bone) in multitrauma injuries without inhibiting ligament healing

  15. Beta-gamma burst stimulations of the inferior olive induce high-frequency oscillations in the deep cerebellar nuclei.

    PubMed

    Cheron, Julian; Cheron, Guy

    2018-02-20

    The cerebellum displays various sorts of rhythmic activities covering both low- and high-frequency oscillations. These cerebellar high-frequency oscillations were observed in the cerebellar cortex. Here, we hypothesised that not only is the cerebellar cortex a generator of high-frequency oscillations but also that the deep cerebellar nuclei may also play a similar role. Thus, we analysed local field potentials and single-unit activities in the deep cerebellar nuclei before, during and after electric stimulation in the inferior olive of awake mice. A high-frequency oscillation of 350 Hz triggered by the stimulation of the inferior olive, within the beta-gamma range, was observed in the deep cerebellar nuclei. The amplitude and frequency of the oscillation were independent of the frequency of stimulation. This oscillation emerged during the period of stimulation and persisted after the end of the stimulation. The oscillation coincided with the inhibition of deep cerebellar neurons. As the inhibition of the deep cerebellar nuclei is related to inhibitory inputs from Purkinje cells, we speculate that the oscillation represents the unmasking of the synchronous activation of another subtype of deep cerebellar neuronal subtype, devoid of GABA receptors and under the direct control of the climbing fibres from the inferior olive. Still, the mechanism sustaining this oscillation remains to be deciphered. Our study sheds new light on the role of the olivo-cerebellar loop as the final output control of the intercerebellar circuitry. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Plant Responses to High Frequency Electromagnetic Fields

    PubMed Central

    Vian, Alain; Davies, Eric; Gendraud, Michel; Bonnet, Pierre

    2016-01-01

    High frequency nonionizing electromagnetic fields (HF-EMF) that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio) optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber) and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc.) are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor), and growth reduced (stem elongation and dry weight) after low power (i.e., nonthermal) HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism. PMID:26981524

  17. Sources and Impacts of Modeled and Observed Low-Frequency Climate Variability

    NASA Astrophysics Data System (ADS)

    Parsons, Luke Alexander

    structure of the variance spectrum has important consequences for the probability of multi-year drought. Our lake record suggests there is a significant background threat of multi-year, and even decade-length, drought in western Amazonia, whereas climate model simulations indicate most droughts likely last no longer than one to three years. These findings suggest climate models may underestimate the future risk of extended drought in this important region. In Appendix C, we expand our analysis of climate variability beyond South America. We use observations, well-constrained tropical paleoclimate, and Earth system model data to examine the overall shape of the climate spectrum across interannual to century frequencies. We find a general agreement among observations and models that temperature variability increases with timescale across most of the globe outside the tropics. However, as compared to paleoclimate records, climate models generate too little low-frequency variability in the tropics (e.g., Laepple and Huybers, 2014). When we compare the shape of the simulated climate spectrum to the spectrum of a simple autoregressive process, we find much of the modeled surface temperature variability in the tropics could be explained by ocean smoothing of weather noise. Importantly, modeled precipitation tends to be similar to white noise across much of the globe. By contrast, paleoclimate records of various types from around the globe indicate that both temperature and precipitation variability should experience much more low-frequency variability than a simple autoregressive or white-noise process. In summary, state-of-the-art climate models generate some degree of dynamically driven low-frequency climate variability, especially at high latitudes. However, the latest climate models, observations, and paleoclimate data provide us with drastically different pictures of the background climate system and its associated risks. This research has important consequences for improving

  18. High-Frequency Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2009-01-01

    Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.

  19. High-frequency Faraday rotation observations of the solar corona

    NASA Astrophysics Data System (ADS)

    Jensen, Elizabeth A.; Russell, Christopher T.

    2008-10-01

    This thesis, presented on January 31, 2007 under the supervision of Professor Christopher T. Russell, discusses the solar coronal magnetic field observations that can be obtained using the phenomenon of Faraday rotation. It was defended in the Department of Earth and Space Sciences at the University of California, Los Angeles (595 Charles E. Young, Dr. East, Los Angeles, CA 90095). A resume can be found at http://acs-consulting.com/.

  20. An Analysis of the High Frequency Vibrations in Early Thematic Mapper Scenes

    NASA Technical Reports Server (NTRS)

    Kogut, J.; Larduinat, E.

    1985-01-01

    The motion of the mirrors in the thematic mapper (TM) and multispectral scanner (MSS) instruments, and the motion of other devices, such as the TDRSS antenna drive, and solar array drives onboard LANDSAT-4 cause vibrations to propagate through the spacecraft. These vibrations as well as nonlinearities in the scanning motion of the TM mirror can cause the TM detectors to point away from their nominal positions. Two computer programs, JITTER and SCDFT, were developed as part of the LANDSAT-D Assessment System (LAS), Products and Procedures Analysis (PAPA) program to evaluate the potential effect of high frequency vibrations on the final TM image. The maximum overlap and underlap which were observed for early TM scenes are well within specifications for the ground processing system. The cross scan and scan high frequency vibrations are also within the specifications cited for the flight system.

  1. Design and calibration of a high-frequency oscillatory ventilator.

    PubMed

    Simon, B A; Mitzner, W

    1991-02-01

    High-frequency ventilation (HFV) is a modality of mechanical ventilation which presents difficult technical demands to the clinical or laboratory investigator. The essential features of an ideal HFV system are described, including wide frequency range, control of tidal volume and mean airway pressure, minimal dead space, and high effective internal impedance. The design and performance of a high-frequency oscillatory ventilation system is described which approaches these requirements. The ventilator utilizes a linear motor regulated by a closed loop controller and driving a novel frictionless double-diaphragm piston pump. Finally, the ventilator performance is tested using the impedance model of Venegas [1].

  2. Characterization of High-Frequency Excitation of a Wake by Simulation

    NASA Technical Reports Server (NTRS)

    Cain, Alan B.; Rogers, Michael M.; Kibens, Valdis; Mansour, Nagi (Technical Monitor)

    2003-01-01

    Insights into the effects of high-frequency forcing on free shear layer evolution are gained through analysis of several direct numerical simulations. High-frequency forcing of a fully turbulent plane wake results in only a weak transient effect. On the other hand, significant changes in the developed turbulent state may result when high-frequency forcing is applied to a transitional wake. The impacts of varying the characteristics of the high-frequency forcing are examined, particularly, the streamwise wavenumber band in which forcing is applied and the initial amplitude of the forcing. The high-frequency excitation is found to increase the dissipation rate of turbulent kinetic energy, to reduce the turbulent kinetic energy production rate, and to reduce the turbulent kinetic energy suppression increases with forcing amplitude once a threshold level has been reached. For a given initial forcing energy, the largest reduction in turbulent kinetic energy density was achieved by forcing wavenumbers that are about two to three times the neutral wavenumber determined from linear stability theory.

  3. Neural coding of high-frequency tones

    NASA Technical Reports Server (NTRS)

    Howes, W. L.

    1976-01-01

    Available evidence was presented indicating that neural discharges in the auditory nerve display characteristic periodicities in response to any tonal stimulus including high-frequency stimuli, and that this periodicity corresponds to the subjective pitch.

  4. X-Ray Observations of High-Energy Pulsars: PSR B1951+32 and Geminga

    NASA Astrophysics Data System (ADS)

    Ho, Cheng

    Observations at frequencies across a wide range of electromagnetic spectra are key to the understanding of the origin and mechanisms of high-energy emissions from pulsars. We propose to observe the high-energy pulsars PSR B1951+32 and Geminga with XTE. These two sources emit X-rays at low enough count rate that we can acquire high resolution timing and spectral data, allowing us to perform detailed analysis on the ground. Staring integration of 10 ksec for each source is requested. Data obtained in these observations, together with those from ROSAT, GRO and a planned project for optical counterpart study at Los Alamos, will provide crucial information to advance high-energy pulsar research.

  5. Real-time and high accuracy frequency measurements for intermediate frequency narrowband signals

    NASA Astrophysics Data System (ADS)

    Tian, Jing; Meng, Xiaofeng; Nie, Jing; Lin, Liwei

    2018-01-01

    Real-time and accurate measurements of intermediate frequency signals based on microprocessors are difficult due to the computational complexity and limited time constraints. In this paper, a fast and precise methodology based on the sigma-delta modulator is designed and implemented by first generating the twiddle factors using the designed recursive scheme. This scheme requires zero times of multiplications and only half amounts of addition operations by using the discrete Fourier transform (DFT) and the combination of the Rife algorithm and Fourier coefficient interpolation as compared with conventional methods such as DFT and Fast Fourier Transform. Experimentally, when the sampling frequency is 10 MHz, the real-time frequency measurements with intermediate frequency and narrowband signals have a measurement mean squared error of ±2.4 Hz. Furthermore, a single measurement of the whole system only requires approximately 0.3 s to achieve fast iteration, high precision, and less calculation time.

  6. The detection and characterization of high frequency and high wavenumber solar oscillations. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Fernandes, David Neil

    1992-01-01

    Doppler shift measurements of the Na D(sub 1) absorption line have revealed solar oscillations in a new regime of frequency and wavenumber. Oscillations of vertical velocities in the temperature minimum and low chromosphere of the Sun are observed with frequencies ranging up to 9.5 mHz. There is no evidence for chromospheric modes of 3 minute period. This indicates that the chromosphere does not form a good cavity for acoustic waves. The fundamental-modes appear with wavenumbers up to 5.57 M per m (equivalent spherical harmonic degree, 3877). The frequencies lie below the predicted values at wavenumbers above 1 M per m. The values are in agreement with previous measurements that exist for wavenumbers up to 2.67 M per m. Spatial maps of velocity power show that high wavenumber oscillations are suppressed in active regions. The shape of the power depression indicates that wave motion is affected in the layer of atmosphere where the measurement is made. The f-modes are suppressed in the same way as p-modes, indicating that the mechanism for wave suppression affects velocity fluctuations. Mode frequencies are not affected by the magnetic fields by more than 50 micro Hz, the precision of the measurement.

  7. High damping properties of magnetic particles doped rubber composites at wide frequency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Ye, E-mail: schtiany@163.com; College of Material Science and Engineering, North University of China, Taiyuan 030051; Liu, Yaqing, E-mail: lyq@nuc.edu.cn

    Highlights: ► A new kind of permanent magnetic rubber was prepared. ► The microstructure and magnetic properties were investigated. ► The mechanical and damping properties were discussed. ► The new material is expected to be an isolator material to a changed frequency. - Abstract: A new kind of rubber composite was prepared by doping SrFe{sub 12}O{sub 19} nanoparticles coated with silane coupling agents (Si-69) into nitrile butadiene rubber (NBR) matrix, which was characterized by the scanning electron microscopy and X-ray spectroscopy. The results showed that the SrFe{sub 12}O{sub 19} nanoparticles were well dispersed in rubber matrix. Furthermore, the mechanical andmore » magnetic properties of the rubber composites were investigated, in which the high tensile strength (15.8 MPa) and high saturation magnetization (22.9 emu/g) were observed. What is more, the high loss factor of the rubber composites was also obtained in a wide frequency range (0–100 Hz) at high loading (80 phr). The result is attributed to that the permanent magnetic field in rubber nanocomposites can absorb shock energy. These results indicate that the new kind of permanent magnetic rubber is expected to be a smart isolator material, in which the isolator will be able to adapt to a changed frequency.« less

  8. Characterization of Hand Clenching in Human Sensorimotor Cortex Using High-, and Ultra-High Frequency Band Modulations of Electrocorticogram

    PubMed Central

    Jiang, Tianxiao; Liu, Su; Pellizzer, Giuseppe; Aydoseli, Aydin; Karamursel, Sacit; Sabanci, Pulat A.; Sencer, Altay; Gurses, Candan; Ince, Nuri F.

    2018-01-01

    Functional mapping of eloquent cortex before the resection of a tumor is a critical procedure for optimizing survival and quality of life. In order to locate the hand area of the motor cortex in two patients with low-grade gliomas (LGG), we recorded electrocorticogram (ECoG) from a 113 channel hybrid high-density grid (64 large contacts with diameter of 2.7 mm and 49 small contacts with diameter of 1 mm) while they executed hand clenching movements. We investigated the spatio-spectral characteristics of the neural oscillatory activity and observed that, in both patients, the hand movements were consistently associated with a wide spread power decrease in the low frequency band (LFB: 8–32 Hz) and a more localized power increase in the high frequency band (HFB: 60–280 Hz) within the sensorimotor region. Importantly, we observed significant power increase in the ultra-high frequency band (UFB: 300–800 Hz) during hand movements of both patients within a restricted cortical region close to the central sulcus, and the motor cortical “hand knob.” Among all frequency bands we studied, the UFB modulations were closest to the central sulcus and direct cortical stimulation (DCS) positive site. Both HFB and UFB modulations exhibited different timing characteristics at different locations. Power increase in HFB and UFB starting before movement onset was observed mostly at the anterior part of the activated cortical region. In addition, the spatial patterns in HFB and UFB indicated a probable postcentral shift of the hand motor function in one of the patients. We also compared the task related subband modulations captured by the small and large contacts in our hybrid grid. We did not find any significant difference in terms of band power changes. This study shows initial evidence that event-driven neural oscillatory activity recorded from ECoG can reach up to 800 Hz. The spatial distribution of UFB oscillations was found to be more focalized and closer to the central

  9. Characterization of Hand Clenching in Human Sensorimotor Cortex Using High-, and Ultra-High Frequency Band Modulations of Electrocorticogram.

    PubMed

    Jiang, Tianxiao; Liu, Su; Pellizzer, Giuseppe; Aydoseli, Aydin; Karamursel, Sacit; Sabanci, Pulat A; Sencer, Altay; Gurses, Candan; Ince, Nuri F

    2018-01-01

    Functional mapping of eloquent cortex before the resection of a tumor is a critical procedure for optimizing survival and quality of life. In order to locate the hand area of the motor cortex in two patients with low-grade gliomas (LGG), we recorded electrocorticogram (ECoG) from a 113 channel hybrid high-density grid (64 large contacts with diameter of 2.7 mm and 49 small contacts with diameter of 1 mm) while they executed hand clenching movements. We investigated the spatio-spectral characteristics of the neural oscillatory activity and observed that, in both patients, the hand movements were consistently associated with a wide spread power decrease in the low frequency band (LFB: 8-32 Hz) and a more localized power increase in the high frequency band (HFB: 60-280 Hz) within the sensorimotor region. Importantly, we observed significant power increase in the ultra-high frequency band (UFB: 300-800 Hz) during hand movements of both patients within a restricted cortical region close to the central sulcus, and the motor cortical "hand knob." Among all frequency bands we studied, the UFB modulations were closest to the central sulcus and direct cortical stimulation (DCS) positive site. Both HFB and UFB modulations exhibited different timing characteristics at different locations. Power increase in HFB and UFB starting before movement onset was observed mostly at the anterior part of the activated cortical region. In addition, the spatial patterns in HFB and UFB indicated a probable postcentral shift of the hand motor function in one of the patients. We also compared the task related subband modulations captured by the small and large contacts in our hybrid grid. We did not find any significant difference in terms of band power changes. This study shows initial evidence that event-driven neural oscillatory activity recorded from ECoG can reach up to 800 Hz. The spatial distribution of UFB oscillations was found to be more focalized and closer to the central sulcus

  10. High-frequency seismic signals associated with glacial earthquakes in Greenland

    NASA Astrophysics Data System (ADS)

    Olsen, K.; Nettles, M.

    2017-12-01

    Glacial earthquakes are magnitude 5 seismic events generated by iceberg calving at marine-terminating glaciers. They are characterized by teleseismically detectable signals at 35-150 seconds period that arise from the rotation and capsize of gigaton-sized icebergs (e.g., Ekström et al., 2003; Murray et al., 2015). Questions persist regarding the details of this calving process, including whether there are characteristic precursory events such as ice slumps or pervasive crevasse opening before an iceberg rotates away from the glacier. We investigate the high-frequency seismic signals produced before, during, and after glacial earthquakes. We analyze a set of 94 glacial earthquakes that occurred at three of Greenland's major glaciers, Jakobshavn Isbræ, Helheim Glacier, and Kangerdlugssuaq Glacier, from 2001 - 2013. We employ data from the GLISN network of broadband seismometers around Greenland and from short-term seismic deployments located close to the glaciers. These data are bandpass filtered to 3 - 10 Hz and trimmed to one-hour windows surrounding known glacial earthquakes. We observe elevated amplitudes of the 3 - 10 Hz signal for 500 - 1500 seconds spanning the time of each glacial earthquake. These durations are long compared to the 60 second glacial-earthquake source. In the majority of cases we observe an increase in the amplitude of the 3 - 10 Hz signal 200 - 600 seconds before the centroid time of the glacial earthquake and sustained high amplitudes for up to 800 seconds after. In some cases, high-amplitude energy in the 3 - 10 Hz band precedes elevated amplitudes in the 35 - 150 s band by 300 seconds. We explore possible causes for these high-frequency signals, and discuss implications for improving understanding of the glacial-earthquake source.

  11. Characteristics of type III exciters derived from low frequency radio observations

    NASA Technical Reports Server (NTRS)

    Evans, L. G.; Fainberg, J.; Stone, R. G.

    1973-01-01

    Low-frequency radio observations (2.8 MHz to 67 kHz) from the RAE-1 and IMP-6 satellites allow the tracking of type III solar burst exciters out to large distances from the sun (of the order of 1 AU). A study of the interaction processes between the exciter and the interplanetary medium was made using the time-intensity profiles of the radio emission. The change in exciter length with distance from the sun, and the resulting exciter velocity dispersion which can be deduced from this change are investigated. From detailed measurements on 35 simple bursts it is found that the exciter length increases at a faster rate than a constant velocity dispersion would give. The damping of the radio emission is also investigated, and it is concluded that some current theories of the damping mechanism give results which are not consistent with the low-frequency observations.

  12. High-Frequency Nanocapacitor Arrays: Concept, Recent Developments, and Outlook.

    PubMed

    Lemay, Serge G; Laborde, Cecilia; Renault, Christophe; Cossettini, Andrea; Selmi, Luca; Widdershoven, Frans P

    2016-10-18

    We have developed a measurement platform for performing high-frequency AC detection at nanoelectrodes. The system consists of 65 536 electrodes (diameter 180 nm) arranged in a sub-micrometer rectangular array. The electrodes are actuated at frequencies up to 50 MHz, and the resulting AC current response at each separately addressable electrode is measured in real time. These capabilities are made possible by fabricating the electrodes on a complementary metal-oxide-semiconductor (CMOS) chip together with the associated control and readout electronics, thus minimizing parasitic capacitance and maximizing the signal-to-noise ratio. This combination of features offers several advantages for a broad range of experiments. First, in contrast to alternative CMOS-based electrical systems based on field-effect detection, high-frequency operation is sensitive beyond the electrical double layer and can probe entities at a range of micrometers in electrolytes with high ionic strength such as water at physiological salt concentrations. Far from being limited to single- or few-channel recordings like conventional electrochemical impedance spectroscopy, the massively parallel design of the array permits electrically imaging micrometer-scale entities with each electrode serving as a separate pixel. This allows observation of complex kinetics in heterogeneous environments, for example, the motion of living cells on the surface of the array. This imaging aspect is further strengthened by the ability to distinguish between analyte species based on the sign and magnitude of their AC response. Finally, we show here that sensitivity down to the attofarad level combined with the small electrode size permits detection of individual 28 nm diameter particles as they land on the sensor surface. Interestingly, using finite-element methods, it is also possible to calculate accurately the full three-dimensional electric field and current distributions during operation at the level of the

  13. The detectability of high frequency energy at teleseismic and regional distances, 1. Studies of radiation from high-explosive and nuclear cratering events, 2

    NASA Astrophysics Data System (ADS)

    der, Z. A.; Blandford, R. R.

    1981-03-01

    A survey of the literature on short period seismic studies showed that seismic waves of high frequency in the 3-10 Hz range can be observed regularly at both regional and teleseismic distances. These observations show that the low Q values proposed for the long period seismic waves cannot be valid in the short period band. The data indicate that, in the mantle, Q increases with frequency and may be as much as five times higher at 5-10 Hz than in the long period band. Even with the most conservative assumptions, the level of high frequency amplitudes in the teleseismic P waves exceeds that predicted with a constant t*p = 1 sec by a factor of at least 100,000 at and beyond 5 Hz. The apparent Q beta of the lithosphere, which may be largely due to scattering by the small scale inhomogeneities in the crust, also shows an increase with frequency by as much as a factor of four within the 1-10 Hz band. This parameter controls the attenuation and the detectability of seismic waves at regional distances such as Pn, Pg, Su and Lg.

  14. High-frequency ultrasound-responsive block copolymer micelle.

    PubMed

    Wang, Jie; Pelletier, Maxime; Zhang, Hongji; Xia, Hesheng; Zhao, Yue

    2009-11-17

    Micelles of a diblock copolymer composed of poly(ethylene oxide) and poly(2-tetrahydropyranyl methacrylate) (PEO-b-PTHPMA) in aqueous solution could be disrupted by high-frequency ultrasound (1.1 MHz). It was found that, upon exposure to a high-intensity focused ultrasound (HIFU) beam at room temperature, the pH value of the micellar solution decreased over irradiation time. The infrared spectroscopic analysis of solid block copolymer samples collected from the ultrasound irradiated micellar solution revealed the formation of carboxylic acid dimers and hydroxyl groups. These characterization results suggest that the high-frequency HIFU beam could induce the hydrolysis reaction of THPMA at room temperature resulting in the cleavage of THP groups. The disruption of PEO-b-PTHPMA micelles by ultrasound was investigated by using dynamic light scattering, atomic force microscopy, and fluorescence spectroscopy. On the basis of the pH change, it was found that the disruption process was determined by a number of factors such as the ultrasound power, the micellar solution volume and the location of the focal spot of the ultrasound beam. This study shows the potential to develop ultrasound-sensitive block copolymer micelles by having labile chemical bonds in the polymer structure, and to use the high-frequency HIFU to trigger a chemical reaction for the disruption of micelles.

  15. Eulerian frequency analysis of structural vibrations from high-speed video

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venanzoni, Andrea; Siemens Industry Software NV, Interleuvenlaan 68, B-3001 Leuven; De Ryck, Laurent

    An approach for the analysis of the frequency content of structural vibrations from high-speed video recordings is proposed. The techniques and tools proposed rely on an Eulerian approach, that is, using the time history of pixels independently to analyse structural motion, as opposed to Lagrangian approaches, where the motion of the structure is tracked in time. The starting point is an existing Eulerian motion magnification method, which consists in decomposing the video frames into a set of spatial scales through a so-called Laplacian pyramid [1]. Each scale — or level — can be amplified independently to reconstruct a magnified motionmore » of the observed structure. The approach proposed here provides two analysis tools or pre-amplification steps. The first tool provides a representation of the global frequency content of a video per pyramid level. This may be further enhanced by applying an angular filter in the spatial frequency domain to each frame of the video before the Laplacian pyramid decomposition, which allows for the identification of the frequency content of the structural vibrations in a particular direction of space. This proposed tool complements the existing Eulerian magnification method by amplifying selectively the levels containing relevant motion information with respect to their frequency content. This magnifies the displacement while limiting the noise contribution. The second tool is a holographic representation of the frequency content of a vibrating structure, yielding a map of the predominant frequency components across the structure. In contrast to the global frequency content representation of the video, this tool provides a local analysis of the periodic gray scale intensity changes of the frame in order to identify the vibrating parts of the structure and their main frequencies. Validation cases are provided and the advantages and limits of the approaches are discussed. The first validation case consists of the frequency

  16. High-frequency fluctuations of surface temperatures in an urban environment

    NASA Astrophysics Data System (ADS)

    Christen, Andreas; Meier, Fred; Scherer, Dieter

    2012-04-01

    This study presents an attempt to resolve fluctuations in surface temperatures at scales of a few seconds to several minutes using time-sequential thermography (TST) from a ground-based platform. A scheme is presented to decompose a TST dataset into fluctuating, high-frequency, and long-term mean parts. To demonstrate the scheme's application, a set of four TST runs (day/night, leaves-on/leaves-off) recorded from a 125-m-high platform above a complex urban environment in Berlin, Germany is used. Fluctuations in surface temperatures of different urban facets are measured and related to surface properties (material and form) and possible error sources. A number of relationships were found: (1) Surfaces with surface temperatures that were significantly different from air temperature experienced the highest fluctuations. (2) With increasing surface temperature above (below) air temperature, surface temperature fluctuations experienced a stronger negative (positive) skewness. (3) Surface materials with lower thermal admittance (lawns, leaves) showed higher fluctuations than surfaces with high thermal admittance (walls, roads). (4) Surface temperatures of emerged leaves fluctuate more compared to trees in a leaves-off situation. (5) In many cases, observed fluctuations were coherent across several neighboring pixels. The evidence from (1) to (5) suggests that atmospheric turbulence is a significant contributor to fluctuations. The study underlines the potential of using high-frequency thermal remote sensing in energy balance and turbulence studies at complex land-atmosphere interfaces.

  17. Basis of Ionospheric Modification by High-Frequency Waves

    DTIC Science & Technology

    2007-06-01

    for conducting ionospheric heating experiments in Gakona, Alaska, as part of the High Frequency Active Auroral Research Program ( HAARP ) [5], is being...upgraded. The upgraded HAARP HF transmitting system will be a phased-array antenna of 180 elements. Each element is a cross dipole, which radiates a...supported by the High Frequency Active Auroral Research Program ( HAARP ), the Air Force Research Laboratory at Hanscom Air Force Base, MA, and by the Office

  18. High-resolution frequency measurement method with a wide-frequency range based on a quantized phase step law.

    PubMed

    Du, Baoqiang; Dong, Shaofeng; Wang, Yanfeng; Guo, Shuting; Cao, Lingzhi; Zhou, Wei; Zuo, Yandi; Liu, Dan

    2013-11-01

    A wide-frequency and high-resolution frequency measurement method based on the quantized phase step law is presented in this paper. Utilizing a variation law of the phase differences, the direct different frequency phase processing, and the phase group synchronization phenomenon, combining an A/D converter and the adaptive phase shifting principle, a counter gate is established in the phase coincidences at one-group intervals, which eliminates the ±1 counter error in the traditional frequency measurement method. More importantly, the direct phase comparison, the measurement, and the control between any periodic signals have been realized without frequency normalization in this method. Experimental results show that sub-picosecond resolution can be easily obtained in the frequency measurement, the frequency standard comparison, and the phase-locked control based on the phase quantization processing technique. The method may be widely used in navigation positioning, space techniques, communication, radar, astronomy, atomic frequency standards, and other high-tech fields.

  19. Gender identification from high-pass filtered vowel segments: the use of high-frequency energy.

    PubMed

    Donai, Jeremy J; Lass, Norman J

    2015-10-01

    The purpose of this study was to examine the use of high-frequency information for making gender identity judgments from high-pass filtered vowel segments produced by adult speakers. Specifically, the effect of removing lower-frequency spectral detail (i.e., F3 and below) from vowel segments via high-pass filtering was evaluated. Thirty listeners (ages 18-35) with normal hearing participated in the experiment. A within-subjects design was used to measure gender identification for six 250-ms vowel segments (/æ/, /ɪ /, /ɝ/, /ʌ/, /ɔ/, and /u/), produced by ten male and ten female speakers. The results of this experiment demonstrated that despite the removal of low-frequency spectral detail, the listeners were accurate in identifying speaker gender from the vowel segments, and did so with performance significantly above chance. The removal of low-frequency spectral detail reduced gender identification by approximately 16 % relative to unfiltered vowel segments. Classification results using linear discriminant function analyses followed the perceptual data, using spectral and temporal representations derived from the high-pass filtered segments. Cumulatively, these findings indicate that normal-hearing listeners are able to make accurate perceptual judgments regarding speaker gender from vowel segments with low-frequency spectral detail removed via high-pass filtering. Therefore, it is reasonable to suggest the presence of perceptual cues related to gender identity in the high-frequency region of naturally produced vowel signals. Implications of these findings and possible mechanisms for performing the gender identification task from high-pass filtered stimuli are discussed.

  20. Flow and Acoustic Features of a Mach 0.9 Free Jet Using High-Frequency Excitation

    NASA Astrophysics Data System (ADS)

    Upadhyay, Puja; Alvi, Farrukh

    2016-11-01

    This study focuses on active control of a Mach 0.9 (ReD = 6 ×105) free jet using high-frequency excitation for noise reduction. Eight resonance-enhanced microjet actuators with nominal frequencies of 25 kHz (StD 2 . 2) are used to excite the shear layer at frequencies that are approximately an order of magnitude higher than the jet preferred frequency. The influence of control on mean and turbulent characteristics of the jet is studied using Particle Image Velocimetry. Additionally, far-field acoustic measurements are acquired to estimate the effect of pulsed injection on noise characteristics of the jet. Flow field measurements revealed that strong streamwise vortex pairs, formed as a result of control, result in a significantly thicker initial shear layer. This excited shear layer is also prominently undulated, resulting in a modified initial velocity profile. Also, the distribution of turbulent kinetic energy revealed that forcing results in increased turbulence levels for near-injection regions, followed by a global reduction for all downstream locations. Far-field acoustic measurements showed noise reductions at low to moderate frequencies. Additionally, an increase in high-frequency noise, mostly dominated by the actuators' resonant noise, was observed. AFOSR and ARO.

  1. High-frequency signal and noise estimates of CSR GRACE RL04

    NASA Astrophysics Data System (ADS)

    Bonin, Jennifer A.; Bettadpur, Srinivas; Tapley, Byron D.

    2012-12-01

    A sliding window technique is used to create daily-sampled Gravity Recovery and Climate Experiment (GRACE) solutions with the same background processing as the official CSR RL04 monthly series. By estimating over shorter time spans, more frequent solutions are made using uncorrelated data, allowing for higher frequency resolution in addition to daily sampling. Using these data sets, high-frequency GRACE errors are computed using two different techniques: assuming the GRACE high-frequency signal in a quiet area of the ocean is the true error, and computing the variance of differences between multiple high-frequency GRACE series from different centers. While the signal-to-noise ratios prove to be sufficiently high for confidence at annual and lower frequencies, at frequencies above 3 cycles/year the signal-to-noise ratios in the large hydrological basins looked at here are near 1.0. Comparisons with the GLDAS hydrological model and high frequency GRACE series developed at other centers confirm CSR GRACE RL04's poor ability to accurately and reliably measure hydrological signal above 3-9 cycles/year, due to the low power of the large-scale hydrological signal typical at those frequencies compared to the GRACE errors.

  2. High frequency resolution terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Sangala, Bagvanth Reddy

    2013-12-01

    A new method for the high frequency resolution terahertz time-domain spectroscopy is developed based on the characteristic matrix method. This method is useful for studying planar samples or stack of planar samples. The terahertz radiation was generated by optical rectification in a ZnTe crystal and detected by another ZnTe crystal via electro-optic sampling method. In this new characteristic matrix based method, the spectra of the sample and reference waveforms will be modeled by using characteristic matrices. We applied this new method to measure the optical constants of air. The terahertz transmission through the layered systems air-Teflon-air-Quartz-air and Nitrogen gas-Teflon-Nitrogen gas-Quartz-Nitrogen gas was modeled by the characteristic matrix method. A transmission coefficient is derived from these models which was optimized to fit the experimental transmission coefficient to extract the optical constants of air. The optimization of an error function involving the experimental complex transmission coefficient and the theoretical transmission coefficient was performed using patternsearch algorithm of MATLAB. Since this method takes account of the echo waveforms due to reflections in the layered samples, this method allows analysis of longer time-domain waveforms giving rise to very high frequency resolution in the frequency-domain. We have presented the high frequency resolution terahertz time-domain spectroscopy of air and compared the results with the literature values. We have also fitted the complex susceptibility of air to the Lorentzian and Gaussian functions to extract the linewidths.

  3. Dielectric and acoustical high frequency characterisation of PZT thin films

    NASA Astrophysics Data System (ADS)

    Conde, Janine; Muralt, Paul

    2010-02-01

    Pb(Zr, Ti)O3 (PZT) is an interesting material for bulk acoustic wave resonator applications due to its high electromechanical coupling constant, which would enable fabrication of large bandwidth frequency filters. The major challenge of the PZT solid solution system is to overcome mechanical losses generally observed in PZT ceramics. To increase the understanding of these losses in textured thin films, thin film bulk acoustic resonators (TFBAR's) based on PZT thin films with compositions either in the tetragonal region or at the morphotropic phase boundary and (111) or {100} textures were fabricated and studied up to 2 GHz. The dielectric and elastic materials coefficients were extracted from impedance measurements at the resonance frequency. The dispersion of the dielectric constant was obtained from impedance measurements up to 2 GHz. The films with varying compositions, textures and deposition methods (sol-gel or sputtering) were compared in terms of dielectric and acoustical properties.

  4. High frequency bone conduction auditory evoked potentials in the guinea pig: Assessing cochlear injury after ossicular chain manipulation.

    PubMed

    Bergin, M J; Bird, P A; Vlajkovic, S M; Thorne, P R

    2015-12-01

    Permanent high frequency (>4 kHz) sensorineural hearing loss following middle ear surgery occurs in up to 25% of patients. The aetiology of this loss is poorly understood and may involve transmission of supra-physiological forces down the ossicular chain to the cochlea. Investigating the mechanisms of this injury using animal models is challenging, as evaluating cochlear function with evoked potentials is confounded when ossicular manipulation disrupts the normal air conduction (AC) pathway. Bone conduction (BC) using clinical bone vibrators in small animals is limited by poor transducer output at high frequencies sensitive to trauma. The objectives of the present study were firstly to evaluate a novel high frequency bone conduction transducer with evoked auditory potentials in a guinea pig model, and secondly to use this model to investigate the impact of middle ear surgical manipulation on cochlear function. We modified a magnetostrictive device as a high frequency BC transducer and evaluated its performance by comparison with a calibrated AC transducer at frequencies up to 32 kHz using the auditory brainstem response (ABR), compound action potential (CAP) and summating potential (SP). To mimic a middle ear traumatising stimulus, a rotating bur was brought in to contact with the incudomalleal complex and the effect on evoked cochlear potentials was observed. BC-evoked potentials followed the same input-output function pattern as AC potentials for all ABR frequencies. Deterioration in CAP and SP thresholds was observed after ossicular manipulation. It is possible to use high frequency BC to evoke responses from the injury sensitive basal region of the cochlea and so not rely on AC with the potential confounder of conductive hearing loss. Ongoing research explores how these findings evolve over time, and ways in which injury may be reduced and the cochlea protected during middle ear surgery. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Design parameters of stainless steel plates for maximizing high frequency ultrasound wave transmission.

    PubMed

    Michaud, Mark; Leong, Thomas; Swiergon, Piotr; Juliano, Pablo; Knoerzer, Kai

    2015-09-01

    This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1-7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼ 60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6mm stainless steel plate). In contrast, minimal sound pressure transmission (∼ 10-20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. High frequency generation in the corona: Resonant cavities

    NASA Astrophysics Data System (ADS)

    Santamaria, I. C.; Van Doorsselaere, T.

    2018-03-01

    Aims: Null points are prominent magnetic field singularities in which the magnetic field strength strongly decreases in very small spatial scales. Around null points, predicted to be ubiquitous in the solar chromosphere and corona, the wave behavior changes considerably. Null points are also responsible for driving very energetic phenomena, and for contributing to chromospheric and coronal heating. In previous works we demonstrated that slow magneto-acoustic shock waves were generated in the chromosphere propagate through the null point, thereby producing a train of secondary shocks escaping along the field lines. A particular combination of the shock wave speeds generates waves at a frequency of 80 MHz. The present work aims to investigate this high frequency region around a coronal null point to give a plausible explanation to its generation at that particular frequency. Methods: We carried out a set of two-dimensional numerical simulations of wave propagation in the neighborhood of a null point located in the corona. We varied both the amplitude of the driver and the atmospheric properties to investigate the sensitivity of the high frequency waves to these parameters. Results: We demonstrate that the wave frequency is sensitive to the atmospheric parameters in the corona, but it is independent of the strength of the driver. Thus, the null point behaves as a resonant cavity generating waves at specific frequencies that depend on the background equilibrium model. Moreover, we conclude that the high frequency wave train generated at the null point is not necessarily a result of the interaction between the null point and a shock wave. This wave train can be also developed by the interaction between the null point and fast acoustic-like magneto-acoustic waves, that is, this interaction within the linear regime.

  7. Continuous high-frequency activity in mesial temporal lobe structures

    PubMed Central

    Mari, Francesco; Zelmann, Rina; Andrade-Valenca, Luciana; Dubeau, Francois; Gotman, Jean

    2013-01-01

    Summary Purpose Many recent studies have reported the importance of high-frequency oscillations (HFOs) in the intracerebral electroencephalography (EEG) of patients with epilepsy. These HFOs have been defined as events that stand out from the background. We have noticed that this background often consists itself of high-frequency rhythmic activity. The purpose of this study is to perform a first evaluation of the characteristics of high-frequency continuous or semicontinuous background activity. Methods Because the continuous high-frequency pattern was noted mainly in mesial temporal structures, we reviewed the EEG studies from these structures in 24 unselected patients with electrodes implanted in these regions. Sections of background away from interictal spikes were marked visually during periods of slow-wave sleep and wakefulness. They were then high-passed filtered at 80 Hz and categorized as having high-frequency rhythmic activity in one of three patterns: continuous/semicontinuous, irregular, sporadic. Wavelet entropy, which measures the degree of rhythmicity of a signal, was calculated for the marked background sections. Key Findings Ninety-six bipolar channels were analyzed. The continuous/semicontinuous pattern was found frequently (29/96 channels during wake and 34/96 during sleep). The different patterns were consistent between sleep and wakefulness. The continuous/semicontinuous pattern was found significantly more often in the hippocampus than in the parahippocampal gyrus and was rarely found in the amygdala. The types of pattern were not influenced by whether a channel was within the seizure-onset zone, or whether it was a lesional channel. The continuous/semicontinuous pattern was associated with a higher frequency of spikes and with high rates of ripples and fast ripples. Significance It appears that high-frequency activity (above 80 Hz) does not appear only in the form of brief paroxysmal events but also in the form of continuous rhythmic activity

  8. Enhanced magnetic domain relaxation frequency and low power losses in Zn2+ substituted manganese ferrites potential for high frequency applications

    NASA Astrophysics Data System (ADS)

    Praveena, K.; Chen, Hsiao-Wen; Liu, Hsiang-Lin; Sadhana, K.; Murthy, S. R.

    2016-12-01

    Nowadays electronic industries prerequisites magnetic materials, i.e., iron rich materials and their magnetic alloys. However, with the advent of high frequency applications, the standard techniques of reducing eddy current losses, using iron cores, were no longer efficient or cost effective. Current market trends of the switched mode power supplies industries required even low energy losses in power conversion with maintenance of adequate initial permeability. From the above point of view, in the present study we aimed at the production of Manganese-Zinc ferrites prepared via solution combustion method using mixture of fuels and achieved low loss, high saturation magnetization, high permeability, and high magnetic domain relaxation frequency. The as-synthesized Zn2+ substituted MnFe2O4 were characterized by X-ray diffractometer (XRD) and transmission electron microscopy (TEM). The fractions of Mn2+, Zn2+ and Fe2+ cations occupying tetrahedral sites along with Fe occupying octahedral sites within the unit cell of all ferrite samples were estimated by Raman scattering spectroscopy. The magnetic domain relaxation was investigated by inductance spectroscopy (IS) and the observed magnetic domain relaxation frequency (fr) was increased with the increase in grain size. The real and imaginary part of permeability (μ‧ and μ″) increased with frequency and showed a maximum above 100 MHz. This can be explained on the basis of spin rotation and domain wall motion. The saturation magnetization (Ms), remnant magnetization (Mr) and magneton number (μB) decreased gradually with increasing Zn2+ concentration. The decrease in the saturation magnetization was discussed with Yafet-Kittel (Y-K) model. The Zn2+ concentration increases the relative number of ferric ions on the A sites, reduces the A-B interactions. The frequency dependent total power losses decreased as the zinc concentration increased. At 1 MHz, the total power loss (Pt) changed from 358 mW/cm3 for x=0-165 mW/cm3

  9. Disordered high-frequency oscillation in face processing in schizophrenia patients

    PubMed Central

    Liu, Miaomiao; Pei, Guangying; Peng, Yinuo; Wang, Changming; Yan, Tianyi; Wu, Jinglong

    2018-01-01

    Abstract Schizophrenia is a complex disorder characterized by marked social dysfunctions, but the neural mechanism underlying this deficit is unknown. To investigate whether face-specific perceptual processes are influenced in schizophrenia patients, both face detection and configural analysis were assessed in normal individuals and schizophrenia patients by recording electroencephalogram (EEG) data. Here, a face processing model was built based on the frequency oscillations, and the evoked power (theta, alpha, and beta bands) and the induced power (gamma bands) were recorded while the subjects passively viewed face and nonface images presented in upright and inverted orientations. The healthy adults showed a significant face-specific effect in the alpha, beta, and gamma bands, and an inversion effect was observed in the gamma band in the occipital lobe and right temporal lobe. Importantly, the schizophrenia patients showed face-specific deficits in the low-frequency beta and gamma bands, and the face inversion effect in the gamma band was absent from the occipital lobe. All these results revealed face-specific processing in patients due to the disorder of high-frequency EEG, providing additional evidence to enrich future studies investigating neural mechanisms and serving as a marked diagnostic basis. PMID:29419668

  10. High-frequency variations in Earth rotation and the planetary momentum budget

    NASA Technical Reports Server (NTRS)

    Rosen, Richard D.

    1995-01-01

    The major focus of the subject contract was on helping to resolve one of the more notable discrepancies still existing in the axial momentum budget of the solid Earth-atmosphere system, namely the disappearance of coherence between length-of-day (l.o.d.) and atmospheric angular momentum (AAM) at periods shorter than about a fortnight. Recognizing the importance of identifying the source of the high-frequency momentum budget anomaly, the scientific community organized two special measurement campaigns (SEARCH '92 and CONT '94) to obtain the best possible determinations of l.o.d. and AAM. An additional goal was to analyze newly developed estimates of the torques that transfer momentum between the atmosphere and its underlying surface to determine whether the ocean might be a reservoir of momentum on short time scales. Discrepancies between AAM and l.o.d. at sub-fortnightly periods have been attributed to either measurement errors in these quantities or the need to incorporate oceanic angular momentum into the planetary budget. Results from the SEARCH '92 and CONT '94 campaigns suggest that when special attention is paid to the quality of the measurements, better agreement between l.o.d. and AAM at high frequencies can be obtained. The mechanism most responsible for the high-frequency changes observed in AAM during these campaigns involves a direct coupling to the solid Earth, i.e, the mountain torque, thereby obviating a significant oceanic role.

  11. Evidence of low frequency waves penetration in the ionosphere observed by Chibis-M satellite

    NASA Astrophysics Data System (ADS)

    Pronenko, Vira; Dudkin, Fedir; Korepanov, Valery

    2016-07-01

    Chibis-M microsatellite (MS) was launched using ISS infrastructure to the 500 km circular orbit with inclination 52° and successfully operated during the years 2012-2014. One of the main tasks of this experiment was the study of how powerful natural and technogenic processes are reflected in the ionosphere. For this study, the magnetic wave complex (MWC) was used which measured one electrical component and three components of the magnetic vector in the frequency range 0.1 Hz-40 kHz. Due to the proximity of the magnetic sensors and the satellite control system, their high sensitivity (up to 0.02 pT/sqrt(Hz)) was not used in full because the level of magnetic noise was about 10 pT/sqrt(Hz) in the low-frequency range. Nevertheless, owing to the symmetric fixation of the electric probes relative to the satellite body, the electrical sensor provided high accuracy measurements (about 0.8-0.04 (µV/m)/sqrt(Hz)) in the frequency range of 0.1-40 000 Hz, despite the very small measurement base of 0.42 m. This allowed us to collect valuable information which revealed a number of interesting physical effects, especially in ultralow frequency (ULF) range. In ULF range the ionospheric emissions with a central frequency of 50 (60) Hz - power line emissions (PLE) and the Schumann resonance harmonics (SR) were detected, though, according to the present model of the ionosphere, they have not penetrate there. A detailed study of the obtained data revealed the features of PLE and SR. The spatial distribution of PLE and their connection with the power lines location on the ground were analyzed. It was found that the intensity of PLE depends on the load characteristics of the power line and usually has a minimum in the morning. The cases of an extra long distance of PLE propagation in the Earth's ionosphere over oceans in the equatorial region have been also observed. Further, it was detected that PLE has been recorded both in the shaded and sunlit parts of the orbits and their

  12. SEPP-ZVS High Frequency Inverter Incorporating Auxiliary Switch

    NASA Astrophysics Data System (ADS)

    Ogiwara, Hiroyuki; Itoi, Misao; Nakaoka, Mutsuo

    This paper presents a novel circuit topology to attain ZVS operation of a high frequency inverter over a wide range output power regulation using a PWM control technique by connecting an auxiliary switch to the conventional single ended push-pull (SEPP) ZVS high frequency inverter. A switching current is injected into the main switches via the auxiliary switch only during the short period between its turn-on and off times to supply a current required for its ZVS operation.

  13. High frequency observations of Iapetus on the Green Bank Telescope aided by improvements in understanding the telescope response to wind

    NASA Astrophysics Data System (ADS)

    Ries, Paul A.

    2012-05-01

    The Green Bank Telescope is a 100m, fully steerable, single dish radio telescope located in Green Bank, West Virginia and capable of making observations from meter wavelengths to 3mm. However, observations at wavelengths short of 2 cm pose significant observational challenges due to pointing and surface errors. The first part of this thesis details efforts to combat wind-induced pointing errors, which reduce by half the amount of time available for high-frequency work on the telescope. The primary tool used for understanding these errors was an optical quadrant detector that monitored the motion of the telescope's feed arm. In this work, a calibration was developed that tied quadrant detector readings directly to telescope pointing error. These readings can be used for single-beam observations in order to determine if the telescope was blown off-source at some point due to wind. With observations with the 3 mm MUSTANG bolometer array, pointing errors due to wind can mostly be removed (> ⅔) during data reduction. Iapetus is a moon known for its stark albedo dichotomy, with the leading hemisphere only a tenth as bright as the trailing. In order to investigate this dichotomy, Iapetus was observed repeatedly with the GBT at wavelengths between 3 and 11 mm, with the original intention being to use the data to determine a thermal light-curve. Instead, the data showed incredible wavelength-dependent deviation from a black-body curve, with an emissivity as low as 0.3 at 9 mm. Numerous techniques were used to demonstrate that this low emissivity is a physical phenomenon rather than an observational one, including some using the quadrant detector to make sure the low emissivities are not due to being blown off source. This emissivity is the among the lowest ever detected in the solar system, but can be achieved using physically realistic ice models that are also used to model microwave emission from snowpacks and glaciers on Earth. These models indicate that the trailing

  14. Factors controlling high-frequency radiation from extended ruptures

    NASA Astrophysics Data System (ADS)

    Beresnev, Igor A.

    2017-09-01

    Small-scale slip heterogeneity or variations in rupture velocity on the fault plane are often invoked to explain the high-frequency radiation from earthquakes. This view has no theoretical basis, which follows, for example, from the representation integral of elasticity, an exact solution for the radiated wave field. The Fourier transform, applied to the integral, shows that the seismic spectrum is fully controlled by that of the source time function, while the distribution of final slip and rupture acceleration/deceleration only contribute to directivity. This inference is corroborated by the precise numerical computation of the full radiated field from the representation integral. We compare calculated radiation from four finite-fault models: (1) uniform slip function with low slip velocity, (2) slip function spatially modulated by a sinusoidal function, (3) slip function spatially modulated by a sinusoidal function with random roughness added, and (4) uniform slip function with high slip velocity. The addition of "asperities," both regular and irregular, does not cause any systematic increase in the spectral level of high-frequency radiation, except for the creation of maxima due to constructive interference. On the other hand, an increase in the maximum rate of slip on the fault leads to highly amplified high frequencies, in accordance with the prediction on the basis of a simple point-source treatment of the fault. Hence, computations show that the temporal rate of slip, not the spatial heterogeneity on faults, is the predominant factor forming the high-frequency radiation and thus controlling the velocity and acceleration of the resulting ground motions.

  15. Semiconductor nanomembrane-based sensors for high frequency pressure measurements

    NASA Astrophysics Data System (ADS)

    Ruan, Hang; Kang, Yuhong; Homer, Michelle; Claus, Richard O.; Mayo, David; Sibold, Ridge; Jones, Tyler; Ng, Wing

    2017-04-01

    This paper demonstrates improvements on semiconductor nanomembrane based high frequency pressure sensors that utilize silicon on insulator techniques in combination with nanocomposite materials. The low-modulus, conformal nanomembrane sensor skins with integrated interconnect elements and electronic devices could be applied to vehicles or wind tunnel models for full spectrum pressure analysis. Experimental data demonstrates that: 1) silicon nanomembrane may be used as single pressure sensor transducers and elements in sensor arrays, 2) the arrays may be instrumented to map pressure over the surfaces of test articles over a range of Reynolds numbers, temperature and other environmental conditions, 3) in the high frequency range, the sensor is comparable to the commercial high frequency sensor, and 4) in the low frequency range, the sensor is much better than the commercial sensor. This supports the claim that nanomembrane pressure sensors may be used for wide bandwidth flow analysis.

  16. Audiometric Notch and Extended High-Frequency Hearing Threshold Shift in Relation to Total Leisure Noise Exposure: An Exploratory Analysis

    PubMed Central

    Wei, Wenjia; Heinze, Stefanie; Gerstner, Doris G.; Walser, Sandra M.; Twardella, Dorothee; Reiter, Christina; Weilnhammer, Veronika; Perez-Alvarez, Carmelo; Steffens, Thomas; Herr, Caroline E.W.

    2017-01-01

    Background: Studies investigating leisure noise effect on extended high frequency hearing are insufficient and they have inconsistent results. The aim of this study was to investigate if extended high-frequency hearing threshold shift is related to audiometric notch, and if total leisure noise exposure is associated with extended high-frequency hearing threshold shift. Materials and Methods: A questionnaire of the Ohrkan cohort study was used to collect information on demographics and leisure time activities. Conventional and extended high-frequency audiometry was performed. We did logistic regression between extended high-frequency hearing threshold shift and audiometric notch as well as between total leisure noise exposure and extended high-frequency hearing threshold shift. Potential confounders (sex, school type, and firecrackers) were included. Results: Data from 278 participants (aged 18–23 years, 53.2% female) were analyzed. Associations between hearing threshold shift at 10, 11.2, 12.5, and 14 kHz with audiometric notch were observed with a higher prevalence of threshold shift at the four frequencies, compared to the notch. However, we found no associations between total leisure noise exposure and hearing threshold shift at any extended high frequency. Conclusion: This exploratory analysis suggests that while extended high-frequency hearing threshold shifts are not related to total leisure noise exposure, they are strongly associated with audiometric notch. This leads us to further explore the hypothesis that extended high-frequency threshold shift might be indicative of the appearance of audiometric notch at a later time point, which can be investigated in the future follow-ups of the Ohrkan cohort. PMID:29319010

  17. Audiometric notch and extended high-frequency hearing threshold shift in relation to total leisure noise exposure: An exploratory analysis.

    PubMed

    Wei, Wenjia; Heinze, Stefanie; Gerstner, Doris G; Walser, Sandra M; Twardella, Dorothee; Reiter, Christina; Weilnhammer, Veronika; Perez-Alvarez, Carmelo; Steffens, Thomas; Herr, Caroline E W

    2017-01-01

    Studies investigating leisure noise effect on extended high frequency hearing are insufficient and they have inconsistent results. The aim of this study was to investigate if extended high-frequency hearing threshold shift is related to audiometric notch, and if total leisure noise exposure is associated with extended high-frequency hearing threshold shift. A questionnaire of the Ohrkan cohort study was used to collect information on demographics and leisure time activities. Conventional and extended high-frequency audiometry was performed. We did logistic regression between extended high-frequency hearing threshold shift and audiometric notch as well as between total leisure noise exposure and extended high-frequency hearing threshold shift. Potential confounders (sex, school type, and firecrackers) were included. Data from 278 participants (aged 18-23 years, 53.2% female) were analyzed. Associations between hearing threshold shift at 10, 11.2, 12.5, and 14 kHz with audiometric notch were observed with a higher prevalence of threshold shift at the four frequencies, compared to the notch. However, we found no associations between total leisure noise exposure and hearing threshold shift at any extended high frequency. This exploratory analysis suggests that while extended high-frequency hearing threshold shifts are not related to total leisure noise exposure, they are strongly associated with audiometric notch. This leads us to further explore the hypothesis that extended high-frequency threshold shift might be indicative of the appearance of audiometric notch at a later time point, which can be investigated in the future follow-ups of the Ohrkan cohort.

  18. Low-Temperature Variation of Acoustic Velocity in PDMS for High-Frequency Applications.

    PubMed

    Streque, Jeremy; Rouxel, Didier; Talbi, Abdelkrim; Thomassey, Matthieu; Vincent, Brice

    2018-05-01

    Polydimethylsiloxane (PDMS) and other related silicon-based polymers are among the most widely employed elastomeric materials in microsystems, owing to their physical and chemical properties. Meanwhile, surface acoustic wave (SAW) and bulk acoustic wave (BAW) sensors and filters have been vastly explored for sensing and wireless applications. Many fields could benefit from the combined use of acoustic wave devices, and polydimethylsiloxane-based soft-substrates, microsystems, or packaging elements. The mechanical constants of PDMS strongly depend on frequency, similar to rubber materials. This brings to the exploration of the specific mechanical properties of PDMS encountered at high frequency, required for its exploitation in SAW or BAW devices. First, low-frequency mechanical behavior is confirmed from stress strain measurements, remaining useful for the exploitation of PDMS as a soft substrate or packaging material. The study, then, proposes a temperature-dependent, high-frequency mechanical study of PDMS based on Brillouin spectroscopy to determine the evolution of the longitudinal acoustic velocity in this material, which constitutes the main mechanical parameter for the design of acoustic wave devices. The PDMS glass transition is then retrieved by differential scanning calorimetry in order to confirm the observations made by Brillouin spectroscopy. This paper validates Brillouin spectroscopy as a very suitable characterization technique for the retrieval of longitudinal mechanical properties at low temperature, as a preliminary investigation for the design of acoustic wave devices coupled with soft materials.

  19. Signal photon flux generated by high-frequency relic gravitational waves

    NASA Astrophysics Data System (ADS)

    Li, Xin; Wang, Sai; Wen, Hao

    2016-08-01

    The power spectrum of primordial tensor perturbations increases rapidly in the high frequency region if the spectral index n t > 0. It is shown that the amplitude of relic gravitational waves h t(5 × 109 Hz) varies from 10-36 to 10-25 while n t varies from -6.25 × 10-3 to 0.87. A high frequency gravitational wave detector proposed by F.-Y. Li detects gravitational waves through observing the perturbed photon flux that is generated by interaction between relic gravitational waves and electromagnetic field. It is shown that the perturbative photon flux (5 × 109 Hz) varies from 1.40 × 10-4 s-1 to 2.85 × 107 s-1 while n t varies from -6.25 × 10-3 to 0.87. Correspondingly, the ratio of the transverse perturbative photon flux to the background photon flux varies from 10-28 to 10-16. Supported by National Natural Science Foundation of China (11305181,11322545,11335012) and Open Project Program of State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, China (Y5KF181CJ1)

  20. Iridoschisis: high frequency ultrasound imaging. Evidence for a genetic defect?

    PubMed Central

    Danias, J; Aslanides, I M; Eichenbaum, J W; Silverman, R H; Reinstein, D Z; Coleman, D J

    1996-01-01

    AIMS: To elucidate changes in the anatomy of the anterior chamber associated with iridoschisis, a rare form of iris atrophy, and their potential contribution to angle closure glaucoma. METHODS: Both eyes of a 71-year-old woman with bilateral iridoschisis and fibrous dysplasia and her asymptomatic 50-year-old daughter were scanned with a very high frequency (50 MHz) ultrasound system. RESULTS: The symptomatic patient exhibited diffuse changes in the iris stoma with an intact posterior iris pigmented layer in both eyes. These changes were clinically compatible with the lack of iris transillumination defects. Additionally, iris bowing with a resultant narrowing of the angle occurred. The asymptomatic daughter showed discrete, but less severe iris stromal changes. CONCLUSION: This is the first detailed study of high frequency ultrasonic imaging of the iris in iridoschisis. The observed structural changes suggest angle narrowing by forward bowing of the anterior iris stroma may be a mechanism of IOP elevation in this condition. The ultrasonic detection of iris changes in the asymptomatic daughter of the symptomatic patient and the association of iridoschisis with fibrous dysplasia suggest a possible genetic component in the pathogenesis of this condition. Images PMID:9059271

  1. Ultra High-Speed Radio Frequency Switch Based on Photonics.

    PubMed

    Ge, Jia; Fok, Mable P

    2015-11-26

    Microwave switches, or Radio Frequency (RF) switches have been intensively used in microwave systems for signal routing. Compared with the fast development of microwave and wireless systems, RF switches have been underdeveloped particularly in terms of switching speed and operating bandwidth. In this paper, we propose a photonics based RF switch that is capable of switching at tens of picoseconds speed, which is hundreds of times faster than any existing RF switch technologies. The high-speed switching property is achieved with the use of a rapidly tunable microwave photonic filter with tens of gigahertz frequency tuning speed, where the tuning mechanism is based on the ultra-fast electro-optics Pockels effect. The RF switch has a wide operation bandwidth of 12 GHz and can go up to 40 GHz, depending on the bandwidth of the modulator used in the scheme. The proposed RF switch can either work as an ON/OFF switch or a two-channel switch, tens of picoseconds switching speed is experimentally observed for both type of switches.

  2. The Origin of High-Frequency Hearing in Whales.

    PubMed

    Churchill, Morgan; Martinez-Caceres, Manuel; de Muizon, Christian; Mnieckowski, Jessica; Geisler, Jonathan H

    2016-08-22

    Odontocetes (toothed whales) rely upon echoes of their own vocalizations to navigate and find prey underwater [1]. This sensory adaptation, known as echolocation, operates most effectively when using high frequencies, and odontocetes are rivaled only by bats in their ability to perceive ultrasonic sound greater than 100 kHz [2]. Although features indicative of ultrasonic hearing are present in the oldest known odontocetes [3], the significance of this finding is limited by the methods employed and taxa sampled. In this report, we describe a new xenorophid whale (Echovenator sandersi, gen. et sp. nov.) from the Oligocene of South Carolina that, as a member of the most basal clade of odontocetes, sheds considerable light on the evolution of ultrasonic hearing. By placing high-resolution CT data from Echovenator sandersi, 2 hippos, and 23 fossil and extant whales in a phylogenetic context, we conclude that ultrasonic hearing, albeit in a less specialized form, evolved at the base of the odontocete radiation. Contrary to the hypothesis that odontocetes evolved from low-frequency specialists [4], we find evidence that stem cetaceans, the archaeocetes, were more sensitive to high-frequency sound than their terrestrial ancestors. This indicates that selection for high-frequency hearing predates the emergence of Odontoceti and the evolution of echolocation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. High Frequency Cut-off Characteristics of Strong Ground Motion Records at Hard Sites, Subduction and Intra-Slab Earthquakes

    NASA Astrophysics Data System (ADS)

    Kagawa, T.; Tsurugi, M.; Irikura, K.

    2006-12-01

    A study on high frequency cut-off characteristics of strong ground motion is presented for subduction and intra- slab earthquakes in Japan. In the latest decade, observed records at hard sites are published by NIED, National Research Institute for Earth Science and Disaster Prevention, and JCOLD, Japan Commission on Large Dams. Especially, KiK-net and K-NET maintained by NIED have been providing high quality data to study high-frequency characteristics. Kagawa et al.(2003) studied the characteristics for crustal earthquakes. We apply the same methodology to the recently observed Japanese records due to subduction and intra-slab earthquakes. We assume a Butterworth type high-cut filter with limit frequency (fmax) and its power factor. These two parameters were derived from Fourier spectrum of observed records fitting the theoretical filter shape. After analyzing the result from view points of site, path, or source effects, an averaged filter model is proposed with its standard deviation. Kagawa et al.(2003) derived average as 8.3 Hz with power factor of 1.92. It is used for strong ground motion simulation. We will propose parameters for the high-cut filters of subduction and intra-slab earthquakes and compare them with the results by Kagawa et al.(2003). REFERENCES: Kagawa et al. (2003), 27JEES (in Japanese with English Abstract).

  4. Observed Hierarchy of Student Proficiency with Period, Frequency, and Angular Frequency

    ERIC Educational Resources Information Center

    Young, Nicholas T.; Heckler, Andrew F.

    2018-01-01

    In the context of a generic harmonic oscillator, we investigated students' accuracy in determining the period, frequency, and angular frequency from mathematical and graphical representations. In a series of studies including interviews, free response tests, and multiple-choice tests developed in an iterative process, we assessed students in both…

  5. High frequency ultrasound imaging using Fabry-Perot optical etalon

    NASA Astrophysics Data System (ADS)

    Ashkenazi, S.; Witte, R.; O'Donnell, M.

    2005-04-01

    Optical detection of ultrasound provides a unique and appealing way of forming detector arrays (1D or 2D) using either raster beam scanning or simultaneous array detection exploiting wide area illumination. Etalon based optical techniques are of particular interest, due to their relatively high sensitivity resulting from multiple optical reflections within the resonance structure. Detector arrays formed by etalon based techniques are characterized by high element density and small element active area, which enables high resolution imaging at high ultrasonic frequencies (typically 10-50 MHz). In this paper we present an application of an optical etalon structure for very high frequency ultrasound detection (exceeding 100 MHz). A thin polymer Fabry-Perot etalon (10 μm thickness) has been fabricated using spin coating of polymer photoresist on a glass substrate and gold evaporation forming partially reflecting mirrors on both faces of the polymer layer. The optical resonator formed by the etalon structure has a measured Q-factor of 300. The characteristic broadband response of the optical signal was demonstrated by insonifying the etalon using two different ultrasound transducers and recording the resulting intensity modulation of optical reflection from the etalon. A focused 10 MHz transducer was used for the low MHz frequency region, and a 50 MHz focused transducer was used for the high frequency region. The optical reflection signal was compared to the pulse/echo signal detected by the same ultrasound transducer. The measured signal to noise ratio of the optically detected signal is comparable to that of the pulse/echo signal in both low and high frequency ranges. The etalon detector was integrated in a photoacoustic imaging system. High resolution images of phantom targets and biological tissue (nerve cord) were obtained. The additional information of optical absorption obtained by photoacoustic imaging, along with the high resolution detection of the etalon

  6. Polarization Observations of Giant Radio Pulses from the Millisecond Pulsar B1937+21 at a Frequency of 600 MHz

    NASA Astrophysics Data System (ADS)

    Popov, M. V.; Soglasnov, V. A.; Kondrat'ev, V. I.; Kostyuk, S. V.

    2004-02-01

    We performed polarization observations of giant radio pulses from the millisecond pulsar B1937+21. The observations were carried out in July 2002 with the 64-m Kalyazin radio telescope at a frequency of 600 MHz in two polarization channels with left- and right-hand circular polarizations (RCP and LCP). We used the S2 data acquisition system with a time resolution of 125 ns. The duration of an observing session was 20 min. We detected twelve giant radio pulses with peak flux densities higher than 1000 Jy; five and seven of these pulses appeared in the RCP and LCP channels, respectively. We found no event that exceeded the established detection threshold simultaneously in the two polarization channels. Thus, we may conclude that the detected giant pulses have a high degree of circular polarization, with the frequency of occurrence of RCP and LCP pulses being the same.

  7. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    NASA Technical Reports Server (NTRS)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    1982-01-01

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  8. Analysis of transistor and snubber turn-off dynamics in high-frequency high-voltage high-power converters

    NASA Astrophysics Data System (ADS)

    Wilson, P. M.; Wilson, T. G.; Owen, H. A., Jr.

    Dc to dc converters which operate reliably and efficiently at switching frequencies high enough to effect substantial reductions in the size and weight of converter energy storage elements are studied. A two winding current or voltage stepup (buck boost) dc-to-dc converter power stage submodule designed to operate in the 2.5-kW range, with an input voltage range of 110 to 180 V dc, and an output voltage of 250 V dc is emphasized. In order to assess the limitations of present day component and circuit technologies, a design goal switching frequency of 10 kHz was maintained. The converter design requirements represent a unique combination of high frequency, high voltage, and high power operation. The turn off dynamics of the primary circuit power switching transistor and its associated turn off snubber circuitry are investigated.

  9. [Auditory processing and high frequency audiometry in students of São Paulo].

    PubMed

    Ramos, Cristina Silveira; Pereira, Liliane Desgualdo

    2005-01-01

    Auditory processing and auditory sensibility to high Frequency sounds. To characterize the localization processes, temporal ordering, hearing patterns and detection of high frequency sounds, looking for possible relations between these factors. 32 hearing fourth grade students, born in city of São Paulo, were submitted to: a simplified evaluation of the auditory processing; duration pattern test; high frequency audiometry. Three (9,4%) individuals presented auditory processing disorder (APD) and in one of them there was the coexistence of lower hearing thresholds in high frequency audiometry. APD associated to an auditory sensibility loss in high frequencies should be further investigated.

  10. High-frequency gamma oscillations coexist with low-frequency gamma oscillations in the rat visual cortex in vitro.

    PubMed

    Oke, Olaleke O; Magony, Andor; Anver, Himashi; Ward, Peter D; Jiruska, Premysl; Jefferys, John G R; Vreugdenhil, Martin

    2010-04-01

    Synchronization of neuronal activity in the visual cortex at low (30-70 Hz) and high gamma band frequencies (> 70 Hz) has been associated with distinct visual processes, but mechanisms underlying high-frequency gamma oscillations remain unknown. In rat visual cortex slices, kainate and carbachol induce high-frequency gamma oscillations (fast-gamma; peak frequency approximately 80 Hz at 37 degrees C) that can coexist with low-frequency gamma oscillations (slow-gamma; peak frequency approximately 50 Hz at 37 degrees C) in the same column. Current-source density analysis showed that fast-gamma was associated with rhythmic current sink-source sequences in layer III and slow-gamma with rhythmic current sink-source sequences in layer V. Fast-gamma and slow-gamma were not phase-locked. Slow-gamma power fluctuations were unrelated to fast-gamma power fluctuations, but were modulated by the phase of theta (3-8 Hz) oscillations generated in the deep layers. Fast-gamma was spatially less coherent than slow-gamma. Fast-gamma and slow-gamma were dependent on gamma-aminobutyric acid (GABA)(A) receptors, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and gap-junctions, their frequencies were reduced by thiopental and were weakly dependent on cycle amplitude. Fast-gamma and slow-gamma power were differentially modulated by thiopental and adenosine A(1) receptor blockade, and their frequencies were differentially modulated by N-methyl-D-aspartate (NMDA) receptors, GluK1 subunit-containing receptors and persistent sodium currents. Our data indicate that fast-gamma and slow-gamma both depend on and are paced by recurrent inhibition, but have distinct pharmacological modulation profiles. The independent co-existence of fast-gamma and slow-gamma allows parallel processing of distinct aspects of vision and visual perception. The visual cortex slice provides a novel in vitro model to study cortical high-frequency gamma oscillations.

  11. Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey

    NASA Astrophysics Data System (ADS)

    Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin

    2018-04-01

    Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f-v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.

  12. Frequency-Wavenumber (FK)-Based Data Selection in High-Frequency Passive Surface Wave Survey

    NASA Astrophysics Data System (ADS)

    Cheng, Feng; Xia, Jianghai; Xu, Zongbo; Hu, Yue; Mi, Binbin

    2018-07-01

    Passive surface wave methods have gained much attention from geophysical and civil engineering communities because of the limited application of traditional seismic surveys in highly populated urban areas. Considering that they can provide high-frequency phase velocity information up to several tens of Hz, the active surface wave survey would be omitted and the amount of field work could be dramatically reduced. However, the measured dispersion energy image in the passive surface wave survey would usually be polluted by a type of "crossed" artifacts at high frequencies. It is common in the bidirectional noise distribution case with a linear receiver array deployed along roads or railways. We review several frequently used passive surface wave methods and derive the underlying physics for the existence of the "crossed" artifacts. We prove that the "crossed" artifacts would cross the true surface wave energy at fixed points in the f- v domain and propose a FK-based data selection technique to attenuate the artifacts in order to retrieve the high-frequency information. Numerical tests further demonstrate the existence of the "crossed" artifacts and indicate that the well-known wave field separation method, FK filter, does not work for the selection of directional noise data. Real-world applications manifest the feasibility of the proposed FK-based technique to improve passive surface wave methods by a priori data selection. Finally, we discuss the applicability of our approach.

  13. Low and high frequency instabilities in an explosion-generated-plasma and possibility of wave triplet

    NASA Astrophysics Data System (ADS)

    Malik, O. P.; Singh, Sukhmander; Malik, Hitendra K.; Kumar, A.

    2015-01-01

    An explosion-generated-plasma is explored for low and high frequency instabilities by taking into account the drift of all the plasma species together with the dust particles which are charged. The possibility of wave triplet is also discussed based on the solution of dispersion equation and synchronism conditions. High frequency instability (HFI) and low frequency instability (LFI) are found to occur in this system. LFI grows faster with the higher concentration of dust particles, whereas its growth rate goes down if the mass of the dust is higher. The ion and electron temperatures affect its growth in opposite manner and the electron temperature causes this instability to grow. In addition to the instabilities, a simple wave is also observed to propagate, whose velocity is larger for larger wave number, smaller mass of the dust and higher ion temperature.

  14. High Resolution Frequency Measurements of Far-Infrared Laser Lines

    DTIC Science & Technology

    2010-04-01

    1 High Resolution Frequency Measurements of Far-Infrared Laser Lines Elizabeth J. Ehasz, Thomas M. Goyette, Robert H. Giles and William E. Nixon...Abstract—The frequency of four previously reported far- infrared laser lines have been measured to an accuracy of 100 kHz. These laser lines were measured ... frequencies measured here and the listed frequencies for these laser lines ranged from 59 MHz to 3.9 GHz. Index Terms—FIR Laser, Gas Laser, Molecular

  15. Skyrmion-based high-frequency signal generator

    NASA Astrophysics Data System (ADS)

    Luo, Shijiang; Zhang, Yue; Shen, Maokang; Ou-Yang, Jun; Yan, Baiqian; Yang, Xiaofei; Chen, Shi; Zhu, Benpeng; You, Long

    2017-03-01

    Many concepts for skyrmion-based devices have been proposed, and most of their possible applications are based on the motion of skyrmions driven by a dc current in an area with a constricted geometry. However, skyrmion motion driven by a pulsed current has not been investigated so far. In this work, we propose a skyrmion-based high-frequency signal generator based on the pulsed-current-driven circular motion of skyrmions in a square-shaped film by micromagnetic simulation. The results indicate that skyrmions can move in a closed curve with central symmetry. The trajectory and cycle period can be adjusted by tuning the size of the film, the current density, the Dzyaloshinskii-Moriya interaction constant, and the local in-plane magnetic anisotropy. The period can be tuned from several nanoseconds to tens of nanoseconds, which offers the possibility to prepare high-frequency signal generator based on skyrmions.

  16. High frequency estimation of 2-dimensional cavity scattering

    NASA Astrophysics Data System (ADS)

    Dering, R. S.

    1984-12-01

    This thesis develops a simple ray tracing approximation for the high frequency scattering from a two-dimensional cavity. Whereas many other cavity scattering algorithms are very time consuming, this method is very swift. The analytical development of the ray tracing approach is performed in great detail, and it is shown how the radar cross section (RCS) depends on the cavity's length and width along with the radar wave's angle of incidence. This explains why the cavity's RCS oscillates as a function of incident angle. The RCS of a two dimensional cavity was measured experimentally, and these results were compared to computer calculations based on the high frequency ray tracing theory. The comparison was favorable in the sense that angular RCS minima and maxima were exactly predicted even though accuracy of the RCS magnitude decreased for incident angles far off-axis. Overall, once this method is extended to three dimensions, the technique shows promise as a fast first approximation of high frequency cavity scattering.

  17. High Frequency Amplitude Detector for GMI Magnetic Sensors

    PubMed Central

    Asfour, Aktham; Zidi, Manel; Yonnet, Jean-Paul

    2014-01-01

    A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI) sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted. PMID:25536003

  18. High power, high frequency helix TWT's

    NASA Astrophysics Data System (ADS)

    Sloley, H. J.; Willard, J.; Paatz, S. R.; Keat, M. J.

    The design and performance characteristics of a 34-GHz pulse tube capable of 75 W peak power output at 30 percent duty cycle and a broadband CW tube are presented. Particular attention is given to the engineering problems encountered during the development of the tubes, including the suppression of backward wave oscillation, the design of electron guns for small-diameter high-current beams, and the thermal capability of small helix structures. The discussion also covers the effects of various design parameters and choice of engineering materials on the ultimate practical limit of power and gain at the operating frequencies. Measurements are presented for advanced experimental tubes.

  19. ALMA observation of high-z extreme star-forming environments discovered by Planck/Herschel

    NASA Astrophysics Data System (ADS)

    Kneissl, R.

    2015-05-01

    The Comic Microwave Background satellite Planck with its High Frequency Instrument has surveyed the mm/sub-mm sky in six frequency channels from 100 to 900 GHz. A sample of 228 cold sources of the Cosmic Infrared Background was observed in follow-up with Herschel SPIRE. The majority of sources appear to be over-densities of star-forming galaxies matching the size of high-z proto-cluster regions, while a 3% fraction are individual bright, lensed galaxies. A large observing program is underway with the aim of resolving the regions into the constituent members of the Planck sources. First ALMA data have been received on one Planck/Herschel proto-cluster candidate, showing the expected large over-abundance of bright mm/sub-mm sources within the cluster region. ALMA long baseline data of the brightest lensed galaxy in the sample with > 1 Jy at 350 μm are also forthcoming.

  20. Complex inner core boundary from frequency characteristics of the reflection coefficients of PKiKP waves observed by Hi-net

    NASA Astrophysics Data System (ADS)

    Tanaka, Satoru; Tkalčić, Hrvoje

    2015-12-01

    Frequency-dependent reflection coefficients of P waves at the inner core boundary (ICB) are estimated from the spectral ratios of PKiKP and PcP waves observed by the high-sensitivity seismograph network (Hi-net) in Japan. The corresponding PKiKP reflection locations at the ICB are distributed beneath the western Pacific. At frequencies where noise levels are sufficiently low, spectra of reflection coefficients show four distinct sets of characteristics: a flat spectrum, a spectrum with a significant spectral hole at approximately 1 or 3 Hz, a spectrum with a strong peak at approximately 2 or 3 Hz, and a spectrum containing both a sharp peak and a significant hole. The variety in observed spectra suggests complex lateral variations in ICB properties. To explain the measured differences in frequency characteristics of ICB reflection coefficients, we conduct 2D finite difference simulations of seismic wavefields near the ICB. The models tested in our simulations include a liquid layer and a solid layer above the ICB, as well as sinusoidal and spike-shaped ICB topography with varying heights and scale lengths. We find that the existence of a layer above the ICB can be excluded as a possible explanation for the observed spectra. Furthermore, we find that an ICB topographic model with wavelengths and heights of several kilometers is too extreme to explain our measurements. However, restricting the ICB topography to wavelengths and heights of 1.0-1.5 km can explain the observed frequency-related phenomena. The existence of laterally varying topography may be a sign of lateral variations in inner core solidification.

  1. Sporadic E movement followed with a pencil beam high frequency radar

    NASA Astrophysics Data System (ADS)

    From, W. R.

    1983-12-01

    Several types of sporadic E are observed using the 5.80 and 3.84-MHz Bribie Island pencil-beam high-frequency radar. Blanketing Es takes the form of large flat sheets with ripples in them. Non-blanketing Es is observed to be small clouds that drift across the field of view (40 deg). There is continuous gradation of sporadic E structure between these extremes. There are at least four different physical means by which sporadic E clouds may apparently move. It is concluded that non-blanketing sporadic E consists of separate clouds which follow the movement of the constructive interference between internal gravity waves rather than being blown by the background wind.

  2. Low-frequency waves at comet 67P/Churyumov-Gerasimenko. Observations compared to numerical simulations

    NASA Astrophysics Data System (ADS)

    Koenders, C.; Perschke, C.; Goetz, C.; Richter, I.; Motschmann, U.; Glassmeier, K. H.

    2016-10-01

    Context. A new type of low-frequency wave was detected by the magnetometer of the Rosetta Plasma Consortium at the comet during the initial months after the arrival of the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. This large-amplitude, nearly continuous wave activity is observed in the frequency range from 30 mHz to 80 mHz where 40 mHz to 50 mHz is the dominant frequency. This type of low frequency is not closely related to the gyrofrequency of newborn cometary ions, which differs from previous wave activity observed in the interaction region of comets with the solar wind. Aims: This work aims to reveal a global view on the wave activity region using simulations of the comet-solar wind interaction region. Parameters, such as wavelength, propagation direction, and propagation patterns, are within the focus of this study. While the Rosetta observations only provide local information, numerical simulations provide further information on the global wave properties. Methods: Standard hybrid simulations were applied to the comet-solar wind interaction scenario. In the model, the ions were described as particles, which allows us to describe kinetic processes of the ions. The electrons were described as a fluid. Results: The simulations exhibit a threefold wave structure of the interaction region. A Mach cone and a Whistler wing are observed downstream of the comet. The third kind of wave activity found are low-frequency waves at 97 mHz, which corresponds to the waves observed by Richter et al. (2015, Ann. Geophys., 33, 1031). These waves are caused by the initial pick-up of the cometary ions that are perpendicular to the solar wind flow and in the interplanetary magnetic field direction. The associated electric current becomes unstable. The simulations show that wave activity is only detectable in the + E hemisphere and that the Mach cone and whistler wings need to be distinguished from the newly found instability driven wave activity. The movie associated to

  3. Zero-crossing approach to high-resolution reconstruction in frequency-domain optical-coherence tomography.

    PubMed

    Krishnan, Sunder Ram; Seelamantula, Chandra Sekhar; Bouwens, Arno; Leutenegger, Marcel; Lasser, Theo

    2012-10-01

    We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction.

  4. Significant reduction in arc frequency biased solar cells: Observations, diagnostics, and mitigation technique(s)

    NASA Technical Reports Server (NTRS)

    Upschulte, B. L.; Weyl, G. M.; Marinelli, W. J.; Aifer, E.; Hastings, D.; Snyder, D.

    1991-01-01

    A variety of experiments were performed which identify key factors contributing to the arcing of negatively biased high voltage solar cells. These efforts have led to reduction of greater than a factor of 100 in the arc frequency of a single cell following proper remediation procedures. Experiments naturally lead to and focussed on the adhesive/encapsulant that is used to bond the protective cover slip to the solar cell. An image-intensified charge coupled device (CCD) camera system recorded UV emission from arc events which occurred exclusively along the interfacial edge between the cover slip and the solar cell. Microscopic inspection of this interfacial region showed a bead of encapsulant along this entire edge. Elimination of this encapsulant bead reduced the arc frequency by two orders of magnitude. Water contamination was also identified as a key contributor which enhances arcing of the encapsulant bead along the solar cell edge. Spectrally resolved measurements of the observable UV light shows a feature assignable to OH(A-X) electronic emission, which is common for water contaminated discharges. Experiments in which the solar cell temperature was raised to 85 C showed a reduced arcing frequency, suggesting desorption of H2O. Exposing the solar cell to water vapor was shown to increase the arcing frequency. Clean dry gases such as O2, N2, and Ar show no enhancement of the arcing rate. Elimination of the exposed encapsulant eliminates any measurable sensitivity to H2O vapor.

  5. Insights in Low Frequency Earthquake Source Processes from Observations of Their Size-Duration Scaling

    NASA Astrophysics Data System (ADS)

    Farge, G.; Shapiro, N.; Frank, W.; Mercury, N.; Vilotte, J. P.

    2017-12-01

    Low frequency earthquakes (LFE) are detected in association with volcanic and tectonic tremor signals as impulsive, repeated, low frequency (1-5 Hz) events originating from localized sources. While the mechanism causing this depletion of the high frequency content of their signal is still unknown, this feature may indicate that the source processes at the origin of LFE are different from those for regular earthquakes. Tectonic LFE are often associated with slip instabilities in the brittle-ductile transition zones of active faults and volcanic LFE with fluid transport in magmatic and hydrothermal systems. Key constraints on the LFE-generating physical mechanisms can be obtained by establishing scaling laws between their sizes and durations. We apply a simple spectral analysis method to the S-waveforms of each LFE to retrieve its seismic moment and corner frequency. The former characterizes the earthquake's size while the latter is inversely proportional to its duration. First, we analyze a selection of tectonic LFE from the Mexican "Sweet Spot" (Guerrero, Mexico). We find characteristic values of M ˜ 1013 N.m (Mw ˜ 2.6) and fc ˜ 2 Hz. The moment-corner frequency distribution compared to values reported in previous studies in tectonic contexts is consistent with the scaling law suggested by Bostock et al. (2015): fc ˜ M-1/10 . We then apply the same source- parameters determination method to deep volcanic LFE detected in the Klyuchevskoy volcanic group in Kamtchatka, Russia. While the seismic moments for these earthquakes are slightly smaller, they still approximately follow the fc ˜ M-1/10 scaling. This size-duration scaling observed for LFE is very different from the one established for regular earthquakes (fc ˜ M-1/3) and from the scaling more recently suggested by Ide et al. (2007) for the broad class of "slow earthquakes". The scaling observed for LFE suggests that they are generated by sources of nearly constant size with strongly varying intensities

  6. High-Frequency Response and Voltage Noise in Magnetic Nanocomposites

    NASA Astrophysics Data System (ADS)

    Buznikov, N. A.; Iakubov, I. T.; Rakhmanov, A. L.; Kugel, K. I.; Sboychakov, A. O.

    We study the noise spectra and high-frequency permeability of inhomogeneous magnetic materials consisting of single-domain magnetic nanoparticles embedded into an insulating matrix. Possible mechanisms of 1/f voltage noise in phase-separated manganites is analyzed. The material is modelled by a system of small ferromagnetic metallic droplets (magnetic polarons or ferrons) in insulating antiferromagnetic or paramagnetic matrix. The electron transport is related to tunnelling of charge carriers between droplets. One of the sources of the 1/f noise in such a system stems from fluctuations of the number of droplets with extra electron. In the case of strong magnetic anisotropy, the 1/f noise can arise also due to the fluctuations of the magnetic moments of ferrons. The high frequency magnetic permeability of nanocomposite film with magnetic particles in insulating non-magnetic matrix is studied in detail. The case of strong magnetic dipole interaction and strong magnetic anisotropy of ferromagnetic granules is considered. The composite is modelled by a cubic regular array of ferromagnetic particles. The high-frequency permeability tensor components are found as a functions of frequency, temperature, ferromagnetic phase content, and magnetic anisotropy. The results demonstrate that magnetic dipole interaction leads to a shift of the resonance frequencies towards higher values, and nanocomposite film could have rather high value of magnetic permeability in the microwave range.

  7. High-Frequency Response and Voltage Noise in Magnetic Nanocomposites

    NASA Astrophysics Data System (ADS)

    Buznikov, N. A.; Iakubov, I. T.; Rakhmanov, A. L.; Kugel, K. I.; Sboychakov, A. O.

    2010-12-01

    We study the noise spectra and high-frequency permeability of inhomogeneous magnetic materials consisting of single-domain magnetic nanoparticles embedded into an insulating matrix. Possible mechanisms of 1/f voltage noise in phase-separated manganites is analyzed. The material is modelled by a system of small ferromagnetic metallic droplets (magnetic polarons or ferrons) in insulating antiferromagnetic or paramagnetic matrix. The electron transport is related to tunnelling of charge carriers between droplets. One of the sources of the 1/f noise in such a system stems from fluctuations of the number of droplets with extra electron. In the case of strong magnetic anisotropy, the 1/f noise can arise also due to the fluctuations of the magnetic moments of ferrons. The high frequency magnetic permeability of nanocomposite film with magnetic particles in insulating non-magnetic matrix is studied in detail. The case of strong magnetic dipole interaction and strong magnetic anisotropy of ferromagnetic granules is considered. The composite is modelled by a cubic regular array of ferromagnetic particles. The high-frequency permeability tensor components are found as a functions of frequency, temperature, ferromagnetic phase content, and magnetic anisotropy. The results demonstrate that magnetic dipole interaction leads to a shift of the resonance frequencies towards higher values, and nanocomposite film could have rather high value of magnetic permeability in the microwave range.

  8. Edge-Oriented Graphene on Carbon Nanofiber for High-Frequency Supercapacitors

    NASA Astrophysics Data System (ADS)

    Islam, Nazifah; Warzywoda, Juliusz; Fan, Zhaoyang

    2018-03-01

    High-frequency supercapacitors are being studied with the aim to replace the bulky electrolytic capacitors for current ripple filtering and other functions used in power systems. Here, 3D edge-oriented graphene (EOG) was grown encircling carbon nanofiber (CNF) framework to form a highly conductive electrode with a large surface area. Such EOG/CNF electrodes were tested in aqueous and organic electrolytes for high-frequency supercapacitor development. For the aqueous and the organic cell, the characteristic frequency at - 45° phase angle was found to be as high as 22 and 8.5 kHz, respectively. At 120 Hz, the electrode capacitance density was 0.37 and 0.16 mF cm-2 for the two cells. In particular, the 3 V high-frequency organic cell was successfully tested as filtering capacitor used in AC/DC converter, suggesting the promising potential of this technology for compact power supply design and other applications. [Figure not available: see fulltext.

  9. Observing exoplanet populations with high-precision astrometry

    NASA Astrophysics Data System (ADS)

    Sahlmann, Johannes

    2012-06-01

    This thesis deals with the application of the astrometry technique, consisting in measuring the position of a star in the plane of the sky, for the discovery and characterisation of extra-solar planets. It is feasible only with a very high measurement precision, which motivates the use of space observatories, the development of new ground-based astronomical instrumentation and of innovative data analysis methods: The study of Sun-like stars with substellar companions using CORALIE radial velocities and HIPPARCOS astrometry leads to the determination of the frequency of close brown dwarf companions and to the discovery of a dividing line between massive planets and brown dwarf companions; An observation campaign employing optical imaging with a very large telescope demonstrates sufficient astrometric precision to detect planets around ultra-cool dwarf stars and the first results of the survey are presented; Finally, the design and initial astrometric performance of PRIMA, ! a new dual-feed near-infrared interferometric observing facility for relative astrometry is presented.

  10. A resonance phenomenon observed in a swept frequency experiment on a mother-daughter ionospheric rocket

    NASA Technical Reports Server (NTRS)

    Folkestad, K.; Troim, J.

    1974-01-01

    The report presents observations obtained in a swept frequency experiment conducted in a mother-daughter rocket flight at auroral latitudes. The discussion is essentially restricted to the possible interpretation of the experimental signal structures noted at and in the vicinity of a resonance frequency where signal components apparently are generated by nonlinear mechanisms. Various resonance frequencies have been considered in attempts to identify this multichannel response frequency. It is concluded that of all the possibilities invoked, the best consistency is provided by identifying the frequency concerned with the cone resonance frequency demonstrated experimentally in the case of a laboratory plasma by Fisher and Gould (1971).

  11. Electrically tunable transport and high-frequency dynamics in antiferromagnetic S r3I r2O7

    NASA Astrophysics Data System (ADS)

    Seinige, Heidi; Williamson, Morgan; Shen, Shida; Wang, Cheng; Cao, Gang; Zhou, Jianshi; Goodenough, John B.; Tsoi, Maxim

    2016-12-01

    We report dc and high-frequency transport properties of antiferromagnetic S r3I r2O7 . Temperature-dependent resistivity measurements show that the activation energy of this material can be tuned by an applied dc electrical bias. The latter allows for continuous variations in the sample resistivity of as much as 50% followed by a reversible resistive switching at higher biases. Such a switching is of high interest for antiferromagnetic applications in high-speed memory devices. Interestingly, we found the switching behavior to be strongly affected by a high-frequency (microwave) current applied to the sample. The microwaves at 3-7 GHz suppress the dc switching and produce resonancelike features that we tentatively associated with the dissipationless magnonics recently predicted to occur in antiferromagnetic insulators subject to ac electric fields. We have characterized the effects of microwave irradiation on electronic transport in S r3I r2O7 as a function of microwave frequency and power, strength and direction of external magnetic field, strength and polarity of applied dc bias, and temperature. Our observations support the potential of antiferromagnetic materials for high-speed/high-frequency spintronic applications.

  12. Vibro-Shock Dynamics Analysis of a Tandem Low Frequency Resonator-High Frequency Piezoelectric Energy Harvester.

    PubMed

    Žižys, Darius; Gaidys, Rimvydas; Ostaševičius, Vytautas; Narijauskaitė, Birutė

    2017-04-27

    Frequency up-conversion is a promising technique for energy harvesting in low frequency environments. In this approach, abundantly available environmental motion energy is absorbed by a Low Frequency Resonator (LFR) which transfers it to a high frequency Piezoelectric Vibration Energy Harvester (PVEH) via impact or magnetic coupling. As a result, a decaying alternating output signal is produced, that can later be collected using a battery or be transferred directly to the electric load. The paper reports an impact-coupled frequency up-converting tandem setup with different LFR to PVEH natural frequency ratios and varying contact point location along the length of the harvester. RMS power output of different frequency up-converting tandems with optimal resistive values was found from the transient analysis revealing a strong relation between power output and LFR-PVEH natural frequency ratio as well as impact point location. Simulations revealed that higher power output is obtained from a higher natural frequency ratio between LFR and PVEH, an increase of power output by one order of magnitude for a doubled natural frequency ratio and up to 150% difference in power output from different impact point locations. The theoretical results were experimentally verified.

  13. High-speed pulsed mixing in a short distance with high-frequency switching of pumping from three inlets

    NASA Astrophysics Data System (ADS)

    Sugano, K.; Nakata, A.; Tsuchiya, T.; Tabata, O.

    2015-08-01

    In this study, we propose a mixing method using alternate pulsed flows from three inlets with flow direction control. In conventional pulsed mixing, a residual flow near the sidewalls inhibits the rapid mixing of two solutions at high switching frequency. In this study, we addressed this issue in order to perform rapid mixing in a short distance with a low Reynolds number. We fabricated a microfluidic mixing device consisting of a cross-shaped mixing channel with three inlet microchannels and three valveless micropumps. In conventional T-shaped or Y-shaped mixing channels, a residual flow is observed because of the incomplete switching of solutions. The three inlet configuration enabled us to split the residual flow at a switching frequency of pumping of up to 200 Hz, thus resulting in rapid mixing. Furthermore, by controlling the flow direction at the confluent area using the reverse flow of the micropump, the mixing speed was dramatically increased because of the complete switching of the two solutions. As a result, we achieved the mixing time of 3.6 ms and the mixing length of 20.7 µm, which were necessary to achieve a 90% mixing ratio at a high micropump switching frequency of 400 Hz and reverse flow ratio of 1/4.

  14. Proposed Ultra-High Sensitivity High-Frequency Gravitational Wave Detector

    NASA Astrophysics Data System (ADS)

    Baker, Robert M. L.; Stephenson, Gary V.; Li, Fangyu

    2008-01-01

    The paper discusses the proposed improvement of a High-Frequency Relic Gravitational Wave (HFRGW) detector designed by Li, Baker, Fang, Stephenson and Chen in order to greatly improve its sensitivity. The improved detector is inspired by the Laser Interferometer Gravitational Observatory or LIGO, but is sensitive to the high-frequency end of the gravitational-wave spectrum. As described in prior papers it utilizes the Gertsenshtein effect, which introduces the conversion of gravitational waves to electromagnetic (EM) waves in the presence of a static magnetic field. Such a conversion, if it leads to photons moving in a direction perpendicular to the plane of the EM waves and the magnetic field, will allow for ultra-high sensitivity HFRGW detection. The use of sensitive microwave, single photon detectors such as a circuit QED and/or the Rydberg Atom Cavity Detector, or off-the-shelf detectors, could lead to such detection. When the EM-detection photons are focused at the microwave detectors by fractal-membrane reflectors sensitivity is also improved. Noise sources external to the HFRGW detector will be eliminated by placing a tight mosaic of superconducting tiles (e.g., YBCO) and/or fractal membranes on the interior surface of the detector's cryogenic containment vessel in order to provide a perfect Faraday cage. Internal thermal noise will be eliminated by means of a microwave absorbing (or reflecting) interior enclosure shaped to conform to a high-intensity continuous microwave Gaussian beam (GB), will reduce any background photon flux (BPF) noise radiated normal to the GB's axis. Such BPF will be further attenuated by a series of microwave absorbing baffles forming tunnels to the sensitive microwave detectors on each side of the GB and at right angles to the static magnetic field. A HFGW detector of bandwidth of 1 KHz to 10 KHz or less in the GHz band has been selected. It is concluded that the utilization of the new ultra-high-sensitivity microwave detectors

  15. Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in Open and Forested Habitat

    PubMed Central

    de Weerd, Nelleke; van Langevelde, Frank; van Oeveren, Herman; Nolet, Bart A.; Kölzsch, Andrea; Prins, Herbert H. T.; de Boer, W. Fred

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data. We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable classification method to infer behaviour from location data. Behavioural observations were carried out during tracking of cows (Bos Taurus) fitted with high-frequency GPS (Global Positioning System) receivers. Data were obtained in an open field and forested area, and movement metrics were calculated for 1 min, 12 s and 2 s intervals. We observed four behaviour types (Foraging, Lying, Standing and Walking). We subsequently used Classification and Regression Trees to classify the simultaneously obtained GPS data as these behaviour types, based on distances and turning angles between fixes. GPS data with a 1 min interval from the open field was classified correctly for more than 70% of the samples. Data from the 12 s and 2 s interval could not be classified successfully, emphasizing that the interval should be long enough for the behaviour to be defined by its characteristic movement metrics. Data obtained in the forested area were classified with a lower accuracy (57%) than the data from the open field, due to a larger positional error of GPS locations and differences in behavioural performance influenced by the habitat type. This demonstrates the importance of understanding the relationship between behaviour and movement metrics, derived from GNSS fixes at different frequencies and in different habitats, in order to successfully infer behaviour. When spatially accurate location data can be obtained, behaviour can be inferred from high-frequency GNSS fixes by calculating simple movement metrics and using easily interpretable decision trees. This allows for the combined study of animal behaviour and habitat use based on location data, and might make it possible to detect deviations

  16. Deriving Animal Behaviour from High-Frequency GPS: Tracking Cows in Open and Forested Habitat.

    PubMed

    de Weerd, Nelleke; van Langevelde, Frank; van Oeveren, Herman; Nolet, Bart A; Kölzsch, Andrea; Prins, Herbert H T; de Boer, W Fred

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data. We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable classification method to infer behaviour from location data. Behavioural observations were carried out during tracking of cows (Bos Taurus) fitted with high-frequency GPS (Global Positioning System) receivers. Data were obtained in an open field and forested area, and movement metrics were calculated for 1 min, 12 s and 2 s intervals. We observed four behaviour types (Foraging, Lying, Standing and Walking). We subsequently used Classification and Regression Trees to classify the simultaneously obtained GPS data as these behaviour types, based on distances and turning angles between fixes. GPS data with a 1 min interval from the open field was classified correctly for more than 70% of the samples. Data from the 12 s and 2 s interval could not be classified successfully, emphasizing that the interval should be long enough for the behaviour to be defined by its characteristic movement metrics. Data obtained in the forested area were classified with a lower accuracy (57%) than the data from the open field, due to a larger positional error of GPS locations and differences in behavioural performance influenced by the habitat type. This demonstrates the importance of understanding the relationship between behaviour and movement metrics, derived from GNSS fixes at different frequencies and in different habitats, in order to successfully infer behaviour. When spatially accurate location data can be obtained, behaviour can be inferred from high-frequency GNSS fixes by calculating simple movement metrics and using easily interpretable decision trees. This allows for the combined study of animal behaviour and habitat use based on location data, and might make it possible to detect deviations

  17. High dietary antioxidant intakes are associated with decreased chromosome translocation frequency in airline pilots.

    PubMed

    Yong, Lee C; Petersen, Martin R; Sigurdson, Alice J; Sampson, Laura A; Ward, Elizabeth M

    2009-11-01

    Dietary antioxidants may protect against DNA damage induced by endogenous and exogenous sources, including ionizing radiation (IR), but data from IR-exposed human populations are limited. The objective was to examine the association between the frequency of chromosome translocations, as a biomarker of cumulative DNA damage, and intakes of vitamins C and E and carotenoids in 82 male airline pilots. Dietary intakes were estimated by using a self-administered semiquantitative food-frequency questionnaire. Translocations were scored by using fluorescence in situ hybridization with whole chromosome paints. Negative binomial regression was used to estimate rate ratios and 95% CIs, adjusted for potential confounders. Significant and inverse associations were observed between translocation frequency and intakes of vitamin C, beta-carotene, beta-cryptoxanthin, and lutein-zeaxanthin from food (P < 0.05). Translocation frequency was not associated with the intake of vitamin E, alpha-carotene, or lycopene from food; total vitamin C or E from food and supplements; or vitamin C or E or multivitamin supplements. The adjusted rate ratios (95% CI) for > or =median compared with high-vitamin C fruit and vegetables, citrus fruit, and green leafy vegetables were 0.61 (0.43, 0.86), 0.64 (0.46, 0.89), and 0.59 (0.43, 0.81), respectively. The strongest inverse association was observed for > or =median compared with High combined intakes of vitamins C and E, beta-carotene, beta-cryptoxanthin, and lutein-zeaxanthin from food, or a diet high in their food sources, may protect against cumulative DNA damage in IR-exposed persons.

  18. Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers.

    PubMed

    Hu, Chang-Hong; Xu, Xiao-Chen; Cannata, Jonathan M; Yen, Jesse T; Shung, K Kirk

    2006-02-01

    A real-time digital beamformer for high-frequency (>20 MHz) linear ultrasonic arrays has been developed. The system can handle up to 64-element linear array transducers and excite 16 channels and receive simultaneously at 100 MHz sampling frequency with 8-bit precision. Radio frequency (RF) signals are digitized, delayed, and summed through a real-time digital beamformer, which is implemented using a field programmable gate array (FPGA). Using fractional delay filters, fine delays as small as 2 ns can be implemented. A frame rate of 30 frames per second is achieved. Wire phantom (20 microm tungsten) images were obtained and -6 dB axial and lateral widths were measured. The results showed that, using a 30 MHz, 48-element array with a pitch of 100 microm produced a -6 dB width of 68 microm in the axial and 370 microm in the lateral direction at 6.4 mm range. Images from an excised rabbit eye sample also were acquired, and fine anatomical structures, such as the cornea and lens, were resolved.

  19. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  20. High-energy and ultra-wideband tunable terahertz source with DAST crystal via difference frequency generation

    NASA Astrophysics Data System (ADS)

    He, Yixin; Wang, Yuye; Xu, Degang; Nie, Meitong; Yan, Chao; Tang, Longhuang; Shi, Jia; Feng, Jiachen; Yan, Dexian; Liu, Hongxiang; Teng, Bing; Feng, Hua; Yao, Jianquan

    2018-01-01

    We have demonstrated a high-energy and broadly tunable monochromatic terahertz (THz) source based on difference frequency generation (DFG) in DAST crystal. A high-energy dual-wavelength optical parametric oscillator with two KTP crystals was constructed as a light source for DFG, where the effect of blue light was first observed accompanying with tunable dual-wavelength pump light due to different nonlinear processes. The THz frequency was tuned randomly in the range of 0.3-19.6 THz. The highest energy of 870 nJ/pulse was obtained at 18.9 THz under the intense pump intensity of 247 MW/cm2. The THz energy dips above 3 THz have been analyzed and mainly attributed to the resonance absorption induced by lattice vibration in DAST crystal. The dependence of THz output on the input energy was studied experimentally, and THz output saturation was observed. Furthermore, tests of transmission spectroscopy of four typical samples were demonstrated with this ultra-wideband THz source.

  1. High Frequency Chandler Wobble Excitation

    NASA Astrophysics Data System (ADS)

    Seitz, F.; Stuck, J.; Thomas, M.

    2003-04-01

    Variations of Earth rotation on sub-daily to secular timescales are caused by mass redistributions in the Earth system as a consequence of geophysical processes and gravitational influences. Forced oscillations of polar motion are superposed by free oscillations of the Earth, i.e. the Chandler wobble and the free core nutation. In order to study the interactions between externally induced polar motion and the Earth's free oscillations, a non-linear gyroscopic model has been developed. In most of the former investigations on polar motion, the Chandler wobble is introduced as a damped oscillation with predetermined frequency and amplitude. However, as the effect of rotational deformation is a backcoupling mechanism of polar motion on the Earth's rotational dynamics, both period and amplitude of the Chandler wobble are time-dependent when regarding additional excitations from, e.g., atmospheric or oceanic mass redistributions. The gyroscopic model is free of any explicit information concerning amplitude, phase, and period of free oscillations. The characteristics of the Earth's free oscillation is reproduced by the model from rheological and geometrical parameters and rotational deformation is taken into account. This enables to study the time variable Chandler oscillation when the gyro is forced with atmospheric and oceanic angular momentum from the global atmospheric ECHAM3-T21 general circulation model together with the ocean model for circulation and tides OMCT driven by ECHAM including surface pressure. Besides, mass redistributions in the Earth's body due to gravitational and loading deformations are regarded and external torques exerted by Moon and Sun are considered. The numerical results of the gyro are significantly related with the geodetically observed time series of polar motion published by the IERS. It is shown that the consistent excitation is capable to counteract the damping and thus to maintain the Chandler amplitude. Spectral analyses of the ECHAM

  2. High Frequency Acoustic Reflection and Transmission in Ocean Sediments

    DTIC Science & Technology

    2006-09-30

    06-1-0766 http://www.arlut.utexas.edu LONG-TERM GOALS Development of a physical model of high-frequency acoustic interaction with the...shallow water. OBJECTIVES 1) A comparative study of acoustic sediment interaction models including visco-elastic, Biot, BICSQS, and grain...experimental measurements of the bistatic return, for the purpose of defining the best physical model of high-frequency acoustic interaction with the ocean

  3. Continuous High Frequency Activity: A peculiar SEEG pattern related to specific brain regions

    PubMed Central

    Melani, Federico; Zelmann, Rina; Mari, Francesco; Gotman, Jean

    2015-01-01

    Objective While visually marking the high frequency oscillations in the stereo-EEG of epileptic patients, we observed a continuous/semicontinuous activity in the ripple band (80–250 Hz), which we defined continuous High Frequency Activity (HFA). We aim to analyze in all brain regions the occurrence and significance of this particular pattern. Methods Twenty patients implanted in mesial temporal and neocortical areas were studied. One minute of slow-wave sleep was reviewed. The background was classified as continuous/semicontinuous, irregular, or sporadic based on the duration of the fast oscillations. Each channel was classified as inside/outside the seizure onset zone (SOZ) or a lesion. Results The continuous/semicontinuous HFA occurred in 54 of the 790 channels analyzed, with a clearly higher prevalence in hippocampus and occipital lobe. No correlation was found with the SOZ or lesions. In the occipital lobe the continuous/semicontinuous HFA was present independently of whether eyes were open or closed. Conclusions We describe what appears to be a new physiological High Frequency Activity, independent of epileptogenicity, present almost exclusively in the hippocampus and occipital cortex but independent of the alpha rhythm. Significance The continuous HFA may be an intrinsic characteristic of specific brain regions, reflecting a particular type of physiological neuronal activity. PMID:23768436

  4. Novel high-frequency, high-power, pulsed oscillator based on a transmission line transformer.

    PubMed

    Burdt, R; Curry, R D

    2007-07-01

    Recent analysis and experiments have demonstrated the potential for transmission line transformers to be employed as compact, high-frequency, high-power, pulsed oscillators with variable rise time, high output impedance, and high operating efficiency. A prototype system was fabricated and tested that generates a damped sinusoidal wave form at a center frequency of 4 MHz into a 200 Omega load, with operating efficiency above 90% and peak power on the order of 10 MW. The initial rise time of the pulse is variable and two experiments were conducted to demonstrate initial rise times of 12 and 3 ns, corresponding to a spectral content from 4-30 and from 4-100 MHz, respectively. A SPICE model has been developed to accurately predict the circuit behavior and scaling laws have been identified to allow for circuit design at higher frequencies and higher peak power. The applications, circuit analysis, test stand, experimental results, circuit modeling, and design of future systems are all discussed.

  5. Design of matching layers for high-frequency ultrasonic transducers

    PubMed Central

    Fei, Chunlong; Ma, Jianguo; Chiu, Chi Tat; Williams, Jay A.; Fong, Wayne; Chen, Zeyu; Zhu, BenPeng; Xiong, Rui; Shi, Jing; Hsiai, Tzung K.; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its −6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers. PMID:26445518

  6. High-frequency high-voltage high-power DC-to-DC converters

    NASA Technical Reports Server (NTRS)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-01-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  7. High-frequency high-voltage high-power DC-to-DC converters

    NASA Astrophysics Data System (ADS)

    Wilson, T. G.; Owen, H. A.; Wilson, P. M.

    1982-09-01

    A simple analysis of the current and voltage waveshapes associated with the power transistor and the power diode in an example current-or-voltage step-up (buck-boost) converter is presented. The purpose of the analysis is to provide an overview of the problems and design trade-offs which must be addressed as high-power high-voltage converters are operated at switching frequencies in the range of 100 kHz and beyond. Although the analysis focuses on the current-or-voltage step-up converter as the vehicle for discussion, the basic principles presented are applicable to other converter topologies as well.

  8. Competition between Langmuir and upper-hybrid turbulence in a high-frequency-pumped ionosphere.

    PubMed

    Thidé, B; Sergeev, E N; Grach, S M; Leyser, T B; Carozzi, T D

    2005-12-16

    We show how the secondary escaping radiation, also known as stimulated electromagnetic emission (SEE), from the ionosphere irradiated by a high-intensity radio beam, can be used to study both reflection altitude ponderomotive parametric instabilities and upper-hybrid altitude thermal parametric instabilities. This has allowed us to observe the transfer of energy from smaller to higher sideband frequency offsets and to identify a new transient SEE feature.

  9. Sustainable limitation of high-frequency oscillations of elevator cabin

    NASA Astrophysics Data System (ADS)

    Kaytukov, Batraz

    2017-10-01

    In this paper, a problem of sustainable limitation of vertical high-frequency oscillations of elevator cabin in buildings with various number of storeys is considered. To solve this problem, dynamic model of the elevator movement was developed. In the course of analytical and experimental studies, the main cause for emergence of undesirable high-frequency oscillations of a cabin was defined. The amplification factor which is the function of λ and length of cable was determined. The λ parameter is variable, and length of the cable changes depending on length passed by the cabin and is an amplification factor argument. For sustainable limitation of oscillations, use of dynamic dumper of lever type is proposed. Adjustment of the dumper natural vibration frequency in such a way that it is equal to the excitation frequency allows limiting of oscillations of the cabin and the elevator machine to reasonable value irrespective to position of a moving cabin in the shaft. Using dependences and plots which were obtained in the course of scientific analysis and experimental studies, reasonability of dumper application for sustainable limitation of high-frequency influence of the elevator machine on the base and obtaining of solutions of inertial forces equilibration problem was proved.

  10. Twin peak high-frequency quasi-periodic oscillations as a spectral imprint of dual oscillation modes of accretion tori

    NASA Astrophysics Data System (ADS)

    Bakala, P.; Goluchová, K.; Török, G.; Šrámková, E.; Abramowicz, M. A.; Vincent, F. H.; Mazur, G. P.

    2015-09-01

    Context. High-frequency (millisecond) quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra of several microquasars and low-mass X-ray binaries. Two distinct QPO peaks, so-called twin peak QPOs, are often detected simultaneously exhibiting their frequency ratio close or equal to 3:2. A widely discussed class of proposed QPOs models is based on oscillations of accretion toroidal structures orbiting in the close vicinity of black holes or neutron stars. Aims: Following the analytic theory and previous studies of observable spectral signatures, we aim to model the twin peak QPOs as a spectral imprint of specific dual oscillation regime defined by a combination of the lowest radial and vertical oscillation mode of slender tori. We consider the model of an optically thick slender accretion torus with constant specific angular momentum. We examined power spectra and fluorescent Kα iron line profiles for two different simulation setups with the mode frequency relations corresponding to the epicyclic resonance HF QPOs model and modified relativistic precession QPOs model. Methods: We used relativistic ray-tracing implemented in the parallel simulation code LSDplus. In the background of the Kerr spacetime geometry, we analyzed the influence of the distant observer inclination and the spin of the central compact object. Relativistic optical projection of the oscillating slender torus is illustrated by images in false colours related to the frequency shift. Results: We show that performed simulations yield power spectra with the pair of dominant peaks that correspond to the frequencies of radial and vertical oscillation modes and with the peak frequency ratio equal to the proper value 3:2 on a wide range of inclinations and spin values. We also discuss exceptional cases of a very low and very high inclination, as well as unstable high spin relativistic precession-like configurations that predict a constant frequency ratio equal to 1:2. We

  11. Overview of the Advanced High Frequency Branch

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation provides an overview of the competencies, selected areas of research and technology development activities, and current external collaborative efforts of the NASA Glenn Research Center's Advanced High Frequency Branch.

  12. Mid- to high-frequency noise from high-speed boats and its potential impacts on humpback dolphins.

    PubMed

    Li, Songhai; Wu, Haiping; Xu, Youhou; Peng, Chongwei; Fang, Liang; Lin, Mingli; Xing, Luru; Zhang, Peijun

    2015-08-01

    The impact of noise made by vessels on marine animals has come under increased concern. However, most measurements on noise from vessels have only taken into account the low-frequency components. For cetaceans operating in the mid- and high-frequencies, such as the Indo-Pacific humpback dolphin (Sousa chinensis), mid- to high-frequency noise components may be of more concern, in terms of their potential impacts. In this study, noise made by a small high-speed boat was recorded using a broadband recording system in a dolphin watching area focusing on the effects on humpback dolphins in Sanniang Bay, China. The high-speed boat produced substantial mid- to high-frequency noise components with frequencies to >100 kHz, measured at three speeds: ∼40, 30, and 15 km/h. The noise from the boat raised the ambient noise levels from ∼5 to 47 decibels (dB) root-mean-square (rms) across frequency bands ranging from 1 to 125 kHz at a distance of 20 to 85 m, with louder levels recorded at higher speeds and at closer distances. To conclude, the noise produced by the small high-speed boat could be heard by Sousa chinensis and therefore potentially had adverse effects on the dolphins.

  13. High-frequency tone burst-evoked ABR latency-intensity functions.

    PubMed

    Fausti, S A; Olson, D J; Frey, R H; Henry, J A; Schaffer, H I

    1993-01-01

    High-frequency tone burst stimuli (8, 10, 12, and 14 kHz) have been developed and demonstrated to provide reliable and valid auditory brainstem responses (ABRs) in normal-hearing subjects. In this study, latency-intensity functions (LIFs) were determined using these stimuli in 14 normal-hearing individuals. Significant shifts in response latency occurred as a function of stimulus intensity for all tone burst frequencies. For each 10 dB shift in intensity, latency shifts for waves I and V were statistically significant except for one isolated instance. LIF slopes were comparable between frequencies, ranging from 0.020 to 0.030 msec/dB. These normal LIFs for high-frequency tone burst-evoked ABRs suggest the degree of response latency change that might be expected from, for example, progressive hearing loss due to ototoxic insult, although these phenomena may not be directly related.

  14. Multi-arm spectrometer for parallel frequency analysis of radio-wave signals oriented to astronomical observations

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Alexandre S.; Chavez Dagostino, Miguel; Arellanes, Adan Omar; Tepichin Rodriguez, Eduardo

    2017-08-01

    We describe a potential prototype of modern spectrometer based on acousto-optical technique with three parallel optical arms for analysis of radio-wave signals specific to astronomical observations. Each optical arm exhibits original performances to provide parallel multi-band observations with different scales simultaneously. Similar multi-band instrument is able to realize measurements within various scenarios from planetary atmospheres to attractive objects in the distant Universe. The arrangement under development has two novelties. First, each optical arm represents an individual spectrum analyzer with its individual performances. Such an approach is conditioned by exploiting various materials for acousto-optical cells operating within various regimes, frequency ranges, and light wavelengths from independent light sources. Individually produced beam shapers give both the needed incident light polarization and the required apodization for light beam to increase the dynamic range of the system as a whole. After parallel acousto-optical processing, a few data flows from these optical arms are united by the joint CCD matrix on the stage of the combined extremely high-bit rate electronic data processing that provides the system performances as well. The other novelty consists in the usage of various materials for designing wide-aperture acousto-optical cells exhibiting the best performances within each of optical arms. Here, one can mention specifically selected cuts of tellurium dioxide, bastron, and lithium niobate, which overlap selected areas within the frequency range from 40 MHz to 2.0 GHz. Thus one yields the united versatile instrument for comprehensive studies of astronomical objects simultaneously with precise synchronization in various frequency ranges.

  15. Nanohertz frequency determination for the gravity probe B high frequency superconducting quantum interference device signal.

    PubMed

    Salomon, M; Conklin, J W; Kozaczuk, J; Berberian, J E; Keiser, G M; Silbergleit, A S; Worden, P; Santiago, D I

    2011-12-01

    In this paper, we present a method to measure the frequency and the frequency change rate of a digital signal. This method consists of three consecutive algorithms: frequency interpolation, phase differencing, and a third algorithm specifically designed and tested by the authors. The succession of these three algorithms allowed a 5 parts in 10(10) resolution in frequency determination. The algorithm developed by the authors can be applied to a sampled scalar signal such that a model linking the harmonics of its main frequency to the underlying physical phenomenon is available. This method was developed in the framework of the gravity probe B (GP-B) mission. It was applied to the high frequency (HF) component of GP-B's superconducting quantum interference device signal, whose main frequency f(z) is close to the spin frequency of the gyroscopes used in the experiment. A 30 nHz resolution in signal frequency and a 0.1 pHz/s resolution in its decay rate were achieved out of a succession of 1.86 s-long stretches of signal sampled at 2200 Hz. This paper describes the underlying theory of the frequency measurement method as well as its application to GP-B's HF science signal.

  16. Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results (Part I): Earths Radiation Budget

    NASA Technical Reports Server (NTRS)

    Holdaway, Daniel; Yang, Yuekui

    2016-01-01

    Satellites always sample the Earth-atmosphere system in a finite temporal resolution. This study investigates the effect of sampling frequency on the satellite-derived Earth radiation budget, with the Deep Space Climate Observatory (DSCOVR) as an example. The output from NASA's Goddard Earth Observing System Version 5 (GEOS-5) Nature Run is used as the truth. The Nature Run is a high spatial and temporal resolution atmospheric simulation spanning a two-year period. The effect of temporal resolution on potential DSCOVR observations is assessed by sampling the full Nature Run data with 1-h to 24-h frequencies. The uncertainty associated with a given sampling frequency is measured by computing means over daily, monthly, seasonal and annual intervals and determining the spread across different possible starting points. The skill with which a particular sampling frequency captures the structure of the full time series is measured using correlations and normalized errors. Results show that higher sampling frequency gives more information and less uncertainty in the derived radiation budget. A sampling frequency coarser than every 4 h results in significant error. Correlations between true and sampled time series also decrease more rapidly for a sampling frequency less than 4 h.

  17. A model for studying the energetics of sustained high frequency firing

    PubMed Central

    Morris, Catherine E.

    2018-01-01

    Regulating membrane potential and synaptic function contributes significantly to the energetic costs of brain signaling, but the relative costs of action potentials (APs) and synaptic transmission during high-frequency firing are unknown. The continuous high-frequency (200-600Hz) electric organ discharge (EOD) of Eigenmannia, a weakly electric fish, underlies its electrosensing and communication. EODs reflect APs fired by the muscle-derived electrocytes of the electric organ (EO). Cholinergic synapses at the excitable posterior membranes of the elongated electrocytes control AP frequency. Based on whole-fish O2 consumption, ATP demand per EOD-linked AP increases exponentially with AP frequency. Continual EOD-AP generation implies first, that ion homeostatic processes reliably counteract any dissipation of posterior membrane ENa and EK and second that high frequency synaptic activation is reliably supported. Both of these processes require energy. To facilitate an exploration of the expected energy demands of each, we modify a previous excitability model and include synaptic currents able to drive APs at frequencies as high as 600 Hz. Synaptic stimuli are modeled as pulsatile cation conductance changes, with or without a small (sustained) background conductance. Over the full species range of EOD frequencies (200–600 Hz) we calculate frequency-dependent “Na+-entry budgets” for an electrocyte AP as a surrogate for required 3Na+/2K+-ATPase activity. We find that the cost per AP of maintaining constant-amplitude APs increases nonlinearly with frequency, whereas the cost per AP for synaptic input current is essentially constant. This predicts that Na+ channel density should correlate positively with EOD frequency, whereas AChR density should be the same across fish. Importantly, calculated costs (inferred from Na+-entry through Nav and ACh channels) for electrocyte APs as frequencies rise are much less than expected from published whole-fish EOD-linked O2

  18. High Frequency Resolution TOA Analysis for ELF/VLFWave Generation Experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Ruddle, J. D.; Moore, R. C.

    2014-12-01

    Modulated HF heating of the ionosphere in the presence of natural ionospheric current sources has been used as a method to generate electromagnetic ELF/VLF waves since the 1970's. In the ~1-5 kHz band, the amplitude and phase of the received ELF/VLF signal depends on the amplitude and phase of the conductivity modulation generated throughout the HF-heated ionospheric body, as well as on the signal propagation parameters (i.e., the attenuation and phase constants) between each of the current sources and the receiver. Recent signal processing advances have produced an accurate ELF/VLF time-of-arrival (TOA) analysis technique that differentiates line-of-sight and ionospherically-reflected signal components, determining the amplitude and phase of each component observed at the receiver. This TOA method requires a wide bandwidth (> 2.5 kHz) and therefore is relatively insensitive to the frequency-dependent nature of ELF/VLF wave propagation. In this paper, we present an improved ELF/VLF TOA method that is capable of providing high frequency resolution. The new analysis technique is applied to experimental observations of ELF/VLF signals generated by modulated heating at HAARP. We present measurements of the amplitude and phase of the received ELF/VLF signal as a function of frequency and compare the results with the predictions of an HF heating model.

  19. Effect of Interfacial characteristics of metal clad polymeric substrates on electrical high frequency interconnection performance

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Romanofsky, R. R.; Ponchak, G. E.; Liu, D. C.

    1984-01-01

    Etched metallic conductor lines on metal clad polymeric substrates are used for electronic component interconnections. Significant signal losses are observed for microstrip conductor lines used for interconnecting high frequency devices. At these frequencies, the electronic signal travels closer to the metal-polymer interface due to the skin effect. Copper-teflon interfaces were characterized by scanning electron microscopy (SEM) and Auger electron spectroscopy (AES) to determine the interfacial properties. Data relating roughness of the copper film to signal losses was compared to theory. Films used to enhance adhesion are found, to contribute to these losses.

  20. MESSENGER Magnetic Field Observations of Upstream Ultra-Low Frequency Waves at Mercury

    NASA Technical Reports Server (NTRS)

    Le, G.; Chi, P. J.; Boardsen, S.; Blanco-Cano, X.; Anderosn, B. J.; Korth, H.

    2012-01-01

    The region upstream from a planetary bow shock is a natural plasma laboratory containing a variety of wave particle phenomena. The study of foreshocks other than the Earth's is important for extending our understanding of collisionless shocks and foreshock physics since the bow shock strength varies with heliocentric distance from the Sun, and the sizes of the bow shocks are different at different planets. The Mercury's bow shock is unique in our solar system as it is produced by low Mach number solar wind blowing over a small magnetized body with a predominately radial interplanetary magnetic field. Previous observations of Mercury upstream ultra-low frequency (ULF) waves came exclusively from two Mercury flybys of Mariner 10. The MESSENGER orbiter data enable us to study of upstream waves in the Mercury's foreshock in depth. This paper reports an overview of upstream ULF waves in the Mercury's foreshock using high-time resolution magnetic field data, 20 samples per second, from the MESSENGER spacecraft. The most common foreshock waves have frequencies near 2 Hz, with properties similar to the I-Hz waves in the Earth's foreshock. They are present in both the flyby data and in every orbit of the orbital data we have surveyed. The most common wave phenomenon in the Earth's foreshock is the large-amplitude 30-s waves, but similar waves at Mercury have frequencies at near 0.1 Hz and occur only sporadically with short durations (a few wave cycles). Superposed on the "30-s" waves, there are spectral peaks at near 0.6 Hz, not reported previously in Mariner 10 data. We will discuss wave properties and their occurrence characteristics in this paper.

  1. Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios

    NASA Astrophysics Data System (ADS)

    Zhang, Liang-Liang; Wang, Wei-Min; Wu, Tong; Zhang, Rui; Zhang, Shi-Jing; Zhang, Cun-Lin; Zhang, Yan; Sheng, Zheng-Ming; Zhang, Xi-Cheng

    2017-12-01

    In the widely studied two-color laser scheme for terahertz (THz) radiation from a gas, the frequency ratio of the two lasers is usually fixed at ω2/ω1=1 :2 . We investigate THz generation with uncommon frequency ratios. Our experiments show, for the first time, efficient THz generation with new ratios of ω2/ω1=1 :4 and 2 ∶3 . We observe that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization and the polarization adjustment becomes inefficient by rotating the other laser polarization; the THz energy shows similar scaling laws with different frequency ratios. These observations are inconsistent with multiwave mixing theory, but support the gas-ionization or plasma-current model. This study pushes the development of the two-color scheme and provides a new dimension to explore the long-standing problem of the THz generation mechanism.

  2. Observation of Terahertz Radiation via the Two-Color Laser Scheme with Uncommon Frequency Ratios.

    PubMed

    Zhang, Liang-Liang; Wang, Wei-Min; Wu, Tong; Zhang, Rui; Zhang, Shi-Jing; Zhang, Cun-Lin; Zhang, Yan; Sheng, Zheng-Ming; Zhang, Xi-Cheng

    2017-12-08

    In the widely studied two-color laser scheme for terahertz (THz) radiation from a gas, the frequency ratio of the two lasers is usually fixed at ω_{2}/ω_{1}=1:2. We investigate THz generation with uncommon frequency ratios. Our experiments show, for the first time, efficient THz generation with new ratios of ω_{2}/ω_{1}=1:4 and 2∶3. We observe that the THz polarization can be adjusted by rotating the longer-wavelength laser polarization and the polarization adjustment becomes inefficient by rotating the other laser polarization; the THz energy shows similar scaling laws with different frequency ratios. These observations are inconsistent with multiwave mixing theory, but support the gas-ionization or plasma-current model. This study pushes the development of the two-color scheme and provides a new dimension to explore the long-standing problem of the THz generation mechanism.

  3. Late administration of high-frequency electrical stimulation increases nerve regeneration without aggravating neuropathic pain in a nerve crush injury.

    PubMed

    Su, Hong-Lin; Chiang, Chien-Yi; Lu, Zong-Han; Cheng, Fu-Chou; Chen, Chun-Jung; Sheu, Meei-Ling; Sheehan, Jason; Pan, Hung-Chuan

    2018-06-25

    High-frequency transcutaneous neuromuscular electrical nerve stimulation (TENS) is currently used for the administration of electrical current in denervated muscle to alleviate muscle atrophy and enhance motor function; however, the time window (i.e. either immediate or delayed) for achieving benefit is still undetermined. In this study, we conducted an intervention of sciatic nerve crush injury using high-frequency TENS at different time points to assess the effect of motor and sensory functional recovery. Animals with left sciatic nerve crush injury received TENS treatment starting immediately after injury or 1 week later at a high frequency(100 Hz) or at a low frequency (2 Hz) as a control. In SFI gait analysis, either immediate or late admission of high-frequency electrical stimulation exerted significant improvement compared to either immediate or late administration of low-frequency electrical stimulation. In an assessment of allodynia, immediate high frequency electrical stimulation caused a significantly decreased pain threshold compared to late high-frequency or low-frequency stimulation at immediate or late time points. Immunohistochemistry staining and western blot analysis of S-100 and NF-200 demonstrated that both immediate and late high frequency electrical stimulation showed a similar effect; however the effect was superior to that achieved with low frequency stimulation. Immediate high frequency electrical stimulation resulted in significant expression of TNF-α and synaptophysin in the dorsal root ganglion, somatosensory cortex, and hippocampus compared to late electrical stimulation, and this trend paralleled the observed effect on somatosensory evoked potential. The CatWalk gait analysis also showed that immediate electrical stimulation led to a significantly high regularity index. In primary dorsal root ganglion cells culture, high-frequency electrical stimulation also exerted a significant increase in expression of TNF-α, synaptophysin, and

  4. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    NASA Astrophysics Data System (ADS)

    Lagov, P. B.; Drenin, A. S.; Zinoviev, M. A.

    2017-05-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding.

  5. Switch over to the high frequency rf systems near transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brennan, J.M.; Wei, J.

    1988-01-01

    The purpose of this note is to point out that since bunch narrowing naturally occurs in the acceleration process in the vicinity of transition, it should be possible to switch over to the high frequency system close to transition when the bunch has narrowed enough to fit directly into the high frequency bucket. The advantage of this approach is the simplicity, no extra components or gymnastics are required of the low frequency system. The disadvantage, of course, is for protons which do not go through transition. But on the other hand, there is no shortage of intensity for protons andmore » so it should be possible to keep the phase space area low for protons, and then matching to the high frequency bucket should be easily accomplished by adiabatic compression. 3 refs., 7 figs.« less

  6. Reduced high-frequency motor neuron firing, EMG fractionation, and gait variability in awake walking ALS mice

    PubMed Central

    Hadzipasic, Muhamed; Ni, Weiming; Nagy, Maria; Steenrod, Natalie; McGinley, Matthew J.; Kaushal, Adi; Thomas, Eleanor; McCormick, David A.

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a lethal neurodegenerative disease prominently featuring motor neuron (MN) loss and paralysis. A recent study using whole-cell patch clamp recording of MNs in acute spinal cord slices from symptomatic adult ALS mice showed that the fastest firing MNs are preferentially lost. To measure the in vivo effects of such loss, awake symptomatic-stage ALS mice performing self-initiated walking on a wheel were studied. Both single-unit extracellular recordings within spinal cord MN pools for lower leg flexor and extensor muscles and the electromyograms (EMGs) of the corresponding muscles were recorded. In the ALS mice, we observed absent or truncated high-frequency firing of MNs at the appropriate time in the step cycle and step-to-step variability of the EMG, as well as flexor-extensor coactivation. In turn, kinematic analysis of walking showed step-to-step variability of gait. At the MN level, the higher frequencies absent from recordings from mutant mice corresponded with the upper range of frequencies observed for fast-firing MNs in earlier slice measurements. These results suggest that, in SOD1-linked ALS mice, symptoms are a product of abnormal MN firing due at least in part to loss of neurons that fire at high frequency, associated with altered EMG patterns and hindlimb kinematics during gait. PMID:27821773

  7. High frequency oscillations evoked by peripheral magnetic stimulation.

    PubMed

    Biller, S; Simon, L; Fiedler, P; Strohmeier, D; Haueisen, J

    2011-01-01

    The analysis of somatosensory evoked potentials (SEP) and / or fields (SEF) is a well-established and important tool for investigating the functioning of the peripheral and central human nervous system. A standard technique to evoke SEPs / SEFs is the stimulation of the median nerve by using a bipolar electrical stimulus. We aim at an alternative stimulation technique enabling stimulation of deep nerve structures while reducing patient stress and error susceptibility. In the current study, we apply a commercial transcranial magnetic stimulation system for peripheral magnetic stimulation of the median nerve. We compare the results of simultaneously recorded EEG signals to prove applicability of our technique to evoke SEPs including low frequency components (LFC) as well as high frequency oscillations (HFO). Therefore, we compare amplitude, latency and time-frequency characteristics of the SEP of 14 healthy volunteers after electric and magnetic stimulation. Both low frequency components and high frequency oscillations were detected. The HFOs were superimposed onto the primary cortical response N20. Statistical analysis revealed significantly lower amplitudes and increased latencies for LFC and HFO components after magnetic stimulation. The differences indicate the inability of magnetic stimulation to elicit supramaximal responses. A psycho-perceptual evaluation showed that magnetic stimulation was less unpleasant for 12 out of the 14 volunteers. In conclusion, we showed that LFC and HFO components related to median nerve stimulation can be evoked by peripheral magnetic stimulation.

  8. High-frequency monopole sound source for anechoic chamber qualification

    NASA Astrophysics Data System (ADS)

    Saussus, Patrick; Cunefare, Kenneth A.

    2003-04-01

    Anechoic chamber qualification procedures require the use of an omnidirectional monopole sound source. Required characteristics for these monopole sources are explicitly listed in ISO 3745. Building a high-frequency monopole source that meets these characteristics has proved difficult due to the size limitations imposed by small wavelengths at high frequency. A prototype design developed for use in hemianechoic chambers employs telescoping tubes, which act as an inverse horn. This same design can be used in anechoic chambers, with minor adaptations. A series of gradually decreasing brass telescoping tubes is attached to the throat of a well-insulated high-frequency compression driver. Therefore, all of the sound emitted from the driver travels through the horn and exits through an opening of approximately 2.5 mm. Directivity test data show that this design meets all of the requirements set forth by ISO 3745.

  9. Observation of low-frequency acoustic surface waves in the nocturnal boundary layer.

    PubMed

    Talmadge, Carrick L; Waxler, Roger; Di, Xiao; Gilbert, Kenneth E; Kulichkov, Sergey

    2008-10-01

    A natural terrain surface, because of its porosity, can support an acoustic surface wave that is a mechanical analog of the familiar vertically polarized surface wave in AM radio transmission. At frequencies of several hundred hertz, the acoustic surface wave is attenuated over distances of a few hundred meters. At lower frequencies (e.g., below approximately 200 Hz) the attenuation is much less, allowing surface waves to propagate thousands of meters. At night, a low-frequency surface wave is generally present at long ranges even when downward refraction is weak. Thus, surface waves represent a ubiquitous nighttime transmission mode that exists even when other transmission modes are weak or absent. Data from recent nighttime field experiments and theoretical calculations are presented, demonstrating the persistence of the surface wave under different meteorological conditions. The low-frequency surface wave described here is the "quasiharmonical" tail observed previously in nighttime measurements but not identified by S. Kulichkov and his colleagues (Chunchuzov, I. P. et al. 1990. "On acoustical impulse propagation in a moving inhomogeneous atmospheric layer," J. Acoust. Soc. Am. 88, 455-461).

  10. High frequency vibration analysis by the complex envelope vectorization.

    PubMed

    Giannini, O; Carcaterra, A; Sestieri, A

    2007-06-01

    The complex envelope displacement analysis (CEDA) is a procedure to solve high frequency vibration and vibro-acoustic problems, providing the envelope of the physical solution. CEDA is based on a variable transformation mapping the high frequency oscillations into signals of low frequency content and has been successfully applied to one-dimensional systems. However, the extension to plates and vibro-acoustic fields met serious difficulties so that a general revision of the theory was carried out, leading finally to a new method, the complex envelope vectorization (CEV). In this paper the CEV method is described, underlying merits and limits of the procedure, and a set of applications to vibration and vibro-acoustic problems of increasing complexity are presented.

  11. Neural hijacking: action of high-frequency electrical stimulation on cortical circuits.

    PubMed

    Cheney, P D; Griffin, D M; Van Acker, G M

    2013-10-01

    Electrical stimulation of the brain was one of the first experimental methods applied to understanding brain organization and function and it continues as a highly useful method both in research and clinical applications. Intracortical microstimulation (ICMS) involves applying electrical stimuli through a microelectrode suitable for recording the action potentials of single neurons. ICMS can be categorized into single-pulse stimulation; high-frequency, short-duration stimulation; and high-frequency, long-duration stimulation. For clinical and experimental reasons, considerable interest focuses on the mechanism of neural activation by electrical stimuli. In this article, we discuss recent results suggesting that action potentials evoked in cortical neurons by high-frequency electrical stimulation do not sum with the natural, behaviorally related background activity; rather, high-frequency stimulation eliminates and replaces natural activity. We refer to this as neural hijacking. We propose that a major component of the mechanism underlying neural hijacking is excitation of axons by ICMS and elimination of natural spikes by antidromic collision with stimulus-driven spikes evoked at high frequency. Evidence also supports neural hijacking as an important mechanism underlying the action of deep brain stimulation in the subthalamic nucleus and its therapeutic effect in treating Parkinson's disease.

  12. Aerodynamics of high frequency flapping wings

    NASA Astrophysics Data System (ADS)

    Hu, Zheng; Roll, Jesse; Cheng, Bo; Deng, Xinyan

    2010-11-01

    We investigated the aerodynamic performance of high frequency flapping wings using a 2.5 gram robotic insect mechanism developed in our lab. The mechanism flaps up to 65Hz with a pair of man-made wing mounted with 10cm wingtip-to-wingtip span. The mean aerodynamic lift force was measured by a lever platform, and the flow velocity and vorticity were measured using a stereo DPIV system in the frontal, parasagittal, and horizontal planes. Both near field (leading edge vortex) and far field flow (induced flow) were measured with instantaneous and phase-averaged results. Systematic experiments were performed on the man-made wings, cicada and hawk moth wings due to their similar size, frequency and Reynolds number. For insect wings, we used both dry and freshly-cut wings. The aerodynamic force increase with flapping frequency and the man-made wing generates more than 4 grams of lift at 35Hz with 3 volt input. Here we present the experimental results and the major differences in their aerodynamic performances.

  13. High-speed bioimaging with frequency-division-multiplexed fluorescence confocal microscopy

    NASA Astrophysics Data System (ADS)

    Mikami, Hideharu; Harmon, Jeffrey; Ozeki, Yasuyuki; Goda, Keisuke

    2017-04-01

    We present methods of fluorescence confocal microscopy that enable unprecedentedly high frame rate of > 10,000 fps. The methods are based on a frequency-division multiplexing technique, which was originally developed in the field of communication engineering. Specifically, we achieved a broad bandwidth ( 400 MHz) of detection signals using a dual- AOD method and overcame limitations in frame rate, due to a scanning device, by using a multi-line focusing method, resulting in a significant increase in frame rate. The methods have potential biomedical applications such as observation of sub-millisecond dynamics in biological tissues, in-vivo three-dimensional imaging, and fluorescence imaging flow cytometry.

  14. Magnetic and High-Frequency Dielectric Parameters of Divalent Ion-Substituted W-Type Hexagonal Ferrites

    NASA Astrophysics Data System (ADS)

    Ali, Akbar; Grössinger, R.; Imran, Muhammad; Khan, M. Ajmal; Elahi, Asmat; Akhtar, Majid Niaz; Mustafa, Ghulam; Khan, Muhammad Azhar; Ullah, Hafeez; Murtaza, Ghulam; Ahmad, Mukhtar

    2017-02-01

    Polycrystalline W-type hexagonal ferrites with chemical formulae Ba0.5Sr0.5 Co2- x Me x Fe16O27 ( x = 0, 0.5, Me = Mn, Mg, Zn, Ni) have been prepared using sol-gel autocombustion. It has been reported in our earlier published work that all the samples exhibit a single-phase W-type hexagonal structure which was confirmed by x-ray diffraction (XRD) analysis. The values of bulk density lie in the range of 4.64-4.78 g/cm3 for all the samples which are quite high as compared to those for other types of hexaferrites. It was also observed that Zn-substituted ferrite reflects the highest (14.7 × 107 Ω-cm) whereas Mn-substituted ferrite has the lowest (11.3 × 107 Ω-cm) values of direct current (DC) electrical resistivity. The observed values of saturation magnetization ( M s) are found to be in the range of 62.01-68.7 emu/g depending upon the type of cation substitution into the hexagonal lattice. All the samples exhibit a typical soft magnetic character with low values of coercivity ( H c) that are in the range of 26-85 Oe. These ferrites may be promising materials for microwave absorbers due to their higher saturation magnetization and low coercivities. Both the dielectric constant and tangent loss decrease with increasing frequency in the lower frequency region and become constant in the higher frequency region. The much lower dielectric constant obtained in this study makes the investigated ferrites very useful for high-frequency applications, i.e. dielectric resonators and for camouflaging military targets such as ships, tanks and aircrafts, etc.

  15. High density terahertz frequency comb produced by coherent synchrotron radiation

    PubMed Central

    Tammaro, S.; Pirali, O.; Roy, P.; Lampin, J.-F.; Ducournau, G.; Cuisset, A.; Hindle, F.; Mouret, G.

    2015-01-01

    Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10−10 and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile. PMID:26190043

  16. Research on natural frequency based on modal test for high speed vehicles

    NASA Astrophysics Data System (ADS)

    Ma, Guangsong; He, Guanglin; Guo, Yachao

    2018-04-01

    High speed vehicle as a vibration system, resonance generated in flight may be harmful to high speed vehicles. It is possible to solve the resonance problem by acquiring the natural frequency of the high-speed aircraft and then taking some measures to avoid the natural frequency of the high speed vehicle. Therefore, In this paper, the modal test of the high speed vehicle was carried out by using the running hammer method and the PolyMAX modal parameter identification method. Firstly, the total frequency response function, coherence function of the high speed vehicle are obtained by the running hammer stimulation test, and through the modal assurance criterion (MAC) to determine the accuracy of the estimated parameters. Secondly, the first three order frequencies, the pole steady state diagram of the high speed vehicles is obtained by the PolyMAX modal parameter identification method. At last, the natural frequency of the vibration system was accurately obtained by the running hammer method.

  17. State observers and Kalman filtering for high performance vibration isolation systems.

    PubMed

    Beker, M G; Bertolini, A; van den Brand, J F J; Bulten, H J; Hennes, E; Rabeling, D S

    2014-03-01

    There is a strong scientific case for the study of gravitational waves at or below the lower end of current detection bands. To take advantage of this scientific benefit, future generations of ground based gravitational wave detectors will need to expand the limit of their detection bands towards lower frequencies. Seismic motion presents a major challenge at these frequencies and vibration isolation systems will play a crucial role in achieving the desired low-frequency sensitivity. A compact vibration isolation system designed to isolate in-vacuum optical benches for Advanced Virgo will be introduced and measurements on this system are used to present its performance. All high performance isolation systems employ an active feedback control system to reduce the residual motion of their suspended payloads. The development of novel control schemes is needed to improve the performance beyond what is currently feasible. Here, we present a multi-channel feedback approach that is novel to the field. It utilizes a linear quadratic regulator in combination with a Kalman state observer and is shown to provide effective suppression of residual motion of the suspended payload. The application of state observer based feedback control for vibration isolation will be demonstrated with measurement results from the Advanced Virgo optical bench suspension system.

  18. BK potassium channels facilitate high-frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells

    PubMed Central

    Gu, Ning; Vervaeke, Koen; Storm, Johan F

    2007-01-01

    Neuronal potassium (K+) channels are usually regarded as largely inhibitory, i.e. reducing excitability. Here we show that BK-type calcium-activated K+ channels enhance high-frequency firing and cause early spike frequency adaptation in neurons. By combining slice electrophysiology and computational modelling, we investigated functions of BK channels in regulation of high-frequency firing in rat CA1 pyramidal cells. Blockade of BK channels by iberiotoxin (IbTX) selectively reduced the initial discharge frequency in response to strong depolarizing current injections, thus reducing the early spike frequency adaptation. IbTX also blocked the fast afterhyperpolarization (fAHP), slowed spike rise and decay, and elevated the spike threshold. Simulations with a computational model of a CA1 pyramidal cell confirmed that the BK channel-mediated rapid spike repolarization and fAHP limits activation of slower K+ channels (in particular the delayed rectifier potassium current (IDR)) and Na+ channel inactivation, whereas M-, sAHP- or SK-channels seem not to be important for the early facilitating effect. Since the BK current rapidly inactivates, its facilitating effect diminishes during the initial discharge, thus producing early spike frequency adaptation by an unconventional mechanism. This mechanism is highly frequency dependent. Thus, IbTX had virtually no effect at spike frequencies < 40 Hz. Furthermore, extracellular field recordings demonstrated (and model simulations supported) that BK channels contribute importantly to high-frequency burst firing in response to excitatory synaptic input to distal dendrites. These results strongly support the idea that BK channels play an important role for early high-frequency, rapidly adapting firing in hippocampal pyramidal neurons, thus promoting the type of bursting that is characteristic of these cells in vivo, during behaviour. PMID:17303637

  19. Accuracy of Single Frequency GPS Observations Processing In Near Real-time With Use of Code Predicted Products

    NASA Astrophysics Data System (ADS)

    Wielgosz, P. A.

    In this year, the system of active geodetic GPS permanent stations is going to be estab- lished in Poland. This system should provide GPS observations for a wide spectrum of users, especially it will be a great opportunity for surveyors. Many of surveyors still use cheaper, single frequency receivers. This paper focuses on processing of single frequency GPS observations only. During processing of such observations the iono- sphere plays an important role, so we concentrated on the influence of the ionosphere on the positional coordinates. Twenty consecutive days of GPS data from 2001 year were processed to analyze the accuracy of a derived three-dimensional relative vec- tor position between GPS stations. Observations from two Polish EPN/IGS stations: BOGO and JOZE were used. In addition to, a new test station - IGIK was created. In this paper, the results of single frequency GPS observations processing in near real- time are presented. Baselines of 15, 27 and 42 kilometers and sessions of 1, 2, 3, 4, and 6 hours long were processed. While processing we used CODE (Centre for Orbit De- termination in Europe, Bern, Switzerland) predicted products: orbits and ionosphere info. These products are available in real-time and enable near real-time processing. Software Bernese v. 4.2 for Linux and BPE (Bernese Processing Engine) mode were used. These results are shown with a reference to dual frequency weekly solution (the best solution). Obtained GPS positional time and GPS baseline length dependency accuracy is presented for single frequency GPS observations.

  20. Monolithically integrated tri-axis shock accelerometers with MHz-level high resonant-frequency

    NASA Astrophysics Data System (ADS)

    Zou, Hongshuo; Wang, Jiachou; Chen, Fang; Bao, Haifei; Jiao, Ding; Zhang, Kun; Song, Zhaohui; Li, Xinxin

    2017-07-01

    This paper reports a novel monolithically integrated tri-axis high-shock accelerometer with high resonant-frequency for the detection of a broad frequency-band shock signal. For the first time, a resonant-frequency as high as about 1.4 MHz is designed for all the x-, y- and z-axis accelerometers of the integrated tri-axis sensor. In order to achieve a wide frequency-band detection performance, all the three sensing structures are designed into an axially compressed/stretched tiny-beam sensing scheme, where the p  +  -doped tiny-beams are connected into a Wheatstone bridge for piezoresistive output. By using ordinary (1 1 1) silicon wafer (i.e. non-SOI wafer), a single-wafer based fabrication technique is developed to monolithically integrate the three sensing structures for the tri-axis sensor. Testing results under high-shock acceleration show that each of the integrated three-axis accelerometers exhibit about 1.4 MHz resonant-frequency and 0.2-0.4 µV/V/g sensitivity. The achieved high frequencies for all the three sensing units make the tri-axis sensor promising in high fidelity 3D high-shock detection applications.

  1. Solar flare microwave observations with high spectral resolution

    NASA Astrophysics Data System (ADS)

    Bruggmann, G.; Magun, A.; Benz, A. O.; Stehling, W.

    1990-12-01

    The solar flare radio emission in the 6-8 GHz range was observed with a high resolution spectrometer. The observed band corresponds to the plasma frequencies and gyrofrequencies of the transition region and the lowest part of the corona in active regions. Most of the emissions were found to be broadbanded, as expected from the gyrosynchrotron mechanism. In eight out of 46 observed events, spectral structures of three types were detected: spikes below the time resolution of 100 ms, slowly drifting broadband structures, and a narrow bandwidth patch of continuum emission. These first narrowband bursts spectrally recorded in the 6-8 GHz range are generally weak. Slowly drifting structures are the only type compatible with the gyrosynchrotron emission mechanism. A simple argument based on free-free absorption shows that plasma emission can only be propagated if the radiation originates in a dense region with a small density-scale length. The same holds for maser emission at a low harmonic of the electron gyrofrequency. Possible emission mechanisms and diagnostic capabilities are discussed.

  2. High-frequency ultrasonic wire bonding systems

    PubMed

    Tsujino; Yoshihara; Sano; Ihara

    2000-03-01

    The vibration characteristics of longitudinal-complex transverse vibration systems with multiple resonance frequencies of 350-980 kHz for ultrasonic wire bonding of IC, LSI or electronic devices were studied. The complex vibration systems can be applied for direct welding of semiconductor tips (face-down bonding, flip-chip bonding) and packaging of electronic devices. A longitudinal-complex transverse vibration bonding system consists of a complex transverse vibration rod, two driving longitudinal transducers 7.0 mm in diameter and a transverse vibration welding tip. The vibration distributions along ceramic and stainless-steel welding tips were measured at up to 980 kHz. A high-frequency vibration system with a height of 20.7 mm and a weight of less than 15 g was obtained.

  3. High-spatial-frequency periodic surface structures on steel substrate induced by subnanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Hikage, Haruki; Nosaka, Nami; Matsuo, Shigeki

    2017-11-01

    By irradiation with 0.5 ns laser pulses at a wavelength λ = 1.064 µm, laser-induced periodic surface structures (LIPSS) were fabricated on a steel substrate. In addition to low-spatial-frequency LIPSS (LSFL), a high-spatial-frequency LIPSS (HSFL) of period Λ ∼ 0.4λ with two-dimensional expansion was formed, although it is generally recognized that HSFL are formed only by ultrafast laser pulses. The wavevector of the observed HSFL was perpendicular to the electric field of the irradiated laser pulse (each ridge/groove of the HSFL was parallel to the electric field). We discuss the relationship between the formation of HSFL and the pulse duration.

  4. Territorial black-capped chickadee males respond faster to high- than to low-frequency songs in experimentally elevated noise conditions

    PubMed Central

    Slabbekoorn, Hans; Otter, Ken A.

    2017-01-01

    stimulus due to habituation. We observed no difference in overall aggression between stimuli. These results suggest that high-frequency songs may be more audible under noisy conditions. PMID:28462051

  5. Formation of well-mixed warm water column in central Bohai Sea during summer: Role of high-frequency atmospheric forcing

    NASA Astrophysics Data System (ADS)

    Ma, Weiwei; Wan, Xiuquan; Wang, Zhankun; Liu, Yulong; Wan, Kai

    2017-12-01

    The influence of high-frequency atmospheric forcing on the formation of a well-mixed summer warm water column in the central Bohai Sea is investigated comparing model simulations driven by daily surface forcing and those using monthly forcing data. In the absence of high-frequency atmospheric forcing, numerical simulations have repeatedly failed to reproduce this vertically uniform column of warm water measured over the past 35 years. However, high-frequency surface forcing is found to strongly influence the structure and distribution of the well-mixed warm water column, and simulations are in good agreement with observations. Results show that high frequency forcing enhances vertical mixing over the central bank, intensifies downward heat transport, and homogenizes the water column to form the Bohai central warm column. Evidence presented shows that high frequency forcing plays a dominant role in the formation of the well-mixed warm water column in summer, even without the effects of tidal and surface wave mixing. The present study thus provides a practical and rational way of further improving the performance of oceanic simulations in the Bohai Sea and can be used to adjust parameterization schemes of ocean models.

  6. High Frequency PIN-Diode Switches for Radiometer Applications

    NASA Technical Reports Server (NTRS)

    Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka; Reising, Steven C.

    2011-01-01

    Internally calibrated radiometers are needed for ocean topography and other missions. Typically internal calibration is achieved with Dicke switching as one of the techniques. We have developed high frequency single-pole double-throw (SPDT) switches in the form of monolithic microwave integrated circuits (MMIC) that can be easily integrated into Dicke switched radiometers that utilize microstrip technology. In particular, the switches we developed can be used for a radiometer such as the one proposed for the Surface Water and Ocean Topography (SWOT) Satellite Mission whose three channels at 92, 130, and 166 GHz would allow for wet-tropospheric path delay correction near coastal zones and over land. This feat is not possible with the current Jason-class radiometers due to their lower frequency signal measurement and thus lower resolution. The MMIC chips were fabricated at NGST using their InP PIN diode process and measured at JPL using high frequency test equipment. Measurement and simulation results will be presented.

  7. High Frequency and Multi-parameter Observation of Land-Sea Connection at the Aransas Pass Tidal Inlet, South Texas in Summer 2008

    NASA Astrophysics Data System (ADS)

    Min, D.

    2008-12-01

    Understanding the nature of water exchange and material transport processes at tidal inlets is critical in improving our knowledge of land-sea connection and exchange processes. High-frequency multi-parameter water property measurement was conducted over a month period during mid-June to mid-July in 2008 at the UT Marine Science Institute pier at Port Aransas, Texas throughout 12-m water column. The pier is at the Aransas Pass tidal inlet, which is a major water and property exchange pathway in South Texas between several local bays and the Gulf of Mexico. Unlike the summer 2007 when a large-scale freshwater discharge event occurred, the summer 2008 during the observation period was relatively dry in general. Offshore influence was more pronounced this year than 2007 with multiple days of higher salinity water (higher than 36 psu) dominating over tidal cycles. The offshore influence was also marked by lower oxygen and chlorophyll concentrations. The lower oxygen content water with higher salinity seems to be connected to low-oxygen bottom water on near shore shelf area. Additional instrument mooring data during hurricane Dolly will also be presented along with the current meter and tide gauge information. Comparison of the data with that observed from nearby Mission-Aransas National Estuarine Research Reserve SWMP stations will be presented as well. Continuous water column measurements at a local inlet show a potential to quantify water property flux and to detect episodic events in the coastal environment.

  8. A comparison of high-frequency cross-correlation measures

    NASA Astrophysics Data System (ADS)

    Precup, Ovidiu V.; Iori, Giulia

    2004-12-01

    On a high-frequency scale the time series are not homogeneous, therefore standard correlation measures cannot be directly applied to the raw data. There are two ways to deal with this problem. The time series can be homogenised through an interpolation method (An Introduction to High-Frequency Finance, Academic Press, NY, 2001) (linear or previous tick) and then the Pearson correlation statistic computed. Recently, methods that can handle raw non-synchronous time series have been developed (Int. J. Theor. Appl. Finance 6(1) (2003) 87; J. Empirical Finance 4 (1997) 259). This paper compares two traditional methods that use interpolation with an alternative method applied directly to the actual time series.

  9. High-frequency self-aligned graphene transistors with transferred gate stacks

    PubMed Central

    Cheng, Rui; Bai, Jingwei; Liao, Lei; Zhou, Hailong; Chen, Yu; Liu, Lixin; Lin, Yung-Chen; Jiang, Shan; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-aligned process, enabled by the unique structure of the transferred gate stacks, is then used to position precisely the source and drain electrodes with minimized access resistance or parasitic capacitance. This process has therefore enabled scalable fabrication of self-aligned graphene transistors with unprecedented performance including a record-high cutoff frequency up to 427 GHz. Our study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra–high-frequency circuits. PMID:22753503

  10. High-frequency self-aligned graphene transistors with transferred gate stacks.

    PubMed

    Cheng, Rui; Bai, Jingwei; Liao, Lei; Zhou, Hailong; Chen, Yu; Liu, Lixin; Lin, Yung-Chen; Jiang, Shan; Huang, Yu; Duan, Xiangfeng

    2012-07-17

    Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-aligned process, enabled by the unique structure of the transferred gate stacks, is then used to position precisely the source and drain electrodes with minimized access resistance or parasitic capacitance. This process has therefore enabled scalable fabrication of self-aligned graphene transistors with unprecedented performance including a record-high cutoff frequency up to 427 GHz. Our study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra-high-frequency circuits.

  11. The effect of stratification and topography on high-frequency internal waves in a continental shelf sea

    NASA Astrophysics Data System (ADS)

    Domina, Anastasiia; Palmer, Matthew; Vlasenko, Vasil; Sharples, Jonathan; Green, Mattias; Stashchuk, Nataliya

    2017-04-01

    Internal gravity waves (IWs) have been recognised as one of the main drivers of climate controlling circulation, sustaining fisheries in shelf seas and CO2-pump system. High frequency IWs are particularly important to internal mixing in the shelf seas, where they contain an enhanced fraction of the available baroclinic energy. The origin, generation mechanism, propagation and spatial distribution of these waves are unfortunately still poorly understood since they are difficult to measure and simulate, and are therefore not represented in the vast majority of ocean and climate models. In this study we aim to increase our understanding of high frequency IWs dynamics in shelf seas through a combination of observational (from moorings and ocean gliders) and modelling methods (MITgcm), and test the hypothesis that "Solitary waves are responsible for driving a large fraction of the vertical diffusivity at the shelf edge and adjacent shelf region". A new high-resolution (50m horizontal) MITgcm configuration is employed to identify the generation and propagation of IWs in a regional shelf sea and subsequently identify internal wave generation hotspots by using calculated Froude number and body force maps. We assess the likely impact of changing seasonal and climate forcing on IWs with a range of different density structures. Our model suggests that under increasing stratification, the IW field becomes more energetic at all frequencies, however the increase in energy is not evenly distributed. While energy in the dominant low frequency IWs increase by 20-40%, energy associated with high frequency waves increases by as much as 90%. These model results are compared to varying stratification scenarios from observations made during 2012 and 2013 to interpret the impact on continental shelf sea IW generation and propagation. We use the results from a turbulence enabled ocean glider to assess the impact that this varying wavefield has on internal mixing, and discuss the

  12. High-frequency strontium vapor laser for biomedical applications

    NASA Astrophysics Data System (ADS)

    Hvorostovsky, A.; Kolmakov, E.; Kudashev, I.; Redka, D.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Tsvetkov, K.; Lukyanov, N.; Paklinov, N.

    2018-02-01

    Sr-laser with high pulse repetition rate and high peak radiation power is a unique tool for studying rapidly occurring processes in time (plasma diagnostics, photoablation, etc.). In addition, the study of the frequency characteristics of the active medium of the laser helps to reveal the physics of the formation of an inverse medium in metal vapor lasers. In this paper, an experimental study of an Sr-laser with an active volume of 5.8 cm3 in the pulse repetition frequency range from 25 to 200 kHz is carried out, and a comparison with the frequency characteristics of media with large active volumes is given. We considered the frequency characteristics of the active medium in two modes: at a constant energy in the excitation pulse CU2 / 2 and at a constant average power consumed by the rectifier. In the presented work with a small-volume GRT using the TASITR-5/12 TASITRON switch, a laser was generated for Pairs of strontium at a CSF of 200 kHz. The behavior of the characteristics of the generation lines of 6.456 μm, 1 μm, and 3 μm at increased repetition frequencies is considered. Using the example of large-volume GRT, it is shown that tubes with a large active volume increase their energy characteristics with the growth of the CSF. The possibility of laser operation at pulse repetition rates above 200 kHz is shown.

  13. High-frequency source radiation during the 2011 Tohoku-Oki earthquake, Japan, inferred from KiK-net strong-motion seismograms

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroyuki; Pulido, Nelson; Fukuyama, Eiichi; Aoi, Shin

    2013-01-01

    investigate source processes of the 2011 Tohoku-Oki earthquake, we utilized a source location method using high-frequency (5-10 Hz) seismic amplitudes. In this method, we assumed far-field isotropic radiation of S waves, and conducted a spatial grid search to find the best fitting source locations along the subducted slab in each successive time window. Our application of the method to the Tohoku-Oki earthquake resulted in artifact source locations at shallow depths near the trench caused by limited station coverage and noise effects. We then assumed various source node distributions along the plate, and found that the observed seismograms were most reasonably explained when assuming deep source nodes. This result suggests that the high-frequency seismic waves were radiated at deeper depths during the earthquake, a feature which is consistent with results obtained from teleseismic back-projection and strong-motion source model studies. We identified three high-frequency subevents, and compared them with the moment-rate function estimated from low-frequency seismograms. Our comparison indicated that no significant moment release occurred during the first high-frequency subevent and the largest moment-release pulse occurred almost simultaneously with the second high-frequency subevent. We speculated that the initial slow rupture propagated bilaterally from the hypocenter toward the land and trench. The landward subshear rupture propagation consisted of three successive high-frequency subevents. The trenchward propagation ruptured the strong asperity and released the largest moment near the trench.

  14. Differential effects of tactile high- and low-frequency stimulation on tactile discrimination in human subjects.

    PubMed

    Ragert, Patrick; Kalisch, Tobias; Bliem, Barbara; Franzkowiak, Stephanie; Dinse, Hubert R

    2008-01-23

    Long-term potentiation (LTP) and long-term depression (LTD) play important roles in mediating activity-dependent changes in synaptic transmission and are believed to be crucial mechanisms underlying learning and cortical plasticity. In human subjects, however, the lack of adequate input stimuli for the induction of LTP and LTD makes it difficult to study directly the impact of such protocols on behavior. Using tactile high- and low-frequency stimulation protocols in humans, we explored the potential of such protocols for the induction of perceptual changes. We delivered tactile high-frequency and low-frequency stimuli (t-HFS, t-LFS) to skin sites of approximately 50 mm2 on the tip of the index finger. As assessed by 2-point discrimination, we demonstrate that 20 minutes of t-HFS improved tactile discrimination, while t-LFS impaired performance. T-HFS-effects were stable for at least 24 hours whereas t-LFS-induced changes recovered faster. While t-HFS changes were spatially very specific with no changes on the neighboring fingers, impaired tactile performance after t-LFS was also observed on the right middle-finger. A central finding was that for both t-LFS and t-HFS perceptual changes were dependent on the size of the stimulated skin area. No changes were observed when the stimulated area was very small (< 1 mm2) indicating special requirements for spatial summation. Our results demonstrate differential effects of such protocols in a frequency specific manner that might be related to LTP- and LTD-like changes in human subjects.

  15. Self-adaptive method for high-frequency dispersion curve determination

    USDA-ARS?s Scientific Manuscript database

    When high-frequency (from 50 to 500 Hz) MASW is conducted to explore soil profile in the vadose zone, existing rules for selecting near offset and receiver spread length cannot satisfy the requirements of planar and dominant Rayleigh waves for all frequencies and will inevitably introduce near and f...

  16. HESS J1943+213: A Non-classical High-frequency-peaked BL Lac Object

    NASA Astrophysics Data System (ADS)

    Straal, S. M.; Gabányi, K. É.; van Leeuwen, J.; Clarke, T. E.; Dubner, G.; Frey, S.; Giacani, E.; Paragi, Z.

    2016-05-01

    HESS J1943+213 is an unidentified TeV source that is likely a high-frequency-peaked BL Lac (HBL) object, but that is also compatible with a pulsar wind nebula (PWN) nature. Each of these enormously different astronomical interpretations is supported by some of the observed unusual characteristics. In order to finally classify and understand this object, we took a three-pronged approach, through time-domain, high angular resolution, and multi-frequency radio studies. First, our deep time-domain observations with the Arecibo telescope failed to uncover the putative pulsar powering the proposed PWN. We conclude with ˜70% certainty that HESS J1943+213 does not host a pulsar. Second, long-baseline interferometry of the source with e-MERLIN at 1.5 and 5 GHz shows only a core, that is, a point source at ˜ 1-100 mas resolution. Its 2013 flux density is about one-third lower than that detected in the 2011 observations with similar resolution. This radio variability of the core strengthens the HBL object hypothesis. Third, additional evidence against the PWN scenario comes from the radio spectrum we compiled. The extended structure follows a power-law behavior with spectral index α \\=\\-0.54+/- 0.04 while the core component displays a flat spectrum (α \\=\\-0.03+/- 0.03). In contrast, the radio synchrotron emission of PWNe predicts a single power-law distribution. Overall, we rule out the PWN hypothesis and conclude that the source is a BL Lac object. The consistently high fraction (70%) of the flux density from the extended structure then leads us to conclude that HESS J1943+213 must be a non-classical HBL object.

  17. Global high-frequency source imaging accounting for complexity in Green's functions

    NASA Astrophysics Data System (ADS)

    Lambert, V.; Zhan, Z.

    2017-12-01

    The general characterization of earthquake source processes at long periods has seen great success via seismic finite fault inversion/modeling. Complementary techniques, such as seismic back-projection, extend the capabilities of source imaging to higher frequencies and reveal finer details of the rupture process. However, such high frequency methods are limited by the implicit assumption of simple Green's functions, which restricts the use of global arrays and introduces artifacts (e.g., sweeping effects, depth/water phases) that require careful attention. This motivates the implementation of an imaging technique that considers the potential complexity of Green's functions at high frequencies. We propose an alternative inversion approach based on the modest assumption that the path effects contributing to signals within high-coherency subarrays share a similar form. Under this assumption, we develop a method that can combine multiple high-coherency subarrays to invert for a sparse set of subevents. By accounting for potential variability in the Green's functions among subarrays, our method allows for the utilization of heterogeneous global networks for robust high resolution imaging of the complex rupture process. The approach also provides a consistent framework for examining frequency-dependent radiation across a broad frequency spectrum.

  18. High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers.

    PubMed

    Yang, Kangwen; Li, Wenxue; Yan, Ming; Shen, Xuling; Zhao, Jian; Zeng, Heping

    2012-06-04

    A high-power ultra-broadband frequency comb covering the spectral range from ultraviolet to infrared was generated directly by nonlinear frequency conversion of a multi-stage high-power fiber comb amplifier. The 1030-nm infrared spectral fraction of a broadband Ti:sapphire femtosecond frequency comb was power-scaled up to 100 W average power by using a large-mode-area fiber chirped-pulse amplifier. We obtained a frequency-doubled green comb at 515 nm and frequency-quadrupled ultraviolet pulses at 258 nm with the average power of 12.8 and 1.62 W under the input infrared power of 42.2 W, respectively. The carrier envelope phase stabilization was accomplished with an ultra-narrow line-width of 1.86 mHz and a quite low accumulated phase jitter of 0.41 rad, corresponding to a timing jitter of 143 as.

  19. High-efficiency piezoelectric micro harvester for collecting low-frequency mechanical energy.

    PubMed

    Li, Xin; Song, Jinhui; Feng, Shuanglong; Xie, Xiong; Li, Zhenhu; Wang, Liang; Pu, Yayun; Soh, Ai Kah; Shen, Jun; Lu, Wenqiang; Liu, Shuangyi

    2016-12-02

    A single-layer zinc oxide (ZnO) nanorod array-based micro energy harvester was designed and integrated with a piezoelectric metacapacitor. The device presents outstanding low-frequency (1-10 Hz) mechanical energy harvesting capabilities. When compared with conventional pristine ZnO nanostructured piezoelectric harvesters or generators, both open-circuit potential and short-circuit current are significantly enhanced (up to 3.1 V and 124 nA cm -2 ) for a single mechanical knock (∼34 kPa). Higher electromechanical conversion efficiency (1.3 pC/Pa) is also observed. The results indicate that the integration of the piezoelectric metacapacitor is a crucial factor for improving the low-frequency energy harvesting performance. A double piezoelectric-driven mechanism is proposed to explain current higher output power, in which the metacapacitor plays the multiple roles of charge pumping, storing and transferring. An as-fabricated prototype device for lighting an LED demonstrates high power transference capability, with over 95% transference efficiency to the external load.

  20. Coexistence of gamma and high-frequency oscillations in rat medial entorhinal cortex in vitro

    PubMed Central

    Cunningham, M O; Halliday, David M; Davies, Ceri H; Traub, Roger D; Buhl, Eberhard H; Whittington, Miles A

    2004-01-01

    High frequency oscillations (> 80–90 Hz) occur in neocortex and hippocampus in vivo where they are associated with specific behavioural states and more classical EEG frequency bands. In the hippocampus in vitro these oscillations can occur in the absence of pyramidal neuronal somatodendritic compartments and are temporally correlated with on-going, persistent gamma frequency oscillations. Their occurrence in the hippocampus is dependent on gap-junctional communication and it has been suggested that these high frequency oscillations originate as collective behaviour in populations of electrically coupled principal cell axonal compartments. Here we demonstrate that the superficial layers of medial entorhinal cortex can also generate high frequency oscillations associated with gamma rhythms. During persistent gamma frequency oscillations high frequency oscillations occur with a high bispectral coherence with the field gamma activity. Bursts of high frequency oscillations are temporally correlated with both the onset of compound excitatory postsynaptic potentials in fast-spiking interneurones and spikelet potentials in both pyramidal and stellate principal neurones. Both the gamma frequency and high frequency oscillations were attenuated by the gap junction blocker carbenoxolone. These data suggest that high frequency oscillations may represent the substrate for phasic drive to interneurones during persistent gamma oscillations in the medial entorhinal cortex. PMID:15254156

  1. Frequency-Temperature Compensation Techniques for High-Q Microwave Resonators

    NASA Astrophysics Data System (ADS)

    Hartnett, John G.; Tobar, Michael E.

    Low-noise high-stability resonator oscillators based on high-Q monolithic sapphire ``Whispering Gallery'' (WG)-mode resonators have become important devices for telecommunication, radar and metrological applications. The extremely high quality factor of sapphire, of 2 x10^5 at room temperature, 5 x10^7 at liquid nitrogen temperature and 5 x10^9 at liquid helium temperature has enabled the lowest phase noise and highly frequency-stable oscillators in the microwave regime to be constructed. To create an oscillator with exceptional frequency stability, the resonator must have its frequency-temperature dependence annulled at some temperature, as well as a high quality factor. The Temperature Coefficient of Permittivity (TCP) for sapphire is quite large, at 10-100parts per million/K above 77K. This mechanism allows temperature fluctuations to transform to resonator frequency fluctuations.A number of research groups worldwide have investigated various methods of compensating the TCP of a sapphire dielectric resonator at different temperatures. The usual electromagnetic technique of annulment involves the use of paramagnetic impurities contributing an opposite temperature coefficient of the magnetic susceptibility to the TCP. This technique has only been realized successfully in liquid helium environments. Near 4K the thermal expansion and permittivity effects are small and only small quantities of the paramagnetic ions are necessary to compensate the mode frequency. Compensation is due to impurity ions that were incidentally left over from the manufacturing process.Recently, there has been an effort to dispense with the need for liquid helium and make a compact flywheel oscillator for the new generation of primary frequency standards such as the cesium fountain at the Laboratoire Primaire du Temps et des Fréquences (LPTF), France. To achieve the stability limit imposed

  2. Automatic seizure detection in SEEG using high frequency activities in wavelet domain.

    PubMed

    Ayoubian, L; Lacoma, H; Gotman, J

    2013-03-01

    Existing automatic detection techniques show high sensitivity and moderate specificity, and detect seizures a relatively long time after onset. High frequency (80-500 Hz) activity has recently been shown to be prominent in the intracranial EEG of epileptic patients but has not been used in seizure detection. The purpose of this study is to investigate if these frequencies can contribute to seizure detection. The system was designed using 30 h of intracranial EEG, including 15 seizures in 15 patients. Wavelet decomposition, feature extraction, adaptive thresholding and artifact removal were employed in training data. An EMG removal algorithm was developed based on two features: Lack of correlation between frequency bands and energy-spread in frequency. Results based on the analysis of testing data (36 h of intracranial EEG, including 18 seizures) show a sensitivity of 72%, a false detection of 0.7/h and a median delay of 5.7 s. Missed seizures originated mainly from seizures with subtle or absent high frequencies or from EMG removal procedures. False detections were mainly due to weak EMG or interictal high frequency activities. The system performed sufficiently well to be considered for clinical use, despite the exclusive use of frequencies not usually considered in clinical interpretation. High frequencies have the potential to contribute significantly to the detection of epileptic seizures. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  3. Automatic seizure detection in SEEG using high frequency activities in wavelet domain

    PubMed Central

    Ayoubian, L.; Lacoma, H.; Gotman, J.

    2015-01-01

    Existing automatic detection techniques show high sensitivity and moderate specificity, and detect seizures a relatively long time after onset. High frequency (80–500 Hz) activity has recently been shown to be prominent in the intracranial EEG of epileptic patients but has not been used in seizure detection. The purpose of this study is to investigate if these frequencies can contribute to seizure detection. The system was designed using 30 h of intracranial EEG, including 15 seizures in 15 patients. Wavelet decomposition, feature extraction, adaptive thresholding and artifact removal were employed in training data. An EMG removal algorithm was developed based on two features: Lack of correlation between frequency bands and energy-spread in frequency. Results based on the analysis of testing data (36 h of intracranial EEG, including 18 seizures) show a sensitivity of 72%, a false detection of 0.7/h and a median delay of 5.7 s. Missed seizures originated mainly from seizures with subtle or absent high frequencies or from EMG removal procedures. False detections were mainly due to weak EMG or interictal high frequency activities. The system performed sufficiently well to be considered for clinical use, despite the exclusive use of frequencies not usually considered in clinical interpretation. High frequencies have the potential to contribute significantly to the detection of epileptic seizures. PMID:22647836

  4. Frequency quenching of microwave-induced resistance oscillations in a high-mobility two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Studenikin, S. A.; Sachrajda, A. S.; Gupta, J. A.; Wasilewski, Z. R.; Fedorych, O. M.; Byszewski, M.; Maude, D. K.; Potemski, M.; Hilke, M.; West, K. W.; Pfeiffer, L. N.

    2007-10-01

    The frequency dependence of microwave-induced resistance oscillations (MIROs) has been studied experimentally in high-mobility electron GaAs/AlGaAs structures to explore the limits at which these oscillations can be observed. It is found that in dc transport experiments at frequencies above 120GHz , MIROs start to quench, while above 230GHz , they completely disappear. The results will need to be understood theoretically but are qualitatively discussed within a model in which forced electronic charge oscillations (plasmons) play an intermediate role in the interaction process between the radiation and the single-particle electron excitations between Landau levels.

  5. Cannabinoid Receptors Mediate Methamphetamine Induction of High Frequency Gamma Oscillations in the Nucleus Accumbens

    PubMed Central

    Morra, Joshua T.; Glick, Stanley D.; Cheer, Joseph F.

    2012-01-01

    Patients suffering from amphetamine---induced psychosis display repetitive behaviors, partially alleviated by antipsychotics, which are reminiscent of rodent stereotypies. Due to recent evidence implicating endocannabinoid involvement in brain disorders, including psychosis, we studied the effects of endocannabinoid signaling on neuronal oscillations of rats exhibiting methamphetamine stereotypy. Neuronal network oscillations were recorded with multiple single electrode arrays aimed at the nucleus accumbens of freely moving rats. During the experiments, animals were dosed intravenously with the CB1 receptor antagonist rimonabant (0.3 mg/kg) or vehicle followed by an ascending dose regimen of methamphetamine (0.01, 0.1, 1, and 3 mg/kg; cumulative dosing). The effects of drug administration on stereotypy and local gamma oscillations were evaluated. Methamphetamine treatment significantly increased high frequency gamma oscillations (~ 80 Hz). Entrainment of a subpopulation of nucleus accumbens neurons to high frequency gamma was associated with stereotypy encoding in putative fast-spiking interneurons, but not in putative medium spiny neurons. The observed ability of methamphetamine to induce both stereotypy and high frequency gamma power was potently disrupted following CB1 receptor blockade. The present data suggest that CB1 receptor-dependent mechanisms are recruited by methamphetamine to modify striatal interneuron oscillations that accompany changes in psychomotor state, further supporting the link between endocannabinoids and schizophrenia spectrum disorders. PMID:22609048

  6. High frequency longitudinal profiling reveals hydrologic controls on solute sourcing, transport and processing in a karst river

    NASA Astrophysics Data System (ADS)

    Hensley, R. T.; Cohen, M. J.; Spangler, M.; Gooseff, M. N.

    2017-12-01

    The lower Santa Fe River is a large, karst river of north Florida, fed by numerous artesian springs and also containing multiple sink-rise systems. We performed repeated longitudinal profiles collecting very high frequency measurements of multiple stream parameters including temperature, dissolved oxygen, carbon dioxide, pH, dissolved organic matter, nitrate, ammonium, phosphate and turbidity. This high frequency dataset provided a spatially explicit understanding of solute sources and coupled biogeochemical processing rates along the 25 km study reach. We noted marked changes in river profiles as the river transitioned from low to high flow during the onset of the wet season. The role of lateral inflow from springs as the primary solute source was greatly reduced under high flow conditions. Effects of sink-rise systems, which under low flow conditions allow the majority of flow to bypass several kilometer long sections of the main channel, virtually disappeared under high flow conditions. Impeded light transmittance at high flow reduced primary production and by extension assimilatory nutrient uptake. This study demonstrates how high frequency longitudinal profiling can be used to observe how hydrologic conditions can alter groundwater-surface water interactions and modulate the sourcing, transport and biogeochemical processing of stream solutes.

  7. Providing hydrogen maser timing stability to orbiting VLBI radio telescope observations by post-measurement compensation of linked frequency standard imperfections

    NASA Astrophysics Data System (ADS)

    Springett, James C.

    1994-05-01

    Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later

  8. Providing hydrogen maser timing stability to orbiting VLBI radio telescope observations by post-measurement compensation of linked frequency standard imperfections

    NASA Technical Reports Server (NTRS)

    Springett, James C.

    1994-01-01

    Orbiting VLBI (OVLBI) astronomical observations are based upon measurements acquired simultaneously from ground-based and earth-orbiting radio telescopes. By the mid-1990s, two orbiting VLBI observatories, Russia's Radioastron and Japan's VSOP, will augment the worldwide VLBI network, providing baselines to earth radio telescopes as large as 80,000 km. The challenge for OVLBI is to effectuate space to ground radio telescope data cross-correlation (the observation) to a level of integrity currently achieved between ground radio telescopes. VLBI radio telescopes require ultrastable frequency and timing references in order that long term observations may be made without serious cross-correlation loss due to frequency source drift and phase noise. For this reason, such instruments make use of hydrogen maser frequency standards. Unfortunately, space-qualified hydrogen maser oscillators are currently not available for use on OVLBI satellites. Thus, the necessary long-term stability needed by the orbiting radio telescope may only be obtained by microwave uplinking a ground-based hydrogen maser derived frequency to the satellite. Although the idea of uplinking the frequency standard intrinsically seems simple, there are many 'contaminations' which degrade both the long and short term stability of the transmitted reference. Factors which corrupt frequency and timing accuracy include additive radio and electronic circuit thermal noise, slow or systematic phase migration due to changes of electronic circuit temporal operating conditions (especially temperature), ionosphere and troposphere induced scintillations, residual Doppler-incited components, and microwave signal multipath propagation. What is important, though, is to realize that ultimate stability does not have to be achieved in real-time. Instead, information needed to produce a high degree of coherence in the subsequent cross-correlation operation may be derived from a two-way coherent radio link, recorded and later

  9. Lateralization of high-frequency transposed stimuli under conditions of binaural interference

    NASA Astrophysics Data System (ADS)

    Bernstein, Leslie R.; Trahiotis, Constantine

    2005-04-01

    The purpose of this study was to determine whether binaural interference would occur if ITD-based extents of laterality were measured using high-frequency transposed stimuli as targets. The results of an earlier study [L. R. Bernstein and C. Trahiotis, J. Acoust. Soc. Am. 116, 3062-3069 (2004)], which focused on threshold-ITDs rather than extents of laterality, suggested that high-frequency transposed stimuli might be immune to binaural interference effects resulting from the addition of a spectrally-remote, low-frequency interferer. In contrast to the earlier findings, the data from this study indicate that high-frequency transposed targets can, indeed, be susceptible to binaural interference. High-frequency transposed targets, even when presented along with an interferer, yielded greater extents of ITD-based laterality than did Gaussian noise targets presented in isolation. That is, the enhanced potency of ITDs conveyed by transposed stimuli persisted even in the presence of a low-frequency interferer. Predictions made using an extension of the model of Heller and Trahiotis [L. M. Heller and C. Trahiotis, J. Acoust. Soc. Am. 99, 3632-3637 (1996)] accounted well for binaural interference obtained with conventional Gaussian noise targets but generally over-predicted the amounts of interference found with the transposed targets.

  10. Sequence stratigraphy and high-frequency cycles: New aspects for a quantitative evaluation of the Gulf of Suez basin, Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nio, S.D.; Yang, C.S.; Tewfik, N.

    1993-09-01

    A new development in the application of sequence stratigraphic concepts in marine as well as continental basins is the recognition of high-frequency cyclic patterns in rock successions in the subsurface. Studies of six wells from the northern, central, and southern parts of the Gulf of Suez show the presence of well-preserved, high-frequency cycles with periodicities similar to the orbitally forced Malankovitch parameters. Subsurface rock successions, third-order sequences, and high-frequency cycles were compared with outcrops. After establishing the biostratigraphic framework for the above-mentioned wells, a sequence analysis was performed. Sequence boundaries and maximum flooding positions in each well were calibrated withmore » the occurrences and evaluation of the high-frequency cycles. It became obvious that there is an intimate relationship between these high-frequency Milankovitch cycles and sequence organization. In addition, a close relationship can be observed in the subsurface as well as in outcrops between high-frequency climatic changes (connected to the Milankovitch cycles) and (litho)facies variability. Quantitative evaluations of each sequence and/or systems tract can be computed with the International Geoservices' cyclicity analysis tool (MILABAR). The results are summarized in a well composite chart, rate (NAR), and ratio of preserved time. In correlations between the wells, an accuracy of 500-100 Ka can be obtained. The quantitative evaluation of the sequence and high-frequency cycle analysis gave some new aspects concerning the (litho)facies and geodynamic development during the pre- as well as the synrift stages of the Gulf of Suez Basin.« less

  11. High-frequency seismic noise: Results of investigation in Kamchatka

    NASA Astrophysics Data System (ADS)

    Saltykov, V.; Chebrov, V.; Kugaenko, Yu.; Sinitsyn, V.

    The investigation of seismic noise in Kamchatka is carried out for the control of the medium stress condition and search of the strong earthquakes precursors. The main directions of this research are modulation of high-frequency seismic noise (HFSN, frequency range of the first tens of Hz, amplitudes about 10 -9-10 -12 m) by the Earth tides and temporal variations of HFSN parameters connected with the strong earthquake preparation. For reception of the statistically significant characteristics of HFSN and tides connection it was necessary to carry out long-term HFSN observations in points free from anthropogenous influence as far as possible. The station of HFSN observation was organized in the settlement Nachiky. The sensor is a narrow-band ( Q = 100) piezoelectric seismometer, tuned to frequency 30 Hz. Signal envelope is recorded and analyzed. The continuous HFSN registration was begun in 1990 and proceeds till now. In 2000 the second station was established in the complex geophysical observatory “Karymshina”. The HFSN sensor is set up in the borehole at the depth of 30 m. The research of HFSN structure gave the opportunity to allocate HFSN components connected with the Earth tides. Besides it was revealed that the tidal response is not stable in time: the intervals of the tidal component existence are replaced by intervals of its absence, correlation between tide and HFSN varies in time, while tides have constant parameters. We propose a hypothesis about the connection of variations of the tidal components in HFSN data with the tectonic conditions in region, and consequently, about an opportunity to use this phenomenon for the prediction of strong earthquakes. The phase of the HFSN component connected with a tidal wave O1 ( T = 25.8 h) was chosen as a parameter. The choice of wave O1 is connected with its greatest hindrance-immunity. It was shown that the stabilization of this phase is observed before earthquakes with M > 6.0, occurred at distances up to 250

  12. Data mining neocortical high-frequency oscillations in epilepsy and controls

    PubMed Central

    Stead, Matt; Krieger, Abba; Stacey, William; Maus, Douglas; Marsh, Eric; Viventi, Jonathan; Lee, Kendall H.; Marsh, Richard; Litt, Brian; Worrell, Gregory A.

    2011-01-01

    Transient high-frequency (100–500 Hz) oscillations of the local field potential have been studied extensively in human mesial temporal lobe. Previous studies report that both ripple (100–250 Hz) and fast ripple (250–500 Hz) oscillations are increased in the seizure-onset zone of patients with mesial temporal lobe epilepsy. Comparatively little is known, however, about their spatial distribution with respect to seizure-onset zone in neocortical epilepsy, or their prevalence in normal brain. We present a quantitative analysis of high-frequency oscillations and their rates of occurrence in a group of nine patients with neocortical epilepsy and two control patients with no history of seizures. Oscillations were automatically detected and classified using an unsupervised approach in a data set of unprecedented volume in epilepsy research, over 12 terabytes of continuous long-term micro- and macro-electrode intracranial recordings, without human preprocessing, enabling selection-bias-free estimates of oscillation rates. There are three main results: (i) a cluster of ripple frequency oscillations with median spectral centroid = 137 Hz is increased in the seizure-onset zone more frequently than a cluster of fast ripple frequency oscillations (median spectral centroid = 305 Hz); (ii) we found no difference in the rates of high frequency oscillations in control neocortex and the non-seizure-onset zone neocortex of patients with epilepsy, despite the possibility of different underlying mechanisms of generation; and (iii) while previous studies have demonstrated that oscillations recorded by parenchyma-penetrating micro-electrodes have higher peak 100–500 Hz frequencies than penetrating macro-electrodes, this was not found for the epipial electrodes used here to record from the neocortical surface. We conclude that the relative rate of ripple frequency oscillations is a potential biomarker for epileptic neocortex, but that larger prospective studies

  13. Data mining neocortical high-frequency oscillations in epilepsy and controls.

    PubMed

    Blanco, Justin A; Stead, Matt; Krieger, Abba; Stacey, William; Maus, Douglas; Marsh, Eric; Viventi, Jonathan; Lee, Kendall H; Marsh, Richard; Litt, Brian; Worrell, Gregory A

    2011-10-01

    Transient high-frequency (100-500 Hz) oscillations of the local field potential have been studied extensively in human mesial temporal lobe. Previous studies report that both ripple (100-250 Hz) and fast ripple (250-500 Hz) oscillations are increased in the seizure-onset zone of patients with mesial temporal lobe epilepsy. Comparatively little is known, however, about their spatial distribution with respect to seizure-onset zone in neocortical epilepsy, or their prevalence in normal brain. We present a quantitative analysis of high-frequency oscillations and their rates of occurrence in a group of nine patients with neocortical epilepsy and two control patients with no history of seizures. Oscillations were automatically detected and classified using an unsupervised approach in a data set of unprecedented volume in epilepsy research, over 12 terabytes of continuous long-term micro- and macro-electrode intracranial recordings, without human preprocessing, enabling selection-bias-free estimates of oscillation rates. There are three main results: (i) a cluster of ripple frequency oscillations with median spectral centroid = 137 Hz is increased in the seizure-onset zone more frequently than a cluster of fast ripple frequency oscillations (median spectral centroid = 305 Hz); (ii) we found no difference in the rates of high frequency oscillations in control neocortex and the non-seizure-onset zone neocortex of patients with epilepsy, despite the possibility of different underlying mechanisms of generation; and (iii) while previous studies have demonstrated that oscillations recorded by parenchyma-penetrating micro-electrodes have higher peak 100-500 Hz frequencies than penetrating macro-electrodes, this was not found for the epipial electrodes used here to record from the neocortical surface. We conclude that the relative rate of ripple frequency oscillations is a potential biomarker for epileptic neocortex, but that larger prospective studies correlating high-frequency

  14. High-frequency microrheology reveals cytoskeleton dynamics in living cells

    NASA Astrophysics Data System (ADS)

    Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix

    2017-08-01

    Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.

  15. High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films

    NASA Astrophysics Data System (ADS)

    Kim, Sang Woo; Yoon, Chong S.

    2007-09-01

    Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization.

  16. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications

    PubMed Central

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K. Kirk

    2011-01-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol–gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed. PMID:21720451

  17. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    PubMed

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  18. Risks and injuries in laser and high-frequency applications

    NASA Astrophysics Data System (ADS)

    Giering, K.; Philipp, Carsten M.; Berlien, Hans-Peter

    1995-01-01

    An analysis of injuries and risks using high frequency (HF) and lasers in medicine based on a literature search with MEDLINE was performed. The cases reported in the literature were classified according to the following criteria: (1) Avoidable in an optimal operational procedure. These kind of injuries are caused by a chain of unfortunate incidents. They are in principle avoidable by the 'right action at the right time' which presupposes an appropriate training of the operating team, selection of the optimal parameters for procedure and consideration of all safety instructions. (2) Avoidable, caused by malfunction of the equipment and/or accessories. The injuries classified into this group are avoidable if all safety regulations were fulfilled. This includes a pre-operational check-up and the use of medical lasers and high frequency devices only which meet the international safety standards. (3) Avoidable, caused by misuse/mistake. Injuries of this group were caused by an inappropriate selection of the procedure, wrong medical indication or mistakes during application. (4) Unavoidable, fateful. These injuries can be caused by risks inherent to the type of energy used, malfunction of the equipment and/or accessories though a pre-operational check-up was done. Some risks and complications are common to high frequency and laser application. But whereas these risks can be excluded easily in laser surgery there is often a great expenditure necessary or they are not avoidable if high frequency if used. No unavoidable risks due to laser energy occur.

  19. GaN transistors on Si for switching and high-frequency applications

    NASA Astrophysics Data System (ADS)

    Ueda, Tetsuzo; Ishida, Masahiro; Tanaka, Tsuyoshi; Ueda, Daisuke

    2014-10-01

    In this paper, recent advances of GaN transistors on Si for switching and high-frequency applications are reviewed. Novel epitaxial structures including superlattice interlayers grown by metal organic chemical vapor deposition (MOCVD) relieve the strain and eliminate the cracks in the GaN over large-diameter Si substrates up to 8 in. As a new device structure for high-power switching application, Gate Injection Transistors (GITs) with a p-AlGaN gate over an AlGaN/GaN heterostructure successfully achieve normally-off operations maintaining high drain currents and low on-state resistances. Note that the GITs on Si are free from current collapse up to 600 V, by which the drain current would be markedly reduced after the application of high drain voltages. Highly efficient operations of an inverter and DC-DC converters are presented as promising applications of GITs for power switching. The high efficiencies in an inverter, a resonant LLC converter, and a point-of-load (POL) converter demonstrate the superior potential of the GaN transistors on Si. As for high-frequency transistors, AlGaN/GaN heterojuction field-effect transistors (HFETs) on Si designed specifically for microwave and millimeter-wave frequencies demonstrate a sufficiently high output power at these frequencies. Output powers of 203 W at 2.5 GHz and 10.7 W at 26.5 GHz are achieved by the fabricated GaN transistors. These devices for switching and high-frequency applications are very promising as future energy-efficient electronics because of their inherent low fabrication cost and superior device performance.

  20. Frequency band enlargement of the penetrator seismometer and its application to moonquake observation

    NASA Astrophysics Data System (ADS)

    Yamada, Ryuhei; Nébut, Tanguy; Shiraishi, Hiroaki; Lognonné, Philippe; Kobayashi, Naoki; Tanaka, Satoshi

    2015-07-01

    Seismic data obtained over a broad frequency range are very useful in investigation of the internal structures of the Earth and other planetary bodies. However, planetary seismic data acquired through the NASA Apollo and Viking programs were obtained only over a very limited frequency range. To obtain effective seismic data over a broader frequency range on planetary surfaces, broadband seismometers suitable for planetary seismology must be developed. In this study, we have designed a new broadband seismometer based on a short-period seismometer whose resonant frequency is 1 Hz for future geophysical missions. The seismometer is of an electromagnetic type, light weight, small size and has good shock-durability, making it suitable for being loaded onto a penetrator, which is a small, hard-landing probe developed in the LUNAR-A Project, a previous canceled mission. We modified the short-period seismometer so as to have a flat frequency response above about 0.1 Hz and the detection limit could be lowered to cover frequencies below the frequency. This enlargement of the frequency band will allow us to investigate moonquakes for lower frequency components in which waveforms are less distorted because strong scattering due to fractured structures near the lunar surface is likely to be suppressed. The modification was achieved simply by connecting a feedback circuit to the seismometer, without making any mechanical changes to the short-period sensor. We have confirmed that the broadband seismometer exhibits the frequency response as designed and allows us to observe long-period components of small ground motions. Methods to improve the performance of the broadband seismometer from the current design are also discussed. These developments should promise to increase the opportunity for application of this small and tough seismometer in various planetary seismological missions.

  1. High harmonic emission from a superposition of multiple unrelated frequency fields.

    PubMed

    Siegel, T; Torres, R; Hoffmann, D J; Brugnera, L; Procino, I; Zaïr, A; Underwood, Jonathan G; Springate, E; Turcu, I C E; Chipperfield, L E; Marangos, J P

    2010-03-29

    We report observations and analysis of high harmonic generation driven by a superposition of fields at 1290 nm and 780 nm. These fields are not commensurate in frequency and the superposition leads to an increase in the yield of the mid-plateau harmonics of more than two orders of magnitude compared to using the 1290 nm field alone. Significant extension of the cut-off photon energy is seen even by adding only a small amount of the 780 nm field. These observations are explained by calculations performed in the strong field approximation. Most importantly we find that enhancement is found to arise as a consequence of both increased ionization in the sum-field and modification of the electron trajectories leading to an earlier return time. The enhanced yield even when using modest intensity fields of 5 x 10(13) Wcm(-2) is extended to the 80 eV range and is a promising route to provide a greater photon number for applications in XUV imaging and time-resolved experiments at a high repetition rate.

  2. Developments of high frequency and intensity stabilized lasers for space gravitational wave detector DECIGO/B-DECIGO

    NASA Astrophysics Data System (ADS)

    Suemasa, Aru; Shimo-oku, Ayumi; Nakagawa, Ken'ichi; Musha, Mitsuru

    2017-12-01

    In Japan, not only the ground-based gravitational wave (GW) detector mission KAGRA but also the space GW detector mission DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) and its milestone mission B-DECIGO have been promoted. The designed strain sensitivity of DECIGO and B-DECIGO are δL/ L < 10-23. Since the GW detector requires high power and highly-stable light source, we have developed the light source with high frequency and intensity stability for DECIGO and B-DECIGO. The frequency of the Yb-doped fiber DFB lasers are stabilized to the iodine saturated absorption at 515 nm, and the intensity of the laser at 1 Hz (observation band) is stabilized by controlling the pump source of an Yb-doped fiber amplifier. The intensity of the laser at 200 kHz (modulation band) is also stabilized using an acousto-optic modulator to improve the frequency stability of the laser. In the consequences, we obtain the frequency stability of δf = 0.4 Hz/√Hz (in-loop) at 1 Hz, and the intensity stability of δI/ I = 1.2 × 10-7/√Hz (out-of-loop) and δI/I = 1.5 × 10-7/√Hz (in-loop) at 1 Hz and 200 kHz, respectively.

  3. A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm

    NASA Astrophysics Data System (ADS)

    Stappel, M.; Steinborn, R.; Kolbe, D.; Walz, J.

    2013-07-01

    We present a high power single-frequency ytterbium fiber amplifier system with an output power of 30 W at 1091 nm. The amplifier system consists of two stages, a preamplifier stage in which amplified spontaneous emission is efficiently suppressed (>40 dB) and a high power amplifier with an efficiency of 52%. Two different approaches to frequency doubling are compared. We achieve 8.6 W at 545.5 nm by single-pass frequency doubling in a MgO-doped periodically poled stoichiometric LiTaO3 crystal and up to 19.3 W at 545.5 nm by frequency doubling with a lithium-triborate crystal in an external enhancement cavity.

  4. The frequency and distribution of high-velocity gas in the Galaxy

    NASA Technical Reports Server (NTRS)

    Nichols, Joy S.

    1995-01-01

    The purpose of this study was to estimate the frequency and distribution of high-velocity gas in the Galaxy using UV absorption line measurements from archival high-dispersion IUE spectra and to identify particularly interesting regions for future study. Approximately 500 spectra have been examined. The study began with the creation of a database of all 0 and B stars with b less than or = to 30 deg observed with IUE at high dispersion over its 18-year lifetime. The original database of 2500 unique objects was reduced to 1200 objects which had optimal exposures available. The next task was to determine the distances of these stars so the high-velocity structures could be mapped in the Galaxy. Spectroscopic distances were calculated for each star for which photometry was available. The photometry was acquired for each star using the SIMBAD database. Preference was given to the ubvy system where available; otherwise the UBV system was used.

  5. Observation of millimeter-wave oscillations from resonant tunneling diodes and some theoretical considerations of ultimate frequency limits

    NASA Technical Reports Server (NTRS)

    Sollner, T. C. L. G.; Brown, E. R.; Goodhue, W. D.; Le, H. Q.

    1987-01-01

    Recent observations of oscillation frequencies up to 56 GHz in resonant tunneling structures are discussed in relation to calculations by several authors of the ultimate frequency limits of these devices. It is found that calculations relying on the Wentzel-Kramers-Brillouin (WKB) approximation give limits well below the observed oscillation frequencies. Two other techniques for calculating the upper frequency limit were found to give more reasonable results. One method employs the solution of the time-dependent Schroedinger equation obtained by Kundrotas and Dargys (1986); the other uses the energy width of the transmission function for electrons through the double-barrier structure. This last technique is believed to be the most accurate since it is based on general results for the lifetime of any resonant state. It gives frequency limits on the order of 1 THz for two recently fabricated structures. It appears that the primary limitation of the oscillation frequency for double-barrier resonant-tunneling diodes is imposed by intrinsic device circuit parameters and by the transit time of the depletion layer rather than by time delays encountered in the double-barrier region.

  6. High-precision coseismic displacement estimation with a single-frequency GPS receiver

    NASA Astrophysics Data System (ADS)

    Guo, Bofeng; Zhang, Xiaohong; Ren, Xiaodong; Li, Xingxing

    2015-07-01

    To improve the performance of Global Positioning System (GPS) in the earthquake/tsunami early warning and rapid response applications, minimizing the blind zone and increasing the stability and accuracy of both the rapid source and rupture inversion, the density of existing GPS networks must be increased in the areas at risk. For economic reasons, low-cost single-frequency receivers would be preferable to make the sparse dual-frequency GPS networks denser. When using single-frequency GPS receivers, the main problem that must be solved is the ionospheric delay, which is a critical factor when determining accurate coseismic displacements. In this study, we introduce a modified Satellite-specific Epoch-differenced Ionospheric Delay (MSEID) model to compensate for the effect of ionospheric error on single-frequency GPS receivers. In the MSEID model, the time-differenced ionospheric delays observed from a regional dual-frequency GPS network to a common satellite are fitted to a plane rather than part of a sphere, and the parameters of this plane are determined by using the coordinates of the stations. When the parameters are known, time-differenced ionospheric delays for a single-frequency GPS receiver could be derived from the observations of those dual-frequency receivers. Using these ionospheric delay corrections, coseismic displacements of a single-frequency GPS receiver can be accurately calculated based on time-differenced carrier-phase measurements in real time. The performance of the proposed approach is validated using 5 Hz GPS data collected during the 2012 Nicoya Peninsula Earthquake (Mw 7.6, 2012 September 5) in Costa Rica. This shows that the proposed approach improves the accuracy of the displacement of a single-frequency GPS station, and coseismic displacements with an accuracy of a few centimetres are achieved over a 10-min interval.

  7. Runoff-generated debris flows: observations and modeling of surge initiation, magnitude, and frequency

    USGS Publications Warehouse

    Kean, Jason W.; McCoy, Scott W.; Tucker, Gregory E.; Staley, Dennis M.; Coe, Jeffrey A.

    2013-01-01

    Runoff during intense rainstorms plays a major role in generating debris flows in many alpine areas and burned steeplands. Yet compared to debris flow initiation from shallow landslides, the mechanics by which runoff generates a debris flow are less understood. To better understand debris flow initiation by surface water runoff, we monitored flow stage and rainfall associated with debris flows in the headwaters of two small catchments: a bedrock-dominated alpine basin in central Colorado (0.06 km2) and a recently burned area in southern California (0.01 km2). We also obtained video footage of debris flow initiation and flow dynamics from three cameras at the Colorado site. Stage observations at both sites display distinct patterns in debris flow surge characteristics relative to rainfall intensity (I). We observe small, quasiperiodic surges at low I; large, quasiperiodic surges at intermediate I; and a single large surge followed by small-amplitude fluctuations about a more steady high flow at high I. Video observations of surge formation lead us to the hypothesis that these flow patterns are controlled by upstream variations in channel slope, in which low-gradient sections act as “sediment capacitors,” temporarily storing incoming bed load transported by water flow and periodically releasing the accumulated sediment as a debris flow surge. To explore this hypothesis, we develop a simple one-dimensional morphodynamic model of a sediment capacitor that consists of a system of coupled equations for water flow, bed load transport, slope stability, and mass flow. This model reproduces the essential patterns in surge magnitude and frequency with rainfall intensity observed at the two field sites and provides a new framework for predicting the runoff threshold for debris flow initiation in a burned or alpine setting.

  8. High-frequency voltage oscillations in cultured astrocytes

    PubMed Central

    Fleischer, Wiebke; Theiss, Stephan; Slotta, Johannes; Holland, Christine; Schnitzler, Alfons

    2015-01-01

    Because of their close interaction with neuronal physiology, astrocytes can modulate brain function in multiple ways. Here, we demonstrate a yet unknown astrocytic phenomenon: Astrocytes cultured on microelectrode arrays (MEAs) exhibited extracellular voltage fluctuations in a broad frequency spectrum (100–600 Hz) after electrical stimulation. These aperiodic high-frequency oscillations (HFOs) could last several seconds and did not spread across the MEA. The voltage-gated calcium channel antagonist cilnidipine dose-dependently decreased the power of the oscillations. While intracellular calcium was pivotal, incubation with bafilomycin A1 showed that vesicular release of transmitters played only a minor role in the emergence of HFOs. Gap junctions and volume-regulated anionic channels had just as little functional impact, which was demonstrated by the addition of carbenoxolone (100 μmol/L) and NPPB (100 μmol/L). Hyperpolarization with low potassium in the extracellular solution (2 mmol/L) dramatically raised oscillation power. A similar effect was seen when we added extra sodium (+50 mmol/L) or if we replaced it with NMDG+ (50 mmol/L). The purinergic receptor antagonist PPADS suppressed the oscillation power, while the agonist ATP (100 μmol/L) had only an increasing effect when the bath solution pH was slightly lowered to pH 7.2. From these observations, we conclude that astrocytic voltage oscillations are triggered by activation of voltage-gated calcium channels and driven by a downstream influx of cations through channels that are permeable for large ions such as NMDG+. Most likely candidates are subtypes of pore-forming P2X channels with a low affinity for ATP. PMID:25969464

  9. Solar burst with millimetre-wave emission at high frequency only

    NASA Technical Reports Server (NTRS)

    Kaufmann, P.; Correia, E.; Costa, J. E. R.; Vaz, A. M. Z.; Dennis, B. R.

    1985-01-01

    The first high sensitivity and high time-resolution observations of a solar burst taken simultaneously at 90 GHz and at 30 GHz are presented. These identify a unique impulsive burst on May 21, 1984 with fast pulsed emission that was considerably more intense at 90 GHz than at lower frequencies. Hard X-ray time structures at energies above 25 keV were almost identical to the 90 GHz structures to better than 1 s. The structure of the onset of the major 90 GHz burst coincided with the hard X-ray structure to within 128 ms. All 90 GHz major time structures consisted of trains of multiple subsecond pulses with rise times as short as 0.03 s and amplitudes that were large compared with the mean flux. When detectable, the 30 GHz subsecond pulses had smaller relative amplitude and were in phase with the corresponding 90 GHz pulses.

  10. Real-time, high frequency QRS electrocardiograph with reduced amplitude zone detection

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2009-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as ''RAZs''. RAZs are displayed as ''go, no-go'' signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  11. High-frequency tone-pip-evoked otoacoustic emissions in chinchillas

    NASA Astrophysics Data System (ADS)

    Siegel, Jonathan H.; Charaziak, Karolina K.

    2015-12-01

    We measured otoacoustic emissions in anesthetized chinchillas evoked by short (1 ms) high-frequency (4 kHz) tone-pips (TEOAE) using either a compression or suppression method to separate the stimulus from the emission. Both methods revealed consistent features of the TEOAEs. The main spectral band of the emission generally corresponded to the spectrum of the stimulus, exhibiting a group delay similar to that of SFOAEs [9]. However, a second spectral band below 1.5 kHz, clearly separated from the low-frequency cut-off frequency of the stimulus spectrum, corresponded to an amplitude modulation of the waveform of the TEOAE. The group delay of this low-frequency band was similar to that of the main band near the probe frequency. The average level and group delay of the main band declined monotonically when revealed as the suppressor frequency was raised above the probe. The low-frequency band was more sensitive than the main band to shifts in compound action potential thresholds near the probe frequency induced by acute exposure to intense tones. Taken together, the experiments indicate that both the main and low-frequency bands of the TEOAE are generated primarily near the cochlear region maximally stimulated by the probe, but that significant contributions arise over a large region even more basal.

  12. Research for the jamming mechanism of high-frequency laser to the laser seeker

    NASA Astrophysics Data System (ADS)

    Zheng, Xingyuan; Zhang, Haiyang; Wang, Yunping; Feng, Shuang; Zhao, Changming

    2013-08-01

    High-frequency laser will be able to enter the enemy laser signal processing systems without encoded identification and a copy. That makes it one of the research directions of new interference sources. In order to study the interference mechanism of high-frequency laser to laser guided weapons. According to the principle of high-frequency laser interference, a series of related theoretical models such as a semi-active laser seeker coded identification model, a time door model, multi-signal processing model and a interference signal modulation processing model are established. Then seeker interfere with effective 3σ criterion is proposed. Based on this, the study of the effect of multi-source interference and signal characteristics of the effect of high repetition frequency laser interference are key research. According to the simulation system testing, the results show that the multi-source interference and interference signal frequency modulation can effectively enhance the interference effect. While the interference effect of the interference signal amplitude modulation is not obvious. The research results will provide the evaluation of high-frequency laser interference effect and provide theoretical references for high-frequency laser interference system application.

  13. Nanolaminated Permalloy Core for High-Flux, High-Frequency Ultracompact Power Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Kim, M; Galle, P

    2013-09-01

    Metallic magnetic materials have desirable magnetic properties, including high permeability, and high saturation flux density, when compared with their ferrite counterparts. However, eddy-current losses preclude their use in many switching converter applications, due to the challenge of simultaneously achieving sufficiently thin laminations such that eddy currents are suppressed (e.g., 500 nm-1 mu m for megahertz frequencies), while simultaneously achieving overall core thicknesses such that substantial power can be handled. A CMOS-compatible fabrication process based on robot-assisted sequential electrodeposition followed by selective chemical etching has been developed for the realization of a core of substantial overall thickness (tens to hundreds ofmore » micrometers) comprised of multiple, stacked permalloy (Ni80Fe20) nanolaminations. Tests of toroidal inductors with nanolaminated cores showed negligible eddy-current loss relative to total core loss even at a peak flux density of 0.5 T in the megahertz frequency range. To illustrate the use of these cores, a buck power converter topology is implemented with switching frequencies of 1-2 MHz. Power conversion efficiency greater than 85% with peak operating flux density of 0.3-0.5 T in the core and converter output power level exceeding 5 W was achieved.« less

  14. Formation of ultracold molecules induced by a high-power single-frequency fiber laser

    NASA Astrophysics Data System (ADS)

    Fernandes Passagem, Henry; Colín-Rodríguez, Ricardo; Ventura da Silva, Paulo Cesar; Bouloufa-Maafa, Nadia; Dulieu, Olivier; Marcassa, Luis Gustavo

    2017-02-01

    The influence of a high-power single-frequency fiber laser on the formation of ultracold 85Rb2 molecules is investigated as a function of its frequency (in the 1062-1070 nm range) in a magneto-optical trap. We find evidence for the formation of ground-state 85Rb2 molecules in low vibrational levels (v≤slant 20) with a maximal rate of 104 s-1, induced by short-range photoassociation by the fiber laser followed by spontaneous emission. When this laser is used to set up a dipole trap, we measure an atomic loss rate at a wavelength far from the PA resonances, only four times smaller than that observed at a PA resonance wavelength. This work may have important consequences for atom trapping using lasers around the conventional 1064 nm wavelength.

  15. High frequency plasma generator for ion thrusters

    NASA Technical Reports Server (NTRS)

    Goede, H.; Divergilio, W. F.; Fosnight, V. V.; Komatsu, G.

    1984-01-01

    The results of a program to experimentally develop two new types of plasma generators for 30 cm electrostatic argon ion thrusters are presented. The two plasma generating methods selected for this study were by radio frequency induction (RFI), operating at an input power frequency of 1 MHz, and by electron cyclotron heating (ECH) at an operating frequency of 5.0 GHz. Both of these generators utilize multiline cusp permanent magnet configurations for plasma confinement and beam profile optimization. The program goals were to develop a plasma generator possessing the characteristics of high electrical efficiency (low eV/ion) and simplicity of operation while maintaining the reliability and durability of the conventional hollow cathode plasma sources. The RFI plasma generator has achieved minimum discharge losses of 120 eV/ion while the ECH generator has obtained 145 eV/ion, assuming a 90% ion optical transparency of the electrostatic acceleration system. Details of experimental tests with a variety of magnet configurations are presented.

  16. High-Frequency Mapping of the IPV6 Internet Using YARRP

    DTIC Science & Technology

    2017-03-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA APPLIED CYBER OPERATIONS CAPSTONE PROJECT REPORT HIGH -FREQUENCY MAPPING OF THE IPV6 INTERNET USING...03-30-2017 4. TITLE AND SUBTITLE HIGH -FREQUENCY MAPPING OF THE IPV6 INTERNET USING YARRP 5. FUNDING NUMBERS RCKHX 6. AUTHOR(S) Eric W. Gaston 7...the U.S. Government. IRB Protocol Number: N/A. 12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release. Distribution is unlimited. 12b

  17. Long-term spectral and temporal behavior of the high-frequency peaked BL LAC object 1ES 1959+650

    NASA Astrophysics Data System (ADS)

    Backes, M.; Uellenbeck, M.; Hayashida, M.; Satalecka, K.; Tescaro, D.; Terzić, T.; MAGIC Collaboration; Fuhrmann, L.; Nestoras, I.; F-GAMMA project; Lähteenmäki, A.; Tornikoski, M.; Nieppola, E.; Metsähovi; Böttcher, M.; Collmar, W.; Weidinger, M.

    2012-12-01

    The high-frequency peaked BL Lac object 1ES 1959+650 is well-known for an exceptional outburst, which was observed at very high energy (VHE) γ-rays by the Whipple 10m and HEGRA telescopes in 2002. Remarkably, this outburst lacked associated X-ray emission (a socalled "orphan flare") and by this cannot easily be described by standard Synchrotron Self Compton (SSC) models. Models based on hadronic emission processes have also been proposed to explain the observed behavior. Subsequent multi-wavelength observations during a low flux state at TeV energies in 2006 can, instead, be explained by a standard single-zone SSC model. In this context, 1ES 1959+650 has been regularly monitored by the MAGIC telescope since 2005. During these years, no significant variation in the VHE γ-ray flux has been observed. The low energy part of this is in very good agreement with the high-energy part of the time-integrated energy spectrum as measured by Fermi-LAT. Based on this constant flux level in VHE γ-rays, we assembled the time-integrated spectral energy distribution (SED) of 1ES 1959+650 from radio to VHE γ-rays. Despite the non-variability at very high energies, significant flux and spectral variations have been observed at optical and X-ray frequencies in the meanwhile. Furthermore, the shape of the SED at high energy γ-rays as measured by Fermi-LAT is essentially flat which cannot be explained by either conventional single-zone SSC models, or models invoking external radiation fields (EC).

  18. High-frequency Plasma Waves Associated with Magnetic Reconnection in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Activities of high-frequency plasma waves associated with magnetic reconnection in the solar wind observed by Time Domain Sampler (TDS) experiments on STEREO/WAVES are preliminarily analyzed. The TDS instrument can provide burst mode electric fields data with as long as 16384 sample points at 250 kHz sampling rate. In all 1120 suspected reconnection events, it is found that the most commonly occurred waves are neither ion acoustic waves, electrostatic solitary waves, nor Langmuir/upper hybrid waves, but Bernstein-like waves with harmonics of the electron cyclotron frequency. In addition, to each type of waves, Langmuir/upper hybrid waves reveal the largest occurrence rate in the reconnection region than in the ambient solar wind. These results indicate that Bernstein-like waves and Langmuir/upper hybrid waves might play important roles in the reconnection associated particle heating processes and they might also influence the dissipation of magnetic reconnection.

  19. Morphology of human sweat ducts observed by optical coherence tomography and their frequency of resonance in the terahertz frequency region

    NASA Astrophysics Data System (ADS)

    Tripathi, Saroj R.; Miyata, Eisuke; Ishai, Paul Ben; Kawase, Kodo

    2015-03-01

    It is crucial to understand the various biological effects induced by terahertz (THz) electromagnetic waves with the rapid development of electronic and photonic devices operating in the THz frequency region. The presence of sweat glands plays an important role in THz wave interactions with human skin. We investigated the morphological features of sweat ducts using optical coherence tomography (OCT) to further understand such phenomena. We observed remarkable features of the ducts, such as their clear helical structure. The intersubject and intrasubject variations in the diameter of sweat ducts were considerably smaller than the variations in other structural parameters, such as length and number of turns. Based on the sweat duct dimensions and THz dielectric properties of skin measured using terahertz time-domain spectroscopy (THz-TDS), we calculated the resonating frequency of the sweat duct under the assumption of it functioning as a helical antenna. Here, we show that the resonance frequency in the axial mode of operation lies in the THz wave region with a centre frequency of 0.44 +/- 0.07 THz. We expect that these findings will further our understanding of the various health consequences of the interaction of THz waves with human beings.

  20. ESTIMATING THE RADIUS OF THE CONVECTIVE CORE OF MAIN-SEQUENCE STARS FROM OBSERVED OSCILLATION FREQUENCIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wuming, E-mail: yangwuming@bnu.edu.cn, E-mail: yangwuming@ynao.ac.cn

    The determination of the size of the convective core of main-sequence stars is usually dependent on the construction of models of stars. Here we introduce a method to estimate the radius of the convective core of main-sequence stars with masses between about 1.1 and 1.5 M {sub ⊙} from observed frequencies of low-degree p -modes. A formula is proposed to achieve the estimation. The values of the radius of the convective core of four known stars are successfully estimated by the formula. The radius of the convective core of KIC 9812850 estimated by the formula is 0.140 ± 0.028 Rmore » {sub ⊙}. In order to confirm this prediction, a grid of evolutionary models was computed. The value of the convective-core radius of the best-fit model of KIC 9812850 is 0.149 R {sub ⊙}, which is in good agreement with that estimated by the formula from observed frequencies. The formula aids in understanding the interior structure of stars directly from observed frequencies. The understanding is not dependent on the construction of models.« less

  1. Planck 2013 results. VI. High Frequency Instrument data processing

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bowyer, J. W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marleau, F.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melot, F.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    Wedescribe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857GHz with an angular resolution ranging from 9.´7 to 4.´6. The detector noise per (effective) beam solid angle is respectively, 10, 6 , 12, and 39 μK in the four lowest HFI frequency channels (100-353GHz) and 13 and 14 kJy sr-1 in the 545 and 857 GHz channels. Relative to the 143 GHz channel, these two high frequency channels are calibrated to within 5% and the 353 GHz channel to the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 <ℓ < 2500), are calibrated relative to 143 GHz to better than 0.2%.

  2. An integrated signal conditioner for high-frequency inductive position sensors

    NASA Astrophysics Data System (ADS)

    Rahal, Mohamad; Demosthenous, Andreas

    2010-01-01

    This paper describes the design, implementation and evaluation of a signal conditioner application-specific integrated circuit (ASIC) for high-frequency inductive non-contact position sensors. These sensors employ a radio frequency technology based on an antenna planar arrangement and a resonant target, have a high inherent resolution (0.1% of antenna length) and can measure target position over a wide distance range (<0.1 mm to >10 m). However, due to the relatively high-frequency excitation (1 MHz typically) and to the specific layouts of these sensors, there is unwanted capacitive coupling between the transmitter and receiver coils; this type of distortion reduces linearity and resolution. The ASIC, which is the first generation of its kind for this type of sensor, employs a differential mixer topology which suppresses the capacitive coupling offsets. The system architecture and circuit details are presented. The ASIC was fabricated in a 0.6 µm high-voltage CMOS technology occupying an area of 8 mm2. It dissipates about 30 mA from a 24 V power supply. The ASIC was tested with a high-frequency inductive position sensor (with an antenna length of 10.8 cm). The measured input-referred offset due to transmitter crosstalk is on average about 22 µV over a wide phase difference variation (-99° to +117°) between the transmitter and demodulating signals.

  3. Interaural time sensitivity of high-frequency neurons in the inferior colliculus.

    PubMed

    Yin, T C; Kuwada, S; Sujaku, Y

    1984-11-01

    Recent psychoacoustic experiments have shown that interaural time differences provide adequate cues for lateralizing high-frequency sounds, provided the stimuli are complex and not pure tones. We present here physiological evidence in support of these findings. Neurons of high best frequency in the cat inferior colliculus respond to interaural phase differences of amplitude modulated waveforms, and this response depends upon preservation of phase information of the modulating signal. Interaural phase differences were introduced in two ways: by interaural delays of the entire waveform and by binaural beats in which there was an interaural frequency difference in the modulating waveform. Results obtained with these two methods are similar. Our results show that high-frequency cells can respond to interaural time differences of amplitude modulated signals and that they do so by a sensitivity to interaural phase differences of the modulating waveform.

  4. How High Frequency Trading Affects a Market Index

    PubMed Central

    Kenett, Dror Y.; Ben-Jacob, Eshel; Stanley, H. Eugene; gur-Gershgoren, Gitit

    2013-01-01

    The relationship between a market index and its constituent stocks is complicated. While an index is a weighted average of its constituent stocks, when the investigated time scale is one day or longer the index has been found to have a stronger effect on the stocks than vice versa. We explore how this interaction changes in short time scales using high frequency data. Using a correlation-based analysis approach, we find that in short time scales stocks have a stronger influence on the index. These findings have implications for high frequency trading and suggest that the price of an index should be published on shorter time scales, as close as possible to those of the actual transaction time scale. PMID:23817553

  5. A high-performance Hg(+) trapped ion frequency standard

    NASA Technical Reports Server (NTRS)

    Prestage, J. D.; Tjoelker, R. L.; Dick, G. J.; Maleki, L.

    1992-01-01

    A high-performance frequency standard based on (199)Hg(+) ions confined in a hybrid radio frequency (RF)/dc linear ion trap is demonstrated. This trap permits storage of large numbers of ions with reduced susceptibility to the second-order Doppler effect caused by the RF confining fields. A 160-mHz-wide atomic resonance line for the 40.5-GHz clock transition is used to steer the output of a 5-mHz crystal oscillator to obtain a stability of 2 x 10(exp -15) for 24,000-second averaging times. Measurements with a 37-mHz line width for the Hg(+) clock transition demonstrate that the inherent stability for this frequency standard is better than 1 x 10(exp -15) at 10,000-second averaging times.

  6. A New Real-Time Cycle Slip Detection and Repair Method under High Ionospheric Activity for a Triple-Frequency GPS/BDS Receiver.

    PubMed

    Liu, Wanke; Jin, Xueyuan; Wu, Mingkui; Hu, Jie; Wu, Yun

    2018-02-01

    Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data.

  7. A New Real-Time Cycle Slip Detection and Repair Method under High Ionospheric Activity for a Triple-Frequency GPS/BDS Receiver

    PubMed Central

    Liu, Wanke; Wu, Mingkui; Hu, Jie; Wu, Yun

    2018-01-01

    Cycle slip detection and repair is a prerequisite for high-precision global navigation satellite system (GNSS)-based positioning. With the modernization and development of GNSS systems, more satellites are available to transmit triple-frequency signals, which allows the introduction of additional linear combinations and provides new opportunities for cycle slip detection and repair. In this paper, we present a new real-time cycle slip detection and repair method under high ionospheric activity for undifferenced Global Positioning System (GPS)/BeiDou Navigation Satellite System (BDS) triple-frequency observations collected with a single receiver. First, three optimal linearly independent geometry-free pseudorange minus phase combinations are selected to correctly and uniquely determine the cycle slips on the original triple-frequency carrier phase observations. Then, a second-order time-difference algorithm is employed for the pseudorange minus phase combinations to mitigate the impact of between-epoch ionospheric residuals on cycle slip detection, which is especially beneficial under high ionospheric activity. The performance of the approach is verified with static GPS/BDS triple-frequency observations that are collected with a 30 s sampling interval under active ionospheric conditions, and observations are manually inserted with simulated cycle slips. The results show that the method can correctly detect and repair cycle slips at a resolution as small as 1 cycle. Moreover, kinematic data collected from car-driven and airborne experiments are also processed to verify the performance of the method. The experimental results also demonstrate that the method is effective in processing kinematic data. PMID:29389879

  8. Relationship between low and high frequencies in the \\delta Scuti star KIC 9764965

    NASA Astrophysics Data System (ADS)

    Rostopchina, A.; Breger, M.

    2014-10-01

    Two years of Kepler spacecraft data of the \\delta Sct/\\gamma Dor star KIC 9764965 revealed 67 statistically significant frequencies from 0.45 to 59.17 c d-1 (0.005 to 0.685 mHz). The 19 low frequencies do not show equidistant period spacing predicted for gravity modes of successive radial order. We note a favored frequency spacing of 2.053 c d-1 that appears in both the low-frequency (gravity mode) region and high-frequency (pressure mode) regions. The value of this frequency spacing also occurs as a dominant low frequency and in a high-frequency triplet. A peak at exactly twice the value of the 2.053 c d-1 mode is shown not to be a Fourier harmonic of the low-frequency peak due to a different amplitude variability. This behavior is also seen in other \\delta Sct stars. The test for resonant mode coupling between low and high frequencies could not be carried out due to the small amplitudes of the peaks, making it difficult to separate the parent and child modes.

  9. Regional High-Frequency Stratigraphic Cyclicity Analysis of the Upper Cretaceous Juana Lopez Member of the Mancos Shale, New Mexico

    NASA Astrophysics Data System (ADS)

    Wiercigroch, M.; Bhattacharya, J.

    2017-12-01

    The Earth is considered to have been in a "greenhouse state" during the Cretaceous Period. High-frequency sedimentary cycles are observed throughout the Cretaceous section of the Western Interior Seaway. Even though this warm Cretaceous climate suggests an ice-free planet Earth, there has been much debate as to whether the observed high-frequency sedimentary cycles are climate-driven Milankovitch-scale cycles that would suggest glaciers during the Cretaceous Period. This study tests the hypothesis of a glacio-eustatic origin of high-frequency cyclicity in the Turonian Juana Lopez Member of the Mancos Shale in the San Juan Basin, New Mexico. Data for this study was obtained from two stratigraphic measured sections which are 3.2 km apart, and located southwest of Shiprock. The two sections are found approximately 60 km away from the Turonian shoreline in an offshore marine environment. A high-resolution thin bed facies analysis on both sections reveals the Juana Lopez to be deposited in a fluvial-dominated, mixed wave- and fluvial-influenced environment. The Juana Lopez is shown to be an overall coarsening-upward sequence, displaying a shallowing regressive environment. Correlations between the two sections reveal 13 correlated parasequences identified through the violation of Walther's Law. An average cyclicity frequency of ca 90 kyr was determined for the sequences by bracketing the Inocermus dimidus and Scaphites whitfieldi biostratigraphic zones within the Juana Lopez sections. This cyclicity represents short eccentricity Milankovitch cycles. Many studies have confirmed that the observed Milankovitch-scaled cyclicity in the Cretaceous must be controlled by glacio-eustasy. With similar Milankovitch cyclicity found in the Juana Lopez, the short eccentricity Milankovitch cycles are interpreted as being glacio-eustatic in origin, which supports the presence of ice in the Cretaceous Period.

  10. A low-frequency wave motion mechanism enables efficient energy transport in carbon nanotubes at high heat fluxes.

    PubMed

    Zhang, Xiaoliang; Hu, Ming; Poulikakos, Dimos

    2012-07-11

    The great majority of investigations of thermal transport in carbon nanotubes (CNTs) in the open literature focus on low heat fluxes, that is, in the regime of validity of the Fourier heat conduction law. In this paper, by performing nonequilibrium molecular dynamics simulations we investigated thermal transport in a single-walled CNT bridging two Si slabs under constant high heat flux. An anomalous wave-like kinetic energy profile was observed, and a previously unexplored, wave-dominated energy transport mechanism is identified for high heat fluxes in CNTs, originated from excited low frequency transverse acoustic waves. The transported energy, in terms of a one-dimensional low frequency mechanical wave, is quantified as a function of the total heat flux applied and is compared to the energy transported by traditional Fourier heat conduction. The results show that the low frequency wave actually overtakes traditional Fourier heat conduction and efficiently transports the energy at high heat flux. Our findings reveal an important new mechanism for high heat flux energy transport in low-dimensional nanostructures, such as one-dimensional (1-D) nanotubes and nanowires, which could be very relevant to high heat flux dissipation such as in micro/nanoelectronics applications.

  11. Robust Optimization Design Algorithm for High-Frequency TWTs

    NASA Technical Reports Server (NTRS)

    Wilson, Jeffrey D.; Chevalier, Christine T.

    2010-01-01

    Traveling-wave tubes (TWTs), such as the Ka-band (26-GHz) model recently developed for the Lunar Reconnaissance Orbiter, are essential as communication amplifiers in spacecraft for virtually all near- and deep-space missions. This innovation is a computational design algorithm that, for the first time, optimizes the efficiency and output power of a TWT while taking into account the effects of dimensional tolerance variations. Because they are primary power consumers and power generation is very expensive in space, much effort has been exerted over the last 30 years to increase the power efficiency of TWTs. However, at frequencies higher than about 60 GHz, efficiencies of TWTs are still quite low. A major reason is that at higher frequencies, dimensional tolerance variations from conventional micromachining techniques become relatively large with respect to the circuit dimensions. When this is the case, conventional design- optimization procedures, which ignore dimensional variations, provide inaccurate designs for which the actual amplifier performance substantially under-performs that of the design. Thus, this new, robust TWT optimization design algorithm was created to take account of and ameliorate the deleterious effects of dimensional variations and to increase efficiency, power, and yield of high-frequency TWTs. This design algorithm can help extend the use of TWTs into the terahertz frequency regime of 300-3000 GHz. Currently, these frequencies are under-utilized because of the lack of efficient amplifiers, thus this regime is known as the "terahertz gap." The development of an efficient terahertz TWT amplifier could enable breakthrough applications in space science molecular spectroscopy, remote sensing, nondestructive testing, high-resolution "through-the-wall" imaging, biomedical imaging, and detection of explosives and toxic biochemical agents.

  12. A telescopic cinema sound camera for observing high altitude aerospace vehicles

    NASA Astrophysics Data System (ADS)

    Slater, Dan

    2014-09-01

    Rockets and other high altitude aerospace vehicles produce interesting visual and aural phenomena that can be remotely observed from long distances. This paper describes a compact, passive and covert remote sensing system that can produce high resolution sound movies at >100 km viewing distances. The telescopic high resolution camera is capable of resolving and quantifying space launch vehicle dynamics including plume formation, staging events and payload fairing jettison. Flight vehicles produce sounds and vibrations that modulate the local electromagnetic environment. These audio frequency modulations can be remotely sensed by passive optical and radio wave detectors. Acousto-optic sensing methods were primarily used but an experimental radioacoustic sensor using passive micro-Doppler radar techniques was also tested. The synchronized combination of high resolution flight vehicle imagery with the associated vehicle sounds produces a cinema like experience that that is useful in both an aerospace engineering and a Hollywood film production context. Examples of visual, aural and radar observations of the first SpaceX Falcon 9 v1.1 rocket launch are shown and discussed.

  13. Frequency response of portable PEF meters.

    PubMed

    Hankinson, J L; Das, M K

    1995-08-01

    Peak expiratory flow (PEF) is a dynamic parameter and therefore requires a measuring device with a high-frequency response. This study evaluated the frequency-response characteristics of eight commercially available PEF meters, using simulated forced-expiratory maneuvers with a computer-controlled mechanical pump. Three different PEF levels were used (200, 400, and 600 L/min) at six levels of harmonic-frequency content similar to those observed in human subjects. For waveforms with higher frequency content (at the high end or above the physiologic range), the Assess, Vitalograph, Pocket Peak, and Spir-O-Flow PEF meters all overread PEF (greater than 15% difference from target values) at all three PEF levels. These results suggest that the frequency response of PEF meters is an important consideration in the selection of such meters and should be included in device requirements. The current practice of using various levels of American Thoracic Society (ATS) waveform 24 with its low-frequency content may not adequately evaluate the frequency characteristics of PEF meters. An upper range (5% of the fundamental frequency) of 12 Hz, within the range observed in normal subjects, appears to be more practical than an upper limit of 20 Hz.

  14. A novel high-frequency encoding algorithm for image compression

    NASA Astrophysics Data System (ADS)

    Siddeq, Mohammed M.; Rodrigues, Marcos A.

    2017-12-01

    In this paper, a new method for image compression is proposed whose quality is demonstrated through accurate 3D reconstruction from 2D images. The method is based on the discrete cosine transform (DCT) together with a high-frequency minimization encoding algorithm at compression stage and a new concurrent binary search algorithm at decompression stage. The proposed compression method consists of five main steps: (1) divide the image into blocks and apply DCT to each block; (2) apply a high-frequency minimization method to the AC-coefficients reducing each block by 2/3 resulting in a minimized array; (3) build a look up table of probability data to enable the recovery of the original high frequencies at decompression stage; (4) apply a delta or differential operator to the list of DC-components; and (5) apply arithmetic encoding to the outputs of steps (2) and (4). At decompression stage, the look up table and the concurrent binary search algorithm are used to reconstruct all high-frequency AC-coefficients while the DC-components are decoded by reversing the arithmetic coding. Finally, the inverse DCT recovers the original image. We tested the technique by compressing and decompressing 2D images including images with structured light patterns for 3D reconstruction. The technique is compared with JPEG and JPEG2000 through 2D and 3D RMSE. Results demonstrate that the proposed compression method is perceptually superior to JPEG with equivalent quality to JPEG2000. Concerning 3D surface reconstruction from images, it is demonstrated that the proposed method is superior to both JPEG and JPEG2000.

  15. Sensitive high frequency hearing in earless and partially eared harlequin frogs (Atelopus).

    PubMed

    Womack, Molly C; Christensen-Dalsgaard, Jakob; Coloma, Luis A; Hoke, Kim L

    2018-04-19

    Harlequin frogs, genus Atelopus , communicate at high frequencies despite most species lacking a complete tympanic middle ear that facilitates high frequency hearing in most anurans and other tetrapods. Here we test whether Atelopus are better at sensing high frequency acoustic sound compared to other eared and earless species in the Bufonidae family, determine whether middle ear variation within Atelopus affects hearing sensitivity, and test potential hearing mechanisms in Atelopus We determine that at high frequencies (2000-4000 Hz) Atelopus are 10-34 dB more sensitive than other earless bufonids but are relatively insensitive to mid-range frequencies (900-1500 Hz) compared to eared bufonids. Hearing among Atelopus species is fairly consistent, evidence that the partial middle ears present in a subset of Atelopus species do not convey a substantial hearing advantage. We further demonstrate that Atelopus hearing is not likely facilitated by vibration of the skin overlying the normal tympanic membrane region or the body lung wall, leaving the extratympanic hearing pathways in Atelopus enigmatic. Together these results show Atelopus have sensitive high frequency hearing without the aid of a tympanic middle ear and prompt further study of extratympanic hearing mechanisms in anurans. © 2018. Published by The Company of Biologists Ltd.

  16. The Sensitivity of Adolescent Hearing Screens Significantly Improves by Adding High Frequencies.

    PubMed

    Sekhar, Deepa L; Zalewski, Thomas R; Beiler, Jessica S; Czarnecki, Beth; Barr, Ashley L; King, Tonya S; Paul, Ian M

    2016-09-01

    One in 6 US adolescents has high-frequency hearing loss, often related to hazardous noise. Yet, the American Academy of Pediatrics (AAP) hearing screen (500, 1,000, 2,000, 4,000 Hertz) primarily includes low frequencies (<3,000 Hertz). Study objectives were to determine (1) sensitivity and specificity of the AAP hearing screen for adolescent hearing loss and (2) if adding high frequencies increases sensitivity, while repeat screening of initial referrals reduces false positive results (maintaining acceptable specificity). Eleventh graders (n = 134) participated in hearing screening (2013-2014) including "gold-standard" sound-treated booth testing to calculate sensitivity and specificity. Of the 43 referrals, 27 (63%) had high-frequency hearing loss. AAP screen sensitivity and specificity were 58.1% (95% confidence interval 42.1%-73.0%) and 91.2% (95% confidence interval 83.4-96.1), respectively. Adding high frequencies (6,000, 8,000 Hertz) significantly increased sensitivity to 79.1% (64.0%-90.0%; p = .003). Specificity with repeat screening was 81.3% (71.8%-88.7%; p = .003). Adolescent hearing screen sensitivity improves with high frequencies. Repeat testing maintains acceptable specificity. Copyright © 2016 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  17. High-frequency neural oscillations and visual processing deficits in schizophrenia

    PubMed Central

    Tan, Heng-Ru May; Lana, Luiz; Uhlhaas, Peter J.

    2013-01-01

    Visual information is fundamental to how we understand our environment, make predictions, and interact with others. Recent research has underscored the importance of visuo-perceptual dysfunctions for cognitive deficits and pathophysiological processes in schizophrenia. In the current paper, we review evidence for the relevance of high frequency (beta/gamma) oscillations towards visuo-perceptual dysfunctions in schizophrenia. In the first part of the paper, we examine the relationship between beta/gamma band oscillations and visual processing during normal brain functioning. We then summarize EEG/MEG-studies which demonstrate reduced amplitude and synchrony of high-frequency activity during visual stimulation in schizophrenia. In the final part of the paper, we identify neurobiological correlates as well as offer perspectives for future research to stimulate further inquiry into the role of high-frequency oscillations in visual processing impairments in the disorder. PMID:24130535

  18. High spectral purity Kerr frequency comb radio frequency photonic oscillator

    PubMed Central

    Liang, W.; Eliyahu, D.; Ilchenko, V. S.; Savchenkov, A. A.; Matsko, A. B.; Seidel, D.; Maleki, L.

    2015-01-01

    Femtosecond laser-based generation of radio frequency signals has produced astonishing improvements in achievable spectral purity, one of the basic features characterizing the performance of an radio frequency oscillator. Kerr frequency combs hold promise for transforming these lab-scale oscillators to chip-scale level. In this work we demonstrate a miniature 10 GHz radio frequency photonic oscillator characterized with phase noise better than −60 dBc Hz−1 at 10 Hz, −90 dBc Hz−1 at 100 Hz and −170 dBc Hz−1 at 10 MHz. The frequency stability of this device, as represented by Allan deviation measurements, is at the level of 10−10 at 1–100 s integration time—orders of magnitude better than existing radio frequency photonic devices of similar size, weight and power consumption. PMID:26260955

  19. High-efficiency surface plasmonic polariton waveguides with enhanced low-frequency performance in microwave frequencies.

    PubMed

    Zhang, Dawei; Zhang, Kuang; Wu, Qun; Ding, Xumin; Sha, Xuejun

    2017-02-06

    In this paper, a planar waveguide based on spoof surface plasmon polaritons (SSPPs) with metals on both sides of the corrugated strip as grounds is firstly proposed in microwave region. Simple and efficient conversion between guided waves and SSPPs is realized by gradient corrugated strip with grounds on both sides. Compared with plasmonic waveguide with flaring ground [Laser Photonics Rev. 8, 146 (2014)], the addition of grounds suppresses the radiation loss effectively and improves the low-frequency performance with tighter field confinement, which leads to a wider operating bandwidth. Moreover, as the asymptotic frequency of SSPPs decreasing, the confinement of SSPPs is further enhanced by a defected ground structure (DGS), which is achieved by the periodic grooves symmetrical to those on the corrugated strip. Therefore, miniaturization of the proposed waveguide can be realized. Measured results validate both high efficiency of momentum and impedance matching and enhanced performance in the region of lower frequencies with the wave vectors close to those in free space. Such results have significant values in plasmonic functional devices and integrated circuits in microwave frequencies.

  20. Switching transients in high-frequency high-power converters using power MOSFET's

    NASA Technical Reports Server (NTRS)

    Sloane, T. H.; Owen, H. A., Jr.; Wilson, T. G.

    1979-01-01

    The use of MOSFETs in a high-frequency high-power dc-to-dc converter is investigated. Consideration is given to the phenomena associated with the paralleling of MOSFETs and to the effect of stray circuit inductances on the converter circuit performance. Analytical relationships between various time constants during the turning-on and turning-off intervals are derived which provide estimates of plateau and peak levels during these intervals.

  1. Cannabinoid receptors mediate methamphetamine induction of high frequency gamma oscillations in the nucleus accumbens.

    PubMed

    Morra, Joshua T; Glick, Stanley D; Cheer, Joseph F

    2012-09-01

    Patients suffering from amphetamine-induced psychosis display repetitive behaviors, partially alleviated by antipsychotics, which are reminiscent of rodent stereotypies. Due to recent evidence implicating endocannabinoid involvement in brain disorders, including psychosis, we studied the effects of endocannabinoid signaling on neuronal oscillations of rats exhibiting methamphetamine stereotypy. Neuronal network oscillations were recorded with multiple single electrode arrays aimed at the nucleus accumbens of freely-moving rats. During the experiments, animals were dosed intravenously with the CB1 receptor antagonist rimonabant (0.3 mg/kg) or vehicle followed by an ascending dose regimen of methamphetamine (0.01, 0.1, 1, and 3 mg/kg; cumulative dosing). The effects of drug administration on stereotypy and local gamma oscillations were evaluated. Methamphetamine treatment significantly increased high frequency gamma oscillations (∼80 Hz). Entrainment of a subpopulation of nucleus accumbens neurons to high frequency gamma was associated with stereotypy encoding in putative fast-spiking interneurons, but not in putative medium spiny neurons. The observed ability of methamphetamine to induce both stereotypy and high frequency gamma power was potently disrupted following CB1 receptor blockade. The present data suggest that CB1 receptor-dependent mechanisms are recruited by methamphetamine to modify striatal interneuron oscillations that accompany changes in psychomotor state, further supporting the link between endocannabinoids and schizophrenia spectrum disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. RELATIONSHIP BETWEEN LOW AND HIGH FREQUENCIES IN {delta} SCUTI STARS: PHOTOMETRIC KEPLER AND SPECTROSCOPIC ANALYSES OF THE RAPID ROTATOR KIC 8054146

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breger, M.; Robertson, P.; Fossati, L.

    2012-11-01

    Two years of Kepler data of KIC 8054146 ({delta} Sct/{gamma} Dor hybrid) revealed 349 statistically significant frequencies between 0.54 and 191.36 cycles day{sup -1} (6.3 {mu}Hz to 2.21 mHz). The 117 low frequencies cluster in specific frequency bands, but do not show the equidistant period spacings predicted for gravity modes of successive radial order, n, and reported for at least one other hybrid pulsator. The four dominant low frequencies in the 2.8-3.0 cycles day{sup -1} (32-35 {mu}Hz) range show strong amplitude variability with timescales of months and years. These four low frequencies also determine the spacing of the higher frequenciesmore » in and beyond the {delta} Sct pressure-mode frequency domain. In fact, most of the higher frequencies belong to one of three families with spacings linked to a specific dominant low frequency. In the Fourier spectrum, these family regularities show up as triplets, high-frequency sequences with absolutely equidistant frequency spacings, side lobes (amplitude modulations), and other regularities in frequency spacings. Furthermore, within two families the amplitude variations between the low and high frequencies are related. We conclude that the low frequencies (gravity modes, rotation) and observed high frequencies (mostly pressure modes) are physically connected. This unusual behavior may be related to the very rapid rotation of the star: from a combination of high- and low-resolution spectroscopy we determined that KIC 8054146 is a very fast rotator ({upsilon} sin i = 300 {+-} 20 km s{sup -1}) with an effective temperature of 7600 {+-} 200 K and a surface gravity log g of 3.9 {+-} 0.3. Several astrophysical ideas explaining the origin of the relationship between the low and high frequencies are explored.« less

  3. Properties and Frequency Conversion of High-Brightness Diode-Laser Systems

    NASA Astrophysics Data System (ADS)

    Boller, Klaus-Jochen; Beier, Bernard; Wallenstein, Richard

    An overview of recent developments in the field of high-power, high-brightness diode-lasers, and the optically nonlinear conversion of their output into other wavelength ranges, is given. We describe the generation of continuous-wave (CW) laser beams at power levels of several hundreds of milliwatts to several watts with near-perfect spatial and spectral properties using Master-Oscillator Power-Amplifier (MOPA) systems. With single- or double-stage systems, using amplifiers of tapered or rectangular geometry, up to 2.85 W high-brightness radiation is generated at wavelengths around 810nm with AlGaAs diodes. Even higher powers, up to 5.2W of single-frequency and high spatial quality beams at 925nm, are obtained with InGaAs diodes. We describe the basic properties of the oscillators and amplifiers used. A strict proof-of-quality for the diode radiation is provided by direct and efficient nonlinear optical conversion of the diode MOPA output into other wavelength ranges. We review recent experiments with the highest power levels obtained so far by direct frequency doubling of diode radiation. In these experiments, 100mW single-frequency ultraviolet light at 403nm was generated, as well as 1W of single-frequency blue radiation at 465nm. Nonlinear conversion of diode radiation into widely tunable infrared radiation has recently yielded record values. We review the efficient generation of widely tunable single-frequency radiation in the infrared with diode-pumped Optical Parametric Oscillators (OPOs). With this system, single-frequency output radiation with powers of more than 0.5W was generated, widely tunable around wavelengths of 2.1,m and 1.65,m and with excellent spectral and spatial quality. These developments are clear indicators of recent advances in the field of high-brightness diode-MOPA systems, and may emphasize their future central importance for applications within a vast range of optical

  4. Soliton triads ensemble in frequency conversion: from inverse scattering theory to experimental observation.

    PubMed

    Baronio, Fabio; Andreana, Marco; Conforti, Matteo; Manili, Gabriele; Couderc, Vincent; De Angelis, Costantino; Barthélémy, Alain

    2011-07-04

    We consider the spectral theory of three-wave interactions to predict the initiation, formation and dynamics of an ensemble of bright-dark-bright soliton triads in frequency conversion processes. Spatial observation of non-interacting triads ensemble in a KTP crystal confirms theoretical prediction and numerical simulations.

  5. Sensitivity to envelope-based interaural delays at high frequencies: center frequency affects the envelope rate-limitation.

    PubMed

    Bernstein, Leslie R; Trahiotis, Constantine

    2014-02-01

    Sensitivity to ongoing interaural temporal disparities (ITDs) was measured using bandpass-filtered pulse trains centered at 4600, 6500, or 9200 Hz. Save for minor differences in the exact center frequencies, those target stimuli were those employed by Majdak and Laback [J. Acoust. Soc. Am. 125, 3903-3913 (2009)]. At each center frequency, threshold ITD was measured for pulse repetition rates ranging from 64 to 609 Hz. The results and quantitative predictions by a cross-correlation-based model indicated that (1) at most pulse repetition rates, threshold ITD increased with center frequency, (2) the cutoff frequency of the putative envelope low-pass filter that determines sensitivity to ITD at high envelope rates appears to be inversely related to center frequency, and (3) both outcomes were accounted for by assuming that, independent of the center frequency, the listeners' decision variable was a constant criterion change in interaural correlation of the stimuli as processed internally. The finding of an inverse relation between center frequency and the envelope rate limitation, while consistent with much prior literature, runs counter to the conclusion reached by Majdak and Laback.

  6. Super-spinning compact objects and models of high-frequency quasi-periodic oscillations observed in Galactic microquasars

    NASA Astrophysics Data System (ADS)

    Kotrlová, Andrea; Török, Gabriel; Šrámková, Eva; Stuchlík, Zdeněk

    2014-12-01

    We have previously applied several models of high-frequency quasi-periodic oscillations (HF QPOs) to estimate the spin of the central Kerr black hole in the three Galactic microquasars, GRS 1915+105, GRO J1655-40, and XTE J1550-564. Here we explore the alternative possibility that the central compact body is a super-spinning object (or a naked singularity) with the external space-time described by Kerr geometry with a dimensionless spin parameter a ≡ cJ/GM2> 1. We calculate the relevant spin intervals for a subset of HF QPO models considered in the previous study. Our analysis indicates that for all but one of the considered models there exists at least one interval of a> 1 that is compatible with constraints given by the ranges of the central compact object mass independently estimated for the three sources. For most of the models, the inferred values of a are several times higher than the extreme Kerr black hole value a = 1. These values may be too high since the spin of superspinars is often assumed to rapidly decrease due to accretion when a ≫ 1. In this context, we conclude that only the epicyclic and the Keplerian resonance model provides estimates that are compatible with the expectation of just a small deviation from a = 1.

  7. Computer-aided design of high-frequency transistor amplifiers.

    NASA Technical Reports Server (NTRS)

    Hsieh, C.-C.; Chan, S.-P.

    1972-01-01

    A systematic step-by-step computer-aided procedure for designing high-frequency transistor amplifiers is described. The technique makes it possible to determine the optimum source impedance which gives a minimum noise figure.

  8. Combinational light emitting diode-high frequency focused ultrasound treatment for HeLa cell.

    PubMed

    Choe, Se-Woon; Park, Kitae; Park, Chulwoo; Ryu, Jaemyung; Choi, Hojong

    2017-12-01

    Light sources such as laser and light emitting diode or ultrasound devices have been widely used for cancer therapy and regenerative medicines, since they are more cost-effective and less harmful than radiation therapy, chemotherapy or magnetic treatment. Compared to laser and low intensity ultrasound techniques, light emitting diode and high frequency focused ultrasound shows enhanced therapeutic effects, especially for small tumors. We propose combinational light emitting diode-high frequency focused ultrasound treatment for human cervical cancer HeLa cells. Individual red, green, and blue light emitting diode light only, high frequency focused ultrasound only, or light emitting diode light combined with high frequency focused ultrasound treatments were applied in order to characterize the responses of HeLa cells. Cell density exposed by blue light emitting diode light combined with high frequency focused ultrasound (2.19 ± 0.58%) was much lower than that of cells exposed by red and green light emitting diode lights (81.71 ± 9.92% and 61.81 ± 4.09%), blue light emitting diode light (11.19 ± 2.51%) or high frequency focused ultrasound only (9.72 ± 1.04%). We believe that the proposed combinational blue light emitting diode-high frequency focused ultrasound treatment could have therapeutic benefits to alleviate cancer cell proliferation.

  9. Calibration of semi-stochastic procedure for simulating high-frequency ground motions

    USGS Publications Warehouse

    Seyhan, Emel; Stewart, Jonathan P.; Graves, Robert

    2013-01-01

    Broadband ground motion simulation procedures typically utilize physics-based modeling at low frequencies, coupled with semi-stochastic procedures at high frequencies. The high-frequency procedure considered here combines deterministic Fourier amplitude spectra (dependent on source, path, and site models) with random phase. Previous work showed that high-frequency intensity measures from this simulation methodology attenuate faster with distance and have lower intra-event dispersion than in empirical equations. We address these issues by increasing crustal damping (Q) to reduce distance attenuation bias and by introducing random site-to-site variations to Fourier amplitudes using a lognormal standard deviation ranging from 0.45 for Mw < 7 to zero for Mw 8. Ground motions simulated with the updated parameterization exhibit significantly reduced distance attenuation bias and revised dispersion terms are more compatible with those from empirical models but remain lower at large distances (e.g., > 100 km).

  10. Carbon Nanofiber-Based, High-Frequency, High-Q, Miniaturized Mechanical Resonators

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Epp, Larry W.; Bagge, Leif

    2011-01-01

    High Q resonators are a critical component of stable, low-noise communication systems, radar, and precise timing applications such as atomic clocks. In electronic resonators based on Si integrated circuits, resistive losses increase as a result of the continued reduction in device dimensions, which decreases their Q values. On the other hand, due to the mechanical construct of bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators, such loss mechanisms are absent, enabling higher Q-values for both BAW and SAW resonators compared to their electronic counterparts. The other advantages of mechanical resonators are their inherently higher radiation tolerance, a factor that makes them attractive for NASA s extreme environment planetary missions, for example to the Jovian environments where the radiation doses are at hostile levels. Despite these advantages, both BAW and SAW resonators suffer from low resonant frequencies and they are also physically large, which precludes their integration into miniaturized electronic systems. Because there is a need to move the resonant frequency of oscillators to the order of gigahertz, new technologies and materials are being investigated that will make performance at those frequencies attainable. By moving to nanoscale structures, in this case vertically oriented, cantilevered carbon nanotubes (CNTs), that have larger aspect ratios (length/thickness) and extremely high elastic moduli, it is possible to overcome the two disadvantages of both bulk acoustic wave (BAW) and surface acoustic wave (SAW) resonators. Nano-electro-mechanical systems (NEMS) that utilize high aspect ratio nanomaterials exhibiting high elastic moduli (e.g., carbon-based nanomaterials) benefit from high Qs, operate at high frequency, and have small force constants that translate to high responsivity that results in improved sensitivity, lower power consumption, and im - proved tunablity. NEMS resonators have recently been demonstrated using topdown

  11. Study of switching transients in high frequency converters

    NASA Technical Reports Server (NTRS)

    Zinger, Donald S.; Elbuluk, Malik E.; Lee, Tony

    1993-01-01

    As the semiconductor technologies progress rapidly, the power densities and switching frequencies of many power devices are improved. With the existing technology, high frequency power systems become possible. Use of such a system is advantageous in many aspects. A high frequency ac source is used as the direct input to an ac/ac pulse-density-modulation (PDM) converter. This converter is a new concept which employs zero voltage switching techniques. However, the development of this converter is still in its infancy stage. There are problems associated with this converter such as a high on-voltage drop, switching transients, and zero-crossing detecting. Considering these problems, the switching speed and power handling capabilities of the MOS-Controlled Thyristor (MCT) makes the device the most promising candidate for this application. A complete insight of component considerations for building an ac/ac PDM converter for a high frequency power system is addressed. A power device review is first presented. The ac/ac PDM converter requires switches that can conduct bi-directional current and block bi-directional voltage. These bi-directional switches can be constructed using existing power devices. Different bi-directional switches for the converter are investigated. Detailed experimental studies of the characteristics of the MCT under hard switching and zero-voltage switching are also presented. One disadvantage of an ac/ac converter is that turn-on and turn-off of the switches has to be completed instantaneously when the ac source is at zero voltage. Otherwise shoot-through current or voltage spikes can occur which can be hazardous to the devices. In order for the devices to switch softly in the safe operating area even under non-ideal cases, a unique snubber circuit is used in each bi-directional switch. Detailed theory and experimental results for circuits using these snubbers are presented. A current regulated ac/ac PDM converter built using MCT's and IGBT's is

  12. A PK-PD model of ketamine-induced high-frequency oscillations

    NASA Astrophysics Data System (ADS)

    Flores, Francisco J.; Ching, ShiNung; Hartnack, Katharine; Fath, Amanda B.; Purdon, Patrick L.; Wilson, Matthew A.; Brown, Emery N.

    2015-10-01

    Objective. Ketamine is a widely used drug with clinical and research applications, and also known to be used as a recreational drug. Ketamine produces conspicuous changes in the electrocorticographic (ECoG) signals observed both in humans and rodents. In rodents, the intracranial ECoG displays a high-frequency oscillation (HFO) which power is modulated nonlinearly by ketamine dose. Despite the widespread use of ketamine there is no model description of the relationship between the pharmacokinetic-pharmacodynamics (PK-PDs) of ketamine and the observed HFO power. Approach. In the present study, we developed a PK-PD model based on estimated ketamine concentration, its known pharmacological actions, and observed ECoG effects. The main pharmacological action of ketamine is antagonism of the NMDA receptor (NMDAR), which in rodents is accompanied by an HFO observed in the ECoG. At high doses, however, ketamine also acts at non-NMDAR sites, produces loss of consciousness, and the transient disappearance of the HFO. We propose a two-compartment PK model that represents the concentration of ketamine, and a PD model based in opposing effects of the NMDAR and non-NMDAR actions on the HFO power. Main results. We recorded ECoG from the cortex of rats after two doses of ketamine, and extracted the HFO power from the ECoG spectrograms. We fit the PK-PD model to the time course of the HFO power, and showed that the model reproduces the dose-dependent profile of the HFO power. The model provides good fits even in the presence of high variability in HFO power across animals. As expected, the model does not provide good fits to the HFO power after dosing the pure NMDAR antagonist MK-801. Significance. Our study provides a simple model to relate the observed electrophysiological effects of ketamine to its actions at the molecular level at different concentrations. This will improve the study of ketamine and rodent models of schizophrenia to better understand the wide and divergent

  13. The search for radio emission from exoplanets using LOFAR low-frequency beam-formed observations

    NASA Astrophysics Data System (ADS)

    Turner, Jake D.; Griessmeier, Jean-Mathias; Zarka, Philippe

    2018-01-01

    Detection of radio emission from exoplanets can provide information on the star-planet system that is very difficult or impossible to study otherwise, such as the planet’s magnetic field, magnetosphere, rotation period, orbit inclination, and star-planet interactions. Such a detection in the radio domain would open up a whole new field in the study of exoplanets, however, currently there are no confirmed detections of an exoplanet at radio frequencies. In this study, we discuss our ongoing observational campaign searching for exoplanetary radio emissions using beam-formed observations within the Low Band of the Low-Frequency Array (LOFAR). To date we have observed three exoplanets: 55 Cnc, Upsilon Andromedae, and Tau Boötis. These planets were selected according to theoretical predictions, which indicated them as among the best candidates for an observation. During the observations we usually recorded three beams simultaneously, one on the exoplanet and two on patches of nearby “empty” sky. An automatic pipeline was created to automatically find RFI, calibrate the data due to instrumental effects, and to search for emission in the exoplanet beam. Additionally, we observed Jupiter with LOFAR with the same exact observational setup as the exoplanet observations. The main goals of the Jupiter observations are to train the detection algorithm and to calculate upper limits in the case of a non-detection. Data analysis is currently ongoing. Conclusions reached at the time of the meeting, about detection of or upper limit to the planetary signal, will be presented.

  14. Low Frequency High Amplitude Temperature Oscillations in Loop Heat Pipe Operation

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Rodriquez, Jose; Simpson, Alda D. (Technical Monitor)

    2003-01-01

    This paper presents a theory that explains low frequency, high amplitude temperature oscillations in loop heat pipe (LHP) operation. Oscillations of the CC temperature with amplitudes on the order of tens of degrees Kelvin and periods on the order of hours have been observed in some LHPs during ambient testing. There are presently no satisfactory explanations for such a phenomenon in the literature. It is well-known that the operating temperature of an LHP with a single evaporator is governed by the compensation chamber (CC) temperature, which in turn is a function of the evaporator heat load, sink temperature, and ambient temperature. As the operating condition changes, the CC temperature will change during the transient but eventually reach a new steady temperature. Under certain conditions, however, the LHP never really reaches a true steady state, but instead displays an oscillatory behavior. The proposed new theory describes why low frequency, high amplitude oscillations may occur when the LHP has a low evaporator power, a low heat sink temperature (below ambient temperature), and a large thermal mass attached to the evaporator. When this condition prevails, there are some complex interactions between the CC, condenser, thermal mass and ambient. The temperature oscillation is a result of the large movement of the vapor front inside the condenser, which is caused by a change in the net evaporator power modulated by the large thermal mass through its interaction with the sink and CC. The theory agrees very well with previously published test data. Effects of various parameters on the amplitude and frequency of the temperature oscillation are also discussed.

  15. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2014-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  16. Monitoring of corrosion damage using high-frequency guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Chew, D.; Fromme, P.

    2015-03-01

    Due to adverse environmental conditions corrosion can develop during the life cycle of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Both pitting corrosion and generalized corrosion leading to wall thickness loss can cause the degradation of the integrity and load bearing capacity of the structure. Structural health monitoring of corrosion damage in difficult to access areas can in principle be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic transducers with single sided access to the structure, high frequency guided wave modes were generated that penetrate through the complete thickness of the structure. Wall thickness reduction was induced using accelerated corrosion in a salt water bath. The corrosion damage was monitored based on the effect on the wave propagation and interference of the different modes. The change in the wave interference was quantified based on an analysis in the frequency domain (Fourier transform) and was found to match well with theoretical predictions for the wall thickness loss. High frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  17. Monograph on High-Frequency Seafloor Acoustics

    DTIC Science & Technology

    2003-09-30

    will be part of a series on underwater acoustics being supported by ONR-OA. It will provide an in-depth review of the current state of data and models ...supported by ONR-OA. It will provide an in-depth review of the current state of data and models for acoustic interaction with the seafloor at high...frequencies. OBJECTIVES The monograph will cover geoacoustics and acoustics , measurements and modeling . The acoustics chapters will treat

  18. Monograph on High-Frequency Seafloor Acoustics

    DTIC Science & Technology

    2002-09-30

    will be part of a series on underwater acoustics being supported by ONR-OA. It will provide an in-depth review of the current state of data and models ...supported by ONR-OA. It will provide an in-depth review of the current state of data and models for acoustic interaction with the seafloor at high...frequencies. OBJECTIVES The monograph will cover geoacoustics and acoustics , measurements and modeling . The acoustics chapters will treat

  19. [Design of a high-voltage insulation testing system of X-ray high frequency generators].

    PubMed

    Huang, Yong; Mo, Guo-Ming; Wang, Yan; Wang, Hong-Zhi; Yu, Jie-Ying; Dai, Shu-Guang

    2007-09-01

    In this paper, we analyze the transformer of X-ray high-voltage high-frequency generators and, have designed and implemented a high-voltage insulation testing system for its oil tank using full-bridge series resonant soft switching PFM DC-DC converter.

  20. A high frequency electromagnetic impedance imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, Hung-Wen; Lee, Ki Ha; Becker, Alex

    2003-01-15

    Non-invasive, high resolution geophysical mapping of the shallow subsurface is necessary for delineation of buried hazardous wastes, detecting unexploded ordinance, verifying and monitoring of containment or moisture contents, and other environmental applications. Electromagnetic (EM) techniques can be used for this purpose since electrical conductivity and dielectric permittivity are representative of the subsurface media. Measurements in the EM frequency band between 1 and 100 MHz are very important for such applications, because the induction number of many targets is small and the ability to determine the subsurface distribution of both electrical properties is required. Earlier workers were successful in developing systemsmore » for detecting anomalous areas, but quantitative interpretation of the data was difficult. Accurate measurements are necessary, but difficult to achieve for high-resolution imaging of the subsurface. We are developing a broadband non-invasive method for accurately mapping the electrical conductivity and dielectric permittivity of the shallow subsurface using an EM impedance approach similar to the MT exploration technique. Electric and magnetic sensors were tested to ensure that stray EM scattering is minimized and the quality of the data collected with the high-frequency impedance (HFI) system is good enough to allow high-resolution, multi-dimensional imaging of hidden targets. Additional efforts are being made to modify and further develop existing sensors and transmitters to improve the imaging capability and data acquisition efficiency.« less