Sample records for observed hyperfine splitting

  1. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    NASA Astrophysics Data System (ADS)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.; Ilyushin, V. V.; Alekseev, E. A.; Mescheryakov, A. A.; Hougen, J. T.; Xu, Li-Hong

    2016-07-01

    This paper presents an explanation based on torsionally mediated proton-spin-overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = - 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e., to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric "torsionally mediated spin-rotation operators" by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e±niα. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A1 and A2 states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.

  2. Torsionally mediated spin-rotation hyperfine splittings at moderate to high J values in methanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belov, S. P.; Golubiatnikov, G. Yu.; Lapinov, A. V.

    2016-07-14

    This paper presents an explanation based on torsionally mediated proton-spin–overall-rotation interaction for the observation of doublet hyperfine splittings in some Lamb-dip sub-millimeter-wave transitions between ground-state torsion-rotation states of E symmetry in methanol. These unexpected doublet splittings, some as large as 70 kHz, were observed for rotational quantum numbers in the range of J = 13 to 34, and K = − 2 to +3. Because they increase nearly linearly with J for a given branch, we confined our search for an explanation to hyperfine operators containing one nuclear-spin angular momentum factor I and one overall-rotation angular momentum factor J (i.e.,more » to spin-rotation operators) and ignored both spin-spin and spin-torsion operators, since they contain no rotational angular momentum operator. Furthermore, since traditional spin-rotation operators did not seem capable of explaining the observed splittings, we constructed totally symmetric “torsionally mediated spin-rotation operators” by multiplying the E-species spin-rotation operator by an E-species torsional-coordinate factor of the form e{sup ±niα}. The resulting operator is capable of connecting the two components of a degenerate torsion-rotation E state. This has the effect of turning the hyperfine splitting pattern upside down for some nuclear-spin states, which leads to bottom-to-top and top-to-bottom hyperfine selection rules for some transitions, and thus to an explanation for the unexpectedly large observed hyperfine splittings. The constructed operator cannot contribute to hyperfine splittings in the A-species manifold because its matrix elements within the set of torsion-rotation A{sub 1} and A{sub 2} states are all zero. The theory developed here fits the observed large doublet splittings to a root-mean-square residual of less than 1 kHz and predicts unresolvable splittings for a number of transitions in which no doublet splitting was detected.« less

  3. Ab initio calculations of torsionally mediated hyperfine splittings in E states of acetaldehyde

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Reid, E. M.; Guislain, B.; Hougen, J. T.; Alekseev, E. A.; Krapivin, I.

    2017-12-01

    Quantum chemistry packages can be used to predict with reasonable accuracy spin-rotation hyperfine interaction constants for methanol, which contains one methyl-top internal rotor. In this work we use one of these packages to calculate components of the spin-rotation interaction tensor for acetaldehyde. We then use torsion-rotation wavefunctions obtained from a fit to the acetaldehyde torsion-rotation spectrum to calculate the expected magnitude of hyperfine splittings analogous to those observed at relatively high J values in the E symmetry states of methanol. We find that theory does indeed predict doublet splittings at moderate J values in the acetaldehyde torsion-rotation spectrum, which closely resemble those seen in methanol, but that the factor of three decrease in hyperfine spin-rotation constants compared to methanol puts the largest of the acetaldehyde splittings a factor of two below presently available Lamb-dip resolution.

  4. Radiative transfer of HCN: interpreting observations of hyperfine anomalies

    NASA Astrophysics Data System (ADS)

    Mullins, A. M.; Loughnane, R. M.; Redman, M. P.; Wiles, B.; Guegan, N.; Barrett, J.; Keto, E. R.

    2016-07-01

    Molecules with hyperfine splitting of their rotational line spectra are useful probes of optical depth, via the relative line strengths of their hyperfine components. The hyperfine splitting is particularly advantageous in interpreting the physical conditions of the emitting gas because with a second rotational transition, both gas density and temperature can be derived. For HCN however, the relative strengths of the hyperfine lines are anomalous. They appear in ratios which can vary significantly from source to source, and are inconsistent with local thermodynamic equilibrium (LTE). This is the HCN hyperfine anomaly, and it prevents the use of simple LTE models of HCN emission to derive reliable optical depths. In this paper, we demonstrate how to model HCN hyperfine line emission, and derive accurate line ratios, spectral line shapes and optical depths. We show that by carrying out radiative transfer calculations over each hyperfine level individually, as opposed to summing them over each rotational level, the anomalous hyperfine emission emerges naturally. To do this requires not only accurate radiative rates between hyperfine states, but also accurate collisional rates. We investigate the effects of different sets of hyperfine collisional rates, derived via the proportional method and through direct recoupling calculations. Through an extensive parameter sweep over typical low-mass star-forming conditions, we show the HCN line ratios to be highly variable to optical depth. We also reproduce an observed effect whereby the red-blue asymmetry of the hyperfine lines (an infall signature) switches sense within a single rotational transition.

  5. Two-photon exchange correction to the hyperfine splitting in muonic hydrogen

    NASA Astrophysics Data System (ADS)

    Tomalak, Oleksandr

    2017-12-01

    We reevaluate the Zemach, recoil and polarizability corrections to the hyperfine splitting in muonic hydrogen expressing them through the low-energy proton structure constants and obtain the precise values of the Zemach radius and two-photon exchange (TPE) contribution. The uncertainty of TPE correction to S energy levels in muonic hydrogen of 105 ppm exceeds the ppm accuracy level of the forthcoming 1S hyperfine splitting measurements at PSI, J-PARC and RIKEN-RAL.

  6. Quantum Chemical Calculations of Torsionally Mediated Hyperfine Splittings in States of E Symmetry of Acetaldehyde (CH_{3}CHO)

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Reid, Elias M.; Guislain, Bradley; Hougen, Jon T.; Alekseev, E. A.; Krapivin, Igor

    2017-06-01

    Hyperfine splittings in methanol have been revisited in three recent publications. (i) Coudert et al. [JCP 143 (2015) 044304] published an analysis of splittings observed in the low-J range. They calculated 32 spin-rotation, 32 spin-spin, and 16 spin-torsion hyperfine constants using the ACES2 package. Three of these constants were adjusted to fit hyperfine patterns for 12 transitions. (ii) Three present authors and collaborators [JCP 145 (2016) 024307] analyzed medium to high-J experimental Lamb-dip measurements in methanol and presented a theoretical spin-rotation explanation that was based on torsionally mediated spin-rotation hyperfine operators. These contain, in addition to the usual nuclear spin and overall rotational operators, factors in the torsional angle α of the form {e^{plusmn;{inα}}}. Such operators have non-zero matrix elements between the two components of a torsion-rotation ^{tr}E state, but have zero matrix elements within a ^{tr}A state. More than 55 hyperfine splittings were successfully fitted using three parameters and the fitted values agree well with ab initio values obtained in (i). (iii) Lankhaar et al. [JCP 145 (2016) 244301] published a reanalysis of the data set from (i), using CFOUR recalculated hyperfine constants based on their rederivation of the relevant expressions. They explain why their choice of fixed and floated parameters leads to numerical values for all parameters that seem to be more physical than those in (i). The results in (ii) raise the question of whether large torsionally-mediated spin-rotation splittings will occur in other methyl-rotor-containing molecules. This abstract presents ab initio calculations of torsionally mediated hyperfine splittings in the E states of acetaldehyde using the same three operators as in (ii) and spin-rotation constants computed by Gaussian09. We explored the first 13 K states for J from 10 to 40 and ν_{t} = 0, 1, and 2. Our calculations indicate that hyperfine splittings in CH_{3}CHO

  7. Observation of the hyperfine spectrum of antihydrogen.

    PubMed

    Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Johnson, M A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Mathers, M; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stracka, S; Stutter, G; So, C; Tharp, T D; Thompson, J E; Thompson, R I; van der Werf, D P; Wurtele, J S

    2017-08-02

    The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 10 13 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger's relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen-the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 10 4 . This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

  8. Observation of the hyperfine spectrum of antihydrogen

    NASA Astrophysics Data System (ADS)

    Ahmadi, M.; Alves, B. X. R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T. K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C. Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S.

    2017-08-01

    The observation of hyperfine structure in atomic hydrogen by Rabi and co-workers and the measurement of the zero-field ground-state splitting at the level of seven parts in 1013 are important achievements of mid-twentieth-century physics. The work that led to these achievements also provided the first evidence for the anomalous magnetic moment of the electron, inspired Schwinger’s relativistic theory of quantum electrodynamics and gave rise to the hydrogen maser, which is a critical component of modern navigation, geo-positioning and very-long-baseline interferometry systems. Research at the Antiproton Decelerator at CERN by the ALPHA collaboration extends these enquiries into the antimatter sector. Recently, tools have been developed that enable studies of the hyperfine structure of antihydrogen—the antimatter counterpart of hydrogen. The goal of such studies is to search for any differences that might exist between this archetypal pair of atoms, and thereby to test the fundamental principles on which quantum field theory is constructed. Magnetic trapping of antihydrogen atoms provides a means of studying them by combining electromagnetic interaction with detection techniques that are unique to antimatter. Here we report the results of a microwave spectroscopy experiment in which we probe the response of antihydrogen over a controlled range of frequencies. The data reveal clear and distinct signatures of two allowed transitions, from which we obtain a direct, magnetic-field-independent measurement of the hyperfine splitting. From a set of trials involving 194 detected atoms, we determine a splitting of 1,420.4 ± 0.5 megahertz, consistent with expectations for atomic hydrogen at the level of four parts in 104. This observation of the detailed behaviour of a quantum transition in an atom of antihydrogen exemplifies tests of fundamental symmetries such as charge-parity-time in antimatter, and the techniques developed here will enable more-precise such tests.

  9. Theory of long-range interactions for Rydberg states attached to hyperfine-split cores

    NASA Astrophysics Data System (ADS)

    Robicheaux, F.; Booth, D. W.; Saffman, M.

    2018-02-01

    The theory is developed for one- and two-atom interactions when the atom has a Rydberg electron attached to a hyperfine-split core state. This situation is relevant for some of the rare-earth and alkaline-earth atoms that have been proposed for experiments on Rydberg-Rydberg interactions. For the rare-earth atoms, the core electrons can have a very substantial total angular momentum J and a nonzero nuclear spin I . In the alkaline-earth atoms there is a single (s ) core electron whose spin can couple to a nonzero nuclear spin for odd isotopes. The resulting hyperfine splitting of the core state can lead to substantial mixing between the Rydberg series attached to different thresholds. Compared to the unperturbed Rydberg series of the alkali-metal atoms, the series perturbations and near degeneracies from the different parity states could lead to qualitatively different behavior for single-atom Rydberg properties (polarizability, Zeeman mixing and splitting, etc.) as well as Rydberg-Rydberg interactions (C5 and C6 matrices).

  10. Leading logarithmic corrections to the muonium hyperfine splitting and to the hydrogen Lamb shift

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karshenboim, S.G.

    1994-12-31

    Main leading corrections with recoil logarithm log(M/m) and low-energy logarithm log(Za) to the Muonium hyperfine splitting axe discussed. Logarithmic corrections have magnitudes of 0.1 {divided_by} 0.3 kHz. Non-leading higher order corrections axe expected to be not larger than 0.1 kHz. Leading logarithmic correction to the Hydrogen Lamb shift is also obtained.

  11. Hyperfine rather than spin splittings dominate the fine structure of the B (4)Σ(-)-X (4)Σ(-) bands of AlC.

    PubMed

    Clouthier, Dennis J; Kalume, Aimable

    2016-01-21

    Laser-induced fluorescence and wavelength resolved emission spectra of the B (4)Σ(-)-X (4)Σ(-) band system of the gas phase cold aluminum carbide free radical have been obtained using the pulsed discharge jet technique. The radical was produced by electron bombardment of a precursor mixture of trimethylaluminum in high pressure argon. High resolution spectra show that each rotational line of the 0-0 and 1-1 bands of AlC is split into at least three components, with very similar splittings and intensities in both the P- and R-branches. The observed structure was reproduced by assuming bβS magnetic hyperfine coupling in the excited state, due to a substantial Fermi contact interaction of the unpaired electron in the aluminum 3s orbital. Rotational analysis has yielded ground and excited state equilibrium bond lengths in good agreement with the literature and our own ab initio values. Small discrepancies in the calculated intensities of the hyperfine lines suggest that the upper state spin-spin constant λ' is of the order of ≈ 0.025-0.030 cm(-1).

  12. The gj factor of a bound electron and the hyperfine structure splitting in hydrogenlike ions

    NASA Astrophysics Data System (ADS)

    Beier, Thomas

    2000-12-01

    The comparison between theory and experiment of the hyperfine structure splitting and the electronic gj factor in heavy highly charged ions provides a unique testing ground for quantum electrodynamics in the presence of strong electric and magnetic fields. A theoretical evaluation is presented of all quantum electrodynamical contributions to the ground-state hfs splitting in hydrogenlike and lithiumlike atoms as well as to the gj factor. Binding and nuclear effects are discussed as well. A comparison with the available experimental data is performed, and a detailed discussion of theoretical sources of uncertainty is included which is mainly due to insufficiently known nuclear properties.

  13. Quadrupole splittings in the near-infrared spectrum of 14NH 3

    DOE PAGES

    Twagirayezu, Sylvestre; Hall, Gregory E.; Sears, Trevor J.

    2016-10-13

    Sub-Doppler, saturation dip, spectra of lines in the v 1 + v 3, v 1 + 2v 4 and v 3 + 2v 4 bands of 14NH 3 have been measured by frequency comb-referenced diode laser absorption spectroscopy. The observed spectral line widths are dominated by transit time broadening, and show resolved or partially-resolved hyperfine splittings that are primarily determined by the 14N quadrupole coupling. Modeling of the observed line shapes based on the known hyperfine level structure of the ground state of the molecule shows that, in nearly all cases, the excited state level has hyperfine splittings similar tomore » the same rotational level in the ground state. The data provide accurate frequencies for the line positions and easily separate lines overlapped in Doppler-limited spectra. The observed hyperfine splittings can be used to make and confirm rotational assignments and ground state combination differences obtained from the measured frequencies are comparable in accuracy to those obtained from conventional microwave spectroscopy. Furthermore, several of the measured transitions do not show the quadrupole hyperfine splittings expected based on their existing rotational assignments. Either the assignments are incorrect or the upper levels involved are perturbed in a way that affects the nuclear hyperfine structure.« less

  14. Ab initio calculation of hyperfine splitting constants of molecules

    NASA Astrophysics Data System (ADS)

    Ohta, K.; Nakatsuji, H.; Hirao, K.; Yonezawa, T.

    1980-08-01

    Hyperfine splitting (hfs) constants of molecules, methyl, ethyl, vinyl, allyl, cyclopropyl, formyl, O3-, NH2, NO2, and NF2 radicals have been calculated by the pseudo-orbital (PO) theory, the unrestricted HF (UHF), projected UHF (PUHF) and single excitation (SE) CI theories. The pseudo-orbital (PO) theory is based on the symmetry-adapted-cluster (SAC) expansion proposed previously. Several contractions of the Gaussian basis sets of double-zeta accuracy have been examined. The UHF results were consistently too large to compare with experiments and the PUHF results were too small. For molecules studied here, the PO theory and SECI theory gave relatively close results. They were in fair agreement with experiments. The first-order spin-polarization self-consistency effect, which was shown to be important for atoms, is relatively small for the molecules. The present result also shows an importance of eliminating orbital-transformation dependence from conventional first-order perturbation calculations. The present calculations have explained well several important variations in the experimental hfs constants.

  15. New Precise Measurement of the Hyperfine Splitting of Positronium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, A., E-mail: ishida@icepp.s.u-tokyo.ac.jp

    Positronium (Ps) is an ideal system for precision test of bound state quantum electrodynamics. The hyperfine splitting (HFS) of the ground state of Ps, which is one of the most precisely tested quantity, has a large discrepancy of 16 ppm (4.5 σ) between previous experiments and theoretical calculation up to O(α{sup 3}lnα{sup −1}) and part of O(α{sup 3}) corrections. A new experiment which reduces possible systematic uncertainties of Ps thermalization effect and nonuniformity of magnetic field was performed. It revealed that the Ps thermalization effect was as large as 10 ± 2 ppm. Treating the thermalization effect correctly, a newmore » result of 203.3942 ± 0.0016(stat., 8.0 ppm) ± 0.0013(sys., 6.4 ppm) GHz was obtained. This result is consistent with theory within 1.1 σ, whereas it disfavors the previous experimental result by 2.6 σ. It shows that the Ps thermalization effect is crucial for precision measurement of HFS. Future prospects for improved precision are briefly discussed.« less

  16. Ground-state hyperfine splitting for Rb, Cs, Fr, Ba+, and Ra+

    NASA Astrophysics Data System (ADS)

    Ginges, J. S. M.; Volotka, A. V.; Fritzsche, S.

    2017-12-01

    We have systematically investigated the ground-state hyperfine structure for alkali-metal atoms 87Rb,133Cs, and 211Fr and alkali-metal-like ions +135Ba and +225Ra, which are of particular interest for parity violation studies. The quantum electrodynamic one-loop radiative corrections have been rigorously evaluated within an extended Furry picture employing core-Hartree and Kohn-Sham atomic potentials. Moreover, the effect of the nuclear magnetization distribution on the hyperfine structure intervals has been studied in detail and its uncertainty has been estimated. Finally, the theoretical description of the hyperfine structure has been completed with full many-body calculations performed in the all-orders correlation potential method.

  17. Elucidation of electronic structure by the analysis of hyperfine interactions: The MnH A 7Π-X 7Sigma + (0,0) band

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.

    1991-08-01

    We present a complete analysis of the hyperfine structure of the MnH A 7Π-X 7Σ+ (0,0) band near 5680 Å, studied with sub-Doppler resolution by intermodulated fluorescence spectroscopy. Magnetic hyperfine interactions involving both the 55Mn (I=5/2) and 1H (I=1/2) nuclear spins are observed as well as 55Mn electric quadrupole effects. The manganese Fermi contact interaction in the X 7Σ+ state is the dominant contributor to the observed hyperfine splittings; the ΔF=0, ΔN=0, ΔJ=±1 matrix elements of this interaction mix the electron spin components of the ground state quite strongly at low N, destroying the ``goodness'' of J as a quantum number and inducing rotationally forbidden, ΔJ=±2 and ±3 transitions. The hyperfine splittings of over 50 rotational transitions covering all 7 spin components of both states were analyzed and fitted by least squares, allowing the accurate determination of 14 different hyperfine parameters. Using single electronic configurations to describe the A 7Π and X 7Σ+ states and Herman-Skillman atomic radial wave functions to represent the molecular orbitals, we calculated a priori values for the 55Mn and 1H hyperfine parameters which agree closely with experiment. We show that the five high-spin coupled Mn 3d electrons do not contribute to the manganese hyperfine structure but are responsible for the observed proton magnetic dipolar couplings. Furthermore, the results suggest that the Mn 3d electrons are not significantly involved in bonding and demonstrate that the molecular hyperfine interactions may be quantitatively understood using simple physical interpretations.

  18. Direct observation of electronic and nuclear ground state splitting in external magnetic field by inelastic neutron scattering on oxidized ferrocene and ferrocene containing polymers

    NASA Astrophysics Data System (ADS)

    Appel, Markus; Frick, Bernhard; Elbert, Johannes; Gallei, Markus; Stühn, Bernd

    2015-01-01

    The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene). They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.

  19. Spectroscopy of the 1/2 2S → 3/2 2P transition in Yb ii: Isotope shifts, hyperfine splitting, and branching ratios

    NASA Astrophysics Data System (ADS)

    Feldker, T.; Fürst, H.; Ewald, N. V.; Joger, J.; Gerritsma, R.

    2018-03-01

    We report on spectroscopic results on the 1/2 2S → 3/2 2P transition in single trapped Yb+ ions. We measure the isotope shifts for all stable Yb+ isotopes except +173Yb, as well as the hyperfine splitting of the 3/2 2P state in +171Yb. Our results are in agreement with previous measurements but are a factor of 5-9 more precise. For the hyperfine constant A (3/2 2P)=875.4 (10 )MHz our results also agree with previous measurements but deviate significantly from theoretical predictions. We present experimental results on the branching ratios for the decay of the 3/2 2P state. We find branching fractions for the decay to the 3/2 2D state and 5/2 2D state of 0.17(1)% and 1.08(5)%, respectively, in rough agreement with theoretical predictions. Furthermore, we measured the isotope shifts of the 7/2 2F →1D[5/2 ] 5 /2 transition and determine the hyperfine structure constant for the 1D[5/2 ] 5 /2 state in +171Yb to be A (1D[5/2 ] 5 /2)=-107 (6 ) MHz .

  20. Hyperfine structure of 2Σ molecules containing alkaline-earth-metal atoms

    NASA Astrophysics Data System (ADS)

    Aldegunde, Jesus; Hutson, Jeremy M.

    2018-04-01

    Ultracold molecules with both electron spin and an electric dipole moment offer new possibilities in quantum science. We use density-functional theory to calculate hyperfine coupling constants for a selection of molecules important in this area, including RbSr, LiYb, RbYb, CaF, and SrF. We find substantial hyperfine coupling constants for the fermionic isotopes of the alkaline-earth-metal and Yb atoms. We discuss the hyperfine level patterns and Zeeman splittings expected for these molecules. The results will be important both to experiments aimed at forming ultracold open-shell molecules and to their applications.

  1. Radiative improvement of the lattice nonrelativistic QCD action using the background field method and application to the hyperfine splitting of quarkonium states.

    PubMed

    Hammant, T C; Hart, A G; von Hippel, G M; Horgan, R R; Monahan, C J

    2011-09-09

    We present the first application of the background field method to nonrelativistic QCD (NRQCD) on the lattice in order to determine the one-loop radiative corrections to the coefficients of the NRQCD action in a manifestly gauge-covariant manner. The coefficients of the σ·B term in the NRQCD action and the four-fermion spin-spin interaction are computed at the one-loop level; the resulting shift of the hyperfine splitting of bottomonium is found to bring the lattice predictions in line with experiment.

  2. Hyperfine structure parametrisation in Maple

    NASA Astrophysics Data System (ADS)

    Gaigalas, G.; Scharf, O.; Fritzsche, S.

    2006-02-01

    In hyperfine structure examinations, routine high resolution spectroscopy methods have to be combined with exact fine structure calculations. The so-called magnetic A and electric B factor of the fine structure levels allow to check for a correct fine structure analysis, to find errors in the level designation, to find new levels and to probe the electron wavefunctions and its mixing coefficients. This is done by parametrisation of these factors into different contributions of the subshell electrons, which are split further into their radial and spin-angular part. Due to the routine with which hyperfine structure measurements are done, a tool for keeping the necessary information together, performing checks online with the experiment and deriving standard quantities is of great help. MAPLE [Maple is a registered trademark of Waterloo Maple Inc.] is a highly-developed symbolic programming language, often referred to as the pocket calculator of the future. Packages for theoretical atomic calculation exist ( RACAH and JUCYS) and the language meets all the requirements to keep and present information accessible for the user in a fast and practical way. We slightly extended the RACAH package [S. Fritzsche, Comput. Phys. Comm. 103 (1997) 51] and set up an environment for experimental hyperfine structure calculations, the HFS package. Supplying the fine structure and nuclear data, one is in the position to obtain information about the hyperfine spectrum, the different contributions to the splitting and to perform a least square fit of the radial parameters based on the semiempirical method. Experimentalist as well as theoretical physicist can do a complete hyperfine structure analysis using MAPLE. Program summaryTitle of program: H FS Catalogue number: ADXD Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXD Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers for which the program is designed

  3. Determination of hyperfine-induced transition rates from observations of a planetary nebula.

    PubMed

    Brage, Tomas; Judge, Philip G; Proffitt, Charles R

    2002-12-31

    Observations of the planetary nebula NGC3918 made with the STIS instrument on the Hubble Space Telescope reveal the first unambiguous detection of a hyperfine-induced transition 2s2p 3P(o)(0)-->2s2 1S0 in the berylliumlike emission line spectrum of N IV at 1487.89 A. A nebular model allows us to confirm a transition rate of 4x10(-4) sec(-1)+/-33% for this line. The measurement represents the first independent confirmation of the transition rate of hyperfine-induced lines in low ionization stages, and it provides support for the techniques used to compute these transitions for the determination of very low densities and isotope ratios.

  4. Spin-Rotation Hyperfine Splittings at Moderate to High J Values in Methanol

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Hougen, Jon T.; Belov, Sergey; Golubiatnikov, G. Yu; Lapinov, Alexander; Ilyushin, V.; Alekseev, E. A.; Mescheryakov, A. A.

    2015-06-01

    In this talk we present a possible explanation, based on torsionally mediated proton-spin-overall-rotation interaction operators, for the surprising observation in Nizhny Novgorod several years ago of doublets in some Lamb-dip sub-millimeter-wave transitions between torsion-rotation states of E symmetry in methanol. These observed doublet splittings, some as large as 70 kHz, were later confirmed by independent Lamb-dip measurements in Kharkov. In this talk we first show the observed J-dependence of the doublet splittings for two b-type Q branches (one from each laboratory), and then focus on our theoretical explanation. The latter involves three topics: (i) group theoretically allowed terms in the spin-rotation Hamiltonian, (ii) matrix elements of these terms between the degenerate components of torsion-rotation E states, calculated using wavefunctions from an earlier global fit of torsion-rotation transitions of methanol in the vt = 0, 1, and 2 states, and (iii) least-squares fits of coefficients of these terms to about 35 experimentally resolved doublet splittings in the quantum number ranges of K = -2 to +2, J = 13 to 34, and vt = 0. Rather pleasing residuals are obtained for these doublet splittings, and a number of narrow transitions, in which no doublet splitting could be detected, are also in agreement with predictions from the theory. Some remaining disagreements between experiment and the present theoretical explanation will be mentioned. G. Yu. Golubiatnikov, S. P. Belov, A. V. Lapinov, "CH_3OH Sub-Doppler Spectroscopy," (Paper MF04) and S.P. Belov, A.V. Burenin, G.Yu. Golubiatnikov, A.V. Lapinov, "What is the Nature of the Doublets in the E-Methanol Lamb-dip Spectra?" (Paper FB07), 68th International Symposium on Molecular Spectroscopy, Columbus, Ohio, June 2013. Li-Hong Xu, J. Fisher, R.M. Lees, H.Y. Shi, J.T. Hougen, J.C. Pearson, B.J. Drouin, G.A. Blake, R. Braakman, "Torsion-Rotation Global Analysis of the First Three Torsional States (vt = 0, 1, 2

  5. Hyperfine interaction in K 2Ba[Fe(NO 2) 6

    NASA Astrophysics Data System (ADS)

    Padmakumar, K.; Manoharan, P. T.

    2000-04-01

    Magnetic hyperfine splitting observed in the low temperature Mössbauer spectrum of potassium barium hexanitro ferrate(II), in the absence of any external field, is attributed to the 5T 2g state of the central metal atom further split into a ground 5E g state and a first excited 5B 2g state under a distorted octahedral symmetry in contrast to the earlier prediction of 1A 1g ground state on the basis of room temperature Mössbauer spectral and other properties. The central iron atom is co-ordianted to six nitrito groups (NO 2-), having an oxidation state of +2. The temperature dependence of Mössbauer spectra is explained on the basis of electronic relaxation among the spin-orbit coupled levels of the 5E g ground state. Various kinds of electronic relaxation mechanisms have been compared to explain the proposed mechanism. The observed temperature dependent spectra with varying internal magnetic field and line width can be explained by simple spin lattice relaxation.

  6. Experimental observation and determination of the laser-induced frequency shift of hyperfine levels of ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Liu, Wenliang; Wang, Xiaofeng; Wu, Jizhou; Su, Xingliang; Wang, Shen; Sovkov, Vladimir B.; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2017-08-01

    We report on the experimental observation and quantitative determination of the laser-induced frequency shift (LIFS) of the ultracold polar molecules formed by photoassociation (PA). The experiments are performed by detecting a series of double PA spectra with a molecular hyperfine structure, which are induced by two PA lasers with a precise and adjustable frequency reference. We find that the LIFS of the molecular hyperfine levels shows a linear dependence on PA laser intensity.

  7. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence.

    PubMed

    Fallahi, P; Yilmaz, S T; Imamoğlu, A

    2010-12-17

    We measure the strength and the sign of hyperfine interaction of a heavy hole with nuclear spins in single self-assembled quantum dots. Our experiments utilize the locking of a quantum dot resonance to an incident laser frequency to generate nuclear spin polarization. By monitoring the resulting Overhauser shift of optical transitions that are split either by electron or exciton Zeeman energy with respect to the locked transition using resonance fluorescence, we find that the ratio of the heavy-hole and electron hyperfine interactions is -0.09 ± 0.02 in three quantum dots. Since hyperfine interactions constitute the principal decoherence source for spin qubits, we expect our results to be important for efforts aimed at using heavy-hole spins in quantum information processing.

  8. Hyperfine structure measurements of neutral iodine atom (127I) using Fourier Transform Spectrometry

    NASA Astrophysics Data System (ADS)

    Ashok, Chilukoti; Vishwakarma, S. R.; Bhatt, Himal; Ankush, B. K.; Deo, M. N.

    2018-01-01

    We report the hyperfine Structure (hfs) splitting observations of neutral iodine atom (II) in the 6000 - 10,000 cm-1 near infrared spectral region. The measurements were carried out using a high-resolution Fourier Transform Spectrometer (FTS), where an electrodeless discharge lamp (EDL), excited using microwaves, was employed as the light source and InGaAs as the light detector. A specially designed setup was used to lower the plasma temperature of the medium so as to reduce the Doppler width and consequently to increase the spectral resolution of hfs components. A total of 183 lines with hfs splitting have been observed, out of which hfs in 53 spectral lines are reported for the first time. On the basis of hfs analysis, we derived the magnetic dipole and electric quadrupole coupling constants, A and B respectively for 30 even and 30 odd energy levels and are compared with the values available in the literature. New hfs values for 5 even and 4 odd levels are also reported here for the first time.

  9. EFFECTIVE HYPERFINE-STRUCTURE FUNCTIONS OF AMMONIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Augustovičová, L.; Soldán, P.; Špirko, V., E-mail: spirko@marge.uochb.cas.cz

    The hyperfine structure of the rotation-inversion ( v {sub 2} = 0{sup +}, 0{sup −}, 1{sup +}, 1{sup −}) states of the {sup 14}NH{sub 3} and {sup 15}NH{sub 3} ammonia isotopomers is rationalized in terms of effective (ro-inversional) hyperfine-structure (hfs) functions. These are determined by fitting to available experimental data using the Hougen’s effective hyperfine-structure Hamiltonian within the framework of the non-rigid inverter theory. Involving only a moderate number of mass independent fitting parameters, the fitted hfs functions provide a fairly close reproduction of a large majority of available experimental data, thus evidencing adequacy of these functions for reliable prediction.more » In future experiments, this may help us derive spectroscopic constants of observed inversion and rotation-inversion transitions deperturbed from hyperfine effects. The deperturbed band centers of ammonia come to the forefront of fundamental physics especially as the probes of a variable proton-to-electron mass ratio.« less

  10. The hyperfine excitation of OH radicals by He

    NASA Astrophysics Data System (ADS)

    Marinakis, Sarantos; Kalugina, Yulia; Lique, François

    2016-04-01

    Hyperfine-resolved collisions between OH radicals and He atoms are investigated using quantum scattering calculations and the most recent ab initio potential energy surface, which explicitly takes into account the OH vibrational motion. Such collisions play an important role in astrophysics, in particular in the modelling of OH masers. The hyperfine-resolved collision cross sections are calculated for collision energies up to 2500 cm-1 from the nuclear spin free scattering S-matrices using a recoupling technique. The collisional hyperfine propensities observed are discussed. As expected, the results from our work suggest that there is a propensity for collisions with ΔF = Δj. The new OH-He hyperfine cross sections are expected to significantly help in the modelling of OH masers from current and future astronomical observations. Contribution to the Topical Issue "Atomic Cluster Collisions (7th International Symposium)", edited by Gerardo Delgado Barrio, Andrey Solov'Yov, Pablo Villarreal, Rita Prosmiti.

  11. New Nuclear Magnetic Moment of ^{209}Bi: Resolving the Bismuth Hyperfine Puzzle.

    PubMed

    Skripnikov, Leonid V; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F; Scheibe, Benjamin; Shabaev, Vladimir M; Vogel, Michael; Volotka, Andrey V

    2018-03-02

    A recent measurement of the hyperfine splitting in the ground state of Li-like ^{208}Bi^{80+} has established a "hyperfine puzzle"-the experimental result exhibits a 7σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017)NCAOBW2041-172310.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017)NPAHAX1745-247310.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μ_{I}) of ^{209}Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μ_{I}(^{209}Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO_{3})_{3} in nitric acid solutions and of the hexafluoridobismuthate(V) BiF_{6}^{-} ion in acetonitrile. The result clearly reveals that μ_{I}(^{209}Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  12. New Nuclear Magnetic Moment of 209Bi: Resolving the Bismuth Hyperfine Puzzle

    NASA Astrophysics Data System (ADS)

    Skripnikov, Leonid V.; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F.; Scheibe, Benjamin; Shabaev, Vladimir M.; Vogel, Michael; Volotka, Andrey V.

    2018-03-01

    A recent measurement of the hyperfine splitting in the ground state of Li-like 80+208Bi has established a "hyperfine puzzle"—the experimental result exhibits a 7 σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017), 10.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017), 10.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μI) of 209Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μI(209ipts>) and combine it with nuclear magnetic resonance measurements of Bi (NO3 )3 in nitric acid solutions and of the hexafluoridobismuthate(V) BiF6- ion in acetonitrile. The result clearly reveals that μI(209Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  13. Characterization of the hyperfine interaction of the excited D50 state of Eu3 +:Y2SiO5

    NASA Astrophysics Data System (ADS)

    Cruzeiro, Emmanuel Zambrini; Etesse, Jean; Tiranov, Alexey; Bourdel, Pierre-Antoine; Fröwis, Florian; Goldner, Philippe; Gisin, Nicolas; Afzelius, Mikael

    2018-03-01

    We characterize the europium (Eu3 +) hyperfine interaction of the excited state (D50) and determine its effective spin Hamiltonian parameters for the Zeeman and quadrupole tensors. An optical free induction decay method is used to measure all hyperfine splittings under a weak external magnetic field (up to 10 mT) for various field orientations. On the basis of the determined Hamiltonian, we discuss the possibility to predict optical transition probabilities between hyperfine levels for the F70⟷D50 transition. The obtained results provide necessary information to realize an optical quantum memory scheme which utilizes long spin coherence properties of 3 + 151Eu :Y2SiO5 material under external magnetic fields.

  14. Polarization nondegenerate fiber Fabry-Perot cavities with large tunable splittings

    NASA Astrophysics Data System (ADS)

    Cui, Jin-Ming; Zhou, Kun; Zhao, Ming-Shu; Ai, Ming-Zhong; Hu, Chang-Kang; Li, Qiang; Liu, Bi-Heng; Peng, Jin-Lan; Huang, Yun-Feng; Li, Chuan-Feng; Guo, Guang-Can

    2018-04-01

    We demonstrate a type of microcavity with large tunable splitting of polarization modes. This polarization nondegenerate cavity consists of two ellipsoidal concave mirrors with controllable eccentricity by CO2 laser machining on fiber end facets. The experiment shows that the cavities can combine the advantages of high finesse above 104 and large tunable polarization mode splitting to the GHz range. As the splitting of the cavity can be finely controlled to match atom hyperfine levels or optomechanics phonons, it will blaze a way in experiments on cavity quantum electrodynamics and cavity optomechanics.

  15. In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy

    NASA Astrophysics Data System (ADS)

    Diermaier, M.; Jepsen, C. B.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Zmeskal, J.; Widmann, E.

    2017-06-01

    Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of νHF=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10-9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.

  16. In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy.

    PubMed

    Diermaier, M; Jepsen, C B; Kolbinger, B; Malbrunot, C; Massiczek, O; Sauerzopf, C; Simon, M C; Zmeskal, J; Widmann, E

    2017-06-12

    Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of ν HF =1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10 -9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration.

  17. In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy

    PubMed Central

    Diermaier, M.; Jepsen, C. B.; Kolbinger, B.; Malbrunot, C.; Massiczek, O.; Sauerzopf, C.; Simon, M. C.; Zmeskal, J.; Widmann, E.

    2017-01-01

    Antihydrogen, the lightest atom consisting purely of antimatter, is an ideal laboratory to study the CPT symmetry by comparison with hydrogen. With respect to absolute precision, transitions within the ground-state hyperfine structure (GS-HFS) are most appealing by virtue of their small energy separation. ASACUSA proposed employing a beam of cold antihydrogen atoms in a Rabi-type experiment, to determine the GS-HFS in a field-free region. Here we present a measurement of the zero-field hydrogen GS-HFS using the spectroscopy apparatus of ASACUSA's antihydrogen experiment. The measured value of νHF=1,420,405,748.4(3.4) (1.6) Hz with a relative precision of 2.7 × 10−9 constitutes the most precise determination of this quantity in a beam and verifies the developed spectroscopy methods for the antihydrogen HFS experiment to the p.p.b. level. Together with the recently presented observation of antihydrogen atoms 2.7 m downstream of the production region, the prerequisites for a measurement with antihydrogen are now available within the ASACUSA collaboration. PMID:28604657

  18. Measurement of the 1s Hyperfine Transition of Two Tl^80+ Isotopes

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Utter, S. B.; Wong, K. L.; Crespo López-Urrutia, J. R.; Britten, J. A.; Chen, H.; Thoe, R. S.; Thorn, D. B.; Träbert, E.; Gustavsson, M. G. H.; Forssén, C.; Mårtenson-Pendrill, A.-M.; Harris, C. L.

    2001-05-01

    The hyperfine splitting of the 1s ground state has been measured for the two stable isotopes of hydrogen-like Tl using emission spectroscopy in the SuperEBIT electron beam ion trap. The results are 3858.22± 0.30 Åfor ^203Tl^80+ and 3821.84± 0.34 Åfor ^205Tl^80+. These differ by about 60 Å from recent and about 19 Å from very recent calculations, illustrating unsolved issues affecting these transitions in hydrogen-like ions. The wavelength difference Δλ = 36.38± 0.35 Å is consistent with estimates based on hyperfine anomaly data for neutral Tl. By using previously determined nuclear magnetic moments and applying appropriate corrections for the nuclear charge distribution and radiative effects, the experimental splittings can be interpreted in terms of nuclear magnetization radii < r^2_m>^1/2= 5.83(14) fm for ^203Tl and < r^2_m>^1/2= 5.89(14) fm for ^205Tl. These values are 10% larger than derived from single-particle nuclear magnetization models, and are slightly larger than the corresponding charge distributions. *Work performed under the auspices of DOE by UCLLNL under contract W-7405-ENG-48 and supported by the Office of Basic Energy Sciences.

  19. The Hyperfine Structure of the Ground State in the Muonic Helium Atoms

    NASA Astrophysics Data System (ADS)

    Aznabayev, D. T.; Bekbaev, A. K.; Korobov, V. I.

    2018-05-01

    Non-relativistic ionization energies 3He2+μ-e- and 4He2+μ-e- of helium-muonic atoms are calculated for ground states. The calculations are based on the variational method of the exponential expansion. Convergence of the variational energies is studied by an increasing of a number of the basis functions N. This allows to claim that the obtained energy values have 26 significant digits for ground states. With the obtained results we calculate hyperfine splitting of the muonic helium atoms.

  20. Hyperfine structure of the MnH X 7Sigma + state: A large gas-to-matrix shift in the Fermi contact interaction

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.

    1990-06-01

    Sub-Doppler spectra of the A 7Π-X 7Σ+ (0,0) band of gas phase MnH near 5680 Å were recorded by intermodulated fluorescence spectroscopy. The spectra reveal hyperfine splittings arising from both the 55Mn and 1H nuclear spins. Internal hyperfine perturbations have been observed between the different spin components of the ground state at low N`. From a preliminary analysis of several rotational lines originating from the isolated and unperturbed F1(J`=3) spin component of the X 7Σ+(N`=0) level, the 55Mn Fermi contact interaction in the ground state has been measured as bF=Aiso =276(1) MHz. This value is 11% smaller than the value obtained by Weltner et al. from an electron-nuclear double resonance (ENDOR) study of MnH in an argon matrix at 4 K. This unprecedented gas-to-matrix shift in the Fermi contact parameter is discussed.

  1. Hyperfine excitation of OH+ by H

    NASA Astrophysics Data System (ADS)

    Lique, François; Bulut, Niyazi; Roncero, Octavio

    2016-10-01

    The OH+ ions are widespread in the interstellar medium and play an important role in the interstellar chemistry as they act as precursors to the H2O molecule. Accurate determination of their abundance rely on their collisional rate coefficients with atomic hydrogen and electrons. In this paper, we derive OH+-H fine and hyperfine-resolved rate coefficients by extrapolating recent quantum wave packet calculations for the OH+ + H collisions, including inelastic and exchange processes. The extrapolation method used is based on the infinite order sudden approach. State-to-state rate coefficients between the first 22 fine levels and 43 hyperfine levels of OH+ were obtained for temperatures ranging from 10 to 1000 K. Fine structure-resolved rate coefficients present a strong propensity rule in favour of Δj = ΔN transitions. The Δj = ΔF propensity rule is observed for the hyperfine transitions. The new rate coefficients will help significantly in the interpretation of OH+ spectra from photon-dominated region (PDR), and enable the OH+ molecule to become a powerful astrophysical tool for studying the oxygen chemistry.

  2. Stochastic hyperfine interactions modeling library

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When

  3. Opto-Electronic Oscillator Stabilized By A Hyperfine Atomic Transition

    NASA Technical Reports Server (NTRS)

    Strekalov, Dmitry; Aveline, David; Matsko, Andrey B.; Thompson, Robert; Yu, Nan

    2004-01-01

    Opto-electronic oscillator (OEO) is a closed-loop system with part of the loop is implemented by an optical beam, and the rest by RF circuitry. The technological advantage of this approach over traditional all-RF loops in the gigahertz range comes from the that frequency filtering can be done far more efficiently in the optical range with compact, low power, and have superior stability. In this work, we report our preliminary results on using the phenomenon of coherent population trapping in (87) Rb vapor as an optical filter. Such a filter allows us to stabilize the OEO at the hyperfine splitting frequency of rubidium, thus implementing a novel type of frequency standard.

  4. Ground-State Hyperfine Structure of Heavy Hydrogen-Like Ions

    NASA Astrophysics Data System (ADS)

    Kühl, T.; Borneis, S.; Dax, A.; Engel, T.; Faber, S.; Gerlach, M.; Holbrow, C.; Huber, G.; Marx, D.; Merz, P.; Quint, W.; Schmitt, F.; Seelig, P.; Tomaselli, M.; Winter, H.; Wuertz, M.; Beckert, K.; Franzke, B.; Nolden, F.; Reich, H.; Steck, M.

    Contributions of quantum electrodynamics (QED) to the combined electric and magnetic interaction between the electron and the nucleus can be studied by optical spectroscopy in high-Z hydrogen-like heavy ions. The transition studied is the ground-state hyperfine structure transition, well known from the 21 cm line in atomic hydrogen. The hyperfine splitting of the is ground state of hydrogen-like systems constitutes the simplest and most basic magnetic interaction in atomic physics. The Z3-increase leads to a transition energy in the UV-region of the optical spectrum for the case of Bi82+. At the same time, the QED correction rises to nearly 1 fraction of higher order contributions. This situation is particularly useful for a comparison with non-perturbative QED calculations. The combination of exceptionally intense electric and magnetic fields electric and magnetic fields is unique. This transition has become accessible to precision laser spectroscopy at the high-energy heavy-ion storage ring at GSI-Darmstadt in the hydrogen-like 209Bi82+ and 207Pb81+. In the meantime, 165Ho66+ and 185,187Re74+ were also studied with reduced resolution by conventional optical spectroscopy at the SuperEBIT ion trap at Lawrence Livermore National Laboratory.

  5. Atomic dark matter with hyperfine interactions

    NASA Astrophysics Data System (ADS)

    Boddy, Kimberly K.; Kaplinghat, Manoj; Kwa, Anna; Peter, Annika H. G.

    2017-11-01

    We consider dark matter as an analog of hydrogen in a secluded sector and study its astrophysical implications. The self interactions between dark matter particles include elastic scatterings as well as inelastic processes from hyperfine transitions. We show that for a dark hydrogen mass in the 10-100 GeV range and a dark fine-structure constant larger than 0.01, the self-interaction cross section has the right magnitude and velocity dependence to explain the low dark matter density cores seen in small galaxies while being consistent with all constraints from observations of galaxy clusters. Excitations to the hyperfine state and subsequent decays, however, may cause significant cooling losses and affect the evolution of low-mass halos. We also find minimum halo masses in the range of 103.5-107 M⊙, which are significantly larger than the typical predictions for weakly interacting dark matter models. This pattern of observables in structure formation is unique to this model, making it possible to determine the viability of hidden-sector hydrogen as a dark matter candidate.

  6. Hyperfine interaction in the Autler-Townes effect: The formation of bright, dark, and chameleon states

    NASA Astrophysics Data System (ADS)

    Kirova, T.; Cinins, A.; Efimov, D. K.; Bruvelis, M.; Miculis, K.; Bezuglov, N. N.; Auzinsh, M.; Ryabtsev, I. I.; Ekers, A.

    2017-10-01

    This paper is devoted to clarifying the implications of hyperfine (HF) interaction in the formation of adiabatic (i.e., "laser-dressed") states and their expression in the Autler-Townes (AT) spectra. We first use the Morris-Shore model [J. R. Morris and B. W. Shore, Phys. Rev. A 27, 906 (1983), 10.1103/PhysRevA.27.906] to illustrate how bright and dark states are formed in a simple reference system where closely spaced energy levels are coupled to a single state with a strong laser field with the respective Rabi frequency ΩS. We then expand the simulations to realistic hyperfine level systems in Na atoms for a more general case when non-negligible HF interaction can be treated as a perturbation in the total system Hamiltonian. A numerical analysis of the adiabatic states that are formed by coupling of the 3 p3 /2 and 4 d5 /2 states by the strong laser field and probed by a weak laser field on the 3 s1 /2-3 p3 /2 transition yielded two important conclusions. Firstly, the perturbation introduced by the HF interaction leads to the observation of what we term "chameleon" states—states that change their appearance in the AT spectrum, behaving as bright states at small to moderate ΩS, and fading from the spectrum similarly to dark states when ΩS is much larger than the HF splitting of the 3 p3 /2 state. Secondly, excitation by the probe field from two different HF levels of the ground state allows one to address orthogonal sets of adiabatic states; this enables, with appropriate choice of ΩS and the involved quantum states, a selective excitation of otherwise unresolved hyperfine levels in excited electronic states.

  7. A source of antihydrogen for in-flight hyperfine spectroscopy

    PubMed Central

    Kuroda, N.; Ulmer, S.; Murtagh, D. J.; Van Gorp, S.; Nagata, Y.; Diermaier, M.; Federmann, S.; Leali, M.; Malbrunot, C.; Mascagna, V.; Massiczek, O.; Michishio, K.; Mizutani, T.; Mohri, A.; Nagahama, H.; Ohtsuka, M.; Radics, B.; Sakurai, S.; Sauerzopf, C.; Suzuki, K.; Tajima, M.; Torii, H. A.; Venturelli, L.; Wu¨nschek, B.; Zmeskal, J.; Zurlo, N.; Higaki, H.; Kanai, Y.; Lodi Rizzini, E.; Nagashima, Y.; Matsuda, Y.; Widmann, E.; Yamazaki, Y.

    2014-01-01

    Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart—hydrogen—is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy. PMID:24448273

  8. THE HYPERFINE STRUCTURE OF THE ROTATIONAL SPECTRUM OF HDO AND ITS EXTENSION TO THE THz REGION: ACCURATE REST FREQUENCIES AND SPECTROSCOPIC PARAMETERS FOR ASTROPHYSICAL OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cazzoli, Gabriele; Lattanzi, Valerio; Puzzarini, Cristina

    2015-06-10

    The rotational spectrum of the mono-deuterated isotopologue of water, HD{sup 16}O, has been investigated in the millimeter- and submillimeter-wave frequency regions, up to 1.6 THz. The Lamb-dip technique has been exploited to obtain sub-Doppler resolution and to resolve the hyperfine (hf) structure due to the deuterium and hydrogen nuclei, thus enabling the accurate determination of the corresponding hf parameters. Their experimental determination has been supported by high-level quantum-chemical calculations. The Lamb-dip measurements have been supplemented by Doppler-limited measurements (weak high-J and high-frequency transitions) in order to extend the predictive capability of the available spectroscopic constants. The possibility of resolving hfmore » splittings in astronomical spectra has been discussed.« less

  9. International Conference on Quantum Chemical Calculations of NMR and EPR Parameters Held in Castle Smolenice, Slovak Republic on September 14-18 1998

    DTIC Science & Technology

    1998-10-21

    site. The electric-field- induced linear shift is also observed in the hyperfine splitting of nuclear quadrupole resonance ( NQR ) spectrum of a nucleus...located at a noncentrosymmetric site in a molecule or in crystal lattice. Thus, the linear electric field effect on the ESR and NQR hyperfine splitting...the electric field effects on ESR and NQR hyperfine couplings. Theoretical methods to calculate the electric field effects within Hartree-Fock

  10. The effect of crustal anisotropy on SKS splitting analysis—synthetic models and real-data observations

    NASA Astrophysics Data System (ADS)

    Latifi, Koorosh; Kaviani, Ayoub; Rümpker, Georg; Mahmoodabadi, Meysam; Ghassemi, Mohammad R.; Sadidkhouy, Ahmad

    2018-05-01

    The contribution of crustal anisotropy to the observation of SKS splitting parameters is often assumed to be negligible. Based on synthetic models, we show that the impact of crustal anisotropy on the SKS splitting parameters can be significant even in the case of moderate to weak anisotropy within the crust. In addition, real-data examples reveal that significant azimuthal variations in SKS splitting parameters can be caused by crustal anisotropy. Ps-splitting analysis of receiver functions (RF) can be used to infer the anisotropic parameters of the crust. These crustal splitting parameters may then be used to constrain the inversion of SKS apparent splitting parameters to infer the anisotropy of the mantle. The observation of SKS splitting for different azimuths is indispensable to verify the presence or absence of multiple layers of anisotropy beneath a seismic station. By combining SKS and RF observations in different azimuths at a station, we are able to uniquely decipher the anisotropic parameters of crust and upper mantle.

  11. Quantum Theory of Hyperfine Structure Transitions in Diatomic Molecules.

    ERIC Educational Resources Information Center

    Klempt, E.; And Others

    1979-01-01

    Described is an advanced undergraduate laboratory experiment in which radio-frequency transitions between molecular hyperfine structure states may be observed. Aspects of the quantum theory applied to the analysis of this physical system, are discussed. (Authors/BT)

  12. Fine- and hyperfine-structure effects in molecular photoionization. II. Resonance-enhanced multiphoton ionization and hyperfine-selective generation of molecular cations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch

    2016-07-28

    Resonance-enhanced multiphoton ionization (REMPI) is a widely used technique for studying molecular photoionization and producing molecular cations for spectroscopy and dynamics studies. Here, we present a model for describing hyperfine-structure effects in the REMPI process and for predicting hyperfine populations in molecular ions produced by this method. This model is a generalization of our model for fine- and hyperfine-structure effects in one-photon ionization of molecules presented in Paper I [M. Germann and S. Willitsch, J. Chem. Phys. 145, 044314 (2016)]. This generalization is achieved by covering two main aspects: (1) treatment of the neutral bound-bound transition including the hyperfine structuremore » that makes up the first step of the REMPI process and (2) modification of our ionization model to account for anisotropic populations resulting from this first excitation step. Our findings may be used for analyzing results from experiments with molecular ions produced by REMPI and may serve as a theoretical background for hyperfine-selective ionization experiments.« less

  13. Effect of thermal history on Mossbauer signature and hyperfine interaction parameters of copper ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Modi, K. B., E-mail: kunalbmodi2003@yahoo.com; Raval, P. Y.; Dulera, S. V.

    Two specimens of copper ferrite, CuFe{sub 2}O{sub 4}, have been synthesized by double sintering ceramic technique with different thermal history i.e. slow cooled and quenched. X-ray diffractometry has confirmed single phase fcc spinel structure for slow cooled sample while tetragonal distortion is present in quenched sample. Mossbauer spectral analysis for slow-cooled copper ferrite reveals super position of two Zeeman split sextets along with paramagnetic singlet in the centre position corresponds to delafossite (CuFeO{sub 2}) phase that is completely absent in quenched sample. The hyperfine interaction parameters are highly influenced by heat treatment employed.

  14. Molecular hyperfine fields in organic magnetoresistance devices

    NASA Astrophysics Data System (ADS)

    Giro, Ronaldo; Rosselli, Flávia P.; dos Santos Carvalho, Rafael; Capaz, Rodrigo B.; Cremona, Marco; Achete, Carlos A.

    2013-03-01

    We calculate molecular hyperfine fields in organic magnetoresistance (OMAR) devices using ab initio calculations. To do so, we establish a protocol for the accurate determination of the average hyperfine field Bhf and apply it to selected molecular ions: NPB, TPD, and Alq3. Then, we make devices with precisely the same molecules and perform measurements of the OMAR effect, in order to address the role of hole-transport layer in the characteristic magnetic field B0 of OMAR. Contrary to common belief, we find that molecular hyperfine fields are not only caused by hydrogen nuclei. We also find that dipolar contributions to the hyperfine fields can be comparable to the Fermi contact contributions. However, such contributions are restricted to nuclei located in the same molecular ion as the charge carrier (intramolecular), as extramolecular contributions are negligible.

  15. Stochastic hyperfine interactions modeling library-Version 2

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Evenson, William E.

    2016-02-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized. The original version of SHIML constructed and solved Blume matrices for methods that measure hyperfine interactions of nuclear probes in a single spin state. Version 2 provides additional support for methods that measure interactions on two different spin states such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation. Example codes are provided to illustrate the use of SHIML to (1) generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A22 can be neglected and (2) generate Mössbauer spectra for polycrystalline samples for pure dipole or pure quadrupole transitions.

  16. Fluctuating hyperfine interactions: an updated computational implementation

    NASA Astrophysics Data System (ADS)

    Zacate, M. O.; Evenson, W. E.

    2015-04-01

    The stochastic hyperfine interactions modeling library (SHIML) is a set of routines written in the C programming language designed to assist in the analysis of stochastic models of hyperfine interactions. The routines read a text-file description of the model, set up the Blume matrix, upon which the evolution operator of the quantum mechanical system depends, and calculate the eigenvalues and eigenvectors of the Blume matrix, from which theoretical spectra of experimental techniques can be calculated. The original version of SHIML constructs Blume matrices applicable for methods that measure hyperfine interactions with only a single nuclear spin state. In this paper, we report an extension of the library to provide support for methods such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation, which are sensitive to interactions with two nuclear spin states. Examples will be presented that illustrate the use of this extension of SHIML to generate Mössbauer spectra for polycrystalline samples under a number of fluctuating hyperfine field models.

  17. POLARIZED SCATTERING OF LIGHT FOR ARBITRARY MAGNETIC FIELDS WITH LEVEL-CROSSINGS FROM THE COMBINATION OF HYPERFINE AND FINE STRUCTURE SPLITTINGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sowmya, K.; Nagendra, K. N.; Sampoorna, M.

    2015-12-01

    Interference between magnetic substates of the hyperfine structure states belonging to different fine structure states of the same term influences the polarization for some of the diagnostically important lines of the Sun's spectrum, like the sodium and lithium doublets. The polarization signatures of this combined interference contain information on the properties of the solar magnetic fields. Motivated by this, in the present paper, we study the problem of polarized scattering on a two-term atom with hyperfine structure by accounting for the partial redistribution in the photon frequencies arising due to the Doppler motions of the atoms. We consider the scatteringmore » atoms to be under the influence of a magnetic field of arbitrary strength and develop a formalism based on the Kramers–Heisenberg approach to calculate the scattering cross section for this process. We explore the rich polarization effects that arise from various level-crossings in the Paschen–Back regime in a single scattering case using the lithium atomic system as a concrete example that is relevant to the Sun.« less

  18. Hyperfine structure of excited states and quadrupole moment of Ne-21 using laser-induced line-narrowing techniques.

    NASA Technical Reports Server (NTRS)

    Ducas, T. W.; Feld, M. S.; Ryan, L. W., Jr.; Skribanowitz, N.; Javan, A.

    1972-01-01

    Observation results are presented on the optical hyperfine structure in Ne-21 obtained with the aid of laser-induced line-narrowing techniques. The output from a long stabilized single-mode 1.15-micron He-Ne laser focused into an external sample cell containing Ne-21 was used in implementing these techniques. Their applicability is demonstrated for optical hyperfine structure observation in systems whose features are ordinarily masked by Doppler broadening.

  19. A Decade of Shear-Wave Splitting Observations in Alaska

    NASA Astrophysics Data System (ADS)

    Bellesiles, A. K.; Christensen, D. H.; Abers, G. A.; Hansen, R. A.; Pavlis, G. L.; Song, X.

    2010-12-01

    Over the last decade four PASSCAL experiments have been conducted in different regions of Alaska. ARCTIC, BEAAR and MOOS form a north-south transect across the state, from the Arctic Ocean to Price Williams Sound, while the STEEP experiment is currently deployed to the east of that line in the St Elias Mountains of Southeastern Alaska. Shear-wave splitting observations from these networks in addition to several permanent stations of the Alaska Earthquake Information Center were determined in an attempt to understand mantle flow under Alaska in a variety of different geologic settings. Results show two dominant splitting patterns in Alaska, separated by the subducted Pacific Plate. North of the subducted Pacific Plate fast directions are parallel to the trench (along strike of the subducted Pacific Plate) indicating large scale mantle flow in the northeast-southwest direction with higher anisotropy (splitting times) within the mantle wedge. Within or below the Pacific Plate fast directions are normal to the trench in the direction of Pacific Plate convergence. In addition to these two prominent splitting patterns there are several regions that do not match either of these trends. These more complex regions which include the results from STEEP could be due to several factors including effects from the edge of the Pacific Plate. The increase of station coverage that Earthscope will bring to Alaska will aid in developing a more complete model for anisotropy and mantle flow in Alaska.

  20. Full hyperfine structure analysis of singly ionized molybdenum

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa

    2017-03-01

    For a first time a parametric study of hyperfine structure of Mo II configuration levels is presented. The newly measured A and B hyperfine structure (hfs) constants values of Mo II 4d5, 4d45s and 4d35s2 configuration levels, for both 95 and 97 isotopes, using Fast-ion-beam laser-induced fluorescence spectroscopy [1] are gathered with other few data available in literature. A fitting procedure of an isolated set of these three lowest even-parity configuration levels has been performed by taking into account second-order of perturbation theory including the effects of closed shell-open shell excitations. Moreover the same study was done for Mo II odd-parity levels; for both parities two sets of fine structure parameters as well as the leading eigenvector percentages of levels and Landé-factor gJ, relevant for this paper are given. We present also predicted singlet, triplet and quintet positions of missing experimental levels up to 85000 cm-1. The single-electron hfs parameter values were extracted in their entirety for 97Mo II and for 95Mo II: for instance for 95Mo II, a4d 01 =-133.37 MHz and a5p 01 =-160.25 MHz for 4d45p; a4d 01 =-140.84 MHz, a5p 01 =-170.18 MHz and a5s 10 =-2898 MHz for 4d35s5p; a5s 10 =-2529 (2) MHz and a4d 01 =-135.17 (0.44) MHz for the 4d45s. These parameter values were analysed and compared with diverse ab-initio calculations. We closed this work with giving predicted values of magnetic dipole and electric quadrupole hfs constants of all known levels, whose splitting are not yet measured.

  1. Hyperfine Fields of 181Ta in UFe4Al8

    NASA Astrophysics Data System (ADS)

    Marques, J. G.; Barradas, N. P.; Alves, E.; Ramos, A. R.; Gonçalves, A. P.; da Silva, M. F.; Soares, J. C.

    2001-11-01

    The γ γ Perturbed Angular Correlation technique was used to study the hyperfine interaction of 181Ta at the Hf site(s) in UFe4Al8 at room temperature and 12 K. The data at room temperature are well described by two electric field gradients, while at low temperature two combined hyperfine interactions have to be considered, one with the magnetic hyperfine field collinear with the c-axis and another with the magnetic hyperfine field in the basal plane. The results are compared with previous Mössbauer and neutron diffraction experiments and the lattice site of Hf is discussed.

  2. The spectroscopic observation of the CH radical in its a4Sigma(-) state

    NASA Technical Reports Server (NTRS)

    Nelis, Thomas; Brown, John M.; Evenson, Kenneth M.

    1988-01-01

    The first spectroscopic observation of CH in the a 4Sigma(0-) state are reported. The molecule was generated in a discharge-flow system in the reaction betweeen fluorine atoms and methane or between oxygen atoms and acetylene at a total pressure of about 1 Torr. Several resonances associated with the N = 1 - 0 transitions of 4Sigma(-) CH were observed at three separate laser wavelengths, while those for the N = 2 - 1 transition were observed at two wavelengths. Each observed Zeeman component consists of a well-split doublet arising from proton hyperfine structure. The reasons for assigning the observations to CH in its a 4Sigma(-) state are discussed.

  3. Optogalvanic spectroscopy of lanthanum hyperfine structure

    NASA Astrophysics Data System (ADS)

    Nelson, Amanda; Hankes, Jessie; Banner, Patrick; Olmschenk, Steven

    2017-04-01

    Optogalvanic spectroscopy is a sensitive technique to measure optical transitions of atoms and ions produced in a high voltage discharge. Advantages of this technique include a comparatively simple optical setup and the ability to interrogate excited state transitions. Here, we use optogalavanic spectroscopy in a hollow cathode lamp to measure the hyperfine spectrum of several transitions in lanthanum. Hyperfine coefficients are determined for the corresponding energy levels and compared to available previous measurements. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  4. Hyperfine field and magnetic structure in the B phase of CeCoIn5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graf, Matthias J; Curro, Nicholas J; Young, Ben - Li

    2009-01-01

    We re-analyze Nuclear Magnetic Resonance (NMR) spectra observed at low temperatures and high magnetic fields in the field-induced B-phase of CeCoIn{sub 5}. The NMR spectra are consistent with incommensurate antiferromagnetic order of the Ce magnetic moments. However, we find that the spectra of the In(2) sites depend critically on the direction of the ordered moments, the ordering wavevector and the symmetry of the hyperfine coupling to the Ce spins. Assuming isotropic hyperfine coupling, the NMR spectra observed for H {parallel} [100] are consistent with magnetic order with wavevector Q = {pi}(1+{delta}/a, 1/a, 1/c) and Ce moments ordered antiferromagnetically along themore » [100] direction in real space. If the hyperfine coupling has dipolar symmetry, then the NMR spectra require Ce moments along the [001] direction. The dipolar scenario is also consistent with recent neutron scattering measurements that find an ordered moment of 0.15{micro}{sub B} along [001] and Q{sub n} = {pi}(1+{delta}/a, 1+{delta}c, 1/c) with incommensuration {delta} = 0.12 for field H {parallel} [1{bar 1}0]. Using these parameters, we find that the hyperfine field is consistent with both experiments. We speculate that the B phase of CeCoIn{sub 5} represents an intrinsic phase of modulated superconductivity and antiferromagnetism that can only emerge in a highly clean system.« less

  5. Hyperfine structure in 229gTh3+ as a probe of the 229gTh→ 229mTh nuclear excitation energy.

    PubMed

    Beloy, K

    2014-02-14

    We identify a potential means to extract the 229gTh→ 229mTh nuclear excitation energy from precision microwave spectroscopy of the 5F(5/2,7/2) hyperfine manifolds in the ion 229gTh3+. The hyperfine interaction mixes this ground fine structure doublet with states of the nuclear isomer, introducing small but observable shifts to the hyperfine sublevels. We demonstrate how accurate atomic structure calculations may be combined with the measurement of the hyperfine intervals to quantify the effects of this mixing. Further knowledge of the magnetic dipole decay rate of the isomer, as recently reported, allows an indirect determination of the nuclear excitation energy.

  6. Hyperfine coupling of the iodine {\\boldsymbol{D}}{0}_{{\\boldsymbol{u}}}^{+} and β1 g ion-pair states

    NASA Astrophysics Data System (ADS)

    Baturo, V. V.; Cherepanov, I. N.; Lukashov, S. S.; Petrov, A. N.; Poretsky, S. A.; Pravilov, A. M.

    2018-05-01

    Detailed studies of I2(β1 g , v β = 13, J β ∼ D{0}u+, v D = 12, J D and D, 48, J D ∼ β, 47, J β ) rovibronic state coupling have been carried out using two-step two-color, hν 1 + hν 2 and hν 1 + 2hν 2, optical–optical double resonance excitation schemes, respectively. The hyperfine interaction satisfying the | {{Δ }}J| = 0, 1 selection rules (magnetic-dipole interaction) has been observed. No electric-quadrupole hyperfine coupling (| {{Δ }}J| = 2) has been found. The dependences of ratios of luminescence intensities from the rovibronic states populated due to the hyperfine coupling to those from optically populated ones on energy gaps between these states have been experimentally determined. The matrix elements as well as the hyperfine structure constant have been obtained using these dependences. It is shown that they increase slightly with the vibrational quantum number of the states.

  7. Hyperfine interaction constants of 14NO2 in 14 500-16 800 cm-1 energy region

    NASA Astrophysics Data System (ADS)

    Tada, Kohei; Hirata, Michihiro; Kasahara, Shunji

    2017-10-01

    We observed hyperfine-resolved high-resolution fluorescence excitation spectra of k = 0, N = 1 ← 0 transitions in 82 vibronic bands of the à 2B2 ← X ˜ 2A1 system of 14NO2 in the 14 500-16 800 cm-1 region by crossing a jet-cooled molecular beam and a single-mode dye laser beam at right angles. We determined hyperfine interaction constants of the lower and upper states for all the observed vibronic bands based on the analysis of the hyperfine structures of k = 0, N = 1 ← 0 transitions. Most of the determined Fermi contact interaction constants were found to be distributed in 0.0013-0.0038 cm-1, which are intermediate in magnitude between those in lower and higher energy region reported by other groups. A sharp decreasing of the Fermi contact interaction constant was found in 16 200-16 600 cm-1, and it may be caused by the interaction with the dark C ˜ 2A2 state. The hyperfine interaction constants are powerful clues to obtain reliable vibronic assignment. We tentatively assigned vibronic bands located at 14 836 cm-1, 15 586 cm-1, and 16 322 cm-1 as the transitions to the intrinsic (0,7,0), (0,8,0), and (0,9,0) vibrational levels of the à 2B2 state, respectively.

  8. HYPERFINE-DEPENDENT gf-VALUES OF Mn I LINES IN THE 1.49-1.80 μm H BAND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersson, M.; Hutton, R.; Zou, Y.

    2015-01-01

    The three Mn I lines at 17325, 17339, and 17349 Å are among the 25 strongest lines (log (gf) > 0.5) in the H band. They are all heavily broadened due to hyperfine structure, and the profiles of these lines have so far not been understood. Earlier studies of these lines even suggested that they were blended. In this work, the profiles of these three infrared (IR) lines have been studied theoretically and compared to experimental spectra to assist in the complete understanding of the solar spectrum in the IR. It is shown that the structure of these lines cannot be describedmore » in the conventional way using the diagonal A and B hyperfine interaction constants. The off-diagonal hyperfine interaction not only has a large impact on the energies of the hyperfine levels, but also introduces a large intensity redistribution among the hyperfine lines, changing the line profiles dramatically. By performing large-scale calculations of the diagonal and off-diagonal hyperfine interaction and the gf-values between the upper and lower hyperfine levels and using a semi-empirical fitting procedure, we achieved agreement between our synthetic and experimental spectra. Furthermore, we compare our results with observations of stellar spectra. The spectra of the Sun and the K1.5 III red giant star Arcturus were modeled in the relevant region, 1.73-1.74 μm, using our theoretically predicted gf-values and energies for each individual hyperfine line. Satisfactory fits were obtained and clear improvements were found using our new data compared with the old available Mn I data. A complete list of energies and gf-values for all the 3d {sup 5}4s({sup 7} S)4d e{sup 6}D - 3d {sup 5}4s({sup 7} S)4f w{sup 6}F hyperfine lines are available as supporting material, whereas only the stronger lines are presented and discussed in detail in this paper.« less

  9. Observation of spontaneous spin-splitting in the band structure of an n-type zinc-blende ferromagnetic semiconductor

    PubMed Central

    Anh, Le Duc; Hai, Pham Nam; Tanaka, Masaaki

    2016-01-01

    Large spin-splitting in the conduction band and valence band of ferromagnetic semiconductors, predicted by the influential mean-field Zener model and assumed in many spintronic device proposals, has never been observed in the mainstream p-type Mn-doped ferromagnetic semiconductors. Here, using tunnelling spectroscopy in Esaki-diode structures, we report the observation of such a large spontaneous spin-splitting energy (31.7–50 meV) in the conduction band bottom of n-type ferromagnetic semiconductor (In,Fe)As, which is surprising considering the very weak s-d exchange interaction reported in several zinc-blende type semiconductors. The mean-field Zener model also fails to explain consistently the ferromagnetism and the spin-splitting energy of (In,Fe)As, because we found that the Curie temperature values calculated using the observed spin-splitting energies are much lower than the experimental ones by a factor of 400. These results urge the need for a more sophisticated theory of ferromagnetic semiconductors. PMID:27991502

  10. Electron and nuclear spin interactions in the optical spectra of single GaAs quantum dots.

    PubMed

    Gammon, D; Efros, A L; Kennedy, T A; Rosen, M; Katzer, D S; Park, D; Brown, S W; Korenev, V L; Merkulov, I A

    2001-05-28

    Fine and hyperfine splittings arising from electron, hole, and nuclear spin interactions in the magneto-optical spectra of individual localized excitons are studied. We explain the magnetic field dependence of the energy splitting through competition between Zeeman, exchange, and hyperfine interactions. An unexpectedly small hyperfine contribution to the splitting close to zero applied field is described well by the interplay between fluctuations of the hyperfine field experienced by the nuclear spin and nuclear dipole/dipole interactions.

  11. Hyperfine excitation of CH in collisions with atomic and molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-04-01

    We investigate here the excitation of methylidene (CH) induced by collisions with atomic and molecular hydrogen (H and H2). The hyperfine-resolved rate coefficients were obtained from close coupling nuclear-spin-free scattering calculations. The calculations are based upon recent, high-accuracy calculations of the CH(X2Π)-H(2S) and CH(X2Π)-H2 potential energy surfaces. Cross-sections and rate coefficients for collisions with atomic H, para-H2, and ortho-H2 were computed for all transitions between the 32 hyperfine levels for CH(X2Π) involving the n ≤ 4 rotational levels for temperatures between 10 and 300 K. These rate coefficients should significantly aid in the interpretation of astronomical observations of CH spectra. As a first application, the excitation of CH is simulated for conditions in typical molecular clouds.

  12. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED

    NASA Astrophysics Data System (ADS)

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-01

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  13. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED.

    PubMed

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-05-16

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209 Bi 82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron-nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209 Bi 82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction.

  14. High precision hyperfine measurements in Bismuth challenge bound-state strong-field QED

    PubMed Central

    Ullmann, Johannes; Andelkovic, Zoran; Brandau, Carsten; Dax, Andreas; Geithner, Wolfgang; Geppert, Christopher; Gorges, Christian; Hammen, Michael; Hannen, Volker; Kaufmann, Simon; König, Kristian; Litvinov, Yuri A.; Lochmann, Matthias; Maaß, Bernhard; Meisner, Johann; Murböck, Tobias; Sánchez, Rodolfo; Schmidt, Matthias; Schmidt, Stefan; Steck, Markus; Stöhlker, Thomas; Thompson, Richard C.; Trageser, Christian; Vollbrecht, Jonas; Weinheimer, Christian; Nörtershäuser, Wilfried

    2017-01-01

    Electrons bound in highly charged heavy ions such as hydrogen-like bismuth 209Bi82+ experience electromagnetic fields that are a million times stronger than in light atoms. Measuring the wavelength of light emitted and absorbed by these ions is therefore a sensitive testing ground for quantum electrodynamical (QED) effects and especially the electron–nucleus interaction under such extreme conditions. However, insufficient knowledge of the nuclear structure has prevented a rigorous test of strong-field QED. Here we present a measurement of the so-called specific difference between the hyperfine splittings in hydrogen-like and lithium-like bismuth 209Bi82+,80+ with a precision that is improved by more than an order of magnitude. Even though this quantity is believed to be largely insensitive to nuclear structure and therefore the most decisive test of QED in the strong magnetic field regime, we find a 7-σ discrepancy compared with the theoretical prediction. PMID:28508892

  15. Regulation of Split Linear Systems Over Rings: Coefficient-Assignment and Observers,

    DTIC Science & Technology

    1980-02-22

    we give for the first time , a method to obtain an observer for a finite -free strongly observable The K-linear map irQ is defined as system 5" ( F. G...NAME a ADORESS~if dif!ttrent from Controlling Office) IS1 SECURITY CLASS . (of this report) SIS.. DE CL ASSI ’I CATION/ODOWNGRADING SCHEDULE 16...Entered) IEEE rRANSACTIONS ON AUTOMATIC CONTROL . VOL. Ac-27 . No. 1. FEaRUAay 1982 Regutlation of Split Linear Systems Over Rings: Coefficient

  16. Hyperfine fields of Fe in Nd2Fe14BandSm2Fe17N3

    NASA Astrophysics Data System (ADS)

    Akai, Hisazumi; Ogura, Masako

    2015-03-01

    High saturation magnetization of rare-earth magnets originates from Fe and the strong magnetic anisotropy stems from f-states of rare-earth elements such as Nd and Sm. Therefore the hyperfine fields of both Fe and rare-earth provide us with important pieces of information: Fe NMR enable us to detect site dependence of the local magnetic moment and magnetic anisotropy (Fe sites also contribute to the magnetic anisotropy) while rare-earth NQR directly give the information of electric field gradients (EFG) that are related to the shape of the f-electron cloud as well as the EFG produced by ligands. In this study we focus on the hyperfine fields of materials used as permanent magnets, Nd2Fe14BandSm2Fe17N3 from theoretical points of view. The detailed electronic structure together with the hyperfine interactions are discussed on the basis of the first-principles calculation. In particular, the relations between the observed hyperfine fields and the magnetic properties are studies in detail. The effects of doping of those materials by other elements such as Dy and the effects of N adding in Sm2Fe17N3 will be discussed. This work was supported by Elements Strategy Initiative Center for Magnetic Materials Project, the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  17. Hyperfine Fields in Nanocrystalline Fe0.48Al0.52

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Satuła, D.; Dobrzyński, L.; Voronina, E.; Yelsukov, E. P.

    2004-12-01

    Mössbauer measurements with circularly polarized radiation were performed on a nanocrystalline, disordered Fe48Al52 alloy. The analysis of the data for various polarization states resulted in the characterization of the hyperfine magnetic field distribution and the dependence of the average z-component of hyperfine field on the chemical environment. An increasing number of Al in the first coordination shell causes not only a decrease of magnetic moments but also introduces noncollinearity.

  18. Energy, fine structure, hyperfine structure, and radiative transition rates of the high-lying multi-excited states for B-like neon

    NASA Astrophysics Data System (ADS)

    Zhang, Chun Mei; Chen, Chao; Sun, Yan; Gou, Bing Cong; Shao, Bin

    2015-04-01

    The Rayleigh-Ritz variational method with multiconfiguration interaction wave functions is used to obtain the energies of high-lying multi-excited quartet states 1 s 22 s2 pnl and 1 s 22 p 2 nl 4Pe,o ( n ≥ 2) in B-like neon, including the mass polarization and relativistic corrections. The fine structure and hyperfine structure of the excited quartet states for this system are investigated. Configuration structures of the high-lying multi-excited series are further identified by relativistic corrections and fine structure splittings. The transition rates and wavelengths are also calculated. Calculated wavelengths include the quantum electrodynamic effects. The results are compared with other theoretical and experimental data in the literature.

  19. Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Riis, E.; Sinclair, A. G.; Poulsen, O.; Drake, G. W. F.; Rowley, W. R. C.; Levick, A. P.

    1994-01-01

    High-precision laser-resonance measurements accurate to +/-0.5 MHz or better are reported for transitions among the 1s2s 3S1-1s2p 3PJ hyperfine manifolds for each of J=0, 1, and 2 in both 6Li+ and 7Li+. A detailed analysis of hyperfine structure is performed for both the S and P states, using newly calculated values for the magnetic dipole and electric quadrupole coupling constants, and the hyperfine shifts subtracted from the measurements. The resulting transition frequencies are then analyzed on three different levels. First, the isotope shifts in the fine-structure splittings are calculated from the relativistic reduced mass and recoil terms in the Breit interaction, and compared with experiment at the +/-0.5-MHz level of accuracy. This comparison is particularly significant because J-independent theoretical uncertainties reduce through cancellation to the +/-0.01-MHz level. Second, the isotope shifts in the full transition frequencies are used to deduce the difference in rms nuclear radii. The result is Rrms(6Li)-Rrms(7Li)=0.15+/-0.01 fm, in agreement with nuclear scattering data, but with substantially improved accuracy. Third, high-precision calculations of the low-order non-QED contributions to the transition frequencies are subtracted from the measurements to obtain the residual QED shifts. The isotope-averaged and spin-averaged effective shift for 7Li+ is 37 429.40+/-0.39 MHz, with an additional uncertainty of +/-1.5 MHz due to finite nuclear size corrections. The accuracy of 11 parts per million is the best two-electron Lamb shift measurement in the literature, and is comparable to the accuracies achieved in hydrogen. Theoretical contributions to the two-electron Lamb shift are discussed, including terms of order (αZ)4 recently obtained by Chen, Cheng, and Johnson [Phys. Rev. A 47, 3692 (1993)], and the results used to extract a QED shift for the 2 3S1 state. The result of 30 254+/-12 MHz is shown to be in good accord with theory (30 250+/-30 MHz) when

  20. Hyperfine excitation of linear molecules by para- and ortho-H{sub 2}: Application to the HCl–H{sub 2} system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lanza, Mathieu; Lique, François, E-mail: francois.lique@univ-lehavre.fr

    The determination of hyperfine structure resolved excitation cross sections and rate coefficients due to H{sub 2} collisions is required to interpret astronomical spectra. In this paper, we present several theoretical approaches to compute these data. An almost exact recoupling approach and approximate sudden methods are presented. We apply these different approaches to the HCl–H{sub 2} collisional system in order to evaluate their respective accuracy. HCl–H{sub 2} hyperfine structure resolved cross sections and rate coefficients are then computed using recoupling and approximate sudden methods. As expected, the approximate sudden approaches are more accurate when the collision energy increases and the resultsmore » suggest that these approaches work better for para-H{sub 2} than for ortho-H{sub 2} colliding partner. For the first time, we present HCl–H{sub 2} hyperfine structure resolved rate coefficients, computed here for temperatures ranging from 5 to 300 K. The usual Δj{sub 1} = ΔF{sub 1} propensity rules are observed for the hyperfine transitions. The new rate coefficients will significantly help the interpretation of interstellar HCl emission lines observed with current and future telescopes. We expect that these new data will allow a better determination of the HCl abundance in the interstellar medium, that is crucial to understand the interstellar chlorine chemistry.« less

  1. EPR hyperfine structure of the Mo-related defect in CdWO4

    NASA Astrophysics Data System (ADS)

    Elsts, E.; Rogulis, U.

    2005-01-01

    The hyperfine structure (hf) of the electron paramagnetic resonance (EPR) spectrum of Mo-related impurity defects in CdWO4 crystals observed previously (U. Rogulis, Radiat. Meas. 29, 287 (1998) [1]) is reconsidered taking into account interactions with two different groups of neighbouring Cd nuclei. The best fit calculated EPR spectrum to the experimental is obtained considering 2 groups of 3 and 2 equivalent Cd nuclei, respectively.

  2. Theoretical hyperfine structures of 19F i and 17O i

    NASA Astrophysics Data System (ADS)

    Aourir, Nouria; Nemouchi, Messaoud; Godefroid, Michel; Jönsson, Per

    2018-03-01

    Multiconfiguration Hartree-Fock (MCHF) and multiconfiguration Dirac-Hartree-Fock (MCDHF) calculations are performed for the 2 p5P2o , 2 p4(3P ) 3 s 4P , 2 p4(3P ) 3 s 2P , and 2 p4(3P ) 3 p 4So states of 19F i to determine their hyperfine constants. Several computing strategies are considered to investigate electron correlation and relativistic effects. High-order correlation contributions are included in MCHF calculations based on single and double multireference expansions. The largest components of the single reference MCHF wave functions are selected to define the multireference (MR) sets. In this scheme, relativistic corrections are evaluated in the Breit-Pauli approximation. A similar strategy is used for the calculation of MCDHF relativistic wave functions and hyperfine parameters. While correlation and relativistic corrections are found to be rather small for the ground state, we highlight large relativistic effects on the hyperfine constant A3 /2 of 2 p4(3P ) 3 p 4So and, to a lesser extent, on A1 /2 of 2 p4(3P ) 3 s 4P . As expected for such a light system, electron correlation effects dominate over relativity in the calculation of the hyperfine interaction of all other levels considered. We also revisit the hyperfine constants of 2 p3(4S ) 3 s S5o and 2 p3(4S ) 3 p 5P in 17O using similar strategies. The results are found to be in excellent agreement with experiment.

  3. The Zeeman effect in astrophysical water masers and the observation of strong magnetic fields in regions of star formation

    NASA Technical Reports Server (NTRS)

    Nedoluha, Gerald E.; Watson, William D.

    1992-01-01

    The present study solves the transfer equations for the polarized radiation of astrophysical 22-GHz water masers in the presence of a magnetic field which causes a Zeeman splitting that is much smaller than the spectral line breadth. The emphasis is placed on the relationship between the recently detected circular polarization in this maser radiation and the strength of the magnetic field. When the observed spectral line breadth is smaller than about 0.8 km/s (FWHM), it is calculated that the uncertainty is less than a factor of about 2. The accuracy is improved significantly when the angle between the line of sight and the direction of the magnetic field does not exceed about 45 deg. Uncertainty in the strength of the magnetic field due to lack of knowledge about which hyperfine transition is the source of the 22-GHz masers is removed. The 22-GHz maser feature is found to be the result of a merger of the three strongest hyperfine components.

  4. A computer program for analyzing unresolved Mossbauer hyperfine spectra

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Singh, J. J.

    1978-01-01

    The program for analyzing unresolved Mossbauer hyperfine spectra was written in FORTRAN 4 language for the Control Data CYBER 170 series digital computer system with network operating system 1.1. With the present dimensions, the program requires approximately 36,000 octal locations of core storage. A typical case involving two innermost coordination shells in which the amplitudes and the peak positions of all three components were estimated in 25 iterations requires 30 seconds on CYBER 173. The program was applied to determine the effects of various near neighbor impurity shells on hyperfine fields in dilute FeAl alloys.

  5. Hyperfine structure of the hydroxyl free radical (OH) in electric and magnetic fields

    NASA Astrophysics Data System (ADS)

    Maeda, Kenji; Wall, Michael L.; Carr, Lincoln D.

    2015-05-01

    We investigate single-particle energy spectra of the hydroxyl free radical (OH) in the lowest electronic and rovibrational level under combined static electric and magnetic fields, as an example of heteronuclear polar diatomic molecules. In addition to the fine-structure interactions, the hyperfine interactions and centrifugal distortion effects are taken into account to yield the zero-field spectrum of the lowest 2Π3 / 2 manifold to an accuracy of less than 2kHz. We also examine level crossings and repulsions in the hyperfine structure induced by applied electric and magnetic fields. Compared to previous work, we found more than 10 percent reduction of the magnetic fields at level repulsions in the Zeeman spectrum subjected to a perpendicular electric field. In addition, we find new level repulsions, which we call Stark-induced hyperfine level repulsions, that require both an electric field and hyperfine structure. It is important to take into account hyperfine structure when we investigate physics of OH molecules at micro-Kelvin temperatures and below. This research was supported in part by AFOSR Grant No.FA9550-11-1-0224 and by the NSF under Grants PHY-1207881 and NSF PHY-1125915. We appreciate the Aspen Center for Physics, supported in part by the NSF Grant No.1066293, for hospitality.

  6. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Astrophysics Data System (ADS)

    Kurucz, Robert L.

    1996-01-01

    The main accomplishment was the merging of all the atomic line data into one wavelength-sorted list that is simple to use. We have combined all the atomic files from a CDROM into 534,910 line files GFALL.DAT and GFELEN.DAT. These are the data we use to compute spectra. They are not up to date. References are given in GFALL.REF or GFELEK.REF. There are no references after 1988, and for light elements there are no references after 1979. One new development is the inclusion of hyperfine splitting for the iron group elements using hyperfine data from the literature through 1993. The data are very incomplete. We have supplied a program for splitting the line list for a species. It reads the hyperfine and isotopic splitting parameters for levels and computes the splittings whenever those levels appear. Lines with no splitting data are copied untouched. Because Sc, Mn, and Co are monoisotopic, only the hyperfine splittings are needed. Since 51V is much more abundant than 50V, the isotope shifts are small for 51V, and we approximate V with 51V. GFALLHYP.DAT has 754,946 lines including hyperfine Sc I, V I, Mn I, and Co I.

  7. High-precision optical measurement of the 2S hyperfine interval in atomic hydrogen.

    PubMed

    Kolachevsky, N; Fischer, M; Karshenboim, S G; Hänsch, T W

    2004-01-23

    We have applied an optical method to the measurement of the 2S hyperfine interval in atomic hydrogen. The interval has been measured by means of two-photon spectroscopy of the 1S-2S transition on a hydrogen atomic beam shielded from external magnetic fields. The measured value of the 2S hyperfine interval is equal to 177 556 860(16) Hz and represents the most precise measurement of this interval to date. The theoretical evaluation of the specific combination of 1S and 2S hyperfine intervals D21 is in fair agreement (within 1.4 sigma) with the value for D21 deduced from our measurement.

  8. Hyperfine Quantum Beat Spectroscopy of the Cs 8p level with Pulsed Pump-Probe Technique

    NASA Astrophysics Data System (ADS)

    Bayram, Burcin; Popov, Oleg; Kelly, Stephen; Boyle, Patrick; Salsman, Andrew

    2013-05-01

    Quantum beats arising from the hyperfine interaction were measured in a three-level excitation (lambda) scheme: pump for the 6s2S1 / 2 --> 8p2P3 / 2 and stimulated emission pump (probe) for the 8p2P3 / 2 --> 5d2D5 / 2 transitions of atomic cesium. In the technique, pump laser instantaneously excites the hot atomic vapor and creates anisotropy in the 8p2P3 / 2 level, and probe laser comes after some time delay. Delaying the probe time allows us to map out the motion of the polarized atoms like a stroboscope. According to the observed evolution of the hyperfine structure dependent parameters, e.g. alignment and atomic polarization, by delaying the arrival time of the stimulated emission pump laser (SEP), precise values of the magnetic dipole and electric quadrupole coefficients are obtained with an improved precision over previous results. The usefulness of the PUMP-SEP excitation scheme for the polarization hyperfine quantum beat measurements without complications from the Doppler effect will also be discussed. The financial support of the Research Corporation under the Grant number CC7133 and MiamiUniversity, College of the Arts and Sciences are acknowledged.

  9. Quantum versus classical hyperfine-induced dynamics in a quantum dota)

    NASA Astrophysics Data System (ADS)

    Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.

    2007-04-01

    In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.

  10. Scanning nuclear resonance imaging of a hyperfine-coupled quantum Hall system.

    PubMed

    Hashimoto, Katsushi; Tomimatsu, Toru; Sato, Ken; Hirayama, Yoshiro

    2018-06-07

    Nuclear resonance (NR) is widely used to detect and characterise nuclear spin polarisation and conduction electron spin polarisation coupled by a hyperfine interaction. While the macroscopic aspects of such hyperfine-coupled systems have been addressed in most relevant studies, the essential role of local variation in both types of spin polarisation has been indicated in 2D semiconductor systems. In this study, we apply a recently developed local and highly sensitive NR based on a scanning probe to a hyperfine-coupled quantum Hall (QH) system in a 2D electron gas subject to a strong magnetic field. We succeed in imaging the NR intensity and Knight shift, uncovering the spatial distribution of both the nuclear and electron spin polarisation. The results reveal the microscopic origin of the nonequilibrium QH phenomena, and highlight the potential use of our technique in microscopic studies on various electron spin systems as well as their correlations with nuclear spins.

  11. Hyperfine interactions in titanates: Study of orbital ordering and local magnetic properties

    NASA Astrophysics Data System (ADS)

    Agzamova, P. A.; Leskova, Yu. V.; Nikiforov, A. E.

    2013-05-01

    Hyperfine magnetic fields induced on the nuclei of nonmagnetic ions 139La and 89Y in LaTiO3 and YTiO3, respectively, have been microscopically calculated. The dependence of the hyperfine fields on the orbital and magnetic structures of the compounds under study has been analyzed. The comparative analysis of the calculated and known experimental data confirms the existence of the static orbital structure in lanthanum and yttrium titanates.

  12. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization.

    PubMed

    Germann, Matthias; Willitsch, Stefan

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O2 reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ions produced by photoionization.

  13. Fine- and hyperfine-structure effects in molecular photoionization. I. General theory and direct photoionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Germann, Matthias; Willitsch, Stefan, E-mail: stefan.willitsch@unibas.ch

    2016-07-28

    We develop a model for predicting fine- and hyperfine intensities in the direct photoionization of molecules based on the separability of electron and nuclear spin states from vibrational-electronic states. Using spherical tensor algebra, we derive highly symmetrized forms of the squared photoionization dipole matrix elements from which we derive the salient selection and propensity rules for fine- and hyperfine resolved photoionizing transitions. Our theoretical results are validated by the analysis of the fine-structure resolved photoelectron spectrum of O{sub 2} reported by Palm and Merkt [Phys. Rev. Lett. 81, 1385 (1998)] and are used for predicting hyperfine populations of molecular ionsmore » produced by photoionization.« less

  14. The nuclear magnetic moment of 208Bi and its relevance for a test of bound-state strong-field QED

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Billowes, J.; Bissell, M. L.; Blaum, K.; Garcia Ruiz, R. F.; Heylen, H.; Malbrunot-Ettenauer, S.; Neyens, G.; Nörtershäuser, W.; Plunien, G.; Sailer, S.; Shabaev, V. M.; Skripnikov, L. V.; Tupitsyn, I. I.; Volotka, A. V.; Yang, X. F.

    2018-04-01

    The hyperfine structure splitting in the 6p3 3/2 4S → 6p2 7 s 1/2 4P transition at 307 nm in atomic 208Bi was measured with collinear laser spectroscopy at ISOLDE, CERN. The hyperfine A and B factors of both states were determined with an order of magnitude improved accuracy. Based on these measurements, theoretical input for the hyperfine structure anomaly, and results from hyperfine measurements on hydrogen-like and lithium-like 209Bi80+,82+, the nuclear magnetic moment of 208Bi has been determined to μ (208Bi) = + 4.570 (10)μN. Using this value, the transition energy of the ground-state hyperfine splitting in hydrogen-like and lithium-like 208Bi80+,82+ and their specific difference of -67.491(5)(148) meV are predicted. This provides a means for an experimental confirmation of the cancellation of nuclear structure effects in the specific difference in order to exclude such contributions as the cause of the hyperfine puzzle, the recently reported 7-σ discrepancy between experiment and bound-state strong-field QED calculations of the specific difference in the hyperfine structure splitting of 209Bi80+,82+.

  15. Collective nuclear stabilization in single quantum dots by noncollinear hyperfine interaction

    NASA Astrophysics Data System (ADS)

    Yang, Wen; Sham, L. J.

    2012-06-01

    We present a theory of efficient suppression of the collective nuclear spin fluctuation, which prolongs the electron spin coherence time through the noncollinear hyperfine interaction between the nuclear spins and the hole spin. This provides a general paradigm to combat decoherence by direct control of environmental noise, and a possible solution to the puzzling observation of symmetric broadening of the absorption spectra in two recent experiments [Xu , Nature (London)NATUAS0028-083610.1038/nature08120 459, 1105 (2009) and Latta , Nature Phys.1745-247310.1038/nphys1363 5, 758 (2009)].

  16. Hyperfine structure of atomic fluorine (F I)

    NASA Astrophysics Data System (ADS)

    Huo, Xiaoxue; Deng, Lunhua; Windholz, L.; Mu, Xiuli; Wang, Hailing

    2018-01-01

    A high resolution absorption spectrum of neutral fluorine(F I) was observed around 800 nm using concentration modulation absorption spectroscopy with a tunable Ti : Sapphire laser. The fluorine atoms were produced by discharging the mixed gases of helium and sulfur hexafluoride (SF6) in a glass tube. Thirty four hyperfine structure (hfs) resolved transitions were analyzed to obtain 23 magnetic dipole hfs constants A for 2p4(3P)3s, 2p4(3P)3p and 2p4(3P)3d configurations. The hfs constants in 2p4(3P)3s and 2p4(3P)3p configurations were compared with those obtained from experiments and calculations. Fifteen constants in 2p4(3P)3d configuration were reported - to our knowledge - for the first time.

  17. Using Hyperfine Structure Limits to Characterize the Formaldehyde Maser in G32.74-0.07

    NASA Astrophysics Data System (ADS)

    Araya, Esteban; Nazmus Sakib, Md; Olmi, Luca; Hofner, Peter; Kurtz, Stan; Hoffman, Ian M.; Linz, Hendrik

    2018-06-01

    Formaldehyde (H2CO) masers are a rare variety of astrophysical masers, but they have the virtue of exclusively tracing the interiors of high-mass star forming regions. We report observations conducted with the 305m Arecibo Telescope and the Karl G. Jansky Very Large Array (VLA) of the 6 cm H2CO maser in the region of high-mass star formation G32.74-0.07. This maser is among the narrowest H2CO masers known, and thus it is an excellent candidate to study the excitation of the hyperfine components of the transition. The Arecibo and VLA results are consistent, the maser flux density observed with Arecibo is recovered in the VLA image within the rms noise of the spectra, and the fitted line widths of the two observations agree to within formal errors. Our high signal-to-noise (~7 mJy rms) and high spectral resolution (0.05 km/s) observations allow us to set strong limits on the hyperfine structure of the line. The line profile is consistent with unsaturated emission, with a maser gain of approximately 3, and an amplified background radio continuum of ~1 mJy. VLA observations confirm the presence of a continuum source at the location of the maser. The continuum source is characterized by a spectral index of +0.9 at 5 GHz, which is indicative of thermal Bremsstrahlung in the optically thick/thin transition.

  18. Observation of acoustic valley vortex states and valley-chirality locked beam splitting

    NASA Astrophysics Data System (ADS)

    Ye, Liping; Qiu, Chunyin; Lu, Jiuyang; Wen, Xinhua; Shen, Yuanyuan; Ke, Manzhu; Zhang, Fan; Liu, Zhengyou

    2017-05-01

    We report an experimental observation of the classical version of valley polarized states in a two-dimensional hexagonal sonic crystal. The acoustic valley states, which carry specific linear momenta and orbital angular momenta, were selectively excited by external Gaussian beams and conveniently confirmed by the pressure distribution outside the crystal, according to the criterion of momentum conservation. The vortex nature of such intriguing bulk crystal states was directly characterized by scanning the phase profile inside the crystal. In addition, we observed a peculiar beam-splitting phenomenon, in which the separated beams are constructed by different valleys and locked to the opposite vortex chirality. The exceptional sound transport, encoded with valley-chirality locked information, may serve as the basis of designing conceptually interesting acoustic devices with unconventional functions.

  19. Muon contact hyperfine field in metals: A DFT calculation

    NASA Astrophysics Data System (ADS)

    Onuorah, Ifeanyi John; Bonfà, Pietro; De Renzi, Roberto

    2018-05-01

    In positive muon spin rotation and relaxation spectroscopy it is becoming customary to take advantage of density functional theory (DFT) based computational methods to aid the experimental data analysis. DFT-aided muon site determination is especially useful for measurements performed in magnetic materials, where large contact hyperfine interactions may arise. Here we present a systematic analysis of the accuracy of the ab initio estimation of muon's hyperfine contact field on elemental transition metals, performing state-of-the-art spin-polarized plane-wave DFT and using the projector-augmented pseudopotential approach, which allows one to include the core state effects due to the spin ordering. We further validate this method in not-so-simple, noncentrosymmetric metallic compounds, presently of topical interest for their spiral magnetic structure giving rise to skyrmion phases, such as MnSi and MnGe. The calculated hyperfine fields agree with experimental values in all cases, provided the spontaneous spin magnetization of the metal is well reproduced within the approach. To overcome the known limits of the conventional mean-field approximation of DFT on itinerant magnets, we adopt the so-called reduced Stoner theory [L. Ortenzi et al., Phys. Rev. B 86, 064437 (2012), 10.1103/PhysRevB.86.064437]. We establish the accuracy of the estimated muon contact field in metallic compounds with DFT and our results show improved agreement with experiments compared to those of earlier publications.

  20. Hyperfine field and electronic structure of magnetite below the Verwey transition

    NASA Astrophysics Data System (ADS)

    Řezníček, R.; Chlan, V.; Štěpánková, H.; Novák, P.

    2015-03-01

    Magnetite represents a prototype compound with a mixed valence of iron cations. Its structure and electron ordering below the Verwey transition have been studied for decades. A recently published precise crystallographic structure [Senn et al., Nature (London) 481, 173 (2012), 10.1038/nature10704] accompanied by a suggestion of a "trimeron" model has given a new impulse to magnetite research. Here we investigate hyperfine field anisotropy in the C c phase of magnetite by quantitative reanalysis of published measurements of the dependences of the 57Fe nuclear magnetic resonance frequencies on the external magnetic field direction. Further, ab initio density-functional-theory-based calculations of hyperfine field depending on the magnetization direction using the recently reported crystal structure are carried out, and analogous hyperfine anisotropy data linked to particular crystallographic sites are determined. These two sets of data are compared, and mutually matching groups of the iron B sites in the 8:5:3 ratio are found. Moreover, information on electronic structure is obtained from the ab initio calculations. Our results are compared with the trimeron model and with an alternative analysis [Patterson, Phys. Rev. B 90, 075134 (2014), 10.1103/PhysRevB.90.075134] as well.

  1. Observation of the hc(1P1) state of charmonium.

    PubMed

    Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Galik, R S; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Wilksen, T; Weaver, K M; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; White, E J; Williams, J; Wiss, J; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Mahmood, A H; Severini, H; Asner, D M; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Cravey, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Park, W; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E

    2005-09-02

    The h(c)((1)P(1)) state of charmonium has been observed in the reaction psi(2S) --> pi(0)h(c) --> (gammagamma)(gammaeta(c)) using 3.08 x10(6) psi(2S) decays recorded in the CLEO detector. Data have been analyzed both for the inclusive reaction, where the decay products of the eta(c) are not identified, and for exclusive reactions, in which eta(c) decays are reconstructed in seven hadronic decay channels. We find M(h(c)) = 3524.4 +/- 0.6 +/- 0.4 MeV which corresponds to a hyperfine splitting DeltaM(hf)(1P) triple-bond pi(0)h(c)) x B(h(c) --> gammaeta(c)) = (4.0 +/- 0.8 +/- 0.7) x 10(-4).

  2. Clutch pressure estimation for a power-split hybrid transmission using nonlinear robust observer

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Zhang, Jianwu; Gao, Ji; Yu, Haisheng; Liu, Dong

    2018-06-01

    For a power-split hybrid transmission, using the brake clutch to realize the transition from electric drive mode to hybrid drive mode is an available strategy. Since the pressure information of the brake clutch is essential for the mode transition control, this research designs a nonlinear robust reduced-order observer to estimate the brake clutch pressure. Model uncertainties or disturbances are considered as additional inputs, thus the observer is designed in order that the error dynamics is input-to-state stable. The nonlinear characteristics of the system are expressed as the lookup tables in the observer. Moreover, the gain matrix of the observer is solved by two optimization procedures under the constraints of the linear matrix inequalities. The proposed observer is validated by offline simulation and online test, the results have shown that the observer achieves significant performance during the mode transition, as the estimation error is within a reasonable range, more importantly, it is asymptotically stable.

  3. Research on Spectroscopy, Opacity, and Atmospheres

    NASA Astrophysics Data System (ADS)

    Kurucz, Robert L.; Bell, Barbara

    1996-01-01

    This line list is a replacement for the Kurucz-Peytremann line list. We have combined all the atomic files from CDROM 18 into 534910 line files GFALL.DAT and GFELEM.DAT. These are the data we actually use to compute spectra. They are not up to date. References are given in GFALL.REF or GFELEN.REF. There are no references after 1988. For light elements there are no references after 1979. We have the literature into the 1990's but have not had manpower or funding to update everything. Our current plan is to make a new semiempirical calculation for each species and at that time to include all the data from the literature. One new development is the inclusion of hyperfine splitting for the iron group elements using hyperfine data from the literature through 1993. The data are very incomplete. We have not yet included data for isotopic splitting. We supply a program for splitting the line list for a species. It reads the hyperfine and isotopic splitting parameters for levels and computes the oplittings whenever those levels appear. Lines with no splitting data are copied untouched. Because Sc, Mn, and Co are monoisotopic, only the hyperfine splittings are needed. Since 51V is much more abundant than S0V, the isotope shifts are small for 51V, and we approximate V with 51V. GFALLKYP.DAT has 754946 lines including hyperfine Sc(I), V(I), Mn(I), and Co(I). A bibliography for last year (1994-1995) is also attached.

  4. Transient nutation electron spin resonance spectroscopy on spin-correlated radical pairs: A theoretical analysis on hyperfine-induced nuclear modulations

    NASA Astrophysics Data System (ADS)

    Weber, Stefan; Kothe, Gerd; Norris, James R.

    1997-04-01

    The influence of anisotropic hyperfine interaction on transient nutation electron paramagnetic resonance (EPR) of light-induced spin-correlated radical pairs is studied theoretically using the density operator formalism. Analytical expressions for the time evolution of the transient EPR signal during selective microwave excitation of single transitions are derived for a model system comprised of a weakly coupled radical pair and one hyperfine-coupled nucleus with I=1/2. Zero-quantum electron coherence and single-quantum nuclear coherence are created as a result of the sudden light-induced generation of the radical pair state from a singlet-state precursor. Depending on the relative sizes of the nuclear Zeeman frequency and the secular and pseudo-secular parts of the hyperfine coupling, transitions between levels with different nuclear spin orientations are predicted to modulate the time-dependent EPR signal. These modulations are in addition to the well-known transient nutations and electron zero-quantum precessions. Our calculations provide insight into the mechanism of recent experimental observations of coherent nuclear modulations in the time-resolved EPR signals of doublets and radical pairs. Two distinct mechanisms of the modulations are presented for various microwave magnetic field strengths. The first modulation scheme arises from electron and nuclear coherences initiated by the laser excitation pulse and is "read out" by the weak microwave magnetic field. While the relative modulation depth of these oscillations with respect to the signal intensity is independent of the Rabi frequency, ω1, the frequencies of this coherence phenomenon are modulated by the effective microwave amplitude and determined by the nuclear Zeeman interaction and hyperfine coupling constants as well as the electron-electron spin exchange and dipolar interactions between the two radical pair halves. In a second mechanism the modulations are both created and detected by the microwave

  5. Hyperfine structure measurements of neutral vanadium by laser-induced fluorescence spectroscopy in the wavelength range from 750 nm to 860 nm

    NASA Astrophysics Data System (ADS)

    Başar, Gü.; Güzelçimen, F.; Öztürk, I. K.; Er, A.; Bingöl, D.; Kröger, S.; Başar, Gö.

    2017-11-01

    The hyperfine structure of 57 spectral lines of neutral vanadium has been investigated using a hollow cathode lamp by laser-induced fluorescence spectroscopy in the wavelength range from 750 nm to 860 nm. New magnetic dipole hyperfine structure constants A have been determined for 14 atomic energy levels and new electric quadrupole hyperfine structure constants B for two levels. Additionally previously published hyperfine structure constants A of 56 levels have been measured again. In five cases, the old A values have been rejected and replaced by improved values.

  6. On the tunneling splitting in a cyclic water trimer

    NASA Astrophysics Data System (ADS)

    Mandziuk, Margaret

    2016-09-01

    We propose an alternative explanation of the "bifurcation" splittings observed for the water trimer in the VRT experiments of Saykally's group [Chem. Rev. 103 (2003) 2533]. In our interpretation, the splittings originate from the quantum delocalization of hydrogen bonded protons in the mean field potential between two oxygen neighbors. The pattern and the order of our calculated splittings is in the range of experimentally observed values. Consequently, quantum delocalization of protons should be considered seriously as the origin of experimentally observed fine splittings. The presented model can be extended to a water pentamer and, hopefully, advance our understanding of liquid water.

  7. StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab

    NASA Astrophysics Data System (ADS)

    Grund, Michael

    2017-04-01

    The SplitLab package (Wüstefeld et al., Computers and Geosciences, 2008), written in MATLAB, is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to seaside or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure.

  8. CONSTRAINING THE SOLAR CORONAL MAGNETIC FIELD STRENGTH USING SPLIT-BAND TYPE II RADIO BURST OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishore, P.; Ramesh, R.; Hariharan, K.

    2016-11-20

    We report on low-frequency radio (85–35 MHz) spectral observations of four different type II radio bursts, which exhibited fundamental-harmonic emission and split-band structure. Each of the bursts was found to be closely associated with a whitelight coronal mass ejection (CME) close to the Sun. We estimated the coronal magnetic field strength from the split-band characteristics of the bursts, by assuming a model for the coronal electron density distribution. The choice of the model was constrained, based on the following criteria: (1) when the radio burst is observed simultaneously in the upper and lower bands of the fundamental component, the locationmore » of the plasma level corresponding to the frequency of the burst in the lower band should be consistent with the deprojected location of the leading edge (LE) of the associated CME; (2) the drift speed of the type II bursts derived from such a model should agree closely with the deprojected speed of the LE of the corresponding CMEs. With the above conditions, we find that: (1) the estimated field strengths are unique to each type II burst, and (2) the radial variation of the field strength in the different events indicate a pattern. It is steepest for the case where the heliocentric distance range over which the associated burst is observed is closest to the Sun, and vice versa.« less

  9. Manipulation of individual hyperfine states in cold trapped molecular ions and application to HD+ frequency metrology.

    PubMed

    Bressel, U; Borodin, A; Shen, J; Hansen, M; Ernsting, I; Schiller, S

    2012-05-04

    Advanced techniques for manipulation of internal states, standard in atomic physics, are demonstrated for a charged molecular species for the first time. We address individual hyperfine states of rovibrational levels of a diatomic ion by optical excitation of individual hyperfine transitions, and achieve controlled transfer of population into a selected hyperfine state. We use molecular hydrogen ions (HD+) as a model system and employ a novel frequency-comb-based, continuous-wave 5  μm laser spectrometer. The achieved spectral resolution is the highest obtained so far in the optical domain on a molecular ion species. As a consequence, we are also able to perform the most precise test yet of the ab initio theory of a molecule.

  10. Communication: Tunnelling splitting in the phosphine molecule

    NASA Astrophysics Data System (ADS)

    Sousa-Silva, Clara; Tennyson, Jonathan; Yurchenko, Sergey N.

    2016-09-01

    Splitting due to tunnelling via the potential energy barrier has played a significant role in the study of molecular spectra since the early days of spectroscopy. The observation of the ammonia doublet led to attempts to find a phosphine analogous, but these have so far failed due to its considerably higher barrier. Full dimensional, variational nuclear motion calculations are used to predict splittings as a function of excitation energy. Simulated spectra suggest that such splittings should be observable in the near infrared via overtones of the ν2 bending mode starting with 4ν2.

  11. StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab

    NASA Astrophysics Data System (ADS)

    Grund, Michael

    2017-08-01

    SplitLab is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to the noisy seaside, ocean bottom or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure which is based on MATLAB. The effectiveness and use of this plugin is demonstrated with data examples of a long running seismological recording station in Finland.

  12. Anomalous behavior of the magnetic hyperfine field at 140Ce impurities at La sites in LaMnSi2

    NASA Astrophysics Data System (ADS)

    Domienikan, C.; Bosch-Santos, B.; Cabrera-Pasca, G. A.; Saxena, R. N.; Carbonari, A. W.

    2018-05-01

    Magnetic hyperfine field has been measured in the orthorhombic intermetallic compound LaMnSi2 with perturbed angular correlation (PAC) spectroscopy using radioactive 140La(140Ce) nuclear probes. Magnetization measurements were also carried out in this compound with MPSM-SQUID magnetometer. Samples of LaMnSi2 compound were prepared by arc melting the component metals with high purity under argon atmosphere followed by annealing at 1000°C for 60 h under helium atmosphere and quenching in water. X-ray analysis confirmed the samples to be in a single phase with correct crystal structure expected for LaMnSi2 compound. The radioactive 140La (T1/2 = 40 h) nuclei were produced by direct irradiation of the sample with neutrons in the IEA-R1 nuclear research reactor at IPEN with a flux of ˜ 1013 n cm-2s-1 for about 3 - 4 min. The PAC measurements were carried out with a six BaF2 detector spectrometer at several temperatures between 10 K and 400 K. Temperature dependence of the hyperfine field, Bhf was found to be anomalous. A modified two-state model explained this anomalous behavior where the effective magnetic hyperfine field at 140Ce is believed to have two contributions, one from the unstable localized spins at Ce impurities and another from the magnetic Mn atoms of the host. The competition of these two contributions explains the anomalous behavior observed for the temperature dependence of the magnetic hyperfine field at 140Ce. The ferromagnetic transition temperature (TC) of LaMnSi2 was determined to be 400(1) K confirming the magnetic measurements.

  13. Hyperfine structure investigations for the odd-parity configuration system in atomic holmium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Furmann, B.

    2018-02-01

    In this work new experimental results of the hyperfine structure (hfs) in the holmium atom are reported, concerning the odd-parity level system. Investigations were performed by the method of laser induced fluorescence in a hollow cathode discharge lamp on 97 spectral lines in the visible part of the spectrum. Hyperfine structure constants: magnetic dipole - A and electric quadrupole - B for 40 levels were determined for the first time; for another 21 levels the hfs constants available in the literature were remeasured. Results for the A constants can be viewed as fully reliable; for B constants further possibilities of improving the accuracy are considered.

  14. Hyperfine Structure Constants of Energetically High-lying Levels of Odd Parity of Atomic Vanadium

    NASA Astrophysics Data System (ADS)

    Güzelçimen, F.; Yapıcı, B.; Demir, G.; Er, A.; Öztürk, I. K.; Başar, Gö.; Kröger, S.; Tamanis, M.; Ferber, R.; Docenko, D.; Başar, Gü.

    2014-09-01

    High-resolution Fourier transform spectra of a vanadium-argon plasma have been recorded in the wavelength range of 365-670 nm (15,000-27,400 cm-1). Optical bandpass filters were used in the experimental setup to enhance the sensitivity of the Fourier transform spectrometer. In total, 138 atomic vanadium spectral lines showing resolved or partially resolved hyperfine structure have been analyzed to determine the magnetic dipole hyperfine structure constants A of the involved energy levels. One of the investigated lines has not been previously classified. As a result, the magnetic dipole hyperfine structure constants A for 90 energy levels are presented: 35 of them belong to the configuration 3d 34s4p and 55 to the configuration 3d 44p. Of these 90 constants, 67 have been determined for the first time, with 23 corresponding to the configuration 3d 34s4p and 44 to 3d 44p.

  15. Fine- and hyperfine structure investigations of even configuration system of atomic terbium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.

    2017-03-01

    In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).

  16. Mean link versus average plaquette tadpoles in lattice NRQCD

    NASA Astrophysics Data System (ADS)

    Shakespeare, Norman H.; Trottier, Howard D.

    1999-03-01

    We compare mean-link and average plaquette tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. Simulations are done for the three quarkonium systems c overlinec, b overlinec, and b overlineb. The hyperfine splittings are computed both at leading and at next-to-leading order in the relativistic expansion. Results are obtained at a large number of lattice spacings. A number of features emerge, all of which favor tadpole renormalization using mean links. This includes much better scaling of the hyperfine splittings in the three quarkonium systems. We also find that relativistic corrections to the spin splittings are smaller with mean-link tadpoles, particularly for the c overlinec and b overlinec systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about one in lattice units (with the bare quark masses turning out to be much larger with mean-link tadpoles).

  17. Coherent manipulation of mononuclear lanthanide-based single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Datta, Saiti; Ghosh, Sanhita; Krzystek, Jurek; Hill, Stephen; Del Barco, Enrique; Cardona-Serra, Salvador; Coronado, Eugenio

    2010-03-01

    Using electron spin echo (ESE) spectroscopy, we report measurements of the longitudinal (T1) and transverse (T2) relaxation times of diluted single-crystals containing recently discovered mononuclear lanthanide-based single-molecule magnets (SMMs) encapsulated in polyoxometallate cages [AlDamen et al. J. Am. Chem. Soc. 130, 8874 -- 8875 (2008)]. This encapsulation offers the potential for preserving bulk SMM properties outside of a crystal, e.g. in molecular spintronic devices. The magnetic anisotropy in these complexes arises from the spin-orbit splitting of the ground state J multiplet of the lanthanide ion in the presence of a ligand field. At low frequencies only hyperfine-split transitions within the lowest ground state ±mJ doublet are observed. Spin relaxation times were measured for a holmium complex, and the results were compared for different hyperfine transitions and crystal dilutions. Clear Rabi oscillations were also observed, indicating that one can manipulate the spin coherently in these complexes.

  18. Sensitive sub-Doppler nonlinear spectroscopy for hyperfine-structure analysis using simple atomizers

    NASA Astrophysics Data System (ADS)

    Mickadeit, Fritz K.; Kemp, Helen; Schafer, Julia; Tong, William M.

    1998-05-01

    Laser wave-mixing spectroscopy is presented as a sub-Doppler method that offers not only high spectral resolution, but also excellent detection sensitivity. It offers spectral resolution suitable for hyperfine structure analysis and isotope ratio measurements. In a non-planar backward- scattering four-wave mixing optical configuration, two of the three input beams counter propagate and the Doppler broadening is minimized, and hence, spectral resolution is enhanced. Since the signal is a coherent beam, optical collection is efficient and signal detection is convenient. This simple multi-photon nonlinear laser method offers un usually sensitive detection limits that are suitable for trace-concentration isotope analysis using a few different types of simple analytical atomizers. Reliable measurement of hyperfine structures allows effective determination of isotope ratios for chemical analysis.

  19. Observation of eta'c production in gammagamma fusion at CLEO.

    PubMed

    Asner, D M; Dytman, S A; Mehrabyan, S; Mueller, J A; Nam, S; Savinov, V; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cummings, J P; Danko, I; Napolitano, J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Haynes, J; Menaa, N; Mountain, R; Muramatsu, H; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, Kevin; Mahmood, A H; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Weinstein, A J; Mahapatra, R; Nelson, H N; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Patterson, J R; Pedlar, T K; Peterson, D; Pivarski, J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Sun, W M; Thayer, J G; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stoeck, H; Yelton, J; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Gao, K Y; Gong, D T; Kubota, Y; Li, S Z; Poling, R; Scott, A W; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Severini, H; Skubic, P

    2004-04-09

    We report on the observation of the eta(')(c)(2(1)S0), the radial excitation of the eta(c)(1(1)S0) ground state of charmonium, in the two-photon fusion reaction gammagamma-->eta(')(c)-->K(0)(S)K+/-pi(-/+) in 13.6 fb(-1) of CLEO II/II.V data and 13.1 fb(-1) of CLEO III data. We obtain M(eta(')(c))=3642.9+/-3.1(stat)+/-1.5(syst) MeV and M(eta(c))=2981.8+/-1.3(stat)+/-1.5(syst) MeV. The corresponding values of hyperfine splittings between 1S0 and 3S1 states are DeltaM(hf)(1S)=115.1+/-2.0 MeV and DeltaM(hf)(2S)=43.1+/-3.4 MeV. Assuming that the eta(c) and eta(')(c) have equal branching fractions to K(S)Kpi, we obtain Gamma(gammagamma)(eta(')(c))=1.3+/-0.6 keV.

  20. Mixing of the lowest-lying qqq configurations with JP =1/2- in different hyperfine interaction models

    NASA Astrophysics Data System (ADS)

    Chen, Jia; An, Chunsheng; Chen, Hong

    2018-02-01

    We investigate mixing of the lowest-lying qqq configurations with JP = 1/2- caused by the hyperfine interactions between quarks mediated by Goldstone Boson Exchange, One Gluon Exchange, and both Goldstone Boson and One Gluon exchange, respectively. The first orbitally excited nucleon, Σ, Λ and Ξ states are considered. Contributions of both the contact term and tensor term are taken into account. Our numerical results show that mixing of the studied configurations in the two employed hyperfine interaction models are very different. Therefore, the present results, which should affect the strong and electromagnetic decays of baryon resonances, may be used to examine the present employed hyperfine interaction models. Supported by National Natural Science Foundation of China (11675131,11645002), Chongqing Natural Science Foundation (cstc2015jcyjA00032) and Fundamental Research Funds for the Central Universities (SWU115020)

  1. Theoretical studies of alkyl radicals in the NaY and HY zeolites.

    PubMed

    Ghandi, Khashayar; Zahariev, Federico E; Wang, Yan Alexander

    2005-08-18

    Interplay of quantum mechanical calculations and experimental data on hyperfine coupling constants of ethyl radical in zeolites at several temperatures was engaged to study the geometries and binding energies and to predict the temperature dependence of hyperfine splitting of a series of alkyl radicals in zeolites for the first time. The main focus is on the hyperfine interaction of alkyl radicals in the NaY and HY zeolites. The hyperfine splitting for neutral free radicals and free radical cations is predicted for different zeolite environments. This information can be used to establish the nature of the muoniated alkyl radicals in the NaY and HY zeolites via muSR experiments. The muon hyperfine coupling constants of the ethane radical cation in these zeolites are very large with relatively little dependence on temperature. It was found that the intramolecular dynamics of alkyl free radicals are only weakly affected by their strong binding to zeolites. In contrast, the substrate binding has a significant effect on their intermolecular dynamics.

  2. Nagaoka's atomic model and hyperfine interactions.

    PubMed

    Inamura, Takashi T

    2016-01-01

    The prevailing view of Nagaoka's "Saturnian" atom is so misleading that today many people have an erroneous picture of Nagaoka's vision. They believe it to be a system involving a 'giant core' with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka's model is exactly the same as Rutherford's. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure.

  3. Proton, muon and ¹³C hyperfine coupling constants of C₆₀X and C₇₀X (X = H, Mu).

    PubMed

    Brodovitch, Jean-Claude; Addison-Jones, Brenda; Ghandi, Khashayar; McKenzie, Iain; Percival, Paul W

    2015-01-21

    The reaction of H atoms with fullerene C70 has been investigated by identifying the radical products formed by addition of the atom muonium (Mu) to the fullerene in solution. Four of the five possible radical isomers of C70Mu were detected by avoided level-crossing resonance (μLCR) spectroscopy, using a dilute solution of enriched (13)C70 in decalin. DFT calculations were used to predict muon and (13)C isotropic hyperfine constants as an aid to assigning the observed μLCR signals. Computational methods were benchmarked against previously published experimental data for (13)C60Mu in solution. Analysis of the μLCR spectrum resulted in the first experimental determination of (13)C hyperfine constants in either C70Mu or C70H. The large number of values confirms predictions that the four radical isomers have extended distributions of unpaired electron spin.

  4. Fine and hyperfine collisional excitation of C6H by He

    NASA Astrophysics Data System (ADS)

    Walker, Kyle M.; Lique, François; Dawes, Richard

    2018-01-01

    Hydrogenated carbon chains have been detected in interstellar and circumstellar media and accurate modelling of their abundances requires collisional excitation rate coefficients with the most abundant species. Among them, the C6H molecule is one of the most abundant towards many lines of sight. Hence, we determined fine and hyperfine-resolved rate coefficients for the excitation of C6H(X2Π) due to collisions with He. We present the first interaction potential energy surface for the C6H-He system, obtained from highly correlated ab initio calculations and characterized by a large anisotropy due to the length of the molecule. We performed dynamical calculations for transitions among the first fine structure levels (up to J = 30.5) of both spin-orbit manifolds of C6H using the close-coupling method, and rate coefficients are determined for temperatures ranging from 5 to 100 K. The largest rate coefficients for even ΔJ transitions conserve parity, while parity-breaking rate coefficients are favoured for odd ΔJ. Spin-orbit changing rate coefficients are several orders of magnitude lower than transitions within a single manifold. State-to-state hyperfine-resolved cross-sections for the first levels (up to J = 13.5) in the Ω = 3/2 spin-orbit manifold are deduced using recoupling techniques. Rate coefficients are obtained and the propensity rule ΔJ = ΔF is seen. These new data will help determine the abundance of C6H in astrophysical environments such as cold dense molecular clouds, star-forming regions and circumstellar envelopes, and will help in the interpretation of the puzzling C6H-/C6H abundance ratios deduced from observations.

  5. Paramagnetic species on catalytic surfaces--DFT investigations into structure sensitivity of the hyperfine coupling constants.

    PubMed

    Sojka, Zbigniew; Pietrzyk, Piotr

    2004-05-01

    Structure sensitivity of the hyperfine coupling constants was investigated by means of DFT calculations for selected surface paramagnetic species. A *CH2OH radical trapped on silica and intrazeolite copper nitrosyl adducts encaged in ZSM-5 were taken as the examples. The surface of amorphous silica was modeled with a [Si5O8H10] cluster, whereas the zeolite hosting sites were epitomized by [Si4AlO5(OH)10]- cluster. Three different coordination modes of the *CH2OH radical were considered and the isotropic 13C and 1H hyperfine constants of the resultant van der Waals complexes, calculated with B3LYP/6-311G(d), were discussed in terms of the angular deformations caused by hydrogen bonds with the cluster. The magnetic parameters of the eta1-N[CuNO]11 and eta1-O[CuNO]11 linkage isomers were calculated at the BPW91/LanL2DZ and 6-311G(df) level. For the most stable eta1-N adduct a clear dependence of the spin density distribution within the Cu-NO moiety on changes in the Cu-N-O angle and the Cu-N bond distance was observed and accounted for by varying spin polarization and delocalization contributions.

  6. Precision sizing of moving large particles using diffraction splitting of Doppler lines

    NASA Astrophysics Data System (ADS)

    Kononenko, Vadim L.

    1999-02-01

    It is shown, that the Doppler line from a single large particle moving with a constant velocity through a finite- width laser beam, undergoes a doublet-type splitting under specific observation conditions. A general requirement is that particle size 2a is not negligibly small, compared with beam diameter 2w$0. Three optical mechanisms of line splitting are considered. The first one is based on nonsymmetric diffraction of a bounded laser beam by a moving particle. The second arises from the transient geometry of diffraction. The third mechanism, of photometric nature, originates from specific time variation of total illuminance of moving particles when 2a>Lambda, the interference fringe spacing in the measuring volume. The diffraction splitting is observed when a detector is placed near one of diffraction minima corresponding to either of probing beams, and 2a equals (n0.5)Lambda for n equals 1,2. The photometric splitting is observed with an image-forming optics, when 2a equals n(Lambda) . That gives the possibility of distant particles sizing based on the Doppler line splitting phenomenon. A general theory of line splitting is developed, and used to explain the experimental observations quantitatively. The influence of the scattering angels and observation angle on the line splitting characteristics is studied analytically and numerically.

  7. The fine-structure intervals of (N-14)+ by far-infrared laser magnetic resonance

    NASA Technical Reports Server (NTRS)

    Brown, John M.; Varberg, Thomas D.; Evenson, Kenneth M.; Cooksy, Andrew L.

    1994-01-01

    The far-infrared laser magnetic resonance spectra associated with both fine-structure transitions in (N-14)+ in its ground P-3 state have been recorded. This is the first laboratory observation of the J = 1 left arrow 0 transition and its frequency has been determined two orders of magnitude more accurately than previously. The remeasurement of the J = 2 left arrow 1 spectrum revealed a small error in the previous laboratory measurements. The fine-structure splittings (free of hyperfine interactions) determined in this work are (delta)E(sub 10) = 1461.13190 (61) GHz, (delta)E(sub 21) = 2459.38006 (37) GHz. Zero-field transition frequencies which include the effects of hyperfine structure have also been calculated. Refined values for the hyperfine constants and the g(sub J) factors have been obtained.

  8. Functional split brain in a driving/listening paradigm.

    PubMed

    Sasai, Shuntaro; Boly, Melanie; Mensen, Armand; Tononi, Giulio

    2016-12-13

    We often engage in two concurrent but unrelated activities, such as driving on a quiet road while listening to the radio. When we do so, does our brain split into functionally distinct entities? To address this question, we imaged brain activity with fMRI in experienced drivers engaged in a driving simulator while listening either to global positioning system instructions (integrated task) or to a radio show (split task). We found that, compared with the integrated task, the split task was characterized by reduced multivariate functional connectivity between the driving and listening networks. Furthermore, the integrated information content of the two networks, predicting their joint dynamics above and beyond their independent dynamics, was high in the integrated task and zero in the split task. Finally, individual subjects' ability to switch between high and low information integration predicted their driving performance across integrated and split tasks. This study raises the possibility that under certain conditions of daily life, a single brain may support two independent functional streams, a "functional split brain" similar to what is observed in patients with an anatomical split.

  9. Full-wave effects on shear wave splitting

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Pin; Zhao, Li; Hung, Shu-Huei

    2014-02-01

    Seismic anisotropy in the mantle plays an important role in our understanding of the Earth's internal dynamics, and shear wave splitting has always been a key observable in the investigation of seismic anisotropy. To date the interpretation of shear wave splitting in terms of anisotropy has been largely based on ray-theoretical modeling of a single vertically incident plane SKS or SKKS wave. In this study, we use sensitivity kernels of shear wave splitting to anisotropic parameters calculated by the normal-mode theory to demonstrate that the interference of SKS with other phases of similar arrival times, near-field effect, and multiple reflections in the crust lead to significant variations of SKS splitting with epicentral distance. The full-wave kernels not only widen the possibilities in the source-receiver geometry in making shear wave splitting measurements but also provide the capability for tomographic inversion to resolve vertical and lateral variations in the anisotropic structures.

  10. Irrational beliefs, attitudes about competition, and splitting.

    PubMed

    Watson, P J; Morris, R J; Miller, L

    2001-03-01

    Rational-Emotive Behavior Therapy (REBT) theoretically promotes actualization of both individualistic and social-oriented potentials. In a test of this assumption, the Belief Scale and subscales from the Survey of Personal Beliefs served as measures of what REBT presumes to be pathogenic irrationalities. These measures were correlated with the Hypercompetitive Attitude Scale (HCAS), the Personal Development Competitive Attitude Scale (PDCAS), factors from the Splitting Index, and self-esteem. Results for the HCAS and Self-Splitting supported the REBT claim about individualistic self-actualization. Mostly nonsignificant and a few counterintuitive linkages were observed for irrational beliefs with the PDCAS, Family-Splitting, and Other-Splitting, and these data suggested that REBT may be less successful in capturing the "rationality" of a social-oriented self-actualization. Copyright 2001 John Wiley & Sons, Inc.

  11. Spin polarization of {sup 87}Rb atoms with ultranarrow linewidth diode laser: Numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z. G.; Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha, 410073; College of Science, National University of Defense Technology, Changsha, 410073

    2016-08-15

    In order to polarize {sup 87}Rb vapor effectively with ultranarrow linewidth diode laser, we studied the polarization as a function of some parameters including buffer gas pressure and laser power. Moreover, we also discussed the methods which split or modulate the diode laser frequency so as to pump the two ground hyperfine levels efficiently. We obtained some useful results through numerical simulation. If the buffer gas pressure is so high that the hyperfine structure is unresolved, the polarization is insensitive to laser frequency at peak absorption point so frequency splitting and frequency modulation methods do not show improvement. At lowmore » pressure and laser power large enough, where the hyperfine structure is clearly resolved, frequency splitting and frequency modulation methods can increase polarization effectively. For laser diodes, frequency modulation is easily realized with current modulation, so this method is attractive since it does not add any other components in the pumping laser system.« less

  12. SplitRacer - a new Semi-Automatic Tool to Quantify And Interpret Teleseismic Shear-Wave Splitting

    NASA Astrophysics Data System (ADS)

    Reiss, M. C.; Rumpker, G.

    2017-12-01

    We have developed a semi-automatic, MATLAB-based GUI to combine standard seismological tasks such as the analysis and interpretation of teleseismic shear-wave splitting. Shear-wave splitting analysis is widely used to infer seismic anisotropy, which can be interpreted in terms of lattice-preferred orientation of mantle minerals, shape-preferred orientation caused by fluid-filled cracks or alternating layers. Seismic anisotropy provides a unique link between directly observable surface structures and the more elusive dynamic processes in the mantle below. Thus, resolving the seismic anisotropy of the lithosphere/asthenosphere is of particular importance for geodynamic modeling and interpretations. The increasing number of seismic stations from temporary experiments and permanent installations creates a new basis for comprehensive studies of seismic anisotropy world-wide. However, the increasingly large data sets pose new challenges for the rapid and reliably analysis of teleseismic waveforms and for the interpretation of the measurements. Well-established routines and programs are available but are often impractical for analyzing large data sets from hundreds of stations. Additionally, shear wave splitting results are seldom evaluated using the same well-defined quality criteria which may complicate comparison with results from different studies. SplitRacer has been designed to overcome these challenges by incorporation of the following processing steps: i) downloading of waveform data from multiple stations in mseed-format using FDSNWS tools; ii) automated initial screening and categorizing of XKS-waveforms using a pre-set SNR-threshold; iii) particle-motion analysis of selected phases at longer periods to detect and correct for sensor misalignment; iv) splitting analysis of selected phases based on transverse-energy minimization for multiple, randomly-selected, relevant time windows; v) one and two-layer joint-splitting analysis for all phases at one station by

  13. Construction of the energy matrix for complex atoms. Part VIII: Hyperfine structure HPC calculations for terbium atom

    NASA Astrophysics Data System (ADS)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy

    2017-11-01

    A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.

  14. Magnetic photon splitting and gamma ray burst spectra

    NASA Technical Reports Server (NTRS)

    Baring, Matthew G.

    1992-01-01

    The splitting of photons into two photons becomes both possible and significant in magnetic fields in excess of 10(exp 12) Gauss. Below the threshold energy, 2m sub e c(exp 2) for single photon pair production, splitting can be an astronomically observable phenomenon evident in gamma ray burst spectra. In such circumstances, it was found that magnetic photon splitting reprocesses the gamma ray burst continuum by degrading the photon energy, with a net effect that is quite similar to pair cascade reprocessing of the spectrum. Results are presented for the spectral modifications due to splitting, taking into account the different probabilities for splitting for different polarization modes. Unpolarized and polarized pair cascade photon spectra form the input spectra for the model, which calculates the resulting splitting reprocessed spectra numerically by solving the photon kinetic equations for each polarization mode. This inclusion of photon polarizations is found to not alter previous predictions that splitting produce a significant flattening of the hard X ray continuum and a bump at MeV energies below a pair production turnover. The spectrum near the bump is always strongly polarized.

  15. Functional split brain in a driving/listening paradigm

    PubMed Central

    Boly, Melanie; Mensen, Armand; Tononi, Giulio

    2016-01-01

    We often engage in two concurrent but unrelated activities, such as driving on a quiet road while listening to the radio. When we do so, does our brain split into functionally distinct entities? To address this question, we imaged brain activity with fMRI in experienced drivers engaged in a driving simulator while listening either to global positioning system instructions (integrated task) or to a radio show (split task). We found that, compared with the integrated task, the split task was characterized by reduced multivariate functional connectivity between the driving and listening networks. Furthermore, the integrated information content of the two networks, predicting their joint dynamics above and beyond their independent dynamics, was high in the integrated task and zero in the split task. Finally, individual subjects’ ability to switch between high and low information integration predicted their driving performance across integrated and split tasks. This study raises the possibility that under certain conditions of daily life, a single brain may support two independent functional streams, a “functional split brain” similar to what is observed in patients with an anatomical split. PMID:27911805

  16. Direct observation of strain-induced orbital valence band splitting in HfSe2 by sodium intercalation

    NASA Astrophysics Data System (ADS)

    Eknapakul, T.; Fongkaew, I.; Siriroj, S.; Jindata, W.; Chaiyachad, S.; Mo, S.-K.; Thakur, S.; Petaccia, L.; Takagi, H.; Limpijumnong, S.; Meevasana, W.

    2018-05-01

    By using angle-resolved photoemission spectroscopy (ARPES), the variation of the electronic structure of HfSe2 has been studied as a function of sodium intercalation. We observe how this drives a band splitting of the p -orbital valence bands and a simultaneous reduction of the indirect band gap by values of up to 400 and 280 meV, respectively. Our calculations indicate that such behavior is driven by the band deformation potential, which is a result of our observed strain induced by sodium intercalation. The applied uniaxial strain calculations based on density functional theory agree strongly with the experimental ARPES data. These findings should assist in studying the physical relationship between intercalation and strain, as well as for large-scale two-dimensional straintronics.

  17. Reanalysis and extension of the MnH A7Π- X7Σ + (0, 0) band: Fine structure and hyperfine-induced rotational branches

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Gray, Jeffrey A.; Field, Robert W.; Merer, Anthony J.

    1992-12-01

    The A7Π- X7Σ + (0, 0) band of MnH at 568 nm has been recorded by laser fluorescence excitation spectroscopy. The original rotational analysis of Nevin [ Proc. R. Irish Acad.48A, 1-45 (1942); 50A, 123-137 (1945)] has been extended with some corrections at low J. Systematic internal hyperfine perturbations in the X7Σ + state, caused by the Δ N = 0, Δ J = ±1 matrix elements of the 55Mn hyperfine term in the Hamiltonian, have been observed in all seven electron spin components over the entire range of N″ studied. These perturbations destroy the "goodness" of J″ as a quantum number, giving rise to hyperfine-induced Δ J = ±2 rotational branches and to observable energy shifts of the most severely affected levels. The A7Π state, with A = 40.5 cm -1 and B = 6.35 cm -1, evolves rapidly from Hund's case ( a) to case ( b) coupling, which produces anomalous branch patterns at low J. A total of 156 rotational branches have been identified and fitted by least squares to an effective Hamiltonian, providing precise values for the rotational and fine structure constants. Values of the principal constants determined in the fit are (1σ errors in units of the last digit are listed in parentheses): The fine structures of the A7Π and X7Σ + states confirm the assignment of the A ← X transition as Mn 4 pπ ← 4 sσ in the presence of a spectator, nonbonding Mn 3 d5 ( 6S) open core.

  18. M-Split: A Graphical User Interface to Analyze Multilayered Anisotropy from Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Abgarmi, Bizhan; Ozacar, A. Arda

    2017-04-01

    Shear wave splitting analysis are commonly used to infer deep anisotropic structure. For simple cases, obtained delay times and fast-axis orientations are averaged from reliable results to define anisotropy beneath recording seismic stations. However, splitting parameters show systematic variations with back azimuth in the presence of complex anisotropy and cannot be represented by average time delay and fast axis orientation. Previous researchers had identified anisotropic complexities at different tectonic settings and applied various approaches to model them. Most commonly, such complexities are modeled by using multiple anisotropic layers with priori constraints from geologic data. In this study, a graphical user interface called M-Split is developed to easily process and model multilayered anisotropy with capabilities to properly address the inherited non-uniqueness. M-Split program runs user defined grid searches through the model parameter space for two-layer anisotropy using formulation of Silver and Savage (1994) and creates sensitivity contour plots to locate local maximas and analyze all possible models with parameter tradeoffs. In order to minimize model ambiguity and identify the robust model parameters, various misfit calculation procedures are also developed and embedded to M-Split which can be used depending on the quality of the observations and their back-azimuthal coverage. Case studies carried out to evaluate the reliability of the program using real noisy data and for this purpose stations from two different networks are utilized. First seismic network is the Kandilli Observatory and Earthquake research institute (KOERI) which includes long term running permanent stations and second network comprises seismic stations deployed temporary as part of the "Continental Dynamics-Central Anatolian Tectonics (CD-CAT)" project funded by NSF. It is also worth to note that M-Split is designed as open source program which can be modified by users for

  19. Hyperfine coupling constants of the nitrogen and phosphorus atoms: A challenge for exact-exchange density-functional and post-Hartree-Fock methods

    NASA Astrophysics Data System (ADS)

    Kaupp, Martin; Arbuznikov, Alexei V.; Heßelmann, Andreas; Görling, Andreas

    2010-05-01

    The isotropic hyperfine coupling constants of the free N(S4) and P(S4) atoms have been evaluated with high-level post-Hartree-Fock and density-functional methods. The phosphorus hyperfine coupling presents a significant challenge to both types of methods. With large basis sets, MP2 and coupled-cluster singles and doubles calculations give much too small values for the phosphorus atom. Triple excitations are needed in coupled-cluster calculations to achieve reasonable agreement with experiment. None of the standard density functionals reproduce even the correct sign of this hyperfine coupling. Similarly, the computed hyperfine couplings depend crucially on the self-consistent treatment in exact-exchange density-functional theory within the optimized effective potential (OEP) method. Well-balanced auxiliary and orbital basis sets are needed for basis-expansion exact-exchange-only OEP approaches to come close to Hartree-Fock or numerical OEP data. Results from the localized Hartree-Fock and Krieger-Li-Iafrate approximations deviate notably from exact OEP data in spite of very similar total energies. Of the functionals tested, only full exact-exchange methods augmented by a correlation functional gave at least the correct sign of the P(S4) hyperfine coupling but with too low absolute values. The subtle interplay between the spin-polarization contributions of the different core shells has been analyzed, and the influence of even very small changes in the exchange-correlation potential could be identified.

  20. Nagaoka’s atomic model and hyperfine interactions

    PubMed Central

    INAMURA, Takashi T.

    2016-01-01

    The prevailing view of Nagaoka’s “Saturnian” atom is so misleading that today many people have an erroneous picture of Nagaoka’s vision. They believe it to be a system involving a ‘giant core’ with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka’s model is exactly the same as Rutherford’s. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure. PMID:27063182

  1. Layer Splitting in a Complex Plasma

    NASA Astrophysics Data System (ADS)

    Smith, Bernard; Hyde, Truell; Matthews, Lorin; Johnson, Megan; Cook, Mike; Schmoke, Jimmy

    2009-11-01

    Dust particle clouds are found in most plasma processing environments and many astrophysical environments. Dust particles suspended within such plasmas often acquire an electric charge from collisions with free electrons in the plasma. Depending upon the ratio of interparticle potential energy to average kinetic energy, charged dust particles can form a gaseous, liquid or crystalline structure with short to longer range ordering. An interesting facet of complex plasma behavior is that particle layers appear to split as the DC bias is increased. This splitting of layers points to a phase transition differing from the normal phase transitions found in two-dimensional solids. In 1993, Dubin noted that as the charged particle density of an initially two-dimensional Coulomb crystal increases the system's layers split at specific charge densities. This work modeled ions in a Paul or Penning trap, but may be applicable to dusty plasma systems as well. This work will discuss this possibility along with splitting observed in the CASPER GEC rf Reference Cell at specific pressures and powers.

  2. Shear-wave splitting observations of mantle anisotropy beneath Alaska

    NASA Astrophysics Data System (ADS)

    Bellesiles, A. K.; Christensen, D. H.; Entwistle, E.; Litherland, M.; Abers, G. A.; Song, X.

    2009-12-01

    Observations of seismic anisotropy were obtained from three different PASSCAL broadband experiments throughout Alaska, using shear-wave splitting from teleseismic SKS phases. The MOOS (Multidisciplinary Observations Of Subduction), BEAAR (Broadband Experiment Across the Alaska Range), and ARCTIC (Alaska Receiving Cross-Transects for the Inner Core) networks were used along with selected permanent broadband stations operated by AEIC (Alaska Earthquake Information Center) to produce seismic anisotropy results for the state of Alaska along a north south transect from the active subduction zone in the south, through continental Alaska, to the passive margin in the north. The BEAAR network is in-between the ARCTIC and MOOS networks above the subducting Pacific Plate and mantle wedge and shows a tight ~90 degree rotation of anisotropy above the 70km contour of the subducting plate. The southern stations in BEAAR yield anisotropy results that are subparallel to the Pacific Plate motion as it subducts under North America. These stations have an average fast direction of -45 degrees and 1.03 seconds of delay on average. The MOOS network in south central Alaska yielded similar results with an average fast direction of -30 degrees and delay times of .9 seconds. In the north portion of the BEAAR network the anisotropy is along strike of the subduction zone and has an average fast direction of 27 degrees with an average delay time of 1.4 seconds, although the delay times above the mantle wedge range from 1 to 2.5 seconds and are directly correlated to the length of ray path in the mantle wedge. This general trend NE/SW is seen in the ARCTIC stations to the north although the furthest north stations are oriented more NNE compared to those in BEAAR. The average fast direction for the ARCTIC network is 40 degrees with an average delay time of 1.05 seconds. These results show two distinct orientations of anisotropy in Alaska separated by the subducting Pacific Plate.

  3. Exposing the QCD Splitting Function with CMS Open Data.

    PubMed

    Larkoski, Andrew; Marzani, Simone; Thaler, Jesse; Tripathee, Aashish; Xue, Wei

    2017-09-29

    The splitting function is a universal property of quantum chromodynamics (QCD) which describes how energy is shared between partons. Despite its ubiquitous appearance in many QCD calculations, the splitting function cannot be measured directly, since it always appears multiplied by a collinear singularity factor. Recently, however, a new jet substructure observable was introduced which asymptotes to the splitting function for sufficiently high jet energies. This provides a way to expose the splitting function through jet substructure measurements at the Large Hadron Collider. In this Letter, we use public data released by the CMS experiment to study the two-prong substructure of jets and test the 1→2 splitting function of QCD. To our knowledge, this is the first ever physics analysis based on the CMS Open Data.

  4. Vibrational quenching of excitonic splittings in H-bonded molecular dimers: The electronic Davydov splittings cannot match experiment

    NASA Astrophysics Data System (ADS)

    Ottiger, Philipp; Leutwyler, Samuel; Köppel, Horst

    2012-05-01

    , (2AP)2, (BN)2, and (BZA)2 lie in the range Γ = 0.03-0.2. The quenched excitonic splittings Γ.Δcalc are found to be in very good agreement with the observed splittings Δexp. The vibrational quenching approach predicts reliable Δexp values for the investigated dimers, confirms the importance of vibrational quenching of the electronic Davydov splittings, and provides a sound basis for predicting realistic exciton splittings in multichromophoric systems.

  5. FAST TRACK COMMUNICATION: Gyration mode splitting in magnetostatically coupled magnetic vortices in an array

    NASA Astrophysics Data System (ADS)

    Barman, Anjan; Barman, Saswati; Kimura, T.; Fukuma, Y.; Otani, Y.

    2010-10-01

    We present the experimental observation of gyration mode splitting by the time-resolved magneto-optical Kerr effect in an array consisting of magnetostatically coupled Ni81Fe19 discs of 1 µm diameter, 50 nm thickness and inter-disc separations varying between 150 and 270 nm. A splitting of the vortex core gyration mode is observed when the inter-disc separation is 200 nm or less and the splitting is controllable by a bias magnetic field. The observed mode splitting is interpreted by micromagnetic simulations as the normal modes of the vortex cores analogous to the coupled classical oscillators. The splitting depends upon the strength of the inter-disc magnetostatic coupling mediated by magnetic side charges, which depends strongly on the magnetic ground states of the samples.

  6. The NaK 1 1,3delta states: theoretical and experimental studies of fine and hyperfine structure of rovibrational levels near the dissociation limit.

    PubMed

    Wilkins, A D; Morgus, L; Hernandez-Guzman, J; Huennekens, J; Hickman, A P

    2005-09-22

    Earlier high-resolution spectroscopic studies of the fine and hyperfine structure of rovibrational levels of the 1 3delta state of NaK have been extended to include high lying rovibrational levels with v < or = 59, of which the highest levels lie within approximately 4 cm(-1) of the dissociation limit. A potential curve is determined using the inverted perturbation approximation method that reproduces these levels to an accuracy of approximately 0.026 cm(-1). For the largest values of v, the outer turning points occur near R approximately 12.7 angstroms, which is sufficiently large to permit the estimation of the C6 coefficient for this state. The fine and hyperfine structure of the 1 3delta rovibrational levels has been fit using the matrix diagonalization method that has been applied to other states of NaK, leading to values of the spin-orbit coupling constant A(v) and the Fermi contact constant b(F). New values determined for v < or = 33 are consistent with values determined by a simpler method and reported earlier. The measured fine and hyperfine structure for v in the range 44 < or = v < or = 49 exhibits anomalous behavior whose origin is believed to be the mixing between the 1 3delta and 1 1delta states. The matrix diagonalization method has been extended to treat this interaction, and the results provide an accurate representation of the complicated patterns that arise. The analysis leads to accurate values for A(v) and b(F) for all values of v < or = 49. For higher v (50 < or = v < or = 59), several rovibrational levels have been assigned, but the pattern of fine and hyperfine structure is difficult to interpret. Some of the observed features may arise from effects not included in the current model.

  7. Algebraic techniques for diagonalization of a split quaternion matrix in split quaternionic mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Tongsong, E-mail: jiangtongsong@sina.com; Department of Mathematics, Heze University, Heze, Shandong 274015; Jiang, Ziwu

    In the study of the relation between complexified classical and non-Hermitian quantum mechanics, physicists found that there are links to quaternionic and split quaternionic mechanics, and this leads to the possibility of employing algebraic techniques of split quaternions to tackle some problems in complexified classical and quantum mechanics. This paper, by means of real representation of a split quaternion matrix, studies the problem of diagonalization of a split quaternion matrix and gives algebraic techniques for diagonalization of split quaternion matrices in split quaternionic mechanics.

  8. Mantle flow through a tear in the Nazca slab inferred from shear wave splitting

    NASA Astrophysics Data System (ADS)

    Lynner, Colton; Anderson, Megan L.; Portner, Daniel E.; Beck, Susan L.; Gilbert, Hersh

    2017-07-01

    A tear in the subducting Nazca slab is located between the end of the Pampean flat slab and normally subducting oceanic lithosphere. Tomographic studies suggest mantle material flows through this opening. The best way to probe this hypothesis is through observations of seismic anisotropy, such as shear wave splitting. We examine patterns of shear wave splitting using data from two seismic deployments in Argentina that lay updip of the slab tear. We observe a simple pattern of plate-motion-parallel fast splitting directions, indicative of plate-motion-parallel mantle flow, beneath the majority of the stations. Our observed splitting contrasts previous observations to the north and south of the flat slab region. Since plate-motion-parallel splitting occurs only coincidentally with the slab tear, we propose mantle material flows through the opening resulting in Nazca plate-motion-parallel flow in both the subslab mantle and mantle wedge.

  9. Hyperfine excitation of C2H in collisions with ortho- and para-H2

    NASA Astrophysics Data System (ADS)

    Dagdigian, Paul J.

    2018-06-01

    Accurate estimation of the abundance of the ethynyl (C2H) radical requires accurate radiative and collisional rate coefficients. Hyperfine-resolved rate coefficients for (de-)excitation of C2H in collisions with ortho- and para-H2 are presented in this work. These rate coefficients were computed in time-independent close-coupling quantum scattering calculations that employed a potential energy surface recently computed at the coupled-clusters level of theory that describes the interaction of C2H with H2. Rate coefficients for temperatures from 10 to 300 K were computed for all transitions among the first 40 hyperfine energy levels of C2H in collisions with ortho- and para-H2. These rate coefficients were employed in simple radiative transfer calculations to simulate the excitation of C2H in typical molecular clouds.

  10. A SETI Search of Nearby Solar-Type Stars at the 203-GHz Positronium Hyperfine Resonance

    NASA Technical Reports Server (NTRS)

    Steffes, Paul G.; DeBoer, David R.

    1994-01-01

    The development of advanced millimeter-wave technology has made it possible to construct low-noise receivers and high-power transmitters comparable to those available at much lower frequencies. This technology, plus certain physical characteristics of the millimeter-wave spectrum, suggests possible advantages for use of this wavelength range for interstellar communications. As a result, a Search for ExtraTerrestrial Intelligence(SETI) type search has been conducted for narrow-bandwidth signals at frequencies near the positronium hyperfine spectral line (203.385 GHz), a potential natural reference frequency. A total of 40 solar-type stars within 23 parsecs were observed, in addition to three locations near the galactic center. No detections were made at the detection threshold of 2.3 x 10(exp -19) W/sq m in each of two orthogonal linear polarizations Future observations will be made with a higher resolution Fast Fourier Transform Spectrum Analyzer (FFTSA), which should improve sensitivity by an order of magnitude and reduce required observing time.

  11. An EPR investigation of the dynamic Jahn-Teller effect in SrCl2:y(2 plus) and SrCl2:Sc(2 plus)

    NASA Technical Reports Server (NTRS)

    Herrington, J. R.; Estle, T. L.; Boatner, L. A.

    1972-01-01

    EPR spectra have been observed for SrCl2:Y(2+) and SrCl2:Sc(2+) at liquid helium temperatures. At 1.2 K the spectra were dominated by anisotropic hyperfine patterns whose lineshapes and angular dependences were explained using second order solutions of the effective Hamiltonian for an isolated 2Eg state split by large random internal strains. Pronounced asymmetries in some of the strin produced lineshapes for Srcl2:Sc(2+) are shown to result from second order terms in the solution of the effective Hamiltonian. Coexisting with the anisotropic hyperfine patterns are weak nearly isotropic hyperfine patterns with typical lineshapes. Variations in the apparent intensity of lines in these weak hyperfine patterns as functions of the applied magnetic field direction and temperature imply that these lines result from averaging by vibronic relaxation of a portion of the anisotropic pattern. The effective Hamiltonian parameters for SrCl2:La(2+), SrCl2:y(2+), and SrCl2:SC(2+) are analyzed in terms of crystal field theory modified to include a dynamic Jahn-Teller effect.

  12. Hyperfine interaction mechanism of magnetic field effects in sequential fluorophore and exciplex fluorescence.

    PubMed

    Dodin, Dmitry V; Ivanov, Anatoly I; Burshtein, Anatoly I

    2013-03-28

    The magnetic field effect on the fluorescence of the photoexcited electron acceptor, (1)A∗, and the exciplex, (1)[D(+δ)A(-δ)] formed at contact of (1)A∗ with an electron donor (1)D, is theoretically explored in the framework of Integral Encounter Theory. It is assumed that the excited fluorophore is equilibrated with the exciplex that reversibly dissociates into the radical-ion pair. The magnetic field sensitive stage is the spin conversion in the resulting geminate radical-ion pair, (1, 3)[D(+)...A(-)] that proceeds due to hyperfine interaction. We confirm our earlier conclusion (obtained with a rate description of spin conversion) that in the model with a single nucleus spin 1/2 the magnitude of the Magnetic Field Effect (MFE) also vanishes in the opposite limits of low and high dielectric permittivity of the solvent. Moreover, it is shown that MFE being positive at small hyperfine interaction A, first increases with A but approaching the maximum starts to decrease and even changes the sign.

  13. Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam, Ahmad Y.; Jensen, Per, E-mail: jensen@uni-wuppertal.de; Yachmenev, Andrey

    2015-12-28

    We present the first variational calculation of the isotropic hyperfine coupling constant of the carbon-13 atom in the CH{sub 3} radical for temperatures T = 0, 96, and 300 K. It is based on a newly calculated high level ab initio potential energy surface and hyperfine coupling constant surface of CH{sub 3} in the ground electronic state. The ro-vibrational energy levels, expectation values for the coupling constant, and its temperature dependence were calculated variationally by using the methods implemented in the computer program TROVE. Vibrational energies and vibrational and temperature effects for coupling constant are found to be in verymore » good agreement with the available experimental data. We found, in agreement with previous studies, that the vibrational effects constitute about 44% of the constant’s equilibrium value, originating mainly from the large amplitude out-of-plane bending motion and that the temperature effects play a minor role.« less

  14. Longitudinal fibre splitting in muscular dystrophy: a serial cinematographic study

    PubMed Central

    Isaacs, Edward R.; Bradley, Walter G.; Henderson, Gerald

    1973-01-01

    A technique of block surface-staining and serial cinematography was modified to review serial sections of normal and dystrophic muscle from the Bar Harbor 129 Re strain of mice as a preliminary study of fibre splitting in dystrophic muscle. Using this technique, muscle fibres were reconstructed for up to 1·5 mm of their length without difficulty. Split fibres were identified only when the actual separation of fibres was observed. Splitting was seen to be a significant cause of the variations in fibre diameter and was at times responsible for the formation of groups of small atrophic fibres which resembled those seen in denervation atrophy. Complex multiple splitting and recombination of daughter and parent fibres was also observed and reconstructed to scale. These results may have considerable significance for the interpretation of physiological data on both human and murine dystrophic muscle. Images PMID:4753877

  15. [Hyperfine structure analysis in magnetic resonance spectroscopy: from astrophysical measurements towards endogenous biosensors in human tissue].

    PubMed

    Schröder, Leif

    2007-01-01

    The hyperfine interaction of two spins is a well studied effect in atomic systems. Magnetic resonance experiments demonstrate that the detectable dipole transitions are determined by the magnetic moments of the constituents and the external magnetic field. Transferring the corresponding quantum mechanics to molecular bound nuclear spins allows for precise prediction of NMR spectra obtained from metabolites in human tissue. This molecular hyperfine structure has been neglected so far in in vivo NMR spectroscopy but contains useful information, especially when studying molecular dynamics. This contribution represents a review of the concept of applying the Breit-Rabi formalism to coupled nuclear spins and discusses the immobilization of different metabolites in anisotropic tissue revealed by 1H NMR spectra of carnosine, phosphocreatine and taurine. Comparison of atomic and molecular spin systems allows for statements on the biological constraints for direct spin-spin interactions. Moreover, the relevance of hyperfine effects on the line shapes of multiplets of indirectly-coupled spin systems with more than two constituents can be predicted by analyzing quantum mechanical parameters. As an example, the superposition of eigenstates of the A MX system of adenosine 5'-triphosphate and its application for better quantification of 31P-NMR spectra will be discussed.

  16. Calculated hyperfine coupling constants for 5,5-dimethyl-1-pyrroline N-oxide radical products in water and benzene

    NASA Astrophysics Data System (ADS)

    Nardali, Ş.; Ucun, F.; Karakaya, M.

    2017-11-01

    The optimized structures of some radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were computed by different methods on ESR spectra. As trapped radicals, H, N3, NH2, CH3, CCl3, OOH in water and F, OH, CF3, CH2OH, OC2H5 in benzene solutions were used. The calculated isotropic hyperfine coupling constants of all the trapped radicals were compared with the corresponding experimental data. The hyperfine coupling constant due to the β proton of the nitroxide radical was seen to be consist with the McConnel's relation αβ = B 0 + B 1cos2θ and, to be effected with the opposite spin density of oxygen nucleus bonded to the nitrogen. It was concluded that in hyperfine calculations the DFT(B3PW91)/LanL2DZ level is superior computational quantum model relative to the used other level. Also, the study has been enriched by the computational of the optimized geometrical parameters, the hyper conjugative interaction energies, the atomic charges and spin densities for all the radical adducts.

  17. Hyperfine structure of electronic levels and the first measurement of the nuclear magnetic moment of 63Ni

    NASA Astrophysics Data System (ADS)

    D'yachkov, A. B.; Firsov, V. A.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Saperstein, E. E.; Tolokonnikov, S. V.; Tsvetkov, G. O.; Panchenko, V. Y.

    2017-01-01

    Laser resonant photoionization spectroscopy was used to study the hyperfine structure of the optical 3d84s2 {}3F4→ 3d84s4p {}3G^o3 and 3d94s {}3D3→ 3d84s4p {}3G^o3 transitions of 63Ni and 61Ni isotopes. Experimental spectra allowed us to derive hyperfine interaction constants and determine the magnetic dipole moment of the nuclear ground state of 63Ni for the first time: μ=+0.496(5)μ_N. The value obtained agrees well with the prediction of the self-consistent theory of finite Fermi systems.

  18. Bad splits in bilateral sagittal split osteotomy: systematic review of fracture patterns.

    PubMed

    Steenen, S A; Becking, A G

    2016-07-01

    An unfavourable and unanticipated pattern of the mandibular sagittal split osteotomy is generally referred to as a 'bad split'. Few restorative techniques to manage the situation have been described. In this article, a classification of reported bad split pattern types is proposed and appropriate salvage procedures to manage the different types of undesired fracture are presented. A systematic review was undertaken, yielding a total of 33 studies published between 1971 and 2015. These reported a total of 458 cases of bad splits among 19,527 sagittal ramus osteotomies in 10,271 patients. The total reported incidence of bad split was 2.3% of sagittal splits. The most frequently encountered were buccal plate fractures of the proximal segment (types 1A-F) and lingual fractures of the distal segment (types 2A and 2B). Coronoid fractures (type 3) and condylar neck fractures (type 4) have seldom been reported. The various types of bad split may require different salvage approaches. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  19. Electron paramagnetic resonance study of radiation-induced paramagnetic centers in succinic anhydride single crystal

    NASA Astrophysics Data System (ADS)

    Caliskan, Betul; Caliskan, Ali Cengiz; Er, Emine

    2017-09-01

    Succinic anhydride single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated at 125 K by Electron Paramagnetic Resonance (EPR) Spectroscopy. The investigation of EPR spectra of irradiated single crystals of succinic anhydride showed the presence of two succinic anhydride anion radicals. The anion radicals observed in gamma-irradiated succinic anhydride single crystal were created by the scission of the carbon-oxygen double bond. The structure of EPR spectra demonstrated that the hyperfine splittings arise from the same radical species. The reduction of succinic anhydride was identified which is formed by the addition of an electron to oxygen of the Csbnd O bond. The g values, the hyperfine structure constants and direction cosines of the radiation damage centers observed in succinic anhydride single crystal were obtained.

  20. Split-ball resonator as a three-dimensional analogue of planar split-rings

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Arseniy I.; Miroshnichenko, Andrey E.; Hsing Fu, Yuan; Viswanathan, Vignesh; Rahmani, Mohsen; Valuckas, Vytautas; Ying Pan, Zhen; Kivshar, Yuri; Pickard, Daniel S.; Luk'Yanchuk, Boris

    2014-01-01

    Split-ring resonators are basic elements of metamaterials, which can induce a magnetic response in metallic nanosctructures. Tunability of such response up to the visible frequency range is still a challenge. Here we introduce the concept of the split-ball resonator and demonstrate the strong magnetic response in the visible for both gold and silver spherical plasmonic nanoparticles with nanometre scale cuts. We realize this concept experimentally by employing the laser-induced transfer method to produce near-perfect metallic spheres and helium ion beam milling to make cuts with the clean straight sidewalls and nanometre resolution. The magnetic resonance is observed at 600 nm in gold and at 565 nm in silver nanoparticles. This method can be applied to the structuring of arbitrary three-dimensional features on the surface of nanoscale resonators. It provides new ways for engineering hybrid resonant modes and ultra-high near-field enhancement.

  1. On Valence-Band Splitting in Layered MoS2.

    PubMed

    Zhang, Youwei; Li, Hui; Wang, Haomin; Liu, Ran; Zhang, Shi-Li; Qiu, Zhi-Jun

    2015-08-25

    As a representative two-dimensional semiconducting transition-metal dichalcogenide (TMD), the electronic structure in layered MoS2 is a collective result of quantum confinement, interlayer interaction, and crystal symmetry. A prominent energy splitting in the valence band gives rise to many intriguing electronic, optical, and magnetic phenomena. Despite numerous studies, an experimental determination of valence-band splitting in few-layer MoS2 is still lacking. Here, we show how the valence-band maximum (VBM) splits for one to five layers of MoS2. Interlayer coupling is found to contribute significantly to phonon energy but weakly to VBM splitting in bilayers, due to a small interlayer hopping energy for holes. Hence, spin-orbit coupling is still predominant in the splitting. A temperature-independent VBM splitting, known for single-layer MoS2, is, thus, observed for bilayers. However, a Bose-Einstein type of temperature dependence of VBM splitting prevails in three to five layers of MoS2. In such few-layer MoS2, interlayer coupling is enhanced with a reduced interlayer distance, but thermal expansion upon temperature increase tends to decouple adjacent layers and therefore decreases the splitting energy. Our findings that shed light on the distinctive behaviors about VBM splitting in layered MoS2 may apply to other hexagonal TMDs as well. They will also be helpful in extending our understanding of the TMD electronic structure for potential applications in electronics and optoelectronics.

  2. Hyperfine fields and anisotropy of the orbital moment in epitaxial Mn5Ge3 films studied by 55Mn NMR

    NASA Astrophysics Data System (ADS)

    Kalvig, R.; Jedryka, E.; Wojcik, M.; Allodi, G.; De Renzi, R.; Petit, M.; Michez, L.

    2018-05-01

    55Mn NMR was used to perform the atomic-scale study of the anisotropic properties of Mn5Ge3 /Ge(111) epitaxial films with thicknesses between 9 and 300 nm. The NMR spectra have been recorded as a function of strong external magnetic field applied in the film plane and perpendicular to it. Two 55Mn NMR resonances have been observed, corresponding to the two manganese sites 4 d and 6 g , in the hexagonal D 88 structure; in zero field their frequency is centered around 207.5 and 428 MHz, respectively. The anisotropy of 55Mn hyperfine fields between the hexagonal c direction and the c plane at both Mn sites was evidenced and attributed to the anisotropic term due to the unquenched Mn orbital momentum. The anisotropy of the orbital contribution to hyperfine fields was determined as 1.52 T in the 4 d site and up to 2.77 T in the 6 g site. The 4 d site reveals a quadrupolar interaction due to the strong electric field gradient: Vz z=5.3 ×1019V/m2 in this site, which is shown to be oriented along the hexagonal c axis.

  3. Complex seismic anisotropy beneath Germany from shear wave splitting and surface wave models

    NASA Astrophysics Data System (ADS)

    Campbell, L.; Long, M. D.; Becker, T. W.; Lebedev, S.

    2013-12-01

    Seismic anisotropy beneath stable continental interiors likely reflects a host of processes, including deformation in the lower crust, frozen anisotropy from past deformation processes in the lithospheric mantle, and present-day mantle flow in the asthenosphere. Because the anisotropic structure beneath continental interiors is generally complicated and often exhibits heterogeneity both laterally and with depth, a complete characterization of anisotropy and its interpretation in terms of deformational processes is challenging. In this study, we aim to expand our understanding of continental anisotropy by characterizing in detail the geometry and strength of azimuthal anisotropy beneath Germany and the surrounding region, using a combination of shear wave splitting and surface wave constraints. We utilize data from long-running broadband stations in and around Germany, collected from a variety of national and temporary European networks. We measure the splitting of SKS, SKKS, and PKS phases, with the aim of obtaining the best possible backazimuthal coverage. Preliminary results indicate that anisotropy beneath Germany is generally complex; we observe shear wave splitting patterns that are complicated and are inconsistent with a single horizontal layer of anisotropy beneath the station. Observed delay times are generally small (<1 sec), and there is a preponderance of null *KS arrivals in the dataset, with null measurements detected over a fairly large range of backazimuths. We also observe dramatic differences in splitting patterns over relatively short horizontal distances. Although we note backazimuthal variations in splitting at several stations, we do not observe a clear 90-degree periodicity that one would expect for the case of multiple anisotropic layers. We are currently carrying out comparisons between our observed splitting patterns and those predicted from tomographic models of azimuthal anisotropy derived from surface wave observations. The ultimate goal

  4. Analysis of structure of hyperfine poly(3-hydroxybutyrate) fibers (PHB) for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Kosenko, R. Yu; Markin, V. S.; Zykova, A. K.; Pantyukhov, P. V.; Karpova, S. G.; Iordanskii, A. L.

    2017-12-01

    Hyperfine fibers based on biodegradable poly (3-hydroxybutyrate) with encapsulated drug substance (dipyridamol) were obtained by using electrospinning method. Addition of dipyridamol has a significant effect on geometrical shape and structure of microfibers as well as total porosity of fibrous material. Observation of fibers using scanning electron microscopy (SEM) method showed that without or at lower dipyridamol content (<3%) fibers consisted of interleaved ellipsoid and cylindrical fragments. At higher dipyridamol content (3-5%) anomalous ellipsoid structures did not practically form, and fiber’s shape became cylindrical. The totality of morphological and structural characteristics determined the rate of dipyridamol diffusive transports. The simplified model of drug desorption from fibrous matrix was presented. In current work it was showed that the rate-limiting stage of transport was the diffusion of dipyridamol in the bulk of cylindrical fibers.

  5. Use of GLOBE Observations to Derive a Landsat 8 Split Window Algorithm for Urban Heat Island

    NASA Astrophysics Data System (ADS)

    Fagerstrom, L.; Czajkowski, K. P.

    2017-12-01

    Surface temperature has been studied to investigate the warming of urban climates, also known as urban heat islands, which can impact urban planning, public health, pollution levels, and energy consumption. However, the full potential of remotely sensed images is limited when analyzing land surface temperature due to the daunting task of correcting for atmospheric effects. Landsat 8 has two thermal infrared sensors. With two bands in the infrared region, a split window algorithm (SWA), can be applied to correct for atmospheric effects. This project used in situ surface temperature measurements from NASA's ground observation program, the Global Learning and Observations to Benefit the Environment (GLOBE), to derive the correcting coefficients for use in the SWA. The GLOBE database provided land surface temperature data that coincided with Landsat 8 overpasses. The land surface temperature derived from Landsat 8 SWA can be used to analyze for urban heat island effect.

  6. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    NASA Astrophysics Data System (ADS)

    Crooker, S. A.; Liu, F.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Ruden, P. P.

    2014-10-01

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ˜ 11%) than at the low-energy red end (˜4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  7. Theoretical study of the hyperfine parameters of OH

    NASA Technical Reports Server (NTRS)

    Chong, Delano P.; Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.

    1991-01-01

    In the present study of the hyperfine parameters of O-17H as a function of the one- and n-particle spaces, all of the parameters except oxygen's spin density, b sub F(O), are sufficiently easily tractable to allow concentration on the computational requirements for accurate determination of b sub F(O). Full configuration-interaction (FCI) calculations in six Gaussian basis sets yield unambiguous results for (1) the effect of uncontracting the O s and p basis sets; (2) that of adding diffuse s and p functions; and (3) that of adding polarization functions to O. The size-extensive modified coupled-pair functional method yields b sub F values which are in fair agreement with FCI results.

  8. Zeeman Splitting of Ferromagnetic GaMnAs on InP Observed by Magnetic Circular Dichroism in Reflection Mode

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Bsatee, M.; Jadwisienczak, W. M.

    2016-08-01

    Systematic investigations of Ga1- x Mn x As grown on InP with different Mn concentrations have been conducted using magnetic circular dichroism (MCD) in reflection mode. The MCD spectrum of Ga0.97Mn0.03As/InP was decomposed into two dispersion curves originating from E 1 and E 1 + Δ1 optical transitions using the energy derivative of a Gaussian function. The Zeeman splitting energy E 1 at the L critical point (0.6 meV) of ferromagnetic Ga0.97Mn0.03As/InP was estimated using a rigid band shift model. Based on the relationship between E 1 and E 0 (Γ critical point) observed in Cd1- x Mn x Te dilute magnetic semiconductor (DMS), the Zeeman splitting energy E 1 (9.6 meV) of ferromagnetic Ga1- x Mn x As/InP was calculated. In addition, it was established that the peaks in the MCD spectra at L critical points shift toward the lower energy side as the Mn concentration is increased, and the observed shift saturates for Mn content of x = 0.001. Furthermore, the measured absorption spectra for Ga1- x Mn x As/InP did not show noticeable peak shifts with increasing Mn content. This suggests that the s, p- d exchange interaction induced in Ga1- x Mn x As/InP has localized nature due to the presence of a Mn rigid sphere of influence.

  9. Energy Levels, wavelengths and hyperfine structure measurements of Sc II

    NASA Astrophysics Data System (ADS)

    Hala, Fnu; Nave, Gillian

    2018-01-01

    Lines of singly ionized Scandium (Sc II) along with other Iron group elements have been observed [1] in the region surrounding the massive star Eta Carinae [2,3] called the strontium filament (SrF). The last extensive analysis of Sc II was the four-decade old work of Johansson & Litzen [4], using low-resolution grating spectroscopy. To update and extend the Sc II spectra, we have made observation of Sc/Ar, Sc/Ne and Sc/Ge/Ar hollow cathode emission spectrum on the NIST high resolution FT700 UV/Vis and 2 m UV/Vis/IR Fourier transform spectrometers (FTS). More than 850 Sc II lines have been measured in the wavelength range of 187 nm to 3.2 μm. connecting a total of 152 energy levels. The present work also focuses to resolve hyperfine structure (HFS) in Sc II lines. We aim to obtain accurate transition wavelengths, improved energy levels and HFS constants of Sc II. The latest results from work in progress will be presented.Reference[1] Hartman H, Gull T, Johansson S and Smith N 2004 Astron. Astrophys. 419 215[2] Smith N, Morse J A and Gull T R 2004 Astrophys. J. 605 405[3] Davidson K and Humphreys R M 1997 Annu. Rev. Astron. Astrophys. 35[4] Johansson S and Litzén U 1980 Phys. Scr. 22 49

  10. Shear wave splitting and shear wave splitting tomography of the southern Puna plateau

    NASA Astrophysics Data System (ADS)

    Calixto, Frank J.; Robinson, Danielle; Sandvol, Eric; Kay, Suzanne; Abt, David; Fischer, Karen; Heit, Ben; Yuan, Xiaohui; Comte, Diana; Alvarado, Patricia

    2014-11-01

    We have investigated the seismic anisotropy beneath the Central Andean southern Puna plateau by applying shear wave splitting analysis and shear wave splitting tomography to local S waves and teleseismic SKS, SKKS and PKS phases. Overall, a very complex pattern of fast directions throughout the southern Puna plateau region and a circular pattern of fast directions around the region of the giant Cerro Galan ignimbrite complex are observed. In general, teleseismic lag times are much greater than those for local events which are interpreted to reflect a significant amount of sub and inner slab anisotropy. The complex pattern observed from shear wave splitting analysis alone is the result of a complex 3-D anisotropic structure under the southern Puna plateau. Our application of shear wave splitting tomography provides a 3-D model of anisotropy in the southern Puna plateau that shows different patterns depending on the driving mechanism of upper-mantle flow and seismic anisotropy. The trench parallel a-axes in the continental lithosphere above the slab east of 68W may be related to deformation of the overriding continental lithosphere since it is under compressive stresses which are orthogonal to the trench. The more complex pattern below the Cerro Galan ignimbrite complex and above the slab is interpreted to reflect delamination of continental lithosphere and upwelling of hot asthenosphere. The a-axes beneath the Cerro Galan, Cerro Blanco and Carachi Pampa volcanic centres at 100 km depth show some weak evidence for vertically orientated fast directions, which could be due to vertical asthenospheric flow around a delaminated block. Additionally, our splitting tomographic model shows that there is a significant amount of seismic anisotropy beneath the slab. The subslab mantle west of 68W shows roughly trench parallel horizontal a-axes that are probably driven by slab roll back and the relatively small coupling between the Nazca slab and the underlying mantle. In

  11. Hyperfine quenching of the 2s2 2p5 3 s3P2 state of Ne-like ions

    NASA Astrophysics Data System (ADS)

    Safronova, U. I.; Stafford, A.; Safronova, A. S.

    2017-04-01

    The many-body perturbation theory (RMBPT) is used to calculate energies and multipole matrix elements to evaluate hyperfine quenching of the 2s2 2p5 3 s 3P2 state in Ne-like ions. In particular, the 3P2 excited state decays to the 1S0 ground state by M2 emission, while both 1P1 and 3P1 states decay to the ground-state by E1 emission, which is substantially faster. For odd-A nuclei, the hyperfine interaction induces admixtures of 3P1 and 1P1 states into the 3P2 state, resulting in an increase of the 3P2 transition rate and a corresponding reduction of the 3P2 lifetime. We consider 22 Ne like ions with Z = 14 - 94 and nuclear moment I =1/2. We found that the largess hyperfine quenching contribution by a factor of 2 are for Ne-like 31P and 203Tl. The smallest (less than 1%) induced contribution are the following Ne-like ions: 57Fe, 107Ag, 109Ag, 183W, and 187Os ions. For another 15 Ne-like ions the hyperfine quenching contribution is between 15% and 35%. Applications to x-ray line polarization of Ne-like lines is considered. This work is supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002954.

  12. A variable temperature EPR study of Mn(2+)-doped NH(4)Cl(0.9)I(0.1) single crystal at 170 GHz: zero-field splitting parameter and its absolute sign.

    PubMed

    Misra, Sushil K; Andronenko, Serguei I; Chand, Prem; Earle, Keith A; Paschenko, Sergei V; Freed, Jack H

    2005-06-01

    EPR measurements have been carried out on a single crystal of Mn(2+)-doped NH(4)Cl(0.9)I(0.1) at 170-GHz in the temperature range of 312-4.2K. The spectra have been analyzed (i) to estimate the spin-Hamiltonian parameters; (ii) to study the temperature variation of the zero-field splitting (ZFS) parameter; (iii) to confirm the negative absolute sign of the ZFS parameter unequivocally from the temperature-dependent relative intensities of hyperfine sextets at temperatures below 10K; and (iv) to detect the occurrence of a structural phase transition at 4.35K from the change in the structure of the EPR lines with temperature below 10K.

  13. Magnetic interactions in NiO at ultrahigh pressure

    DOE PAGES

    Potapkin, Vasily; Dubrovinsky, Leonid; Sergueev, I.; ...

    2016-05-24

    Here, magnetic properties of NiO have been studied in the multimegabar pressure range by nuclear forward scattering of synchrotron radiation using the 67.4 keV M ssbauer transition of 61Ni. The observed magnetic hyperfine splitting confirms the antiferromagnetic state of NiO up to 280 GPa, the highest pressure where magnetism has been observed so far, in any material. Remarkably, the hyperfine field increases from 8.47 T at ambient pressure to ~24 T at the highest pressure, ruling out the possibility of a magnetic collapse. A joint x-ray diffraction and extended x-ray-absorption fine structure investigation reveals that NiO remains in a distortedmore » sodium chloride structure in the entire studied pressure range. Ab initio calculations support the experimental observations, and further indicate a complete absence of Mott transition in NiO up to at least 280 GPa.« less

  14. Detecting primordial gravitational waves with circular polarization of the redshifted 21 cm line. I. Formalism

    NASA Astrophysics Data System (ADS)

    Hirata, Christopher M.; Mishra, Abhilash; Venumadhav, Tejaswi

    2018-05-01

    We propose a new method to measure the tensor-to-scalar ratio r using the circular polarization of the 21 cm radiation from the pre-reionization epoch. Our method relies on the splitting of the F =1 hyperfine level of neutral hydrogen due to the quadrupole moment of the cosmic microwave background (CMB). We show that unlike the Zeeman effect, where MF=±1 have opposite energy shifts, the CMB quadrupole shifts MF=±1 together relative to MF=0 . This splitting leads to a small circular polarization of the emitted 21 cm radiation. In this paper (Paper I in a series on this effect), we present calculations on the microphysics behind this effect, accounting for all processes that affect the hyperfine transition. We conclude with an analytic formula for the circular polarization from the Dark Ages as a function of pre-reionization parameters and the value of the remote quadrupole of the CMB. We also calculate the splitting of the F =1 hyperfine level due to other anisotropic radiation sources and show that they are not dominant. In a companion paper (Paper II) we make forecasts for measuring the tensor-to-scalar ratio r using future radio arrays.

  15. Hyperfine state entanglement of spinor BEC and scattering atom

    NASA Astrophysics Data System (ADS)

    Li, Zhibing; Bao, Chengguang; Zheng, Wei

    2018-05-01

    Condensate of spin-1 atoms frozen in a unique spatial mode may possess large internal degrees of freedom. The scattering amplitudes of polarized cold atoms scattered by the condensate are obtained with the method of fractional parentage coefficients that treats the spin degrees of freedom rigorously. Channels with scattering cross sections enhanced by the square of the atom number of the condensate are found. Entanglement between the condensate and the propagating atom can be established by scattering. Entanglement entropy is analytically obtained for arbitrary initial states. Our results also give a hint for the establishment of quantum thermal ensembles in the hyperfine space of spin states.

  16. Visualizing multiple inter-organelle contact sites using the organelle-targeted split-GFP system.

    PubMed

    Kakimoto, Yuriko; Tashiro, Shinya; Kojima, Rieko; Morozumi, Yuki; Endo, Toshiya; Tamura, Yasushi

    2018-04-18

    Functional integrity of eukaryotic organelles relies on direct physical contacts between distinct organelles. However, the entity of organelle-tethering factors is not well understood due to lack of means to analyze inter-organelle interactions in living cells. Here we evaluate the split-GFP system for visualizing organelle contact sites in vivo and show its advantages and disadvantages. We observed punctate GFP signals from the split-GFP fragments targeted to any pairs of organelles among the ER, mitochondria, peroxisomes, vacuole and lipid droplets in yeast cells, which suggests that these organelles form contact sites with multiple organelles simultaneously although it is difficult to rule out the possibilities that these organelle contacts sites are artificially formed by the irreversible associations of the split-GFP probes. Importantly, split-GFP signals in the overlapped regions of the ER and mitochondria were mainly co-localized with ERMES, an authentic ER-mitochondria tethering structure, suggesting that split-GFP assembly depends on the preexisting inter-organelle contact sites. We also confirmed that the split-GFP system can be applied to detection of the ER-mitochondria contact sites in HeLa cells. We thus propose that the split-GFP system is a potential tool to observe and analyze inter-organelle contact sites in living yeast and mammalian cells.

  17. Thermocouple split follower

    DOEpatents

    Howell, deceased, Louis J.

    1980-01-01

    Thermoelectric generator assembly accommodating differential thermal expansion between thermoelectric elements by means of a cylindrical split follower forming a slot and having internal spring loaded wedges that permit the split follower to open and close across the slot.

  18. Materials for optical memory: Resolved hyperfine structure in KY3F10:Ho3+

    NASA Astrophysics Data System (ADS)

    Popova, M. N.

    2013-08-01

    Basic principles of creating a quantum optical memory (QOM) and requirements for relevant materials, in particular, for crystals doped with rare-earth ions, are briefly reviewed. A combined approach to studying the hyperfine structure, which is essential for QOM applications, is presented on the example of KY3F10:Ho3+.

  19. Small-bubble transport and splitting dynamics in a symmetric bifurcation.

    PubMed

    Qamar, Adnan; Warnez, Matthew; Valassis, Doug T; Guetzko, Megan E; Bull, Joseph L

    2017-08-01

    Simulations of small bubbles traveling through symmetric bifurcations are conducted to garner information pertinent to gas embolotherapy, a potential cancer treatment. Gas embolotherapy procedures use intra-arterial bubbles to occlude tumor blood supply. As bubbles pass through bifurcations in the blood stream nonhomogeneous splitting and undesirable bioeffects may occur. To aid development of gas embolotherapy techniques, a volume of fluid method is used to model the splitting process of gas bubbles passing through artery and arteriole bifurcations. The model reproduces the variety of splitting behaviors observed experimentally, including the bubble reversal phenomenon. Splitting homogeneity and maximum shear stress along the vessel walls is predicted over a variety of physical parameters. Small bubbles, having initial length less than twice the vessel diameter, were found unlikely to split in the presence of gravitational asymmetry. Maximum shear stresses were found to decrease exponentially with increasing Reynolds number. Vortex-induced shearing near the bifurcation is identified as a possible mechanism for endothelial cell damage.

  20. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization

    PubMed Central

    Hoff, Daniel E.M.; Albert, Brice J.; Saliba, Edward P.; Scott, Faith J.; Choi, Eric J.; Mardini, Michael; Barnes, Alexander B.

    2015-01-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198 GHz MAS DNP probe. Our calculations show that a microwave power input of 17 W is required to generate an average EPR nutation frequency of 0.84 MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5 kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. PMID:26482131

  1. Frequency swept microwaves for hyperfine decoupling and time domain dynamic nuclear polarization.

    PubMed

    Hoff, Daniel E M; Albert, Brice J; Saliba, Edward P; Scott, Faith J; Choi, Eric J; Mardini, Michael; Barnes, Alexander B

    2015-11-01

    Hyperfine decoupling and pulsed dynamic nuclear polarization (DNP) are promising techniques to improve high field DNP NMR. We explore experimental and theoretical considerations to implement them with magic angle spinning (MAS). Microwave field simulations using the high frequency structural simulator (HFSS) software suite are performed to characterize the inhomogeneous phase independent microwave field throughout a 198GHz MAS DNP probe. Our calculations show that a microwave power input of 17W is required to generate an average EPR nutation frequency of 0.84MHz. We also present a detailed calculation of microwave heating from the HFSS parameters and find that 7.1% of the incident microwave power contributes to dielectric sample heating. Voltage tunable gyrotron oscillators are proposed as a class of frequency agile microwave sources to generate microwave frequency sweeps required for the frequency modulated cross effect, electron spin inversions, and hyperfine decoupling. Electron spin inversions of stable organic radicals are simulated with SPINEVOLUTION using the inhomogeneous microwave fields calculated by HFSS. We calculate an electron spin inversion efficiency of 56% at a spinning frequency of 5kHz. Finally, we demonstrate gyrotron acceleration potentials required to generate swept microwave frequency profiles for the frequency modulated cross effect and electron spin inversions. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Intracavity Laser Absorption Spectroscopy of Platinum Nitride in the Near Infrared

    NASA Astrophysics Data System (ADS)

    O'Brien, Leah C.; Womack, Kaitlin A.; O'Brien, James J.; Whittemore, Sean

    2013-06-01

    The (2,0) band of the A^{2}Σ^{-} - X^{2}Π_{1/2} electronic transition of PtN has been recorded using intracavity laser absorption spectroscopy. Transitions from ^{194}PtN, ^{195}PtN, and ^{196}PtN isotopologues are observed, as well as the nuclear hyperfine splitting due to ^{195}Pt with I=1/2. The results of the analysis will be presented and compared with ab initio calculations.

  3. Identification of the Ga interstitial in Al(x)Ga(1-x)As by optically detected magnetic resonance

    NASA Technical Reports Server (NTRS)

    Kennedy, T. A.; Spencer, M. G.

    1986-01-01

    A new optically detected magnetic resonance spectrum in Al(x)Ga(1-x)As is reported and assigned to native Ga interstitials. Luminescence-quenching signals were observed over the energy region from 0.75 to 1.1 eV. The optically detected magnetic resonance is nearly isotropic, with spin-Hamiltonian parameters g = 2.025 + or - 0.006, central hyperfine splitting A(Ga-69) = 0.050 + or - 0.001/cm, and A(Ga-71) = 0.064 + or - 0.001/cm for H near the 001 line. The strong hyperfine coupling denotes an electronic state of A1 symmetry, which current theories predict for the Ga interstitial but not the Ga antisite. The slight anisotropy probably indicates that the Ga(i) is paired with a second, unknown defect.

  4. Studies of Landé gJ-factors of singly ionized lanthanum by laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Werbowy, S.; Güney, C.; Windholz, L.

    2016-08-01

    Laser-induced fluorescence spectroscopy, using a cooled hollow cathode discharge lamp as source of ions, was used to observe the Zeeman splitting of 18 lines of La II in the wavelength range 629.6-680.9 nm, in external intermediate magnetic fields up to 800 G. The recorded hyperfine-Zeeman patterns were analyzed in detail using already known accurate hyperfine structure A- and B-constants. From the recordings the Landé gJ-factors for some levels belonging to the 5d2, 5d6s, 5d6p, 4f5d, 4f6s and 4f6p configurations of La II were determined. The obtained experimental gJ-factors are compared with earlier measurements and theoretical calculations.

  5. Fine- and hyperfine structure investigations of the even-parity configuration system of the atomic holmium

    NASA Astrophysics Data System (ADS)

    Stefanska, D.; Ruczkowski, J.; Elantkowska, M.; Furmann, B.

    2018-04-01

    In this work new experimental results concerning the hyperfine structure (hfs) for the even-parity level system of the holmium atom (Ho I) were obtained; additionally, hfs data obtained recently as a by-product in investigations of the odd-parity level system were summarized. In the present work the values of the magnetic dipole and the electric quadrupole hfs constants A and B were determined for 24 even-parity levels, for 14 of them for the first time. On the basis of these results, as well as on available literature data, a parametric study of the fine structure and the hyperfine structure for the even-parity configurations of atomic holmium was performed. A multi-configuration fit of 7 configurations was carried out, taking into account second-order of the perturbation theory. For unknown electronic levels predicted values of the level energies and hfs constants are given, which can facilitate further experimental investigations.

  6. Parabolic polarization splitting of Tamm states in a metal-organic microcavity

    NASA Astrophysics Data System (ADS)

    Brückner, R.; Sudzius, M.; Hintschich, S. I.; Fröb, H.; Lyssenko, V. G.; Kaliteevski, M. A.; Iorsh, I.; Abram, R. A.; Kavokin, A. V.; Leo, K.

    2012-02-01

    We observe hybrid states of cavity photons and Tamm plasmons in an organic microcavity with an incorporated thin silver layer of increasing thickness up to 40 nm. Via μ-photoluminescence spectroscopy, we investigate their angular dependence. At oblique angles, we observe a TE-TM polarization splitting of more than 40 meV for each mode. An analytical model is developed to describe the coupling of Tamm plasmons and cavity photons and to account for the splitting of the orthogonally polarized resonances.

  7. Comparison of split double and triple twists in pair figure skating.

    PubMed

    King, Deborah L; Smith, Sarah L; Brown, Michele R; McCrory, Jean L; Munkasy, Barry A; Scheirman, Gary I

    2008-05-01

    In this study, we compared the kinematic variables of the split triple twist with those of the split double twist to help coaches and scientists understand these landmark pair skating skills. High-speed video was taken during the pair short and free programmes at the 2002 Salt Lake City Winter Olympics and the 2003 International Skating Union Grand Prix Finals. Three-dimensional analyses of 14 split double twists and 15 split triple twists from eleven pairs were completed. In spite of considerable variability in the performance variables among the pairs, the main difference between the split double twists and split triple twists was an increase in rotational rate. While eight of the eleven pairs relied primarily on an increased rotational rate to complete the split triple twist, three pairs employed a combined strategy of increased rotational rate and increased flight time due predominantly to delayed or lower catches. These results were similar to observations of jumps in singles skating for which the extra rotation is typically due to an increase in rotational velocity; increases in flight time come primarily from delayed landings as opposed to additional height during flight. Combining an increase in flight time and rotational rate may be a good strategy for completing the split triple twist in pair skating.

  8. Performance of a GaAlAs laser diode stabilized on a hyperfine component of two-photon transitions in rubidium at 778 nm

    NASA Astrophysics Data System (ADS)

    Felder, Raymond; Touahri, D.; Acef, Ouali; Hilico, L.; Zondy, Jean-Jacques; Clairon, Andre; de Beauvoir, Beatrice; Biraben, Francois; Julien, Lucile; Nez, Francois; Millerioux, Yves P.

    1995-04-01

    The absolute frequency measurement of each hyperfine component of the 5S3/2 and 5S5/2 levels in rubidium was done at ENS more than one year ago using Ti-Sa lasers. We built two devices based on diode lasers to study some metrological properties. We measure the frequency differences between hyperfine components of the 5S5/2 level and we calculate the corresponding hyperfine constants. We also measure the frequency interval between the 5S3/2 and 5S5/2 levels using a Schottky diode. The measured stability in terms of Allan variance is 3*10-13t-1/2 up to 2000 s. The light shift is investigated and the difference between our two systems is 1.7 kHz. The repeatability of one system is better than 10-12 and will allow the absolute frequency measurement at this level via the LPTF frequency synthesis chain.

  9. Studies of molecular physics in sodium-potassium: An analysis of the 4(3)Sigma+ state and interactions between the 2(A)(1)Sigma+ and 1(b)(3)Pi states

    NASA Astrophysics Data System (ADS)

    Burns, Patrick

    2004-12-01

    In this dissertation we report the results of three experiments designed to provide new information on the structure and interactions of the NaK molecule. Specifically these experiments investigate 2(A)1Sigma +(upsilonA, J) + M → 1(b)3 pi0(upsilonb, J) + M collisional excitation transfers (where M is a collision partner), hyperfine structure of the NaK 1(b)3pi and 1(b)3pi0 ˜ 2(A)1Sigma+ spin-orbit interactions, and the structure and spectra of the NaK 43Sigma+ state, respectively. In this first experiment, populations of collisionally populated levels were recorded near the NaK 1(b)3pi0(upsilon =18, J = 44) ˜ 2(A)1Sigma+ (upsilon = 20, J = 44) center of spin-orbit perturbation. Our data indicate that population is transferred from the pumped level, 2(A) 1Sigma+(upsilon = 20, J = 49), directly to the surrounding "daughter" levels [1(b)3Sigma 0(upsilon =18, J = 45--48) and 2(A)1Sigma +(upsilon = 20, J = 45--48)]. The relative populations of the daughter levels appear anomalous, as their populations do not monotonically decrease for levels further away in energy from the pumped level. We have measured the hyperfine structure of mutually perturbing ro-vibrational levels of the 1(b)3pi0 and 2(A)1Sigma + states of the NaK molecule, using the PFOODR method with co-propagating lasers. Unperturbed 1(b)3pi0 levels are split into four hyperfine components by the Fermi contact interaction b FI·S. Mixing between the 1(b)3pi0 and 2(A)1Sigma + levels imparts hyperfine structure to the nominally singlet component, and reduces the hyperfine splitting of the nominally triplet component, of the perturbed levels. We determined a value for the Fermi constant, bF= (0.00989 +/- 0.00027) cm-1, and the magnitude of the electronic part of the 1(b)3pi 0 ˜ 2(A)1Sigma+ spin-orbit coupling, |Hel| = (15.65 +/- 0.14) cm-1 , from an analysis of the measured hyperfine splittings of the mixed singlet-triplet levels. High-resolution spectra have been observed for numerous vibrational

  10. Prevalence of Split Nerve Fiber Layer Bundles in Healthy People Imaged with Spectral Domain Optical Coherence Tomography.

    PubMed

    Gür Güngör, Sirel; Akman, Ahmet; Sarıgül Sezenöz, Almila; Tanrıaşıkı, Gülşah

    2016-12-01

    The presence of retinal nerve fiber layer (RNFL) split bundles was recently described in normal eyes scanned using scanning laser polarimetry and by histologic studies. Split bundles may resemble RNFL loss in healthy eyes. The aim of our study was to determine the prevalence of nerve fiber layer split bundles in healthy people. We imaged 718 eyes of 359 healthy persons with the spectral domain optical coherence tomography in this cross-sectional study. All eyes had intraocular pressure of 21 mmHg or less, normal appearance of the optic nerve head, and normal visual fields (Humphrey Field Analyzer 24-2 full threshold program). In our study, a bundle was defined as 'split' when there is localized defect not resembling a wedge defect in the RNFL deviation map with a symmetrically divided RNFL appearance on the RNFL thickness map. The classification was performed by two independent observers who used an identical set of reference examples to standardize the classification. Inter-observer consensus was reached in all cases. Bilateral superior split bundles were seen in 19 cases (5.29%) and unilateral superior split was observed in 15 cases (4.16%). In 325 cases (90.52%) there was no split bundle. Split nerve fiber layer bundles, in contrast to single nerve fiber layer bundles, are not common findings in healthy eyes. In eyes with normal optic disc appearance, especially when a superior RNFL defect is observed in RNFL deviation map, the RNLF thickness map and graphs should also be examined for split nerve fiber layer bundles.

  11. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    PubMed

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  12. The Split-Brain Phenomenon Revisited: A Single Conscious Agent with Split Perception.

    PubMed

    Pinto, Yair; de Haan, Edward H F; Lamme, Victor A F

    2017-11-01

    The split-brain phenomenon is caused by the surgical severing of the corpus callosum, the main route of communication between the cerebral hemispheres. The classical view of this syndrome asserts that conscious unity is abolished. The left hemisphere consciously experiences and functions independently of the right hemisphere. This view is a cornerstone of current consciousness research. In this review, we first discuss the evidence for the classical view. We then propose an alternative, the 'conscious unity, split perception' model. This model asserts that a split brain produces one conscious agent who experiences two parallel, unintegrated streams of information. In addition to changing our view of the split-brain phenomenon, this new model also poses a serious challenge for current dominant theories of consciousness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Optimal preparation-to-colonoscopy interval in split-dose PEG bowel preparation determines satisfactory bowel preparation quality: an observational prospective study.

    PubMed

    Seo, Eun Hee; Kim, Tae Oh; Park, Min Jae; Joo, Hee Rin; Heo, Nae Yun; Park, Jongha; Park, Seung Ha; Yang, Sung Yeon; Moon, Young Soo

    2012-03-01

    Several factors influence bowel preparation quality. Recent studies have indicated that the time interval between bowel preparation and the start of colonoscopy is also important in determining bowel preparation quality. To evaluate the influence of the preparation-to-colonoscopy (PC) interval (the interval of time between the last polyethylene glycol dose ingestion and the start of the colonoscopy) on bowel preparation quality in the split-dose method for colonoscopy. Prospective observational study. University medical center. A total of 366 consecutive outpatients undergoing colonoscopy. Split-dose bowel preparation and colonoscopy. The quality of bowel preparation was assessed by using the Ottawa Bowel Preparation Scale according to the PC interval, and other factors that might influence bowel preparation quality were analyzed. Colonoscopies with a PC interval of 3 to 5 hours had the best bowel preparation quality score in the whole, right, mid, and rectosigmoid colon according to the Ottawa Bowel Preparation Scale. In multivariate analysis, the PC interval (odds ratio [OR] 1.85; 95% CI, 1.18-2.86), the amount of PEG ingested (OR 4.34; 95% CI, 1.08-16.66), and compliance with diet instructions (OR 2.22l 95% CI, 1.33-3.70) were significant contributors to satisfactory bowel preparation. Nonrandomized controlled, single-center trial. The optimal time interval between the last dose of the agent and the start of colonoscopy is one of the important factors to determine satisfactory bowel preparation quality in split-dose polyethylene glycol bowel preparation. Copyright © 2012 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.

  14. Triadic split-merge sampler

    NASA Astrophysics Data System (ADS)

    van Rossum, Anne C.; Lin, Hai Xiang; Dubbeldam, Johan; van der Herik, H. Jaap

    2018-04-01

    In machine vision typical heuristic methods to extract parameterized objects out of raw data points are the Hough transform and RANSAC. Bayesian models carry the promise to optimally extract such parameterized objects given a correct definition of the model and the type of noise at hand. A category of solvers for Bayesian models are Markov chain Monte Carlo methods. Naive implementations of MCMC methods suffer from slow convergence in machine vision due to the complexity of the parameter space. Towards this blocked Gibbs and split-merge samplers have been developed that assign multiple data points to clusters at once. In this paper we introduce a new split-merge sampler, the triadic split-merge sampler, that perform steps between two and three randomly chosen clusters. This has two advantages. First, it reduces the asymmetry between the split and merge steps. Second, it is able to propose a new cluster that is composed out of data points from two different clusters. Both advantages speed up convergence which we demonstrate on a line extraction problem. We show that the triadic split-merge sampler outperforms the conventional split-merge sampler. Although this new MCMC sampler is demonstrated in this machine vision context, its application extend to the very general domain of statistical inference.

  15. Supernova neutrinos and antineutrinos: ternary luminosity diagram and spectral split patterns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fogli, Gianluigi; Marrone, Antonio; Tamborra, Irene

    2009-10-01

    In core-collapse supernovae, the ν{sub e} and ν-bar {sub e} species may experience collective flavor swaps to non-electron species ν{sub x}, within energy intervals limited by relatively sharp boundaries (''splits''). These phenomena appear to depend sensitively upon the initial energy spectra and luminosities. We investigate the effect of generic variations of the fractional luminosities (l{sub e}, l{sub ē}, l{sub x}) with respect to the usual ''energy equipartition'' case (1/6, 1/6, 1/6), within an early-time supernova scenario with fixed thermal spectra and total luminosity. We represent the constraint l{sub e}+l{sub ē}+4l{sub x} = 1 in a ternary diagram, which is exploredmore » via numerical experiments (in single-angle approximation) over an evenly-spaced grid of points. In inverted hierarchy, single splits arise in most cases, but an abrupt transition to double splits is observed for a few points surrounding the equipartition one. In normal hierarchy, collective effects turn out to be unobservable at all grid points but one, where single splits occur. Admissible deviations from equipartition may thus induce dramatic changes in the shape of supernova (anti)neutrino spectra. The observed patterns are interpreted in terms of initial flavor polarization vectors (defining boundaries for the single/double split transitions), lepton number conservation, and minimization of potential energy.« less

  16. Chiral effective-field theory of the nucleon spin structure

    NASA Astrophysics Data System (ADS)

    Pascalutsa, Vladimir

    2017-01-01

    I will review the recent chiral EFT calculations of the nucleon (spin) structure functions at low Q2, confronted with the Jefferson Lab measurements. The moments of the structure functions correspond with various polarizabilities, and I will explain why one of them - δLT - is especially interesting. I will also discuss how the spin structure functions at low Q enter in the atomic calculations of the hyperfine splittings and how they are impacting the ongoing experimental program at PSI (Switzerland) to measure the ground-state hyperfine splitting of muonic hydrogen. Partially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 1044 [The Low-Energy Frontier of the Standard Model].

  17. Shear wave splitting observations across the Juan de Fuca plate system: Ridge- to-trench constraints on mantle flow from 2 years of Cascadia Initiative OBS data

    NASA Astrophysics Data System (ADS)

    Bodmer, M.; Toomey, D. R.; Hooft, E. E. E.

    2014-12-01

    We present SKS splitting measurements for the first two years of data collected by the Cascadia Initiative (CI) amphibious array. Our analysis includes observations from over 100 ocean bottom seismometers (OBS), as well as 31 onshore stations, and spans both the Juan de Fuca and Gorda plates. The CI dataset is unique in that it includes several regions that can distinctly influence anisotropic fabric development such as: the upwelling mantle beneath the Juan de Fuca and Gorda ridges, the young evolving oceanic lithosphere of the plate interior, the Blanco transform fault, and the Cascadia subduction zone. For the first time, we are able to analyze these regions with a single dataset, and using a common methodology. Splitting measurements are routinely done on land sites, but have been completed on relatively few OBS stations. This is largely due to the low signal to noise present in OBS data, which can obscure the splitting results. To address that nearly all the OBS data exceeds the global high noise limit at the frequencies used for splitting, we implement a rigorous quality control scheme. Our method specifically takes into account the response of common splitting methods to high noise data and addresses known issues such as cycle skipping, false minima, low transverse energy, and near-null measurements. Individual measurements are filtered at 0.03-0.1 Hz, manually checked for quality, and stacked. Preliminary results show trench perpendicular onshore measurements consistent with previous studies. Oceanic measurements in the plate interior show a coherent fast axis roughly aligned with absolute plate motion. Several measurements near the ridge and trench appear to be rotated in the ridge and trench parallel directions. Continuing work will integrate splitting measurements from the final two years of the CI with these findings, which will be used to characterize the ridge-to-trench mantle flow across the Juan de Fuca plate system.

  18. DETECTION OF FLUX EMERGENCE, SPLITTING, MERGING, AND CANCELLATION OF NETWORK FIELD. I. SPLITTING AND MERGING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iida, Y.; Yokoyama, T.; Hagenaar, H. J.

    2012-06-20

    Frequencies of magnetic patch processes on the supergranule boundary, namely, flux emergence, splitting, merging, and cancellation, are investigated through automatic detection. We use a set of line-of-sight magnetograms taken by the Solar Optical Telescope (SOT) on board the Hinode satellite. We found 1636 positive patches and 1637 negative patches in the data set, whose time duration is 3.5 hr and field of view is 112'' Multiplication-Sign 112''. The total numbers of magnetic processes are as follows: 493 positive and 482 negative splittings, 536 positive and 535 negative mergings, 86 cancellations, and 3 emergences. The total numbers of emergence and cancellationmore » are significantly smaller than those of splitting and merging. Further, the frequency dependence of the merging and splitting processes on the flux content are investigated. Merging has a weak dependence on the flux content with a power-law index of only 0.28. The timescale for splitting is found to be independent of the parent flux content before splitting, which corresponds to {approx}33 minutes. It is also found that patches split into any flux contents with the same probability. This splitting has a power-law distribution of the flux content with an index of -2 as a time-independent solution. These results support that the frequency distribution of the flux content in the analyzed flux range is rapidly maintained by merging and splitting, namely, surface processes. We suggest a model for frequency distributions of cancellation and emergence based on this idea.« less

  19. High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits.

    PubMed

    Ballance, C J; Harty, T P; Linke, N M; Sepiol, M A; Lucas, D M

    2016-08-05

    We demonstrate laser-driven two-qubit and single-qubit logic gates with respective fidelities 99.9(1)% and 99.9934(3)%, significantly above the ≈99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed-fidelity trade-off for the two-qubit gate, for gate times between 3.8  μs and 520  μs, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.

  20. Hyperfine spin interactions between polarons and nuclei in organic light emitting diodes: Magneto-EL measurements

    NASA Astrophysics Data System (ADS)

    Crooker, S. A.; Kelley, M. R.; Martinez, N.; Nie, W.; Mohite, A. D.; Smith, D. L.; Tretiak, S.; Ruden, P. P.

    2014-03-01

    Considerable attention in recent years has focused on the effects of applied magnetic fields on the conductance, photocurrent, electroluminescence (EL), and photoluminescence of nominally nonmagnetic organic semiconductor materials and devices. These magnetic field effects have proven useful in revealing the underlying physical mechanisms and relevant spin interactions that influence the electrical and optical properties in these organic systems (e.g., hyperfine coupling, exchange interactions, and spin-orbit coupling). Here we study the field-dependent properties of organic light-emitting diode (OLEDs) based on MTDATA/LiF/Bphen layered structures, in which exciplex recombination at the interface dominates the EL spectra. Small applied magnetic fields (~10 mT) are found to boost the net EL yield by up to 10%, due to a suppression of the mixing between singlet and triplet polaron pairs which, in turn, arises from hyperfine spin coupling of the polarons to the underlying nuclei of the host molecules. We discuss the dependence of these field-induced effects on the LiF barrier thickness, device bias, and on the orientation of the applied magnetic field, as well as the mechanisms responsible.

  1. Hyperfine structure and isotope shift of /sup 208/Bi in the 3067-A resonance line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamontagne, J.J.

    1982-01-01

    The hyperfine structure of /sup 208/Bi (I = 5) was measured using the 3067 A spectral line from the 6p/sup 2/7s (/sup 4/P/sub 1/2/) - 6p/sup 3/ (/sup 4/S/sub 3/2/) transition. After production of the isotope at the Princeton University Cyclotron, chemical separation, and mass separation, some 10/sup 12/ atoms were used to produce an absorption spectrum. The monochromator, Czerny-Turner design), had a 9.1 m focal length with a 25 cm diffraction grating used in autocollimation near 63/sup 0/. The spectrum was recorded on photographic plates. Measurements were made of the position of the components. From these the value /supmore » 208/A (/sup 4/P/sub 1/2) = 166 (1.5) mK was obtained. Neglecting hyperfine anomalies this gives /sup 208/A (/sup 4/S/sub 3/2/) = 15.07 (.1). The isotope shift /sup 208/Bi-/sup 208/Bi was measured to be 50.58 (7.5) mK.« less

  2. Wavelengths, energy levels and hyperfine structure of Mn II and Sc II.

    NASA Astrophysics Data System (ADS)

    Nave, Gillian; Pickering, Juliet C.; Townley-Smith, Keeley I. M.; Hala, .

    2015-08-01

    For many decades, the Atomic Spectroscopy Groups at the National Institute of Standards and Technology (NIST) and Imperial College London (ICL) have measured atomic data of astronomical interest. Our spectrometers include Fourier transform (FT) spectrometers at NIST and ICL covering the region 1350 Å to 5.5 μm and a 10.7-m grating spectrometer at NIST covering wavelengths from 300 - 5000 Å. Sources for these spectra include high-current continuous and pulsed hollow cathode (HCL) lamps, Penning discharges, and sliding spark discharges. Recent work has focused on the measurement and analysis of wavelengths, energy levels, and hyperfine structure (HFS) constants for iron-group elements. The analysis of FT spectra of Cr I, Mn I, and Mn II is being led by ICL and is described in a companion poster [1]. Current work being led by NIST includes the analysis of HFS in Mn II, analysis of Mn II in the vacuum ultraviolet, and a comprehensive analysis of Sc II.Comprehensive HFS constants for Mn II are needed for the interpretation of stellar spectra and incorrect abundances may be obtained when HFS is omitted. Holt et al. [2] have measured HFS constants for 59 levels of Mn II using laser spectroscopy. We used FT spectra of Mn/Ni and Mn/Cu HCLs covering wavelength ranges from 1350 Å to 5.4 μm to confirm 26 of the A constants of Holt et al. and obtain values for roughly 40 additional levels. We aim to obtain HFS constants for the majority of lines showing significant HFS that are observed in chemically-peculiar stars.Spectra of Sc HCLs have been recorded from 1800 - 6700 Å using a vacuum ultraviolet FT spectrometer at NIST. Additional measurements to cover wavelengths above 6700 Å and below 1800 Å are in progress. The spectra are being analyzed by NIST and Alighar Muslim University, India in order to derive improved wavelengths, energy levels, and hyperfine structure parameters.This work was partially supported by NASA, the STFC and PPARC (UK), the Royal Society of the UK

  3. Hyperfine excitation of C2H and C2D by para-H2

    NASA Astrophysics Data System (ADS)

    Dumouchel, Fabien; Lique, François; Spielfiedel, Annie; Feautrier, Nicole

    2017-10-01

    The [C2H]/[C2D] abundance ratio is a useful tool to explore the physical and chemical conditions of cold molecular clouds. Hence, an accurate determination of both the C2H and C2D abundances is of fundamental interest. Due to the low density of the interstellar medium, the population of the energy levels of the molecules is not at local thermodynamical equilibrium. Thus, the accurate modelling of the emission spectra requires the calculation of collisional rate coefficients with the most abundant interstellar species. Hence, we provide rate coefficients for the hyperfine excitation of C2H and C2D by para-H2(j=0), the most abundant collisional partner in cold molecular clouds. State-to-state rate coefficients between the lowest levels were computed for temperatures ranging from 5 to 80 K. For both isotopologues, the Δj = ΔF propensity rule is observed. The comparison between C2H and C2D rate coefficients shows that differences by up to a factor of two exist, mainly for Δj = ΔN = 1 transitions. The new rate coefficients will significantly help in the interpretation of recent observed spectra.

  4. Mössbauer spectra of iron (III) sulfide particles

    NASA Astrophysics Data System (ADS)

    Kubono, I.; Nishida, N.; Kobayashi, Y.; Yamada, Y.

    2017-11-01

    Trivalent iron sulfide (Fe2 S 3) particles were synthesized using a modified polyol method. These particles exhibited a needle-like shape (diameter = 10-50 nm, length = 350-1000 nm) and generated a clear XRD pattern. Mössbauer spectra of the product showed a paramagnetic doublet at room temperature and distributed hyperfine magnetic splitting at low temperature. The Curie temperature of this material was determined to be approximately 60 K. The data suggest that the Fe2 S 3 had a structure similar to that of maghemite ( γ-Fe2 O 3) with a lattice constant of a = 10.6 Å. The XRD pattern calculated from this structure was in agreement with the experimental pattern and the calculated hyperfine magnetic field was also equivalent to that observed in the experimental Mössbauer spectrum.

  5. A numerical method for systems of conservation laws of mixed type admitting hyperbolic flux splitting

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    1992-01-01

    The present treatment of elliptic regions via hyperbolic flux-splitting and high order methods proposes a flux splitting in which the corresponding Jacobians have real and positive/negative eigenvalues. While resembling the flux splitting used in hyperbolic systems, the present generalization of such splitting to elliptic regions allows the handling of mixed-type systems in a unified and heuristically stable fashion. The van der Waals fluid-dynamics equation is used. Convergence with good resolution to weak solutions for various Riemann problems are observed.

  6. Bad splits in bilateral sagittal split osteotomy: systematic review and meta-analysis of reported risk factors.

    PubMed

    Steenen, S A; van Wijk, A J; Becking, A G

    2016-08-01

    An unfavourable and unanticipated pattern of the bilateral sagittal split osteotomy (BSSO) is generally referred to as a 'bad split'. Patient factors predictive of a bad split reported in the literature are controversial. Suggested risk factors are reviewed in this article. A systematic review was undertaken, yielding a total of 30 studies published between 1971 and 2015 reporting the incidence of bad split and patient age, and/or surgical technique employed, and/or the presence of third molars. These included 22 retrospective cohort studies, six prospective cohort studies, one matched-pair analysis, and one case series. Spearman's rank correlation showed a statistically significant but weak correlation between increasing average age and increasing occurrence of bad splits in 18 studies (ρ=0.229; P<0.01). No comparative studies were found that assessed the incidence of bad split among the different splitting techniques. A meta-analysis pooling the effect sizes of seven cohort studies showed no significant difference in the incidence of bad split between cohorts of patients with third molars present and concomitantly removed during surgery, and patients in whom third molars were removed at least 6 months preoperatively (odds ratio 1.16, 95% confidence interval 0.73-1.85, Z=0.64, P=0.52). In summary, there is no robust evidence to date to show that any risk factor influences the incidence of bad split. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  7. Analysis of operator splitting errors for near-limit flame simulations

    NASA Astrophysics Data System (ADS)

    Lu, Zhen; Zhou, Hua; Li, Shan; Ren, Zhuyin; Lu, Tianfeng; Law, Chung K.

    2017-04-01

    High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction-diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction of ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying oscillatory

  8. Analysis of operator splitting errors for near-limit flame simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Zhen; Zhou, Hua; Li, Shan

    High-fidelity simulations of ignition, extinction and oscillatory combustion processes are of practical interest in a broad range of combustion applications. Splitting schemes, widely employed in reactive flow simulations, could fail for stiff reaction–diffusion systems exhibiting near-limit flame phenomena. The present work first employs a model perfectly stirred reactor (PSR) problem with an Arrhenius reaction term and a linear mixing term to study the effects of splitting errors on the near-limit combustion phenomena. Analysis shows that the errors induced by decoupling of the fractional steps may result in unphysical extinction or ignition. The analysis is then extended to the prediction ofmore » ignition, extinction and oscillatory combustion in unsteady PSRs of various fuel/air mixtures with a 9-species detailed mechanism for hydrogen oxidation and an 88-species skeletal mechanism for n-heptane oxidation, together with a Jacobian-based analysis for the time scales. The tested schemes include the Strang splitting, the balanced splitting, and a newly developed semi-implicit midpoint method. Results show that the semi-implicit midpoint method can accurately reproduce the dynamics of the near-limit flame phenomena and it is second-order accurate over a wide range of time step size. For the extinction and ignition processes, both the balanced splitting and midpoint method can yield accurate predictions, whereas the Strang splitting can lead to significant shifts on the ignition/extinction processes or even unphysical results. With an enriched H radical source in the inflow stream, a delay of the ignition process and the deviation on the equilibrium temperature are observed for the Strang splitting. On the contrary, the midpoint method that solves reaction and diffusion together matches the fully implicit accurate solution. The balanced splitting predicts the temperature rise correctly but with an over-predicted peak. For the sustainable and decaying

  9. Frequency-Comb Based Double-Quantum Two-Dimensional Spectrum Identifies Collective Hyperfine Resonances in Atomic Vapor Induced by Dipole-Dipole Interactions

    NASA Astrophysics Data System (ADS)

    Lomsadze, Bachana; Cundiff, Steven T.

    2018-06-01

    Frequency-comb based multidimensional coherent spectroscopy is a novel optical method that enables high-resolution measurement in a short acquisition time. The method's resolution makes multidimensional coherent spectroscopy relevant for atomic systems that have narrow resonances. We use double-quantum multidimensional coherent spectroscopy to reveal collective hyperfine resonances in rubidium vapor at 100 °C induced by dipole-dipole interactions. We observe tilted and elongated line shapes in the double-quantum 2D spectra, which have never been reported for Doppler-broadened systems. The elongated line shapes suggest that the signal is predominately from the interacting atoms that have a near zero relative velocity.

  10. Concentric Split Flow Filter

    NASA Technical Reports Server (NTRS)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  11. Optimal energy-splitting method for an open-loop liquid crystal adaptive optics system.

    PubMed

    Cao, Zhaoliang; Mu, Quanquan; Hu, Lifa; Liu, Yonggang; Peng, Zenghui; Yang, Qingyun; Meng, Haoran; Yao, Lishuang; Xuan, Li

    2012-08-13

    A waveband-splitting method is proposed for open-loop liquid crystal adaptive optics systems (LC AOSs). The proposed method extends the working waveband, splits energy flexibly, and improves detection capability. Simulated analysis is performed for a waveband in the range of 350 nm to 950 nm. The results show that the optimal energy split is 7:3 for the wavefront sensor (WFS) and for the imaging camera with the waveband split into 350 nm to 700 nm and 700 nm to 950 nm, respectively. A validation experiment is conducted by measuring the signal-to-noise ratio (SNR) of the WFS and the imaging camera. The results indicate that for the waveband-splitting method, the SNR of WFS is approximately equal to that of the imaging camera with a variation in the intensity. On the other hand, the SNR of the WFS is significantly different from that of the imaging camera for the polarized beam splitter energy splitting scheme. Therefore, the waveband-splitting method is more suitable for an open-loop LC AOS. An adaptive correction experiment is also performed on a 1.2-meter telescope. A star with a visual magnitude of 4.45 is observed and corrected and an angular resolution ability of 0.31″ is achieved. A double star with a combined visual magnitude of 4.3 is observed as well, and its two components are resolved after correction. The results indicate that the proposed method can significantly improve the detection capability of an open-loop LC AOS.

  12. Comet nuclei and Trojan asteroids - A new link and a possible mechanism for comet splittings

    NASA Technical Reports Server (NTRS)

    Hartmann, William K.; Tholen, David J.

    1990-01-01

    Relatively elongated shapes, implied by recent evidence of a greater incidence of high amplitude lightcurves for comet nuclei and Trojan asteroids than for similarly scaled main belt asteroids, are suggested to have evolved among comet nuclei and Trojans due to volatile loss. It is further suggested that such an evolutionary course may account for observed comet splitting; rotational splitting may specifically occur as a result of evolution in the direction of an elongated shape through sublimation. Supporting these hypotheses, the few m/sec separation velocities projected for rotationally splitting elongated nuclei are precisely in the observed range.

  13. Spatiotemporal splitting of global eigenmodes due to cross-field coupling via vortex dynamics in drift wave turbulence.

    PubMed

    Brandt, C; Thakur, S C; Light, A D; Negrete, J; Tynan, G R

    2014-12-31

    Spatiotemporal splitting events of drift wave (DW) eigenmodes due to nonlinear coupling are investigated in a cylindrical helicon plasma device. DW eigenmodes in the radial-azimuthal cross section have been experimentally observed to split at radial locations and recombine into the global eigenmode with a time shorter than the typical DW period (t≪fDW(-1)). The number of splits correlates with the increase of turbulence. The observed dynamics can be theoretically reproduced by a Kuramoto-type model of a network of radially coupled azimuthal eigenmodes. Coupling by E×B-vortex convection cell dynamics and ion gyro radii motion leads to cross-field synchronization and occasional mode splitting events.

  14. Giant plasmonic mode splitting in THz metamaterials mediated by coupling with Lorentz phonon mode

    NASA Astrophysics Data System (ADS)

    Yu, Leilei; Huang, Yuanyuan; Liu, Changji; Hu, Fangrong; Jin, Yanping; Yan, Yi; Xu, Xinlong

    2018-04-01

    Giant plasmonic mode splitting has been observed in THz metamaterials due to the mediation by the Lorentz phonon dielectric material. This splitting mode is confirmed by the surface current distribution, indicating that plasmonic modes behave like dipole resonances, while the phonon mode behaves like multipole resonance due to coupling. The splitting of the plasmonic modes demonstrates an anti-crossing behavior with the change in Lorentz central frequency, which suggests that there is energy redistribution between plasmon and phonon modes. Similar to the Stark effect, the splitting frequency difference increases with the increasing direct current dielectric function. We also propose an interaction Hamiltonian to understand the physical mechanism of the plasmonic splitting. Furthermore, the splitting is convincible for small Lorentz dielectrics such as sugar and amino acid in the THz region, which could be used for biomolecular sensing applications.

  15. Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: +174Yb and +171Yb

    NASA Astrophysics Data System (ADS)

    Brown, Natalie C.; Brown, Kenneth R.

    2018-05-01

    Many systems used for quantum computing possess additional states beyond those defining the qubit. Leakage out of the qubit subspace must be considered when designing quantum error correction codes. Here we consider trapped ion qubits manipulated by Raman transitions. Zeeman qubits do not suffer from leakage errors but are sensitive to magnetic fields to first order. Hyperfine qubits can be encoded in clock states that are insensitive to magnetic fields to first order, but spontaneous scattering during the Raman transition can lead to leakage. Here we compare a Zeeman qubit (+174Yb) to a hyperfine qubit (+171Yb) in the context of the surface code. We find that the number of physical qubits required to reach a specific logical qubit error can be reduced by using +174Yb if the magnetic field can be stabilized with fluctuations smaller than 10 μ G .

  16. Resonance energy shifts during nuclear Bragg diffraction of x rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arthur, J.; Brown, G.S.; Brown, D.E.

    1989-10-09

    We have observed dramatic changes in the time distribution of synchrotron x rays resonantly scattered from {sup 57}Fe nuclei in a crystal of yttrium iron garnet, which depend on the deviation angle of the incident radiation from the Bragg angle. These changes are caused by small shifts in the effective energies of the hyperfine-split nuclear resonances, an effect of dynamical diffraction for the coherently excited nuclei in the crystal. The very high brightness of the synchro- tron x-ray source allows this effect to be observed in a 15-min measurement.

  17. Evaluation of Mandibular Anatomy Associated With Bad Splits in Sagittal Split Ramus Osteotomy of Mandible.

    PubMed

    Wang, Tongyue; Han, Jeong Joon; Oh, Hee-Kyun; Park, Hong-Ju; Jung, Seunggon; Park, Yeong-Joon; Kook, Min-Suk

    2016-07-01

    This study aimed to identify risk factors associated with bad splits during sagittal split ramus osteotomy by using three-dimensional computed tomography. This study included 8 bad splits and 47 normal patients without bad splits. Mandibular anatomic parameters related to osteotomy line were measured. These included anteroposterior width of the ramus at level of lingula, distance between external oblique ridge and lingula, distance between sigmoid notch and inferior border of mandible, mandibular angle, distance between inferior outer surface of mandibular canal and inferior border of mandible under distal root of second molar (MCEM), buccolingual thickness of the ramus at level of lingula, and buccolingual thickness of the area just distal to first molar (BTM1) and second molar (BTM2). The incidence of bad splits in 625 sagittal split osteotomies was 1.28%. Compared with normal group, bad split group exhibited significantly thinner BTM2 and shorter sigmoid notch and inferior border of mandible (P <0.05). However, for BTM1 and buccolingual thickness of the ramus at level of lingula, there was no statistical difference between the 2 groups. Mandibular angle, anteroposterior width of the ramus at level of lingula, external oblique ridge and lingula, and MCEM were not significantly different between the groups. This study suggests that patients with shorter ramus and low thickness of the buccolingual alveolar region distal to the second molar had a higher risk of bad splits. These anatomic data may help surgeons to choose the safest surgical techniques and best osteotomy sites.

  18. Mechanism of 'GSI oscillations' in electron capture by highly charged hydrogen-like atomic ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krainov, V. P., E-mail: vpkrainov@mail.ru

    2012-07-15

    We suggest a qualitative explanation of oscillations in electron capture decays of hydrogen-like {sup 140}Pr and {sup 142}Pm ions observed recently in an ion experimental storage ring (ESR) of Gesellschaft fuer Schwerionenforschung (GSI) mbH, Darmstadt, Germany. This explanation is based on the electron multiphoton Rabi oscillations between two Zeeman states of the hyperfine ground level with the total angular momentum F = 1/2. The Zeeman splitting is produced by a constant magnetic field in the ESR. Transitions between these states are produced by the second, sufficiently strong alternating magnetic field that approximates realistic fields in the GSI ESR. The Zeemanmore » splitting amounts to only about 10{sup -5} eV. This allows explaining the observed quantum beats with the period 7 s.« less

  19. Entropy Splitting and Numerical Dissipation

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Vinokur, M.; Djomehri, M. J.

    1999-01-01

    A rigorous stability estimate for arbitrary order of accuracy of spatial central difference schemes for initial-boundary value problems of nonlinear symmetrizable systems of hyperbolic conservation laws was established recently by Olsson and Oliger (1994) and Olsson (1995) and was applied to the two-dimensional compressible Euler equations for a perfect gas by Gerritsen and Olsson (1996) and Gerritsen (1996). The basic building block in developing the stability estimate is a generalized energy approach based on a special splitting of the flux derivative via a convex entropy function and certain homogeneous properties. Due to some of the unique properties of the compressible Euler equations for a perfect gas, the splitting resulted in the sum of a conservative portion and a non-conservative portion of the flux derivative. hereafter referred to as the "Entropy Splitting." There are several potential desirable attributes and side benefits of the entropy splitting for the compressible Euler equations that were not fully explored in Gerritsen and Olsson. The paper has several objectives. The first is to investigate the choice of the arbitrary parameter that determines the amount of splitting and its dependence on the type of physics of current interest to computational fluid dynamics. The second is to investigate in what manner the splitting affects the nonlinear stability of the central schemes for long time integrations of unsteady flows such as in nonlinear aeroacoustics and turbulence dynamics. If numerical dissipation indeed is needed to stabilize the central scheme, can the splitting help minimize the numerical dissipation compared to its un-split cousin? Extensive numerical study on the vortex preservation capability of the splitting in conjunction with central schemes for long time integrations will be presented. The third is to study the effect of the non-conservative proportion of splitting in obtaining the correct shock location for high speed complex shock

  20. Matrix elements of hyperfine structure operators in the SL and jj representations for the s, p{sup N}, and d{sup N} configurations and the SL-jj transformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childs, W.J.

    1997-09-01

    Matrix elements of the hyperfine operators corresponding to the magnetic-dipole (A) and electric-quadrupole (B) hyperfine structures constants are given as linear combinations of the appropriate radial integrals for all states of the s, p{sup N}, and d{sub N} configurations in both the SL and pure jj representations. The associated SL-jj transformations are also given. 13 refs., 10 tabs.

  1. Angular distribution and polarization of X-ray radiation in highly charged He-like ions: hyperfine-induced transition

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Dong, Chen-Zhong

    2018-06-01

    The angular distribution and polarization properties of the X-rays produced by the hyperfine-induced transition are investigated within a fully relativistic distorted-wave approximation. The calculations are performed for the 1 s2 p 3/2 3P2 F i = 3/2 → 1 s 2 1S0 F f = 1/2 component of the Kα 1 decay for highly charged He-like 119Sn48+ and 207Tl79+ ions with nuclear spin I = 1/2 following impact excitations by an un-polarized and a completely longitudinally-polarized electron beam, respectively. The Breit interaction and mutipole mixing between the leading M2 decay and the hyperfine-induced E1 decay corrections to both linear and circular polarizations of the emitted X-ray radiations are evaluated. All these effects are found to be significant and may potentially explain the disagreement between the theories and experiments related to the polarization properties of the X-ray radiation.

  2. Hadronic vacuum polarization in true muonium

    NASA Astrophysics Data System (ADS)

    Lamm, Henry

    2017-01-01

    In order to reduce the theoretical uncertainty in the prediction, the leading-order hadronic vacuum polarization contribution to the hyperfine splitting of true muonium is reevaluated in two ways. A more complex pionic form factor and better estimates of the perturbative QCD contributions are used to study the model dependence of the previous calculation. The second, more accurate method directly integrates the Drell ratio R (s ) to obtain C1 ,HVP=-0.04874 (9 ) . This corresponds to an energy shift in the hyperfine splitting (HFS) of Δ EHFS,HVP μ=-8202 (16 ) MHz and represents a factor-of-50 reduction in the theoretical uncertainty from hadronic sources. We also compute the contribution in positronium, which is too small at present to detect.

  3. Line shape analysis of the K β transition in muonic hydrogen

    NASA Astrophysics Data System (ADS)

    Covita, Daniel S.; Anagnostopoulos, Dimitrios F.; Fuhrmann, Hermann; Gorke, Hubert; Gotta, Detlev; Gruber, Alexander; Hirtl, Albert; Ishiwatari, Tomoichi; Indelicato, Paul; Jensen, Thomas S.; Le Bigot, Eric-Olivier; Markushin, Valeri E.; Nekipelov, Michael; Pomerantsev, Vladimir N.; Popov, Vladimir P.; dos Santos, Joaquim M. F.; Schmid, Philipp; Simons, Leopold M.; Theisen, Marian; Trassinelli, Martino; Veloso, Joao F. C. A.; Zmeskal, Johann

    2018-04-01

    The K β transition in muonic hydrogen was measured with a high-resolution crystal spectrometer. The spectrum is shown to be sensitive to the ground-state hyperfine splitting, the corresponding triplet-to-singlet ratio, and the kinetic energy distribution in the 3 p state. The hyperfine splitting and triplet-to-singlet ratio are found to be consistent with the values expected from theoretical and experimental investigations and, therefore, were fixed accordingly in order to reduce the uncertainties in the further reconstruction of the kinetic energy distribution. The presence of high-energetic components was established and quantified in both a phenomenological, i.e. cascade-model-free fit, and in a direct deconvolution of the Doppler broadening based on the Bayesian method.

  4. Niobium hyperfine structure in crystal calcium tungstate

    NASA Technical Reports Server (NTRS)

    Tseng, D. L.; Kikuchi, C.

    1972-01-01

    A study of the niobium hyperfine structure in single crystal calcium tungstate was made by the combination of the technique of electron paramagnetic resonance and electron nuclear double resonance (EPR/ENDOR). The microwave frequency was about 9.4 GHz and the radio frequency from 20MHz to 70 MHz. The rare earth ions Nd(3+), U(3+), or Tm(3+) were added as the charge compensator for Nb(5+). To create niobium paramagnetic centers, the sample was irradiated at 77 deg K with a 10 thousand curie Co-60 gamma source for 1 to 2 hours at a dose rate of 200 K rads per hour and then transferred quickly into the cavity. In a general direction of magnetic field, the spectra showed 4 sets of 10 main lines corresponding to 4 nonequivalent sites of niobium with I = 9/2. These 4 sets of lines coalesced into 2 sets of 10 in the ab-plane and into a single set of 10 along the c-axis. This symmetry suggested that the tungsten ions are substituted by the niobium ions in the crystal.

  5. Isotropic Inelastic Collisions in a Multiterm Atom with Hyperfine Structure

    NASA Astrophysics Data System (ADS)

    Belluzzi, Luca; Landi Degl'Innocenti, Egidio; Trujillo Bueno, Javier

    2015-10-01

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron-atom interaction is described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D1 and D2 lines is presented.

  6. ISOTROPIC INELASTIC COLLISIONS IN A MULTITERM ATOM WITH HYPERFINE STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belluzzi, Luca; Landi Degl’Innocenti, Egidio; Bueno, Javier Trujillo

    2015-10-10

    A correct modeling of the scattering polarization profiles observed in some spectral lines of diagnostic interest, the sodium doublet being one of the most important examples, requires taking hyperfine structure (HFS) and quantum interference between different J-levels into account. An atomic model suitable for taking these physical ingredients into account is the so-called multiterm atom with HFS. In this work, we introduce and study the transfer and relaxation rates due to isotropic inelastic collisions with electrons, which enter the statistical equilibrium equations (SEE) for the atomic density matrix of this atomic model. Under the hypothesis that the electron–atom interaction ismore » described by a dipolar operator, we provide useful relations between the rates describing the transfer and relaxation of quantum interference between different levels (whose numerical values are in most cases unknown) and the usual rates for the atomic level populations, for which experimental data and/or approximate theoretical expressions are generally available. For the particular case of a two-term atom with HFS, we present an analytical solution of the SEE for the spherical statistical tensors of the upper term, including both radiative and collisional processes, and we derive the expression of the emission coefficient in the four Stokes parameters. Finally, an illustrative application to the Na i D{sub 1} and D{sub 2} lines is presented.« less

  7. A new flux splitting scheme

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Steffen, Christopher J., Jr.

    1993-01-01

    A new flux splitting scheme is proposed. The scheme is remarkably simple and yet its accuracy rivals and in some cases surpasses that of Roe's solver in the Euler and Navier-Stokes solutions performed in this study. The scheme is robust and converges as fast as the Roe splitting. An approximately defined cell-face advection Mach number is proposed using values from the two straddling cells via associated characteristic speeds. This interface Mach number is then used to determine the upwind extrapolation for the convective quantities. Accordingly, the name of the scheme is coined as Advection Upstream Splitting Method (AUSM). A new pressure splitting is introduced which is shown to behave successfully, yielding much smoother results than other existing pressure splittings. Of particular interest is the supersonic blunt body problem in which the Roe scheme gives anomalous solutions. The AUSM produces correct solutions without difficulty for a wide range of flow conditions as well as grids.

  8. A new flux splitting scheme

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Steffen, Christopher J., Jr.

    1991-01-01

    A new flux splitting scheme is proposed. The scheme is remarkably simple and yet its accuracy rivals and in some cases surpasses that of Roe's solver in the Euler and Navier-Stokes solutions performed in this study. The scheme is robust and converges as fast as the Roe splitting. An approximately defined cell-face advection Mach number is proposed using values from the two straddling cells via associated characteristic speeds. This interface Mach number is then used to determine the upwind extrapolation for the convective quantities. Accordingly, the name of the scheme is coined as Advection Upstream Splitting Method (AUSM). A new pressure splitting is introduced which is shown to behave successfully, yielding much smoother results than other existing pressure splittings. Of particular interest is the supersonic blunt body problem in which the Roe scheme gives anomalous solutions. The AUSM produces correct solutions without difficulty for a wide range of flow conditions as well as grids.

  9. Zeeman-hyperfine structures and isotope effect in the spectrum of Tl I

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa; Sobolewski, Łukasz Marek; Kwela, Jerzy

    2018-01-01

    The Zeeman structures of seventeen lines of 205Tl I (Z = 81) covering the UV-NIR spectral range (351.92-1151.28) nm were investigated. Landé gJ-factors for eighteen levels were determined for the first time. Furthermore, we have performed fine structure studies for both even- and odd-configuration levels and determined the relevant parameters. For the 6 s 6p2 configuration we have refined the suggested level energies and predicted positions for missing levels. With regard to hyperfine structure (hfs), we have justified the surprisingly huge value of the magnetic hfs constant A(6s2 10 s) . Moreover, we have extracted the single-electron hfs constant parameter values for the lowest even-parity configurations of 205Tl I; for instance a10s10 (6s2 10 s) = 1015(9) MHz and a6s10 (6 s 6p2) = 217306(205) MHz. Regarding isotope shift analysis we have observed that Dirac-Fock calculations, preferably chosen to take into account the contribution of the p1/2 contact-electron, are in good agreement with experimental data for low-lying levels of each configuration under study.

  10. Optical signal splitting and chirping device modeling

    NASA Astrophysics Data System (ADS)

    Vinogradova, Irina L.; Andrianova, Anna V.; Meshkov, Ivan K.; Sultanov, Albert Kh.; Abdrakhmanova, Guzel I.; Grakhova, Elizaveta P.; Ishmyarov, Arsen A.; Yantilina, Liliya Z.; Kutlieva, Gulnaz R.

    2017-04-01

    This article examines the devices for optical signal splitting and chirping device modeling. Models with splitting and switching functions are taken into consideration. The described device for optical signal splitting and chirping represents interferential splitter with profiled mixer which provides allocation of correspondent spectral component from ultra wide band frequency diapason, and signal phase shift for aerial array (AA) directive diagram control. This paper proposes modeling for two types of devices for optical signal splitting and chirping: the interference-type optical signal splitting and chirping device and the long-distance-type optical signal splitting and chirping device.

  11. Bad split during bilateral sagittal split osteotomy of the mandible with separators: a retrospective study of 427 patients.

    PubMed

    Mensink, Gertjan; Verweij, Jop P; Frank, Michael D; Eelco Bergsma, J; Richard van Merkesteyn, J P

    2013-09-01

    An unfavourable fracture, known as a bad split, is a common operative complication in bilateral sagittal split osteotomy (BSSO). The reported incidence ranges from 0.5 to 5.5%/site. Since 1994 we have used sagittal splitters and separators instead of chisels for BSSO in our clinic in an attempt to prevent postoperative hypoaesthesia. Theoretically an increased percentage of bad splits could be expected with this technique. In this retrospective study we aimed to find out the incidence of bad splits associated with BSSO done with splitters and separators. We also assessed the risk factors for bad splits. The study group comprised 427 consecutive patients among whom the incidence of bad splits was 2.0%/site, which is well within the reported range. The only predictive factor for a bad split was the removal of third molars at the same time as BSSO. There was no significant association between bad splits and age, sex, class of occlusion, or the experience of the surgeon. We think that doing a BSSO with splitters and separators instead of chisels does not increase the risk of a bad split, and is therefore safe with predictable results. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. Observations of SKS splitting beneath the Central and Southern External Dinarides in the Adria-Eurasia convergence zone

    NASA Astrophysics Data System (ADS)

    Subašić, Senad; Prevolnik, Snježan; Herak, Davorka; Herak, Marijan

    2017-05-01

    Seismic anisotropy beneath the greater region of the Central and Southern External Dinarides is estimated from observations of SKS splitting. The area is located in the broad and complex Africa-Eurasia convergent plate boundary zone, where the Adriatic microplate interacts with the Dinarides. We analyzed recordings of 12 broadband seismic stations located in the Croatian coastal region. Evidence of seismic anisotropy was found beneath all stations. Fast axis directions are oriented approximately in the NE-SW to NNE-SSW direction, perpendicularly to the strike of the Dinarides. Average delay times range between 0.6 and 1.0 s. A counter-clockwise rotation in average fast axis directions was observed for the stations in the northern part with respect to the stations in the southern part of the studied area. Fast axis directions coincide with the assumed direction of asthenospheric flow through a slab-gap below the Northern and Central External Dinarides, with the maximum tectonic stress orientation in the crust, and with fast directions of Pg and Sg-waves in the crust. These observations suggest that the detected SKS birefringence is primarily caused by the preferred lattice orientation of mantle minerals generated by the asthenospheric flow directed SW-NE to SSW-NNE, with a possible contribution from the crust.

  13. Experimental insights into spin state and hyperfine parameters of Fe3+ in bridgmanite and silicate glass up to 91 GPa

    NASA Astrophysics Data System (ADS)

    Lv, M.; Dorfman, S.; Liu, J.; Farmer, A. B.; Potapkin, V.; Chumakov, A. I.; McCammon, C. A.; Greenberg, E.; Prakapenka, V. B.; Popov, D.

    2017-12-01

    The spin and valence state of Fe in (Mg,Fe,Al)(Si,Fe,Al)O3 bridgmanite and silicate melts is important to understanding the composition, structure, and dynamics of the Earth's lower mantle. Previous experimental and theoretical studies conclude that Fe3+ in B-site of bridgmanite undergoes a high spin (HS) to low spin (LS) transition, but conflicting measurements of spin transition pressures (18-70 GPa) and significant disagreement on hyperfine parameters of LS Fe3+ need to be resolved. We performed energy-domain synchrotron Mössbauer spectroscopy (E-SMS) and X-ray diffraction (XRD) experiments up to 91 GPa (corresponding to 2000 km depth in the mid lower mantle) to explore the electronic behavior of Fe in both silicate glass and bridgmanite with measured composition (Mg0.97Fe0.20Si0.90O3). Fe3+ and Fe2+ were identified on the basis of center shift (CS) at 1 bar of 0.4 and 1 mm/s, respectively. The Mössbauer spectra of glass exhibit a continuous spin transition of Fe3+ between 11 to 40 GPa, while Fe2+ adopts the HS state up to 91 GPa. Bridgmanite Mössbauer spectra indicate two HS Fe2+ doublets corresponding to local distortion of the A-site, and that the bulk of the Fe3+ exhibits quadrupole splitting (QS) ranging from 0.8-1.3 mm/s over the entire pressure range studied. Because stoichiometry suggests most Fe3+ occupies the B-site, if the spin transition occurs it must have a small effect on Mössbauer parameters, as observed in recent studies of (Mg0.5Fe1.0Si0.5O3) and (Mg0.97Fe0.06Si0.97O3) bridgmanite. No discontinuity or softening is observed in the equation of state (EOS) of the bridgmanite between 38-103 GPa and 300 K. The bulk modulus and unit cell volume at ambient conditions obtained by fitting the unit cell volume data to the second-order Birch-Murnaghan EOS are 264(3) GPa and 163.6(3) Å3, respectively, consistent with previous studies of (Mg0.90Fe0.20Si0.90O3) bridgmanite. The spin transition in Fe3+ may have too small an effect on elastic properties

  14. Fully Decomposable Split Graphs

    NASA Astrophysics Data System (ADS)

    Broersma, Hajo; Kratsch, Dieter; Woeginger, Gerhard J.

    We discuss various questions around partitioning a split graph into connected parts. Our main result is a polynomial time algorithm that decides whether a given split graph is fully decomposable, i.e., whether it can be partitioned into connected parts of order α 1,α 2,...,α k for every α 1,α 2,...,α k summing up to the order of the graph. In contrast, we show that the decision problem whether a given split graph can be partitioned into connected parts of order α 1,α 2,...,α k for a given partition α 1,α 2,...,α k of the order of the graph, is NP-hard.

  15. Higher order Stark effect and transition probabilities on hyperfine structure components of hydrogen like atoms

    NASA Astrophysics Data System (ADS)

    Pal'Chikov, V. G.

    2000-08-01

    A quantum-electrodynamical (QED) perturbation theory is developed for hydrogen and hydrogen-like atomic systems with interaction between bound electrons and radiative field being treated as the perturbation. The dependence of the perturbed energy of levels on hyperfine structure (hfs) effects and on the higher-order Stark effect is investigated. Numerical results have been obtained for the transition probability between the hfs components of hydrogen-like bismuth.

  16. Split-wedge antennas with sub-5 nm gaps for plasmonic nanofocusing

    DOE PAGES

    Chen, Xiaoshu; Lindquist, Nathan C.; Klemme, Daniel J.; ...

    2016-11-22

    Here, we present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomicmore » layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ 3/10 6. Experimentally, Raman enhancement factors exceeding 10 7 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications.« less

  17. Split-Wedge Antennas with Sub-5 nm Gaps for Plasmonic Nanofocusing

    PubMed Central

    2016-01-01

    We present a novel plasmonic antenna structure, a split-wedge antenna, created by splitting an ultrasharp metallic wedge with a nanogap perpendicular to its apex. The nanogap can tightly confine gap plasmons and boost the local optical field intensity in and around these opposing metallic wedge tips. This three-dimensional split-wedge antenna integrates the key features of nanogaps and sharp tips, i.e., tight field confinement and three-dimensional nanofocusing, respectively, into a single platform. We fabricate split-wedge antennas with gaps that are as small as 1 nm in width at the wafer scale by combining silicon V-grooves with template stripping and atomic layer lithography. Computer simulations show that the field enhancement and confinement are stronger at the tip–gap interface compared to what standalone tips or nanogaps produce, with electric field amplitude enhancement factors exceeding 50 when near-infrared light is focused on the tip–gap geometry. The resulting nanometric hotspot volume is on the order of λ3/106. Experimentally, Raman enhancement factors exceeding 107 are observed from a 2 nm gap split-wedge antenna, demonstrating its potential for sensing and spectroscopy applications. PMID:27960527

  18. Kondo peak splitting and Kondo dip in single molecular magnet junctions

    NASA Astrophysics Data System (ADS)

    Niu, Pengbin; Shi, Yunlong; Sun, Zhu; Nie, Yi-Hang; Luo, Hong-Gang

    2016-01-01

    Many factors containing bias, spin-orbit coupling, magnetic fields applied, and so on can strongly influence the Kondo effect, and one of the consequences is Kondo peak splitting (KPS). It is natural that KPS should also appear when another spin degree of freedom is involved. In this work we study the KPS effects of single molecular magnets (SMM) coupled with two metallic leads in low-temperature regime. It is found that the Kondo transport properties are strongly influenced by the exchange coupling and anisotropy of the magnetic core. By employing Green's function method in Hubbard operator representation, we give an analytical expression for local retarded Green's function of SMM and discussed its low-temperature transport properties. We find that the anisotropy term behaves as a magnetic field and the splitting behavior of exchange coupling is quite similar to the spin-orbit coupling. These splitting behaviors are explained by introducing inter-level or intra-level transitions, which account for the seven-peak splitting structure. Moreover, we find a Kondo dip at Fermi level under proper parameters. These Kondo peak splitting behaviors in SMM deepen our understanding to Kondo physics and should be observed in the future experiments.

  19. Power spectra and auto correlation analysis of hyperfine-induced long period oscillations in the tunneling current of coupled quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harack, B.; Leary, A.; Coish, W. A.

    2013-12-04

    We outline power spectra and auto correlation analysis performed on temporal oscillations in the tunneling current of coupled vertical quantum dots. The current is monitored for ∼2325 s blocks as the magnetic field is stepped through a high bias feature displaying hysteresis and switching: hallmarks of the hyperfine interaction. Quasi-periodic oscillations of ∼2 pA amplitude and of ∼100 s period are observed in the current inside the hysteretic feature. Compared to the baseline current outside the hysteretic feature the power spectral density is enhanced by up to three orders of magnitude and the auto correlation displays clear long lived oscillationsmore » about zero.« less

  20. Aggregate frequency width, nuclear hyperfine coupling and Jahn-Teller effect of Cu2+ impurity ion ESR in SrLaAlO4 dielectric resonator at 20 millikelvin

    NASA Astrophysics Data System (ADS)

    Hosain, M. A.; Le Floch, J.-M.; Krupka, J.; Tobar, M. E.

    2018-01-01

    The impurity paramagnetic ion, Cu2+ substitutes Al in the SrLaAlO4 single crystal lattice, this results in a CuO6 elongated octahedron, and the resulting measured g-factors satisfy four-fold axes variation condition. The aggregate frequency width of the electron spin resonance with the required minimum level of impurity concentration has been evaluated in this single crystal SrLaAlO4 at 20 millikelvin. Measured parallel hyperfine constants, A\\Vert Cu , were determined to be -155.7×10-4~cm-1, ~ -163.0×10-4~cm-1, ~ -178.3×10-4~cm-1 and -211.1×10-4~cm-1 at 9.072~GHz~(WGH4, 1, 1) for the nuclear magnetic quantum number M_I=+\\frac{3}{2}, +\\frac{1}{2}, -\\frac{1}{2} , and -\\frac{3}{2} respectively. The anisotropy of the hyperfine structure reveals the characteristics of the static Jahn-Teller effect. The second-order-anisotropy term, ˜ (\\fracspin{-orbit~coupling}{10D_q}){\\hspace{0pt}}2 , is significant and cannot be disregarded, with the local strain dominating over the observed Zeeman-anisotropy-energy difference. The Bohr electron magneton, β=9.23× 10-24 JT-1 , (within -0.43% so-called experimental error) has been found using the measured spin-Hamiltonian parameters. Measured nuclear dipolar hyperfine structure parameter P\\Vert=12.3×10-4~cm-1 shows that the mean inverse third power of the electron distance from the nucleus is < r-3_q>≃ 5.23 a.u. for Cu2+ ion in the substituted Al3+ ion site assuming nuclear electric quadruple moment Q=-0.211 barn.

  1. 7 CFR 51.2002 - Split shell.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack. ...

  2. 7 CFR 51.2002 - Split shell.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split shell. 51.2002 Section 51.2002 Agriculture... Standards for Grades of Filberts in the Shell 1 Definitions § 51.2002 Split shell. Split shell means a shell... of the shell, measured in the direction of the crack. ...

  3. Laser-Induced Optical Pumping Measurements of Cross Section for Fine- and Hyperfine-Structure Transitions in Sodium Induced by Collisions with Helium and Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1999-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser-induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections lor DELTA.F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), DELTA.F cross sections. The hyperfine cross sections measured using this method, which to our knowledge is novel, are compared with cross sections for transitions involving polarized magnetic substates m(sub F) measured previously using polarization sensitive absorption. Also, fine-structure transition cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  4. Merapi's lava dome splitting explosion on 18 November 2013 observed by lidar and digital image correlation analysis.

    NASA Astrophysics Data System (ADS)

    Darmawan, Herlan; Walter, Thomas; Nikkhoo, Mehdi; Richter, Nicole

    2015-04-01

    After the 2010 Merapi eruption, the lava dome in the summit of the volcano was firstly growing and then subject to gradual cooling and contraction. In November 2013, a major phreatomagmatic explosion occurred, which caused an eruption column rising over 2 km high and destroyed a number of monitoring instruments in the near field. Bombs were thrown out over 1 km distance. The eruption produced volcanic ash and very fine materials. Deformation data from tilt or EDM showed no wide inflation or deflation associated with this eruption. In addition, high resolution TerraSAR-X data analysis also showed no edifice-wide deformation (Walter et al., 2015). Here we further examine two datasets to determine the morphologic and structural effects of this eruption. First we exploit fixed installed monitoring cameras and use a digital image correlation method to investigate geometric changes before and after the eruption. Second we acquired a high resolution terrestrial Lidar data set after the explosion and compared this another lidar data set acquired before. The result shows details on the splitted dome, the volume of the eruption and thickness of the deposits, and suggests that a new block at the front of the dome is inherently unstable and might break off to form a block and ash flow in the near future. Reference: TR Walter, Subandriyo J, Kirbani S, Bathke H, Suryanto W, Aisyah N, Darmawan H, Jousset P, Lühr BG, Dahm T (2015) Volcano-tectonic control of Merapi's lava dome splitting: The November 2013 fracture observed from high resolution TerraSAR-X data. Tectonophysics 639, 12 January 2015, Pages 23-33. doi:10.1016/j.tecto.2014.11.007

  5. Cool covered sky-splitting spectrum-splitting FK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohedano, Rubén; Chaves, Julio; Falicoff, Waqidi

    2014-09-26

    Placing a plane mirror between the primary lens and the receiver in a Fresnel Köhler (FK) concentrator gives birth to a quite different CPV system where all the high-tech components sit on a common plane, that of the primary lens panels. The idea enables not only a thinner device (a half of the original) but also a low cost 1-step manufacturing process for the optics, automatic alignment of primary and secondary lenses, and cell/wiring protection. The concept is also compatible with two different techniques to increase the module efficiency: spectrum splitting between a 3J and a BPC Silicon cell formore » better usage of Direct Normal Irradiance DNI, and sky splitting to harvest the energy of the diffuse radiation and higher energy production throughout the year. Simple calculations forecast the module would convert 45% of the DNI into electricity.« less

  6. Time series evaluation of an intervention to increase statin tablet splitting by general practitioners

    PubMed Central

    Polinski, Jennifer M.; Schneeweiss, Sebastian; Maclure, Malcolm; Marshall, Blair; Ramsden, Samuel; Dormuth, Colin

    2011-01-01

    Background Tablet splitting, in which a higher-dose tablet is split to get two doses, reduces patients’ drug costs. Statins can be split safely. General practitioners (GPs) may not direct their patients to split statins because of safety concerns or unawareness of costs. Medical chart inserts provide cost-effective education to physicians. We evaluated whether providing GPs with statin splitting chart inserts would increase splitting rates and identified predictors of splitting. Methods In 2005–2006, we faxed a statin chart insert to British Columbia GPs with a request for a telephone interview. Consenting GPs were mailed 3 statin chart inserts and interviewed by phone (the intervention). In an interrupted time series, we compared monthly rates of statin splitting prescriptions among intervention and non-intervention GPs before, during, and after the intervention. In multivariate logistic regressions accounting for patient clustering, predictors of splitting included physician and patient demographics and the specific statin prescribed. Results Of 5,051 GPs reached, 282 (6%) agreed to the intervention. Before the intervention, GPs’ splitting rate was 2.6%; after, intervention GPs’ splitting rate was 7.5%, non-intervention GPs’ was 4.4%. Intervention GPs were 1.68 (95% CI 1.12–2.53) times more likely to prescribe splitting after the intervention than were non-intervention GPs. Other predictors were a patient’s female sex (OR=1.26, 95% CI 1.18–1.34), lower patient income (OR=1.33, 95% CI 1.18–1.34), and no drug insurance (OR=1.89, 95% CI 1.69–2.04). Interpretation An inexpensive intervention was effective in producing a sustained increase in GPs’ splitting rate during 22 months of observed follow-up. Expanding statin splitting education to all GPs could reduce prescription costs for many patients and payors. PMID:21497707

  7. Time series evaluation of an intervention to increase statin tablet splitting by general practitioners.

    PubMed

    Polinski, Jennifer M; Schneeweiss, Sebastian; Maclure, Malcolm; Marshall, Blair; Ramsden, Samuel; Dormuth, Colin

    2011-02-01

    Tablet splitting, in which a higher-dose tablet is split to get 2 doses, reduces patients' drug costs. Statins can be split safely. General practitioners (GPs) may not direct their patients to split statins because of safety concerns or unawareness of costs. Medical chart inserts provide cost-effective education to physicians. The aim of this study was to assess whether providing GPs with statin-splitting chart inserts would increase splitting rates, and to identify predictors of splitting. In 2005 and 2006, we faxed a statin chart insert to British Columbia GPs with a request for a telephone interview. Consenting GPs were mailed 3 statin chart inserts and interviewed by phone (the intervention). In an interrupted time series, we compared monthly rates of statin-splitting prescriptions among intervention and nonintervention GPs before, during, and after the intervention. In multivariate logistic regressions accounting for patient clustering, predictors of splitting included physician and patient demographics and the specific statin prescribed. Of 5051 GPs reached, 282 (6%) agreed to the intervention. Before the intervention, GPs' splitting rate was 2.6%; after intervention, GPs' splitting rate was 7.5%. The rate for the nonintervention GPs was 4.4%. Intervention GPs were 1.68 (95% CI, 1.12-2.53) times more likely to prescribe splitting after the intervention than were nonintervention GPs. Other predictors were a patient's female sex (odds ratio [OR] = 1.26; 95% CI, 1.18-1.34), lower patient income (OR = 1.33; 95% CI, 1.18-1.34), and a lack of drug insurance (OR = 1.89; 95% CI, 1.69-2.04). An inexpensive intervention was effective in producing a sustained increase in GPs' splitting rate during 22 months of observed follow-up. Expanding statin-splitting education to all GPs might reduce prescription costs for many patients and payors. Copyright © 2011 Elsevier HS Journals, Inc. All rights reserved.

  8. 10 CFR 26.135 - Split specimens.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Split specimens. 26.135 Section 26.135 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.135 Split specimens. (a) If the FFD program follows split-specimen procedures, as described in § 26.113, the licensee testing...

  9. 10 CFR 26.135 - Split specimens.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Split specimens. 26.135 Section 26.135 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.135 Split specimens. (a) If the FFD program follows split-specimen procedures, as described in § 26.113, the licensee testing...

  10. 10 CFR 26.135 - Split specimens.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Split specimens. 26.135 Section 26.135 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.135 Split specimens. (a) If the FFD program follows split-specimen procedures, as described in § 26.113, the licensee testing...

  11. 10 CFR 26.135 - Split specimens.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Split specimens. 26.135 Section 26.135 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.135 Split specimens. (a) If the FFD program follows split-specimen procedures, as described in § 26.113, the licensee testing...

  12. 10 CFR 26.135 - Split specimens.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Split specimens. 26.135 Section 26.135 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.135 Split specimens. (a) If the FFD program follows split-specimen procedures, as described in § 26.113, the licensee testing...

  13. Thermalization dynamics of two correlated bosonic quantum wires after a split

    NASA Astrophysics Data System (ADS)

    Huber, Sebastian; Buchhold, Michael; Schmiedmayer, Jörg; Diehl, Sebastian

    2018-04-01

    Cherently splitting a one-dimensional Bose gas provides an attractive, experimentally established platform to investigate many-body quantum dynamics. At short enough times, the dynamics is dominated by the dephasing of single quasiparticles, and well described by the relaxation towards a generalized Gibbs ensemble corresponding to the free Luttinger theory. At later times on the other hand, the approach to a thermal Gibbs ensemble is expected for a generic, interacting quantum system. Here, we go one step beyond the quadratic Luttinger theory and include the leading phonon-phonon interactions. By applying kinetic theory and nonequilibrium Dyson-Schwinger equations, we analyze the full relaxation dynamics beyond dephasing and determine the asymptotic thermalization process in the two-wire system for a symmetric splitting protocol. The major observables are the different phonon occupation functions and the experimentally accessible coherence factor, as well as the phase correlations between the two wires. We demonstrate that, depending on the splitting protocol, the presence of phonon collisions can have significant influence on the asymptotic evolution of these observables, which makes the corresponding thermalization dynamics experimentally accessible.

  14. Split spline screw

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    1993-01-01

    A split spline screw type payload fastener assembly, including three identical male and female type split spline sections, is discussed. The male spline sections are formed on the head of a male type spline driver. Each of the split male type spline sections has an outwardly projecting load baring segment including a convex upper surface which is adapted to engage a complementary concave surface of a female spline receptor in the form of a hollow bolt head. Additionally, the male spline section also includes a horizontal spline releasing segment and a spline tightening segment below each load bearing segment. The spline tightening segment consists of a vertical web of constant thickness. The web has at least one flat vertical wall surface which is designed to contact a generally flat vertically extending wall surface tab of the bolt head. Mutual interlocking and unlocking of the male and female splines results upon clockwise and counter clockwise turning of the driver element.

  15. Hyperfine Structure and Abundances of Heavy Elements in 68 Tauri (HD 27962)

    NASA Astrophysics Data System (ADS)

    Martinet, S.; Monier, R.

    2017-12-01

    HD 27962, also known as 68 Tauri, is a Chemically Peculiar Am star member of the Hyades Open Cluster in the local arm of the Galaxy. We have modeled the high resolution SOPHIE (R=75000) spectrum of 68 Tauri using updated model atmosphere and spectrum synthesis to derive chemical abundances in its atmosphere. In particular, we have studied the effect of the inclusion of Hyperfine Structure of various Baryum isotopes on the determination of the Baryum abundance in 68 Tauri. We have also derived new abundances using updated accurate atomic parameters retrieved from the NIST database.

  16. Laser Induced Optical Pumping Measurements of Cross Sections for Fine and Hyperfine Structure Transitions in Sodium Induced by Collisions with Helium Argon Atoms

    NASA Technical Reports Server (NTRS)

    Dobson, Chris C.; Sung, C. C.

    1998-01-01

    Optical pumping of the ground states of sodium can radically alter the shape of the laser induced fluorescence excitation spectrum, complicating measurements of temperature, pressure, etc., which are based on these spectra. Modeling of the fluorescence using rate equations for the eight hyperfine states of the sodium D manifolds can be used to quantify the contribution to the ground state pumping of transitions among the hyperfine excited states induced by collisions with buffer gas atoms. This model is used here to determine, from the shape of experimental spectra, cross sections for (Delta)F transitions of the P(sub 3/2) state induced by collisions with helium and argon atoms, for a range of values assumed for the P(sub 1/2), (Delta)F cross sections. The hyperfine cross sections measured using this method, which is thought to be novel, are compared with cross sections for transitions involving polarized magnetic substates, m(sub F), measured previously using polarization sensitive absorption. Also, fine structure transition ((Delta)J) cross sections were measured in the pumped vapor, giving agreement with previous measurements made in the absence of pumping.

  17. Accuracy of tablet splitting and liquid measurements: an examination of who, what and how.

    PubMed

    Abu-Geras, Dana; Hadziomerovic, Dunja; Leau, Andrew; Khan, Ramzan Nazim; Gudka, Sajni; Locher, Cornelia; Razaghikashani, Maryam; Lim, Lee Yong

    2017-05-01

    To examine factors that might affect the ability of patients to accurately halve tablets or measure a 5-ml liquid dose. Eighty-eight participants split four different placebo tablets by hand and using a tablet splitter, while 85 participants measured 5 ml of water, 0.5% methylcellulose (MC) and 1% MC using a syringe and dosing cup. Accuracy of manipulation was determined by mass measurements. The general population was less able than pharmacy students to break tablets into equal parts, although age, gender and prior experience were insignificant factors. Greater accuracy of tablet halving was observed with tablet splitter, with scored tablets split more equally than unscored tablets. Tablet size did not affect the accuracy of splitting. However, >25% of small scored tablets failed to be split by hand, and 41% of large unscored tablets were split into >2 portions in the tablet splitter. In liquid measurement, the syringe provided more accurate volume measurements than the dosing cup, with higher accuracy observed for the more viscous MC solutions than water. Formulation characteristics and manipulation technique have greater influences on the accuracy of medication modification and should be considered in off-label drug use in vulnerable populations. © 2016 Royal Pharmaceutical Society.

  18. Vacuum-induced Autler-Townes splitting in a superconducting artificial atom

    NASA Astrophysics Data System (ADS)

    Peng, Z. H.; Ding, J. H.; Zhou, Y.; Ying, L. L.; Wang, Z.; Zhou, L.; Kuang, L. M.; Liu, Yu-xi; Astafiev, O. V.; Tsai, J. S.

    2018-06-01

    We experimentally study a vacuum-induced Autler-Townes doublet in a superconducting three-level artificial atom strongly coupled to a coplanar waveguide resonator and simultaneously to a transmission line. The Autler-Townes splitting is observed in the reflection spectrum from the three-level atom in a transition between the ground state and the second excited state when the transition between the two excited states is resonant with a resonator. By applying a driving field to the resonator, we observe a change in the regime of the Autler-Townes splitting from quantum (vacuum-induced) to classical (with many resonator photons). Furthermore, we show that the reflection of propagating microwaves in a transmission line could be controlled by different frequency microwave fields at the single-photon level in a resonator.

  19. Relationship between mandibular anatomy and the occurrence of a bad split upon sagittal split osteotomy.

    PubMed

    Aarabi, Mohammadali; Tabrizi, Reza; Hekmat, Mina; Shahidi, Shoaleh; Puzesh, Ayatollah

    2014-12-01

    A bad split is a troublesome complication of the sagittal split osteotomy (SSO). The aim of this study was to evaluate the relation between the occurrence of a bad split and mandibular anatomy in SSO using cone-beam computed tomography. The authors designed a cohort retrospective study. Forty-eight patients (96 SSO sites) were studied. The buccolingual thickness of the retromandibular area (BLR), the buccolingual thickness of the ramus at the level of the lingula (BLTR), the height of the mandible from the alveolar crest to the inferior border of the mandible, (ACIB), the distance between the sigmoid notch and the inferior border of the mandible (SIBM), and the anteroposterior width of the ramus (APWR) were measured. The independent t test was applied to compare anatomic measurements between the group with and the group without bad splits. The receiver operating characteristic (ROC) test was used to find a cutoff point in anatomic size for various parts of the mandible related to the occurrence of bad splits. The mean SIBM was 47.05±6.33 mm in group 1 (with bad splits) versus 40.66±2.44 mm in group 2 (without bad splits; P=.01). The mean BLTR was 5.74±1.11 mm in group 1 versus 3.19±0.55 mm in group 2 (P=.04). The mean BLR was 14.98±2.78 mm in group 1 versus 11.21±1.29 mm in group 2 (P=.001). No statistically significant difference was found for APWR and ACIB between the 2 groups. The ROC test showed cutoff points of 10.17 mm for BLR, 36.69 mm for SIBM, and 4.06 mm for BLTR. This study showed that certain mandibular anatomic differences can increase the risk of a bad split during SSO surgery. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  20. La Saturated Absorption Spectroscopy for Applications in Quantum Information

    NASA Astrophysics Data System (ADS)

    Becker, Patrick; Donoghue, Liz; Dungan, Kristina; Liu, Jackie; Olmschenk, Steven

    2015-05-01

    Quantum information may revolutionize computation and communication by utilizing quantum systems based on matter quantum bits and entangled light. Ions are excellent candidates for quantum bits as they can be well-isolated from unwanted external influences by trapping and laser cooling. Doubly-ionized lanthanum in particular shows promise for use in quantum information as it has infrared transitions in the telecom band, with low attenuation in standard optical fiber, potentially allowing for long distance information transfer. However, the hyperfine splittings of the lowest energy levels, required for laser cooling, have not been measured. We present progress and recent results towards measuring the hyperfine splittings of these levels in lanthanum by saturated absorption spectroscopy with a hollow cathode lamp. This research is supported by the Army Research Office, Research Corporation for Science Advancement, and Denison University.

  1. Split liver transplantation: a reliable approach to expand donor pool.

    PubMed

    Yan, Ji-Qi; Becker, Thomas; Peng, Cheng-Hong; Li, Hong-Wei; Klempnauer, Juergen

    2005-08-01

    Orthotopic liver transplantation as a successful treatment of end-stage liver disease is hampered by a persistent lack of cadaveric organs. Split liver transplantation, which was first successfully performed by Medical School of Hannover in 1988, has become a mature surgical technique to expand the donor pool. Between 1993 and 1999, split liver transplantation activities have increased in Europe from 1.2% to 10.4% in all performed liver transplantations. Current data have strongly supported that the survival rate of patients after split liver transplantation is not significantly different from that of patients after whole-size orthotopic liver transplantation. The most important step of donor graft selection is surgeon's observation judged by the experience of individual transplant center. The paper aims to provide the guideline of donor selection, hepatic graft splitting, and recipient management as well. Medical School of Hannover has accumulated plentiful experience of split liver transplantation for more than 10 cases ever since 1998. Besides that, we also reviewed a variety of literatures from other famous European and American centers specialized in this field for many years. According to our experience combined with the view points of others, the donor should meet the following criteria as well: (1) age less than 50 years; (2) hemodynamics stable; (3) ICU less than 5 days; (4) Na less than 170 mmol/L or better if less than 150 mmol/L. In 1996 and 1997, the Hamburg group and the UCLA group separately introduced a breakthrough technique performing split liver transplantation in situ. Evidently, the in situ technique has been limited by prolonged time of donor organ procurement, coordination with other organ procurement teams, and even extra burden on donor hospital. Some groups, therefore, have restored the ex situ or bench splitting technique, and fortunately the transplant outcomes of the ex situ technique are equivalent to those of the in situ one. Recently

  2. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation

    PubMed Central

    Mukherjee, Mukul; Eikema, Diderik Jan A.; Chien, Jung Hung; Myers, Sara A.; Scott-Pandorf, Melissa; Bloomberg, Jacob J.; Stergiou, Nicholas

    2015-01-01

    Patterns of human locomotion are highly adaptive and flexible, and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 minutes of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant groups differences were observed overground. Step and swing time asymmetries learned on the split belt treadmill, were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after-effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern. PMID:26169104

  3. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.

    PubMed

    Mukherjee, Mukul; Eikema, Diderik Jan A; Chien, Jung Hung; Myers, Sara A; Scott-Pandorf, Melissa; Bloomberg, Jacob J; Stergiou, Nicholas

    2015-10-01

    Patterns of human locomotion are highly adaptive and flexible and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 min of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated-measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant group differences were observed overground. Step and swing time asymmetries learned on the split-belt treadmill were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern.

  4. Direct Observation of Very Large Zero-Field Splitting in a Tetrahedral Ni(II)Se4 Coordination Complex.

    PubMed

    Jiang, Shang-Da; Maganas, Dimitrios; Levesanos, Nikolaos; Ferentinos, Eleftherios; Haas, Sabrina; Thirunavukkuarasu, Komalavalli; Krzystek, J; Dressel, Martin; Bogani, Lapo; Neese, Frank; Kyritsis, Panayotis

    2015-10-14

    The high-spin (S = 1) tetrahedral Ni(II) complex [Ni{(i)Pr2P(Se)NP(Se)(i)Pr2}2] was investigated by magnetometry, spectroscopic, and quantum chemical methods. Angle-resolved magnetometry studies revealed the orientation of the magnetization principal axes. The very large zero-field splitting (zfs), D = 45.40(2) cm(-1), E = 1.91(2) cm(-1), of the complex was accurately determined by far-infrared magnetic spectroscopy, directly observing transitions between the spin sublevels of the triplet ground state. These are the largest zfs values ever determined--directly--for a high-spin Ni(II) complex. Ab initio calculations further probed the electronic structure of the system, elucidating the factors controlling the sign and magnitude of D. The latter is dominated by spin-orbit coupling contributions of the Ni ions, whereas the corresponding effects of the Se atoms are remarkably smaller.

  5. Mössbauer studies of iron hydride at high pressure

    NASA Astrophysics Data System (ADS)

    Choe, I.; Ingalls, R.; Brown, J. M.; Sato-Sorensen, Y.; Mills, R.

    1991-07-01

    We have measured in situ Mössbauer spectra of iron hydride made in a diamond anvil cell at high pressure and room temperature. The spectra show a sudden change at 3.5+/-0.5 GPa from a single hyperfine pattern to a superposition of three. The former pattern results from normal α-iron with negligible hydrogen content, and the latter from residual α-iron plus newly formed iron hydride. Between 3.5 and 10.4 GPa, the extra hydride pattern have hyperfine fields for one ranging from 276 to 263 kOe, and the other, from 317 to 309 kOe. Both have isomer shifts of about 0.4 mm/sec, and negligible quadrupole splittings. X-ray studies on quenched samples have shown that iron hydride is of double hexagonal close-packed structure, whose two nonequivalent iron sites may account for the observation of two different patterns. Even allowing for the effect of volume expansion, the observed isomer shifts for the hydride are considerably more positive than those of other metallic phases of iron. At the same time, the hyperfine fields are slightly smaller than that of α-iron. As a possible explanation, one may expect a bonding of hydrogen with iron, which would result in a small reduction of 4s electrons, possibly accompanied by a small increase of 3d electrons compared with the neutral atom in metallic iron. The difference between the hyperfine fields in the two spectra are presumably due to the different symmetry at the two iron sites.

  6. Are Ducted Mini-Splits Worth It?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winkler, Jonathan M; Maguire, Jeffrey B; Metzger, Cheryn E.

    Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within themore » Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).« less

  7. TMD splitting functions in [Formula: see text] factorization: the real contribution to the gluon-to-gluon splitting.

    PubMed

    Hentschinski, M; Kusina, A; Kutak, K; Serino, M

    2018-01-01

    We calculate the transverse momentum dependent gluon-to-gluon splitting function within [Formula: see text]-factorization, generalizing the framework employed in the calculation of the quark splitting functions in Hautmann et al. (Nucl Phys B 865:54-66, arXiv:1205.1759, 2012), Gituliar et al. (JHEP 01:181, arXiv:1511.08439, 2016), Hentschinski et al. (Phys Rev D 94(11):114013, arXiv:1607.01507, 2016) and demonstrate at the same time the consistency of the extended formalism with previous results. While existing versions of [Formula: see text] factorized evolution equations contain already a gluon-to-gluon splitting function i.e. the leading order Balitsky-Fadin-Kuraev-Lipatov (BFKL) kernel or the Ciafaloni-Catani-Fiorani-Marchesini (CCFM) kernel, the obtained splitting function has the important property that it reduces both to the leading order BFKL kernel in the high energy limit, to the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) gluon-to-gluon splitting function in the collinear limit as well as to the CCFM kernel in the soft limit. At the same time we demonstrate that this splitting kernel can be obtained from a direct calculation of the QCD Feynman diagrams, based on a combined implementation of the Curci-Furmanski-Petronzio formalism for the calculation of the collinear splitting functions and the framework of high energy factorization.

  8. Hyperfine interactions of trans-lead elements studied by nuclear radiations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansaldo, E.J.

    1973-09-16

    The applications of nuclear radiation methods to the study of hyperfine interactions (hfi) for elements beyond Pb in the periodic table are reviewed. A general discussion of hfi is presented along with a review of specific methods. The techniques are illustrated whenever possible by their application to the actinides, with emphasis on the unsolved aspects of the results. A special method of sample preparation is ion implantation, in which stable or radioactive ions of practically any element are shot into the host, either by means of isotope separators or the recoil energy of nuclear reactions or radioactive decays. The locationmore » of the implanted (recoiled) atom in the lattice has to be assessed for a reliable determination of the hfi. Therefore, a chapter on the channeling technique is also included. (JRD)« less

  9. Zeeman splitting of 6.7 GHz methanol masers. On the uncertainty of magnetic field strength determinations

    NASA Astrophysics Data System (ADS)

    Vlemmings, W. H. T.; Torres, R. M.; Dodson, R.

    2011-05-01

    Context. To properly determine the role of magnetic fields during massive star formation, a statistically significant sample of field measurements probing different densities and regions around massive protostars needs to be established. However, relating Zeeman splitting measurements to magnetic field strengths needs a carefully determined splitting coefficient. Aims: Polarization observations of, in particular, the very abundant 6.7 GHz methanol maser, indicate that these masers appear to be good probes of the large scale magnetic field around massive protostars at number densities up to nH2 ≈ 109 cm-3. We thus investigate the Zeeman splitting of the 6.7 GHz methanol maser transition. Methods: We have observed of a sample of 46 bright northern hemisphere maser sources with the Effelsberg 100-m telescope and an additional 34 bright southern masers with the Parkes 64-m telescope in an attempt to measure their Zeeman splitting. We also revisit the previous calculation of the methanol Zeeman splitting coefficients and show that these were severely overestimated making the determination of magnetic field strengths highly uncertain. Results: In total 44 of the northern masers were detected and significant splitting between the right- and left-circular polarization spectra is determined in >75% of the sources with a flux density >20 Jy beam-1. Assuming the splitting is due to a magnetic field according to the regular Zeeman effect, the average detected Zeeman splitting corrected for field geometry is ~0.6 m s-1. Using an estimate of the 6.7 GHz A-type methanol maser Zeeman splitting coefficient based on old laboratory measurements of 25 GHz E-type methanol transitions this corresponds to a magnetic field of ~120 mG in the methanol maser region. This is significantly higher than expected using the typically assumed relation between magnetic field and density (B∝ n_H_20.47) and potentially indicates the extrapolation of the available laboratory measurements is invalid

  10. Particulate photocatalysts for overall water splitting

    NASA Astrophysics Data System (ADS)

    Chen, Shanshan; Takata, Tsuyoshi; Domen, Kazunari

    2017-10-01

    The conversion of solar energy to chemical energy is a promising way of generating renewable energy. Hydrogen production by means of water splitting over semiconductor photocatalysts is a simple, cost-effective approach to large-scale solar hydrogen synthesis. Since the discovery of the Honda-Fujishima effect, considerable progress has been made in this field, and numerous photocatalytic materials and water-splitting systems have been developed. In this Review, we summarize existing water-splitting systems based on particulate photocatalysts, focusing on the main components: light-harvesting semiconductors and co-catalysts. The essential design principles of the materials employed for overall water-splitting systems based on one-step and two-step photoexcitation are also discussed, concentrating on three elementary processes: photoabsorption, charge transfer and surface catalytic reactions. Finally, we outline challenges and potential advances associated with solar water splitting by particulate photocatalysts for future commercial applications.

  11. On split regular Hom-Lie superalgebras

    NASA Astrophysics Data System (ADS)

    Albuquerque, Helena; Barreiro, Elisabete; Calderón, A. J.; Sánchez, José M.

    2018-06-01

    We introduce the class of split regular Hom-Lie superalgebras as the natural extension of the one of split Hom-Lie algebras and Lie superalgebras, and study its structure by showing that an arbitrary split regular Hom-Lie superalgebra L is of the form L = U +∑jIj with U a linear subspace of a maximal abelian graded subalgebra H and any Ij a well described (split) ideal of L satisfying [Ij ,Ik ] = 0 if j ≠ k. Under certain conditions, the simplicity of L is characterized and it is shown that L is the direct sum of the family of its simple ideals.

  12. Finite frequency shear wave splitting tomography: a model space search approach

    NASA Astrophysics Data System (ADS)

    Mondal, P.; Long, M. D.

    2017-12-01

    Observations of seismic anisotropy provide key constraints on past and present mantle deformation. A common method for upper mantle anisotropy is to measure shear wave splitting parameters (delay time and fast direction). However, the interpretation is not straightforward, because splitting measurements represent an integration of structure along the ray path. A tomographic approach that allows for localization of anisotropy is desirable; however, tomographic inversion for anisotropic structure is a daunting task, since 21 parameters are needed to describe general anisotropy. Such a large parameter space does not allow a straightforward application of tomographic inversion. Building on previous work on finite frequency shear wave splitting tomography, this study aims to develop a framework for SKS splitting tomography with a new parameterization of anisotropy and a model space search approach. We reparameterize the full elastic tensor, reducing the number of parameters to three (a measure of strength based on symmetry considerations for olivine, plus the dip and azimuth of the fast symmetry axis). We compute Born-approximation finite frequency sensitivity kernels relating model perturbations to splitting intensity observations. The strong dependence of the sensitivity kernels on the starting anisotropic model, and thus the strong non-linearity of the inverse problem, makes a linearized inversion infeasible. Therefore, we implement a Markov Chain Monte Carlo technique in the inversion procedure. We have performed tests with synthetic data sets to evaluate computational costs and infer the resolving power of our algorithm for synthetic models with multiple anisotropic layers. Our technique can resolve anisotropic parameters on length scales of ˜50 km for realistic station and event configurations for dense broadband experiments. We are proceeding towards applications to real data sets, with an initial focus on the High Lava Plains of Oregon.

  13. An algorithm for the split-feasibility problems with application to the split-equality problem.

    PubMed

    Chuang, Chih-Sheng; Chen, Chi-Ming

    2017-01-01

    In this paper, we study the split-feasibility problem in Hilbert spaces by using the projected reflected gradient algorithm. As applications, we study the convex linear inverse problem and the split-equality problem in Hilbert spaces, and we give new algorithms for these problems. Finally, numerical results are given for our main results.

  14. The ASACUSA antihydrogen and hydrogen program: results and prospects

    NASA Astrophysics Data System (ADS)

    Malbrunot, C.; Amsler, C.; Arguedas Cuendis, S.; Breuker, H.; Dupre, P.; Fleck, M.; Higaki, H.; Kanai, Y.; Kolbinger, B.; Kuroda, N.; Leali, M.; Mäckel, V.; Mascagna, V.; Massiczek, O.; Matsuda, Y.; Nagata, Y.; Simon, M. C.; Spitzer, H.; Tajima, M.; Ulmer, S.; Venturelli, L.; Widmann, E.; Wiesinger, M.; Yamazaki, Y.; Zmeskal, J.

    2018-03-01

    The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of `cold' antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10-9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed. This article is part of the Theo Murphy meeting issue `Antiproton physics in the ELENA era'.

  15. The ASACUSA antihydrogen and hydrogen program: results and prospects

    PubMed Central

    Amsler, C.; Arguedas Cuendis, S.; Breuker, H.; Dupre, P.; Fleck, M.; Higaki, H.; Kanai, Y.; Kolbinger, B.; Kuroda, N.; Leali, M.; Mäckel, V.; Mascagna, V.; Massiczek, O.; Matsuda, Y.; Nagata, Y.; Simon, M. C.; Spitzer, H.; Tajima, M.; Venturelli, L.; Widmann, E.; Wiesinger, M.; Yamazaki, Y.; Zmeskal, J.

    2018-01-01

    The goal of the ASACUSA-CUSP collaboration at the Antiproton Decelerator of CERN is to measure the ground-state hyperfine splitting of antihydrogen using an atomic spectroscopy beamline. A milestone was achieved in 2012 through the detection of 80 antihydrogen atoms 2.7 m away from their production region. This was the first observation of ‘cold’ antihydrogen in a magnetic field free region. In parallel to the progress on the antihydrogen production, the spectroscopy beamline was tested with a source of hydrogen. This led to a measurement at a relative precision of 2.7×10−9 which constitutes the most precise measurement of the hydrogen hyperfine splitting in a beam. Further measurements with an upgraded hydrogen apparatus are motivated by CPT and Lorentz violation tests in the framework of the Standard Model Extension. Unlike for hydrogen, the antihydrogen experiment is complicated by the difficulty of synthesizing enough cold antiatoms in the ground state. The first antihydrogen quantum states scan at the entrance of the spectroscopy apparatus was realized in 2016 and is presented here. The prospects for a ppm measurement are also discussed. This article is part of the Theo Murphy meeting issue ‘Antiproton physics in the ELENA era’. PMID:29459412

  16. Quantum-splitting oxide-based phosphors and method of producing the same

    DOEpatents

    Setlur, Anant Achyut; Srivastava, Alok Mani

    2003-09-02

    Strontium, calcium, strontium calcium, strontium calcium magnesium, calcium magnesium aluminates, and strontium borates activated with Pr.sup.3+ exhibit characteristics of quantum-splitting phosphors under VUV excitation. A large emission peak at about 405 nm under VUV excitation is used conveniently to identify quantum-splitting phosphors. Improvements may be achieved with addition of fluorides or boric acid as a flux during the preparation of the phosphors. It is also possible to predict improvement in quantum efficiency by observing the ratio of emission intensities at about 480 nm and about 610 nm.

  17. Flow splitting in numerical simulations of oceanic dense-water outflows

    NASA Astrophysics Data System (ADS)

    Marques, Gustavo M.; Wells, Mathew G.; Padman, Laurie; Özgökmen, Tamay M.

    2017-05-01

    Flow splitting occurs when part of a gravity current becomes neutrally buoyant and separates from the bottom-trapped plume as an interflow. This phenomenon has been previously observed in laboratory experiments, small-scale water bodies (e.g., lakes) and numerical studies of small-scale systems. Here, the potential for flow splitting in oceanic gravity currents is investigated using high-resolution (Δx = Δz = 5 m) two-dimensional numerical simulations of gravity flows into linearly stratified environments. The model is configured to solve the non-hydrostatic Boussinesq equations without rotation. A set of experiments is conducted by varying the initial buoyancy number B0 =Q0N3 /g‧2 (where Q0 is the volume flux of the dense water flow per unit width, N is the ambient stratification and g‧ is the reduced gravity), the bottom slope (α) and the turbulent Prandtl number (Pr). Regardless of α or Pr, when B0 ≤ 0.002 the outflow always reaches the deep ocean forming an underflow. Similarly, when B0 ≥ 0.13 the outflow always equilibrates at intermediate depths, forming an interflow. However, when B0 ∼ 0.016, flow splitting always occurs when Pr ≥ 10, while interflows always occur for Pr = 1. An important characteristic of simulations that result in flow splitting is the development of Holmboe-like interfacial instabilities and flow transition from a supercritical condition, where the Froude number (Fr) is greater than one, to a slower and more uniform subcritical condition (Fr < 1). This transition is associated with an internal hydraulic jump and consequent mixing enhancement. Although our experiments do not take into account three-dimensionality and rotation, which are likely to influence mixing and the transition between flow regimes, a comparison between our results and oceanic observations suggests that flow splitting may occur in dense-water outflows with weak ambient stratification, such as Antarctic outflows.

  18. Tadpole renormalization and relativistic corrections in lattice NRQCD

    NASA Astrophysics Data System (ADS)

    Shakespeare, Norman H.; Trottier, Howard D.

    1998-08-01

    We make a detailed comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. We renormalize improved gauge-field and NRQCD actions using the mean-link u0,L in the Landau gauge, and using the fourth root of the average plaquette u0,P. Simulations are done for the three quarkonium systems cc¯, bc¯, and bb¯. The hyperfine splittings are computed both at leading [O(MQv4)] and at next-to-leading [O(MQv6)] order in the relativistic expansion, where MQ is the renormalized quark mass, and v2 is the mean-squared velocity. Results are obtained at a large number of lattice spacings, in the range of about 0.14-0.38 fm. A number of features emerge, all of which favor tadpole renormalization using u0,L. This includes a much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,L is used. We also find that relativistic corrections to the spin splittings are smaller when u0,L is used, particularly for the cc¯ and bc¯ systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about 1 in lattice units. Simulations with u0,L also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,L is used, compared to when u0,P is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.

  19. The detection of interstellar methylcyanoacetylene

    NASA Technical Reports Server (NTRS)

    Broten, N. W.; Macleod, J. M.; Avery, L. W.; Friberg, P.; Hjalmarson, A.; Hoglund, B.; Irvine, W. M.

    1984-01-01

    A new interstellar molecule, methylcyanoacetylene (CH3C3N), has been detected in the molecular cloud TMC-1. The J = 8 to 7, J = 7 to 6, J = 6 to 5, and J = 5 to 4 transitions have been observed. For the first three of these, both the K = 0 and K = 1 components are present, while for J = 5 to 4, only the K = 0 line has been detected. The observed frequencies were calculated by assuming a value of radial velocity V(LSR) = 5.8 km/s for TMC-1, typical of other molecules in the cloud. All observed frequencies are within 10 kHz of the calculated frequencies, which are based on the 1982 laboratory constants of Moises et al. (1982), so the identification is secure. The lines are broadened by hyperfine splitting, and the J = 5 to 4, K = 0 transition shows incipient resolution into three hyperfine components. The rotational temperature determined from these observations is quite low, with T(rot) in the range from 2.7 to 4 K. The total column density is approximately 5 x 10 to the 12th per sq cm.

  20. Theory of the n = 2 levels in muonic helium-3 ions

    NASA Astrophysics Data System (ADS)

    Franke, Beatrice; Krauth, Julian J.; Antognini, Aldo; Diepold, Marc; Kottmann, Franz; Pohl, Randolf

    2017-12-01

    The present knowledge of Lamb shift, fine-, and hyperfine structure of the 2S and 2P states in muonic helium-3 ions is reviewed in anticipation of the results of a first measurement of several 2S → 2P transition frequencies in the muonic helium-3 ion, μ3He+. This ion is the bound state of a single negative muon μ- and a bare helium-3 nucleus (helion), 3He++. A term-by-term comparison of all available sources, including new, updated, and so far unpublished calculations, reveals reliable values and uncertainties of the QED and nuclear structure-dependent contributions to the Lamb shift and the hyperfine splitting. These values are essential for the determination of the helion rms charge radius and the nuclear structure effects to the hyperfine splitting in μ3He+. With this review we continue our series of theory summaries in light muonic atoms [see A. Antognini et al., Ann. Phys. 331, 127 (2013); J.J. Krauth et al., Ann. Phys. 366, 168 (2016); and M. Diepold et al. arXiv:1606.05231 (2016)].

  1. Neutron-proton effective mass splitting in neutron-rich matter and its impacts on nuclear reactions

    NASA Astrophysics Data System (ADS)

    Li, Bao-An; Chen, Lie-Wen

    2015-04-01

    The neutron-proton effective mass splitting in neutron-rich nucleonic matter reflects the spacetime nonlocality of the isovector nuclear interaction. It affects the neutron/proton ratio during the earlier evolution of the Universe, cooling of proto-neutron stars, structure of rare isotopes and dynamics of heavy-ion collisions. While there is still no consensus on whether the neutron-proton effective mass splitting is negative, zero or positive and how it depends on the density as well as the isospin-asymmetry of the medium, significant progress has been made in recent years in addressing these issues. There are different kinds of nucleon effective masses. In this mini-review, we focus on the total effective masses often used in the non-relativistic description of nuclear dynamics. We first recall the connections among the neutron-proton effective mass splitting, the momentum dependence of the isovector potential and the density dependence of the symmetry energy. We then make a few observations about the progress in calculating the neutron-proton effective mass splitting using various nuclear many-body theories and its effects on the isospin-dependence of in-medium nucleon-nucleon cross-sections. Perhaps, our most reliable knowledge so far about the neutron-proton effective mass splitting at saturation density of nuclear matter comes from optical model analyses of huge sets of nucleon-nucleus scattering data accumulated over the last five decades. The momentum dependence of the symmetry potential from these analyses provide a useful boundary condition at saturation density for calibrating nuclear many-body calculations. Several observables in heavy-ion collisions have been identified as sensitive probes of the neutron-proton effective mass splitting in dense neutron-rich matter based on transport model simulations. We review these observables and comment on the latest experimental findings.

  2. Anisotropic in-plane spin splitting in an asymmetric (001) GaAs/AlGaAs quantum well

    PubMed Central

    2011-01-01

    The in-plane spin splitting of conduction-band electron has been investigated in an asymmetric (001) GaAs/AlxGa1-xAs quantum well by time-resolved Kerr rotation technique under a transverse magnetic field. The distinctive anisotropy of the spin splitting was observed while the temperature is below approximately 200 K. This anisotropy emerges from the combined effect of Dresselhaus spin-orbit coupling plus asymmetric potential gradients. We also exploit the temperature dependence of spin-splitting energy. Both the anisotropy of spin splitting and the in-plane effective g-factor decrease with increasing temperature. PACS: 78.47.jm, 71.70.Ej, 75.75.+a, 72.25.Fe, PMID:21888636

  3. 12 CFR 7.2023 - Reverse stock splits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Corporate Practices § 7.2023 Reverse stock splits. (a) Authority to engage in reverse stock splits. A national bank may engage in a reverse stock split if the transaction serves a legitimate corporate purpose and provides adequate dissenting shareholders' rights. (b) Legitimate corporate purpose. Examples of...

  4. Detecting deep sea hydrothermal vents with a split-beam echosounder

    NASA Astrophysics Data System (ADS)

    Gray, L. M.; Jerram, K.

    2016-12-01

    In May 2016, the NOAA Office of Exploration and Research exploration vessel, Okeanos Explorer, conducted a remotely operated vehicle (ROV) dive on a series of active `black smoker' hydrothermal vents at 3,300 m depth in the western Pacific Ocean near the Mariana Trench. The ROV system traversed 800 m along the seafloor and detected three distinct vent sites. The vent chimneys ranged in heights from 5 m to 30 m above the seafloor and vent fluid temperatures were measured as high as 337 °C. Immediately following the ROV dive, the Okeanos Explorer mapped the vent field with an 18 kHz split-beam echosounder traditionally used for fishery research and a 30 kHz multibeam echosounder with midwater capability. Six passes were made over the field, transiting at 4-5 knots on various headings. There was a clear and repeatable signal in the split-beam echogram from the venting but less obvious indication in the multibeam data. `Black smokers' have traditionally been detected using repeat conductivity-temperature-depth (CTD) `tow-yo' casts. Our field observations suggest an alternative, and potentially more efficient, method of detecting hydrothermal vent plumes within the beamwidth of the split-beam echosounder to inform ROV dive plans. Methods previously applied for locating marine gas seeps on the seafloor with split-beam echosounders can be applied to estimate the hydrothermal vent positions in this dataset and compared to the recorded ROV positions at each site. Additionally, assuming relatively stable venting and ambient conditions, the ROV position and CTD data recorded from the vehicles can be used to better understand the observed midwater acoustic backscatter signatures of the hydrothermal vent plumes.

  5. Lateral Variations in SKS Splitting Across the MAGIC Array, Central Appalachians

    NASA Astrophysics Data System (ADS)

    Aragon, John C.; Long, Maureen D.; Benoit, Margaret H.

    2017-11-01

    The eastern margin of North America has been shaped by several cycles of supercontinent assembly. These past episodes of orogenesis and continental rifting have likely deformed the lithosphere, but the extent, style, and geometry of this deformation remain poorly known. Measurements of seismic anisotropy in the upper mantle can shed light on past lithospheric deformation, but may also reveal contributions from present-day mantle flow in the asthenosphere. Here we examine SKS waveforms and measure splitting of SKS phases recorded by the MAGIC experiment, a dense transect of seismic stations across the central Appalachians. Our measurements constrain small-scale lateral variations in azimuthal anisotropy and reveal distinct regions of upper mantle anisotropy. Stations within the present-day Appalachian Mountains exhibit fast splitting directions roughly parallel to the strike of the mountains and delay times of about 1.0 s. To the west, transverse component waveforms for individual events reveal lateral variability in anisotropic structure. Stations immediately to the east of the mountains exhibit complicated splitting patterns, more null SKS arrivals, and a distinct clockwise rotation of fast directions. The observed variability in splitting behavior argues for contributions from both the lithosphere and the asthenospheric mantle. We infer that the sharp lateral transition in splitting behavior at the eastern edge of the Appalachians is controlled by a change in anisotropy in the lithospheric mantle. We hypothesize that beneath the Appalachians, SKS splitting reflects lithospheric deformation associated with Appalachian orogenesis, while just to the east this anisotropic signature was modified by Mesozoic rifting.

  6. Ultrafast Pulse Sequencing for Fast Projective Measurements of Atomic Hyperfine Qubits

    NASA Astrophysics Data System (ADS)

    Ip, Michael; Ransford, Anthony; Campbell, Wesley

    2015-05-01

    Projective readout of quantum information stored in atomic hyperfine structure typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also discuss methods of Doppler cooling with mode-locked lasers for trapped ions, where the creation of the necessary UV light is often difficult with CW lasers.

  7. 29Si-NMR study of magnetic anisotropy and hyperfine interactions in the uranium-bsed ferromagnet UNiSi2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakai, Hironori; Baek, Seung H; Bauer, Eric D

    2009-01-01

    UNiSi{sub 2} orders ferromagnetically below T{sub Curie} = 95 K. This material crystallizes in the orthorhombic CeNiSi{sub 2}-type structure. The uranium atoms form double-layers, which are stacked along the crystallographic b axis (the longest axis). From magnetization measurement the easy (hard) magnetization axis is found to be the c axis (b axis). {sup 29}Si-NMR measurements have been performed in the paramagnetic state. In UNiSi{sub 2}, two crystallographic Si sites exist with orthorhombic local symmetry. The Knight shifts on each Si site have been estimated from the spectra of random and oriented powders. The transferred hyperfine couplings have been also derived.more » It is found that the transferred hyperfine coupling constants on each Si site are nearly isotropic, and that their Knight shift anisotropy comes from that of the bulk susceptibility. The nuclear-spin lattice relaxation rate 1/T{sub 1} shows temperature-independent behavior, which indicates the existence of localized 5f electron.« less

  8. Split-liver transplantation. The Paul Brousse policy.

    PubMed Central

    Azoulay, D; Astarcioglu, I; Bismuth, H; Castaing, D; Majno, P; Adam, R; Johann, M

    1996-01-01

    OBJECTIVE: The authors objective is to report their recent experience with split-liver transplantation, focusing on the results and the impact on organ shortage. SUMMARY BACKGROUND DATA: There is an insufficient number of organs for liver transplantation. Split-liver transplantation is a method to increase the number of grafts, but the procedure is slow to gain wide acceptance because of its complexity and the poor results reported in previous series. METHODS: During the year 1995, the authors split 20 of 83 transplantable livers allocated to the authors' center, generating 40 grafts: 23 were transplanted locally and 17 were given to partner centers. During the same period, the authors accepted four split-liver grafts proposed to them by other centers. Overall, 27 split-liver transplantations were done in the authors' unit, accounting for 30% of the 90 transplants performed in 1995. RESULTS: One-year patient and graft survival rates for split-liver transplantation were 79.4% and 78.5%, respectively. Arterial and biliary complications rates were 15% and 22%, respectively, with none leading to graft loss. Primary nonfunction occurred in one case (4%). By splitting 24 of 87 transplantable livers (4 of which were in partner units), a total of 111 transplantations were performed, increasing graft availability by 28%. CONCLUSIONS: Split-liver transplantation is achieving graft and patient survival rates similar to that of whole liver transplantation despite a higher incidence of complications, which could become less frequent as experience is gained with this procedure. A wider acceptance of split-liver transplantation could markedly increase the supply of liver grafts. Images Figure 1. PMID:8968228

  9. Precision aligned split V-block

    DOEpatents

    George, Irwin S.

    1984-01-01

    A precision aligned split V-block for holding a workpiece during a milling operation having an expandable frame for allowing various sized workpieces to be accommodated, is easily secured directly to the mill table and having key lugs in one base of the split V-block that assures constant alignment.

  10. Fourier transform millimeter-wave spectroscopy of the ethyl radical in the electronic ground state.

    PubMed

    Kim, Eunsook; Yamamoto, Satoshi

    2004-02-15

    The pure rotational spectrum of the ethyl radical (C2H5) has been detected for the first time with the Fourier transform millimeter-wave spectrometer. The ethyl radical is produced by discharging the C2H5I gas diluted in Ar. The 1(01)-0(00) rotational transition of the ethyl radical is observed in the frequency range from 43,680 to 43,780 MHz. The observed spectrum shows a very complicated pattern of the fine and hyperfine structures of a doublet radical with the nuclear spins of five protons. The fine and hyperfine components are assigned with the aid of measurements of the Zeeman splittings. As a result, the 22 lines are ascribed to the transitions in the ground vibronic state (A2"). The rotational constant, the spin-rotation interaction constant, and hyperfine interaction constants are determined by the least-squares fit. The Fermi contact term of the alpha-proton is determined to be -64.1654 MHz in the gas phase, indicating that the structure of the -CH2 is essentially planar. The present rotational spectroscopic study further supports that the methyl group of the ethyl radical can be regarded as a nearly free internal rotor with a low energy barrier. A few unassigned lines still remain, which may be vibrational satellites of the internal rotation mode. Copyright 2004 American Institute of Physics

  11. Mixed chimerism and split tolerance

    PubMed Central

    Al-Adra, David P.

    2011-01-01

    Establishing hematopoietic mixed chimerism can lead to donor-specific tolerance to transplanted organs and may eliminate the need for long-term immunosuppressive therapy, while also preventing chronic rejection. In this review, we discuss central and peripheral mechanisms of chimerism induced tolerance. However, even in the long-lasting presence of a donor organ or donor hematopoietic cells, some allogeneic tissues from the same donor can be rejected; a phenomenon known as split tolerance. With the current goal of creating mixed chimeras using clinically feasible amounts of donor bone marrow and with minimal conditioning, split tolerance may become more prevalent and its mechanisms need to be explored. Some predisposing factors that may increase the likelihood of split tolerance are immunogenicity of the graft, certain donor-recipient combinations, prior sensitization, location and type of graft and minimal conditioning chimerism induction protocols. Additionally, split tolerance may occur due to a differential susceptibility of various types of tissues to rejection. The mechanisms involved in a tissue’s differential susceptibility to rejection include the presence of polymorphic tissue-specific antigens and variable sensitivity to indirect pathway effector mechanisms. Finally, we review the clinical attempts at allograft tolerance through the induction of chimerism; studies that are revealing the complex relationship between chimerism and tolerance. This relationship often displays split tolerance, and further research into its mechanisms is warranted. PMID:22509425

  12. INTERNAL FIELDS AT LOW TEMPERATURES IN CoPd ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagle, D.E.; Craig, P.P.; Barrett, P.

    1962-01-15

    The hyperfine splitting of the 14.4-kev gamma line in Fe/sup 57/ was measured for a series of sources, each containing Co/sup 57/ activity doped into a host lattice of CoPd. Although Pd itself is not ferromagnetic, the alloys with Co are all ferromagnetic, with Curie temperatures ranging from 1404 deg K for pure Co down to 130 deg K for a 3% Co alloy. The internal field associated with the hyperfine splitting is a function of temperature for a given alloy; however, at temperatures small compared to the Curie temperature, each source shows very nearly the same internal field, namelymore » - 308 kgauss. The relationship of this behavior to current theories of the internal field in Fe and to the nature of ferromagnetism in CoPd is discussed. (auth)« less

  13. SKS Splitting and the Scale of Vertical Coherence of the Taiwan Mountain Belt

    NASA Astrophysics Data System (ADS)

    Kuo, Ban-Yuan; Lin, Shu-Chuan; Lin, Yi-Wei

    2018-02-01

    Many continental orogens feature a pattern of SKS shear wave splitting with fast polarization directions parallel to the mountain fabrics and delay times of 1-2 s, implying that the crust and lithosphere deform consistently. In the Taiwan arc-continent collision zone, similar pattern of SKS splitting exists, and thereby lithospheric scale deformation due to collision has been assumed. However, recent dynamic modeling demonstrated that the SKS splitting in Taiwan can be generated by the toroidal flow in the asthenosphere induced by the subduction of the Philippine Sea plate and the Eurasian plate. To further evaluate this hypothesis, we analyzed a new data set using a quantitative approach. The results show that models with slab geometries constrained by seismicity explain the observed fast splitting direction to within 25°, whereas the misfit grows to 50-60° if the toroidal flow is disrupted by the presence of a sizable aseismic slab beneath central Taiwan as often suggested by tomographic imaging. However, small sized aseismic slab or detached slab fragment can potentially reconcile the splitting observations. We estimated the scale of vertical coherence to be 10-40 km in the lithosphere and 100-150 km in the asthenosphere, making the former unfavorable for accumulating large delay times. The low coherence is caused by the subduction of the Eurasian plate that creates complex deformation different from what characterizes the compressional tectonics above the plate. This suggests that the mountain building in Taiwan is a shallow process, rather than lithospheric in scale.

  14. Artificial photosynthesis: understanding water splitting in nature

    PubMed Central

    Cox, Nicholas; Pantazis, Dimitrios A.; Neese, Frank; Lubitz, Wolfgang

    2015-01-01

    In the context of a global artificial photosynthesis (GAP) project, we review our current work on nature's water splitting catalyst. In a recent report (Cox et al. 2014 Science 345, 804–808 (doi:10.1126/science.1254910)), we showed that the catalyst—a Mn4O5Ca cofactor—converts into an ‘activated’ form immediately prior to the O–O bond formation step. This activated state, which represents an all MnIV complex, is similar to the structure observed by X-ray crystallography but requires the coordination of an additional water molecule. Such a structure locates two oxygens, both derived from water, in close proximity, which probably come together to form the product O2 molecule. We speculate that formation of the activated catalyst state requires inherent structural flexibility. These features represent new design criteria for the development of biomimetic and bioinspired model systems for water splitting catalysts using first-row transition metals with the aim of delivering globally deployable artificial photosynthesis technologies. PMID:26052426

  15. Optimized retrievals of precipitable water from the VAS 'split window'

    NASA Technical Reports Server (NTRS)

    Chesters, Dennis; Robinson, Wayne D.; Uccellini, Louis W.

    1987-01-01

    Precipitable water fields have been retrieved from the VISSR Atmospheric Sounder (VAS) using a radiation transfer model for the differential water vapor absorption between the 11- and 12-micron 'split window' channels. Previous moisture retrievals using only the split window channels provided very good space-time continuity but poor absolute accuracy. This note describes how retrieval errors can be significantly reduced from plus or minus 0.9 to plus or minus 0.6 gm/sq cm by empirically optimizing the effective air temperature and absorption coefficients used in the two-channel model. The differential absorption between the VAS 11- and 12-micron channels, empirically estimated from 135 colocated VAS-RAOB observations, is found to be approximately 50 percent smaller than the theoretical estimates. Similar discrepancies have been noted previously between theoretical and empirical absorption coefficients applied to the retrieval of sea surface temperatures using radiances observed by VAS and polar-orbiting satellites. These discrepancies indicate that radiation transfer models for the 11-micron window appear to be less accurate than the satellite observations.

  16. Pharmaceutical counselling about different types of tablet-splitting methods based on the results of weighing tests and mechanical development of splitting devices.

    PubMed

    Somogyi, O; Meskó, A; Csorba, L; Szabó, P; Zelkó, R

    2017-08-30

    The division of tablets and adequate methods of splitting them are a complex problem in all sectors of health care. Although tablet-splitting is often required, this procedure can be difficult for patients. Four tablets were investigated with different external features (shape, score-line, film-coat and size). The influencing effect of these features and the splitting methods was investigated according to the precision and "weight loss" of splitting techniques. All four types of tablets were halved by four methods: by hand, with a kitchen knife, with an original manufactured splitting device and with a modified tablet splitter based on a self-developed mechanical model. The mechanical parameters (harness and friability) of the products were measured during the study. The "weight loss" and precision of splitting methods were determined and compared by statistical analysis. On the basis of the results, the external features (geometry), the mechanical parameters of tablets and the mechanical structure of splitting devices can influence the "weight loss" and precision of tablet-splitting. Accordingly, a new decision-making scheme was developed for the selection of splitting methods. In addition, the skills of patients and the specialties of therapy should be considered so that pharmaceutical counselling can be more effective regarding tablet-splitting. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Travelling and splitting of a wave of hedgehog expression involved in spider-head segmentation.

    PubMed

    Kanayama, Masaki; Akiyama-Oda, Yasuko; Nishimura, Osamu; Tarui, Hiroshi; Agata, Kiyokazu; Oda, Hiroki

    2011-10-11

    During development segmentation is a process that generates a spatial periodic pattern. Peak splitting of waves of gene expression is a mathematically predicted, simple strategy accounting for this type of process, but it has not been well characterized biologically. Here we show temporally repeated splitting of gene expression into stripes that is associated with head axis growth in the spider Achaearanea embryo. Preceding segmentation, a wave of hedgehog homologue gene expression is observed to travel posteriorly during development stage 6. This stripe, co-expressing an orthodenticle homologue, undergoes two cycles of splitting and shifting accompanied by convergent extension, serving as a generative zone for the head segments. The two orthodenticle and odd-paired homologues are identified as targets of Hedgehog signalling, and evidence suggests that their activities mediate feedback to maintain the head generative zone and to promote stripe splitting in this zone. We propose that the 'stripe-splitting' strategy employs genetic components shared with Drosophila blastoderm subdivision, which are required for participation in an autoregulatory signalling network.

  18. EPR, optical and modeling of Mn(2+) doped sarcosinium oxalate monohydrate.

    PubMed

    Kripal, Ram; Singh, Manju

    2015-01-25

    Electron paramagnetic resonance (EPR) study of Mn(2+) ions doped in sarcosinium oxalate monohydrate (SOM) single crystal is done at liquid nitrogen temperature (LNT). EPR spectrum shows a bunch of five fine structure lines and further they split into six hyperfine components. Only one interstitial site was observed. With the help of EPR spectra the spin Hamiltonian parameters including zero field splitting (ZFS) parameters are evaluated. The optical absorption study at room temperature is also done in the wavelength range 195-1100 nm. From this study cubic crystal field splitting parameter, Dq=730 cm(-1) and Racah inter-electronic repulsion parameters B=792 cm(-1), C=2278 cm(-1) are determined. ZFS parameters D and E are also calculated using crystal field parameters from superposition model and microscopic spin Hamiltonian theory. The calculated ZFS parameter values are in good match with the experimental values obtained by EPR. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Chirped-Pulse and Cavity Based Fourier Transform Microwave Spectroscopy of the Methyl Lactate-Ammonia Adduct

    NASA Astrophysics Data System (ADS)

    Thomas, Javix; Sukhorukov, Oleksandr; Jaeger, Wolfgang; Xu, Yunjie

    2012-06-01

    The hydrogen bonded complex of ammonia with methyl lactate, a chiral alpha-hydroxyester, has been studied using rotational spectroscopy and high level ab initio calculations. Previous studies showed that methyl lactate can exist in a number of conformers. However, only the most stable one which has an intramolecular hydrogen bonded ring formed with its alcoholic hydroxyl and its carbonyl oxygen atom was detected experimentally An extensive ab initio search has been performed to locate all possible low energy conformers of the methyl lactate-ammonia contact pair. Five lowest energy conformers have been identified at the MP2/6-311++G(d,p) level. The lowest energy conformer favors an insertion arrangement, where ammonia is inserted into the existing intramolecular hydrogen bonded ring in the most stable methyl lactate conformer. Broadband scans for the rotational spectra of possible binary conformers have been carried out using a chirped-pulse Fourier transform microwave (FTMW) instrument. The most stable binary adduct was identified and assigned. The final frequency measurements have been done with a cavity based FTMW instrument. The spectrum observed shows complicated fine and hyperfine splitting patterns, likely due to the internal rotations of the methyl groups of methyl lactate and that of ammonia, as well as the 14N quadrupolar nucleus. The binary adduct with 15NH3 has also been studied to simplify the splitting pattern and to aid the assignments of the extensive splittings. The isotopic data and the fine and hyperfine structures will be discussed in terms of internal rotation dynamics and geometry of the hydrogen bonded adduct.

  20. Visible-light driven nitrogen-doped petal-morphological ceria nanosheets for water splitting

    NASA Astrophysics Data System (ADS)

    Qian, Junchao; Zhang, Wenya; Wang, Yaping; Chen, Zhigang; Chen, Feng; Liu, Chengbao; Lu, Xiaowang; Li, Ping; Wang, Kaiyuan; Chen, Ailian

    2018-06-01

    Water splitting is a promising sustainable technology for solar-to-chemical energy conversion. Herein, we successfully fabricated nitrogen-doped ultrathin CeO2 nanosheets by using field poppy petals as templates, which exhibit an efficiently catalytic activity for water splitting. Abundant oxygen vacancies and substitutional N atoms were experimentally observed in the film due to its unique biomorphic texture. In view of high efficiency and long durability of the as-prepared photocatalyst, this biotemplate method may provide an alternative technique for using biomolecules to assemble 2D nanomaterials.

  1. Development of a new flux splitting scheme

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Steffen, Christopher J., Jr.

    1991-01-01

    The use of a new splitting scheme, the advection upstream splitting method, for model aerodynamic problems where Van Leer and Roe schemes had failed previously is discussed. The present scheme is based on splitting in which the convective and pressure terms are separated and treated differently depending on the underlying physical conditions. The present method is found to be both simple and accurate.

  2. Solar activity and oscillation frequency splittings

    NASA Technical Reports Server (NTRS)

    Woodard, M. F.; Libbrecht, K. G.

    1993-01-01

    Solar p-mode frequency splittings, parameterized by the coefficients through order N = 12 of a Legendre polynomial expansion of the mode frequencies as a function of m/L, were obtained from an analysis of helioseismology data taken at Big Bear Solar Observatory during the 4 years 1986 and 1988-1990 (approximately solar minimum to maximum). Inversion of the even-index splitting coefficients confirms that there is a significant contribution to the frequency splittings originating near the solar poles. The strength of the polar contribution is anti correlated with the overall level or solar activity in the active latitudes, suggesting a relation to polar faculae. From an analysis of the odd-index splitting coefficients we infer an uppor limit to changes in the solar equatorial near-surface rotatinal velocity of less than 1.9 m/s (3 sigma limit) between solar minimum and maximum.

  3. Substituent effects on photosensitized splitting of thymine cyclobutane dimer by an attached indole.

    PubMed

    Tang, Wenjian; Zhou, Hongmei; Wang, Jing; Pan, Chunxiao; Shi, Jingbo; Song, Qinhua

    2012-12-21

    In chromophore-containing cyclobutane pyrimidine dimer (CPD) model systems, solvent effects on the splitting efficiency may depend on the length of the linker, the molecular conformation, and the oxidation potential of the donor. To further explore the relationship between chromophore structure and splitting efficiency, we prepared a series of substituted indole-T< >T model compounds 2 a-2 g and measured their splitting quantum yields in various solvents. Two reverse solvent effects were observed: an increase in splitting efficiency in solvents of lower polarity for models 2 a-2 d with an electron-donating group (EDG), and vice versa for models 2 e-2 g with an electron-withdrawing group (EWG). According to the Hammett equation, the negative value of the slope of the Hammett plot indicates that the indole moiety during the T< >T-splitting reaction loses negative charge, and the larger negative value implies that the repair reaction is more sensitive to substituent effects in low-polarity solvents. The EDGs of the models 2 a-2 d can delocalize the charge-separated state, and low-polarity solvents make it more stable, which leads to higher splitting efficiency in low-polarity solvents. Conversely, the EWGs of models 2 e-2 g favor destabilization of the charge-separated state, and high-polarity solvents decrease the destabilization and hence lead to more efficient splitting in high-polarity solvents. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Comparative studies on different nanofiber photocatalysts for water splitting

    NASA Astrophysics Data System (ADS)

    Alharbi, Abdulaziz; Alarifi, Ibrahim M.; Khan, Waseem S.; Asmatulu, Ramazan

    2016-04-01

    Water splitting using photocatalyst has become a topic of recent investigation since it has the potential of producing hydrogen for clean energy from sunlight. An extensive number of solid photocatalysts have been studied for overall water splitting in recent years. In this study, two methods were employed to synthesize two different photocatalysts for water splitting. The first method describes the synthesis of nickel oxide-loaded strontium titanate (NiO-SrTiO3) particles on electrospun polyacrylonitrile (PAN) nanofibers incorporated with graphene nanoplatelets for water splitting. The electrospun PAN fibers were first oxidized at 270°C for two hours and subsequently immersed in a solution containing ethanol, titanium (IV)-isopropoxide [C12H28O4Ti] and strontium nitrate [Sr(NO3)2]. This solution was then treated with NiO nanoparticles dispersed in toluene. The surface treated PAN fibers were annealed at 600°C in air for 1 hour to transform fibers into a crystalline form for improved photocatalyst performance. In the second method, coaxial electrospinning process was used to produce core/shell strontium titanate/nickel oxide (SrTiO3-NiO) nanofibers. In coaxial method, poly (vinyl pyrrolidone) (PVP) was dissolved in deionized (DI) water, and then titanium (IV) isopropoxide [C12H28O4Ti] and strontium nitrate [Sr(NO3)2] were added into the solution to form the inner (core) layer. For outer (shell) solution, polyacrylonitrile (PAN) polymer was dissolved in dimethylformamide (DMF) at a weight ratio of 10:90 and then nickel oxide was mixed with the solution. Ultraviolet (UV) spectrophotometry and static contact angle measurement techniques were employed to characterize the structural properties of photocatalysts produced by both methods and a comparison was made between the two photocatalysts. The morphology and diameter of the nanofibers were observed by scanning electron microscopy (SEM). The structure and crystallinity of the calcined nanofibers were also observed

  5. Quarkonium h states as arbiters of exoticity

    NASA Astrophysics Data System (ADS)

    Lebed, Richard F.; Swanson, Eric S.

    2017-09-01

    The mass splitting between the quarkonium spin-singlet state h (JP C=1+-) and the spin average of the quarkonium spin-triplet states χ (JP C=0++,1++,2++) is seen to be astonishingly small, not only in the charmonium and bottomonium cases where the relevant masses have been measured, but in positronium as well. We find, both in nonrelativistic quark models and in nonrelativistic quantum chromodynamics (NRQCD), that this hyperfine splitting is so small that it can be used as a test of the pure Q Q ¯ content of the states. We discuss the 2 P states of charmonium in the vicinity of 3.9 GeV, where the putative exotics X (3872 ) and X (3915 ) have been seen and a new χc 0(2 P ) candidate has been observed at Belle.

  6. Development of a new flux splitting scheme

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Steffen, Christopher J., Jr.

    1991-01-01

    The successful use of a novel splitting scheme, the advection upstream splitting method, for model aerodynamic problems where Van Leer and Roe schemes had failed previously is discussed. The present scheme is based on splitting in which the convective and pressure terms are separated and treated differently depending on the underlying physical conditions. The present method is found to be both simple and accurate.

  7. Measurement of Nitrogen Hyperfine Structure on the 53 CM (562 MHz) Butyronitrile Line

    NASA Astrophysics Data System (ADS)

    Dewberry, Christopher T.; Grubbs, Garry S. Grubbs, II; Raphelt, Andrew; Cooke, Stephen A.

    2009-06-01

    Recent improvements to our cavity-based Fourier transform radiofrequency spectrometer will be presented. Amongst other improvements use of Miteq amp, model AMF-6F-00100400-10-10P (0.1 GHz to 4 GHz, 65 dB gain minimum, 1 dB noise figure maximum) together with shielding from an improved Faraday cage have significantly helped us in this regard. Electromagnetic fields within our near-spherical cavity have been modeled and results will be presented. We have been able to easily resolve the nitrogen hyperfine structure on the ^aQ_{0,-1} transition 1_{1,0} ← 1_{1,1} located at 562 MHz. This result will be discussed.

  8. Chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) quantify split solid objects.

    PubMed

    Cacchione, Trix; Hrubesch, Christine; Call, Josep

    2013-01-01

    Recent research suggests that gorillas' and orangutans' object representations survive cohesion violations (e.g., a split of a solid object into two halves), but that their processing of quantities may be affected by them. We assessed chimpanzees' (Pan troglodytes) and bonobos' (Pan paniscus) reactions to various fission events in the same series of action tasks modelled after infant studies previously run on gorillas and orangutans (Cacchione and Call in Cognition 116:193-203, 2010b). Results showed that all four non-human great ape species managed to quantify split objects but that their performance varied as a function of the non-cohesiveness produced in the splitting event. Spatial ambiguity and shape invariance had the greatest impact on apes' ability to represent and quantify objects. Further, we observed species differences with gorillas performing lower than other species. Finally, we detected a substantial age effect, with ape infants below 6 years of age being outperformed by both juvenile/adolescent and adult apes.

  9. Circularly split-ring-resonator-based frequency-reconfigurable antenna

    NASA Astrophysics Data System (ADS)

    Rahman, M. A.; Faruque, M. R. I.; Islam, M. T.

    2017-01-01

    In this paper, an antenna with frequency configurability in light of a circularly split-ring resonator (CSRR) is introduced. The proposed reconfigurable monopole antenna consists of a microstrip-fed hook-shaped structure and a CSRR having single reconfigurable split only. A new band of radiation unlike the band radiated from monopole only is observed due to magnetic coupling between the CSRR and the monopole antenna. The resonance frequency of the CSRR can be arbitrarily chosen by varying the dimension and relative position of its gap with the monopole, which leads the antenna to become reconfigurable one. By using a single switch with perfect electric conductor at the gap of CSRR cell, the effect of CSRR can be deactivated and, hence, it is possible to suppress the corresponding resonance, resulting in a frequency-reconfigurable antenna. Commercially available Computer Simulation Technology microwave studio based on finite integration technique was adopted throughout the study.

  10. Generalized field-splitting algorithms for optimal IMRT delivery efficiency.

    PubMed

    Kamath, Srijit; Sahni, Sartaj; Li, Jonathan; Ranka, Sanjay; Palta, Jatinder

    2007-09-21

    Intensity-modulated radiation therapy (IMRT) uses radiation beams of varying intensities to deliver varying doses of radiation to different areas of the tissue. The use of IMRT has allowed the delivery of higher doses of radiation to the tumor and lower doses to the surrounding healthy tissue. It is not uncommon for head and neck tumors, for example, to have large treatment widths that are not deliverable using a single field. In such cases, the intensity matrix generated by the optimizer needs to be split into two or three matrices, each of which may be delivered using a single field. Existing field-splitting algorithms used the pre-specified arbitrary split line or region where the intensity matrix is split along a column, i.e., all rows of the matrix are split along the same column (with or without the overlapping of split fields, i.e., feathering). If three fields result, then the two splits are along the same two columns for all rows. In this paper we study the problem of splitting a large field into two or three subfields with the field width as the only constraint, allowing for an arbitrary overlap of the split fields, so that the total MU efficiency of delivering the split fields is maximized. Proof of optimality is provided for the proposed algorithm. An average decrease of 18.8% is found in the total MUs when compared to the split generated by a commercial treatment planning system and that of 10% is found in the total MUs when compared to the split generated by our previously published algorithm.

  11. Charge and Spin Currents in Open-Shell Molecules:  A Unified Description of NMR and EPR Observables.

    PubMed

    Soncini, Alessandro

    2007-11-01

    The theory of EPR hyperfine coupling tensors and NMR nuclear magnetic shielding tensors of open-shell molecules in the limit of vanishing spin-orbit coupling (e.g., for organic radicals) is analyzed in terms of spin and charge current density vector fields. The ab initio calculation of the spin and charge current density response has been implemented at the Restricted Open-Shell Hartree-Fock, Unrestricted Hartree-Fock, and unrestricted GGA-DFT level of theory. On the basis of this formalism, we introduce the definition of nuclear hyperfine coupling density, a scalar function of position providing a partition of the EPR observable over the molecular domain. Ab initio maps of spin and charge current density and hyperfine coupling density for small radicals are presented and discussed in order to illustrate the interpretative advantages of the newly introduced approach. Recent NMR experiments providing evidence for the existence of diatropic ring currents in the open-shell singlet pancake-bonded dimer of the neutral phenalenyl radical are directly assessed via the visualization of the induced current density.

  12. Free Radical Metabolism of Methyleugenol and Related Compounds

    PubMed Central

    2015-01-01

    Methyleugenol, the methyl ether of eugenol, both of which are flavorant constituents of spices, has been listed by the National Toxicology Program’s Report on Carcinogens as reasonably anticipated to be a human carcinogen. This finding is based on the observation of increased incidence of malignant tumors at multiple tissue sites in experimental animals of different species. By contrast, eugenol is not listed. In this study, we show that both methyleugenol and eugenol readily undergo peroxidative metabolism in vitro to form free radicals with large hyperfine interactions of the methylene allylic hydrogen atoms. These large hyperfine splittings indicate large electron densities adjacent to those hydrogen atoms. Methyleugenol undergoes autoxidation such that the commercial product contains 10–30 mg/L hydroperoxide and is capable of activating peroxidases without the presence of added hydrogen peroxide. Additionally, the hydroperoxide is not a good substrate for catalase, which demonstrates that these antioxidant defenses will not be effective in protecting against methyleugenol exposure. PMID:24564854

  13. Identification of the substrate radical intermediate derived from ethanolamine during catalysis by ethanolamine ammonia-lyase.

    PubMed

    Bender, Güneş; Poyner, Russell R; Reed, George H

    2008-10-28

    Rapid-mix freeze-quench (RMFQ) methods and electron paramagnetic resonance (EPR) spectroscopy have been used to characterize the steady-state radical in the deamination of ethanolamine catalyzed by adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL). EPR spectra of the radical intermediates formed with the substrates, [1-13C]ethanolamine, [2-13C]ethanolamine, and unlabeled ethanolamine were acquired using RMFQ trapping methods from 10 ms to completion of the reaction. Resolved 13C hyperfine splitting in EPR spectra of samples prepared with [1-13C]ethanolamine and the absence of such splitting in spectra of samples prepared with [2-13C]ethanolamine show that the unpaired electron is localized on C1 (the carbinol carbon) of the substrate. The 13C splitting from C1 persists from 10 ms throughout the time course of substrate turnover, and there was no evidence of a detectable amount of a product like radical having unpaired spin on C2. These results correct an earlier assignment for this radical intermediate [Warncke, K., et al. (1999) J. Am. Chem. Soc. 121, 10522-10528]. The EPR signals of the substrate radical intermediate are altered by electron spin coupling to the other paramagnetic species, cob(II)alamin, in the active site. The dipole-dipole and exchange interactions as well as the 1-13C hyperfine splitting tensor were analyzed via spectral simulations. The sign of the isotropic exchange interaction indicates a weak ferromagnetic coupling of the two unpaired electrons. A Co2+-radical distance of 8.7 A was obtained from the magnitude of the dipole-dipole interaction. The orientation of the principal axes of the 13C hyperfine splitting tensor shows that the long axis of the spin-bearing p orbital on C1 of the substrate radical makes an angle of approximately 98 degrees with the unique axis of the d(z2) orbital of Co2+.

  14. Prospective randomized comparison of scar appearances between cograft of acellular dermal matrix with autologous split-thickness skin and autologous split-thickness skin graft alone for full-thickness skin defects of the extremities.

    PubMed

    Yi, Ju Won; Kim, Jae Kwang

    2015-03-01

    The purpose of this study was to evaluate the clinical outcomes of cografting of acellular dermal matrix with autologous split-thickness skin and autologous split-thickness skin graft alone for full-thickness skin defects on the extremities. In this prospective randomized study, 19 consecutive patients with full-thickness skin defects on the extremities following trauma underwent grafting using either cograft of acellular dermal matrix with autologous split-thickness skin graft (nine patients, group A) or autologous split-thickness skin graft alone (10 patients, group B) from June of 2011 to December of 2012. The postoperative evaluations included observation of complications (including graft necrosis, graft detachment, or seroma formation) and Vancouver Scar Scale score. No statistically significant difference was found regarding complications, including graft necrosis, graft detachment, or seroma formation. At week 8, significantly lower Vancouver Scar Scale scores for vascularity, pliability, height, and total score were found in group A compared with group B. At week 12, lower scores for pliability and height and total scores were identified in group A compared with group B. For cases with traumatic full-thickness skin defects on the extremities, a statistically significant better result was achieved with cograft of acellular dermal matrix with autologous split-thickness skin graft than with autologous split-thickness skin graft alone in terms of Vancouver Scar Scale score. Therapeutic, II.

  15. Delocalization of Coherent Triplet Excitons in Linear Rigid Rod Conjugated Oligomers.

    PubMed

    Hintze, Christian; Korf, Patrick; Degen, Frank; Schütze, Friederike; Mecking, Stefan; Steiner, Ulrich E; Drescher, Malte

    2017-02-02

    In this work, the triplet state delocalization in a series of monodisperse oligo(p-phenyleneethynylene)s (OPEs) is studied by pulsed electron paramagnetic resonance (EPR) and pulsed electron nuclear double resonance (ENDOR) determining zero-field splitting, optical spin polarization, and proton hyperfine couplings. Neither the zero-field splitting parameters nor the optical spin polarization change significantly with OPE chain length, in contrast to the hyperfine coupling constants, which showed a systematic decrease with chain length n according to a 2/(1 + n) decay law. The results provide striking evidence for the Frenkel-type nature of the triplet excitons exhibiting full coherent delocalization in the OPEs under investigation with up to five OPE repeat units and with a spin density distribution described by a nodeless particle in the box wave function. The same model is successfully applied to recently published data on π-conjugated porphyrin oligomers.

  16. Hyperfine Structure in the Pure Rotational Spectrum of 208Pb35Cl

    NASA Astrophysics Data System (ADS)

    Dewberry, Christopher T.; Grubbs, Garry S., II; Etchison, Kerry C.; Cooke, Stephen A.

    2010-06-01

    Initially in our laboratory the pure rotational spectrum of the title molecule was studied using a Balle-Flygare Fourier transform microwave spectrometer. Analysis was troublesome and so the spectrum was remeasured using a chirped pulse Fourier transform microwave (CP-FTMW) spectrometer. The correct intensity aspect of the CP-FTMW experiment allowed successful quantum number assignments for the hyperfine structure for the correct isotopologue. Spectroscopic constants have been obtained from a fit to a data set consisting of our measurements combined with those of a prior study on the X_2^2Π3/2 → X_1^2Π_{1/2 fine structure transitions. K. Ziebarth, K. D. Setzer, O. Shestakov and E. H. Fink J. Mol. Spectrosc., 191 108, 1998.

  17. Using Divertor Strike Point Splitting to Study Plasma Response and Its Sensitivity to Equilibrium Uncertainties

    NASA Astrophysics Data System (ADS)

    Teklu, Abraham; Orlov, D. M.; Moyer, R. A.; Bykov, I.; Evans, T. E.; Wu, W.; Trevisan, G. L.; Lyons, B. C.; Abrams, T.; Makowski, M. A.; Lasnier, C. S.; Fenstermacher, M. E.

    2017-10-01

    Resonant magnetic perturbations (RMPs) from 3D coils have been varied to modify the splitting of the divertor strike points in DIII-D. This splitting is imaged in filtered visible and infrared emission from the divertor to determine the particle and heat flux patterns on the target plates. The observed splitting is compared to vacuum and plasma response modeling in discharges where a subset of the RMP coils were ramped to shift the divertor footprints from dominantly n = 3 to n = 2 pattern. These results will be used to determine if the plasma response model can be validated with the measured splitting. We will also study the sensitivity of the modeled splitting to details of the 2D equilibrium. This RMP ramp technique could be used in ITER to spread out the heat flux while avoiding excessive forces on the RMP coils. Work supported by U.S. DOE under the Science Undergraduate Laboratory Internship (SULI) program and DE-FC02-04ER54698, DE-FG02-07ER54917, DE-FG02-05ER54809 and DE-AC52-07NA27344.

  18. Determining the Topology of Integral Membrane Peptides Using EPR Spectroscopy

    PubMed Central

    Inbaraj, Johnson J.; Cardon, Thomas B.; Laryukhin, Mikhail; Grosser, Stuart M.

    2008-01-01

    This paper reports on the development of a new structural biology technique for determining the membrane topology of an integral membrane protein inserted into magnetically aligned phospholipid bilayers (bicelles) using EPR spectroscopy. The nitroxide spin probe, 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amino-4-carboxylic acid (TOAC) was attached to the pore-lining transmembrane domain (M2δ) of the nicotinic acetylcholine receptor (AChR) and incorporated into a bicelle. The corresponding EPR spectra revealed hyperfine splittings that were highly dependent on the macroscopic orientation of the bicelles with respect to the static magnetic field. The helical tilt of the peptide can be easily calculated using the hyperfine splittings gleaned from the orientational dependent EPR spectra. A helical tilt of 14° was calculated for the M2δ peptide with respect to the bilayer normal of the membrane, which agrees well with previous 15N solid-state NMR studies. The helical tilt of the peptide was verified by simulating the corresponding EPR spectra using the standardized MOMD approach. This new method is advantageous because: (1) bicelle samples are easy to prepare, (2) the helical tilt can be directly calculated from the orientational-dependent hyperfine splitting in the EPR spectra, and (3) EPR spectroscopy is approximately 1000 fold more sensitive than 15N solid-state NMR spectroscopy; thus, the helical tilt of an integral membrane peptide can be determined with only 100 μg of peptide. The helical tilt can be determined more accurately by placing TOAC spin labels at several positions with this technique. PMID:16848493

  19. Imaging nanobubble nucleation and hydrogen spillover during electrocatalytic water splitting.

    PubMed

    Hao, Rui; Fan, Yunshan; Howard, Marco D; Vaughan, Joshua C; Zhang, Bo

    2018-06-05

    Nucleation and growth of hydrogen nanobubbles are key initial steps in electrochemical water splitting. These processes remain largely unexplored due to a lack of proper tools to probe the nanobubble's interfacial structure with sufficient spatial and temporal resolution. We report the use of superresolution microscopy to image transient formation and growth of single hydrogen nanobubbles at the electrode/solution interface during electrocatalytic water splitting. We found hydrogen nanobubbles can be generated even at very early stages in water electrolysis, i.e., ∼500 mV before reaching its thermodynamic reduction potential. The ability to image single nanobubbles on an electrode enabled us to observe in real time the process of hydrogen spillover from ultrathin gold nanocatalysts supported on indium-tin oxide.

  20. 10 CFR 26.113 - Splitting the urine specimen.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Splitting the urine specimen. 26.113 Section 26.113 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.113 Splitting the urine specimen. (a) Licensees and other entities may, but are not required to, use split...

  1. 10 CFR 26.113 - Splitting the urine specimen.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Splitting the urine specimen. 26.113 Section 26.113 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.113 Splitting the urine specimen. (a) Licensees and other entities may, but are not required to, use split...

  2. 10 CFR 26.113 - Splitting the urine specimen.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Splitting the urine specimen. 26.113 Section 26.113 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.113 Splitting the urine specimen. (a) Licensees and other entities may, but are not required to, use split...

  3. 10 CFR 26.113 - Splitting the urine specimen.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Splitting the urine specimen. 26.113 Section 26.113 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.113 Splitting the urine specimen. (a) Licensees and other entities may, but are not required to, use split...

  4. 10 CFR 26.113 - Splitting the urine specimen.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Splitting the urine specimen. 26.113 Section 26.113 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Collecting Specimens for Testing § 26.113 Splitting the urine specimen. (a) Licensees and other entities may, but are not required to, use split...

  5. Lower extremity sagittal joint moment production during split-belt treadmill walking

    PubMed Central

    Roemmich, Ryan T.; Stegemöller, Elizabeth L.; Hass, Chris J.

    2012-01-01

    The split-belt treadmill (SBT) has recently been used to rehabilitate locomotor asymmetries in clinical populations. However, the joint mechanics produced while walking on a SBT are not well-understood. The purpose of this study was to investigate the lower extremity sagittal joint moments produced by each limb during SBT walking and provide insight as to how these joint moment patterns may be useful in rehabilitating unilateral gait deficits. Thirteen healthy young volunteers walked on the SBT with the belts tied and in a “SPLIT” session in which one belt moved twice as fast as the other. Sagittal lower extremity joint moment and ground reaction force impulses were then calculated over the braking and propulsive phases of the gait cycle. Paired t-tests were performed to analyze magnitude differences between conditions (i.e. the fast and slow limbs during SPLIT vs. the same limb during tied-belt walking) and between the fast and slow limbs during SPLIT. During the SPLIT session, the fast limb produced higher ground reaction force and ankle moment impulses during the propulsive and braking phases, and lower knee moment impulses during the propulsive phase when compared to the slow limb. The knee moment impulse was also significantly higher during braking in the slow limb than in the fast limb. The mechanics of each limb during the SPLIT session also differed from the mechanics observed when the belt speeds were tied. Based on these findings, we suggest that each belt may have intrinsic value in rehabilitating specific unilateral locomotor deficits. PMID:22985473

  6. Initial high-degree p-mode frequency splittings from the 1988 Mt. Wilson 60-foot Tower Solar Oscillation Program

    NASA Technical Reports Server (NTRS)

    Rhodes, Edward J., Jr.; Cacciani, Alessandro; Korzennik, Sylvain G.

    1988-01-01

    The initial frequency splitting results of solar p-mode oscillations obtained from the 1988 helioseismology program at the Mt. Wilson Observatory are presented. The frequency splittings correspond to the rotational splittings of sectoral harmonics which range in degree between 10 and 598. They were obtained from a cross-correlation analysis of the prograde and retrograde portions of a two-dimensional (t - v) power spectrum. This power spectrum was computed from an eight-hour sequence of full-disk Dopplergrams obtained on July 2, 1988, at the 60-foot tower telescope with a Na magneto-optical filter and a 1024x1024 pixel CCD camera. These frequency splittings have an inherently larger scatter than did the splittings obtained from earlier 16-day power spectra. These splittings are consistent with an internal solar rotational velocity which is independent of radius along the equatorial plane. The normalized frequency splittings averaged 449 + or - 3 nHz, a value which is very close to the observed equatorial rotation rate of the photospheric gas of 451.7 nHz.

  7. Mineralogical characterization of Greda clays and monitoring of their phase transformations on thermal treatment

    NASA Astrophysics Data System (ADS)

    Panduro, E. Chavez; Cabrejos, J. Bravo

    2010-01-01

    The mineralogical characterization of two clay samples from the Central Andean Region of Peru, denominated White Greda and Red Greda, is reported. These clays contain the clay minerals mica and illite respectively. Both clays were treated thermally in an oxidising atmosphere under controlled conditions up to 1,100°C with the purpose of obtaining information about structural changes that may be useful for pottery manufacture. X-ray fluorescence was used for the elemental characterization of the samples and X-ray diffractometry was used to determine the collapse and formation of the mineral phases present in the samples caused by thermal treatment. At temperatures above 1,000°C it is observed the formation of spinel in the case of White Greda and of hematite, corundum and cristobalite in the case of Red Greda. Room temperature transmission Mössbauer spectroscopy allowed the monitoring of the variation of the hyperfine parameters with the thermal treatment temperature; In the case of the evolution of the quadruple splitting of the paramagnetic Fe3 + sites with temperature, in both clays, the analyses reproduced results such as the “camel back” curve shape, found by other workers (Wagner and Wagner, Hyperfine Interact 154:35-82, 2004; Wagner and Kyek, Hyperfine Interact 154:5-33, 2004).

  8. Shear-wave splitting and moonquakes

    NASA Astrophysics Data System (ADS)

    Dimech, J. L.; Weber, R. C.; Savage, M. K.

    2017-12-01

    Shear-wave splitting is a powerful tool for measuring anisotropy in the Earth's crust and mantle, and is sensitive to geological features such as fluid filled cracks, thin alternating layers of rock with different elastic properties, and preferred mineral orientations caused by strain. Since a shear wave splitting measurement requires only a single 3-component seismic station, it has potential applications for future single-station planetary seismic missions, such as the InSight geophysical mission to Mars, as well as possible future missions to Europa and the Moon. Here we present a preliminary shear-wave splitting analysis of moonquakes detected by the Apollo Passive Seismic Experiment. Lunar seismic data suffers from several drawbacks compared to modern terrestrial data, including severe seismic scattering, low intrinsic attenuation, 10-bit data resolution, thermal spikes, and timing errors. Despite these drawbacks, we show that it is in principle possible to make a shear wave splitting measurement using the S-phase arrival of a relatively high-quality moonquake, as determined by several agreeing measurement criteria. Encouraged by this finding, we further extend our analysis to clusters of "deep moonquake" events by stacking multiple events from the same cluster together to further enhance the quality of the S-phase arrivals that the measurement is based on.

  9. Magnetic moment of {sup 104}Ag{sup m} and the hyperfine magnetic field of Ag in Fe using nuclear magnetic resonance on oriented nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovko, V. V.; Kraev, I. S.; Phalet, T.

    2010-05-15

    Nuclear magnetic resonance (NMR/ON) measurements with beta- and gamma-ray detection have been performed on oriented {sup 104}Ag{sup g,m} nuclei with the NICOLE {sup 3}He-{sup 4}He dilution refrigerator setup at ISOLDE/CERN. For {sup 104}Ag{sup g} (I{sup p}i=5{sup +}) the gamma-NMR/ON resonance signal was found at nu=266.70(5) MHz. Combining this result with the known magnetic moment for this isotope, the magnetic hyperfine field of Ag impurities in an Fe host at low temperature (<1 K) is found to be |B{sub hf}(AgFe)|=44.709(35) T. A detailed analysis of other relevant data available in the literature yields three more values for this hyperfine field. Averagingmore » all four values yields a new and precise value for the hyperfine field of Ag in Fe; that is, |B{sub hf}(AgFe)|=44.692(30) T. For {sup 104}Ag{sup m} (I{sup p}i=2{sup +}), the anisotropy of the beta particles provided the NMR/ON resonance signal at nu=627.7(4) MHz. Using the new value for the hyperfine field of Ag in Fe, this frequency corresponds to the magnetic moment mu({sup 104m}Ag)=+3.691(3) mu{sub N}, which is significantly more precise than previous results. The magnetic moments of the even-A {sup 102-110}Ag isotopes are discussed in view of the competition between the (pig{sub 9/2}){sub 7/2}{sup +-3}(nud{sub 5/2}nug{sub 7/2}){sub 5/2}{sup +} and the (pig{sub 9/2}){sub 9/2}{sup +-3}(nud{sub 5/2}nug{sub 7/2}){sub 5/2}{sup +} configurations. The magnetic moments of the ground and isomeric states of {sup 104}Ag can be explained by an almost complete mixing of these two configurations.« less

  10. Split-plot designs for robotic serial dilution assays.

    PubMed

    Buzas, Jeffrey S; Wager, Carrie G; Lansky, David M

    2011-12-01

    This article explores effective implementation of split-plot designs in serial dilution bioassay using robots. We show that the shortest path for a robot to fill plate wells for a split-plot design is equivalent to the shortest common supersequence problem in combinatorics. We develop an algorithm for finding the shortest common supersequence, provide an R implementation, and explore the distribution of the number of steps required to implement split-plot designs for bioassay through simulation. We also show how to construct collections of split plots that can be filled in a minimal number of steps, thereby demonstrating that split-plot designs can be implemented with nearly the same effort as strip-plot designs. Finally, we provide guidelines for modeling data that result from these designs. © 2011, The International Biometric Society.

  11. Stripline split-ring resonator with integrated optogalvanic sample cell

    NASA Astrophysics Data System (ADS)

    Persson, Anders; Berglund, Martin; Thornell, Greger; Possnert, Göran; Salehpour, Mehran

    2014-04-01

    Intracavity optogalvanic spectroscopy (ICOGS) has been proposed as a method for unambiguous detection of rare isotopes. Of particular interest is 14C, where detection of extremely low concentrations in the 1:1015 range (14C: 12C), is of interest in, e.g., radiocarbon dating and pharmaceutical sciences. However, recent reports show that ICOGS suffers from substantial problems with reproducibility. To qualify ICOGS as an analytical method, more stable and reliable plasma generation and signal detection are needed. In our proposed setup, critical parameters have been improved. We have utilized a stripline split-ring resonator microwave-induced microplasma source to excite and sustain the plasma. Such a microplasma source offers several advantages over conventional ICOGS plasma sources. For example, the stripline split-ring resonator concept employs separated plasma generation and signal detection, which enables sensitive detection at stable plasma conditions. The concept also permits in situ observation of the discharge conditions, which was found to improve reproducibility. Unique to the stripline split-ring resonator microplasma source in this study, is that the optogalvanic sample cell has been embedded in the device itself. This integration enables improved temperature control and more stable and accurate signal detection. Significant improvements are demonstrated, including reproducibility, signal-to-noise ratio, and precision.

  12. Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, Patrick J.; Kribs, Graham D.; Martin, Adam

    2014-10-07

    Motivated by the observation that the Higgs quartic coupling runs to zero at an intermediate scale, we propose a new framework for models of split supersymmetry, in which gauginos acquire intermediate scale Dirac masses ofmore » $$\\sim 10^{8-11}$$ GeV. Scalar masses arise from one-loop finite contributions as well as direct gravity-mediated contributions. Like split supersymmetry, one Higgs doublet is fine-tuned to be light. The scale at which the Dirac gauginos are introduced to make the Higgs quartic zero is the same as is necessary for gauge coupling unification. Thus, gauge coupling unification persists (nontrivially, due to adjoint multiplets), though with a somewhat higher unification scale $$\\gtrsim 10^{17}$$ GeV. The $$\\mu$$-term is naturally at the weak scale, and provides an opportunity for experimental verification. We present two manifestations of Split Dirac Supersymmetry. In the "Pure Dirac" model, the lightest Higgsino must decay through R-parity violating couplings, leading to an array of interesting signals in colliders. In the "Hypercharge Impure" model, the bino acquires a Majorana mass that is one-loop suppressed compared with the Dirac gluino and wino. This leads to weak scale Higgsino dark matter whose overall mass scale, as well as the mass splitting between the neutral components, is naturally generated from the same UV dynamics. We outline the challenges to discovering pseudo-Dirac Higgsino dark matter in collider and dark matter detection experiments.« less

  13. 7 CFR 51.2731 - U.S. Spanish Splits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false U.S. Spanish Splits. 51.2731 Section 51.2731... STANDARDS) United States Standards for Grades of Shelled Spanish Type Peanuts Grades § 51.2731 U.S. Spanish Splits. “U.S. Spanish Splits” consists of shelled Spanish type peanut kernels which are split or broken...

  14. Huygens’ Metasurfaces Enabled by Magnetic Dipole Resonance Tuning in Split Dielectric Nanoresonators

    DOE PAGES

    Liu, Sheng; Vaskin, Aleksandr; Campione, Salvatore; ...

    2017-06-07

    Dielectric metasurfaces that exploit the different Mie resonances of nanoscale dielectric resonators are a powerful platform for manipulating electromagnetic fields and can provide novel optical behavior. Here in this work, we experimentally demonstrate independent tuning of the magnetic dipole resonances relative to the electric dipole resonances of split dielectric resonators (SDRs). By increasing the split dimension, we observe a blue shift of the magnetic dipole resonance toward the electric dipole resonance. Therefore, SDRs provide the ability to directly control the interaction between the two dipole resonances within the same resonator. For example, we achieve the first Kerker condition by spectrallymore » overlapping the electric and magnetic dipole resonances and observe significantly suppressed backward scattering. Moreover, we show that a single SDR can be used as an optical nanoantenna that provides strong unidirectional emission from an electric dipole source.« less

  15. Grafting of burns with widely meshed autograft split skin and Langerhans cell-depressed allograft split skin overlay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alsbjoern, B.F.S.; Sorensen, B.

    1986-12-01

    Extensively burned patients suffer from lack of sufficient autologous donor skin. Meshing and wide expansion of the obtained split skin has met the requirement to a large degree. However, the wider the expansion, the less chance of a proper take. By covering widely expanded autografts with viable cadaver split skin, the take has been improved. If the epidermal Langerhans cells in the cadaver split skin are depressed by ultraviolet B light and glucocorticosteroids before grafting, a prolonged allograft take can be achieved and the healing of the underlying autografts is ensured for an extended period. Grafting results in 6 patientsmore » with extensive burns are reported.« less

  16. Numerical simulation and experiment on multilayer stagger-split die.

    PubMed

    Liu, Zhiwei; Li, Mingzhe; Han, Qigang; Yang, Yunfei; Wang, Bolong; Sui, Zhou

    2013-05-01

    A novel ultra-high pressure device, multilayer stagger-split die, has been constructed based on the principle of "dividing dies before cracking." Multilayer stagger-split die includes an encircling ring and multilayer assemblages, and the mating surfaces of the multilayer assemblages are mutually staggered between adjacent layers. In this paper, we investigated the stressing features of this structure through finite element techniques, and the results were compared with those of the belt type die and single split die. The contrast experiments were also carried out to test the bearing pressure performance of multilayer stagger-split die. It is concluded that the stress distributions are reasonable and the materials are utilized effectively for multilayer stagger-split die. And experiments indicate that the multilayer stagger-split die can bear the greatest pressure.

  17. Observed Ωc0 resonances as pentaquark states

    NASA Astrophysics Data System (ADS)

    An, C. S.; Chen, H.

    2017-08-01

    In the present work, we investigate the spectrum of several low-lying s s c q q ¯ pentaquark configurations employing the constituent quark model, within which the hyperfine interaction between quarks is taken to be mediated by Goldstone boson exchange. Our numerical results show that four s s c q q ¯ configurations with JP=1 /2- or JP=3 /2- lie at energies very close to the recently observed five Ωc0 states by the LHCb Collaboration; this indicates that the s s c q q ¯ pentaquark configurations may form sizable components of the observed Ωc0 resonances.

  18. On split regular BiHom-Lie superalgebras

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chen, Liangyun; Zhang, Chiping

    2018-06-01

    We introduce the class of split regular BiHom-Lie superalgebras as the natural extension of the one of split Hom-Lie superalgebras and the one of split Lie superalgebras. By developing techniques of connections of roots for this kind of algebras, we show that such a split regular BiHom-Lie superalgebra L is of the form L = U +∑ [ α ] ∈ Λ / ∼I[α] with U a subspace of the Abelian (graded) subalgebra H and any I[α], a well described (graded) ideal of L, satisfying [I[α] ,I[β] ] = 0 if [ α ] ≠ [ β ] . Under certain conditions, in the case of L being of maximal length, the simplicity of the algebra is characterized and it is shown that L is the direct sum of the family of its simple (graded) ideals.

  19. Magneto-optic transmittance modulation observed in a hybrid graphene–split ring resonator terahertz metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zanotto, Simone; Pitanti, Alessandro; Lange, Christoph

    2015-09-21

    By placing a material in close vicinity of a resonant optical element, its intrinsic optical response can be tuned, possibly to a wide extent. Here, we show that a graphene monolayer, spaced a few tenths of nanometers from a split ring resonator metasurface, exhibits a magneto-optical response which is strongly influenced by the presence of the metasurface itself. This hybrid system holds promises in view of thin optical modulators, polarization rotators, and nonreciprocal devices, in the technologically relevant terahertz spectral range. Moreover, it could be chosen as the playground for investigating the cavity electrodynamics of Dirac fermions in the quantummore » regime.« less

  20. WWSSF - a worldwide study on radioisotopic renal split function: reproducibility of renal split function assessment in children.

    PubMed

    Geist, Barbara Katharina; Dobrozemsky, Georg; Samal, Martin; Schaffarich, Michael P; Sinzinger, Helmut; Staudenherz, Anton

    2015-12-01

    The split or differential renal function is the most widely accepted quantitative parameter derived from radionuclide renography. To examine the intercenter variance of this parameter, we designed a worldwide round robin test. Five selected dynamic renal studies have been distributed all over the world by e-mail. Three of these studies are anonymized patient data acquired using the EANM standardized protocol and two studies are phantom studies. In a simple form, individual participants were asked to measure renal split function as well as to provide additional information such as data analysis software, positioning of background region of interest, or the method of calculation. We received the evaluation forms from 34 centers located in 21 countries. The analysis of the round robin test yielded an overall z-score of 0.3 (a z-score below 1 reflecting a good result). However, the z-scores from several centers were unacceptably high, with values greater than 3. In particular, the studies with impaired renal function showed a wide variance. A wide variance in the split renal function was found in patients with impaired kidney function. This study indicates the ultimate importance of quality control and standardization of the measurement of the split renal function. It is especially important with respect to the commonly accepted threshold for significant change in split renal function by 10%.

  1. Hyperfine interactions and electric dipole moments in the [16.0]1.5(v = 6), [16.0]3.5(v = 7), and X2Δ(5/2) states of iridium monosilicide, IrSi.

    PubMed

    Le, Anh; Steimle, Timothy C; Morse, Michael D; Garcia, Maria A; Cheng, Lan; Stanton, John F

    2013-12-19

    The (6,0)[16.0]1.5-X(2)Δ(5/2) and (7,0)[16.0]3.5-X(2)Δ(5/2) bands of IrSi have been recorded using high-resolution laser-induced fluorescence spectroscopy. The field-free spectra of the (191)IrSi and (193)IrSi isotopologues were modeled to generate a set of fine, magnetic hyperfine, and nuclear quadrupole hyperfine parameters for the X(2)Δ(5/2)(v = 0), [16.0]1.5(v = 6), and [16.0]3.5 (v = 7) states. The observed optical Stark shifts for the (193)IrSi and (191)IrSi isotopologues were analyzed to produce the permanent electric dipole moments, μ(el), of -0.414(6) D and 0.782(6) D for the X(2)Δ(5/2) and [16.0]1.5 (v = 6) states, respectively. Properties of the X(2)Δ(5/2) state computed using relativistic coupled-cluster methods clearly indicate that electron correlation plays an essential role. Specifically, inclusion of correlation changes the sign of the dipole moment and is essential for achieving good accuracy for the nuclear quadrupole coupling parameter eQq0.

  2. Conditional Toxin Splicing Using a Split Intein System.

    PubMed

    Alford, Spencer C; O'Sullivan, Connor; Howard, Perry L

    2017-01-01

    Protein toxin splicing mediated by split inteins can be used as a strategy for conditional cell ablation. The approach requires artificial fragmentation of a potent protein toxin and tethering each toxin fragment to a split intein fragment. The toxin-intein fragments are, in turn, fused to dimerization domains, such that addition of a dimerizing agent reconstitutes the split intein. These chimeric toxin-intein fusions remain nontoxic until the dimerizer is added, resulting in activation of intein splicing and ligation of toxin fragments to form an active toxin. Considerations for the engineering and implementation of conditional toxin splicing (CTS) systems include: choice of toxin split site, split site (extein) chemistry, and temperature sensitivity. The following method outlines design criteria and implementation notes for CTS using a previously engineered system for splicing a toxin called sarcin, as well as for developing alternative CTS systems.

  3. Split-Session Focus Group Interviews in the Naturalistic Setting of Family Medicine Offices

    PubMed Central

    Fetters, Michael D.; Guetterman, Timothy C.; Power, Debra; Nease, Donald E.

    2016-01-01

    PURPOSE When recruiting health care professionals to focus group interviews, investigators encounter challenges such as busy clinic schedules, recruitment, and a desire to get candid responses from diverse participants. We sought to overcome these challenges using an innovative, office-based, split-session focus group procedure in a project that elicited feedback from family medicine practices regarding a new preventive services model. This procedure entails allocating a portion of time to the entire group and the remaining time to individual subgroups. We discuss the methodologic procedure and the implications of using this approach for data collection. METHODS We conducted split-session focus groups with physicians and staff in 4 primary care practices. The procedure entailed 3 sessions, each lasting 30 minutes: the moderator interviewed physicians and staff together, physicians alone, and staff alone. As part of the focus group interview, we elicited and analyzed participant comments about the split-session format and collected observational field notes. RESULTS The split-session focus group interviews leveraged the naturalistic setting of the office for context-relevant discussion. We tested alternate formats that began in the morning and at lunchtime, to parallel each practice’s workflow. The split-session approach facilitated discussion of topics primarily relevant to staff among staff, topics primarily relevant to physicians among physicians, and topics common to all among all. Qualitative feedback on this approach was uniformly positive. CONCLUSION A split-session focus group interview provides an efficient, effective way to elicit candid qualitative information from all members of a primary care practice in the naturalistic setting where they work. PMID:26755786

  4. Angular Distribution of Hyperfine Magnetic Field in Fe3O4 and Fe66Ni34 from Mössbauer Polarimetry

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Satuła, D.; Dobrzyński, L.

    2004-12-01

    Experimental determination of some angular averages of hyperfine field is demonstrated. The averages relates to magnetic structure. Exemplary results of the measurements for Fe3O4 and Fe66Ni34 show that it is possible to obtain valuable information about the field magnitudes and orientations even when distributions of fields are present in the system under study.

  5. Landau level splitting in Cd3As2 under high magnetic fields

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Cao, Junzhi; Liang, Sihang; Xia, Zhengcai; Li, Liang; Xiu, Faxian

    2015-03-01

    Three-dimensional (3D) topological Dirac semimetals (TDSs) are a new kind of Dirac materials that adopt nontrivial topology in band structure and possess degenerated massless Dirac fermions in the bulk. It has been proposed that TDSs can be driven to other exotic phases like Weyl semimetals, topological insulators and topological superconductors by breaking certain symmetries. Here we report the first transport evidence of Landau level splitting in TDS Cd3As2 single crystals under high magnetic fields, suggesting the removal of spin degeneracy by breaking time reversal symmetry (TRS). The observed Landau level splitting is originated from the joint contributions of orbit and Zeeman splitting in Cd3As2. In addition, the detected Berry phase is found to vary from nontrivial to trivial at different field directions, revealing a fierce competition between the orbit-coupled field strength and the field-generated mass term. Our results demonstrate a feasible path to generate a Weyl semimetal phase based on the TDSs by breaking TRS.

  6. Enzyme-linked small-molecule detection using split aptamer ligation.

    PubMed

    Sharma, Ashwani K; Kent, Alexandra D; Heemstra, Jennifer M

    2012-07-17

    Here we report an aptamer-based analogue of the widely used sandwich enzyme-linked immunosorbent assay (ELISA). This assay utilizes the cocaine split aptamer, which is comprised of two DNA strands that only assemble in the presence of the target small molecule. One split aptamer fragment is immobilized on a microplate, then a test sample is added containing the second split aptamer fragment. If cocaine is present in the test sample, it directs assembly of the split aptamer and promotes a chemical ligation between azide and cyclooctyne functional groups appended to the termini of the split aptamer fragments. Ligation results in covalent attachment of biotin to the microplate and provides a colorimetric output upon conjugation to streptavidin-horseradish peroxidase. Using this assay, we demonstrate detection of cocaine at concentrations of 100 nM-100 μM in buffer and 1-100 μM human blood serum. The detection limit of 1 μM in serum represents an improvement of two orders of magnitude over previously reported split aptamer-based sensors and highlights the utility of covalently trapping split aptamer assembly events.

  7. A structure-preserving split finite element discretization of the split 1D linear shallow-water equations

    NASA Astrophysics Data System (ADS)

    Bauer, Werner; Behrens, Jörn

    2017-04-01

    We present a locally conservative, low-order finite element (FE) discretization of the covariant 1D linear shallow-water equations written in split form (cf. tet{[1]}). The introduction of additional differential forms (DF) that build pairs with the original ones permits a splitting of these equations into topological momentum and continuity equations and metric-dependent closure equations that apply the Hodge-star. Our novel discretization framework conserves this geometrical structure, in particular it provides for all DFs proper FE spaces such that the differential operators (here gradient and divergence) hold in strong form. The discrete topological equations simply follow by trivial projections onto piecewise constant FE spaces without need to partially integrate. The discrete Hodge-stars operators, representing the discretized metric equations, are realized by nontrivial Galerkin projections (GP). Here they follow by projections onto either a piecewise constant (GP0) or a piecewise linear (GP1) space. Our framework thus provides essentially three different schemes with significantly different behavior. The split scheme using twice GP1 is unstable and shares the same discrete dispersion relation and similar second-order convergence rates as the conventional P1-P1 FE scheme that approximates both velocity and height variables by piecewise linear spaces. The split scheme that applies both GP1 and GP0 is stable and shares the dispersion relation of the conventional P1-P0 FE scheme that approximates the velocity by a piecewise linear and the height by a piecewise constant space with corresponding second- and first-order convergence rates. Exhibiting for both velocity and height fields second-order convergence rates, we might consider the split GP1-GP0 scheme though as stable versions of the conventional P1-P1 FE scheme. For the split scheme applying twice GP0, we are not aware of a corresponding conventional formulation to compare with. Though exhibiting larger

  8. Recent Progress in Energy-Driven Water Splitting.

    PubMed

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng-Duei; Liu, Shuhua; Teng, Choon Peng; Han, Ming-Yong

    2017-05-01

    Hydrogen is readily obtained from renewable and non-renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non-renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost-effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic-integrated solar-driven water electrolysis.

  9. Mössbauer and XRD study of novel quaternary Sn-Fe-Co-Ni electroplated alloy

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Sziráki, L.; Stichleutner, S.; Homonnay, Z.; Lak, G. B.; El-Sharif, M.; Chisholm, C. U.

    2017-11-01

    Constant current electrochemical deposition technique was used to obtain quaternary alloys of Sn-Fe-Co-Ni from a gluconate electrolyte, which to date have not been reported in the literature. For the characterization of electroplated alloys, 57Fe and 119Sn Conversion Electron Mössbauer Spectroscopy (CEMS), XRD and SEM/EDAX were used. XRD revealed the amorphous character of the novel Sn-Fe-Co-Ni electrodeposited alloys. 57Fe Mössbauer spectrum of quaternary deposit with composition of 37.0 at% Sn, 38.8 at% Fe, 16.8 at% Co and 7.4 at% Ni displayed a magnetically split sextet (B = 28.9T) with broad lines typical of iron bearing ferromagnetic amorphous alloys. Magnetically split 119Sn spectra reflecting a transferred hyperfine field (B = 2.3T) were also observed. New quaternary Sn-Fe-Co-Ni alloys were successfully prepared.

  10. Field by field hybrid upwind splitting methods

    NASA Technical Reports Server (NTRS)

    Coquel, Frederic; Liou, Meng-Sing

    1993-01-01

    A new and general approach to upwind splitting is presented. The design principle combines the robustness of flux vector splitting schemes in the capture of nonlinear waves and the accuracy of some flux difference splitting schemes in the resolution of linear waves. The new schemes are derived following a general hybridization technique performed directly at the basic level of the field by field decomposition involved in FDS methods. The scheme does not use a spatial switch to be tuned up according to the local smoothness of the approximate solution.

  11. Azimuthal Anisotropy beneath the Contiguous United States Revealed by Shear Wave Splitting

    NASA Astrophysics Data System (ADS)

    Liu, K. H.; Yang, B.; Liu, Y.; Dahm, H. H.; Refayee, H. A.; Gao, S. S.

    2017-12-01

    We have produced a uniformly-measured XKS (including SKS, SKKS, and PKS) splitting database for the contiguous United States and adjacent areas. The database consists of about 30,000 pairs of splitting parameters from 3185 stations. Both the fast orientations and splitting times show systematic spatial variations. The vast majority of the fast orientations are in agreement with the absolute plate motion (APM) direction computed under a fixed hot-spot reference frame. Spatial coherency analysis of the splitting parameters indicates that for the majority of the study area, where a single layer of anisotropy with a horizontal axis of symmetry is inferred, the source of anisotropy is located in the rheologically transitional zone between the lithosphere and asthenosphere. Beneath the western U.S., the previously recognized semi-circular feature of the fast orientations has a much greater spatial coverage, extending to northern Mexico and the Rio Grande Rift. The fast orientations are parallel to the western, southern, and southeastern edges of the North American Craton and can be interpreted by simple shear strain associated with mantle flow around the cratonic keel. The combination of anisotropy induced by this around keel flow and the APM can effectively explain the E-W fast orientations beneath the southern margin of the North American Craton and NE U.S., as well as the nearly N-S fast orientations and small splitting times observed in the SE U.S. The splitting times show a systematic decrease from both the western and eastern U.S. toward the central U.S., where the thickness of the lithosphere is the largest in the study area. This trend can be explained by the reduced efficiency of anisotropy development at greater depth, as well as by the lack of around keel flow in the continental interior.

  12. Automatic detection of cone photoreceptors in split detector adaptive optics scanning light ophthalmoscope images.

    PubMed

    Cunefare, David; Cooper, Robert F; Higgins, Brian; Katz, David F; Dubra, Alfredo; Carroll, Joseph; Farsiu, Sina

    2016-05-01

    Quantitative analysis of the cone photoreceptor mosaic in the living retina is potentially useful for early diagnosis and prognosis of many ocular diseases. Non-confocal split detector based adaptive optics scanning light ophthalmoscope (AOSLO) imaging reveals the cone photoreceptor inner segment mosaics often not visualized on confocal AOSLO imaging. Despite recent advances in automated cone segmentation algorithms for confocal AOSLO imagery, quantitative analysis of split detector AOSLO images is currently a time-consuming manual process. In this paper, we present the fully automatic adaptive filtering and local detection (AFLD) method for detecting cones in split detector AOSLO images. We validated our algorithm on 80 images from 10 subjects, showing an overall mean Dice's coefficient of 0.95 (standard deviation 0.03), when comparing our AFLD algorithm to an expert grader. This is comparable to the inter-observer Dice's coefficient of 0.94 (standard deviation 0.04). To the best of our knowledge, this is the first validated, fully-automated segmentation method which has been applied to split detector AOSLO images.

  13. Neutron-proton effective mass splitting in terms of symmetry energy and its density slope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, S.; Sahoo, B.; Sahoo, S., E-mail: sukadevsahoo@yahoo.com

    2015-01-15

    Using a simple density-dependent finite-range effective interaction having Yukawa form, the density dependence of isoscalar and isovector effective masses is studied. The isovector effective mass is found to be different for different pairs of like and unlike nucleons. Using HVH theorem, the neutron-proton effective mass splitting is represented in terms of symmetry energy and its density slope. It is again observed that the neutron-proton effective mass splitting has got a positive value when isoscalar effective mass is greater than the isovector effective mass and has a negative value for the opposite case. Furthermore, the neutron-proton effective mass splitting is foundmore » to have a linear dependence on asymmetry β. The second-order symmetry potential has a vital role in the determination of density slope of symmetry energy but it does not have any contribution on neutron-proton effective mass splitting. The finite-range effective interaction is compared with the SLy2, SKM, f{sub −}, f{sub 0}, and f{sub +} forms of interactions.« less

  14. Microstructure, hyperfine interaction and magnetic transition of Fe-25%Ni-5%Si-x%Co alloys

    NASA Astrophysics Data System (ADS)

    Gungunes, H.

    2016-12-01

    Morphological and magnetic properties in Fe-25%Ni-5%Si-x%Co (x = 0, 10, 15) alloys are investigated. Scanning electron microscopy (SEM), Mössbauer spectroscopy and AC magnetic susceptibility measurements are used to determine the physical properties of alloys. The martensite morphology changed depending on the Co content. The Mössbauer study shows that the volume fraction and hyperfine field of martensite increases while isomer shift values decrease with increasing Co content. On the other hand; AC susceptibility results showed that; Co is an effective element which can be used to control both the magnetic transition and martensitic transformation temperatures.

  15. Upper-mantle deformation beneath the Pyrenean domain inferred from SKS splitting in northern Spain and southern France

    NASA Astrophysics Data System (ADS)

    Bonnin, Mickaël; Chevrot, Sébastien; Gaudot, Ianis; Haugmard, Méric

    2017-08-01

    We performed shear wave splitting analysis on 203 permanent (French RLPB, CEA and Catalonian networks) and temporary (PyrOPE and IberArray experiments) broad-band stations around the Pyrenees. These measurements considerably enhance the spatial resolution and coverage of seismic anisotropy in that region. In particular, we characterize with different shear wave splitting analysis methods the small-scale variations of splitting parameters ϕ and δt along three dense transects crossing the western and central Pyrenees with an interstation spacing of about 7 km. While we find a relatively coherent seismic anisotropy pattern in the Pyrenean domain, we observe abrupt changes of splitting parameters in the Aquitaine Basin and delay times along the Pyrenees. We moreover observe coherent fast directions despite complex lithospheric structures in Iberia and the Massif Central. This suggests that two main sources of anisotropy are required to interpret seismic anisotropy in this region: (i) lithospheric fabrics in the Aquitaine Basin (probably frozen-in Hercynian anisotropy) and in the Pyrenees (early and late Pyrenean dynamics); (ii) asthenospheric mantle flow beneath the entire region (imprint of the western Mediterranean dynamics since the Oligocene).

  16. Upper-Mantle Deformation Beneath the Pyrenean Domain Inferred from SKS Splitting in Northern Spain and Southern France

    NASA Astrophysics Data System (ADS)

    Bonnin, M. J. A.; Chevrot, S.; Gaudot, I.; Haugmard, M.

    2017-12-01

    We performed shear wave splitting analysis on 203 permanent (French RLPB, CEA and Catalonian networks) and temporary (PYROPE and IberArray experiments) broad-band stations around the Pyrenees. These measurements considerably enhance the spatial resolution and coverage of seismic anisotropy in that region. In particular, we characterize with different shear wave splitting analysis methods the small-scale variations of splitting parameters φ and δt along three dense transects crossing the western and central Pyrenees with an interstation spacing of about 7 km. While we find a relatively coherent seismic anisotropy pattern in the Pyrenean domain, we observe abrupt changes of splitting parameters in the Aquitaine Basin and delay times along the Pyrenees. We moreover observe coherent fast directions despite complex lithospheric structures in Iberia and the Massif Central. This suggests that two main sources of anisotropy are required to interpret seismic anisotropy in this region: (i) lithospheric fabrics in the Aquitaine Basin (probably frozen-in Hercynian anisotropy) and in the Pyrenees (early and late Pyrenean dynamics); (ii) asthenospheric mantle flow beneath the entire region (imprint of the western Mediterranean dynamics since the Oligocene).

  17. Demonstration of the Jaynes-Cummings ladder with Rydberg-dressed atoms

    DOE PAGES

    Lee, Jongmin; Martin, Michael J.; Jau, Yuan-Yu; ...

    2017-04-06

    Here, we observe the nonlinearity of the Jaynes-Cummings (JC) ladder in the Autler-Townes spectroscopy of the hyperfine ground states for a Rydberg-dressed two-atom system. The role of the two-level system in the JC model is played by the presence or absence of a collective Rydberg excitation, and the bosonic mode manifests as the number n of single-atom spin flips, symmetrically distributed between the atoms. We also measure the normal-mode splitting and √ n nonlinearity as a function of detuning and Rabi frequency, thereby experimentally establishing the isomorphism with the JC model.

  18. The Splitting Loope

    ERIC Educational Resources Information Center

    Wilkins, Jesse L. M.; Norton, Anderson

    2011-01-01

    Teaching experiments have generated several hypotheses concerning the construction of fraction schemes and operations and relationships among them. In particular, researchers have hypothesized that children's construction of splitting operations is crucial to their construction of more advanced fractions concepts (Steffe, 2002). The authors…

  19. Hyperfine-resolved transition frequency list of fundamental vibration bands of H35Cl and H37Cl

    NASA Astrophysics Data System (ADS)

    Iwakuni, Kana; Sera, Hideyuki; Abe, Masashi; Sasada, Hiroyuki

    2014-12-01

    Sub-Doppler resolution spectroscopy of the fundamental vibration bands of H35Cl and H37Cl has been carried out from 87.1 to 89.9 THz. We have determined the absolute transition frequencies of the hyperfine-resolved R(0) to R(4) transitions with a typical uncertainty of 10 kHz. We have also yielded six molecular constants for each isotopomer in the vibrational excited state, which reproduce the determined frequencies with a standard deviation of about 10 kHz.

  20. Landau level splitting due to graphene superlattices

    NASA Astrophysics Data System (ADS)

    Pal, G.; Apel, W.; Schweitzer, L.

    2012-06-01

    The Landau level spectrum of graphene superlattices is studied using a tight-binding approach. We consider noninteracting particles moving on a hexagonal lattice with an additional one-dimensional superlattice made up of periodic square potential barriers, which are oriented along the zigzag or along the armchair directions of graphene. In the presence of a perpendicular magnetic field, such systems can be described by a set of one-dimensional tight-binding equations, the Harper equations. The qualitative behavior of the energy spectrum with respect to the strength of the superlattice potential depends on the relation between the superlattice period and the magnetic length. When the potential barriers are oriented along the armchair direction of graphene, we find for strong magnetic fields that the zeroth Landau level of graphene splits into two well-separated sublevels, if the width of the barriers is smaller than the magnetic length. In this situation, which persists even in the presence of disorder, a plateau with zero Hall conductivity can be observed around the Dirac point. This Landau level splitting is a true lattice effect that cannot be obtained from the generally used continuum Dirac-fermion model.

  1. The hierarchically organized splitting of chromosome bands into sub-bands analyzed by multicolor banding (MCB).

    PubMed

    Lehrer, H; Weise, A; Michel, S; Starke, H; Mrasek, K; Heller, A; Kuechler, A; Claussen, U; Liehr, T

    2004-01-01

    To clarify the nature of chromosome sub-bands in more detail, the multicolor banding (MCB) probe-set for chromosome 5 was hybridized to normal metaphase spreads of GTG band levels at approximately 850, approximately 550, approximately 400 and approximately 300. It could be observed that as the chromosomes became shorter, more of the initial 39 MCB pseudo-colors disappeared, ending with 18 MCB pseudo-colored bands at the approximately 300-band level. The hierarchically organized splitting of bands into sub-bands was analyzed by comparing the disappearance or appearance of pseudo-color bands of the four different band levels. The regions to split first are telomere-near, centromere-near and in 5q23-->q31, followed by 5p15, 5p14, and all GTG dark bands in 5q apart from 5q12 and 5q32 and finalized by sub-band building in 5p15.2, 5q21.2-->q21.3, 5q23.1 and 5q34. The direction of band splitting towards the centromere or the telomere could be assigned to each band separately. Pseudo-colors assigned to GTG-light bands were resistant to band splitting. These observations are in concordance with the recently proposed concept of chromosome region-specific protein swelling. Copyright 2003 S. Karger AG, Basel

  2. Recent Progress in Energy‐Driven Water Splitting

    PubMed Central

    Tee, Si Yin; Win, Khin Yin; Teo, Wee Siang; Koh, Leng‐Duei; Liu, Shuhua; Teng, Choon Peng

    2017-01-01

    Hydrogen is readily obtained from renewable and non‐renewable resources via water splitting by using thermal, electrical, photonic and biochemical energy. The major hydrogen production is generated from thermal energy through steam reforming/gasification of fossil fuel. As the commonly used non‐renewable resources will be depleted in the long run, there is great demand to utilize renewable energy resources for hydrogen production. Most of the renewable resources may be used to produce electricity for driving water splitting while challenges remain to improve cost‐effectiveness. As the most abundant energy resource, the direct conversion of solar energy to hydrogen is considered the most sustainable energy production method without causing pollutions to the environment. In overall, this review briefly summarizes thermolytic, electrolytic, photolytic and biolytic water splitting. It highlights photonic and electrical driven water splitting together with photovoltaic‐integrated solar‐driven water electrolysis. PMID:28546906

  3. Performance Models for Split-execution Computing Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humble, Travis S; McCaskey, Alex; Schrock, Jonathan

    Split-execution computing leverages the capabilities of multiple computational models to solve problems, but splitting program execution across different computational models incurs costs associated with the translation between domains. We analyze the performance of a split-execution computing system developed from conventional and quantum processing units (QPUs) by using behavioral models that track resource usage. We focus on asymmetric processing models built using conventional CPUs and a family of special-purpose QPUs that employ quantum computing principles. Our performance models account for the translation of a classical optimization problem into the physical representation required by the quantum processor while also accounting for hardwaremore » limitations and conventional processor speed and memory. We conclude that the bottleneck in this split-execution computing system lies at the quantum-classical interface and that the primary time cost is independent of quantum processor behavior.« less

  4. Fee Splitting among General Practitioners: A Cross-Sectional Study in Iran.

    PubMed

    Parsa, Mojtaba; Larijani, Bagher; Aramesh, Kiarash; Nedjat, Saharnaz; Fotouhi, Akbar; Yekaninejad, Mir Saeed; Ebrahimian, Nejatollah; Kandi, Mohamad Jafar

    2016-12-01

    Fee splitting is a process whereby a physician refers a patient to another physician or a healthcare facility and receives a portion of the charge in return. This survey was conducted to study general practitioners' (GPs) attitudes toward fee splitting as well as the prevalence, causes, and consequences of this process. This is a cross-sectional study on 223 general practitioners in 2013. Concerning the causes and consequences of fee splitting, an unpublished qualitative study was conducted by interviewing a number of GPs and specialists and the questionnaire options were the results of the information obtained from this study. Of the total 320 GPs, 247 returned the questionnaires. The response rate was 77.18%. Of the 247 returned questionnaires, 223 fulfilled the inclusion criteria. Among the participants, 69.1% considered fee splitting completely wrong and 23.2% (frequently or rarely) practiced fee splitting. The present study showed that the prevalence of fee splitting among physicians who had positive attitudes toward fee splitting was 4.63 times higher than those who had negative attitudes. In addition, this study showed that, compared to private hospitals, fee splitting is less practiced in public hospitals. The major cause of fee splitting was found to be unrealistic/unfair tariffs and the main consequence of fee splitting was thought to be an increase in the number of unnecessary patient referrals. Fee splitting is an unethical act, contradicts the goals of the medical profession, and undermines patient's best interest. In Iran, there is no code of ethics on fee splitting, but in this study, it was found that the majority of GPs considered it unethical. However, among those who had negative attitudes toward fee splitting, there were physicians who did practice fee splitting. The results of the study showed that physicians who had a positive attitude toward fee splitting practiced it more than others. Therefore, if physicians consider fee splitting unethical

  5. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, Jordan; Podorson, David; Varshney, Kapil

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less

  6. Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dentz, J.; Podorson, D.; Varshney, K.

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less

  7. The hyperfine structure in the rotational spectra of D{sub 2}{sup 17}O and HD{sup 17}O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puzzarini, Cristina, E-mail: cristina.puzzarini@unibo.it; Cazzoli, Gabriele; Harding, Michael E.

    2015-03-28

    Guided by theoretical predictions, the hyperfine structures of the rotational spectra of mono- and bideuterated-water containing {sup 17}O have been experimentally investigated. To reach sub-Doppler resolution, required to resolve the hyperfine structure due to deuterium quadrupole coupling as well as to spin-rotation (SR) and dipolar spin-spin couplings, the Lamb-dip technique has been employed. The experimental investigation and in particular, the spectral analysis have been supported by high-level quantum-chemical computations employing coupled-cluster techniques and, for the first time, a complete experimental determination of the hyperfine parameters involved was possible. The experimentally determined {sup 17}O spin-rotation constants of D{sub 2}{sup 17}O andmore » HD{sup 17}O were used to derive the paramagnetic part of the corresponding nuclear magnetic shielding constants. Together with the computed diamagnetic contributions as well as the vibrational and temperature corrections, the latter constants have been employed to confirm the oxygen nuclear magnetic shielding scale, recently established on the basis of spin-rotation data for H{sub 2}{sup 17}O [Puzzarini et al., J. Chem. Phys. 131, 234304 (2009)].« less

  8. Type II solar radio burst band-splitting: Measure of coronal magnetic field strength

    NASA Astrophysics Data System (ADS)

    Mahrous, Ayman; Alielden, Khaled; Vršnak, Bojan; Youssef, Mohamed

    2018-07-01

    Studies of the relationship between solar radio bursts and CMEs are essential for understanding of the nature of type II bursts. In this study, we examine the type II solar radio burst recorded on 16 March 2016 by the Learmonth radio spectrograph and compare its characteristics with the kinematics of the associated CMEs observed by STEREO and SOHO spacecraft. The burst showed a well-defined band-split, which was used to estimate the magnetic field strength in the solar corona. The magnetic field decreases from ≈ 4 G at R ≈ 2.6 R⊙ to 0.62 G at R ≈ 3.77 R⊙ depending on the coronal electron density model employed. We found that two CMEs occurred successively in a 4-h interval. During this interval, a type II radio burst occurred, lasting for about 10 min. Tracking of the shock that produced type II burst and comparison with the CMEs heights as observed by STEREO and SOHO spacecraft help us to deduce the driver of the shock. According to the analysis, the type II burst occurrence was associated with the interaction of the shock driven by the second CME with a streamer located south of the first CME, since that the type II band-split significantly increased during the shock-streamer interaction. Our results show that the analysis of the type II burst band-split supplemented by the coronagraphic observations of the corona is an important tool for the understanding of the coronal eruptive processes.

  9. The Splitting Group

    ERIC Educational Resources Information Center

    Norton, Anderson; Wilkins, Jesse L. M.

    2012-01-01

    Piagetian theory describes mathematical development as the construction and organization of mental operations within psychological structures. Research on student learning has identified the vital roles of two particular operations--splitting and units coordination--play in students' development of advanced fractions knowledge. Whereas Steffe and…

  10. Stable and low diffusive hybrid upwind splitting methods

    NASA Technical Reports Server (NTRS)

    Coquel, Frederic; Liou, Meng-Sing

    1992-01-01

    A new concept for upwinding is introduced, named the hybrid upwind splitting (HUS), which is achieved by combining the basically distinct flux vector splitting (FVS) and the flux difference splitting (FDS) approaches. The HUS approach yields upwind methods which share the robustness of the FVS schemes in the capture of nonlinear waves and the accuracy of some of the FDS schemes. Numerical illustrations are presented proving the relevance of the HUS methods for viscous calculations.

  11. Bunch Splitting Simulations for the JLEIC Ion Collider Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satogata, Todd J.; Gamage, Randika

    2016-05-01

    We describe the bunch splitting strategies for the proposed JLEIC ion collider ring at Jefferson Lab. This complex requires an unprecedented 9:6832 bunch splitting, performed in several stages. We outline the problem and current results, optimized with ESME including general parameterization of 1:2 bunch splitting for JLEIC parameters.

  12. Splitting of turbulent spot in transitional pipe flow

    NASA Astrophysics Data System (ADS)

    Wu, Xiaohua; Moin, Parviz; Adrian, Ronald J.

    2017-11-01

    Recent study (Wu et al., PNAS, 1509451112, 2015) demonstrated the feasibility and accuracy of direct computation of the Osborne Reynolds' pipe transition problem without the unphysical, axially periodic boundary condition. Here we use this approach to study the splitting of turbulent spot in transitional pipe flow, a feature first discovered by E.R. Lindgren (Arkiv Fysik 15, 1959). It has been widely believed that spot splitting is a mysterious stochastic process that has general implications on the lifetime and sustainability of wall turbulence. We address the following two questions: (1) What is the dynamics of turbulent spot splitting in pipe transition? Specifically, we look into any possible connection between the instantaneous strain rate field and the spot splitting. (2) How does the passive scalar field behave during the process of pipe spot splitting. In this study, the turbulent spot is introduced at the inlet plane through a sixty degree wide numerical wedge within which fully-developed turbulent profiles are assigned over a short time interval; and the simulation Reynolds numbers are 2400 for a 500 radii long pipe, and 2300 for a 1000 radii long pipe, respectively. Numerical dye is tagged on the imposed turbulent spot at the inlet. Splitting of the imposed turbulent spot is detected very easily. Preliminary analysis of the DNS results seems to suggest that turbulent spot slitting can be easily understood based on instantaneous strain rate field, and such spot splitting may not be relevant in external flows such as the flat-plate boundary layer.

  13. Application of split window technique to TIMS data

    NASA Technical Reports Server (NTRS)

    Matsunaga, Tsuneo; Rokugawa, Shuichi; Ishii, Yoshinori

    1992-01-01

    Absorptions by the atmosphere in thermal infrared region are mainly due to water vapor, carbon dioxide, and ozone. As the content of water vapor in the atmosphere greatly changes according to weather conditions, it is important to know its amount between the sensor and the ground for atmospheric corrections of thermal Infrared Multispectral Scanner (TIMS) data (i.e. radiosonde). On the other hand, various atmospheric correction techniques were already developed for sea surface temperature estimations from satellites. Among such techniques, Split Window technique, now widely used for AVHRR (Advanced Very High Resolution Radiometer), uses no radiosonde or any kind of supplementary data but a difference between observed brightness temperatures in two channels for estimating atmospheric effects. Applications of Split Window technique to TIMS data are discussed because availability of atmospheric profile data is not clear when ASTER operates. After these theoretical discussions, the technique is experimentally applied to TIMS data at three ground targets and results are compared with atmospherically corrected data using LOWTRAN 7 with radiosonde data.

  14. Valley Zeeman splitting of monolayer MoS2 probed by low-field magnetic circular dichroism spectroscopy at room temperature

    NASA Astrophysics Data System (ADS)

    Wu, Y. J.; Shen, C.; Tan, Q. H.; Shi, J.; Liu, X. F.; Wu, Z. H.; Zhang, J.; Tan, P. H.; Zheng, H. Z.

    2018-04-01

    The valley Zeeman splitting of monolayer two-dimensional (2D) materials in the magnetic field plays an important role in the valley and spin manipulations. In general, a high magnetic field (6-65 T) and low temperature (2-30 K) were two key measurement conditions to observe the resolvable valley Zeeman splitting of monolayer 2D materials in current reported experiments. In this study, we experimentally demonstrate an effective measurement scheme by employing magnetic circular dichroism (MCD) spectroscopy, which enables us to distinguish the valley Zeeman splitting under a relatively low magnetic field of 1 T at room temperature. MCD peaks related to both A and B excitonic transitions in monolayer MoS2 can be clearly observed. Based on the MCD spectra under different magnetic fields (-3 to 3 T), we obtained the valley Zeeman splitting energy and the g-factors of A and B excitons, respectively. Our results show that MCD spectroscopy is a high-sensitive magneto-optical technique to explore the valley and spin manipulation in 2D materials.

  15. Universal exchange-driven phonon splitting

    NASA Astrophysics Data System (ADS)

    Deisenhofer, Joachim; Kant, Christian; Schmidt, Michael; Wang, Zhe; Mayr, Franz; Tsurkan, Vladimir; Loidl, Alois

    2012-02-01

    We report on a linear dependence of the phonon splitting on the non-dominant exchange coupling Jnd in the antiferromagnetic monoxides MnO, Fe0.92O, CoO and NiO, and in the highly frustrated antiferromagnetic spinels CdCr2O4, MgCr2O4 and ZnCr2O4. For the monoxides our results directly confirm the theoretical prediction of a predominantly exchange induced splitting of the zone-centre optical phonon [1,2]. We find the linear relation δφ= βJndS^2 with slope β = 3.7. This relation also holds for a very different class of systems, namely the highly frustrated chromium spinels. Our finding suggests a universal dependence of the exchange-induced phonon splitting at the antiferromagnetic transition on the non-dominant exchange coupling [3].[4pt] [1] S. Massidda et al., Phys. Rev. Lett. 82, 430 (1999).[0pt] [2] W. Luo et al., Solid State Commun. 142, 504 (2007).[0pt] [3] Ch. Kant et al., arxiv:1109.4809.

  16. Split torque transmission load sharing

    NASA Technical Reports Server (NTRS)

    Krantz, T. L.; Rashidi, M.; Kish, J. G.

    1992-01-01

    Split torque transmissions are attractive alternatives to conventional planetary designs for helicopter transmissions. The split torque designs can offer lighter weight and fewer parts but have not been used extensively for lack of experience, especially with obtaining proper load sharing. Two split torque designs that use different load sharing methods have been studied. Precise indexing and alignment of the geartrain to produce acceptable load sharing has been demonstrated. An elastomeric torque splitter that has large torsional compliance and damping produces even better load sharing while reducing dynamic transmission error and noise. However, the elastomeric torque splitter as now configured is not capable over the full range of operating conditions of a fielded system. A thrust balancing load sharing device was evaluated. Friction forces that oppose the motion of the balance mechanism are significant. A static analysis suggests increasing the helix angle of the input pinion of the thrust balancing design. Also, dynamic analysis of this design predicts good load sharing and significant torsional response to accumulative pitch errors of the gears.

  17. Simulation and analysis of the interactions between split gradient coils and a split magnet cryostat in an MRI-PET system.

    PubMed

    Liu, Limei; Sanchez-Lopez, Hector; Poole, Michael; Liu, Feng; Crozier, Stuart

    2012-09-01

    Splitting a magnetic resonance imaging (MRI) magnet into two halves can provide a central region to accommodate other modalities, such as positron emission tomography (PET). This approach, however, produces challenges in the design of the gradient coils in terms of gradient performance and fabrication. In this paper, the impact of a central gap in a split MRI system was theoretically studied by analysing the performance of split, actively-shielded transverse gradient coils. In addition, the effects of the eddy currents induced in the cryostat on power loss, mechanical vibration and magnetic field harmonics were also investigated. It was found, as expected, that the gradient performance tended to decrease as the central gap increased. Furthermore, the effects of the eddy currents were heightened as a consequence of splitting the gradient assembly into two halves. An optimal central gap size was found, such that the split gradient coils designed with this central gap size could produce an engineering solution with an acceptable trade-off between gradient performance and eddy current effects. These investigations provide useful information on the inherent trade-offs in hybrid MRI imaging systems. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Relative motions of fragments of the split comets. I - A new approach

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1977-01-01

    A hypothesis is proposed which interprets the relative motion of two fragments of a split comet in terms of a slight difference between their effective solar attraction rather than in terms of the impulse imparted to them at separation. A quantitative version of this hypothesis is formulated by assuming that the difference in effective solar attraction varies with heliocentric distance in direct proportion to the actual solar attraction so that the ratio of the two forces is constant and equal to a measure of the relative effect between the two fragments under consideration. Results obtained using this formulation are compared with observational evidence on the split comets P/Biela, Liais 1860 I, 1882 II, P/Brooks 2 1889 V, Swift 1899 I, Kopff 1905 IV, Mellish 1915 II, Taylor 1916 I, 1947 XII, Wirtanen 1957 VI, Ikeya-Seki 1965 VIII, Kohoutek 1970 III, and West 1975n. The hypothesis is found to fail only in the case of comet Wirtanen 1957 VI. Some unusual phenomena associated with split comets are examined.

  19. Probing medium-induced jet splitting and energy loss in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Chang, Ning-Bo; Cao, Shanshan; Qin, Guang-You

    2018-06-01

    The nuclear modification of jet splitting in relativistic heavy-ion collisions at RHIC and the LHC energies is studied based on the higher twist formalism. Assuming coherent energy loss for the two splitted subjets, a non-monotonic jet energy dependence is found for the nuclear modification of jet splitting function: strongest modification at intermediate jet energies whereas weaker modification for larger or smaller jet energies. Combined with the smaller size and lower density of the QGP medium at RHIC than at the LHC, this helps to understand the groomed jet measurements from CMS and STAR Collaborations: strong modification of the momentum sharing zg distribution at the LHC and no obvious modification of zg distribution at RHIC. In addition, the observed nuclear modification pattern of the groomed jet zg distribution cannot be explained solely by independent energy loss of the two subjets. Our result may be tested in future measurements of groomed jets with lower jet energies at the LHC and larger jet energies at RHIC, for different angular separations between the two subjets.

  20. Transferring Goods or Splitting a Resource Pool

    ERIC Educational Resources Information Center

    Dijkstra, Jacob; Van Assen, Marcel A. L. M.

    2008-01-01

    We investigated the consequences for exchange outcomes of the violation of an assumption underlying most social psychological research on exchange. This assumption is that the negotiated direct exchange of commodities between two actors (pure exchange) can be validly represented as two actors splitting a fixed pool of resources (split pool…

  1. Splitting and Projection at Work in Schools

    ERIC Educational Resources Information Center

    Dunning, Gerald; James, Chris; Jones, Nicola

    2005-01-01

    Purpose: The purpose of this paper is to report research into the social defence of splitting and projection in schools. In splitting and projection, organisational members separate their unbearable feelings from the more acceptable ones and project them, typically towards other individuals and groups. Design/methodology/approach: The research was…

  2. Efficient photosensitized splitting of the thymine dimer/oxetane unit on its modifying beta-cyclodextrin by a binding electron donor.

    PubMed

    Tang, Wen-Jian; Song, Qin-Hua; Wang, Hong-Bo; Yu, Jing-Yu; Guo, Qing-Xiang

    2006-07-07

    Two modified beta-cyclodextrins (beta-CDs) with a thymine dimer and a thymine oxetane adduct respectively, TD-CD and Ox-CD, have been prepared, and utilized to bind an electron-rich chromophore, indole or N,N-dimethylaniline (DMA), to form a supramolecular complex. We have examined the photosensitized splitting of the dimer/oxetane unit in TD-CD/Ox-CD by indole or DMA via an electron-transfer pathway, and observed high splitting efficiencies of the dimer/oxetane unit. On the basis of measurements of fluorescence spectra and splitting quantum yields, it is suggested that the splitting reaction occurs in a supramolecular complex by an inclusion interaction between the modified beta-CDs and DMA or indole. The back electron transfer, which leads low splitting efficiencies for the covalently-linked chromophore-dimer/oxetane compounds, is suppressed in the non-covalently-bound complex, and the mechanism has been discussed.

  3. Torque Splitting by a Concentric Face Gear Transmission

    NASA Technical Reports Server (NTRS)

    Filler, Robert R.; Heath, Gregory F.; Slaughter, Stephen C.; Lewicki, David G.

    2002-01-01

    Tests of a 167 Kilowatt (224 Horsepower) split torque face gearbox were performed by the Boeing Company in Mesa, Arizona, while working under a Defense Advanced Research Projects Agency (DARPA) Technology Reinvestment Program (TRP). This paper provides a summary of these cooperative tests, which were jointly funded by Boeing and DARPA. Design, manufacture and testing of the scaled-power TRP proof-of-concept (POC) split torque gearbox followed preliminary evaluations of the concept performed early in the program. The split torque tests were run using 200 N-m (1767 in-lbs) torque input to each side of the transmission. During tests, two input pinions were slow rolled while in mesh with the two face gears. Two idler gears were also used in the configuration to recombine torque near the output. Resistance was applied at the output face gear to create the required loading conditions in the gear teeth. A system of weights, pulleys and cables were used in the test rig to provide both the input and output loading. Strain gages applied in the tooth root fillets provided strain indication used to determine torque splitting conditions at the input pinions. The final two pinion-two idler tests indicated 52% to 48% average torque split capabilities for the two pinions. During the same tests, a 57% to 43% average distribution of the torque being recombined to the upper face gear from the lower face gear was measured between the two idlers. The POC split torque tests demonstrated that face gears can be applied effectively in split torque rotorcraft transmissions, yielding good potential for significant weight, cost and reliability improvements over existing equipment using spiral bevel gearing.

  4. Transport-related triplet states and hyperfine couplings in organic tandem solar cells probed by pulsed electrically detected magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Kraffert, Felix; Bahro, Daniel; Meier, Christoph; Denne, Maximilian; Colsmann, Alexander; Behrends, Jan

    2017-09-01

    Tandem solar cells constitute the most successful organic photovoltaic devices with power conversion efficiencies comparable to thin-film silicon solar cells. Especially their high open-circuit voltage - only achievable by a well-adjusted layer stacking - leads to their high efficiencies. Nevertheless, the microscopic processes causing the lossless recombination of charge carriers within the recombination zone are not well understood yet. We show that advanced pulsed electrically detected magnetic resonance techniques such as electrically detected (ED)-Rabi nutation measurements and electrically detected hyperfine sublevel correlation (ED-HYSCORE) spectroscopy help to understand the role of triplet excitons in these microscopic processes. We investigate fully working miniaturised organic tandem solar cells and detect current-influencing doublet states in different layers as well as triplet excitons located on the fullerene-based acceptor. We apply ED-HYSCORE in order to study the nuclear spin environment of the relevant electron/hole spins and detect a significant amount of the low abundant 13C nuclei coupled to the observer spins.

  5. Crystal-field splittings in rare-earth-based hard magnets: An ab initio approach

    NASA Astrophysics Data System (ADS)

    Delange, Pascal; Biermann, Silke; Miyake, Takashi; Pourovskii, Leonid

    2017-10-01

    We apply the first-principles density functional theory + dynamical mean-field theory framework to evaluate the crystal-field splitting on rare-earth sites in hard magnetic intermetallics. An atomic (Hubbard-I) approximation is employed for local correlations on the rare-earth 4 f shell and self-consistency in the charge density is implemented. We reduce the density functional theory self-interaction contribution to the crystal-field splitting by properly averaging the 4 f charge density before recalculating the one-electron Kohn-Sham potential. Our approach is shown to reproduce the experimental crystal-field splitting in the prototypical rare-earth hard magnet SmCo5. Applying it to R Fe12 and R Fe12X hard magnets (R =Nd , Sm and X =N , Li), we obtain in particular a large positive value of the crystal-field parameter A20〈r2〉 in NdFe12N resulting in a strong out-of-plane anisotropy observed experimentally. The sign of A20〈r2〉 is predicted to be reversed by substituting N with Li, leading to a strong out-of-plane anisotropy in SmFe12Li . We discuss the origin of this strong impact of N and Li interstitials on the crystal-field splitting on rare-earth sites.

  6. Fracture patterns after bilateral sagittal split osteotomy of the mandibular ramus according to the Obwegeser/Dal Pont and Hunsuck/Epker modifications.

    PubMed

    Möhlhenrich, Stephan Christian; Kniha, Kristian; Peters, Florian; Ayoub, Nassim; Goloborodko, Evgeny; Hölzle, Frank; Fritz, Ulrike; Modabber, Ali

    2017-05-01

    The aim of this study was to compare the fracture patterns after sagittal split osteotomy according to Obwegeser/Dal Pont (ODP) and Hunsuck/Epker (HE), as well as to investigate the relationship between lateral bone cut ending or angle and the incidence of unfavorable/bad splits. Postoperative cone-beam computed tomograms of 124 splits according to ODP and 60 according to HE were analyzed. ODP led to 75.8% and HE led to 60% lingual fractures with mandibular foramen contact. Horizontal fractures were found in 9.7% and 6.7%, respectively, and unfavorable/bad splits were found in 11.3% and 10%, respectively. The lateral osteotomy angle was 106.22° (SD 12.03)° for bad splits and 106.6° (SD 13.12)° for favorable splits. Correlations were found between favorable fracture patterns and split modifications and between buccal ending of the lateral bone cut and bad splits (p < 0.001). No relationship was observed between split modifications (p = 0.792) or the osteotomy angle (p = 0.937) and the incidence of unfavorable/bad splits. Split modifications had no influence on the incidence of unfavorable/bad splits, but the buccal ending of the lateral bone cut did have an influence. More lingual fractures with mandibular foramen contact are expected with the ODP modification. The osteotomy angle did not differ between favorable and bad splits. Copyright © 2017 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  7. Dark incoherent soliton splitting and "phase-memory" effects: Theory and experiment.

    PubMed

    Coskun, T H; Christodoulides, D N; Chen, Z; Segev, M

    1999-05-01

    We report on an experimental observation of dark incoherent soliton Y splitting. The effects of incoherence on the evolution of incoherent dark soliton doublets are investigated both theoretically and experimentally. We show that the dynamics of these incoherent self-trapped entities are associated with strong "phase-memory" effects that are otherwise absent in the linear regime.

  8. Splitting parameter yield (SPY): A program for semiautomatic analysis of shear-wave splitting

    NASA Astrophysics Data System (ADS)

    Zaccarelli, Lucia; Bianco, Francesca; Zaccarelli, Riccardo

    2012-03-01

    SPY is a Matlab algorithm that analyzes seismic waveforms in a semiautomatic way, providing estimates of the two observables of the anisotropy: the shear-wave splitting parameters. We chose to exploit those computational processes that require less intervention by the user, gaining objectivity and reliability as a result. The algorithm joins the covariance matrix and the cross-correlation techniques, and all the computation steps are interspersed by several automatic checks intended to verify the reliability of the yields. The resulting semiautomation generates two new advantages in the field of anisotropy studies: handling a huge amount of data at the same time, and comparing different yields. From this perspective, SPY has been developed in the Matlab environment, which is widespread, versatile, and user-friendly. Our intention is to provide the scientific community with a new monitoring tool for tracking the temporal variations of the crustal stress field.

  9. Redox-dependent structure change and hyperfine nuclear magnetic resonance shifts in cytochrome c

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Yiquing; Roder, H.; Englander, S.W.

    1990-04-10

    Proton nuclear magnetic resonance assignments for reduced and oxidized equine cytochrome c show that many individual protons exhibit different chemical shifts in the two protein forms, reflecting diamagnetic shift effects due to structure change, and in addition contact and pseudocontact shifts that occur only in the paramagnetic oxidized form. To evaluate the chemical shift differences for structure change, the authors removed the pseudocontact shift contribution by a calculation based on knowledge of the electron spin g tensor. The g-tensor calculation, when repeated using only 12 available C{sub {alpha}}H proton resonances for cytochrom c from tuna, proved to be remarkably stable.more » The derived g tensor was then used together with spatial coordinates for the oxidized form to calculate the pseudocontact shift contribution to proton resonances at 400 identifiable sites throughout the protein, so that the redox-dependent chemical shift discrepancy, could be evaluated. Large residual changes in chemical shift define the Fermi contact shifts, where are found as expected to be limited to the immediate covalent structure of the heme and its ligands and to be asymmetrically distributed over the heme. The chemical shift discrepancies observed appear in the main to reflect structure-dependent diamagnetic shifts rather than hyperfine effects due to displacements in the pseudocontact shift field. Although 51 protons in 29 different residues exhibit significant chemical shift changes, the general impressions one of small structural adjustments to redox-dependent strain rather than sizeable structural displacements or rearrangements.« less

  10. Identification of a novel SPLIT-HULL (SPH) gene associated with hull splitting in rice (Oryza sativa L.).

    PubMed

    Lee, Gileung; Lee, Kang-Ie; Lee, Yunjoo; Kim, Backki; Lee, Dongryung; Seo, Jeonghwan; Jang, Su; Chin, Joong Hyoun; Koh, Hee-Jong

    2018-07-01

    The split-hull phenotype caused by reduced lemma width and low lignin content is under control of SPH encoding a type-2 13-lipoxygenase and contributes to high dehulling efficiency. Rice hulls consist of two bract-like structures, the lemma and palea. The hull is an important organ that helps to protect seeds from environmental stress, determines seed shape, and ensures grain filling. Achieving optimal hull size and morphology is beneficial for seed development. We characterized the split-hull (sph) mutant in rice, which exhibits hull splitting in the interlocking part between lemma and palea and/or the folded part of the lemma during the grain filling stage. Morphological and chemical analysis revealed that reduction in the width of the lemma and lignin content of the hull in the sph mutant might be the cause of hull splitting. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive gene, sph (Os04g0447100), which encodes a type-2 13-lipoxygenase. SPH knockout and knockdown transgenic plants displayed the same split-hull phenotype as in the mutant. The sph mutant showed significantly higher linoleic and linolenic acid (substrates of lipoxygenase) contents in spikelets compared to the wild type. It is probably due to the genetic defect of SPH and subsequent decrease in lipoxygenase activity. In dehulling experiment, the sph mutant showed high dehulling efficiency even by a weak tearing force in a dehulling machine. Collectively, the results provide a basis for understanding of the functional role of lipoxygenase in structure and maintenance of hulls, and would facilitate breeding of easy-dehulling rice.

  11. 15 CFR 30.28 - “Split shipments” by air.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 1 2013-01-01 2013-01-01 false âSplit shipmentsâ by air. 30.28... Transactions § 30.28 “Split shipments” by air. When a shipment by air covered by a single EEI submission is... showing the portion of the split shipment carried on that flight, a notation will be made showing the air...

  12. 15 CFR 30.28 - “Split shipments” by air.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 1 2010-01-01 2010-01-01 false âSplit shipmentsâ by air. 30.28... Transactions § 30.28 “Split shipments” by air. When a shipment by air covered by a single EEI submission is... showing the portion of the split shipment carried on that flight, a notation will be made showing the air...

  13. 15 CFR 30.28 - “Split shipments” by air.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 1 2011-01-01 2011-01-01 false âSplit shipmentsâ by air. 30.28... Transactions § 30.28 “Split shipments” by air. When a shipment by air covered by a single EEI submission is... showing the portion of the split shipment carried on that flight, a notation will be made showing the air...

  14. Assignment of selected hyperfine proton NMR resonances in the met forms of Glycera dibranchiata monomer hemoglobins and comparisons with sperm whale metmyoglobin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantinidis, I.; Satterlee, J.D.; Pandey, R.K.

    1988-04-19

    This work indicates a high degree of purity for our preparations of all three of the primary Glycera dibranchiata monomer hemoglobins and details assignments of the heme methyl and vinyl protons in the hyperfine shift region of the ferric (aquo.) protein forms. The assignments were carried out by reconstituting the apoproteins of each component with selectively deuteriated hemes. The results indicate that even though the individual component preparations consist of essentially a single protein, the proton NMR spectra indicate spectroscopic heterogeneity. Evidence is presented for identification and classification of major and minor protein forms that are present in solutions ofmore » each component. Finally, in contrast to previous results, a detailed analysis of the proton hyperfine shift patterns of the major and minor forms of each component, in comparison to the major and minor forms of metmyoglobin, leads to the conclusions that the corresponding forms of the proteins from each species have strikingly similar heme-globin contacts and display nearly identical heme electronic structures and coordination numbers.« less

  15. Reversible Hydrophobic to Hydrophilic Transition in Graphene via Water Splitting Induced by UV Irradiation

    PubMed Central

    Xu, Zhemi; Ao, Zhimin; Chu, Dewei; Younis, Adnan; Li, Chang Ming; Li, Sean

    2014-01-01

    Although the reversible wettability transition between hydrophobic and hydrophilic graphene under ultraviolet (UV) irradiation has been observed, the mechanism for this phenomenon remains unclear. In this work, experimental and theoretical investigations demonstrate that the H2O molecules are split into hydrogen and hydroxyl radicals, which are then captured by the graphene surface through chemical binding in an ambient environment under UV irradiation. The dissociative adsorption of H2O molecules induces the wettability transition in graphene from hydrophobic to hydrophilic. Our discovery may hold promise for the potential application of graphene in water splitting. PMID:25245110

  16. Advanced emergency braking under split friction conditions and the influence of a destabilising steering wheel torque

    NASA Astrophysics Data System (ADS)

    Tagesson, Kristoffer; Cole, David

    2017-07-01

    The steering system in most heavy trucks is such that it causes a destabilising steering wheel torque when braking on split friction, that is, different friction levels on the two sides of the vehicle. Moreover, advanced emergency braking systems are now mandatory in most heavy trucks, making vehicle-induced split friction braking possible. This imposes higher demands on understanding how the destabilising steering wheel torque affects the driver, which is the focus here. Firstly, an experiment has been carried out involving 24 subjects all driving a truck where automatic split friction braking was emulated. Secondly, an existing driver-vehicle model has been adapted and implemented to improve understanding of the observed outcome. A common conclusion drawn, after analysing results, is that the destabilising steering wheel torque only has a small effect on the motion of the vehicle. The underlying reason is a relatively slow ramp up of the disturbance in comparison to the observed cognitive delay amongst subjects; also the magnitude is low and initially suppressed by passive driver properties.

  17. Electroweak splitting functions and high energy showering

    NASA Astrophysics Data System (ADS)

    Chen, Junmou; Han, Tao; Tweedie, Brock

    2017-11-01

    We derive the electroweak (EW) collinear splitting functions for the Standard Model, including the massive fermions, gauge bosons and the Higgs boson. We first present the splitting functions in the limit of unbroken SU(2) L × U(1) Y and discuss their general features in the collinear and soft-collinear regimes. These are the leading contributions at a splitting scale ( k T ) far above the EW scale ( v). We then systematically incorporate EW symmetry breaking (EWSB), which leads to the emergence of additional "ultra-collinear" splitting phenomena and naive violations of the Goldstone-boson Equivalence Theorem. We suggest a particularly convenient choice of non-covariant gauge (dubbed "Goldstone Equivalence Gauge") that disentangles the effects of Goldstone bosons and gauge fields in the presence of EWSB, and allows trivial book-keeping of leading power corrections in v/ k T . We implement a comprehensive, practical EW showering scheme based on these splitting functions using a Sudakov evolution formalism. Novel features in the implementation include a complete accounting of ultra-collinear effects, matching between shower and decay, kinematic back-reaction corrections in multi-stage showers, and mixed-state evolution of neutral bosons ( γ/ Z/ h) using density-matrices. We employ the EW showering formalism to study a number of important physical processes at O (1-10 TeV) energies. They include (a) electroweak partons in the initial state as the basis for vector-boson-fusion; (b) the emergence of "weak jets" such as those initiated by transverse gauge bosons, with individual splitting probabilities as large as O (35%); (c) EW showers initiated by top quarks, including Higgs bosons in the final state; (d) the occurrence of O (1) interference effects within EW showers involving the neutral bosons; and (e) EW corrections to new physics processes, as illustrated by production of a heavy vector boson ( W ') and the subsequent showering of its decay products.

  18. Tantalum-based semiconductors for solar water splitting.

    PubMed

    Zhang, Peng; Zhang, Jijie; Gong, Jinlong

    2014-07-07

    Solar energy utilization is one of the most promising solutions for the energy crises. Among all the possible means to make use of solar energy, solar water splitting is remarkable since it can accomplish the conversion of solar energy into chemical energy. The produced hydrogen is clean and sustainable which could be used in various areas. For the past decades, numerous efforts have been put into this research area with many important achievements. Improving the overall efficiency and stability of semiconductor photocatalysts are the research focuses for the solar water splitting. Tantalum-based semiconductors, including tantalum oxide, tantalate and tantalum (oxy)nitride, are among the most important photocatalysts. Tantalum oxide has the band gap energy that is suitable for the overall solar water splitting. The more negative conduction band minimum of tantalum oxide provides photogenerated electrons with higher potential for the hydrogen generation reaction. Tantalates, with tunable compositions, show high activities owning to their layered perovskite structure. (Oxy)nitrides, especially TaON and Ta3N5, have small band gaps to respond to visible-light, whereas they can still realize overall solar water splitting with the proper positions of conduction band minimum and valence band maximum. This review describes recent progress regarding the improvement of photocatalytic activities of tantalum-based semiconductors. Basic concepts and principles of solar water splitting will be discussed in the introduction section, followed by the three main categories regarding to the different types of tantalum-based semiconductors. In each category, synthetic methodologies, influencing factors on the photocatalytic activities, strategies to enhance the efficiencies of photocatalysts and morphology control of tantalum-based materials will be discussed in detail. Future directions to further explore the research area of tantalum-based semiconductors for solar water splitting

  19. A new index for the wintertime southern hemispheric split jet

    NASA Astrophysics Data System (ADS)

    Babian, Stella; Grieger, Jens; Cubasch, Ulrich

    2018-05-01

    One of the most prominent asymmetric features of the southern hemispheric (SH) circulation is the split jet over Australia and New Zealand in austral winter. Previous studies have developed indices to detect the degree to which the upper-level midlatitude westerlies are split and investigated the relationship between split events and the low-frequency teleconnection patterns, viz. the Antarctic Oscillation (AAO) and the El Niño-Southern Oscillation (ENSO). As the results were inconsistent, the relationship between the wintertime SH split jet and the climate variability indices remains unresolved and is the focus of this study. Until now, all split indices' definitions were based on the specific region where the split jet is recognizable. We consider the split jet as hemispheric rather than a regional feature and propose a new, hemispherical index that is based on the principal components (PCs) of the zonal wind field for the SH winter. A linear combination of PC2 and PC3 of the anomalous monthly (JAS) zonal wind is used to identify split-jet conditions. In a subsequent correlation analysis, our newly defined PC-based split index (PSI) indicates a strong coherence with the AAO. However, this significant relationship is unstable over the analysis period; during the 1980s, the AAO amplitude was higher than the PSI, and vice versa in the 1990s. It is probable that the PSI, as well as the AAO, underlie low-frequency variability on the decadal to centennial timescales, but the analyzed period is too short to draw these conclusions. A regression analysis with the Multivariate ENSO Index points to a nonlinear relationship between PSI and ENSO; i.e., split jets occur during both strong positive and negative phases of ENSO but rarely under normal conditions. The Pacific South American (PSA) patterns, defined as the second and third modes of the geopotential height variability at 500 hPa, correlate poorly with the PSI (rPSA - 1 ≈ 0.2 and rPSA - 2 = 0.06), but

  20. Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    EPA Science Inventory

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  1. Laser pumping Cs atom magnetometer of theory research based on gradient tensor measuring

    NASA Astrophysics Data System (ADS)

    Yang, Zhang; Chong, Kang; Wang, Qingtao; Lei, Cheng; Zheng, Caiping

    2011-02-01

    At present, due to space exploration, military technology, geological exploration, magnetic navigation, medical diagnosis and biological magnetic fields study of the needs of research and development, the magnetometer is given strong driving force. In this paper, it will discuss the theoretical analysis and system design of laser pumping cesium magnetometer, cesium atomic energy level formed hyperfine structure with the I-J coupling, the hyperfine structure has been further split into Zeeman sublevels for the effects of magnetic field. To use laser pump and RF magnetic field make electrons transition in the hyperfine structure to produce the results of magneto-optical double resonance, and ultimately through the resonant frequency will be able to achieve accurate value of the external magnetic field. On this basis, we further have a discussion about magnetic gradient tensor measuring method. To a large extent, it increases the magnetic field measurement of information.

  2. Magnetic properties and hyperfine interactions in Cr{sub 8}, Cr{sub 7}Cd, and Cr{sub 7}Ni molecular rings from {sup 19}F-NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bordonali, L.; Borsa, F.; Consorzio INSTM, Via Giusti 9, I-50121 Firenze

    2014-04-14

    A detailed experimental investigation of the {sup 19}F nuclear magnetic resonance is made on single crystals of the homometallic Cr{sub 8} antiferromagnetic molecular ring and heterometallic Cr{sub 7}Cd and Cr{sub 7}Ni rings in the low temperature ground state. Since the F{sup −} ion is located midway between neighboring magnetic metal ions in the ring, the {sup 19}F-NMR spectra yield information about the local electronic spin density and {sup 19}F hyperfine interactions. In Cr{sub 8}, where the ground state is a singlet with total spin S{sub T} = 0, the {sup 19}F-NMR spectra at 1.7 K and low external magnetic fieldmore » display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the {sup 19}F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S{sub T} = 1. In the heterometallic rings, Cr{sub 7}Cd and Cr{sub 7}Ni, whose ground state is magnetic with S{sub T} = 3/2 and S{sub T} = 1/2, respectively, the {sup 19}F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the {sup 19}F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F{sup −}-Ni{sup 2+} and the F{sup −}-Cd{sup 2+} bonds. The values of the hyperfine constants compare well to the ones known for F{sup −}-Ni{sup 2+} in KNiF{sub 3} and NiF{sub 2} and for F{sup −}-Cr{sup 3+} in K{sub 2}NaCrF{sub 6}. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F{sup −} ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.« less

  3. 7 CFR 51.2543 - U.S. Non-Split.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards for Grades of Pistachio Nuts in the Shell § 51.2543 U.S. Non-Split. “U.S. Non-Split” consists of non-split pistachio nuts in the shell which meet the following requirements: (a) Basic requirements...

  4. Cheating More when the Spoils Are Split

    ERIC Educational Resources Information Center

    Wiltermuth, Scott S.

    2011-01-01

    Four experiments demonstrated that people are more likely to cheat when the benefits of doing so are split with another person, even an anonymous stranger, than when the actor alone captures all of the benefits. In three of the studies, splitting the benefits of over-reporting one's performance on a task made such over-reporting seem less…

  5. Roll splitting for field processing of biomass

    Treesearch

    Dennis T. Curtin; Donald L. Sirois; John A. Sturos

    1987-01-01

    The concept of roll splitting wood originated in 1967 when the Tennessee Valley Authority (TVA) forest products specialists developed a wood fibrator. The objective of that work was to produce raw materials for reconstituted board products. More recently, TVA focused on roll splitting as a field process to accelerate drying of small trees (3-15 cm diameter), much...

  6. The Split Nucleus of Comet Wilson (C/1986 P1 = 1987 VII).

    NASA Astrophysics Data System (ADS)

    Meech, Karen J.; Knopp, Graham P.; Farnham, Tony L.; Green, Daniel

    1995-07-01

    We present CCD observations of Comet Wilson (C/1986 P1 = 1987 VII) from 26 nights during the time period 1986 October to 1991 February, which brackets perihelion, During the observing run of 1988 February, the comet was observed to have split into two fragments. Our broadband CCD photometry, along with photometry from the International Cometary Quarterly, shows a steady decline in brightness of Comet Wilson post-perihelion, with an outburst between heliocentric distances r = 2.8 and 3.3 AU during 1987 October and November. By r ≈ 7 AU, the fragment had faded with respect to the parent and was no longer centrally condensed. A brightness limit of mR ≈ 25, when the comet was at r = 12.65 AU, constrains the primary nucleus to have a maximum radius between 5 and 7 km, assuming an albedo of 0.04. The accuracy of direct orbital solutions for the parent body and fragment to determine the time of splitting was limited by the presence of significant nongravitational forces and the limited fragment orbital coverage. We used the relative position of the fragment with respect to the parent to calculate a time of splitting which was consistent with the time of the observed outburst. We discuss the possible causes of the splitting. The coma of Comet Wilson was observed to have a surface-brightness profile which fell off as p-1 (characteristic of a canonical steady-state coma under the influence of radiation pressure) for all of the data with the exception of the data taken during 1987 November when the gradient was p-1.3 . This steeper slope was probably caused by the injection of new material into the coma during the outburst. During 1986 October, there was a break in the surface-brightness profile slope which may be interpreted as the distance at which grains are swept into the tail. The profiles suggested grain velocities of a few x 10 2 to 10 m sec -1 for grains between 1 and a few hundred micrometers. Finson-Probstein dust modeling showed that ejection of grains began

  7. Lithospheric deformation in the Canadian Appalachians: evidence from shear wave splitting

    NASA Astrophysics Data System (ADS)

    Bastow, I. D.; Gilligan, A.; Watson, E.; Darbyshire, F. A.; Levin, V. L.; Menke, W. H.; Lane, V.; Boyce, A.; Liddell, M. V.; Petrescu, L.; Hawthorn, D.

    2016-12-01

    Plate-scale deformation is expected to impart seismic anisotropic fabrics on the lithosphere. Determination of the fast shear wave orientation (φ ) and the delay time between the fast and slow split shear waves (δt ) via SKS splitting can help place spatial and temporal constraints on lithospheric deformation. The Canadian Appalachians experienced multiple episodes of deformation during the Phanerozoic: accretionary collisions during the Palaeozoic prior to the collision between Laurentia and Gondwana, and rifting related to the Mesozoic opening of the North Atlantic. However, the extent to which extensional events have overprinted older orogenic trends is uncertain. We address this issue through measurements of seismic anisotropy beneath the Canadian Appalachians, computing shear wave splitting parameters (φ , δt ) for new and existing seismic stations in Nova Scotia and New Brunswick. Average δt values of 1.2 s, relatively short length scale (≥ 100 km) splitting parameter variations, and a lack of correlation with absolute plate motion direction and mantle flow models, demonstrate that fossil lithospheric anisotropic fabrics dominate our results. Most fast directions parallel Appalachian orogenic trends observed at the surface, while δt values point towards coherent deformation of the crust and mantle lithosphere. Mesozoic rifting had minimal impact on our study area, except locally within the Bay of Fundy and in southern Nova Scotia, where fast directions are subparallel to the opening direction of Mesozoic rifting; associated δt values of > 1 s require an anisotropic layer that spans both the crust and mantle, meaning the formation of the Bay of Fundy was not merely a thin-skinned tectonic event.

  8. Lithospheric deformation in the Canadian Appalachians: evidence from shear wave splitting

    NASA Astrophysics Data System (ADS)

    Gilligan, Amy; Bastow, Ian D.; Watson, Emma; Darbyshire, Fiona A.; Levin, Vadim; Menke, William; Lane, Victoria; Hawthorn, David; Boyce, Alistair; Liddell, Mitchell V.; Petrescu, Laura

    2016-08-01

    Plate-scale deformation is expected to impart seismic anisotropic fabrics on the lithosphere. Determination of the fast shear wave orientation (ϕ) and the delay time between the fast and slow split shear waves (δt) via SKS splitting can help place spatial and temporal constraints on lithospheric deformation. The Canadian Appalachians experienced multiple episodes of deformation during the Phanerozoic: accretionary collisions during the Palaeozoic prior to the collision between Laurentia and Gondwana, and rifting related to the Mesozoic opening of the North Atlantic. However, the extent to which extensional events have overprinted older orogenic trends is uncertain. We address this issue through measurements of seismic anisotropy beneath the Canadian Appalachians, computing shear wave splitting parameters (ϕ, δt) for new and existing seismic stations in Nova Scotia and New Brunswick. Average δt values of 1.2 s, relatively short length scale (≥100 km) splitting parameter variations, and a lack of correlation with absolute plate motion direction and mantle flow models, demonstrate that fossil lithospheric anisotropic fabrics dominate our results. Most fast directions parallel Appalachian orogenic trends observed at the surface, while δt values point towards coherent deformation of the crust and mantle lithosphere. Mesozoic rifting had minimal impact on our study area, except locally within the Bay of Fundy and in southern Nova Scotia, where fast directions are subparallel to the opening direction of Mesozoic rifting; associated δt values of >1 s require an anisotropic layer that spans both the crust and mantle, meaning the formation of the Bay of Fundy was not merely a thin-skinned tectonic event.

  9. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: Statistical distribution and height-dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldmann, Elias, E-mail: goldmann@itp.uni-bremen.de; Barthel, Stefan; Florian, Matthias

    The variation of the excitonic fine-structure splitting is studied for semiconductor quantum dots under the influence of a strain-reducing layer, utilized to shift the emission wavelength of the excitonic transition into the telecom-wavelength regime of 1.3–1.5 μm. By means of a sp{sup 3}s{sup *}-tight-binding model and configuration interaction, we calculate wavelength shifts and fine-structure splittings for various quantum dot geometries. We find the splittings remaining small and even decreasing with strain-reducing layer composition for quantum dots with large height. Combined with an observed increased emission efficiency, the applicability for generation of entanglement photons is persistent.

  10. Electron spin resonance identification di-carbon-related centers in irradiated silicon

    NASA Astrophysics Data System (ADS)

    Hayashi, S.; Saito, H.; Itoh, K. M.; Vlasenko, M. P.; Vlasenko, L. S.

    2018-04-01

    A previously unreported electron spin resonance (ESR) spectrum was found in γ-ray irradiated silicon by the detection of the change in microwave photoconductivity arising from spin-dependent recombination (SDR). In the specially prepared silicon crystals doped by 13C isotope, a well resolved hyperfine structure of SDR-ESR lines due to the interaction between electrons and two equivalent carbon atoms having nuclear spin I = 1/2 was observed. The Si-KU4 spectrum is described by spin Hamiltonian for spin S = 1 and of g and D tensors of orthorhombic symmetry with principal values g1 = 2.008, g2 = 2.002, and g3 =2.007; and D1 = ± 103 MHz, D2 = ∓170 MHz, and D3 = ± 67 MHz where axes 1, 2, and 3 are parallel to the [1 1 ¯ 0 ], [110], and [001] crystal axes, respectively. The hyperfine splitting arising from 13C nuclei is about 0.35 mT. A possible microstructure of the detect leading to the Si-KU4 spectrum is discussed.

  11. Implication for using heme methyl hyperfine shifts as indicators of heme seating as related to stereoselectivity in the catabolism of heme by heme oxygenase: in-plane heme versus axial his rotation.

    PubMed

    Ogura, Hiroshi; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N

    2008-01-08

    The triple mutant of the solubilized, 265-residue construct of human heme oxygenase, K18E/E29K/R183E-hHO, has been shown to redirect the exclusive alpha-regioselectivity of wild-type hHO to primarily beta,delta-selectivity in the cleavage of heme (Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz de Montellano, P. R. (2006) Biochemistry 45, 61-73). The 1H NMR hyperfine shift pattern for the substrate and axial His CbetaH's and the substrate-protein contacts of the cyanide-inhibited protohemin and 2,4-dimethyldeuterohemin complexes of the triple mutant have been analyzed in detail and compared to data for the WT complex. It is shown that protein contacts for the major solution isomers for both substrates in the mutant dictate approximately 90 degrees in-plane clockwise rotation relative to that in the WT. The conventional interpretation of the pattern of substrate methyl hyperfine shifts, however, indicates substrate rotations of only approximately 50 degrees . This paradox is resolved by demonstrating that the axial His25 imidazole ring also rotates counterclockwise with respect to the protein matrix in the mutant relative to that in the WT. The axial His25 CbetaH hyperfine shifts are shown to serve as independent probes of the imidazole plane orientation relative to the protein matrix. The analysis indicates that the pattern of heme methyl hyperfine shifts cannot be used alone to determine the in-plane orientation of the substrate as it relates to the stereospecificity of heme cleavage, without explicit consideration of the orientation of the axial His imidazole plane relative to the protein matrix.

  12. Absence of giant spin splitting in the two-dimensional electron liquid at the surface of SrTiO3 (001)

    NASA Astrophysics Data System (ADS)

    McKeown Walker, S.; Riccò, S.; Bruno, F. Y.; de la Torre, A.; Tamai, A.; Golias, E.; Varykhalov, A.; Marchenko, D.; Hoesch, M.; Bahramy, M. S.; King, P. D. C.; Sánchez-Barriga, J.; Baumberger, F.

    2016-06-01

    We reinvestigate the putative giant spin splitting at the surface of SrTiO3 reported by Santander-Syro et al. [Nat. Mater. 13, 1085 (2014), 10.1038/nmat4107]. Our spin- and angle-resolved photoemission experiments on fractured (001) oriented surfaces supporting a two-dimensional electron liquid with high carrier density show no detectable spin polarization in the photocurrent. We demonstrate that this result excludes a giant spin splitting while it is consistent with the unconventional Rashba-like splitting seen in band structure calculations that reproduce the experimentally observed ladder of quantum confined subbands.

  13. Split Octonion Reformulation for Electromagnetic Chiral Media of Massive Dyons

    NASA Astrophysics Data System (ADS)

    Chanyal, B. C.

    2017-12-01

    In an explicit, unified, and covariant formulation of an octonion algebra, we study and generalize the electromagnetic chiral fields equations of massive dyons with the split octonionic representation. Starting with 2×2 Zorn’s vector matrix realization of split-octonion and its dual Euclidean spaces, we represent the unified structure of split octonionic electric and magnetic induction vectors for chiral media. As such, in present paper, we describe the chiral parameter and pairing constants in terms of split octonionic matrix representation of Drude-Born-Fedorov constitutive relations. We have expressed a split octonionic electromagnetic field vector for chiral media, which exhibits the unified field structure of electric and magnetic chiral fields of dyons. The beauty of split octonionic representation of Zorn vector matrix realization is that, the every scalar and vector components have its own meaning in the generalized chiral electromagnetism of dyons. Correspondingly, we obtained the alternative form of generalized Proca-Maxwell’s equations of massive dyons in chiral media. Furthermore, the continuity equations, Poynting theorem and wave propagation for generalized electromagnetic fields of chiral media of massive dyons are established by split octonionic form of Zorn vector matrix algebra.

  14. Shear Wave Splitting Inversion in a Complex Crust

    NASA Astrophysics Data System (ADS)

    Lucas, A.

    2015-12-01

    Shear wave splitting (SWS) inversion presents a method whereby the upper crust can be interrogated for fracture density. It is caused when a shear wave traverses an area of anisotropy, splits in two, with each wave experiencing a different velocity resulting in an observable separation in arrival times. A SWS observation consists of the first arrival polarization direction and the time delay. Given the large amount of data common in SWS studies, manual inspection for polarization and time delay is considered prohibitively time intensive. All automated techniques used can produce high amounts of observations falsely interpreted as SWS. Thus introducing error into the interpretation. The technique often used for removing these false observations is to manually inspect all SWS observations defined as high quality by the automated routine, and remove false identifications. We investigate the nature of events falsely identified compared to those correctly identified. Once this identification is complete we conduct a inversion for crack density from SWS time delay. The current body of work on linear SWS inversion utilizes an equation that defines the time delay between arriving shear waves with respect to fracture density. This equation makes the assumption that no fluid flow occurs as a result of the passing shear wave, a situation called squirt flow. We show that the assumption is not applicable in all geological situations. When it is not true, its use in an inversion produces a result which is negatively affected by the assumptions. This is shown to be the case at the test case of 6894 SWS observations gathered in a small area at Puna geothermal field, Hawaii. To rectify this situation, a series of new time delay formulae, applicable to linear inversion, are derived from velocity equations presented in literature. The new formula use a 'fluid influence parameter' which indicates the degree to which squirt flow is influencing the SWS. It is found that accounting for

  15. Order-splitting and long-memory in an order-driven market

    NASA Astrophysics Data System (ADS)

    Yamamoto, R.; LeBaron, B.

    2010-01-01

    Recent empirical research has documented long-memories of trading volume, volatility, and order-signs in stock markets. We conjecture that traders' order-splitting is related to these empirical features. This study conducts simulations on an order-driven economy where agents split their orders into small pieces and execute piece by piece to reduce price impact. We demonstrate that we can replicate the long-memories in our order-splitting economy and conclude that order-splitting can be a possible cause for these empirical properties.

  16. Multidirectional hybrid algorithm for the split common fixed point problem and application to the split common null point problem.

    PubMed

    Li, Xia; Guo, Meifang; Su, Yongfu

    2016-01-01

    In this article, a new multidirectional monotone hybrid iteration algorithm for finding a solution to the split common fixed point problem is presented for two countable families of quasi-nonexpansive mappings in Banach spaces. Strong convergence theorems are proved. The application of the result is to consider the split common null point problem of maximal monotone operators in Banach spaces. Strong convergence theorems for finding a solution of the split common null point problem are derived. This iteration algorithm can accelerate the convergence speed of iterative sequence. The results of this paper improve and extend the recent results of Takahashi and Yao (Fixed Point Theory Appl 2015:87, 2015) and many others .

  17. On-demand acoustic droplet splitting and steering in a disposable microfluidic chip.

    PubMed

    Park, Jinsoo; Jung, Jin Ho; Park, Kwangseok; Destgeer, Ghulam; Ahmed, Husnain; Ahmad, Raheel; Sung, Hyung Jin

    2018-01-30

    On-chip droplet splitting is one of the fundamental droplet-based microfluidic unit operations to control droplet volume after production and increase operational capability, flexibility, and throughput. Various droplet splitting methods have been proposed, and among them the acoustic droplet splitting method is promising because of its label-free operation without any physical or thermal damage to droplets. Previous acoustic droplet splitting methods faced several limitations: first, they employed a cross-type acoustofluidic device that precluded multichannel droplet splitting; second, they required irreversible bonding between a piezoelectric substrate and a microfluidic chip, such that the fluidic chip was not replaceable. Here, we present a parallel-type acoustofluidic device with a disposable microfluidic chip to address the limitations of previous acoustic droplet splitting devices. In the proposed device, an acoustic field is applied in the direction opposite to the flow direction to achieve multichannel droplet splitting and steering. A disposable polydimethylsiloxane microfluidic chip is employed in the developed device, thereby removing the need for permanent bonding and improving the flexibility of the droplet microfluidic device. We experimentally demonstrated on-demand acoustic droplet bi-splitting and steering with precise control over the droplet splitting ratio, and we investigated the underlying physical mechanisms of droplet splitting and steering based on Laplace pressure and ray acoustics analyses, respectively. We also demonstrated droplet tri-splitting to prove the feasibility of multichannel droplet splitting. The proposed on-demand acoustic droplet splitting device enables on-chip droplet volume control in various droplet-based microfluidic applications.

  18. Quantitative analysis on electric dipole energy in Rashba band splitting.

    PubMed

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-09-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime.

  19. Quantitative analysis on electric dipole energy in Rashba band splitting

    PubMed Central

    Hong, Jisook; Rhim, Jun-Won; Kim, Changyoung; Ryong Park, Seung; Hoon Shim, Ji

    2015-01-01

    We report on quantitative comparison between the electric dipole energy and the Rashba band splitting in model systems of Bi and Sb triangular monolayers under a perpendicular electric field. We used both first-principles and tight binding calculations on p-orbitals with spin-orbit coupling. First-principles calculation shows Rashba band splitting in both systems. It also shows asymmetric charge distributions in the Rashba split bands which are induced by the orbital angular momentum. We calculated the electric dipole energies from coupling of the asymmetric charge distribution and external electric field, and compared it to the Rashba splitting. Remarkably, the total split energy is found to come mostly from the difference in the electric dipole energy for both Bi and Sb systems. A perturbative approach for long wave length limit starting from tight binding calculation also supports that the Rashba band splitting originates mostly from the electric dipole energy difference in the strong atomic spin-orbit coupling regime. PMID:26323493

  20. Split ring containment attachment device

    DOEpatents

    Sammel, Alfred G.

    1996-01-01

    A containment attachment device 10 for operatively connecting a glovebag 200 to plastic sheeting 100 covering hazardous material. The device 10 includes an inner split ring member 20 connected on one end 22 to a middle ring member 30 wherein the free end 21 of the split ring member 20 is inserted through a slit 101 in the plastic sheeting 100 to captively engage a generally circular portion of the plastic sheeting 100. A collar potion 41 having an outer ring portion 42 is provided with fastening means 51 for securing the device 10 together wherein the glovebag 200 is operatively connected to the collar portion 41.

  1. A High Resolution Spectroscopic Study of the Nu2 Band of Hydrogen Sulfide and the 1-0 Band of Hydrogen Iodide. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Strow, L. L.

    1981-01-01

    A tunable diode laser spectrometer was constructed and used to study: (1) the effects of centrifugal distortion on the transition frequencies and strengths of the nu sub 2 band of H2S, and (2) nuclear quadrupole hyperfine structure in the 1-0 band of HI. A total of 126 line frequencies and 94 line strengths in the nu sub 2 band of H2S were measured. The average accuracy of the line frequency measurements was + or - 0.0016 cm. The line strengths were measured to an average accuracy of about 3 percent. The effect of the finite spectral width of the diode laser on the measurement of line strengths is discussed. The observed H2S line frequencies were fit to Watson's AS and NS reduced Hamiltonian in both the Ir and IIIr coordinate representations in order to determine the best set of rotation distortion constants for the upper state of the nu sub 2 band. Comparisons of the observed line strengths in this band to rigid rotor line strengths are also presented. Nuclear quadrupole hyperfine structure in the low J lines of the 1-0 band of HI was observed. The upper vibrational state nuclear quadrupole coupling constant, determined from the observed splittings, was -1850 MHz + or - 12 MHz or 1.2 percent + or - 0.7 percent larger than the ground state coupling constant.

  2. The 57Fe hyperfine interactions in human liver ferritin and its iron-polymaltose analogues: the heterogeneous iron core model

    NASA Astrophysics Data System (ADS)

    Oshtrakh, M. I.; Alenkina, I. V.; Semionkin, V. A.

    2016-12-01

    Human liver ferritin and its iron-polymaltose pharmaceutical analogues Ferrum Lek, Maltofer® and Ferrifol® were studied using Mössbauer spectroscopy at 295 and 90 K. The Mössbauer spectra were fitted on the basis of a new model of heterogeneous iron core structure using five quadrupole doublets. These components were related to the corresponding more or less close-packed iron core layers/regions demonstrating some variations in the 57Fe hyperfine parameters for the studied samples.

  3. Measuring and Evaluating TCP Splitting for Cloud Services

    NASA Astrophysics Data System (ADS)

    Pathak, Abhinav; Wang, Y. Angela; Huang, Cheng; Greenberg, Albert; Hu, Y. Charlie; Kern, Randy; Li, Jin; Ross, Keith W.

    In this paper, we examine the benefits of split-TCP proxies, deployed in an operational world-wide network, for accelerating cloud services. We consider a fraction of a network consisting of a large number of satellite datacenters, which host split-TCP proxies, and a smaller number of mega datacenters, which ultimately perform computation or provide storage. Using web search as an exemplary case study, our detailed measurements reveal that a vanilla TCP splitting solution deployed at the satellite DCs reduces the 95 th percentile of latency by as much as 43% when compared to serving queries directly from the mega DCs. Through careful dissection of the measurement results, we characterize how individual components, including proxy stacks, network protocols, packet losses and network load, can impact the latency. Finally, we shed light on further optimizations that can fully realize the potential of the TCP splitting solution.

  4. Models of lithosphere and asthenosphere anisotropic structure of the Yellowstone hot spot from shear wave splitting

    USGS Publications Warehouse

    Waite, Gregory P.; Schutt, D.L.; Smith, Robert B.

    2005-01-01

    Teleseismic shear wave splitting measured at 56 continuous and temporary seismographs deployed in a 500 km by 600 km area around the Yellowstone hot spot indicates that fast anisotropy in the mantle is parallel to the direction of plate motion under most of the array. The average split time from all stations of 0.9 s is typical of continental stations. There is little evidence for plume-induced radial strain, suggesting that any contribution of gravitationally spreading plume material is undetectably small with respect to the plate motion velocity. Two stations within Yellowstone have splitting measurements indicating the apparent fast anisotropy direction (ϕ) is nearly perpendicular to plate motion. These stations are ∼30 km from stations with ϕ parallel to plate motion. The 70° rotation over 30 km suggests a shallow source of anisotropy; however, split times for these stations are more than 2 s. We suggest melt-filled, stress-oriented cracks in the lithosphere are responsible for the anomalous ϕ orientations within Yellowstone. Stations southeast of Yellowstone have measurements of ϕ oriented NNW to WNW at high angles to the plate motion direction. The Archean lithosphere beneath these stations may have significant anisotropy capable of producing the observed splitting.

  5. Phonon-drag magnetothermopower in Rashba spin-split two-dimensional electron systems.

    PubMed

    Biswas, Tutul; Ghosh, Tarun Kanti

    2013-10-16

    We study the phonon-drag contribution to the thermoelectric power in a quasi-two-dimensional electron system confined in GaAs/AlGaAs heterostructure in the presence of both Rashba spin-orbit interaction and perpendicular magnetic field at very low temperature. It is observed that the peaks in the phonon-drag thermopower split into two when the Rashba spin-orbit coupling constant is strong. This splitting is a direct consequence of the Rashba spin-orbit interaction. We show the dependence of phonon-drag thermopower on both magnetic field and temperature numerically. A power-law dependence of phonon-drag magnetothermopower on the temperature in the Bloch-Gruneisen regime is found. We also extract the exponent of the temperature dependence of phonon-drag thermopower for different parameters like electron density, magnetic field, and the spin-orbit coupling constant.

  6. Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.

    PubMed

    Chernov, Konstantin G; Neuvonen, Maarit; Brock, Ivonne; Ikonen, Elina; Verkhusha, Vladislav V

    2017-05-26

    Cholesterol oxidase (COase) is a bacterial enzyme catalyzing the first step in the biodegradation of cholesterol. COase is an important biotechnological tool for clinical diagnostics and production of steroid drugs and insecticides. It is also used for tracking intracellular cholesterol; however, its utility is limited by the lack of an efficient temporal control of its activity. To overcome this we have developed a regulatable fragment complementation system for COase cloned from Chromobacterium sp. The enzyme was split into two moieties that were fused to FKBP (FK506-binding protein) and FRB (rapamycin-binding domain) pair and split GFP fragments. The addition of rapamycin reconstituted a fluorescent enzyme, termed split GFP-COase, the fluorescence level of which correlated with its oxidation activity. A rapid decrease of cellular cholesterol induced by intracellular expression of the split GFP-COase promoted the dissociation of a cholesterol biosensor D4H from the plasma membrane. The process was reversible as upon rapamycin removal, the split GFP-COase fluorescence was lost, and cellular cholesterol levels returned to normal. These data demonstrate that the split GFP-COase provides a novel tool to manipulate cholesterol in mammalian cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Using Hyperfine Electron Paramagnetic Resonance Spectroscopy to Define the Proton-Coupled Electron Transfer Reaction at Fe-S Cluster N2 in Respiratory Complex I.

    PubMed

    Le Breton, Nolwenn; Wright, John J; Jones, Andrew J Y; Salvadori, Enrico; Bridges, Hannah R; Hirst, Judy; Roessler, Maxie M

    2017-11-15

    Energy-transducing respiratory complex I (NADH:ubiquinone oxidoreductase) is one of the largest and most complicated enzymes in mammalian cells. Here, we used hyperfine electron paramagnetic resonance (EPR) spectroscopic methods, combined with site-directed mutagenesis, to determine the mechanism of a single proton-coupled electron transfer reaction at one of eight iron-sulfur clusters in complex I, [4Fe-4S] cluster N2. N2 is the terminal cluster of the enzyme's intramolecular electron-transfer chain and the electron donor to ubiquinone. Because of its position and pH-dependent reduction potential, N2 has long been considered a candidate for the elusive "energy-coupling" site in complex I at which energy generated by the redox reaction is used to initiate proton translocation. Here, we used hyperfine sublevel correlation (HYSCORE) spectroscopy, including relaxation-filtered hyperfine and single-matched resonance transfer (SMART) HYSCORE, to detect two weakly coupled exchangeable protons near N2. We assign the larger coupling with A( 1 H) = [-3.0, -3.0, 8.7] MHz to the exchangeable proton of a conserved histidine and conclude that the histidine is hydrogen-bonded to N2, tuning its reduction potential. The histidine protonation state responds to the cluster oxidation state, but the two are not coupled sufficiently strongly to catalyze a stoichiometric and efficient energy transduction reaction. We thus exclude cluster N2, despite its proton-coupled electron transfer chemistry, as the energy-coupling site in complex I. Our work demonstrates the capability of pulse EPR methods for providing detailed information on the properties of individual protons in even the most challenging of energy-converting enzymes.

  8. Assessment of the Maximal Split-Half Coefficient to Estimate Reliability

    ERIC Educational Resources Information Center

    Thompson, Barry L.; Green, Samuel B.; Yang, Yanyun

    2010-01-01

    The maximal split-half coefficient is computed by calculating all possible split-half reliability estimates for a scale and then choosing the maximal value as the reliability estimate. Osburn compared the maximal split-half coefficient with 10 other internal consistency estimates of reliability and concluded that it yielded the most consistently…

  9. Predicting SKS-splitting from 35 Myr of subduction and mantle flow evolution in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Chertova, Maria; Spakman, Wim; Faccenda, Manuele

    2017-04-01

    We investigate the development of mantle anisotropy associated with the evolution of the Rif-Gibraltar-Betic (RGB) slab of the western Mediterranean and predict SKS-splitting directions for comparison with the recent observations compiled in Diaz and Gallart (2014). Our numerical model of slab evolution starts at 35 Ma and builds on our on recent work (Chertova et al., 2014) with the extension of imposing mantle flow velocities on the side boundaries of the model (Chertova et al., 2017). For the calculation of the evolution of finite strain deformation from the mantle flow field and for prediction of SKS-splitting directions we use the modified D-Rex program of Faccenda (2014). We test the predicted splitting observations against present-day shear wave splitting observations for subduction models with open boundary conditions (Chertova, 2014) and for models with various prescribed mantle flow conditions on the model side boundaries. The latter are predicted time-dependent (1 Myr time steps) velocity boundary conditions computed from back-advection of a temperature and density model of the present-day mantle scaled from a global seismic tomography model (Steinberger et al., 2015). These boundary conditions where used recently to demonstrate the relative insensitivity of RGB slab position and overall slab morphology for external mantle flow (Chertova et al., 2017). Using open boundaries only we obtain a poor to moderate fit between predicted and observed splitting directions after 35 Myr of slab and mantle flow evolution. In contrast, a good fit is obtained when imposing the computed mantle flow velocities on the western, southern, and northern boundaries during 35 Myr of model evolution. This successful model combines local slab-driven mantle flow with remotely forced mantle flow. We are in the process to repeat these calculations for shorter periods of mantle flow evolution to determine how much of past mantle flow is implicitly recorded in present-day observation

  10. 77 FR 8184 - Foreign Tax Credit Splitting Events

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... Foreign Tax Credit Splitting Events AGENCY: Internal Revenue Service (IRS), Treasury. ACTION: Notice of... these proposed regulations. The regulations affect taxpayers claiming foreign tax credits. Special... of the Federal Register.] Sec. 1.909-6 Pre-2011 foreign tax credit splitting events. [The text of...

  11. Quantum oscillation signatures of spin-orbit interactions controlling the residual nodal bilayer-splitting in underdoped high-Tc cuprates

    NASA Astrophysics Data System (ADS)

    Harrison, Neil; Shekhter, Arkady

    2015-03-01

    We investigate the origin of the small residual nodal bilayer-splitting in the underdoped high-Tc superconductor YBa2Cu3O6+x using the results of recently published angle-resolved quantum oscillation data [Sebastian et al., Nature 511, 61 (2014)]. A crucial clue to the origin of the residual bilayer-splitting is found to be provided by the anomalously small Zeeman-splitting of some of the observed cyclotron orbits. We show that such an anomalously Zeeman-splitting (or small effective g-factor) for a subset of orbits can be explained by spin-orbit interactions, which become significant in the nodal regions as a result of the vanishing bilayer coupling. The primary effect of spin-orbit interactions is to cause quasiparticles traversing the nodal region of the Brillouin zone to undergo a spin flip. We suggest that the Rashba-like spin-orbit interactions, naturally present in bilayer systems, have the right symmetry and magnitude to give rise to a network of coupled orbits consistent with experimental observations in underdoped YBa2Cu3O6+x. This work is supported by the DOEm BES proposal LANLF100, while the magnet lab is supported by the NSF and Florida State.

  12. Experimental Study of Split-Path Transmission Load Sharing

    NASA Technical Reports Server (NTRS)

    Krantz, Timothy L.; Delgado, Irebert R.

    1996-01-01

    Split-path transmissions are promising, attractive alternatives to the common planetary transmissions for helicopters. The split-path design offers two parallel paths for transmitting torque from the engine to the rotor. Ideally, the transmitted torque is shared equally between the two load paths; however, because of manufacturing tolerances, the design must be sized to allow for other than equal load sharing. To study the effect of tolerances, experiments were conducted using the NASA split-path test gearbox. Two gearboxes, nominally identical except for manufacturing tolerances, were tested. The clocking angle was considered to be a design parameter and used to adjust the load sharing of an otherwise fixed design. The torque carried in each path was measured for a matrix of input torques and clocking angles. The data were used to determine the optimal value and a tolerance for the clocking angles such that the most heavily loaded split path carried no greater than 53 percent of an input shaft torque of 367 N-m. The range of clocking angles satisfying this condition was -0.0012 +/- 0.0007 rad for box 1 and -0.0023 +/- 0.0009 rad for box 2. This study indicates that split-path gearboxes can be used successfully in rotorcraft and can be manufactured with existing technology.

  13. Teleseismic shear-wave splitting in SE Tibet: Insight into complex crust and upper-mantle deformation

    NASA Astrophysics Data System (ADS)

    Huang, Zhouchuan; Wang, Liangshu; Xu, Mingjie; Ding, Zhifeng; Wu, Yan; Wang, Pan; Mi, Ning; Yu, Dayong; Li, Hua

    2015-12-01

    We measured shear-wave splitting of teleseismic XKS phases (i.e., SKS, SKKS and PKS) recorded by more than 300 temporary ChinArray stations in Yunnan of SE Tibet. The first-order pattern of XKS splitting measurements shows that the fast polarization directions (φ) change (at ∼26-27°N) from dominant N-S in the north to E-W in the south. While splitting observations around the eastern Himalayan syntax well reflect anisotropy in the lithosphere under left-lateral shear deformation, the dominant E-W φ to the south of ∼26°N is consistent with the maximum extension in the crust and suggest vertically coherent pure-shear deformation throughout the lithosphere in Yunnan. However, the thin lithosphere (<80 km) could account for only part (<0.7 s) of the observed splitting delay times (δt, 0.9-1.5 s). Anisotropy in the asthenosphere is necessary to explain the NW-SE and nearly E-W φ in these regions. The NE-SW φ can be explained by the counter flow caused by the subduction and subsequent retreat of the Burma slab. The E-W φ is consistent with anisotropy due to the absolute plate motion in SE Tibet and the eastward asthenospheric flow from Tibet to eastern China accompanying the tectonic evolution of the plateau. Our results provide new information on different deformation fields in different layers under SE Tibet, which improves our understanding on the complex geodynamics related to the tectonic uplift and southeastward expansion of Tibetan material under the plateau.

  14. Imaging magnetisation dynamics in nano-contact spin-torque vortex oscillators exhibiting gyrotropic mode splitting

    NASA Astrophysics Data System (ADS)

    Keatley, Paul Steven; Redjai Sani, Sohrab; Hrkac, Gino; Majid Mohseni, Seyed; Dürrenfeld, Philipp; Åkerman, Johan; Hicken, Robert James

    2017-04-01

    Nano-contact spin-torque vortex oscillators (STVOs) are anticipated to find application as nanoscale sources of microwave emission in future technological applications. Presently the output power and phase stability of individual STVOs are not competitive with existing oscillator technologies. Synchronisation of multiple nano-contact STVOs via magnetisation dynamics has been proposed to enhance the microwave emission. The control of device-to-device variations, such as mode splitting of the microwave emission, is essential if multiple STVOs are to be successfully synchronised. In this work a combination of electrical measurements and time-resolved scanning Kerr microscopy (TRSKM) was used to demonstrate how mode splitting in the microwave emission of STVOs was related to the magnetisation dynamics that are generated. The free-running STVO response to a DC current only was used to identify devices and bias magnetic field configurations for which single and multiple modes of microwave emission were observed. Stroboscopic Kerr images were acquired by injecting a small amplitude RF current to phase lock the free-running STVO response. The images showed that the magnetisation dynamics of a multimode device with moderate splitting could be controlled by the injected RF current so that they exhibit similar spatial character to that of a single mode. Significant splitting was found to result from a complicated equilibrium magnetic state that was observed in Kerr images as irregular spatial characteristics of the magnetisation dynamics. Such dynamics were observed far from the nano-contact and so their presence cannot be detected in electrical measurements. This work demonstrates that TRSKM is a powerful tool for the direct observation of the magnetisation dynamics generated by STVOs that exhibit complicated microwave emission. Characterisation of such dynamics outside the nano-contact perimeter permits a deeper insight into the requirements for optimal phase-locking of

  15. Hyperfine-induced spin relaxation of a diffusively moving carrier in low dimensions: Implications for spin transport in organic semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mkhitaryan, V. V.; Dobrovitski, V. V.

    2015-08-24

    The hyperfine coupling between the spin of a charge carrier and the nuclear spin bath is a predominant channel for the carrier spin relaxation in many organic semiconductors. We theoretically investigate the hyperfine-induced spin relaxation of a carrier performing a random walk on a d-dimensional regular lattice, in a transport regime typical for organic semiconductors. We show that in d=1 and 2, the time dependence of the space-integrated spin polarization P(t) is dominated by a superexponential decay, crossing over to a stretched-exponential tail at long times. The faster decay is attributed to multiple self-intersections (returns) of the random-walk trajectories, whichmore » occur more often in lower dimensions. We also show, analytically and numerically, that the returns lead to sensitivity of P(t) to external electric and magnetic fields, and this sensitivity strongly depends on dimensionality of the system (d=1 versus d=3). We investigate in detail the coordinate dependence of the time-integrated spin polarization σ(r), which can be probed in the spin-transport experiments with spin-polarized electrodes. We also demonstrate that, while σ(r) is essentially exponential, the effect of multiple self-intersections can be identified in transport measurements from the strong dependence of the spin-decay length on the external magnetic and electric fields.« less

  16. Upper mantle dynamics of Bangladesh by splitting analysis of core-mantle refracted SKS, PKS, and SKKS phases

    NASA Astrophysics Data System (ADS)

    Tiwari, Ashwani Kant; Bhushan, Kirti; Eken, Tuna; Singh, Arun

    2018-06-01

    New shear wave splitting measurements are obtained from the Bengal Basin using core-mantle refracted SKS, PKS, and SKKS phases. The splitting parameters, namely time delays (δ t) and fast polarization directions (ϕ), were estimated through analysis of 54 high-quality waveforms (⩾ 2.5 signal to noise ratio) from 30 earthquakes with magnitude ⩾ 5.5 recorded at ten seismic stations deployed over Bangladesh. No evidence of splitting was found, which indicates azimuthal isotropy beneath the region. These null measurements can be explained by either vertically dipping anisotropic fast axes or by the presence of multiple horizontal anisotropic layers with different fast polarization directions, where the combined effect results in a null characterization. The anisotropic fabric preserved from rifting episodes of Antarctica and India, subduction-related dynamics of the Indo-Burmese convergence zone, and northward movement of the Indian plate creating shear at the base of the lithosphere can explain the observed null measurements. The combined effect of all these most likely results in a strong vertical anisotropic heterogeneity, creating the observed null results.

  17. Split luciferase complementation assay for the analysis of G protein-coupled receptor ligand response in Saccharomyces cerevisiae.

    PubMed

    Fukutani, Yosuke; Ishii, Jun; Kondo, Akihiko; Ozawa, Takeaki; Matsunami, Hiroaki; Yohda, Masafumi

    2017-06-01

    The budding yeast Saccharomyces cerevisiae is equipped with G protein-coupled receptors (GPCR). Because the yeast GPCR signaling mechanism is partly similar to that of the mammalian system, S. cerevisiae can be used for a host of mammalian GPCR expression and ligand-mediated activation assays. However, currently available yeast systems require several hours to observe the responses because they depend on the expression of reporter genes. In this study, we attempted to develop a simple GPCR assay system using split luciferase and β-arrestin, which are independent of the endogenous S. cerevisiae GPCR signaling pathways. We applied the split luciferase complementation assay method to S. cerevisiae and found that it can be used to analyze the ligand response of the human somatostatin receptor in S. cerevisiae. On the contrary, the response of the pheromone receptor Ste2 was not observed by the assay. Thus, the split luciferase complementation should be free from the effect of the endogenous GPCR signaling. Biotechnol. Bioeng. 2017;114: 1354-1361. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. A frequency standard via spectrum analysis and direct digital synthesis

    NASA Astrophysics Data System (ADS)

    Li, Dawei; Shi, Daiting; Hu, Ermeng; Wang, Yigen; Tian, Lu; Zhao, Jianye; Wang, Zhong

    2014-11-01

    We demonstrated a frequency standard based on a detuned coherent population beating phenomenon. In this phenomenon, the beat frequency of the radio frequency for laser modulation and the hyperfine splitting can be obtained by digital signal processing technology. After analyzing the spectrum of the beat frequency, the fluctuation information is obtained and applied to compensate for the frequency shift to generate the standard frequency by the digital synthesis method. Frequency instability of 2.6 × 1012 at 1000 s is observed in our preliminary experiment. By eliminating the phase-locking loop, the method will enable us to achieve a full-digital frequency standard with remarkable stability.

  19. Physics with Trapped Antihydrogen

    NASA Astrophysics Data System (ADS)

    Charlton, Michael

    2017-04-01

    For more than a decade antihydrogen atoms have been formed by mixing antiprotons and positrons held in arrangements of charged particle (Penning) traps. More recently, magnetic minimum neutral atom traps have been superimposed upon the anti-atom production region, promoting the trapping of a small quantity of the antihydrogen yield. We will review these advances, and describe some of the first physics experiments performed on anrtihydrogen including the observation of the two-photon 1S-2S transition, invesigation of the charge neutrailty of the anti-atom and studies of the ground state hyperfine splitting. We will discuss the physics motivations for undertaking these experiments and describe some near-future initiatives.

  20. Electron electric dipole moment and hyperfine interaction constants for ThO

    NASA Astrophysics Data System (ADS)

    Fleig, Timo; Nayak, Malaya K.

    2014-06-01

    A recently implemented relativistic four-component configuration interaction approach to study P- and T-odd interaction constants in atoms and molecules is employed to determine the electron electric dipole moment effective electric field in the Ω=1 first excited state of the ThO molecule. We obtain a value of Eeff=75.2GV/cm with an estimated error bar of 3% and 10% smaller than a previously reported result (Skripnikov et al., 2013). Using the same wavefunction model we obtain an excitation energy of TvΩ=1=5410 (cm), in accord with the experimental value within 2%. In addition, we report the implementation of the magnetic hyperfine interaction constant A|| as an expectation value, resulting in A||=-1339 (MHz) for the Ω=1 state in ThO. The smaller effective electric field increases the previously determined upper bound (Baron et al., 2014) on the electron electric dipole moment to |de|<9.7×10-29e cm and thus mildly mitigates constraints to possible extensions of the Standard Model of particle physics.

  1. Linear Hyperfine Tuning of Donor Spins in Silicon Using Hydrostatic Strain

    NASA Astrophysics Data System (ADS)

    Mansir, J.; Conti, P.; Zeng, Z.; Pla, J. J.; Bertet, P.; Swift, M. W.; Van de Walle, C. G.; Thewalt, M. L. W.; Sklenard, B.; Niquet, Y. M.; Morton, J. J. L.

    2018-04-01

    We experimentally study the coupling of group V donor spins in silicon to mechanical strain, and measure strain-induced frequency shifts that are linear in strain, in contrast to the quadratic dependence predicted by the valley repopulation model (VRM), and therefore orders of magnitude greater than that predicted by the VRM for small strains |ɛ |<10-5. Through both tight-binding and first principles calculations we find that these shifts arise from a linear tuning of the donor hyperfine interaction term by the hydrostatic component of strain and achieve semiquantitative agreement with the experimental values. Our results provide a framework for making quantitative predictions of donor spins in silicon nanostructures, such as those being used to develop silicon-based quantum processors and memories. The strong spin-strain coupling we measure (up to 150 GHz per strain, for Bi donors in Si) offers a method for donor spin tuning—shifting Bi donor electron spins by over a linewidth with a hydrostatic strain of order 10-6—as well as opportunities for coupling to mechanical resonators.

  2. The millimeter and submillimeter rotational spectrum of the MgCN radical (X (sup 2) Sigma(+))

    NASA Technical Reports Server (NTRS)

    Anderson, M. A.; Steimle, T. C.; Ziurys, L. M.

    1994-01-01

    The pure rotational spectrum of the MgCN radical has been recorded in the laboratory using millimeter/submillimeter direct absorption spectroscopy. Twenty-seven rotational transitions of the species were observed in the range 101-376 GHz and indicate that the molecule is linear with a (sup 2)Sigma(+) ground electronic state, as predicted by theory. Spin rotation interactions were resolved in the spectra, but no hyperfine splittings were observed, which would originate with the nitrogen nuclear spin. The rotational and fine-structure constants were determined for this radical from a nonlinear least-squares fit to the data using a (sup 2)Sigma Hamiltonian. MgCN is of astrophysical interest because it is the metastable isomer of MgNC, which recently has been detected toward IRC +10216

  3. Microwave ac Zeeman force for ultracold atoms

    NASA Astrophysics Data System (ADS)

    Fancher, C. T.; Pyle, A. J.; Rotunno, A. P.; Aubin, S.

    2018-04-01

    We measure the ac Zeeman force on an ultracold gas of 87Rb due to a microwave magnetic field targeted to the 6.8 GHz hyperfine splitting of these atoms. An atom chip produces a microwave near field with a strong amplitude gradient, and we observe a force over three times the strength of gravity. Our measurements are consistent with a simple two-level theory for the ac Zeeman effect and demonstrate its resonant, bipolar, and spin-dependent nature. We observe that the dressed-atom eigenstates gradually mix over time and have mapped out this behavior as a function of magnetic field and detuning. We demonstrate the practical spin selectivity of the force by pushing or pulling a specific spin state while leaving other spin states unmoved.

  4. Magnetically induced phonon splitting in A Cr 2 O 4 spinels from first principles

    DOE PAGES

    Wysocki, Aleksander L.; Birol, Turan

    2016-04-22

    We study the magnetically-induced phonon splitting in cubic ACr 2O 4 (A=Mg, Zn, Cd) spinels from first principles and demonstrate that the sign of the splitting, which is experimentally observed to be opposite in CdCr 2O 4 compared to ZnCr 2O 4 and MgCr 2O 4, is determined solely by the particular magnetic ordering pattern observed in these compounds. We further show that this interaction between magnetism and phonon frequencies can be fully described by the previously proposed spin-phonon coupling model [C. J. Fennie and K. M. Rabe, Phys. Rev. Lett. 96, 205505 (2006)] that includes only the nearest neighbormore » exchange. In conclusion, using this model with materials specific parameters calculated from first principles, we provide additional insights into the physics of spin-phonon coupling in this intriguing family of compounds.« less

  5. GY SAMPLING THEORY IN ENVIRONMENTAL STUDIES 1: ASSESSING SOIL SPLITTING PROTOCOLS

    EPA Science Inventory

    Five soil sample splitting methods (riffle splitting, paper cone riffle splitting, fractional shoveling, coning and quartering, and grab sampling) were evaluated with synthetic samples to verify Pierre Gy sampling theory expectations. Individually prepared samples consisting of l...

  6. Influence of the large-small split effect on strategy choice in complex subtraction.

    PubMed

    Xiang, Yan Hui; Wu, Hao; Shang, Rui Hong; Chao, Xiaomei; Ren, Ting Ting; Zheng, Li Ling; Mo, Lei

    2018-04-01

    Two main theories have been used to explain the arithmetic split effect: decision-making process theory and strategy choice theory. Using the inequality paradigm, previous studies have confirmed that individuals tend to adopt a plausibility-checking strategy and a whole-calculation strategy to solve large and small split problems in complex addition arithmetic, respectively. This supports strategy choice theory, but it is unknown whether this theory also explains performance in solving different split problems in complex subtraction arithmetic. This study used small, intermediate and large split sizes, with each split condition being further divided into problems requiring and not requiring borrowing. The reaction times (RTs) for large and intermediate splits were significantly shorter than those for small splits, while accuracy was significantly higher for large and middle splits than for small splits, reflecting no speed-accuracy trade-off. Further, RTs and accuracy differed significantly between the borrow and no-borrow conditions only for small splits. This study indicates that strategy choice theory is suitable to explain the split effect in complex subtraction arithmetic. That is, individuals tend to choose the plausibility-checking strategy or the whole-calculation strategy according to the split size. © 2016 International Union of Psychological Science.

  7. Split of surface plasmon resonance of gold nanoparticles on silicon substrate: a study of dielectric functions.

    PubMed

    Zhu, S; Chen, T P; Cen, Z H; Goh, E S M; Yu, S F; Liu, Y C; Liu, Y

    2010-10-11

    The split of surface plasmon resonance of self-assembled gold nanoparticles on Si substrate is observed from the dielectric functions of the nanoparticles. The split plasmon resonances are modeled with two Lorentz oscillators: one oscillator at ~1 eV models the polarization parallel to the substrate while the other at ~2 eV represents the polarization perpendicular to the substrate. Both parallel and perpendicular resonances are red-shifted when the nanoparticle size increases. The red shifts in both resonances are explained by the image charge effect of the Si substrate.

  8. 7 CFR 51.2125 - Split or broken kernels.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Split or broken kernels. 51.2125 Section 51.2125 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... kernels. Split or broken kernels means seven-eighths or less of complete whole kernels but which will not...

  9. Split image optical display

    DOEpatents

    Veligdan, James T.

    2005-05-31

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  10. Split image optical display

    DOEpatents

    Veligdan, James T [Manorville, NY

    2007-05-29

    A video image is displayed from an optical panel by splitting the image into a plurality of image components, and then projecting the image components through corresponding portions of the panel to collectively form the image. Depth of the display is correspondingly reduced.

  11. Seismic anisotropy beneath the southeastern margin of the Tibetan Plateau and adjacent regions revealed by shear-wave splitting analyses

    NASA Astrophysics Data System (ADS)

    Gao, S. S.; Kong, F.; Wu, J.; Liu, L.; Liu, K. H.

    2017-12-01

    Seismic azimuthal anisotropy is measured at 83 stations situated at the southeastern margin of the Tibetan Plateau and adjacent regions based on shear-wave splitting analyses. A total of 1701 individual pairs of splitting parameters (fast polarization orientations and splitting delay times) are obtained using the PKS, SKKS, and SKS phases. The splitting parameters from 21 stations exhibit systematic back-azimuthal variations with a 90° periodicity, which is consistent with a two-layer anisotropy model. The resulting upper-layer splitting parameters computed based on a grid-search algorithm are comparable with crustal anisotropy measurements obtained independently based on the sinusoidal moveout of P-to-S conversions from the Moho. The fast orientations of the upper layer anisotropy, which is mostly parallel with major shear zones, are associated with crustal fabrics with a vertical foliation plane. The lower layer anisotropy and the station averaged splitting parameters at stations with azimuthally invariant splitting parameters can be adequately explained by the differential movement between the lithosphere and asthenosphere. The NW-SE fast orientations obtained in the northern part of the study area probably reflect the southeastward extruded mantle flow from central Tibet. In contrast, the NE-SW to E-W fast orientations observed in the southern part of the study area are most likely related to the northeastward to eastward mantle flow induced by the subduction of the Burma microplate.

  12. Comparison of Frequencies and Rotational Splittings of Solar Acoustic Modes of Low Angular Degree from Simultaneous MDI and GOLF Observations

    NASA Astrophysics Data System (ADS)

    Bertello, L.; Henney, C. J.; Ulrich, R. K.; Varadi, F.; Kosovichev, A. G.; Scherrer, P. H.; Cortés, T. Roca; Thiery, S.; Boumier, P.; Gabriel, A. H.; Turck-Chièze, S.

    2000-06-01

    During the years 1996 through 1998 the Michelson Doppler Imager (MDI) and the Global Oscillations at Low Frequency (GOLF) experiments on the Solar and Heliospheric Observatory (SOHO) mission have provided unique and nearly uninterrupted sequences of helioseismic observations. This paper describes the analysis carried out on power spectra from 759 days of calibrated disk-averaged velocity signals provided by these two experiments. The period investigated in this work is from 1996 May 25 to 1998 June 22. We report the results of frequency determination of low-degree (l<=3) acoustic modes in the frequency range between 1.4 mHz and 3.7 mHz. Rotational splittings are also measured for nonradial modes up to 3.0 mHz. The power spectrum estimation of the signals is performed using classical Fourier analysis and the line-profile parameters of the modes are determined by means of a maximum likelihood method. All parameters have been estimated using both symmetrical and asymmetrical line profile-fitting formula. The line asymmetry parameter of all modes with frequency higher than 2.0 mHz is systematically negative and independent of l. This result is consistent with the fact that both MDI and GOLF data sets investigated in this paper are predominantly velocity signals, in agreement with previous results. A comparison of the results between the symmetric and asymmetric fits shows that there is a systematic shift in the frequencies for modes above 2.0 mHz. Below this frequency, the line width of the modes is very small and the time base of the data does not provide enough statistics to reveal an asymmetry. In general, the results show that frequency and rotational splitting values obtained from both the MDI and GOLF signals are in excellent agreement, and no significant differences exist between the two data sets within the accuracy of the measurements. Our results are consistent with a uniform rotation of the solar core at the rate of about 435 nHz and show only very small

  13. Novel Split Chest Tube Improves Post-Surgical Thoracic Drainage.

    PubMed

    Olivencia-Yurvati, Albert H; Cherry, Brandon H; Gurji, Hunaid A; White, Daniel W; Newton, J Tyler; Scott, Gary F; Hoxha, Besim; Gourlay, Terence; Mallet, Robert T

    2014-01-01

    Conventional, separate mediastinal and pleural tubes are often inefficient at draining thoracic effusions. We developed a Y-shaped chest tube with split ends that divide within the thoracic cavity, permitting separate intrathoracic placement and requiring a single exit port. In this study, thoracic drainage by the split drain vs. that of separate drains was tested. After sternotomy, pericardiotomy, and left pleurotomy, pigs were fitted with separate chest drains (n=10) or a split tube prototype (n=9) with internal openings positioned in the mediastinum and in the costo-diaphragmatic recess. Separate series of experiments were conducted to test drainage of D5W or 0.58 M sucrose, an aqueous solution with viscosity approximating that of plasma. One litre of fluid was infused into the thorax, and suction was applied at -20 cm H2O for 30 min. When D5W was infused, the split drain left a residual volume of 53 ± 99 ml (mean value ± SD) vs. 148 ± 120 for the separate drain (P=0.007), representing a drainage efficiency (i.e. drained vol/[drained + residual vol]) of 95 ± 10% vs. 86 ± 12% for the separate drains (P = 0.011). In the second series, the split drain evacuated more 0.58 M sucrose in the first minute (967 ± 129 ml) than the separate drains (680 ± 192 ml, P<0.001). By 30 min, the split drain evacuated a similar volume of sucrose vs. the conventional drain (1089 ± 72 vs. 1056 ± 78 ml; P = 0.5). Residual volume tended to be lower (25 ± 10 vs. 62 ± 72 ml; P = 0.128) and drainage efficiency tended to be higher (98 ± 1 vs. 95 ± 6%; P = 0.111) with the split drain vs. conventional separate drains. The split chest tube drained the thoracic cavity at least as effectively as conventional separate tubes. This new device could potentially alleviate postoperative complications.

  14. Novel Split Chest Tube Improves Post-Surgical Thoracic Drainage

    PubMed Central

    Olivencia-Yurvati, Albert H; Cherry, Brandon H; Gurji, Hunaid A; White, Daniel W; Newton, J Tyler; Scott, Gary F; Hoxha, Besim; Gourlay, Terence; Mallet, Robert T

    2014-01-01

    Objective Conventional, separate mediastinal and pleural tubes are often inefficient at draining thoracic effusions. Description We developed a Y-shaped chest tube with split ends that divide within the thoracic cavity, permitting separate intrathoracic placement and requiring a single exit port. In this study, thoracic drainage by the split drain vs. that of separate drains was tested. Methods After sternotomy, pericardiotomy, and left pleurotomy, pigs were fitted with separate chest drains (n=10) or a split tube prototype (n=9) with internal openings positioned in the mediastinum and in the costo-diaphragmatic recess. Separate series of experiments were conducted to test drainage of D5W or 0.58 M sucrose, an aqueous solution with viscosity approximating that of plasma. One litre of fluid was infused into the thorax, and suction was applied at −20 cm H2O for 30 min. Results When D5W was infused, the split drain left a residual volume of 53 ± 99 ml (mean value ± SD) vs. 148 ± 120 for the separate drain (P=0.007), representing a drainage efficiency (i.e. drained vol/[drained + residual vol]) of 95 ± 10% vs. 86 ± 12% for the separate drains (P = 0.011). In the second series, the split drain evacuated more 0.58 M sucrose in the first minute (967 ± 129 ml) than the separate drains (680 ± 192 ml, P<0.001). By 30 min, the split drain evacuated a similar volume of sucrose vs. the conventional drain (1089 ± 72 vs. 1056 ± 78 ml; P = 0.5). Residual volume tended to be lower (25 ± 10 vs. 62 ± 72 ml; P = 0.128) and drainage efficiency tended to be higher (98 ± 1 vs. 95 ± 6%; P = 0.111) with the split drain vs. conventional separate drains. Conclusion The split chest tube drained the thoracic cavity at least as effectively as conventional separate tubes. This new device could potentially alleviate postoperative complications. PMID:25478289

  15. A methodology for double patterning compliant split and design

    NASA Astrophysics Data System (ADS)

    Wiaux, Vincent; Verhaegen, Staf; Iwamoto, Fumio; Maenhoudt, Mireille; Matsuda, Takashi; Postnikov, Sergei; Vandenberghe, Geert

    2008-11-01

    Double Patterning allows to further extend the use of water immersion lithography at its maximum numerical aperture NA=1.35. Splitting of design layers to recombine through Double Patterning (DP) enables an effective resolution enhancement. Single polygons may need to be split up (cut) depending on the pattern density and its 2D content. The split polygons recombine at the so-called 'stitching points'. These stitching points may affect the yield due to the sensitivity to process variations. We describe a methodology to ensure a robust double patterning by identifying proper split- and design- guidelines. Using simulations and experimental data, we discuss in particular metal1 first interconnect layers of random LOGIC and DRAM applications at 45nm half-pitch (hp) and 32nm hp where DP may become the only timely patterning solution.

  16. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Prakash; Morales, Jorge A., E-mail: jorge.morales@ttu.edu; Perera, Ajith

    2013-11-07

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. Inmore » this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate

  17. Split brain: divided perception but undivided consciousness.

    PubMed

    Pinto, Yair; Neville, David A; Otten, Marte; Corballis, Paul M; Lamme, Victor A F; de Haan, Edward H F; Foschi, Nicoletta; Fabri, Mara

    2017-05-01

    In extensive studies with two split-brain patients we replicate the standard finding that stimuli cannot be compared across visual half-fields, indicating that each hemisphere processes information independently of the other. Yet, crucially, we show that the canonical textbook findings that a split-brain patient can only respond to stimuli in the left visual half-field with the left hand, and to stimuli in the right visual half-field with the right hand and verbally, are not universally true. Across a wide variety of tasks, split-brain patients with a complete and radiologically confirmed transection of the corpus callosum showed full awareness of presence, and well above chance-level recognition of location, orientation and identity of stimuli throughout the entire visual field, irrespective of response type (left hand, right hand, or verbally). Crucially, we used confidence ratings to assess conscious awareness. This revealed that also on high confidence trials, indicative of conscious perception, response type did not affect performance. These findings suggest that severing the cortical connections between hemispheres splits visual perception, but does not create two independent conscious perceivers within one brain. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    PubMed Central

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  19. 3D geometric split-merge segmentation of brain MRI datasets.

    PubMed

    Marras, Ioannis; Nikolaidis, Nikolaos; Pitas, Ioannis

    2014-05-01

    In this paper, a novel method for MRI volume segmentation based on region adaptive splitting and merging is proposed. The method, called Adaptive Geometric Split Merge (AGSM) segmentation, aims at finding complex geometrical shapes that consist of homogeneous geometrical 3D regions. In each volume splitting step, several splitting strategies are examined and the most appropriate is activated. A way to find the maximal homogeneity axis of the volume is also introduced. Along this axis, the volume splitting technique divides the entire volume in a number of large homogeneous 3D regions, while at the same time, it defines more clearly small homogeneous regions within the volume in such a way that they have greater probabilities of survival at the subsequent merging step. Region merging criteria are proposed to this end. The presented segmentation method has been applied to brain MRI medical datasets to provide segmentation results when each voxel is composed of one tissue type (hard segmentation). The volume splitting procedure does not require training data, while it demonstrates improved segmentation performance in noisy brain MRI datasets, when compared to the state of the art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Ray-splitting correction to the Weyl formula: Experiment versus theory

    NASA Astrophysics Data System (ADS)

    Blumel, Reinhold

    2004-03-01

    Ray splitting is a phenomenon we are all familiar with: A light ray hitting a water surface at an angle is split into a transmitted and a reflected ray. Ray splitting is not restricted to light and water, but occurs generally in all wave systems in which the properties of the propagation medium change rapidly on the scale of a wave length. It was predicted by Prange et al. [Phys. Rev. E 53, 207 (1996)] that ray splitting produces universal corrections to the Weyl formula, i.e. the average density of states. Following a brief review of Weyl's theory and the theory of ray splitting, this talk presents recent results of a first experimental confirmation of the existence of ray-splitting corrections to the Weyl formula. The experiment, a quasi two-dimensional microwave cavity loaded with two dielectric bars, has been carried out by Corrie Vaa and Peter Koch at the State University of New York at Stony Brook [C. Vaa, P. M. Koch, and R. Blumel, Phys. Rev. Lett. 90, 194102 (2003)]. This research is supported by the NSF under Grant Numbers PHY-9732443, PHY-0099398 and PHY-9984075.

  1. High-Order Polynomial Expansions (HOPE) for flux-vector splitting

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Steffen, Chris J., Jr.

    1991-01-01

    The Van Leer flux splitting is known to produce excessive numerical dissipation for Navier-Stokes calculations. Researchers attempt to remedy this deficiency by introducing a higher order polynomial expansion (HOPE) for the mass flux. In addition to Van Leer's splitting, a term is introduced so that the mass diffusion error vanishes at M = 0. Several splittings for pressure are proposed and examined. The effectiveness of the HOPE scheme is illustrated for 1-D hypersonic conical viscous flow and 2-D supersonic shock-wave boundary layer interactions.

  2. Femtosecond laser-induced subwavelength ripples formed by asymmetrical grating splitting

    NASA Astrophysics Data System (ADS)

    Feng, Pin; Jiang, Lan; Li, Xin; Zhang, Kaihu; Shi, Xuesong; Li, Bo; Lu, Yongfeng

    2016-05-01

    The formation process and mechanism of subwavelength ripples were studied upon irradiation of ZnO by a femtosecond laser (800 nm, 50 fs, 1 kHz). An abnormally asymmetrical grating-splitting phenomenon was discovered. At relatively high laser fluences (F = 0.51-0.63 J/cm2), near-wavelength ripples were split asymmetrically to create subwavelength laser-induced periodic surface structures (LIPSS) with dual gaps (˜230 nm and ˜430 nm) on the primary grooves. At relatively low laser fluences (F = 0.4-0.45 J/cm2), near-wavelength ripples were split symmetrically, leading to the formation of uniform subwavelength structures with a period of ˜340 nm. The splitting phenomena are related to the varying laser beam dose induced by the overlapping during line scanning. The two grating-splitting types further imply that the dominated mechanism for LIPSS formation may be changed under different processing conditions.

  3. Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Zink, Lyndon R.; Evenson, Kenneth M.; Matsushima, Fusakazu; Nelis, Thomas; Robinson, Ruth L.

    1991-01-01

    Fine-structure splittings of atomic oxygen (O-16) in the ground state have been accurately measured using a tunable far-infrared spectrometer. The 3P0-3pl splitting is 2,060,069.09 (10) MHz, and the 3Pl-3P2 splitting is 4,744,777.49 (16) MHz. These frequencies are important for measuring atomic oxygen concentration in earth's atmosphere and the interstellar medium.

  4. Nanostructured hematite for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Ling, Yichuan

    Solar water splitting is an environmentally friendly reaction of producing hydrogen gas. Since Honda and Fujishima first demonstrated solar water splitting in 1972 by using semiconductor titanium dioxide (TiO2) as photoanode in a photoelectrochemical (PEC) cell, extensive efforts have been invested into improving the solar-to-hydrogen (STH) conversion efficiency and lower the production cost of photoelectrochemical devices. In the last few years, hematite (alpha-Fe2O3) nanostructures have been extensively studied as photoanodes for PEC water splitting. Although nanostructured hematite can improve its photoelectrochemical water splitting performance to some extent, by increasing active sites for water oxidation and shortening photogenerated hole path length to semiconductor/electrolyte interface, the photoactivity of pristine hematite nanostructures is still limited by a number of factors, such as poor electrical conductivities and slow oxygen evolution reaction kinetics. Previous studies have shown that tin (Sn) as an n-type dopant can substantially enhance the photoactivity of hematite photoanodes by modifying their optical and electrical properties. In this thesis, I will first demonstrate an unintentional Sn-doping method via high temperature annealing of hematite nanowires grown on fluorine-doped tin oxide (FTO) substrate to enhance the donor density. In addition to introducing extrinsic dopants into semiconductors, the carrier densities of hematite can also be enhanced by creating intrinsic defects. Oxygen vacancies function as shallow donors for a number of hematite. In this regard, I have investigated the influence of oxygen content on thermal decomposition of FeOOH to induce oxygen vacancies in hematite. In the end, I have studied low temperature activation of hematite nanostructures.

  5. Evaluation of the Transverse Displacement of the Proximal Segment After Bilateral Sagittal Split Ramus Osteotomy With Different Lingual Split Patterns and Advancement Amounts Using the Finite Element Method.

    PubMed

    Dai, Zhi; Hou, Min; Ma, Wen; Song, Da-Li; Zhang, Chun-Xiang; Zhou, Wei-Yuan

    2016-11-01

    To evaluate transverse displacement of the proximal segment after bilateral sagittal split ramus osteotomy (BSSO) advancement with different lingual split patterns and advancement amounts and to determine the influential factors related to mandibular width. A 3-dimensional finite element model of the mandible including the temporomandibular joint was created for a presurgical simulation and for BSSO with lingual split patterns I (T1; Hunsuck split) and II (T2; Obwegeser split). The mandible was advanced 3 mm (A3) and 8 mm (A8) and fixated with a conventional titanium plate. Ansys software was used to measure the linear distances of the interproximal segments and to analyze the transverse displacement distribution of proximal segments after applying the load of masticatory muscle force groups. After surgical simulation, T1A3, T1A8, T2A3, and T2A8 showed increased transverse widths (mean, 2.99, 4.70, 2.36, and 4.42 mm, respectively). For transverse augmentation, there was a statistically significant difference between the 2 different mandibular advancement amounts in T1 and in T2 (P ≤ .000), but no significant differences was observed between T1 and T2 (P ≥ .058). The maximum transverse displacement distribution in the proximal segment was measured around the gonial area, and the early contact area was found near the border between the horizontal and sagittal osteotomy lines. Transverse displacements of proximal segments occur after BSSO advancement with T1 and T2 and transverse augmentation has statistically meaningful effects depending on the amount of advancement; however, no differences in transverse augmentation between T1 and T2 were identified. The fulcrum caused by the early contact between the proximal and distal segments could be an influential factor related to mandibular width. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  6. Brittle Splitting Nails (Onychoschizia)

    MedlinePlus

    ... more common in women. Only very rarely are internal disease or vitamin deficiencies the reason (iron deficiency is the most common). One tip is that if the fingernails split, but the toenails are strong, then an external factor is the cause. Basically brittle nails can be ...

  7. Interhemispheric interaction in the split-brain.

    PubMed

    Lambert, A J

    1991-01-01

    An experiment is reported in which a split-brain patient (LB) was simultaneously presented with two words, one to the left and one to the right of fixation. He was instructed to categorize the right sided word (living vs non-living), and to ignore anything appearing to the left of fixation. LB's performance on this task closely resembled that of normal neurologically intact individuals. Manual response speed was slower when the unattended (left visual field) word belonged to the same category as the right visual field word. Implications of this finding for views of the split-brain syndrome are discussed.

  8. Fermion localization on a split brane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chumbes, A. E. R.; Vasquez, A. E. O.; Hott, M. B.

    2011-05-15

    In this work we analyze the localization of fermions on a brane embedded in five-dimensional, warped and nonwarped, space-time. In both cases we use the same nonlinear theoretical model with a nonpolynomial potential featuring a self-interacting scalar field whose minimum energy solution is a soliton (a kink) which can be continuously deformed into a two-kink. Thus a single brane splits into two branes. The behavior of spin 1/2 fermions wave functions on the split brane depends on the coupling of fermions to the scalar field and on the geometry of the space-time.

  9. Reversible perspective and splitting in time.

    PubMed

    Hart, Helen Schoenhals

    2012-01-01

    The element of time--the experience of it and the defensive use of it--is explored in conjunction with the use of reversible perspective as a psychotic defense. Clinical material from a long analysis illustrates how a psychotic patient used the reversible perspective, with its static splitting, to abolish the experience of time. When he improved and the reversible perspective became less effective for him, he replaced it with a more dynamic splitting mechanism using time gaps. With further improvement, the patient began to experience the passage of time, and along with it the excruciating pain of separation, envy, and loss.

  10. Eye-fixation behavior, lexical storage, and visual word recognition in a split processing model.

    PubMed

    Shillcock, R; Ellison, T M; Monaghan, P

    2000-10-01

    Some of the implications of a model of visual word recognition in which processing is conditioned by the anatomical splitting of the visual field between the two hemispheres of the brain are explored. The authors investigate the optimal processing of visually presented words within such an architecture, and, for a realistically sized lexicon of English, characterize a computationally optimal fixation point in reading. They demonstrate that this approach motivates a range of behavior observed in reading isolated words and text, including the optimal viewing position and its relationship with the preferred viewing location, the failure to fixate smaller words, asymmetries in hemisphere-specific processing, and the priority given to the exterior letters of words. The authors also show that split architectures facilitate the uptake of all the letter-position information necessary for efficient word recognition and that this information may be less specific than is normally assumed. A split model of word recognition captures a range of behavior in reading that is greater than that covered by existing models of visual word recognition.

  11. Modeling habitat split: landscape and life history traits determine amphibian extinction thresholds.

    PubMed

    Fonseca, Carlos Roberto; Coutinho, Renato M; Azevedo, Franciane; Berbert, Juliana M; Corso, Gilberto; Kraenkel, Roberto A

    2013-01-01

    Habitat split is a major force behind the worldwide decline of amphibian populations, causing community change in richness and species composition. In fragmented landscapes, natural remnants, the terrestrial habitat of the adults, are frequently separated from streams, the aquatic habitat of the larvae. An important question is how this landscape configuration affects population levels and if it can drive species to extinction locally. Here, we put forward the first theoretical model on habitat split which is particularly concerned on how split distance - the distance between the two required habitats - affects population size and persistence in isolated fragments. Our diffusive model shows that habitat split alone is able to generate extinction thresholds. Fragments occurring between the aquatic habitat and a given critical split distance are expected to hold viable populations, while fragments located farther away are expected to be unoccupied. Species with higher reproductive success and higher diffusion rate of post-metamorphic youngs are expected to have farther critical split distances. Furthermore, the model indicates that negative effects of habitat split are poorly compensated by positive effects of fragment size. The habitat split model improves our understanding about spatially structured populations and has relevant implications for landscape design for conservation. It puts on a firm theoretical basis the relation between habitat split and the decline of amphibian populations.

  12. Seismic anisotropy of northeastern Algeria from shear-wave splitting analysis

    NASA Astrophysics Data System (ADS)

    Radi, Zohir; Yelles-Chaouche, Abdelkrim; Bokelmann, Götz

    2015-11-01

    There are few studies of internal deformation under northern Africa; here we present such a study. We analyze teleseismic shear-wave splitting for northeast Algeria, to improve our knowledge of lithospheric and asthenospheric deformation mechanisms in this region. We study waveform data generated by tens of teleseismic events recorded at five recently installed broadband (BB) stations in Algeria. These stations cover an area 2° across, extending from the Tellian geological units in the North to the Saharan Atlas units in the South. Analysis of SKS-wave splitting results insignificant spatial variations in fast polarization orientation, over a scale length of at most 100 km. The seismic anisotropy shows three clear spatial patterns. A general ENE-WSW orientation is observed under the stations in the north. This polarization orientation follows the direction of the Tell Atlas mountain chain, which is perpendicular to the convergence direction between Africa and Eurasia. Delay times vary significantly across the region, between 0.6 and 2.0 s. At several stations there is an indication of a WNW-ESE polarization orientation, which is apparently related to a later geodynamic evolutionary phase in this region. A third pattern of seismic anisotropy emerges in the South, with an orientation of roughly N-S. We discuss these observations in light of geodynamic models and present-day geodetic motion.

  13. Tablet splitting of narrow therapeutic index drugs: a nationwide survey in Taiwan.

    PubMed

    Chou, Chia-Lin; Hsu, Chia-Chen; Chou, Chia-Yu; Chen, Tzeng-Ji; Chou, Li-Fang; Chou, Yueh-Ching

    2015-12-01

    Tablet splitting or pill splitting frequently occurs in daily medical practice. For drugs with special pharmacokinetic characters, such as drugs with narrow therapeutic index (NTI), unequal split tablets might lead to erroneous dose titration and it even cause toxicity. The aim of this study was to investigate the frequency of prescribing split NTI drugs at ambulatory setting in Taiwan. A population-based retrospective study was conducted using the National Health Insurance Research Database in Taiwan. All ambulatory visits were analyzed from the longitudinal cohort datasets of the National Health Insurance Research Database. The details of ambulatory prescriptions containing NTI drugs were extracted by using the claims datasets of one million beneficiaries from National Healthcare Insurance Research Database in 2010 in Taiwan. The analyses were stratified by dosage form, patient age and the number of prescribed tablets in a single dose for each NTI drugs. Main outcome measures Number and distinct dosage forms of available NTI drug items in Taiwan, number of prescriptions involved split NTI drugs, and number of patients received split NTI drugs. A total of 148,548 patients had received 512,398 prescriptions of NTI drugs and 41.8 % (n = 62,121) of patients had received 36.3 % (n = 185,936) of NTI drug prescriptions in form of split tablets. The percentage of splitting was highest in digoxin prescriptions (81.0 %), followed by warfarin (72.0 %). In the elderly patients, split tablets were very prevalent with digoxin (82.4 %) and warfarin (84.5 %). NTI drugs were frequently prescribed to be taken in split forms in Taiwan. Interventions may be needed to provide effective and convenient NTI drug use. Further studies are needed to evaluate the clinical outcome of inappropriate split NTI drugs.

  14. TUBE SPLITTING APPARATUS

    DOEpatents

    Frantz, C.E.; Cawley, W.E.

    1961-05-01

    A tool is described for cutting a coolant tube adapted to contain fuel elements to enable the tube to be removed from a graphite moderator mass. The tool splits the tube longitudinally into halves and curls the longitudinal edges of the halves inwardly so that they occupy less space and can be moved radially inwardly away from the walls of the hole in the graphite for easy removal from the graphite.

  15. Hyperfine structure and isotope shift analysis of singly ionized titanium

    NASA Astrophysics Data System (ADS)

    Bouazza, Safa

    2013-04-01

    The even-parity low configuration system of Ti II has been considered on the basis of the experimental data found in the literature, and its fine structure has been reanalyzed by simultaneous parameterization of one- and two-body interactions for the model space (3d + 4s)3. Furthermore, the main one-electron hyperfine structure parameters for these configurations have been evaluated. For instance, for 3d24s1, a_{3{\\rm{d}}}^{01} = - {\\rm{63}}.{\\rm{2}}\\left( {{\\rm{3}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} and a_{4{\\rm{s}}}^{10} = - {\\rm{984}}.{\\rm{1}}\\left( {{\\rm{7}}.{\\rm{1}}} \\right)\\,{\\rm{MHz}} . Field shifts (FS) and specific mass shifts (SMS) of the main Ti II configurations are deduced by means of ab initio estimates combined with a small quantity of experimental isotope shift data available in the literature: FS(3d3) = -63.3 MHz, FS(3d24p1) = -49.7 MHz, FS(3d14s2) = 98.2 MHz, FS(4s24P1) = 163.4 MHz and SMS(3d3) = 1453.3 MHz, SMS(3d14s2) = -2179.7 MHz, …, referred to 3d24s1 for the pair Ti46-Ti48.

  16. Uncertainties for two-dimensional models of solar rotation from helioseismic eigenfrequency splitting

    NASA Technical Reports Server (NTRS)

    Genovese, Christopher R.; Stark, Philip B.; Thompson, Michael J.

    1995-01-01

    Observed solar p-mode frequency splittings can be used to estimate angular velocity as a function of position in the solar interior. Formal uncertainties of such estimates depend on the method of estimation (e.g., least-squares), the distribution of errors in the observations, and the parameterization imposed on the angular velocity. We obtain lower bounds on the uncertainties that do not depend on the method of estimation; the bounds depend on an assumed parameterization, but the fact that they are lower bounds for the 'true' uncertainty does not. Ninety-five percent confidence intervals for estimates of the angular velocity from 1986 Big Bear Solar Observatory (BBSO) data, based on a 3659 element tensor-product cubic-spline parameterization, are everywhere wider than 120 nHz, and exceed 60,000 nHz near the core. When compared with estimates of the solar rotation, these bounds reveal that useful inferences based on pointwise estimates of the angular velocity using 1986 BBSO splitting data are not feasible over most of the Sun's volume. The discouraging size of the uncertainties is due principally to the fact that helioseismic measurements are insensitive to changes in the angular velocity at individual points, so estimates of point values based on splittings are extremely uncertain. Functionals that measure distributed 'smooth' properties are, in general, better constrained than estimates of the rotation at a point. For example, the uncertainties in estimated differences of average rotation between adjacent blocks of about 0.001 solar volumes across the base of the convective zone are much smaller, and one of several estimated differences we compute appears significant at the 95% level.

  17. "Split Cast Mounting: Review and New Technique".

    PubMed

    Gundawar, S M; Pande, Neelam A; Jaiswal, Priti; Radke, U M

    2014-12-01

    For the fabrication of a prosthesis, the Prosthodontist meticulously performs all the steps. The laboratory technician then make every effort/strives to perform the remaining lab procedures. However when the processed dentures are remounted on the articulator, some changes are seen. These changes may be divided into two categories: Pre-insertion and post-insertion changes, which deal with the physical properties of the materials involved (Parker, J Prosthet Dent 31:335-342, 1974). Split cast mounting is the method of mounting casts on the articulator. It is essentially a maxillary cast constructed in two parts with a horizontal division. The procedure allows for the verification of the accuracy of the initial mounting and the ease of removal and replacement of the cast. This provides a precise means of correcting the changes in occlusion occurring as a result of the processing technique (Nogueira et al., J Prosthet Dent 91:386-388, 2004). Instability of the split mounting has always been a problem to the Prosthodontist thereby limiting its use. There are various materials mentioned in the literature. The new technique by using Dowel pins and twill thread is very easy, cheaper and simple way to stabilize the split mounting. It is useful and easy in day to day laboratory procedures. The article presents different methods of split cast mounting and the new procedure using easily available materials in prosthetic laboratory.

  18. Use of fibrinogen and thrombin sponge in pediatric split liver transplantation.

    PubMed

    Vicentine, Fernando Pompeu Piza; Gonzalez, Adriano Miziara; Beninni, Barbara Burza; Azevedo, Ramiro Anthero de; Linhares, Marcelo Moura; Goldenberg, Alberto; Lopes, Gaspar de Jesus; Martins, Jose Luiz; Salzedas, Alcides Augusto

    2017-08-01

    To analyze the use of this sponge in pediatric patients undergoing split-liver transplantation. Retrospective study, including 35 pediatric patients undergoing split-liver transplantation, divided into two groups according to the use of the sponge: 18 patients in Group A (no sponge) and 17 in Group B (with sponge). The characteristics of recipients and donors were similar. We observed greater number of reoperation due to bleeding in the wound area in Group A (10 patients - 55.5%) than in Group B (3 patients - 17.6%); p = 0.035. The median volume of red blood cells transfused in Group A was significantly higher (73.4 ± 102.38 mL/kg) than that in Group B (35.1 ± 41.67 mL/kg); p = 0.048. Regarding bile leak there was no statistical difference. The use of the human fibrinogen and thrombin sponge, required lower volume of red blood cell transfusion and presented lower reoperation rates due to bleeding in the wound area.

  19. Type III Solar Radio Burst Source Region Splitting due to a Quasi-separatrix Layer

    NASA Astrophysics Data System (ADS)

    McCauley, Patrick I.; Cairns, Iver H.; Morgan, John; Gibson, Sarah E.; Harding, James C.; Lonsdale, Colin; Oberoi, Divya

    2017-12-01

    We present low-frequency (80–240 MHz) radio imaging of type III solar radio bursts observed by the Murchison Widefield Array on 2015 September 21. The source region for each burst splits from one dominant component at higher frequencies into two increasingly separated components at lower frequencies. For channels below ∼132 MHz, the two components repetitively diverge at high speeds (0.1c–0.4c) along directions tangent to the limb, with each episode lasting just ∼2 s. We argue that both effects result from the strong magnetic field connectivity gradient that the burst-driving electron beams move into. Persistence mapping of extreme-ultraviolet jets observed by the Solar Dynamics Observatory reveals quasi-separatrix layers (QSLs) associated with coronal null points, including separatrix dome, spine, and curtain structures. Electrons are accelerated at the flare site toward an open QSL, where the beams follow diverging field lines to produce the source splitting, with larger separations at larger heights (lower frequencies). The splitting motion within individual frequency bands is interpreted as a projected time-of-flight effect, whereby electrons traveling along the outer field lines take slightly longer to excite emission at adjacent positions. Given this interpretation, we estimate an average beam speed of 0.2c. We also qualitatively describe the quiescent corona, noting in particular that a disk-center coronal hole transitions from being dark at higher frequencies to bright at lower frequencies, turning over around 120 MHz. These observations are compared to synthetic images based on the MHD algorithm outside a sphere (MAS) model, which we use to flux-calibrate the burst data.

  20. Characterising hydrothermal fluid pathways beneath Aluto volcano, Main Ethiopian Rift, using shear wave splitting

    NASA Astrophysics Data System (ADS)

    Nowacki, Andy; Wilks, Matthew; Kendall, J.-Michael; Biggs, Juliet; Ayele, Atalay

    2018-05-01

    Geothermal resources are frequently associated with silicic calderas which show evidence of geologically-recent activity. Hence development of geothermal sites requires both an understanding of the hydrothermal system of these volcanoes, as well as the deeper magmatic processes which drive them. Here we use shear wave splitting to investigate the hydrothermal system at the silicic peralkaline volcano Aluto in the Main Ethiopian Rift, which has experienced repeated uplift and subsidence since at least 2004. We make over 370 robust observations of splitting, showing that anisotropy is confined mainly to the top ∼3 km of the volcanic edifice. We find up to 10% shear wave anisotropy (SWA) is present with a maximum centred at the geothermal reservoir. Fast shear wave orientations away from the reservoir align NNE-SSW, parallel to the present-day minimum compressive stress. Orientations on the edifice, however, are rotated NE-SW in a manner we predict from field observations of faults at the surface, providing fluid pressures are sufficient to hold two fracture sets open. These fracture sets may be due to the repeated deformation experienced at Aluto and initiated in caldera formation. We therefore attribute the observed anisotropy to aligned cracks held open by over-pressurised gas-rich fluids within and above the reservoir. This study demonstrates that shear wave splitting can be used to map the extent and style of fracturing in volcanic hydrothermal systems. It also lends support to the hypothesis that deformation at Aluto arises from variations of fluid pressures in the hydrothermal system. These constraints will be crucial for future characterisation of other volcanic and geothermal systems, in rift systems and elsewhere.

  1. 26 CFR 1.1402(a)-18 - Split-dollar life insurance arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 12 2011-04-01 2011-04-01 false Split-dollar life insurance arrangements. 1... Split-dollar life insurance arrangements. See §§ 1.61-22 and 1.7872-15 for rules relating to the treatment of split-dollar life insurance arrangements. [T.D. 9092, 68 FR 54352, Sept. 17, 2003] ...

  2. 26 CFR 1.1402(a)-18 - Split-dollar life insurance arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 12 2013-04-01 2013-04-01 false Split-dollar life insurance arrangements. 1... Split-dollar life insurance arrangements. See §§ 1.61-22 and 1.7872-15 for rules relating to the treatment of split-dollar life insurance arrangements. [T.D. 9092, 68 FR 54352, Sept. 17, 2003] ...

  3. 26 CFR 1.1402(a)-18 - Split-dollar life insurance arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 12 2014-04-01 2014-04-01 false Split-dollar life insurance arrangements. 1... Split-dollar life insurance arrangements. See §§ 1.61-22 and 1.7872-15 for rules relating to the treatment of split-dollar life insurance arrangements. [T.D. 9092, 68 FR 54352, Sept. 17, 2003] ...

  4. 26 CFR 1.1402(a)-18 - Split-dollar life insurance arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 12 2012-04-01 2012-04-01 false Split-dollar life insurance arrangements. 1... Split-dollar life insurance arrangements. See §§ 1.61-22 and 1.7872-15 for rules relating to the treatment of split-dollar life insurance arrangements. [T.D. 9092, 68 FR 54352, Sept. 17, 2003] ...

  5. Relative motions of fragments of the split comets. III - A test of splitting and comets with suspected multiple nuclei

    NASA Technical Reports Server (NTRS)

    Sekanina, Z.

    1979-01-01

    A quantitative test of splitting for comets with suspected multiple nuclei has been formulated using a model which assumes the motions of cometary fragments to be due primarily to outgassing. The model expresses the relative motion of the cometary fragments in terms of the time of splitting and the differential force, which are determined by measurements of the position angle and the separation distance between fragments. The test is applied to 18 comets suspected of having multiple nuclei, of which the comets Sawerthal 1888 I, Campbell 1914 IV, Whipple-Fedtke-Tevzadze 1943 I, Honda 1955 V, Wild 1968 III and Tago-Sato-Kosaka 1969 IX were found to be clear cases of split comets and Davidson 1889 IV and Periodic Giacobini 1896 V were judged to be likely candidates. At least three of the secondary nuclei confirmed can be classified as short-lived companions, while only two appear to be persistent.

  6. Hyperfine induced transition probabilities from 4{f}^{14}5s5p{}^{3}{{\\rm{P}}}_{0,2}^{o} states in Sm-like ions

    NASA Astrophysics Data System (ADS)

    Zhou, Fuyang; Li, Jiguang; Qu, Yizhi; Wang, Jianguo

    2017-11-01

    The hyperfine induced 4{f}145s5p{}3{{{P}}}0,2o-4{f}145{s}2{}1{{{S}}}0 transition probabilities for highly charged Sm-like ions are calculated within the framework of the multiconfiguration Dirac-Hartree-Fock method. Electron correlation, the Breit interaction and quantum electrodynamical effects are taken into account. For ions ranging from Z = 79 to Z=94,4{f}145s5p{}3{{{P}}}0o is the first excited state, and the hyperfine induced transition (HIT) is a dominant decay channel. For the 4{f}145s5p{}3{{{P}}}2o state, the HIT rates of Sm-like ions with Z=82-94 are reported as well as the magnetic dipole (M1) {}3{{{P}}}2o-{}3{{{P}}}1o, the electric quadrupole (E2) {}3{{{P}}}2o-{}3{{{P}}}0,1o, and the magnetic quadrupole (M2) {}3{{{P}}}2o-{}1{{{S}}}0 transition probabilities. It is found that M1 transition from the 4{f}145s5p{}3{{{P}}}2o state is the most important decay channel in this range on Z≥slant 82.

  7. Dye-sensitized photocatalyst for effective water splitting catalyst

    NASA Astrophysics Data System (ADS)

    Watanabe, Motonori

    2017-12-01

    Renewable hydrogen production is a sustainable method for the development of next-generation energy technologies. Utilising solar energy and photocatalysts to split water is an ideal method to produce hydrogen. In this review, the fundamental principles and recent progress of hydrogen production by artificial photosynthesis are reviewed, focusing on hydrogen production from photocatalytic water splitting using organic-inorganic composite-based photocatalysts.

  8. Measurements With a Split-Fiber Probe in Complex Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2004-01-01

    A split-fiber probe was used to acquire unsteady data in a research compressor. A calibration method was devised for a split-fiber probe, and a new algorithm was developed to decompose split-fiber probe signals into velocity magnitude and direction. The algorithm is based on the minimum value of a merit function that is built over the entire range of flow velocities for which the probe was calibrated. The split-fiber probe performance and signal decomposition was first verified in a free-jet facility by comparing the data from three thermo-anemometric probes, namely a single-wire, a single-fiber, and the split-fiber probe. All three probes performed extremely well as far as the velocity magnitude was concerned. However, there are differences in the peak values of measured velocity unsteadiness in the jet shear layer. The single-wire probe indicates the highest unsteadiness level, followed closely by the split-fiber probe. The single-fiber probe indicates a noticeably lower level of velocity unsteadiness. Experiments in the NASA Low Speed Axial Compressor facility revealed similar results. The mean velocities agreed well, and differences in the velocity unsteadiness are similar to the case of a free jet. A reason for these discrepancies is in the different frequency response characteristics of probes used. It follows that the single-fiber probe has the slowest frequency response. In summary, the split-fiber probe worked reliably during the entire program. The acquired data averaged in time followed closely data acquired by conventional pneumatic probes.

  9. Energy splitting of excitons in gapped Dirac materials

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Zhou, Jianhui; Shan, Wenyu; Yao, Wang; Okamoto, Satoshi

    2015-03-01

    We show that there is an energy splitting between excitons with opposite angular momentum in gapped Dirac materials, such as monolayers of transition metal dichalcogenides and gapped surface states of topological insulators. This splitting can be traced back to the chiral nature of Dirac electrons. We also discuss the optical selection rule of excitons in gap Dirac materials and clarify the relationship to its single-particle counterpart. A simple estimation of the splitting (~ 10 meV) in monolayer transition metal dichalcogenides is given . Our result reveals the limitation of the venerable hydrogenic model of excitons, and highlights the importance of the Berry phase in This work is supported by DOE (No. DE-SC0012509), and AFOSR (No. FA9550-14-1-0277).

  10. Isoscalar-isovector mass splittings in excited mesons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geiger, P.

    1994-06-01

    Mass splittings between the isovector and isoscalar members of meson nonets arise in part from hadronic loop diagrams which violate the Okubo-Zweig-Iizuka rule. Using a model for these loop processes which works qualitatively well in the established nonets, I tabulate predictions for the splittings and associated isoscalar mixing angles in the remaining nonets below about 2 GeV, and explain some of their systematic features. The model predicts significant deviations from ideal mixing in the excited vector nonets.

  11. Observations of ammonia in comets with Herschel

    NASA Astrophysics Data System (ADS)

    Biver, N.; Bockelée-Morvan, D.; Hartogh, P.; Crovisier, J.; de Val-Borro, M.; Kidger, M.; Küppers, M.; Lis, D.; Moreno, R.; Szutowicz, S.; HssO Team

    2014-07-01

    Ammonia is the most abundant nitrogen bearing species in comets. However, it has been scarcely observed in comets due to the weakness of the lines observable from the ground at infrared and centimetre wavelengths. Nevertheless, its main photodissociation product NH_2 has been observed in several comets in the visible. The fundamental rotational J_{K}=(1_0-0_0) transition of NH_3 at 572.5 GHz has been observed in comets since 2004, with the Odin satellite (Biver et al. 2007). In the frame of the Herschel guaranteed time key program ''HssO'' (Hartogh et al. 2009), ammonia was detected with the HIFI instrument in comets 10P/Tempel 2 (Biver et al. 2012), 45P/Honda- Mrkos-Pajdusakova, 103P/Hartley 2, and C/2009 P1 (Garradd). The hyperfine structure of the line is resolved. We have built a complete excitation model to interpret these observations, including the radial distribution in comet 103P. The derived abundances relative to water are on the order of 0.5 %, similar to the values inferred from visible observations of NH_2.

  12. High-Order Polynomial Expansions (HOPE) for flux-vector splitting

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Steffen, Chris J., Jr.

    1991-01-01

    The Van Leer flux splitting is known to produce excessive numerical dissipation for Navier-Stokes calculations. Researchers attempt to remedy this deficiency by introducing a higher order polynomial expansion (HOPE) for the mass flux. In addition to Van Leer's splitting, a term is introduced so that the mass diffusion error vanishes at M equals 0. Several splittings for pressure are proposed and examined. The effectiveness of the HOPE scheme is illustrated for 1-D hypersonic conical viscous flow and 2-D supersonic shock-wave boundary layer interactions. Also, the authors give the weakness of the scheme and suggest areas for further investigation.

  13. Lowermost mantle anisotropy near the eastern edge of the Pacific LLSVP: constraints from SKS-SKKS splitting intensity measurements

    NASA Astrophysics Data System (ADS)

    Deng, Jie; Long, Maureen D.; Creasy, Neala; Wagner, Lara; Beck, Susan; Zandt, George; Tavera, Hernando; Minaya, Estela

    2017-08-01

    Seismic anisotropy has been documented in many portions of the lowermost mantle, with particularly strong anisotropy thought to be present along the edges of large low shear velocity provinces (LLSVPs). The region surrounding the Pacific LLSVP, however, has not yet been studied extensively in terms of its anisotropic structure. In this study, we use seismic data from southern Peru, northern Bolivia and Easter Island to probe lowermost mantle anisotropy beneath the eastern Pacific Ocean, mostly relying on data from the Peru Lithosphere and Slab Experiment and Central Andean Uplift and Geodynamics of High Topography experiments. Differential shear wave splitting measurements from phases that have similar ray paths in the upper mantle but different ray paths in the lowermost mantle, such as SKS and SKKS, are used to constrain anisotropy in D″. We measured splitting for 215 same station-event SKS-SKKS pairs that sample the eastern Pacific LLSVP at the base of the mantle. We used measurements of splitting intensity(SI), a measure of the amount of energy on the transverse component, to objectively and quantitatively analyse any discrepancies between SKS and SKKS phases. While the overall splitting signal is dominated by the upper-mantle anisotropy, a minority of SKS-SKKS pairs (∼10 per cent) exhibit strongly discrepant splitting between the phases (i.e. the waveforms require a difference in SI of at least 0.4), indicating a likely contribution from lowermost mantle anisotropy. In order to enhance lower mantle signals, we also stacked waveforms within individual subregions and applied a waveform differencing technique to isolate the signal from the lowermost mantle. Our stacking procedure yields evidence for substantial splitting due to lowermost mantle anisotropy only for a specific region that likely straddles the edge of Pacific LLSVP. Our observations are consistent with the localization of deformation and anisotropy near the eastern boundary of the Pacific LLSVP

  14. Isoniazid, Pyrazinamide and Rifampicin Content Variation in Split Fixed-Dose Combination Tablets

    PubMed Central

    Pouplin, Thomas; Phuong, Pham Nguyen; Toi, Pham Van; Nguyen Pouplin, Julie; Farrar, Jeremy

    2014-01-01

    Setting In most developing countries, paediatric tuberculosis is treated with split tablets leading to potential inaccuracy in the dose delivery and drug exposure. There is no data on the quality of first-line drugs content in split fixed-dose combination tablets. Objective To determine Isoniazid, Pyrazinamide and Rifampicin content uniformity in split FDC tablets used in the treatment of childhood tuberculosis. Design Drug contents of 15 whole tablets, 30 half tablets and 36 third tablets were analysed by high performance liquid chromatography. The content uniformity was assessed by comparing drug content measured in split portions with their expected amounts and the quality of split portions was assessed applying qualitative specifications for whole tablets. Results All whole tablets measurements fell into the USP proxy for the three drugs. But a significant number of half and third portions was found outside the tolerated variation range and the split formulation failed the requirements for content uniformity. To correct for the inaccuracy of splitting the tablets into equal portions, a weight-adjustment strategy was used but this did not improve the findings. Conclusion In split tablets the content of the three drugs is non-uniform and exceeded the USP recommendations. There is an absolute need to make child-friendly formulations available for the treatment of childhood tuberculosis. PMID:25004128

  15. Isoniazid, pyrazinamide and rifampicin content variation in split fixed-dose combination tablets.

    PubMed

    Pouplin, Thomas; Phuong, Pham Nguyen; Toi, Pham Van; Nguyen Pouplin, Julie; Farrar, Jeremy

    2014-01-01

    In most developing countries, paediatric tuberculosis is treated with split tablets leading to potential inaccuracy in the dose delivery and drug exposure. There is no data on the quality of first-line drugs content in split fixed-dose combination tablets. To determine Isoniazid, Pyrazinamide and Rifampicin content uniformity in split FDC tablets used in the treatment of childhood tuberculosis. Drug contents of 15 whole tablets, 30 half tablets and 36 third tablets were analysed by high performance liquid chromatography. The content uniformity was assessed by comparing drug content measured in split portions with their expected amounts and the quality of split portions was assessed applying qualitative specifications for whole tablets. All whole tablets measurements fell into the USP proxy for the three drugs. But a significant number of half and third portions was found outside the tolerated variation range and the split formulation failed the requirements for content uniformity. To correct for the inaccuracy of splitting the tablets into equal portions, a weight-adjustment strategy was used but this did not improve the findings. In split tablets the content of the three drugs is non-uniform and exceeded the USP recommendations. There is an absolute need to make child-friendly formulations available for the treatment of childhood tuberculosis.

  16. Dynamics of a split torque helicopter transmission

    NASA Technical Reports Server (NTRS)

    Rashidi, Majid; Krantz, Timothy

    1992-01-01

    A high reduction ratio split torque gear train has been proposed as an alternative to a planetary configuration for the final stage of a helicopter transmission. A split torque design allows a high ratio of power-to-weight for the transmission. The design studied in this work includes a pivoting beam that acts to balance thrust loads produced by the helical gear meshes in each of two parallel power paths. When the thrust loads are balanced, the torque is split evenly. A mathematical model was developed to study the dynamics of the system. The effects of time varying gear mesh stiffness, static transmission errors, and flexible bearing supports are included in the model. The model was demonstrated with a test case. Results show that although the gearbox has a symmetric configuration, the simulated dynamic behavior of the first and second compound gears are not the same. Also, results show that shaft location and mesh stiffness tuning are significant design parameters that influence the motions of the system.

  17. Effect of external electric field on spin-orbit splitting of the two-dimensional tungsten dichalcogenides WX 2 (X = S, Se)

    NASA Astrophysics Data System (ADS)

    Affandi, Y.; Absor, M. A. U.; Abraha, K.

    2018-04-01

    Tungsten dichalcogenides WX 2 (X=S, Se) monolayer (ML) attracted much attention due their large spin splitting, which is promising for spintronics applications. However, manipulation of the spin splitting using an external electric field plays a crucial role in the spintronic device operation, such as the spin-field effect transistor. By using first-principles calculations based on density functional theory (DFT), we investigate the impact of external electric field on the spin splitting properties of the WX 2 ML. We find that large spin-splitting up to 441 meV and 493 meV is observed on the K point of the valence band maximum, for the case of the WS2 and WSe2 ML, respectively. Moreover, we also find that the large spin-orbit splitting is also identified in the conduction band minimum around Q points with energy splitting of 285 meV and 270 meV, respectively. Our calculation also show that existence of the direct semiconducting – indirect semiconducting – metallic transition by applying the external electric field. Our study clarify that the electric field plays a significant role in spin-orbit interaction of the WX 2 ML, which has very important implications in designing future spintronic devices.

  18. A study about the split drag flaps deflections to directional motion of UiTM's blended wing body aircraft based on computational fluid dynamics simulation

    NASA Astrophysics Data System (ADS)

    Mohamad, Firdaus; Wisnoe, Wirachman; Nasir, Rizal E. M.; Kuntjoro, Wahyu

    2012-06-01

    This paper discusses on the split drag flaps to the yawing motion of BWB aircraft. This study used split drag flaps instead of vertical tail and rudder with the intention to generate yawing moment. These features are installed near the tips of the wing. Yawing moment is generated by the combination of side and drag forces which are produced upon the split drag flaps deflection. This study is carried out using Computational Fluid Dynamics (CFD) approach and applied to low subsonic speed (0.1 Mach number) with various sideslip angles (β) and total flaps deflections (δT). For this research, the split drag flaps deflections are varied up to ±30°. Data in terms of dimensionless coefficient such as drag coefficient (CD), side coefficient (CS) and yawing moment coefficient (Cn) were used to observe the effect of the split drag flaps. From the simulation results, these split drag flaps are proven to be effective from ±15° deflections or 30° total deflections.

  19. Shear Wave Splitting Underneath Northwest Canada and Eastern Alaska from Transportable Array and Mackenzie Mountains Data

    NASA Astrophysics Data System (ADS)

    Schutt, D.; Witt, D. R.; Aster, R. C.; Freymueller, J.; Cubley, J. F.

    2017-12-01

    Shear wave splitting results from the Northern Cordillera and surroundings will be presented. This complex tectonic setting contains a subduction zone responding to the Yakutat Indenter, an oceanic plateau fragment, a slab window under the Yukon Territory, and the actively uplifting Mackenzie Mountains. A particular goal of this project is to understand whether asthenospheric tractions play a significant role in Mackenzie Mountain uplift. Using a new method for calculating station-averaged splitting parameters, we have analyzed stations that span a large part of the region and therefore can see the variation in splitting parameters from the dynamic NA-PA subduction zone to the stable Slave Craton. Like other shear wave splitting studies in the Northern Cordillera, we find abrupt changes in fast axis direction along the continental margin, while the continental interior displays more coherent splitting parameters. This study is also the first to look at data from a recent deployment through center of the Mackenzie Mountains. Northeast of the Tintina Fault, we find average fast axes directions that are very close to the absolute NA plate motion but our large deviations from event to event suggest that there is some crustal anisotropy and/or dipping structure present. This observation appears to support the idea of a lower crustal décollement that has been put forth by Mazzoti and Hyndman [2002]. These results serve as a broad regional overview of mantle anisotropy and may also shed light on frozen lithospheric deformation.

  20. Solar Water Splitting Utilizing a SiC Photocathode, a BiVO4 Photoanode, and a Perovskite Solar Cell.

    PubMed

    Iwase, Akihide; Kudo, Akihiko; Numata, Youhei; Ikegami, Masashi; Miyasaka, Tsutomu; Ichikawa, Naoto; Kato, Masashi; Hashimoto, Hideki; Inoue, Haruo; Ishitani, Osamu; Tamiaki, Hitoshi

    2017-11-23

    We have successfully demonstrated solar water splitting using a newly fabricated photoelectrochemical system with a Pt-loaded SiC photocathode, a CoO x -loaded BiVO 4 photoanode, and a perovskite solar cell. Detection of the evolved H 2 and O 2 with a 100 % Faradaic efficiency indicates that the observed photocurrent was used for water splitting. The solar-to-hydrogen (STH) efficiency was 0.55 % under no additional bias conditions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.