Sample records for observed isotope effects

  1. Quantum tunneling observed without its characteristic large kinetic isotope effects.

    PubMed

    Hama, Tetsuya; Ueta, Hirokazu; Kouchi, Akira; Watanabe, Naoki

    2015-06-16

    Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle's ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1-1.5) despite the large intrinsic H/D KIE of tunneling (≳ 100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system.

  2. Quantum tunneling observed without its characteristic large kinetic isotope effects

    PubMed Central

    Hama, Tetsuya; Ueta, Hirokazu; Kouchi, Akira; Watanabe, Naoki

    2015-01-01

    Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle’s ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1–1.5) despite the large intrinsic H/D KIE of tunneling (≳100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system. PMID:26034285

  3. Observation of the isotope effect in sub-kelvin reactions

    NASA Astrophysics Data System (ADS)

    Lavert-Ofir, Etay; Shagam, Yuval; Henson, Alon B.; Gersten, Sasha; Kłos, Jacek; Żuchowski, Piotr S.; Narevicius, Julia; Narevicius, Edvardas

    2014-04-01

    Quantum phenomena in the translational motion of reactants, which are usually negligible at room temperature, can dominate reaction dynamics at low temperatures. In such cold conditions, even the weak centrifugal force is enough to create a potential barrier that keeps reactants separated. However, reactions may still proceed through tunnelling because, at low temperatures, wave-like properties become important. At certain de Broglie wavelengths, the colliding particles can become trapped in long-lived metastable scattering states, leading to sharp increases in the total reaction rate. Here, we show that these metastable states are responsible for a dramatic, order-of-magnitude-strong, quantum kinetic isotope effect by measuring the absolute Penning ionization reaction rates between hydrogen isotopologues and metastable helium down to 0.01 K. We demonstrate that measurements of a single isotope are insufficient to constrain ab initio calculations, making the kinetic isotope effect in the cold regime necessary to remove ambiguity among possible potential energy surfaces.

  4. Sulfur Isotope Effects of Dissimilatory Sulfite Reductase

    PubMed Central

    Leavitt, William D.; Bradley, Alexander S.; Santos, André A.; Pereira, Inês A. C.; Johnston, David T.

    2015-01-01

    The precise interpretation of environmental sulfur isotope records requires a quantitative understanding of the biochemical controls on sulfur isotope fractionation by the principle isotope-fractionating process within the S cycle, microbial sulfate reduction (MSR). Here we provide the only direct observation of the major (34S/32S) and minor (33S/32S, 36S/32S) sulfur isotope fractionations imparted by a central enzyme in the energy metabolism of sulfate reducers, dissimilatory sulfite reductase (DsrAB). Results from in vitro sulfite reduction experiments allow us to calculate the in vitro DsrAB isotope effect in 34S/32S (hereafter, 34εDsrAB) to be 15.3 ± 2‰, 2σ. The accompanying minor isotope effect in 33S, described as 33λDsrAB, is calculated to be 0.5150 ± 0.0012, 2σ. These observations facilitate a rigorous evaluation of the isotopic fractionation associated with the dissimilatory MSR pathway, as well as of the environmental variables that govern the overall magnitude of fractionation by natural communities of sulfate reducers. The isotope effect induced by DsrAB upon sulfite reduction is a factor of 0.3–0.6 times prior indirect estimates, which have ranged from 25 to 53‰ in 34εDsrAB. The minor isotope fractionation observed from DsrAB is consistent with a kinetic or equilibrium effect. Our in vitro constraints on the magnitude of 34εDsrAB is similar to the median value of experimental observations compiled from all known published work, where 34εr−p = 16.1‰ (r–p indicates reactant vs. product, n = 648). This value closely matches those of MSR operating at high sulfate reduction rates in both laboratory chemostat experiments (34εSO4−H2S =  17.3 ± 1.5‰, 2σ) and in modern marine sediments (34εSO4−H2S =  17.3 ± 3.8‰). Targeting the direct isotopic consequences of a specific enzymatic processes is a fundamental step toward a biochemical foundation for reinterpreting the biogeochemical and geobiological sulfur isotope records in

  5. Steric effects on the primary isotope dependence of secondary kinetic isotope effects in hydride transfer reactions in solution: caused by the isotopically different tunneling ready state conformations?

    PubMed

    Maharjan, Binita; Raghibi Boroujeni, Mahdi; Lefton, Jonathan; White, Ormacinda R; Razzaghi, Mortezaali; Hammann, Blake A; Derakhshani-Molayousefi, Mortaza; Eilers, James E; Lu, Yun

    2015-05-27

    The observedisotope effect on 2° KIEs in H-transfer reactions has recently been explained on the basis of a H-tunneling mechanism that uses the concept that the tunneling of a heavier isotope requires a shorter donor-acceptor distance (DAD) than that of a lighter isotope. The shorter DAD in D-tunneling, as compared to H-tunneling, could bring about significant spatial crowding effect that stiffens the 2° H/D vibrations, thus decreasing the 2° KIE. This leads to a new physical organic research direction that examines how structure affects the 1° isotope dependence of 2° KIEs and how this dependence provides information about the structure of the tunneling ready states (TRSs). The hypothesis is that H- and D-tunneling have TRS structures which have different DADs, and pronounced 1° isotope effect on 2° KIEs should be observed in tunneling systems that are sterically hindered. This paper investigates the hypothesis by determining the 1° isotope effect on α- and β-2° KIEs for hydride transfer reactions from various hydride donors to different carbocationic hydride acceptors in solution. The systems were designed to include the interactions of the steric groups and the targeted 2° H/D's in the TRSs. The results substantiate our hypothesis, and they are not consistent with the traditional model of H-tunneling and 1°/2° H coupled motions that has been widely used to explain the 1° isotope dependence of 2° KIEs in the enzyme-catalyzed H-transfer reactions. The behaviors of the 1° isotope dependence of 2° KIEs in solution are compared to those with alcohol dehydrogenases, and sources of the observed "puzzling" 2° KIE behaviors in these enzymes are discussed using the concept of the isotopically different TRS conformations.

  6. Isotope effects on desorption kinetics of hydrogen isotopes implanted into stainless steel by glow discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuyama, M.; Kondo, M.; Noda, N.

    2015-03-15

    In a fusion device the control of fuel particles implies to know the desorption rate of hydrogen isotopes by the plasma-facing materials. In this paper desorption kinetics of hydrogen isotopes implanted into type 316L stainless steel by glow discharge have been studied by experiment and numerical calculation. The temperature of a maximum desorption rate depends on glow discharge time and heating rate. Desorption spectra observed under various experimental conditions have been successfully reproduced by numerical simulations that are based on a diffusion-limited process. It is suggested, therefore, that desorption rate of a hydrogen isotope implanted into the stainless steel ismore » limited by a diffusion process of hydrogen isotope atoms in bulk. Furthermore, small isotope effects were observed for the diffusion process of hydrogen isotope atoms. (authors)« less

  7. Isotope effects on the optical spectra of semiconductors

    NASA Astrophysics Data System (ADS)

    Cardona, Manuel; Thewalt, M. L. W.

    2005-10-01

    Since the end of the cold war, macroscopic amounts of separated stable isotopes of most elements have been available “off the shelf” at affordable prices. Using these materials, single crystals of many semiconductors have been grown and the dependence of their physical properties on isotopic composition has been investigated. The most conspicuous effects observed have to do with the dependence of phonon frequencies and linewidths on isotopic composition. These affect the electronic properties of solids through the mechanism of electron-phonon interaction, in particular, in the corresponding optical excitation spectra and energy gaps. This review contains a brief introduction to the history, availability, and characterization of stable isotopes, including their many applications in science and technology. It is followed by a concise discussion of the effects of isotopic composition on the vibrational spectra, including the influence of average isotopic masses and isotopic disorder on the phonons. The final sections deal with the effects of electron-phonon interaction on energy gaps, the concomitant effects on the luminescence spectra of free and bound excitons, with particular emphasis on silicon, and the effects of isotopic composition of the host material on the optical transitions between the bound states of hydrogenic impurities.

  8. Measurement of Enzyme Isotope Effects.

    PubMed

    Kholodar, Svetlana A; Ghosh, Ananda K; Kohen, Amnon

    2017-01-01

    Enzyme isotope effects, or the kinetic effects of "heavy" enzymes, refer to the effect of isotopically labeled protein residues on the enzyme's activity or physical properties. These effects are increasingly employed in the examination of the possible contributions of protein dynamics to enzyme catalysis. One hypothesis assumed that isotopic substitution of all 12 C, 14 N, and nonexchangeable 1 H by 13 C, 15 N, and 2 H, would slow down protein picosecond to femtosecond dynamics without any effect on the system's electrostatics following the Born-Oppenheimer approximation. It was suggested that reduced reaction rates reported for several "heavy" enzymes accords with that hypothesis. However, numerous deviations from the predictions of that hypothesis were also reported. Current studies also attempt to test the role of individual residues by site-specific labeling or by labeling a pattern of residues on activity. It appears that in several systems the protein's fast dynamics are indeed reduced in "heavy" enzymes in a way that reduces the probability of barrier crossing of its chemical step. Other observations, however, indicated that slower protein dynamics are electrostatically altered in isotopically labeled enzymes. Interestingly, these effects appear to be system dependent, thus it might be premature to suggest a general role of "heavy" enzymes' effect on catalysis. © 2017 Elsevier Inc. All rights reserved.

  9. First observation of a mass independent isotopic fractionation in a condensation reaction

    NASA Technical Reports Server (NTRS)

    Thiemens, M. H.; Nelson, R.; Dong, Q. W.; Nuth, Joseph A., III

    1994-01-01

    Thiemens and Heidenreich (1983) first demonstrated that a chemically produced mass independent isotopic fractionation process could produce an isotopic composition which is identical to that observed in Allende inclusions. This raised the possibility that the meteoritic components could be produced by chemical, rather than nuclear processes. In order to develop a mechanistic model of the early solar system, it is important that relevant reactions be studied, particularly, those which may occur in the earliest condensation reactions. The isotopic results for isotopic fractionations associated with condensation processes are reported. A large mass independent isotopic fractionation is observed in one of the experiments.

  10. Observations of Carbon Isotopic Fractionation in Interstellar Formaldehyde

    NASA Technical Reports Server (NTRS)

    Wirstrom, E. S.; Charnley, S. B.; Geppert, W. D.; Persson, C. M.

    2012-01-01

    Primitive Solar System materials (e.g. chondrites. IDPs, the Stardust sample) show large variations in isotopic composition of the major volatiles (H, C, N, and O ) even within samples, witnessing to various degrees of processing in the protosolar nebula. For ex ample. the very pronounced D enhancements observed in IDPs [I] . are only generated in the cold. dense component of the interstellar medium (ISM), or protoplanetary disks, through ion-molecule reactions in the presence of interstellar dust. If this isotopic anomaly has an interstellar origin, this leaves open the possibility for preservation of other isotopic signatures throughout the form ation of the Solar System. The most common form of carbon in the ISM is CO molecules, and there are two potential sources of C-13 fractionation in this reservoir: low temperature chemistry and selective photodissociation. While gas-phase chemistry in cold interstellar clouds preferentially incorporates C-13 into CO [2], the effect of self-shielding in the presence of UV radiation instead leads to a relative enhancement of the more abundant isotopologue, 12CO. Solar System organic material exhibit rather small fluctuations in delta C-13 as compared to delta N-15 and delta D [3][1], the reason for which is still unclear. However, the fact that both C-13 depleted and enhanced material exists could indicate an interstellar origin where the two fractionation processes have both played a part. Formaldehyde (H2CO) is observed in the gas-phase in a wide range of interstellar environments, as well as in cometary comae. It is proposed as an important reactant in the formation of more complex organic molecules in the heated environments around young stars, and formaldehyde polymers have been suggested as the common origin of chondritic insoluable organic matter (IOM) and cometary refractory organic solids [4]. The relatively high gas-phase abundance of H2CO observed in molecular clouds (10(exp- 9) - 10(exp- 8) relative to H2) makes

  11. Observation and modelling of stable isotopes in precipitation for midlatitude weather systems in Melbourne, Australia

    NASA Astrophysics Data System (ADS)

    Barras, Vaughan; Simmonds, Ian

    2010-05-01

    The application of stable water isotopes as tracers of moisture throughout the hydrological cycle is often hindered by the relatively coarse temporal and spatial resolution of observational data. Intensive observation periods (IOPs) of isotopes in precipitation have been valuable in this regard enabling the quantification of the effects of vapour recycling, convection, cloud top height and droplet reevaporation (Dansgaard, 1953; Miyake et al., 1968; Gedzelman and Lawrence, 1982; 1990; Pionke and DeWalle, 1992; Risi et al., 2008; 2009) and have been used as a basis to develop isotope models of varying complexity (Lee and Fung, 2008; Bony et al., 2008). This study took a unified approach combining observation and modelling of stable isotopes in precipitation in an investigation of three key circulation types that typically bring rainfall to southeastern Australia. The observational component of this study involved the establishment of the Melbourne University Network of Isotopes in Precipitation (MUNIP). MUNIP was devised to sample rainwater simultaneously at a number of collection sites across greater Melbourne to record the spatial and temporal isotopic variability of precipitation during the passage of particular events. Samples were collected at half-hourly intervals for three specific rain events referred to as (1) mixed-frontal, (2) convective, and (3) stratiform. It was found that the isotopic content for each event varied over both high and low frequencies due to influences from local changes in rain intensity and large scale rainout respectively. Of particular note was a positive relationship between deuterium excess and rainfall amount under convective conditions. This association was less well defined for stratiform rainfall. As a supplement to the data coverage of the observations, the events were simulated using a version of NCAR CAM3 running with an isotope hydrology scheme. This was done by periodically nudging the model dynamics with data from the

  12. Evaluating the skills of isotope-enabled general circulation models against in situ atmospheric water vapor isotope observations

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, H. C.; Risi, C.; Werner, M.; Yoshimura, K.; Masson-Delmotte, V.

    2017-01-01

    The skills of isotope-enabled general circulation models are evaluated against atmospheric water vapor isotopes. We have combined in situ observations of surface water vapor isotopes spanning multiple field seasons (2010, 2011, and 2012) from the top of the Greenland Ice Sheet (NEEM site: 77.45°N, 51.05°W, 2484 m above sea level) with observations from the marine boundary layer of the North Atlantic and Arctic Ocean (Bermuda Islands 32.26°N, 64.88°W, year: 2012; south coast of Iceland 63.83°N, 21.47°W, year: 2012; South Greenland 61.21°N, 47.17°W, year: 2012; Svalbard 78.92°N, 11.92°E, year: 2014). This allows us to benchmark the ability to simulate the daily water vapor isotope variations from five different simulations using isotope-enabled general circulation models. Our model-data comparison documents clear isotope biases both on top of the Greenland Ice Sheet (1-11‰ for δ18O and 4-19‰ for d-excess depending on model and season) and in the marine boundary layer (maximum differences for the following: Bermuda δ18O = 1‰, d-excess = 3‰; South coast of Iceland δ18O = 2‰, d-excess = 5‰; South Greenland δ18O = 4‰, d-excess = 7‰; Svalbard δ18O = 2‰, d-excess = 7‰). We find that the simulated isotope biases are not just explained by simulated biases in temperature and humidity. Instead, we argue that these isotope biases are related to a poor simulation of the spatial structure of the marine boundary layer water vapor isotopic composition. Furthermore, we specifically show that the marine boundary layer water vapor isotopes of the Baffin Bay region show strong influence on the water vapor isotopes at the NEEM deep ice core-drilling site in northwest Greenland. Our evaluation of the simulations using isotope-enabled general circulation models also documents wide intermodel spatial variability in the Arctic. This stresses the importance of a coordinated water vapor isotope-monitoring network in order to discriminate amongst these model

  13. Dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources

    DOEpatents

    Barty, Christopher P.J.

    2013-02-05

    A dual isotope notch observer for isotope identification, assay and imaging with mono-energetic gamma-ray sources includes a detector arrangement consists of three detectors downstream from the object under observation. The latter detector, which operates as a beam monitor, is an integrating detector that monitors the total beam power arriving at its surface. The first detector and the middle detector each include an integrating detector surrounding a foil. The foils of these two detectors are made of the same atomic material, but each foil is a different isotope, e.g., the first foil may comprise U235 and second foil may comprise U238. The integrating detectors surrounding these pieces of foil measure the total power scattered from the foil and can be similar in composition to the final beam monitor. Non-resonant photons will, after calibration, scatter equally from both foils.

  14. Noncovalent Hydrogen Isotope Effects

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. L.; Breslavskaya, N. N.

    2018-02-01

    Zero-point energies (ZPE) and isotope effects, induced by intermolecular, noncovalent vibrations, are computed and tested by experimental data. The ZPE differences of H- and D-complexes of water with hydrogen, methane, and water molecules are about 100-300 cal/mol; they result to isotope effects IE of 1.20-1.70. Semi-ionic bonds between metal ions and water ligands in M(H2O) 6 2+ complexes are much stronger; their ZPEs are about 12-14 kcal/mol per molecule and result to IE of 1.9-2.1 at 300 K. Protonated (deuterated) water and biwater exhibit the largest ZPE differences and isotope effects; the latter are 25-28 and 12-13 for water and biwater, respectively. Noncovalent IEs contribute markedly into the experimentally measured effects and explain many anomalous and even magic properties of the effects, such as the dependence of IE on the solvents and on the presence of the third substances, enormously large isotope effects at the mild conditions, the difference between IEs measured in the reactions of individual protiated and deuterated compounds and those measured in their mixture. Noncovalent IEs are not negligible and should be taken into account to make correct and substantiated conclusions on the reaction mechanisms. The kinetic equations are derived for the total isotope effects, which include noncovalent IEs as additive factors.

  15. REVIEW ARTICLE: Unconventional isotope effects in the high-temperature cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Guo-meng; Keller, H.; Conder, K.

    2001-07-01

    We review various isotope effects in the high-Tc cuprate superconductors to assess the role of the electron-phonon interaction in the basic physics of these materials. Of particular interest are the unconventional isotope effects on the supercarrier mass, on the charge-stripe formation temperature, on the pseudogap formation temperature, on the electron paramagnetic resonance (EPR) linewidth, on the spin-glass freezing temperature and on the antiferromagnetic ordering temperature. The observed unconventional isotope effects strongly suggest that lattice vibrations play an important role in the microscopic pairing mechanism of high-temperature superconductivity.

  16. Effects of spin crossover on iron isotope fractionation in Earth's mantle

    NASA Astrophysics Data System (ADS)

    Qin, T.; Shukla, G.; Wu, Z.; Wentzcovitch, R.

    2017-12-01

    Recent studies have revealed that the iron isotope composition of mid-ocean ridge basalts (MORBs) is +0.1‰ richer in heavy Fe (56Fe) relative to chondrites, while basalts from Mars and Vesta have similar Fe isotopic composition as chondrites. Several hypotheses could explain these observations. For instance, iron isotope fractionation may have occurred during core formation or Earth may have lost some light Fe isotope during the high temperature event in the early Earth. To better understand what drove these isotopic observations, it is important to obtain accurate Fe isotope fractionation factors among mantle and core phases at the relevant P-T conditions. In bridgmanite, the most voluminous mineral in the lower mantle, Fe can occupy more than one crystalline site, be in ferrous and/or ferric states, and may undergo a spin crossover in the lower mantle. Iron isotopic fractionation properties under spin crossover are poorly constrained, while this may be relevant to differentiation of Earth's magma ocean. In this study we address the effect of these multiple states on the iron isotope fractionation factors between mantle and core phases.

  17. Combining Solvent Isotope Effects with Substrate Isotope Effects in Mechanistic Studies of Alcohol and Amine Oxidation by Enzymes*

    PubMed Central

    Fitzpatrick, Paul F.

    2014-01-01

    Oxidation of alcohols and amines is catalyzed by multiple families of flavin-and pyridine nucleotide-dependent enzymes. Measurement of solvent isotope effects provides a unique mechanistic probe of the timing of the cleavage of the OH and NH bonds, necessary information for a complete description of the catalytic mechanism. The inherent ambiguities in interpretation of solvent isotope effects can be significantly decreased if isotope effects arising from isotopically labeled substrates are measured in combination with solvent isotope effects. The application of combined solvent and substrate (mainly deuterium) isotope effects to multiple enzymes is described here to illustrate the range of mechanistic insights that such an approach can provide. PMID:25448013

  18. The Isotopologue Record of Repeat Vital Effect Offenders: Tracking (Dis)equilibrium Effects in Sea Urchins and Nannofossil Using Clumped Isotopes

    NASA Astrophysics Data System (ADS)

    John, C. M.; Davies, A.; Drury, A. J.

    2016-12-01

    Vital effects vary between species and affect various isotopic systems in unequal proportion. The magnitude of the response of different isotopic systems might thus be key in understanding biologically-mediated disequilibrium, especially in groups that show a tendency to be "repeat offenders" with regards to vital effects. Here we present carbon, oxygen, and clumped isotope data from echinoderm calcite and nannofossil ooze, both of which exhibit strong vital effects in bulk isotopes. Our study is the first to investigate the clumped isotope (dis)equilibrium of echinoids. Results from two echinoids, three marine gastropods and a bivalve mollusk from modern beach deposits of Bali, Indonesia, highlight a significant offset in clumped isotopes of a regular echinoid test from expected values, interpreted as evidence of a similar "vital effect" as observed in surface corals. This is in contrast to the test of an irregular "sand dollar" echinoid, with clumped isotope values within error of expected sea surface temperature. Furthermore, data on the inter-skeletal variability in the clumped isotopic composition of two regular echinoid species shows that the spines of the echinoids are in equilibrium with seawater with respect to clumped isotopes, but the test is not. For the nannofossil material, no clumped isotope vital effects are observed, consistent with previously published studies but at odds with strong vital effects in carbon and oxygen isotopes, often correlated with cell-size. In addition, we reveal that the <63 micron fraction of deep-sea ooze could constitute useful material for clumped isotope studies. An intriguing result of our study is that vital effects are mostly absent in clumped isotopes, even in phylums known for important isotopic effects. It remains to be explained why some parts of the echinoids show clear vital effects, notably enrichment in clumped isotopes of urchin tests. Mechanisms that could explain this include pH effects during calcification

  19. Nitrogen isotope effects induced by anammox bacteria

    PubMed Central

    Brunner, Benjamin; Contreras, Sergio; Lehmann, Moritz F.; Matantseva, Olga; Rollog, Mark; Kalvelage, Tim; Klockgether, Gabriele; Lavik, Gaute; Jetten, Mike S. M.; Kartal, Boran; Kuypers, Marcel M. M.

    2013-01-01

    Nitrogen (N) isotope ratios (15N/14N) provide integrative constraints on the N inventory of the modern ocean. Anaerobic ammonium oxidation (anammox), which converts ammonium and nitrite to dinitrogen gas (N2) and nitrate, is an important fixed N sink in marine ecosystems. We studied the so far unknown N isotope effects of anammox in batch culture experiments. Anammox preferentially removes 14N from the ammonium pool with an isotope effect of +23.5‰ to +29.1‰, depending on factors controlling reversibility. The N isotope effects during the conversion of nitrite to N2 and nitrate are (i) inverse kinetic N isotope fractionation associated with the oxidation of nitrite to nitrate (−31.1 ± 3.9‰), (ii) normal kinetic N isotope fractionation during the reduction of nitrite to N2 (+16.0 ± 4.5‰), and (iii) an equilibrium N isotope effect between nitrate and nitrite (−60.5 ± 1.0‰), induced when anammox is exposed to environmental stress, leading to the superposition of N isotope exchange effects upon kinetic N isotope fractionation. Our findings indicate that anammox may be responsible for the unresolved large N isotope offsets between nitrate and nitrite in oceanic oxygen minimum zones. Irrespective of the extent of N isotope exchange between nitrate and nitrite, N removed from the combined nitrite and nitrate (NOx) pool is depleted in 15N relative to NOx. This net N isotope effect by anammox is superimposed on the N isotope fractionation by the co-occurring reduction of nitrate to nitrite in suboxic waters, possibly enhancing the overall N isotope effect for N loss from oxygen minimum zones. PMID:24191043

  20. Computational Replication of the Primary Isotope Dependence of Secondary Kinetic Isotope Effects in Solution Hydride-Transfer Reactions: Supporting the Isotopically Different Tunneling Ready State Conformations.

    PubMed

    Derakhshani-Molayousefi, Mortaza; Kashefolgheta, Sadra; Eilers, James E; Lu, Yun

    2016-06-30

    We recently reported a study of the steric effect on the 1° isotope dependence of 2° KIEs for several hydride-transfer reactions in solution (J. Am. Chem. Soc. 2015, 137, 6653). The unusual 2° KIEs decrease as the 1° isotope changes from H to D, and more in the sterically hindered systems. These were explained in terms of a more crowded tunneling ready state (TRS) conformation in D-tunneling, which has a shorter donor-acceptor distance (DAD) than in H-tunneling. To examine the isotopic DAD difference explanation, in this paper, following an activated motion-assisted H-tunneling model that requires a shorter DAD in a heavier isotope transfer process, we computed the 2° KIEs at various H/D positions at different DADs (2.9 Å to 3.5 Å) for the hydride-transfer reactions from 2-propanol to the xanthylium and thioxanthylium ions (Xn(+) and TXn(+)) and their 9-phenyl substituted derivatives (Ph(T)Xn(+)). The calculated 2° KIEs match the experiments and the calculated DAD effect on the 2° KIEs fits the observedisotope effect on the 2° KIEs. These support the motion-assisted H-tunneling model and the isotopically different TRS conformations. Furthermore, it was found that the TRS of the sterically hindered Ph(T)Xn(+) system does not possess a longer DAD than that of the (T)Xn(+) system. This predicts a no larger 1° KIE in the former system than in the latter. The observed 1° KIE order is, however, contrary to the prediction. This implicates the stronger DAD-compression vibrations coupled to the bulky Ph(T)Xn(+) reaction coordinate.

  1. Determination of the mechanism of demethylenation of (methylenedioxy)phenyl compounds by cytochrome P450 using deuterium isotope effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuto, J.M.; Kumagai, Y.; Cho, A.K.

    1991-09-01

    The mechanism of demethylenation of (methylenedioxy)benzene (MDB), (methylenedioxy)amphetamine (MDA), and (methylenedioxy)methamphetamine (MDMA) by purified rabbit liver cytochrome P450IIB4 has been investigated by using deuterium isotope effects. A comparison of the magnitude and direction of the observed kinetic isotope effects indicates that the three compounds are demethylenated by different mechanisms. The different mechanisms of demethylenation have been proposed on the basis of comparisons of the observed biochemical isotope effects with the isotope effects from purely chemical systems.

  2. Vegetation effects on event water dynamics - Insights from in-situ stable isotope observations and dye patterns

    NASA Astrophysics Data System (ADS)

    Volkmann, Till; Haberer, Kristine; Gessler, Arthur; Weiler, Markus

    2014-05-01

    The predicted changes of climate and land-use could have drastic effects on the water balance of ecosystems, particularly under frequent drought and subsequent rewetting conditions. Yet, inference of these effects and related consequences for the structure and functioning of ecosystems, groundwater recharge, leaching of nutrients and pollutants, drinking water availability, and the water cycle is currently impeded by gaps in our understanding of the manifold interactions between vegetation and soil water dynamics. While plants require water and nutrients, they also exert, for instance, important below-ground controls on the distribution and movement of water and chemicals in the rooted soil horizons via uptake and redistribution of water, modification of soil hydraulic properties, and formation of conduits for rapid preferential water flow. This work aims to contribute to fill existing gaps by assessing the effects of different plant types and their rooting systems on the soil water dynamics. Therefore, we conducted artificial drought and subsequent rewetting experiments using isotopically and dye (Brilliant Blue FCF) labeled water on plots of various surface cover (bare soil, grass, beech, oak, vine) established on relatively homogeneous luvisol on loess in southwestern Germany. Detailed insight into the short-term dynamics of event water infiltration and root uptake during the field experiments was facilitated by the application of novel techniques for high-frequency in-situ monitoring of stable isotope signatures in pore and transpiration water using commercial laser-based spectrometers, augmenting conventional observations of soil physicochemical states (soil water content, matric potential, electrical conductivity). The temporal point information is complemented by dye staining profiles, providing a detailed picture of spatial infiltration patterns, and by root density observations. The results of the experiments allow for a comprehensive spatiotemporal

  3. Isomeric and Isotopic Effects on the Electronic Spectrum of {{\\rm{C}}}_{60}^{+}–He: Consequences for Astronomical Observations of {{\\rm{C}}}_{60}^{+}

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Maier, J. P.

    2018-05-01

    Laboratory measurements are reported that enable a more accurate determination of the characteristics of the near-infrared absorptions of {{{C}}}60+ below 10 K. These data were obtained by photofragmentation of {{{C}}}60+{--}{He} complexes in a cryogenic trap. Asymmetry in the profiles of the observed 9577 and 9632 Å absorption bands of {{{C}}}60+{--}{He} is caused by the attachment of the weakly bound helium atom to hexagonal or pentagonal faces of {{{C}}}60+. The implication is that the FWHM of the bands in the electronic spectrum of {{{C}}}60+ below 10 K is 1.4 Å. The effect of 13C isotopes on the {{{C}}}60+ electronic spectrum is experimentally evaluated by measurement of {}12{{{C}}}60+{--}{He}, {}13{{{C}}}112{{{C}}}59+{--}{He}, and {}13{{{C}}}212{{{C}}}58+{--}{He}. Data on the 9365 Å absorption band indicate a wavelength shift of about 0.3 Å between the former and latter. This result is consistent with models used to interpret the vibrational isotope effect in the Raman spectrum of neutral C60. The influence of 13C isotopes on the 9348, 9365, 9428, 9577, and 9632 Å diffuse interstellar bands is expected to be minor considering other broadening factors that affect astronomical observations. The presented data also provide more accurate relative intensities of the five interstellar bands attributed to {{{C}}}60+.

  4. Isotope and multiband effects in layered superconductors.

    PubMed

    Bussmann-Holder, Annette; Keller, Hugo

    2012-06-13

    In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.

  5. Using in-situ observations of atmospheric water vapor isotopes to benchmark and isotope-enabled General Circulation Models and improve ice core paleo-climate reconstruction

    NASA Astrophysics Data System (ADS)

    Steen-Larsen, Hans Christian; Sveinbjörnsdottir, Arny; Masson-Delmotte, Valerie; Werner, Martin; Risi, Camille; Yoshimura, Kei

    2016-04-01

    We have since 2010 carried out in-situ continuous water vapor isotope observations on top of the Greenland Ice Sheet (3 seasons at NEEM), in Svalbard (1 year), in Iceland (4 years), in Bermuda (4 years). The expansive dataset containing high accuracy and precision measurements of δ18O, δD, and the d-excess allow us to validate and benchmark the treatment of the atmospheric hydrological cycle's processes in General Circulation Models using simulations nudged to reanalysis products. Recent findings from both Antarctica and Greenland have documented strong interaction between the snow surface isotopes and the near surface atmospheric water vapor isotopes on diurnal to synoptic time scales. In fact, it has been shown that the snow surface isotopes take up the synoptic driven atmospheric water vapor isotopic signal in-between precipitation events, erasing the precipitation isotope signal in the surface snow. This highlights the importance of using General or Regional Climate Models, which accurately are able to simulate the atmospheric water vapor isotopic composition, to understand and interpret the ice core isotope signal. With this in mind we have used three isotope-enabled General Circulation Models (isoGSM, ECHAM5-wiso, and LMDZiso) nudged to reanalysis products. We have compared the simulations of daily mean isotope values directly with our in-situ observations. This has allowed us to characterize the variability of the isotopic composition in the models and compared it to our observations. We have specifically focused on the d-excess in order to characterize why both the mean and the variability is significantly lower than our observations. We argue that using water vapor isotopes to benchmark General Circulation Models offers an excellent tool for improving the treatment and parameterization of the atmospheric hydrological cycle. Recent studies have documented a very large inter-model dispersion in the treatment of the Arctic water cycle under a future global

  6. Using chromium stable isotope ratios to quantify Cr(VI) reduction: Lack of sorption effects

    USGS Publications Warehouse

    Ellis, A.S.; Johnson, T.M.; Bullen, T.D.

    2004-01-01

    Chromium stable isotope values can be effectively used to monitor reduction of Cr(VI) in natural waters. We investigate effects of sorption during transport of Cr(VI) which may also shift Cr isotopes values, complicating efforts to quantify reduction. This study shows that Cr stable isotope fractionation caused by sorption is negligible. Equilibrium fractionation of Cr stable isotopes between dissolved Cr-(VI) and Cr(VI) adsorbed onto ??-Al2O3 and goethite is less than 0.04???. (53Cr/52Cr) under environmentally relevant pH conditions. Batch experiments at pH 4.0 and pH 6.0 were conducted in series to sequentially magnify small isotope fractionations. A simple transport model suggests that adsorption may cause amplification of a small isotope fractionation along extreme fringes of a plume, leading to shifts in 53Cr/52Cr values. We therefore suggest that isotope values at extreme fringes of Cr plumes be critically evaluated for sorption effects. A kinetic effect was observed in experiments with goethite at pH 4 where apparently lighter isotopes diffuse into goethite clumps at a faster rate before eventually reaching equilibrium. This observed kinetic effect may be important in a natural system that has not attained equilibrium and is in need of further study. Cr isotope fractionation caused by speciation of Cr(VI) between HCrO4- and CrO42- was also examined, and we conclude that it is not measurable. In the absence of isotope fractionation caused by equilibrium speciation and sorption, most of the variation in ??53 Cr values may be attributed to reduction, and reliable estimates of Cr reduction can be made.

  7. Evaluation of the Deuterium Isotope Effect in the Detonation of Aluminum Containing Explosives

    DOE PAGES

    Tappan, Bryce C.; Bowden, Patrick R.; Manner, Virginia W.; ...

    2017-12-04

    During or shortly after a detonation in condensed explosives, the reaction rates and the physical mechanism controlling aluminum reaction is poorly understood. We utilize the kinetic isotope effect to probe Al reactions in detonation product gases in aluminized, protonated and deuterated high explosives using high-fidelity detonation velocity and cylinder wall expansion velocity measurements. By observation of the profile of cylinder wall velocity versus time, we are able to determine the timing of aluminum contribution to energy release in product gases and observe the presence or absence of rate changes isotopic substitution. By comparison of the Al oxidation with lithium fluoridemore » (LiF), data indicate that Al oxidation occurs on an extremely fast time scale, with post-detonation kinetic isotope effects observed in carbon containing formulations.« less

  8. Evaluation of the Deuterium Isotope Effect in the Detonation of Aluminum Containing Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappan, Bryce C.; Bowden, Patrick R.; Manner, Virginia W.

    During or shortly after a detonation in condensed explosives, the reaction rates and the physical mechanism controlling aluminum reaction is poorly understood. We utilize the kinetic isotope effect to probe Al reactions in detonation product gases in aluminized, protonated and deuterated high explosives using high-fidelity detonation velocity and cylinder wall expansion velocity measurements. By observation of the profile of cylinder wall velocity versus time, we are able to determine the timing of aluminum contribution to energy release in product gases and observe the presence or absence of rate changes isotopic substitution. By comparison of the Al oxidation with lithium fluoridemore » (LiF), data indicate that Al oxidation occurs on an extremely fast time scale, with post-detonation kinetic isotope effects observed in carbon containing formulations.« less

  9. Influences of large-scale convection and moisture source on monthly precipitation isotope ratios observed in Thailand, Southeast Asia

    NASA Astrophysics Data System (ADS)

    Wei, Zhongwang; Lee, Xuhui; Liu, Zhongfang; Seeboonruang, Uma; Koike, Masahiro; Yoshimura, Kei

    2018-04-01

    Many paleoclimatic records in Southeast Asia rely on rainfall isotope ratios as proxies for past hydroclimatic variability. However, the physical processes controlling modern rainfall isotopic behaviors in the region is poorly constrained. Here, we combined isotopic measurements at six sites across Thailand with an isotope-incorporated atmospheric circulation model (IsoGSM) and the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to investigate the factors that govern the variability of precipitation isotope ratios in this region. Results show that rainfall isotope ratios are both correlated with local rainfall amount and regional outgoing longwave radiation, suggesting that rainfall isotope ratios in this region are controlled not only by local rain amount (amount effect) but also by large-scale convection. As a transition zone between the Indian monsoon and the western North Pacific monsoon, the spatial difference of observed precipitation isotope among different sites are associated with moisture source. These results highlight the importance of regional processes in determining rainfall isotope ratios in the tropics and provide constraints on the interpretation of paleo-precipitation isotope records in the context of regional climate dynamics.

  10. Kinetic and geometric isotope effects originating from different adsorption potential energy surfaces: cyclohexane on Rh(111).

    PubMed

    Koitaya, Takanori; Shimizu, Sumera; Mukai, Kozo; Yoshimoto, Shinya; Yoshinobu, Jun

    2012-06-07

    Novel isotope effects were observed in desorption kinetics and adsorption geometry of cyclohexane on Rh(111) by the use of infrared reflection absorption spectroscopy, temperature programmed desorption, photoelectron spectroscopy, and spot-profile-analysis low energy electron diffraction. The desorption energy of deuterated cyclohexane (C(6)D(12)) is lower than that of C(6)H(12). In addition, the work function change by adsorbed C(6)D(12) is smaller than that by adsorbed C(6)H(12). These results indicate that C(6)D(12) has a shallower adsorption potential than C(6)H(12) (vertical geometric isotope effect). The lateral geometric isotope effect was also observed in the two-dimensional cyclohexane superstructures as a result of the different repulsive interaction between interfacial dipoles. The observed isotope effects should be ascribed to the quantum nature of hydrogen involved in the C-H···metal interaction.

  11. Probing Aluminum Reactions in Combustion and Explosion Via the Kinetic Isotope Effect

    NASA Astrophysics Data System (ADS)

    Tappan, Bryce

    2015-06-01

    The mechanism that controls the reaction speed of aluminum in explosion and combustion is poorly understood, and experimentally difficult to measure. Recently, work in our laboratory has demonstrated that during the combustion of nanoparticulate aluminum with H2O or D2O, different reaction rates due to the kinetic isotope effect are observed. This result is the first-ever observed kinetic isotope effect in a metal combustion reaction and verifies that chemical reaction kinetics play a major role in determining the global burning rate. During or shortly after a detonation, however, the reaction rates are dramatically faster and the physical mechanism controlling Al reaction is likely different than during combustion events. To utilize the kinetic isotope effect to probe Al reactions in detonation, formulations were produced that contain powdered Al in deuterated high explosives and high-fidelity detonation velocity were determined along with PDV measurements to observe early wall velocity expansion measurements. The JWL equation of state was solved to determine temperature, pressure and energies at specific time periods, in addition of Gurney energies, which enables the elucidation of Al reaction extent. By comparison of the Al oxidation with LiF, data indicate that Al oxidation occurs on an extremely fast time scale and isotope effects in both the HE detonation and post-detonation Al reactions are discussed.

  12. The isotopic effects of electron transfer: an explanation for Fe isotope fractionation in nature

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Shahar, A.; Bonet, F.; Simon, J. I.; Young, E.

    2004-12-01

    Recent developments in mass spectrometry techniques have created opportunities to examine the partitioning behavior of stable isotopes of transition metals with a focus on application to iron isotopes. Iron oxidizing and reducing bacteria have been shown to cause isotope fractionations similar in magnitude to those observed in sedimentary environments and it is believed that biological activity is responsible for the most significant Fe isotope fractionation in natural settings. Debate over the use of Fe isotopes as a biological marker resulted from subsequent measurements of fractionations in a variety of abiotic systems. The accumulated evidence, in both biotic and abiotic systems, points to a connection between redox processes and Fe isotope fractionation, however the exact mechanism for isotope fractionation is not yet well understood. Here, we present both a newly-developed theory based on chemical kinetics and preliminary experimental results that quantitatively delineate the relationship between driving force in a charge transfer reaction and resulting Fe isotope fractionation. The theory, based on R. Marcus's chemical kinetics theory for electron transfer (Ann. Rev. Phys. Chem. 15 (1964), 155), predicts that fractionation increases linearly with driving force with a proportionality related to two factors: the difference between isotopic equilibrium exchange of products and reactants, and the reorganization energy along the reaction coordinate. The theoretical predictions were confirmed by measurements of isotopic fractionation associated with electroplating iron metal from a ferrous chloride solution. Isotope fractionation of Fe electroplated under potentiostatic conditions was measured as a function of applied electrochemical potential. As plating voltage was varied from -50 mV to -2.0 V, the isotopic signature of the electroplated iron became depleted in heavy Fe, with δ 56Fe values ranging from -0.106(±0.01) to -2.290(±±0.006)‰ , and corresponding

  13. "Anticlumping" and Other Combinatorial Effects on Clumped Isotopes: Implications for Tracing Biogeochemical Cycling

    NASA Astrophysics Data System (ADS)

    Yeung, L.

    2015-12-01

    I present a mode of isotopic ordering that has purely combinatorial origins. It can be important when identical rare isotopes are paired by coincidence (e.g., they are neighbors on the same molecule), or when extrinsic factors govern the isotopic composition of the two atoms that share a chemical bond. By itself, combinatorial isotope pairing yields products with isotopes either randomly distributed or with a deficit relative to a random distribution of isotopes. These systematics arise because of an unconventional coupling between the formation of singly- and multiply-substituted isotopic moieties. In a random distribution, rare isotopes are symmetrically distributed: Single isotopic substitutions (e.g., H‒D and D‒H in H2) occur with equal probability, and double isotopic substitutions (e.g., D2) occur according to random chance. The absence of symmetry in a bond-making complex can yield unequal numbers of singly-substituted molecules (e.g., more H‒D than D‒H in H2), which is recorded in the product molecule as a deficit in doubly-substituted moieties and an "anticlumped" isotope distribution (i.e., Δn < 0). Enzymatic isotope pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect. Chemical-kinetic isotope effects, which are related to the bond-forming transition state, arise independently and express second-order combinatorial effects. In general, both combinatorial and chemical factors are important for calculating and interpreting clumped-isotope signatures of individual reactions. In many reactions relevant to geochemical oxygen, carbon, and nitrogen cycling, combinatorial isotope pairing likely plays a strong role in the clumped isotope distribution of the products. These isotopic signatures, manifest as either directly bound isotope clumps or as features of a molecule's isotopic anatomy, could be exploited as tracers of biogeochemistry that can

  14. C Diffusion in Fe: Isotope Effects and Other Complexities

    NASA Astrophysics Data System (ADS)

    Watson, E. B.; Muller, T.; Trail, D.; Van Orman, J. A.; Papineau, D.

    2011-12-01

    Carbon is a minor but significant component of iron meteorites, and probably also of planetary cores, including that of Earth. Given the dynamical nature of core-forming processes, C diffusion in the metal phase may play a role in C equilibration between Fe-Ni metal and silicate, carbide or oxide at some stage. Despite its relevance to steel-making, C diffusion in Fe is not well characterized over the range of conditions of interest in planetary bodies, and the likelihood of an isotope mass effect on C diffusion has not been explored. The prospect of incomplete diffusive equilibration of carbon in Fe-Ni raises the possibility that carbon isotopes might be fractionated by diffusion during core formation and evolution-perhaps to an extent that could affect the C isotope ratio of the bulk silicate Earth. Here we report results of preliminary experiments addressing the isotopic mass effect on C diffusion in Fe. Initial low-pressure experiments were conducted by placing a layer of ^{13}C-enriched graphite ( 20% ^{13}C) at the end of a high-purity, polycrystalline Fe cylinder in a silica glass container. These diffusion couples were run in a piston-cylinder apparatus at 1.5 GPa and 1000-1100^{o}C for several hours, and the resulting C-uptake profiles in the Fe cylinders were measured by EPMA and SIMS. In traverses moving away from the original C-Fe interface, total carbon decreases monotonically and becomes significantly lighter, indicating that ^{12}C diffuses faster than ^{13}C. Preliminary estimates of β in the relative isotope diffusivity relation D_{1}/D_{2} = [M_{2}/M_{1}]^{β} (where D is diffusivity and M is mass of isotopes 1 and 2) suggest values as high as 0.5, corresponding to predictions for gaseous diffusion. Isotope mass effects approaching this magnitude have been observed previously for diffusion in metals, and are expected to be highest for interstitial diffusion. Such a high β value will lead to major C isotope fractionation in some partial

  15. Observation of narrow isotopic optical magnetic resonances in individual emission spectral lines of neon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saprykin, E G; Sorokin, V A; Shalagin, A M

    Narrow resonances are observed in the course of recording the individual emission lines of the glow discharge in the mixture of isotopes {sup 20}Ne and {sup 22}Ne, depending on the strength of the longitudinal magnetic field. The position of resonances in the magnetic scale corresponds to the compensation of the isotopic shift for certain spectral lines due to the Zeeman effect. It is found that the contrast of the resonances is higher for the transitions between the highly excited energy levels, and the resonances themselves are formed in the zone of longitudinal spatial nonuniformity of the magnetic field. (laser applicationsmore » and other topics in quantum electronics)« less

  16. Observation of new neutron-rich Mn, Fe, Co, Ni, and Cu isotopes in the vicinity of 78Ni

    NASA Astrophysics Data System (ADS)

    Sumikama, T.; Nishimura, S.; Baba, H.; Browne, F.; Doornenbal, P.; Fukuda, N.; Franchoo, S.; Gey, G.; Inabe, N.; Isobe, T.; John, P. R.; Jung, H. S.; Kameda, D.; Kubo, T.; Li, Z.; Lorusso, G.; Matea, I.; Matsui, K.; Morfouace, P.; Mengoni, D.; Napoli, D. R.; Niikura, M.; Nishibata, H.; Odahara, A.; Sahin, E.; Sakurai, H.; Söderström, P.-A.; Stefan, G. I.; Suzuki, D.; Suzuki, H.; Takeda, H.; Taniuchi, R.; Taprogge, J.; Vajta, Zs.; Watanabe, H.; Werner, V.; Wu, J.; Xu, Z. Y.; Yagi, A.; Yoshinaga, K.

    2017-05-01

    Neutron-rich nuclei in the vicinity of 78Ni were produced using a 238U beam at the RIKEN Radioactive Isotope Beam Factory. The particle-identification plot for the in-flight fission fragments highlights the first observation of eight new isotopes: 73Mn, 76Fe, Co,7877, 80,81,82Ni, and 83Cu. Although the β -decay half-lives of 77Co and 80Ni were recently reported by Xu et al. [Phys. Rev. Lett. 113, 032505 (2014)], 10.1103/PhysRevLett.113.032505 using data from the same experiment, the current work provides the first direct, quantitative evidence for the existence of these isotopes. The experimental production cross sections are reproduced in a satisfactory manner by theoretical predictions. An odd-even staggering of the cross sections was observed, and the effect appears to become more pronounced for the most exotic nuclei that were investigated. The staggering effect was interpreted as an increase of the neutron-evaporation probability for odd-N isotopes, owing to the decrease of the neutron-separation energy, Sn. The predicted cross section for 80Ni is significantly overestimated, which may be related to a weak binding of the neutron pair above the N =50 shell closure.

  17. Clumped isotope effects during OH and Cl oxidation of methane

    NASA Astrophysics Data System (ADS)

    Whitehill, Andrew R.; Joelsson, Lars Magnus T.; Schmidt, Johan A.; Wang, David T.; Johnson, Matthew S.; Ono, Shuhei

    2017-01-01

    A series of experiments were carried out to determine the clumped (13CH3D) methane kinetic isotope effects during oxidation of methane by OH and Cl radicals, the major sink reactions for atmospheric methane. Experiments were performed in a 100 L quartz photochemical reactor, in which OH was produced from the reaction of O(1D) (from O3 photolysis) with H2O, and Cl was from photolysis of Cl2. Samples were taken from the reaction cell and analyzed for methane (12CH4, 12CH3D, 13CH4, 13CH3D) isotopologue ratios using tunable infrared laser direct absorption spectroscopy. Measured kinetic isotope effects for singly substituted species were consistent with previous experimental studies. For doubly substituted methane, 13CH3D, the observed kinetic isotope effects closely follow the product of the kinetic isotope effects for the 13C and deuterium substituted species (i.e., 13,2KIE = 13KIE × 2KIE). The deviation from this relationship is 0.3‰ ± 1.2‰ and 3.5‰ ± 0.7‰ for OH and Cl oxidation, respectively. This is consistent with model calculations performed using quantum chemistry and transition state theory. The OH and Cl reactions enrich the residual methane in the clumped isotopologue in open system reactions. In a closed system, however, this effect is overtaken by the large D/H isotope effect, which causes the residual methane to become anti-clumped relative to the initial methane. Based on these results, we demonstrate that oxidation of methane by OH, the predominant oxidant for tropospheric methane, will only have a minor (∼0.3‰) impact on the clumped isotope signature (Δ13CH3D, measured as a deviation from a stochastic distribution of isotopes) of tropospheric methane. This paper shows that Δ13CH3D will provide constraints on methane source strengths, and predicts that Δ12CH2D2 can provide information on methane sink strengths.

  18. Solvent kinetic isotope effects of human placental alkaline phosphatase in reverse micelles.

    PubMed Central

    Huang, T M; Hung, H C; Chang, T C; Chang, G G

    1998-01-01

    Human placental alkaline phosphatase was embedded in a reverse micellar system prepared by dissolving the surfactant sodium bis(2-ethylhexyl) sulphosuccinate (Aerosol-OT) in 2,2, 4-trimethylpentane. This microemulsion system provides a convenient instrumental tool to study the possible kinetic properties of the membranous enzyme in an immobilized form. The pL (pH/p2H) dependence of hydrolysis of 4-nitrophenyl phosphate has been examined over a pL range of 8.5-12.5 in both aqueous and reverse micellar systems. Profiles of log V versus pL were Ha-bell shaped in the acidic region but reached a plateau in the basic region in which two pKa values of 9.01-9.71 and 9.86-10.48, respectively, were observed in reverse micelles. However, only one pKa value of 9.78-10.27 in aqueous solution was detected. Profiles of log V/K versus pL were bell-shaped in the acidic region. However, they were wave-shaped in the basic region in which a residue of pKa 9.10-9.44 in aqueous solution and 8.07-8.78 in reverse micelles must be dehydronated for the reaction to reach an optimum. The V/K value shifted to a lower value upon dehydronation of a pKa value of 9.80-10.62 in aqueous solution and 11.23-12.17 in reverse micelles. Solvent kinetic isotope effects were measured at three pL values. At pL 9.5, the observed isotope effect was a product of equilibrium isotope effect and a kinetic isotope effect; at pL 10.4, the log V/K value was identical in water and deuterium. The deuterium kinetic isotope effect on V/K was 1.14 in an aqueous solution and 1.16 in reverse micelles. At pL 11.0 at which the log V values reached a plateau in either solvent system, the deuterium kinetic isotope effect on V was 2.08 in an aqueous solution and 0.62 in reverse micelles. Results from a proton inventory experiment suggested that a hydron transfer step is involved in the transition state of the catalytic reaction. The isotopic fractionation factor (pi) for deuterium for the transition state (piT) increased when

  19. Solvent kinetic isotope effects of human placental alkaline phosphatase in reverse micelles.

    PubMed

    Huang, T M; Hung, H C; Chang, T C; Chang, G G

    1998-02-15

    Human placental alkaline phosphatase was embedded in a reverse micellar system prepared by dissolving the surfactant sodium bis(2-ethylhexyl) sulphosuccinate (Aerosol-OT) in 2,2, 4-trimethylpentane. This microemulsion system provides a convenient instrumental tool to study the possible kinetic properties of the membranous enzyme in an immobilized form. The pL (pH/p2H) dependence of hydrolysis of 4-nitrophenyl phosphate has been examined over a pL range of 8.5-12.5 in both aqueous and reverse micellar systems. Profiles of log V versus pL were Ha-bell shaped in the acidic region but reached a plateau in the basic region in which two pKa values of 9.01-9.71 and 9.86-10.48, respectively, were observed in reverse micelles. However, only one pKa value of 9.78-10.27 in aqueous solution was detected. Profiles of log V/K versus pL were bell-shaped in the acidic region. However, they were wave-shaped in the basic region in which a residue of pKa 9.10-9.44 in aqueous solution and 8.07-8.78 in reverse micelles must be dehydronated for the reaction to reach an optimum. The V/K value shifted to a lower value upon dehydronation of a pKa value of 9.80-10.62 in aqueous solution and 11.23-12.17 in reverse micelles. Solvent kinetic isotope effects were measured at three pL values. At pL 9.5, the observed isotope effect was a product of equilibrium isotope effect and a kinetic isotope effect; at pL 10.4, the log V/K value was identical in water and deuterium. The deuterium kinetic isotope effect on V/K was 1.14 in an aqueous solution and 1.16 in reverse micelles. At pL 11.0 at which the log V values reached a plateau in either solvent system, the deuterium kinetic isotope effect on V was 2.08 in an aqueous solution and 0.62 in reverse micelles. Results from a proton inventory experiment suggested that a hydron transfer step is involved in the transition state of the catalytic reaction. The isotopic fractionation factor (pi) for deuterium for the transition state (piT) increased when

  20. Isotope effects accompanying evaporation of water from leaky containers.

    PubMed

    Rozanski, Kazimierz; Chmura, Lukasz

    2008-03-01

    Laboratory experiments aimed at quantifying isotope effects associated with partial evaporation of water from leaky containers have been performed under three different settings: (i) evaporation into dry atmosphere, performed in a dynamic mode, (ii) evaporation into dry atmosphere, performed in a static mode, and (iii) evaporation into free laboratory atmosphere. The results demonstrate that evaporative enrichment of water stored in leaky containers can be properly described in the framework of the Craig-Gordon evaporation model. The key parameter controlling the degree of isotope enrichment is the remaining fraction of water in the leaking containers. Other factors such as temperature, relative humidity, or extent of kinetic fractionation play only minor roles. Satisfactory agreement between observed and predicted isotope enrichments for both (18)O and (2)H in experiments for the case of evaporation into dry atmosphere could be obtained only when molecular diffusivity ratios of isotope water molecules as suggested recently by Cappa et al. [J. Geophys. Res., 108, 4525-4535, (2003).] were adopted. However, the observed and modelled isotope enrichments for (2)H and (18)O could be reconciled also for the ratios of molecular diffusivities obtained by Merlivat [J. Chem. Phys., 69, 2864-2871 (1978).], if non-negligible transport resistance in the viscous liquid sub-layer adjacent to the evaporating surface is considered. The evaporation experiments revealed that the loss of mass of water stored in leaky containers in the order of 1%, will lead to an increase of the heavy isotope content in this water by ca. 0.35 and 1.1 per thousand, for delta (18)O and delta (2)H, respectively.

  1. Oxygen isotope geochemistry of the amphiboles: isotope effects of cation substitutions in minerals

    NASA Astrophysics Data System (ADS)

    Kohn, Matthew J.; Valley, John W.

    1998-06-01

    The occurrence of coexisting amphiboles in rocks and the likelihood of concurrent isotope closure allows equilibrium oxygen isotope fractionations among the amphiboles to be recovered from natural samples. Oxygen isotope analyses of mineral separates using laser fluorination show that coexisting amphiboles increasingly partition 18O in the order: hornblende ≪ gedrite < cummingtonite ≤ anthophyllite. The observed fractionations at ˜575°C are: Δ(Ged-Hbl) = 0.8‰, Δ(Cum-Hbl) = 0.9, Δ(Cum-Ged) = 0.2, Δ(Ath-Ged) = 0.3, and Δ(Ath-Hbl) > 0.9. Previously published data for hornblende, actinolite, glaucophane, and garnet show that Δ(Act-Hbl) ˜ 0.2, Δ(Gln-Grt) ≫ 1, and Δ(Hbl-Grt) ˜ 0. Thus, glaucophane strongly partitions 18O relative to the calcic amphiboles. The fractionation between two amphiboles of arbitrary composition can be predicted from the known fractionations for mica endmembers, pyroxene endmembers, and exchange components such as CaAl(NaSi) -1, NaAl(CaMg) -1, CaMg -1, MgFe -1, FeMn -1, KNa -1, KAl( Si) -1, and Fe 3+Al -1. Applications of the exchange component method reproduce measured amphibole fractionations to within ±0.1 to ±0.2‰, whereas other predictive methods cause misfit for typical metamorphic hornblende of ≥0.5‰ at 575°C. Although the isotope effects of cation exchanges may be small at high-T, they magnify dramatically for minerals formed in surficial, diagenetic, and low-T metamorphic environments. Different composition clays are predicted to have equilibrium δ 18O differences of 2-9‰. If the isotope fractionation can be determined for one mineral endmember, then calibrated exchanges allow accurate prediction of the isotope fractionations for intermediate compositions of most ortho-, ring-, chain-, and sheet-silicates.

  2. Isotope effect of mercury diffusion in air

    PubMed Central

    Koster van Groos, Paul G.; Esser, Bradley K.; Williams, Ross W.; Hunt, James R.

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature. PMID:24364380

  3. Isotope effect of mercury diffusion in air.

    PubMed

    Koster van Groos, Paul G; Esser, Bradley K; Williams, Ross W; Hunt, James R

    2014-01-01

    Identifying and reducing impacts from mercury sources in the environment remains a considerable challenge and requires process based models to quantify mercury stocks and flows. The stable isotope composition of mercury in environmental samples can help address this challenge by serving as a tracer of specific sources and processes. Mercury isotope variations are small and result only from isotope fractionation during transport, equilibrium, and transformation processes. Because these processes occur in both industrial and environmental settings, knowledge of their associated isotope effects is required to interpret mercury isotope data. To improve the mechanistic modeling of mercury isotope effects during gas phase diffusion, an experimental program tested the applicability of kinetic gas theory. Gas-phase elemental mercury diffusion through small bore needles from finite sources demonstrated mass dependent diffusivities leading to isotope fractionation described by a Rayleigh distillation model. The measured relative atomic diffusivities among mercury isotopes in air are large and in agreement with kinetic gas theory. Mercury diffusion in air offers a reasonable explanation of recent field results reported in the literature.

  4. Isotope effects on L-H threshold and confinement in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Maggi, C. F.; Weisen, H.; Hillesheim, J. C.; Chankin, A.; Delabie, E.; Horvath, L.; Auriemma, F.; Carvalho, I. S.; Corrigan, G.; Flanagan, J.; Garzotti, L.; Keeling, D.; King, D.; Lerche, E.; Lorenzini, R.; Maslov, M.; Menmuir, S.; Saarelma, S.; Sips, A. C. C.; Solano, E. R.; Belonohy, E.; Casson, F. J.; Challis, C.; Giroud, C.; Parail, V.; Silva, C.; Valisa, M.; Contributors, JET

    2018-01-01

    The dependence of plasma transport and confinement on the main hydrogenic ion isotope mass is of fundamental importance for understanding turbulent transport and, therefore, for accurate extrapolations of confinement from present tokamak experiments, which typically use a single hydrogen isotope, to burning plasmas such as ITER, which will operate in deuterium-tritium mixtures. Knowledge of the dependence of plasma properties and edge transport barrier formation on main ion species is critical in view of the initial, low-activation phase of ITER operations in hydrogen or helium and of its implications on the subsequent operation in deuterium-tritium. The favourable scaling of global energy confinement time with isotope mass, which has been observed in many tokamak experiments, remains largely unexplained theoretically. Moreover, the mass scaling observed in experiments varies depending on the plasma edge conditions. In preparation for upcoming deuterium-tritium experiments in the JET tokamak with the ITER-like Be/W Wall (JET-ILW), a thorough experimental investigation of isotope effects in hydrogen, deuterium and tritium plasmas is being carried out, in order to provide stringent tests of plasma energy, particle and momentum transport models. Recent hydrogen and deuterium isotope experiments in JET-ILW on L-H power threshold, L-mode and H-mode confinement are reviewed and discussed in the context of past and more recent isotope experiments in tokamak plasmas, highlighting common elements as well as contrasting observations that have been reported. The experimental findings are discussed in the context of fundamental aspects of plasma transport models.

  5. Pressure-dependent boron isotopic fractionation observed by column chromatography

    NASA Astrophysics Data System (ADS)

    Musashi, M.; Oi, T.; Matsuo, M.; Nomura, M.

    2007-12-01

    Boron isotopic fractionation factor ( S ) between boron taken up in strongly basic anion exchange resin and boron in aqueous solution was determined by breakthrough column chromatography at 5 and 17 MPa at 25°C, using 0.1 mmol/L boric acid solution as feed solution. The S values obtained were 1.018 and 1.012, respectively, which were smaller than the value reported by using the same chromatographic method at atmospheric pressure at 25°C with the boron concentration of 10 mmol/L, but were larger than the values at the same condition with much higher concentration of 100 and 501 mmol/L, indicating that borate-polymerization reducing the isotopic fractionation was negligible. However, calculations based on the theory of isotope distribution between two phases estimated that 21% (5MPa) and 47% (17MPa) of boron taken up in the resin phase was in the three-coordinated B(OH)3-form, instead of in the four-coordinated B(OH)4--form, at high pressures even with the very diluted solution. We discussed this discrepancy by introducing (1) hydration or (2) a partial molar volume difference between isotopic molecules. It was inferred that borate ions were partially dehydrated upon transfer from the solution phase to the resin phase at high pressures, which resulted in smaller S values compared with those at the atmospheric pressure. Alternatively, it was likely that the S value decreased with increasing pressure, because the difference of the partial isotopic molar volumes between 10B(OH)3 and 11B(OH)3 was larger than that between 10B(OH)4- and 11B(OH)4-. If either will be the case, the influence of a pressure upon the isotope effect may not be negligible for boron isotopic exchange equilibrium. This knowledge is crucial for the principle of the boron isotopic pH-metry reconstructing a chemical variation at the paleo-deep oceanic environment where the early life may have been evolved.

  6. Transient competitive complexation in biological kinetic isotope fractionation explains non-steady isotopic effects: Theory and application to denitrification in soils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maggi, F.M.; Riley, W.J.

    2009-06-01

    The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O productionmore » and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.« less

  7. Rare earth element transport in the western North Atlantic inferred from Nd isotopic observations

    NASA Technical Reports Server (NTRS)

    Piepgras, D. J.; Wasserburg, G. J.

    1987-01-01

    The relationship between the Nd isotopic composition in the Atlantic waters and the origin and circulation of the water masses was investigated. Samples were collected in the western North Atlantic between 7 and 54 deg N. The isotopic composition (Nd-143/Nd-144 ratios) showed extensive vertical structure at all locations. In regions where a thermocline was well-developed, large isotopic shifts were observed across the base of the thermocline, while regions without a thermocline were characterized by much more gradual shifts in isotopic composition with depth. The data reveal an excellent correlation between the Nd isotopic distribution in the western North Atlantic water column and the distribution of water masses identified from temperature and salinity measurements.

  8. Combinatorial effects on clumped isotopes and their significance in biogeochemistry

    NASA Astrophysics Data System (ADS)

    Yeung, Laurence Y.

    2016-01-01

    The arrangement of isotopes within a collection of molecules records their physical and chemical histories. Clumped-isotope analysis interrogates these arrangements, i.e., how often rare isotopes are bound together, which in many cases can be explained by equilibrium and/or kinetic isotope fractionation. However, purely combinatorial effects, rooted in the statistics of pairing atoms in a closed system, are also relevant, and not well understood. Here, I show that combinatorial isotope effects are most important when two identical atoms are neighbors on the same molecule (e.g., O2, N2, and D-D clumping in CH4). When the two halves of an atom pair are either assembled with different isotopic preferences or drawn from different reservoirs, combinatorial effects cause depletions in clumped-isotope abundance that are most likely between zero and -1‰, although they could potentially be -10‰ or larger for D-D pairs. These depletions are of similar magnitude, but of opposite sign, to low-temperature equilibrium clumped-isotope effects for many small molecules. Enzymatic isotope-pairing reactions, which can have site-specific isotopic fractionation factors and atom reservoirs, should express this class of combinatorial isotope effect, although it is not limited to biological reactions. Chemical-kinetic isotope effects, which are related to a bond-forming transition state, arise independently and express second-order combinatorial effects related to the abundance of the rare isotope. Heteronuclear moeties (e.g., Csbnd O and Csbnd H), are insensitive to direct combinatorial influences, but secondary combinatorial influences are evident. In general, both combinatorial and chemical-kinetic factors are important for calculating and interpreting clumped-isotope signatures of kinetically controlled reactions. I apply this analytical framework to isotope-pairing reactions relevant to geochemical oxygen, carbon, and nitrogen cycling that may be influenced by combinatorial

  9. Clumped Isotope Composition of Cold-Water Corals: A Role for Vital Effects?

    NASA Astrophysics Data System (ADS)

    Spooner, P.; Guo, W.; Robinson, L. F.

    2014-12-01

    Measurements on a set of cold-water corals (mainly Desmophyllum dianthus) have suggested that their clumped isotope composition could serve as a promising proxy for reconstructing paleocean temperatures. Such measurements have also offered support for certain isotope models of coral calcification. However, there are differences in the clumped isotope compositions between warm-water and cold-water corals, suggesting that different kinds of corals could have differences in their biocalcification processes. In order to understand the systematics of clumped isotope variations in cold-water corals more fully, we present clumped isotope data from a range of cold-water coral species from the tropical Atlantic and the Southern Ocean.Our samples were either collected live or recently dead (14C ages < 1,000 yrs) with associated temperature data. They include a total of 11 solitary corals and 1 colonial coral from the Atlantic, and 8 solitary corals from the Southern Ocean. The data indicate that coral clumped isotope systematics may be more complicated than previously thought. For example, for the genus Caryophyllia we observe significant variations in clumped isotope compositions for corals which grew at the same temperature with an apparent negative correlation between Δ47 and δ18O, different to patterns previously observed in Desmophyllum. These results indicate that existing isotope models of biocalcification may not apply equally well to all corals. Clumped isotope vital effects may be present in certain cold-water corals as they are in warm-water corals, complicating the use of this paleoclimate proxy.

  10. Deuterium isotope effects in polymerization of benzene under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Weizhao; Dunuwille, Mihindra; He, Jiangang

    The enormous versatility in the properties of carbon materials depends on the content of the sp 2 and sp 3 covalent bonds. Under compression, if intermolecular distances cross a critical threshold, then unsaturated hydrocarbons gradually transform to saturated carbon polymers. However, the mechanism of polymerization, even for benzene, the simplest aromatic hydrocarbon, is still not understood. We used high-pressure synchrotron X-ray, neutron diffraction, and micro-Raman spectroscopy together with density functional calculations to investigate the isotope effects in benzene isotopologues C 6H 6 and C 6D 6 up to 46.0 GPa. Raman spectra of polymeric products recovered from comparable pressures showmore » the progression of polymerization exhibiting a pronounced kinetic isotope effect. Kinetically retarded reactions in C 6D 6 shed light on the mechanism of polymerization of benzene. Lastly, we find that C 6D 6-derived products recovered from P < 35 GPa actively react with moisture, forming polymers with higher sp 3 hydrogen contents. Significant isotopic shift (≥7 GPa) in persistence of Bragg reflections of C 6D 6 is observed.« less

  11. Deuterium isotope effects in polymerization of benzene under pressure

    DOE PAGES

    Cai, Weizhao; Dunuwille, Mihindra; He, Jiangang; ...

    2017-04-10

    The enormous versatility in the properties of carbon materials depends on the content of the sp 2 and sp 3 covalent bonds. Under compression, if intermolecular distances cross a critical threshold, then unsaturated hydrocarbons gradually transform to saturated carbon polymers. However, the mechanism of polymerization, even for benzene, the simplest aromatic hydrocarbon, is still not understood. We used high-pressure synchrotron X-ray, neutron diffraction, and micro-Raman spectroscopy together with density functional calculations to investigate the isotope effects in benzene isotopologues C 6H 6 and C 6D 6 up to 46.0 GPa. Raman spectra of polymeric products recovered from comparable pressures showmore » the progression of polymerization exhibiting a pronounced kinetic isotope effect. Kinetically retarded reactions in C 6D 6 shed light on the mechanism of polymerization of benzene. Lastly, we find that C 6D 6-derived products recovered from P < 35 GPa actively react with moisture, forming polymers with higher sp 3 hydrogen contents. Significant isotopic shift (≥7 GPa) in persistence of Bragg reflections of C 6D 6 is observed.« less

  12. Platinum isotopes in iron meteorites: Galactic cosmic ray effects and nucleosynthetic homogeneity in the p-process isotope 190Pt and the other platinum isotopes

    NASA Astrophysics Data System (ADS)

    Hunt, Alison C.; Ek, Mattias; Schönbächler, Maria

    2017-11-01

    Platinum isotopes are sensitive to the effects of galactic cosmic rays (GCR), which can alter isotope ratios and mask nucleosynthetic isotope variations. Platinum also features one p-process isotope, 190Pt, which is very low abundance and therefore challenging to analyse. Platinum-190 is relevant for early solar-system chronology because of its decay to 186Os. Here, we present new Pt isotope data for five iron meteorite groups (IAB, IIAB, IID, IIIAB and IVA), including high-precision measurements of 190Pt for the IAB, IIAB and IIIAB irons, determined by multi-collector ICPMS. New data are in good agreement with previous studies and display correlations between different Pt isotopes. The slopes of these correlations are well-reproduced by the available GCR models. We report Pt isotope ratios for the IID meteorite Carbo that are consistently higher than the predicted effects from the GCR model. This suggests that the model predictions do not fully account for all the GCR effects on Pt isotopes, but also that the pre-atmospheric radii and exposure times calculated for Carbo may be incorrect. Despite this, the good agreement of relative effects in Pt isotopes with the predicted GCR trends confirms that Pt isotopes are a useful in-situ neutron dosimeter. Once GCR effects are accounted for, our new dataset reveals s- and r-process homogeneity between the iron meteorite groups studied here and the Earth. New 190Pt data for the IAB, IIAB and IIIAB iron meteorites indicate the absence of GCR effects and homogeneity in the p-process isotope between these groups and the Earth. This corresponds well with results from other heavy p-process isotopes and suggests their homogenous distribution in the inner solar system, although it does not exclude that potential p-process isotope variations are too diluted to be currently detectable.

  13. Pollution and Climate Effects on Tree-Ring Nitrogen Isotopes

    NASA Astrophysics Data System (ADS)

    Savard, M. M.; Bégin, C.; Marion, J.; Smirnoff, A.

    2009-04-01

    BACKGROUND Monitoring of nitrous oxide concentration only started during the last 30 years in North America, but anthropogenic atmospheric nitrogen has been significantly emitted over the last 150 years. Can geochemical characteristics of tree rings be used to infer past changes in the nitrogen cycle of temperate regions? To address this question we use nitrogen stable isotopes in 125 years-long ring series from beech specimens (Fagus grandifolia) of the Georgian Bay Islands National Park (eastern Ontario), and pine (Pinus strobus) and beech trees of the Arboretum Morgan near Montreal (western Quebec). To evaluate the reliability of the N stable isotopes in wood treated for removal of soluble materials, we tested both tree species from the Montreal area. The reproducibility from tree to tree was excellent for both pine and beech trees, the isotopic trends were strongly concordant, and they were not influenced by the heartwood-sapwood transition zone. The coherence of changes of the isotopic series observed for the two species suggests that their tree-ring N isotopic values can serve as environmental indicator. RESULTS AND INTERPRETATION In Montreal and Georgian Bay, the N isotopes show strong and similar parallel agreement (Gleichlaufigkeit test) with the climatic parameters. So in fact, the short-term isotopic fluctuations correlate directly with summer precipitation and inversely with summer and spring temperature. A long-term decreasing isotope trend in Montreal indicates progressive changes in soil chemistry after 1951. A pedochemical change is also inferred for the Georgian Bay site on the basis of a positive N isotopic trend initiated after 1971. At both sites, the long-term ^15N series correlate with a proxy for NOx emissions (Pearson correlation), and carbon-isotope ring series suggest that the same trees have been impacted by phytotoxic pollutants (Savard et al., 2009a). We propose that the contrasted long-term nitrogen-isotope changes of Montreal and

  14. Theoretical calculation of polarizability isotope effects.

    PubMed

    Moncada, Félix; Flores-Moreno, Roberto; Reyes, Andrés

    2017-03-01

    We propose a scheme to estimate hydrogen isotope effects on molecular polarizabilities. This approach combines the any-particle molecular orbital method, in which both electrons and H/D nuclei are described as quantum waves, with the auxiliary density perturbation theory, to calculate analytically the polarizability tensor. We assess the performance of method by calculating the polarizability isotope effect for 20 molecules. A good correlation between theoretical and experimental data is found. Further analysis of the results reveals that the change in the polarizability of a X-H bond upon deuteration decreases as the electronegativity of X increases. Our investigation also reveals that the molecular polarizability isotope effect presents an additive character. Therefore, it can be computed by counting the number of deuterated bonds in the molecule.

  15. Diffusion related isotopic fractionation effects with one-dimensional advective-dispersive transport.

    PubMed

    Xu, Bruce S; Lollar, Barbara Sherwood; Passeport, Elodie; Sleep, Brent E

    2016-04-15

    Aqueous phase diffusion-related isotope fractionation (DRIF) for carbon isotopes was investigated for common groundwater contaminants in systems in which transport could be considered to be one-dimensional. This paper focuses not only on theoretically observable DRIF effects in these systems but introduces the important concept of constraining "observable" DRIF based on constraints imposed by the scale of measurements in the field, and on standard limits of detection and analytical uncertainty. Specifically, constraints for the detection of DRIF were determined in terms of the diffusive fractionation factor, the initial concentration of contaminants (C0), the method detection limit (MDL) for isotopic analysis, the transport time, and the ratio of the longitudinal mechanical dispersion coefficient to effective molecular diffusion coefficient (Dmech/Deff). The results allow a determination of field conditions under which DRIF may be an important factor in the use of stable carbon isotope measurements for evaluation of contaminant transport and transformation for one-dimensional advective-dispersive transport. This study demonstrates that for diffusion-dominated transport of BTEX, MTBE, and chlorinated ethenes, DRIF effects are only detectable for the smaller molar mass compounds such as vinyl chloride for C0/MDL ratios of 50 or higher. Much larger C0/MDL ratios, corresponding to higher source concentrations or lower detection limits, are necessary for DRIF to be detectable for the higher molar mass compounds. The distance over which DRIF is observable for VC is small (less than 1m) for a relatively young diffusive plume (<100years), and DRIF will not easily be detected by using the conventional sampling approach with "typical" well spacing (at least several meters). With contaminant transport by advection, mechanical dispersion, and molecular diffusion this study suggests that in field sites where Dmech/Deff is larger than 10, DRIF effects will likely not be

  16. Carbonic Anhydrase, Calcification Dynamics and Stable Isotope Vital Effects: Deep Sea Corals and Beyond

    NASA Astrophysics Data System (ADS)

    Chen, S.; Gagnon, A. C.; Adkins, J. F.

    2017-12-01

    The stable isotope compositions of biogenic carbonates have been used for paleoceanographic and paleoclimatic reconstructions for decades, and produced some of the most iconic records in the field. However, we still lack a fully mechanistic understanding of the stable isotope proxies, especially the biological overprint on the environmental signals termed "vital effects". A ubiquitous feature of stable isotope vital effects in marine calcifying organisms is a strong correlation between δ18O and δ13C in a range of values that are depleted from equilibrium. Two mechanisms have been proposed to explain this correlation, one based on kinetic isotope effects during CO2(aq)-HCO3- inter-conversion, the other based on equilibrium isotope exchange during pH dependent speciation of the dissolved inorganic carbon pool. Neither mechanism explains all the stable isotope features observed in biogenic carbonates. Here we present a fully kinetic model of biomineralization and its isotope effects using deep sea corals as a test organism. A key component of our model is the consideration of the enzyme carbonic anhydrase in catalyzing the CO2(aq)-HCO3- inter-conversion reactions in the extracellular calcifying fluid (ECF). We find that the amount of carbonic anhydrase not only modulates the carbonate chemistry of the calcifying fluid, but also helps explain the slope of the δ18O-δ13C correlation. With this model, we are not only able to fit deep sea coral data, but also explain the stable isotope vital effects of other calcifying organisms. This fully kinetic model of stable isotope vital effects and the underlying calcification dynamics may also help us better understand mechanisms of other paleoceanographic tracers in biogenic carbonates, including boron isotopes and trace metal proxies.

  17. The isotopic effects of electron transfer: An explanation for Fe isotope fractionation in nature

    NASA Astrophysics Data System (ADS)

    Kavner, Abby; Bonet, François; Shahar, Anat; Simon, Justin; Young, Edward

    2005-06-01

    Isotope fractionation of electroplated Fe was measured as a function of applied electrochemical potential. As plating voltage was varied from -0.9 V to 2.0 V, the isotopic signature of the electroplated iron became depleted in heavy Fe, with δ 56Fe values (relative to IRMM-14) ranging from -0.18(±0.02) to -2.290(±0.006) ‰, and corresponding δ 57Fe values of -0.247(±0.014) and -3.354(±0.019) ‰. This study demonstrates that there is a voltage-dependent isotope fractionation associated with the reduction of iron. We show that Marcus's theory for the kinetics of electron transfer can be extended to include the isotope effects of electron transfer, and that the extended theory accounts for the voltage dependence of Fe isotope fractionation. The magnitude of the electrochemically-induced fractionation is similar to that of Fe reduction by certain bacteria, suggesting that similar electrochemical processes may be responsible for biogeochemical Fe isotope effects. Charge transfer is a fundamental physicochemical process involving Fe as well as other transition metals with multiple isotopes. Partitioning of isotopes among elements with varying redox states holds promise as a tool in a wide range of the Earth and environmental sciences, biology, and industry.

  18. Stable isotope ratios as indicators of trophic status: Uncertainties imposed by geographic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schell, D.M.

    1995-12-31

    Isotope ratios of carbon and nitrogen are often suggested as indicators to determine trophic status and carbon sources of marine organisms in explaining relative concentrations of pollutants. Whereas this technique is effective with organisms resident in ecosystems having homogeneous primary productivity regimes and uniform isotope ratios in the productivity base, it often is confounded by migratory movements by larger organisms across isotopic gradients. Tissues containing a temporal record such as baleen plates or whiskers show these effects clearly. Bowhead whales in Alaskan waters seasonally move across carbon isotope gradients of 5{per_thousand} in zooplankton and reflect these differences in the keratinmore » of baleen plates and in overall body composition. However, no significant differences in {delta}{sup 15}N are evident regionally in northern Alaskan zooplankton. In contrast, the Southern Ocean is characterized by extreme latitudinal gradients in both {delta}{sup 13}C and {delta}{sup 15}N with the most pronounced effects occurring at the subtropical convergence. Prey taken by marine mammals south of this zone are depleted in both {sup 15}N and {sup 13}C by up to 8{per_thousand}. Data on southern right whales (Eubalaena glacialis), Bryde`s whale (Balaenoptera edenl), pygmy right whales (Caperea marginate) and antarctic fur seal (Arctocephalos gazella) show the effects of migratory movements across the gradient in both carbon and nitrogen isotope ratios. Similar patterns in marine mammal tissues from Australia, South Africa and South America indicate that the observed patterns are circumpolar. Within a given region, trophic effects shift {delta}{sup 15}N values consistent with observed feeding habits.« less

  19. Isotope effect studies of the pyruvate-dependent histidine decarboxylase from Lactobacillus 30a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abell, L.M.; O'Leary, M.H.

    1988-08-09

    The decarboxylation of histidine by the pyruvate-dependent histidine decarboxylase of Lactobacillus 30 a shows a carbon isotope effect k/sup 12//k/sup 13/ = 1.0334 +/- 0.0005 and a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9799 +/- 0.0006 at pH 4.8, 37/sup 0/C. The carbon isotope effect is slightly increased by deuteriation of the substrate and slightly decreased in D/sub 2/O. The observed nitrogen isotope effect indicates that the imine nitrogen in the substrate-Schiff base intermediate complex is ordinarily protonated, and the pH dependence of the carbon isotope effect indicates that both protonated and unprotonated forms of this intermediate are capablemore » of undergoing decarboxylation. As with the pyridoxal 5'-phosphate dependent enzyme, Schiff base formation and decarboxylation are jointly rate-limiting, with the intermediate histidine-pyruvate Schiff base showing a decarboxylation/Schiff base hydrolysis ratio of 0.5-1.0 at pH 4.8. The decarboxylation transition state is more reactant-like for the pyruvate-dependent enzyme than for the pyridoxal 5'-phosphate dependent enzyme. These studies find no particular energetic or catalytic advantage to the use of pyridoxal 5'-phosphate over covalently bound pyruvate in catalysis of the decarboxylation of histidine.« less

  20. Isotope effects associated with the anaerobic oxidation of sulfite and thiosulfate by the photosynthetic bacterium, Chromatium vinosum

    NASA Technical Reports Server (NTRS)

    Fry, B.; Gest, H.; Hayes, J. M.

    1985-01-01

    The purple photosynthetic bacterium Chromatium vinosum, strain D, catalyzes several oxidations of reduced sulfur compounds under anaerobic conditions in the light: e.g., sulfide --> sulfur --> sulfate, sulfite --> sulfate, and thiosulfate --> sulfur + sulfate. Here it is shown that no sulfur isotope effect is associated with the last of these processes; isotopic compositions of the sulfur and sulfate produced can differ, however, if the sulfane and sulfonate positions within the thiosulfate have different isotopic compositions. In the second process, an observed change from an inverse to a normal isotope effect during oxidation of sulfite may indicate the operation of 2 enzymatic pathways. In contrast to heterotrophic anaerobic reduction of oxidized sulfur compounds, anaerobic oxidations of inorganic sulfur compounds by photosynthetic bacteria are characterized by relatively small isotope effects.

  1. Determining the N and O isotope effects of microbial nitrite reduction: the global N cycle implications of an enzyme-dependent isotope effect

    NASA Astrophysics Data System (ADS)

    Martin, T. S.; Casciotti, K. L.

    2014-12-01

    The marine nitrogen (N) cycle is a dynamic system of critical importance, since nitrogen is the limiting nutrient in over half of the world's oceans. Denitrification and anammox, the main N loss processes from the ocean, have different effects on carbon cycling and greenhouse gas emission. Understanding the balance between the two processes is vital to understanding the role of the N cycle in global climate change. One approach for investigating these processes is by using stable isotope analysis to estimate the relative magnitudes of N fluxes, particularly for biologically mediated processes. In order to make the most of the currently available isotope analysis techniques, it is necessary to know the isotope effects for each processes occurring in the environment. Nitrite reduction is an important step in denitrification. Previous work had begun to explore the N isotope effects for nitrite reduction, but no oxygen (O) isotope effect has been measured. Additionally, no consideration has been given to the type of nitrite reductase carrying out the reaction. There are two main types of respiratory nitrite reductase, one that is Cu-based and another that is Fe-based. We performed batch culture experiments with denitrifier strains possessing either a Cu-type or Fe-type nitrite reductase. Both N and O isotope effects for nitrite reduction were determined for each of these experiments by measuring the NO2- concentration, as well as the N and O isotopes of nitrite and applying a Rayleigh fractionation model. Both the N and O isotope effects were found to be significantly different between the two types of enzymes. This enzyme-linked difference in isotope effects emphasizes the importance of microbial community composition within the global N cycle.

  2. Mixing effects on apparent reaction rates and isotope fractionation during denitrification in a heterogeneous aquifer

    USGS Publications Warehouse

    Green, Christopher T.; Böhlke, John Karl; Bekins, Barbara A.; Phillips, Steven P.

    2010-01-01

    Gradients in contaminant concentrations and isotopic compositions commonly are used to derive reaction parameters for natural attenuation in aquifers. Differences between field‐scale (apparent) estimated reaction rates and isotopic fractionations and local‐scale (intrinsic) effects are poorly understood for complex natural systems. For a heterogeneous alluvial fan aquifer, numerical models and field observations were used to study the effects of physical heterogeneity on reaction parameter estimates. Field measurements included major ions, age tracers, stable isotopes, and dissolved gases. Parameters were estimated for the O2 reduction rate, denitrification rate, O2 threshold for denitrification, and stable N isotope fractionation during denitrification. For multiple geostatistical realizations of the aquifer, inverse modeling was used to establish reactive transport simulations that were consistent with field observations and served as a basis for numerical experiments to compare sample‐based estimates of “apparent” parameters with “true“ (intrinsic) values. For this aquifer, non‐Gaussian dispersion reduced the magnitudes of apparent reaction rates and isotope fractionations to a greater extent than Gaussian mixing alone. Apparent and true rate constants and fractionation parameters can differ by an order of magnitude or more, especially for samples subject to slow transport, long travel times, or rapid reactions. The effect of mixing on apparent N isotope fractionation potentially explains differences between previous laboratory and field estimates. Similarly, predicted effects on apparent O2threshold values for denitrification are consistent with previous reports of higher values in aquifers than in the laboratory. These results show that hydrogeological complexity substantially influences the interpretation and prediction of reactive transport.

  3. Effects of must concentration techniques on wine isotopic parameters.

    PubMed

    Guyon, Francois; Douet, Christine; Colas, Sebastien; Salagoïty, Marie-Hélène; Medina, Bernard

    2006-12-27

    Despite the robustness of isotopic methods applied in the field of wine control, isotopic values can be slightly influenced by enological practices. For this reason, must concentration technique effects on wine isotopic parameters were studied. The two studied concentration techniques were reverse osmosis (RO) and high-vacuum evaporation (HVE). Samples (must and extracted water) have been collected in various French vineyards. Musts were microfermented at the laboratory, and isotope parameters were determined on the obtained wine. Deuterium and carbon-13 isotope ratios were studied on distilled ethanol by nuclear magnetic resonance (NMR) and isotope ratio mass spectrometry (IRMS), respectively. The oxygen-18 ratio was determined on extracted and wine water using IRMS apparatus. The study showed that the RO technique has a very low effect on isotopic parameters, indicating that this concentration technique does not create any isotopic fractionation, neither at sugar level nor at water level. The effect is notable for must submitted to HVE concentration: water evaporation leads to a modification of the oxygen-18 ratio of the must and, as a consequence, ethanol deuterium concentration is also modified.

  4. On the influence of anharmonicity on the isotope effect

    NASA Astrophysics Data System (ADS)

    Galbaatar, T.; Drechsler, S. L.; Plakida, N. M.; Vujicic, G. M.

    1991-12-01

    The effect of double-well type lattice anharmonicity on the superconducting temperature and its isotope effect is investigated beyond the two-level approximation (TLA) within the Eliashberg theory. It is shown that anharmonicity can greatly modify the isotope effect; In particular anomalously large as well as negative values of the isotope effect exponent α are obtained in the strong and weak coupling limits, respectively.

  5. Catalytic-site design for inverse heavy-enzyme isotope effects in human purine nucleoside phosphorylase

    PubMed Central

    Harijan, Rajesh K.; Zoi, Ioanna; Antoniou, Dimitri; Schwartz, Steven D.; Schramm, Vern L.

    2017-01-01

    Heavy-enzyme isotope effects (15N-, 13C-, and 2H-labeled protein) explore mass-dependent vibrational modes linked to catalysis. Transition path-sampling (TPS) calculations have predicted femtosecond dynamic coupling at the catalytic site of human purine nucleoside phosphorylase (PNP). Coupling is observed in heavy PNPs, where slowed barrier crossing caused a normal heavy-enzyme isotope effect (kchem light/kchem heavy > 1.0). We used TPS to design mutant F159Y PNP, predicted to improve barrier crossing for heavy F159Y PNP, an attempt to generate a rare inverse heavy-enzyme isotope effect (kchem light/kchem heavy < 1.0). Steady-state kinetic comparison of light and heavy native PNPs to light and heavy F159Y PNPs revealed similar kinetic properties. Pre–steady-state chemistry was slowed 32-fold in F159Y PNP. Pre–steady-state chemistry compared heavy and light native and F159Y PNPs and found a normal heavy-enzyme isotope effect of 1.31 for native PNP and an inverse effect of 0.75 for F159Y PNP. Increased isotopic mass in F159Y PNP causes more efficient transition state formation. Independent validation of the inverse isotope effect for heavy F159Y PNP came from commitment to catalysis experiments. Most heavy enzymes demonstrate normal heavy-enzyme isotope effects, and F159Y PNP is a rare example of an inverse effect. Crystal structures and TPS dynamics of native and F159Y PNPs explore the catalytic-site geometry associated with these catalytic changes. Experimental validation of TPS predictions for barrier crossing establishes the connection of rapid protein dynamics and vibrational coupling to enzymatic transition state passage. PMID:28584087

  6. Kinetic 15N-isotope effects on algal growth

    NASA Astrophysics Data System (ADS)

    Andriukonis, Eivydas; Gorokhova, Elena

    2017-03-01

    Stable isotope labeling is a standard technique for tracing material transfer in molecular, ecological and biogeochemical studies. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism metabolism and growth, which is not consistent with current theoretical and empirical knowledge on kinetic isotope effects. Here, we demonstrate profound changes in growth dynamics of the green alga Raphidocelis subcapitata grown in 15N-enriched media. With increasing 15N concentration (0.37 to 50 at%), the lag phase increased, whereas maximal growth rate and total yield decreased; moreover, there was a negative relationship between the growth and the lag phase across the treatments. The latter suggests that a trade-off between growth rate and the ability to adapt to the high 15N environment may exist. Remarkably, the lag-phase response at 3.5 at% 15N was the shortest and deviated from the overall trend, thus providing partial support to the recently proposed Isotopic Resonance hypothesis, which predicts that certain isotopic composition is particularly favorable for living organisms. These findings confirm the occurrence of KIE in isotopically enriched algae and underline the importance of considering these effects when using stable isotope labeling in field and experimental studies.

  7. Carbon isotope effects associated with autotrophic acetogenesis

    NASA Technical Reports Server (NTRS)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1989-01-01

    The carbon kinetic isotope effects associated with synthesis of acetate from CO2 and H2 during autotrophic growth of Acetobacterium woodii at 30 degrees C have been measured by isotopic analyses of CO2, methyl-carbon, and total acetate. Closed systems allowing construction of complete mass balances at varying stages of growth were utilized, and the effects of the partitioning of carbon between CO2 and HCO3- were taken account. For the overall reaction, total carbonate --> total acetate, isotope effects measured in replicate experiments ranged from -59.0 +/- 0.9% to -57.2 +/- 2.3%. Taking into account all measurements, the weighted mean and standard deviation are -58.6 +/- 0.7%. There is no evidence for intramolecular ordering in the acetate. The carbon isotopic composition of sedimentary acetate, otherwise expected to be near that of sedimentary organic carbon, is likely to be depleted in environments in which autotrophic acetogenesis is occurring.

  8. The isotope mass effect on chlorine diffusion in dacite melt, with implications for fractionation during bubble growth

    NASA Astrophysics Data System (ADS)

    Fortin, Marc-Antoine; Watson, E. Bruce; Stern, Richard

    2017-12-01

    Previous experimental studies have revealed that the difference in diffusivity of two isotopes can be significant in some media and can lead to an observable fractionation effect in silicate melts based on isotope mass. Here, we report the first characterization of the difference in diffusivities of stable isotopes of Cl (35Cl and 37Cl). Using a piston-cylinder apparatus, we generated quenched melts of dacitic composition enriched in Cl; from these we fabricated diffusion couples in which Cl atoms were induced to diffuse in a chemical gradient at 1200 to 1350 °C and 1 GPa. We analyzed the run products by secondary ion mass spectrometry (SIMS) for their isotopic compositions along the diffusion profiles, and we report a diffusivity ratio for 37Cl/35Cl of 0.995 ± 0.001 (β = 0.09 ± 0.02). No significant effect of temperature on the diffusivity ratio was discernable over the 150 °C range covered by our experiments. The observed 0.5% difference in diffusivity of the two isotopes could affect our interpretation of isotopic measurements of Cl isotopes in bubble-bearing or degassed magmas, because bubble growth is regulated in part by the diffusive supply of volatiles to the bubble from the surrounding melt. Through numerical simulations, we constrain the extent of Cl isotopic fractionation between bubble and host melt during this process. Bubble growth rates vary widely in nature-which implies a substantial range in the expected magnitude of isotopic fractionation-but plausible growth scenarios lead to Cl isotopic fractionations up to about 5‰ enrichment of 35Cl relative to 37Cl in the bubble. This effect should be considered when interpreting Cl isotopic measurements of systems that have experienced vapor exsolution.

  9. Enzymatic Kinetic Isotope Effects from First-Principles Path Sampling Calculations.

    PubMed

    Varga, Matthew J; Schwartz, Steven D

    2016-04-12

    In this study, we develop and test a method to determine the rate of particle transfer and kinetic isotope effects in enzymatic reactions, specifically yeast alcohol dehydrogenase (YADH), from first-principles. Transition path sampling (TPS) and normal mode centroid dynamics (CMD) are used to simulate these enzymatic reactions without knowledge of their reaction coordinates and with the inclusion of quantum effects, such as zero-point energy and tunneling, on the transferring particle. Though previous studies have used TPS to calculate reaction rate constants in various model and real systems, it has not been applied to a system as large as YADH. The calculated primary H/D kinetic isotope effect agrees with previously reported experimental results, within experimental error. The kinetic isotope effects calculated with this method correspond to the kinetic isotope effect of the transfer event itself. The results reported here show that the kinetic isotope effects calculated from first-principles, purely for barrier passage, can be used to predict experimental kinetic isotope effects in enzymatic systems.

  10. Effects of growth and dissolution on the fractionation of silicon isotopes by estuarine diatoms

    NASA Astrophysics Data System (ADS)

    Sun, Xiaole; Olofsson, Martin; Andersson, Per S.; Fry, Brian; Legrand, Catherine; Humborg, Christoph; Mörth, Carl-Magnus

    2014-04-01

    Studies of silicon (Si) isotope fractionation during diatom growth in open ocean systems have documented lower Si isotopic values (δ30Si) in the biogenic silica of diatom frustules compared to dissolved silicon. Recent findings also indicate that Si isotope fractionation occurs during dissolution of diatom frustules, producing higher δ30Si values in the remaining biogenic silica. This study focuses on diatoms from high production areas in estuarine and coastal areas that represent approximately 30-50% of the global marine primary production. Two species of diatoms, Thalassiosira baltica and Skeletonema marinoi, were isolated from the brackish Baltic Sea, one of the largest estuarine systems in the world. These species were used for laboratory investigations of Si isotope fractionation during diatom growth and the subsequent dissolution of the diatom frustules. Both species of diatoms give an identical Si isotope fractionation factor during growth of -1.50 ± 0.36‰ (2σ) for 30Si, which falls in the range of -2.09‰ to -0.55‰ of published data. Our results also suggest a dissolution-induced Si isotope fractionation factor of -0.86‰ at early stage of dissolution, but this effect was observed only in DSi and no significant Si isotope change was observed for BSi. The growth and dissolution results are applied to a Baltic Sea sediment core to reconstruct DSi utilization by diatoms, and found to be in agreement with the observed DSi uptake rates in the overlying water column during diatom growth.

  11. Isotope effect in quasi-two-dimensional metal-organic antiferromagnets

    NASA Astrophysics Data System (ADS)

    Goddard, P. A.; Singleton, J.; Maitland, C.; Blundell, S. J.; Lancaster, T.; Baker, P. J.; McDonald, R. D.; Cox, S.; Sengupta, P.; Manson, J. L.; Funk, K. A.; Schlueter, J. A.

    2008-08-01

    Although the isotope effect in superconducting materials is well documented, changes in the magnetic properties of antiferromagnets due to isotopic substitution are seldom discussed and remain poorly understood. This is perhaps surprising given the possible link between the quasi-two-dimensional (Q2D) antiferromagnetic and superconducting phases of the layered cuprates. Here we report the experimental observation of shifts in the Néel temperature and critical magnetic fields (ΔTN/TN≈4%;ΔBc/Bc≈4%) in a Q2D organic molecular antiferromagnet on substitution of hydrogen for deuterium. These compounds are characterized by strong hydrogen bonds through which the dominant superexchange is mediated. We evaluate how the in-plane and interplane exchange energies evolve as the atoms of hydrogen on different ligands are substituted, and suggest a possible mechanism for this effect in terms of the relative exchange efficiency of hydrogen and deuterium bonds.

  12. Observations of Nitrogen Isotope Fractionation in Prestellar Cores

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.; Charnley, Steven B.

    2011-01-01

    Isotopically fractionated material is found in many solar system objects, including meteorites and comets [1]. It is considered, in some cases, to trace interstellar material that was incorporated into the solar system without undergoing significant processing, thus preserving the fractionation. In interstellar molecular clouds, ion-molecule chemistry continually cycles nitrogen between the two main reservoirs - Nand N2 - leading to only minor N-15 enrichments [2]. Charnley and Rodgers [3,4] showed that depletion of CO removes oxygen from the gas and weakens this cycle such that significant N-15 fractionation can occur for N2 and other N-bearing species in such cores. Observations are being conducted at millimeter and submillimeter wavelengths employing various facilities in order to both spatially and spectrally, resolve emission from these cores. A preliminary study to obtain the N-14/N-15 ratio in nitriles was conducted at the Arizona Radio Observatory's 12m telescope on Kitt Peak, AZ. Spectra were obtained at high resolution (0.08 km/s) in order to resolve dynamic properties of each source as well as to resolve hyperfine structure present in certain isotopologues. This study included four dark cloud cores, observed to have varying levels of molecular depletion: Ll521E, Ll498, Ll544, and Ll521F. Previous studies of the N-14/N-15 ratio towards Ll544 were obtained with N2H(+) and NH3 yielding ratios of 446 and greater than 700, respectively [5,6]. The discrepancy observed in these two measurements suggests a strong chemical dependence on the fractionation of nitrogen. Ratios (C,N, and D) obtained from isotopologues for a particular molecule are likely tracing the same chemical heritage and are directly comparable within a given source. Results and comparisons between the protostellar evolutionary state and isomer isotope fractionation as well as between other N-bearing species will be presented.

  13. Method for correcting for isotope burn-in effects in fission neutron dosimeters

    DOEpatents

    Gold, Raymond; McElroy, William N.

    1988-01-01

    A method is described for correcting for effect of isotope burn-in in fission neutron dosimeters. Two quantities are measured in order to quantify the "burn-in" contribution, namely P.sub.Z',A', the amount of (Z', A') isotope that is burned-in, and F.sub.Z', A', the fissions per unit volume produced in the (Z', A') isotope. To measure P.sub.Z', A', two solid state track recorder fission deposits are prepared from the very same material that comprises the fission neutron dosimeter, and the mass and mass density are measured. One of these deposits is exposed along with the fission neutron dosimeter, whereas the second deposit is subsequently used for observation of background. P.sub.Z', A' is then determined by conducting a second irradiation, wherein both the irradiated and unirradiated fission deposits are used in solid state track recorder dosimeters for observation of the absolute number of fissions per unit volume. The difference between the latter determines P.sub.Z', A' since the thermal neutron cross section is known. F.sub.Z', A' is obtained by using a fission neutron dosimeter for this specific isotope, which is exposed along with the original threshold fission neutron dosimeter to experience the same neutron flux-time history at the same location. In order to determine the fissions per unit volume produced in the isotope (Z', A') as it ingrows during the irradiation, B.sub.Z', A', from these observations, the neutron field must generally be either time independent or a separable function of time t and neutron energy E.

  14. Global scale observations of atmospheric molecular hydrogen and its stable isotopic composition

    NASA Astrophysics Data System (ADS)

    Batenburg, A. M.

    2012-09-01

    With average mixing ratios (χ) around 550 ppb (nmole/mole), molecular hydrogen (H2) is the most abundant reduced gas in our atmosphere after methane (CH4), but considerably less studied. H2 is also a promising energy carrier that might replace fossil fuels in vehicles with great sustainability advantages, but there may be environmental side effects. Large-scale leakage of H2 into the atmosphere might affect the atmosphere’s oxidative capacity and stratospheric ozone chemistry. To assess these risks, a better understanding of the atmospheric H2 cycle is needed. Stable isotopic composition measurements can be used to constrain the source and sink terms in the budgets of atmospheric trace gases, as the different processes affect the stable isotopic composition of the gases in different ways. For H2, the effects are particularly large, due to the large relative mass difference between the isotopes (H and D). The largest source, hydrocarbon oxidation, yields D-enriched H2, whereas the smaller combustion-related sources and the minor microbial sources yield D-depleted and extremely D-depleted H2, respectively. Both sink processes, uptake in soils and reaction with hydroxyl radicals (OH), have a D-enriching effect, but the effect is much stronger for OH. Despite its usefulness, few environmental observations of H2 isotopic composition (δD(H2)) are available. We present three new χ(H2) and δD(H2) datasets to fill this gap. First, we present one- to five-year long time series from six globally distributed, predominantly background stations. As expected, average χ(H2) and δD(H2) values were larger in the southern hemisphere (SH) than in the northern hemisphere (NH). The minimum in δD(H2) was found at the NH midlatitude stations, likely a result of fossil fuel combustion. At the three NH coastal and island stations, seasonal δD(H2)-cycles were observed, which were five to six months out-of-phase with the χ(H2)-cycles. No δD(H2)-cycles were observed at the other

  15. Uranium isotope fractionation in biogenic carbonates: biological effects

    NASA Astrophysics Data System (ADS)

    Chen, X.; Romaniello, S. J.; Herrmann, A. D.; Anbar, A. D.

    2017-12-01

    Recent laboratory experiments have demonstrated small but potentially significant isotope fractionation ( 0.10 ‰ for 238U/235U) during uranium (U) incorporation into abiotic calcite and aragonite, with heavier U isotopes preferentially enriched in the precipitates [1]. In contrast, measurements of natural biogenic carbonates to date have not been able to resolve significant U isotopic fractionation from seawater although this might be expected given a typical measurement precision of ± 0.10 ‰. Determining whether or not biogenic carbonates display U isotope fractionation similar to abiotic carbonates could have important implications for understanding the mechanisms of U incorporation into various biogenic carbonates. Furthermore, because most marine carbonates are biogenic, the extent of isotopic fractionation, if any, could have important implications for the interpretation of sedimentary carbonates record similar to effects observed for Cr and B isotopes [2, 3]. To resolve this discrepancy, we utilized a higher precision 238U/235U method which uses larger sample sizes to improve measurement precision of natural samples to ± 0.02 ‰ (2 se, N = 6) [4]. Using this method, we have surveyed 238U/235U in primary biogenic skeletal carbonates including scleractinian corals, green and red algae, and mollusks, as well as non-skeletal carbonates such as stromatolites, ooids, and carbonate sands from the Bahamas, Gulf of California, and French Polynesia. New high-precision U isotopes measurements reveal that biogenic skeletal carbonates are typically 0.02 - 0.08 ‰ heavier than modern seawater. Scleractinian corals display values closest to seawater (- 0.37 ‰), while green algae, red algae, mollusks, and echinoderms display variable but larger extents of fractionation up to 0.08 ‰. The direction and magnitude of U isotope fractionation in these biogenic precipitates are generally consistent with results from abiotic coprecipitation experiments, but may be

  16. Chlorine isotope effects from isotope ratio mass spectrometry suggest intramolecular C-Cl bond competition in trichloroethene (TCE) reductive dehalogenation.

    PubMed

    Cretnik, Stefan; Bernstein, Anat; Shouakar-Stash, Orfan; Löffler, Frank; Elsner, Martin

    2014-05-20

    Chlorinated ethenes are prevalent groundwater contaminants. To better constrain (bio)chemical reaction mechanisms of reductive dechlorination, the position-specificity of reductive trichloroethene (TCE) dehalogenation was investigated. Selective biotransformation reactions (i) of tetrachloroethene (PCE) to TCE in cultures of Desulfitobacterium sp. strain Viet1; and (ii) of TCE to cis-1,2-dichloroethene (cis-DCE) in cultures of Geobacter lovleyi strain SZ were investigated. Compound-average carbon isotope effects were -19.0‰ ± 0.9‰ (PCE) and -12.2‰ ± 1.0‰ (TCE) (95% confidence intervals). Using instrumental advances in chlorine isotope analysis by continuous flow isotope ratio mass spectrometry, compound-average chorine isotope effects were measured for PCE (-5.0‰ ± 0.1‰) and TCE (-3.6‰ ± 0.2‰). In addition, position-specific kinetic chlorine isotope effects were determined from fits of reactant and product isotope ratios. In PCE biodegradation, primary chlorine isotope effects were substantially larger (by -16.3‰ ± 1.4‰ (standard error)) than secondary. In TCE biodegradation, in contrast, the product cis-DCE reflected an average isotope effect of -2.4‰ ± 0.3‰ and the product chloride an isotope effect of -6.5‰ ± 2.5‰, in the original positions of TCE from which the products were formed (95% confidence intervals). A greater difference would be expected for a position-specific reaction (chloride would exclusively reflect a primary isotope effect). These results therefore suggest that both vicinal chlorine substituents of TCE were reactive (intramolecular competition). This finding puts new constraints on mechanistic scenarios and favours either nucleophilic addition by Co(I) or single electron transfer as reductive dehalogenation mechanisms.

  17. Natural Isotope Abundance in Metabolites: Techniques and Kinetic Isotope Effect Measurement in Plant, Animal, and Human Tissues.

    PubMed

    Tea, Illa; Tcherkez, Guillaume

    2017-01-01

    The natural isotope abundance in bulk organic matter or tissues is not a sufficient base to investigate physiological properties, biosynthetic mechanisms, and nutrition sources of biological systems. In fact, isotope effects in metabolism lead to a heterogeneous distribution of 2 H, 18 O, 13 C, and 15 N isotopes in metabolites. Therefore, compound-specific isotopic analysis (CSIA) is crucial to biological and medical applications of stable isotopes. Here, we review methods to implement CSIA for 15 N and 13 C from plant, animal, and human samples and discuss technical solutions that have been used for the conversion to CO 2 and N 2 for IRMS analysis, derivatization and isotope effect measurements. It appears that despite the flexibility of instruments used for CSIA, there is no universal method simply because the chemical nature of metabolites of interest varies considerably. Also, CSIA methods are often limited by isotope effects in sample preparation or the addition of atoms from the derivatizing reagents, and this implies that corrections must be made to calculate a proper δ-value. Therefore, CSIA has an enormous potential for biomedical applications, but its utilization requires precautions for its successful application. © 2017 Elsevier Inc. All rights reserved.

  18. Observations of the Li, Be, and B Isotopes and Constraints on Cosmic-ray Propagation

    NASA Technical Reports Server (NTRS)

    deNolfo, G. A.; Moskalenko, I. V.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; George, J. S.; Hink, P. L.; Israel, M. H.; Leske, R. A.; hide

    2007-01-01

    The abundance of Li, Be, and B isotopes in galactic cosmic rays (GCR) between E=50-200 MeV/nucleon has been observed by the Cosmic Ray Isotope Spectrometer (CRIS) on NASA's ACE mission since 1997 with high statistical accuracy. Precise observations of Li, Be, B can be used to constrain GCR propagation models. We find that a diffusive reacceleration model with parameters that best match CRIS results (e.g. B/C, Li/C, etc) are also consistent with other GCR observations. A approx. 15-20% overproduction of Li and Be in the model predictions is attributed to uncertainties in the production cross-section data. The latter becomes a significant limitation to the study of rare GCR species that are generated predominantly via spallation.

  19. AMS Observations of Light Cosmic Ray Isotopes and Implications for their Production in the Galaxy

    NASA Astrophysics Data System (ADS)

    Tomassetti, Nicola

    2012-08-01

    Observations of light isotopes in cosmic rays provide information on their origin and propagation in the Galaxy. Using the data collected by AMS-01 in the STS-91 space mission, we report our final results on the isotopic composition of hydrogen and helium between 200 MeV and 1.4 GeV per nucleon. These measurements are in good agreement with the previous data and set new standards of precision. We discuss the role of isotopic composition data in modeling the cosmic ray production, acceleration and diffusive transport in the Galaxy.

  20. Comparing Stable Water Isotope Variation in Atmospheric Moisture Observed over Coastal Water and Forests

    NASA Astrophysics Data System (ADS)

    Lai, C. T.; Rambo, J. P.; Welp, L. R.; Bible, K.; Hollinger, D. Y.

    2014-12-01

    Stable oxygen (δ18O) and hydrogen (δD) isotopologues of atmospheric moisture are strongly influenced by large-scale synoptic weather cycles, surface evapotranspiration and boundary layer mixing. Atmospheric water isotope variation has been shown to empirically relate to relative humidity (Rh) of near surface moisture, and to a less degree, air temperature. Continuous δ18O and δD measurements are becoming more available, providing new opportunities to investigate processes that control isotope variability. This study shows the comparison of δ18O and δD measured at a continental location and over coastal waters for 3 seasons (spring to fall, 2014). The surface moisture isotope measurements were made using two LGR spectroscopy water vapor isotope analyzers (Los Gatos Research Inc.), one operated in an old-growth coniferous forest at Wind River field station, WA (45.8205°N, 121.9519°W), and another sampling marine air over seawater at the Scripps Pier in San Diego, CA (32.8654°N, 117.2536°W), USA. Isotope variations were measured at 1Hz and data were reported as hourly averages with an overall accuracy of ±0.1‰ for δ18O, ±0.5‰ for δ2H. Day-to-day variations in δ18O and δD are shown strongly influenced by synoptic weather events at both locations. Boundary layer mixing between surface moisture and the dry air entrained from the free troposphere exerts a midday maximum and a consistent diel pattern in deuterium excess (dx). At the forest site, surface moisture also interacts with leaf water through transpiration during the day and re-equilibration at night. The latter occurs by retro-diffusion of atmospheric H2O molecules into leaf intercellular space, which becomes intensified as Rh increaes after nightfall, and continues until sunrise, to counter-balance the evaporative isotopic enrichment in leaf water on a daily basis. These vegetation effects lead to negative dx values consistently observed at nighttime in this continental location that were not

  1. Observation of the 162Dy-164Dy Isotope Shift for the 0 → 16 717.79 cm-1 Optical Transition.

    PubMed

    Nardin Barreta, Luiz Felipe; Victor, Alessandro Rogério; Bueno, Patrícia; Dos Santos, Jhonatha Ricardo; da Silveira, Carlos Alberto Barbosa; Neri, José Wilson; Neto, Jonas Jakutis; Sbampato, Maria Esther; Destro, Marcelo Geraldo

    2017-08-01

    In this work, we report a newly observed isotope shift between 162 Dy and 164 Dy isotopes for the 0 → 16 717.79 cm -1 (598.003 nm) optical transition. We compared the newly observed results against two other lines (597.452 nm and 598.859 nm), which we measured in this work, and were already reported in the literature. The newly observed 162-164 Dy isotope shift, shows at least a 20% larger isotope shift than the isotope shifts for the other two lines investigated. The larger 162-164 isotope shift observed for the 598.003 nm line could lead to an increased isotope selectivity for atomic vapor laser isotope separation (AVLIS). Hence, this line could be a good choice for application in AVLIS. Experimental data available in the literature for the 597.452 nm and 598.859 nm lines, enabled us to perform simulations of spectra for both lines, in order to confirm the accuracy of our experimental measurements.

  2. A Tale of Two Gases: Isotope Effects Associated with the Enzymatic Production of H2 and N2O

    NASA Astrophysics Data System (ADS)

    Yang, H.; Gandhi, H.; Kreuzer, H. W.; Moran, J.; Hill, E. A.; McQuarters, A.; Lehnert, N.; Ostrom, N. E.; Hegg, E. L.

    2014-12-01

    Stable isotopes can provide considerable insight into enzymatic mechanisms and fluxes in various biological processes. In our studies, we used stable isotopes to characterize both enzyme-catalyzed H2 and N2O production. H2 is a potential alternative clean energy source and also a key metabolite in many microbial communities. Biological H2 production is generally catalyzed by hydrogenases, enzymes that combine protons and electrons to produce H2 under anaerobic conditions. In our study, H isotopes and fractionation factors (α) were used to characterize two types of hydrogenases: [FeFe]- and [NiFe]-hydrogenases. Due to differences in the active site, the α associated with H2 production for [FeFe]- and [NiFe]-hydrogenases separated into two distinct clusters (αFeFe > αNiFe). The calculated kinetic isotope effects indicate that hydrogenase-catalyzed H2 production has a preference for light isotopes, consistent with the relative bond strengths of O-H and H-H bonds. Interestingly, the isotope effects associated with H2 consumption and H2-H2O exchange reactions were also characterized, but in this case no specific difference was observed between the different enzymes. N2O is a potent greenhouse gas with a global warming potential 300 times that of CO2, and the concentration of N2O is currently increasing at a rate of ~0.25% per year. Thus far, bacterial and fungal denitrification processes have been identified as two of the major sources of biologically generated N2O. In this study, we measured the δ15N, δ18O, δ15Nα (central N atom in N2O), and δ15Nβ (terminal N atom in N2O) of N2O generated by purified fungal P450 nitric oxide reductase (P450nor) from Histoplasma capsulatum. We observed normal isotope effects for δ18O and δ15Nα, and inverse isotope effects for bulk δ15N (the average of Nα and Nβ) and δ15Nβ. The observed isotope effects have been used in conjunction with DFT calculations to provide important insight into the mechanism of P450nor. Similar

  3. Magnetic isotope effect and theory of atomic orbital hybridization to predict a mechanism of chemical exchange reactions.

    PubMed

    Epov, Vladimir N

    2011-08-07

    A novel approach is suggested to investigate the mechanisms of chemical complexation reactions based on the results of Fujii with co-workers; they have experimentally observed that several metals and metalloids demonstrate mass-independent isotope fractionation during the reactions with the DC18C6 crown ether using solvent-solvent extraction. In this manuscript, the isotope fractionation caused by the magnetic isotope effect is used to understand the mechanisms of chemical exchange reactions. Due to the rule that reactions are allowed for certain electron spin states, and forbidden for others, magnetic isotopes show chemical anomalies during these reactions. Mass-independent fractionation is suggested to take place due to the hyperfine interaction of the nuclear spin with the electron spin of the intermediate product. Moreover, the sign of the mass-independent fractionation is found to be dependent on the element and its species, which is also explained by the magnetic isotope effect. For example, highly negative mass-independent isotope fractionation of magnetic isotopes was observed for reactions of DC18C6 with SnCl(2) species and with several Ru(III) chloro-species, and highly positive for reactions of this ether with TeCl(6)(2-), and with several Cd(II) and Pd(II) species. The atomic radius of an element is also a critical parameter for the reaction with crown ether, particularly the element ions with [Kr]4d(n)5s(m) electron shell fits the best with the DC18C6 crown ring. It is demonstrated that the magnetic isotope effect in combination with the theory of orbital hybridization can help to understand the mechanism of complexation reactions. The suggested approach is also applied to explain previously published mass-independent fractionation of Hg isotopes in other types of chemical exchange reactions. This journal is © the Owner Societies 2011

  4. Isotopic Effects in Nuclear Fragmentation and GCR Transport Problems

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.

    2002-01-01

    Improving the accuracy of the galactic cosmic ray (GCR) environment and transport models is an important goal in preparing for studies of the projected risks and the efficiency of potential mitigations methods for space exploration. In this paper we consider the effects of the isotopic composition of the primary cosmic rays and the isotopic dependence of nuclear fragmentation cross sections on GCR transport models. Measurements are used to describe the isotopic composition of the GCR including their modulation throughout the solar cycle. The quantum multiple-scattering approach to nuclear fragmentation (QMSFRG) is used as the data base generator in order to accurately describe the odd-even effect in fragment production. Using the Badhwar and O'Neill GCR model, the QMSFRG model and the HZETRN transport code, the effects of the isotopic dependence of the primary GCR composition and on fragment production for transport problems is described for a complete GCR isotopic-grid. The principle finding of this study is that large errors ( 100%) will occur in the mass-flux spectra when comparing the complete isotopic-grid (141 ions) to a reduced isotopic-grid (59 ions), however less significant errors 30%) occur in the elemental-flux spectra. Because the full isotopic-grid is readily handled on small computer work-stations, it is recommended that they be used for future GCR studies.

  5. Oxygen isotope fractionation effects in soil water via interaction with cations (Mg, Ca, K, Na) adsorbed to phyllosilicate clay minerals

    NASA Astrophysics Data System (ADS)

    Oerter, Erik; Finstad, Kari; Schaefer, Justin; Goldsmith, Gregory R.; Dawson, Todd; Amundson, Ronald

    2014-07-01

    In isotope-enabled hydrology, soil and vadose zone sediments have been generally considered to be isotopically inert with respect to the water they host. This is inconsistent with knowledge that clay particles possessing an electronegative surface charge and resulting cation exchange capacity (CEC) interact with a wide range of solutes which, in the absence of clays, have been shown to exhibit δ18O isotope effects that vary in relation to the ionic strength of the solutions. To investigate the isotope effects caused by high CEC clays in mineral-water systems, we created a series of monominerallic-water mixtures at gravimetric water contents ranging from 5% to 32%, consisting of pure deionized water of known isotopic composition with homoionic (Mg, Ca, Na, K) montmorillonite. Similar mixtures were also created with quartz to determine the isotope effect of non-, or very minimally-, charged mineral surfaces. The δ18O value of the water in these monominerallic soil analogs was then measured by isotope ratio mass spectrometry (IRMS) after direct headspace CO2 equilibration. Mg- and Ca-exchanged homoionic montmorillonite depleted measured δ18O values up to 1.55‰ relative to pure water at 5% water content, declining to 0.49‰ depletion at 30% water content. K-montmorillonite enriched measured δ18O values up to 0.86‰ at 5% water content, declining to 0.11‰ enrichment at 30% water. Na-montmorillonite produces no measureable isotope effect. The isotope effects observed in these experiments may be present in natural, high-clay soils and sediments. These findings have relevance to the interpretation of results of direct CO2-water equilibration approaches to the measurement of the δ18O value of soil water. The adsorbed cation isotope effect may bear consideration in studies of pedogenic carbonate, plant-soil water use and soil-atmosphere interaction. Finally, the observed isotope effects may prove useful as molecular scale probes of the nature of mineral

  6. Fundamental studies on kinetic isotope effect (KIE) of hydrogen isotope fractionation in natural gas systems

    USGS Publications Warehouse

    Ni, Y.; Ma, Q.; Ellis, G.S.; Dai, J.; Katz, B.; Zhang, S.; Tang, Y.

    2011-01-01

    Based on quantum chemistry calculations for normal octane homolytic cracking, a kinetic hydrogen isotope fractionation model for methane, ethane, and propane formation is proposed. The activation energy differences between D-substitute and non-substituted methane, ethane, and propane are 318.6, 281.7, and 280.2cal/mol, respectively. In order to determine the effect of the entropy contribution for hydrogen isotopic substitution, a transition state for ethane bond rupture was determined based on density function theory (DFT) calculations. The kinetic isotope effect (KIE) associated with bond rupture in D and H substituted ethane results in a frequency factor ratio of 1.07. Based on the proposed mathematical model of hydrogen isotope fractionation, one can potentially quantify natural gas thermal maturity from measured hydrogen isotope values. Calculated gas maturity values determined by the proposed mathematical model using ??D values in ethane from several basins in the world are in close agreement with similar predictions based on the ??13C composition of ethane. However, gas maturity values calculated from field data of methane and propane using both hydrogen and carbon kinetic isotopic models do not agree as closely. It is possible that ??D values in methane may be affected by microbial mixing and that propane values might be more susceptible to hydrogen exchange with water or to analytical errors. Although the model used in this study is quite preliminary, the results demonstrate that kinetic isotope fractionation effects in hydrogen may be useful in quantitative models of natural gas generation, and that ??D values in ethane might be more suitable for modeling than comparable values in methane and propane. ?? 2011 Elsevier Ltd.

  7. Shifts in rotifer life history in response to stable isotope enrichment: testing theories of isotope effects on organismal growth

    PubMed Central

    2017-01-01

    In ecology, stable isotope labelling is commonly used for tracing material transfer in trophic interactions, nutrient budgets and biogeochemical processes. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism growth and metabolism. This assumption is, however, challenged by theoretical considerations and experimental studies on kinetic isotope effects in vivo. Here, I demonstrate profound changes in life histories of the rotifer Brachionus plicatilis fed 15N-enriched algae (0.4–5.0 at%); i.e. at the enrichment levels commonly used in ecological studies. These findings support theoretically predicted effects of heavy isotope enrichment on growth, metabolism and ageing in biological systems and underline the importance of accounting for such effects when using stable isotope labelling in experimental studies. PMID:28405367

  8. Evidence of a kinetic isotope effect in nanoaluminum and water combustion.

    PubMed

    Tappan, Bryce C; Dirmyer, Matthew R; Risha, Grant A

    2014-08-25

    The normally innocuous combination of aluminum and water becomes violently reactive on the nanoscale. Research in the field of the combustion of nanoparticulate aluminum has important implications in the design of molecular aluminum clusters, hydrogen storage systems, as well as energetic formulations which could use extraterrestrial water for space propulsion. However, the mechanism that controls the reaction speed is poorly understood. While current models for micron-sized aluminum water combustion reactions place heavy emphasis on diffusional limitations, as reaction scales become commensurate with diffusion lengths (approaching the nanoscale) reaction rates have long been suspected to depend on chemical kinetics, but have never been definitely measured. The combustion analysis of nanoparticulate aluminum with H2O or D2O is presented. Different reaction rates resulting from the kinetic isotope effect are observed. The current study presents the first-ever observed kinetic isotope effect in a metal combustion reaction and verifies that chemical reaction kinetics play a major role in determining the global burning rate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Computational Replication of the Abnormal Secondary Kinetic Isotope Effects in a Hydride Transfer Reaction in Solution with a Motion Assisted H-Tunneling Model

    PubMed Central

    2015-01-01

    We recently reported abnormal secondary deuterium kinetic isotope effects (2° KIEs) for hydride transfer reactions from alcohols to carbocations in acetonitrile (Chem. Comm. 2012, 48, 11337). Experimental 2° KIE values were found to be inflated on the 9-C position in the xanthylium cation but deflated on the β-C position in 2-propanol with respect to the values predicted by the semi-classical transition-state theory. No primary (1°) isotope effect on 2° KIEs was observed. Herein, the KIEs were replicated by the Marcus-like H-tunneling model that requires a longer donor–acceptor distance (DAD) in a lighter isotope transfer process. The 2° KIEs for a range of potential tunneling-ready-states (TRSs) of different DADs were calculated and fitted to the experiments to find the TRS structure. The observed no effect of 1° isotope on 2° KIEs is explained in terms of the less sterically hindered TRS structure so that the change in DAD due to the change in 1° isotope does not significantly affect the reorganization of the 2° isotope and hence the 2° KIE. The effect of 1° isotope on 2° KIEs may be expected to be more pronounced and thus observable in reactions occurring in restrictive environments such as the crowded and relatively rigid active site of enzymes. PMID:24498946

  10. Ground Based Observation of Isotopic Oxygen in the Martian Atmosphere Using Infrared Heterodyne Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smith, R. L.; Kostiuk, T.; Livengood, T. A.; Fast, K. E.; Hewagama, T.; Delgado, J. D.; Sonnabend, G.

    2010-01-01

    Infrared heterodyne spectra of isotopic CO2 in the Martian atmosphere were obtained using the Goddard Heterodyne Instrument for Planetary Wind and Composition, HIPWAC, which was interfaced with the 3-meter telescope at the NASA Infrared Telescope Facility- Spectra were colle cted at a resolution of lambda/delta lambda=10(exp 7). Absorption fea tures of the CO2 isotopologues have been identified from which isotop ic ratios of oxygen have been determined. The isotopic ratios O-17/O -16 and O-18/O-16 in the Martian atmosphere can be related to Martian atmospheric evolution and can be compared to isotopic ratios of oxyg en in the Earth's atmosphere. Isotopic carbon and oxygen are importa nt constraints on any theory for the erosion of the Martian primordia l atmosphere and the interaction between the atmosphere and surface o r subsurface chemical reservoirs. This investigation explored the pr esent abundance of the stable isotopes of oxygen in Mars' atmospheric carbon dioxide by measuring rovibrational line absorption in isotop ic species of CO2 using groundbased infrared heterodyne spectroscopy in the vicinity of the 9.6 micron and 10.6 micron CO2 lasing bands. T he target transitions during this observation were O-18 C-12 O-16 as well as O-178 C-12 O-16 and O-16 C-113 O-16 at higher resolving power of lambda/delta lambda=10(exp 7) and with high signal-to-noise ratio (longer integration time) in order to fully characterize the absorpt ion line profiles. The fully-resolved lineshape of both the strong n ormal-isotope and the weak isotopic CO2 lines were measured simultane ously in a single spectrum.

  11. Transport hysteresis and hydrogen isotope effect on confinement

    NASA Astrophysics Data System (ADS)

    Itoh, S.-I.; Itoh, K.

    2018-03-01

    A Gedankenexperiment on hydrogen isotope effect is developed, using the transport model with transport hysteresis. The transport model with hysteresis is applied to case where the modulational electron cyclotron heating is imposed near the mid-radius of the toroidal plasmas. The perturbation propagates either outward or inward, being associated with the clockwise (CW) hysteresis or counter-clockwise (CCW) hysteresis, respectively. The hydrogen isotope effects on the CW and CCW hysteresis are investigated. The local component of turbulence-driven transport is assumed to be the gyro-Bohm diffusion. While the effect of hydrogen mass number is screened in the response of CW hysteresis, it is amplified in CCW hysteresis. This result motivates the experimental studies to compare CW and CCW cases in order to obtain further insight into the physics of hydrogen isotope effects.

  12. Carbon and hydrogen isotopic effects of stomatal density in Arabidopsis thaliana

    NASA Astrophysics Data System (ADS)

    Lee, Hyejung; Feakins, Sarah J.; Sternberg, Leonel da S. L.

    2016-04-01

    Stomata are key gateways mediating carbon uptake and water loss from plants. Varied stomatal densities in fossil leaves raise the possibility that isotope effects associated with the openness of exchange may have mediated plant wax biomarker isotopic proxies for paleovegetation and paleoclimate in the geological record. Here we use Arabidopsis thaliana, a widely used model organism, to provide the first controlled tests of stomatal density on carbon and hydrogen isotopic compositions of cuticular waxes. Laboratory grown wildtype and mutants with suppressed and overexpressed stomatal densities allow us to directly test the isotope effects of stomatal densities independent of most other environmental or biological variables. Hydrogen isotope (D/H) measurements of both plant waters and plant wax n-alkanes allow us to directly constrain the isotopic effects of leaf water isotopic enrichment via transpiration and biosynthetic fractionations, which together determine the net fractionation between irrigation water and n-alkane hydrogen isotopic composition. We also measure carbon isotopic fractionations of n-alkanes and bulk leaf tissue associated with different stomatal densities. We find offsets of +15‰ for δD and -3‰ for δ13C for the overexpressed mutant compared to the suppressed mutant. Since the range of stomatal densities expressed is comparable to that found in extant plants and the Cenozoic fossil record, the results allow us to consider the magnitude of isotope effects that may be incurred by these plant adaptive responses. This study highlights the potential of genetic mutants to isolate individual isotope effects and add to our fundamental understanding of how genetics and physiology influence plant biochemicals including plant wax biomarkers.

  13. Combining stable isotope isotope geochemistry and carbonic anhydrase activity to trace vital effect in carbonate precipitation experiments

    NASA Astrophysics Data System (ADS)

    Thaler, C.; Ader, M.; Menez, B.; Guyot, F. J.

    2013-12-01

    Carbonates precipitated by skeleton-forming eukaryotic organisms are often characterized by non-equilibrium isotopic signatures. This specificity is referred to as the "vital effect" and can be used as an isotopic evidence to trace life. Combining stable isotope geochemistry and enzymology (using the enzyme carbonic anhydrase) we aim to demonstrate that prokaryotes are also able to precipitate carbonate with a non-equilibrium d18OCaCO3. Indeed, if in an biomineralization experiment carbonates are precipitated with a vital effect, the addition of carbonic anhydrase should drive the system to isotope equilibrium, And provide a comparison point to estimate the vital effect range. This protocol allowed us to identify a -20‰ vital effect for the d18O of carbonates precipitated by Sporosarcina pasteurii, a bacterial model of carbonatogen metabolisms. This approach is thus a powerfull tool for the understanding of microbe carbonatogen activity and will probably bring new insights into the understanding of bacterial activity in subsurface and during diagenesis.

  14. Pyroxene Homogenization and the Isotopic Systematics of Eucrites

    NASA Technical Reports Server (NTRS)

    Nyquist, L. E.; Bogard, D. D.

    1996-01-01

    The original Mg-Fe zoning of eucritic pyroxenes has in nearly all cases been partly homogenized, an observation that has been combined with other petrographic and compositional criteria to establish a scale of thermal "metamorphism" for eucrites. To evaluate hypotheses explaining development of conditions on the HED parent body (Vesta?) leading to pyroxene homogenization against their chronological implications, it is necessary to know whether pyroxene metamorphism was recorded in the isotopic systems. However, identifying the effects of the thermal metamorphism with specific effects in the isotopic systems has been difficult, due in part to a lack of correlated isotopic and mineralogical studies of the same eucrites. Furthermore, isotopic studies often place high demands on analytical capabilities, resulting in slow growth of the isotopic database. Additionally, some isotopic systems would not respond in a direct and sensitive way to pyroxene homogenization. Nevertheless, sufficient data exist to generalize some observations, and to identify directions of potentially fruitful investigations.

  15. The Effect of Phytase on the Oxygen Isotope Composition of Phosphate

    NASA Astrophysics Data System (ADS)

    von Sperber, C.; Tamburini, F.; Bernasconi, S. M.; Frossard, E.

    2013-12-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi) (1-2). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. The enzymatic hydrolysis leads, via a nucleophilic attack, to the incorporation of one oxygen atom from the water into the newly formed Pi molecule. During the incorporation, an isotopic fractionation occurs, which might be used to identify the origin of Pi in the environment (3-6). While the effect of phosphomonoesterases and phosphodiesterases on the oxygen isotope composition of phosphate has been examined, there are, so far, no studies dealing with the effect of phytases (4-6). Phytases catalyze the hydrolysis of myo-inositol-hexakis-phosphate (IP6), which is an important component of organic P in many ecosystems (7). Enzymatic assays with phytase from wheat germ and Aspergillus niger were prepared under sterile and temperature controlled conditions in order to determine the effect of phytases on the oxygen isotope composition of phosphate, which has been liberated from IP6 via enzymatic hydrolysis. Assays with phytase from wheat germ lead to a turnover of the substrate close to 100%, while assays with phytase from Aspergillus niger lead to a turnover of the substrate close to 80%. In the case of the assays with phytase from wheat germ, our results indicate that one sixth of the total 24 oxygen which are associated to the phosphates in IP6 are exchanged with oxygen from water. From this we conclude that the incorporation of one oxygen atom from water occurs only at four phosphate molecules of IP6, while two phosphate molecules do not experience an incorporation of oxygen. This suggests that during the enzymatic hydrolysis, four P-O bonds and two C-O bonds are broken. Provided that, the isotopic fractionation can be calculated with an isotopic mass balance resulting in -8.4‰ (×3.6 SD). This is a value very similar to those reported

  16. Isotopic modeling of the sub-cloud evaporation effect in precipitation.

    PubMed

    Salamalikis, V; Argiriou, A A; Dotsika, E

    2016-02-15

    In dry and warm environments sub-cloud evaporation influences the falling raindrops modifying their final stable isotopic content. During their descent from the cloud base towards the ground surface, through the unsaturated atmosphere, hydrometeors are subjected to evaporation whereas the kinetic fractionation results to less depleted or enriched isotopic signatures compared to the initial isotopic composition of the raindrops at cloud base. Nowadays the development of Generalized Climate Models (GCMs) that include isotopic content calculation modules are of great interest for the isotopic tracing of the global hydrological cycle. Therefore the accurate description of the underlying processes affecting stable isotopic content can improve the performance of iso-GCMs. The aim of this study is to model the sub-cloud evaporation effect using a) mixing and b) numerical isotope evaporation models. The isotope-mixing evaporation model simulates the isotopic enrichment (difference between the ground and the cloud base isotopic composition of raindrops) in terms of raindrop size, ambient temperature and relative humidity (RH) at ground level. The isotopic enrichment (Δδ) varies linearly with the evaporated raindrops mass fraction of the raindrop resulting to higher values at drier atmospheres and for smaller raindrops. The relationship between Δδ and RH is described by a 'heat capacity' model providing high correlation coefficients for both isotopes (R(2)>80%) indicating that RH is an ideal indicator of the sub-cloud evaporation effect. Vertical distribution of stable isotopes in falling raindrops is also investigated using a numerical isotope-evaporation model. Temperature and humidity dependence of the vertical isotopic variation is clearly described by the numerical isotopic model showing an increase in the isotopic values with increasing temperature and decreasing RH. At an almost saturated atmosphere (RH=95%) sub-cloud evaporation is negligible and the isotopic

  17. Periodicity analysis of δ18O in precipitation over Central Europe: Time-frequency considerations of the isotopic 'temperature' effect

    NASA Astrophysics Data System (ADS)

    Salamalikis, V.; Argiriou, A. A.; Dotsika, E.

    2016-03-01

    In this paper the periodic patterns of the isotopic composition of precipitation (δ18O) for 22 stations located around Central Europe are investigated through sinusoidal models and wavelet analysis over a 23 years period (1980/01-2002/12). The seasonal distribution of δ18O follows the temporal variability of air temperature providing seasonal amplitudes ranging from 0.94‰ to 4.47‰; the monthly isotopic maximum is observed in July. The isotopic amplitude reflects the geographical dependencies of the isotopic composition of precipitation providing higher values when moving inland. In order to describe the dominant oscillation modes included in δ18O time series, the Morlet Continuous Wavelet Transform is evaluated. The main periodicity is represented at 12-months (annual periodicity) where the wavelet power is mainly concentrated. Stations (i.e. Cuxhaven, Trier, etc.) with limited seasonal isotopic effect provide sparse wavelet power areas at the annual periodicity mode explaining the fact that precipitation has a complex isotopic fingerprint that cannot be examined solely by the seasonality effect. Since temperature is the main contributor of the isotopic variability in mid-latitudes, the isotope-temperature effect is also investigated. The isotope-temperature slope ranges from 0.11‰/°C to 0.47‰/°C with steeper values observed at the southernmost stations of the study area. Bivariate wavelet analysis is applied in order to determine the correlation and the slope of the δ18O - temperature relationship over the time-frequency plane. High coherencies are detected at the annual periodicity mode. The time-frequency slope is calculated at the annual periodicity mode ranging from 0.45‰/°C to 0.83‰/°C with higher values at stations that show a more distinguishable seasonal isotopic behavior. Generally the slope fluctuates around a mean value but in certain cases (sites with low seasonal effect) abrupt slope changes are derived and the slope becomes

  18. Substrate and Enzyme Specificity of the Kinetic Isotope Effects Associated with the Dioxygenation of Nitroaromatic Contaminants.

    PubMed

    Pati, Sarah G; Kohler, Hans-Peter E; Pabis, Anna; Paneth, Piotr; Parales, Rebecca E; Hofstetter, Thomas B

    2016-07-05

    Compound-specific isotope analysis (CSIA) is a promising approach for tracking biotransformation of organic pollutants, but isotope fractionation associated with aromatic oxygenations is only poorly understood. We investigated the dioxygenation of a series of nitroaromatic compounds to the corresponding catechols by two enzymes, namely, nitrobenzene and 2-nitrotoluene dioxygenase (NBDO and 2NTDO) to elucidate the enzyme- and substrate-specificity of C and H isotope fractionation. While the apparent (13)C- and (2)H-kinetic isotope effects of nitrobenzene, nitrotoluene isomers, 2,6-dinitrotoluene, and naphthalene dioxygenation by NBDO varied considerably, the correlation of C and H isotope fractionation revealed a common mechanism for nitrobenzene and nitrotoluenes. Similar observations were made for the dioxygenation of these substrates by 2NTDO. Evaluation of reaction kinetics, isotope effects, and commitment-to-catalysis based on experiment and theory showed that rates of dioxygenation are determined by the enzymatic O2 activation and aromatic C oxygenation. The contribution of enzymatic O2 activation to the reaction rate varies for different nitroaromatic substrates of NBDO and 2NTDO. Because aromatic dioxygenation by nonheme iron dioxygenases is frequently the initial step of biodegradation, O2 activation kinetics may also have been responsible for the minor isotope fractionation reported for the oxygenation of other aromatic contaminants.

  19. Large effect of irradiance on hydrogen isotope fractionation of alkenones in Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    van der Meer, Marcel T. J.; Benthien, Albert; French, Katherine L.; Epping, Eric; Zondervan, Ingrid; Reichart, Gert-Jan; Bijma, Jelle; Sinninghe Damsté, Jaap S.; Schouten, Stefan

    2015-07-01

    The hydrogen isotopic (δD) composition of long-chain alkenones produced by certain haptophyte algae has been suggested as a potential proxy for reconstructing paleo sea surface salinity. However, environmental parameters other than salinity may also affect the δD of alkenones. We investigated the impact of the level of irradiance on hydrogen isotopic fractionation of alkenones versus growth water by cultivating two strains of the cosmopolitan haptophyte Emiliania huxleyi at different light intensities. The hydrogen isotope fractionation decreased by approximately 40‰ when irradiance was increased from 15 to 200 μmol photons m-2 s-1 above which it was relatively constant. The response is likely a direct effect of photosystem I and II activity as the relationship of the fractionation factor α versus light intensity can be described by an Eilers-Peeters photosynthesis model. This irradiance effect is in agreement with published δD data of alkenones derived from suspended particulate matter collected from different depths in the photic zone of the Gulf of California and the eastern tropical North Pacific. However, haptophyte algae tend to bloom at relatively high light intensities (>500 μmol photons m-2 s-1) occurring at the sea surface, at which hydrogen isotope fractionation is relatively constant and not affected by changes in light intensity. Alkenones accumulating in the sediment are likely mostly derived from these surface water haptophyte blooms, when the largest amount of biomass is produced. Therefore, the observed irradiance effect is unlikely to affect the applicability of the hydrogen isotopic composition of sedimentary long chain alkenones as a proxy for paleosalinity.

  20. What Mantle Processes Determine Isotopic

    NASA Astrophysics Data System (ADS)

    Tackley, P. J.; Xie, S.

    2003-12-01

    Isotopic measurements on Mid Ocean Ridge Basalts and Ocean Island Basalts indicate effective `ages' (from e.g., U-Pb or Sm-Nd systems) in the range 1-2 billion years- much less than the age of the Earth, even though melting should have been much more vigorous early on and skewed the mean time since melting to older values. This relatively young `age' has generally been explained in terms of stretching of heterogeneities by mantle convection, which might reduce them to dimensions too small to be individually distinguishable in short timescales of less than 1 Gyr. On the other hand, published numerical models that use tracers to track differentiated material (Christensen and Hofmann, 1994, Davies, 2002) suggest that Earth-like `ages' can be obtained without taking stretching-induced erasure of tracer signatures into account, although this might effectively happen if the lengthscale for sampling the isotope systems was large enough. In those models, the only explicit mechanism for resetting isotope systems was re-melting, but for this to explain the isotopic ages observed for basalts, the global rate of melting in the recent past would have had to be very much higher than present-day values. To investigate stretching vs. re-melting we have conducted numerical experiments of a cooling mantle with plate tectonics, differentiation and evolution of important isotopic systems. The time of last melting and the total strain is tracked on each tracer (in addition to isotopic information). The results confirm that a model matching today's crustal production rate and with a reasonable secular cooling history generates `ages' that are substantially larger than those observed, with the extent of crustal settling above the CMB making some difference but not enough. The effect of sampling lengthscale on observed `age' is also tested and found to be insufficient to explain the data. Thus, these results reaffirm the importance of stretching as a key mechanism for effectively deleting

  1. Malic enzyme: Tritium isotope effects with alternative dinucleotide substrates and divalent metal ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karsten, W.E.; Harris, B.G.; Cook, P.F.

    1992-01-01

    The NAD-malic enzyme from Ascaris suum catalyzes the divalent metal ion dependent oxidative decarboxylation of L-malate to yield pyruvate, carbon dioxide and NADH. Multiple isotope effect studies suggest a stepwise chemical mechanism with hydride transfer from L-malate to NAD occurring first to form oxalacetate, followed by decarboxylation. Utilizing L-malate-2-T, tritium V/K isotope effects have been determined for the hydride transfer step using a variety of alternative dinucleotide substrates and divalent metal ions. Combination of these data with deuterium isotope effects data and previously determined [sup 13]C isotope effects has allowed the calculation of intrinsic isotope effects for the malic enzymemore » catalyzed reaction. The identity of both the dinucleotide substrate and divalent metal ion has an effect of the size of the intrinsic isotope effect for hydride transfer.« less

  2. Nitrification in the euphotic zone as evidenced by nitrate dual isotopic composition: Observations from Monterey Bay, California

    USGS Publications Warehouse

    Wankel, Scott D.; Kendall, C.; Pennington, J.T.; Chavez, F.P.; Paytan, A.

    2007-01-01

    Coupled measurements of nitrate (NO3-), nitrogen (N), and oxygen (O) isotopic composition (??15NNO3 and ??18ONO3) were made in surface waters of Monterey Bay to investigate multiple N cycling processes occurring within surface waters. Profiles collected throughout the year at three sites exhibit a wide range of values, suggesting simultaneous and variable influence of both phytoplankton NO3- assimilation and nitrification within the euphotic zone. Specifically, increases ??18ONO3 were consistently greater than those in ??15NN03. A coupled isotope steady state box model was used to estimate the amount of NO3- supplied by nitrification in surface waters relative to that supplied from deeper water. The model highlights the importance of the branching reaction during ammonium (NH4+) consumption, in which NH4+ either serves as a substrate for regenerated production or for nitrification. Our observations indicate that a previously unrecognized proportion of nitrate-based productivity, on average 15 to 27%, is supported by nitrification in surface waters and should not be considered new production. This work also highlights the need for a better understanding of isotope effects of NH4+ oxidation, NH4+ assimilation, and NO4+ assimilation in marine environments.

  3. Deuterium isotope effects on 13C and 15N chemical shifts of intramolecularly hydrogen-bonded enaminocarbonyl derivatives of Meldrum’s and Tetronic acid

    NASA Astrophysics Data System (ADS)

    Ullah, Saif; Zhang, Wei; Hansen, Poul Erik

    2010-07-01

    Secondary deuterium isotope effects on 13C and 15N nuclear shieldings in a series of cyclic enamino-diesters and enamino-esters and acyclic enaminones and enamino-esters have been examined and analysed using NMR and DFT (B3LYP/6-31G(d,p)) methods. One-dimensional and two-dimensional NMR spectra of enaminocarbonyl and their deuterated analogues were recorded in CDCl 3 and CD 2Cl 2 at variable temperatures and assigned. 1JNH coupling constants for the derivatives of Meldrum's and tetronic acids reveal that they exist at the NH-form. It was demonstrated that deuterium isotope effects, for the hydrogen bonded compounds, due to the deuterium substitution at the nitrogen nucleus lead to large one-bond isotope effects at nitrogen, 1Δ 15N(D), and two-bond isotope effects on carbon nuclei, 2ΔC(ND), respectively. A linear correlations exist between 2ΔC(ND) and 1Δ 15N(D) whereas the correlation with δNH is divided into two. A good agreement between the experimentally observed 2ΔC(ND) and calculated dσ 13C/dR NH was obtained. A very good correlation between calculated NH bond lengths and observed NH chemical shifts is found. The observed isotope effects are shown to depend strongly on Resonance Assisted Hydrogen bonding.

  4. Isotope Effects Associated with N2O Production By Fungal and Bacterial Nitric Oxide Reductases: Implications for Tracing Microbial Production Pathways

    NASA Astrophysics Data System (ADS)

    Ostrom, N. E.; Yang, H.; Gandhi, H.; Hegg, E. L.

    2014-12-01

    Site preference (SP), the difference in δ15N between the central (α) and outer (β) N atoms in N2O, has emerged as a conservative tracer of microbial N2O production. The key advantages of SP relative to bulk isotopes are (1) that it is independent of the isotope composition of the substrates of nitrification and denitrification and (2) has not been shown to exhibit fractionation during production. In pure microbial culture distinct SP values for N2O production from bacterial denitrification, including nitrifier-denitrification (-10 to 0 ‰), relative to hydroxylamine oxidation and fungal denitrification (33-37 ‰) provide a promising basis to resolve production pathways. In this study, we determined the δ15N, δ18O, δ15Nα, and δ15Nβ of N2O generated by purified fungal (P450nor) and bacterial nitric oxide reductases. The isotope values were used to calculate SP values, enrichment factors (e), and kinetic isotope effects (KIEs). Both O and Nα displayed normal isotope effects during enzymatic NO reduction by the P450nor with e values of -25.7‰ (KIE = 1.0264) and -12.6‰ (KIE = 1.0127), respectively. However, bulk nitrogen (average δ15N of Nα and Nβ) and Nβ exhibited inverse isotope effects with e values of 14.0‰ (KIE = 0.9862) and 36.1‰ (KIE = 0.9651), respectively. The observed inverse isotope effect in δ15Nβ is consistent with reversible binding of the first NO in the P450nor reaction mechanism. Experiments with bacterial nitric oxide reductase are ongoing, however, preliminary data indicates a inverse isotope effect in the α and β positions and a normal isotope effect in δ18O. In contrast to the constant SP observed during N2O production observed in microbial cultures, the SP measured for purified P450nor was not constant, increasing from ~15‰ to ~29‰ during the course of the reaction. Our results clearly indicate that fractionation of SP during N2O production by P450nor is not zero, and that SP values higher and lower than the

  5. Investigating the effects of abyssal peridotite alteration on Si, Mg and Zn isotopes

    NASA Astrophysics Data System (ADS)

    Savage, P. S.; Wimpenny, J.; Harvey, J.; Yin, Q.; Moynier, F.

    2013-12-01

    Around 1/3 of Earth's divergent ridge system is now classified as "slow" spreading [1], exposing ultramafic rocks (abyssal peridotites) at the seafloor. Such material is often highly altered by serpentinisation and steatisation (talc formation). It is crucial to understand such processes in order to access the original composition of the mantle, and to quantify any impact on ocean composition. Here we examine the effect of both serpentinisation and steatisation on Si, Mg and Zn isotopes. Hydrothermal alteration and seafloor weathering are both sources of oceanic Si [2] and weathering of abyssal peridotites is a source of oceanic Mg [3]; hence isotopic fractionation as a result of seafloor alteration could affect oceanic Si and Mg isotope composition. Zinc isotopes can provide complimentary information; the magnitude and direction of fractionation is highly dependent on complexing ligand [4] and can provide compositional information on the fluids driving metasomatism. For this study, two cores from the well-characterised abyssal peridotites recovered on ODP Leg 209 were examined [5]. Hole 1274a peridotites exhibit variable serpentinisation at ~200°C, whereas samples from Hole 1268a have been comprehensively serpentinised and then subsequently steatised to talc facies at ~350°C, by a low Mg/Si, low pH fluid. The Si, Mg and Zn isotope compositions of 1274a samples are extremely homogeneous, identical to that of pristine mantle rocks (BSE) i.e., serpentinisation at this locality was predominantly isochemical [5]. In contrast, samples from 1268a show greater isotopic variability. In all samples, Mg is enriched in the heavier isotopes relative to BSE, consistent with formation of isotopically heavy secondary phases [6]. For Si, serpentinised samples are slightly enriched in the lighter isotopes compared to BSE, again consistent with the behaviour of Si during formation of secondary phases [7]. Within the steatised samples, some exhibit enrichments in the lighter Si

  6. Nitrogen Isotopic Ratio in Jupiter's Atmosphere from Observations by Composite Infrared Spectrometer (CIRS) on the Cassini Spacecraft

    NASA Technical Reports Server (NTRS)

    Abbas, M. M.; LeClair, A.; Owen, T.; Conrath, B. J.; Flasar, F. M.; Kunde, V. G.; Nixon, C. A..; Achterberg, R. K.; Bjoraker, G.; Jennings, D. J.

    2003-01-01

    The Composite Infrared Spectrometer (CIRS) on the Cassini spacecraft made infrared observations of Jupiter's atmosphere during the flyby in December 2000 to January 2001. The unique database in the 600-1400/cm region with 0.53 and 2.8/cm spectral resolutions obtained from the observations permits retrieval of global maps of the thermal structure and composition of Jupiter's atmosphere including the distributions of (14)NH3 and (15)NH3. Analysis of Jupiter's ammonia distributions from three isolated (15)NH3 spectral lines in eight latitudes is presented for evaluation of the nitrogen isotopic ratio. The nitrogen isotopic ratio (14)N/(15)N (or (15)N/(14)N) in Jupiter's atmosphere in this analysis is calculated to be: 448 +/- 62 ((2.23 +/- 0.31) x 10(exp -3)). This value of the ratio determined from CIRS data is found to be in very close agreement with the value previously obtained from the measurements by the Galileo Probe Mass Spectrometer. Some possible mechanisms to account for the variation of Jupiter's observed isotopic ratio relative to various astrophysical environments are discussed.

  7. Dual temperature effects on oxygen isotopic ratio of shallow-water coral skeleton: Consequences on seasonal and interannual records

    NASA Astrophysics Data System (ADS)

    Juillet-Leclerc, A.; Reynaud, S.

    2009-04-01

    Oxygen isotopic ratio from coral skeleton is regarded for a long time as promising climate archives at seasonal scale. Although in isotopic disequilibrium relative to seawater, it is supposed to obey to the isotope thermometer. Indeed, coral oxygen isotopic records are strongly temperature dependent, but d18O-temperature calibrations derived from different corals are highly variable. The isotope thermometer assumption does not take into account vital effects due to biogenic origin of the mineral. Corals are animals living in symbiosis with algae (zooxanthellae). Interactions between symbiont photosynthesis and coral skeleton carbonation have been abundantly observed but they remain poorly understood and the effects of photosynthesis on coral growth and skeleton oxygen ratio are ignored. Coral cultured under two light conditions enabled to relate metabolic parameters and oxygen isotopic variability with photosynthetic activity. By examining responses provided by each colony they revealed that photosynthesis significantly affected d18O, by an opposite sense compared with the sole temperature influence. Since temperature and light changes are associated during seasonal variations, this complicates the interpretation of seasonal record. Additionally, this complexity is amplified because photosynthetic activity is also directly impacted by temperature variability. Thus, the annual isotopic amplitude due to the "physical" temperature influence is partly compensated through photosynthesis. Similar opposite effect is also shown by extension rate of the cultured colonies. First, we will examine and quantify consequences of photosynthesis on growth rate and oxygen isotopic signature, from cultured corals. Second, we will consider the consequences of this vital effect on data series, at seasonal and interannual time scales.

  8. Kinetic and metabolic isotope effects in coral skeletal carbon isotopes: A re-evaluation using experimental coral bleaching as a case study

    NASA Astrophysics Data System (ADS)

    Schoepf, Verena; Levas, Stephen J.; Rodrigues, Lisa J.; McBride, Michael O.; Aschaffenburg, Matthew D.; Matsui, Yohei; Warner, Mark E.; Hughes, Adam D.; Grottoli, Andréa G.

    2014-12-01

    Coral skeletal δ13C can be a paleo-climate proxy for light levels (i.e., cloud cover and seasonality) and for photosynthesis to respiration (P/R) ratios. The usefulness of coral δ13C as a proxy depends on metabolic isotope effects (related to changes in photosynthesis) being the dominant influence on skeletal δ13C. However, it is also influenced by kinetic isotope effects (related to calcification rate) which can overpower metabolic isotope effects and thus compromise the use of coral skeletal δ13C as a proxy. Heikoop et al. (2000) proposed a simple data correction to remove kinetic isotope effects from coral skeletal δ13C, as well as an equation to calculate P/R ratios from coral isotopes. However, despite having been used by other researchers, the data correction has never been directly tested, and isotope-based P/R ratios have never been compared to P/R ratios measured using respirometry. Experimental coral bleaching represents a unique environmental scenario to test this because bleaching produces large physiological responses that influence both metabolic and kinetic isotope effects in corals. Here, we tested the δ13C correction and the P/R calculation using three Pacific and three Caribbean coral species from controlled temperature-induced bleaching experiments where both the stable isotopes and the physiological variables that cause isotopic fractionation (i.e., photosynthesis, respiration, and calcification) were simultaneously measured. We show for the first time that the data correction proposed by Heikoop et al. (2000) does not effectively remove kinetic effects in the coral species studied here, and did not improve the metabolic signal of bleached and non-bleached corals. In addition, isotope-based P/R ratios were in poor agreement with measured P/R ratios, even when the data correction was applied. This suggests that additional factors influence δ13C and δ18O, which are not accounted for by the data correction. We therefore recommend that the

  9. Effect of 10B isotope and vacancy defects on the phonon modes of two-dimensional hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Sherajul Islam, Md.; Anindya, Khalid N.; Bhuiyan, Ashraful G.; Tanaka, Satoru; Makino, Takayuki; Hashimoto, Akihiro

    2018-02-01

    We report the details of the effects of the 10B isotope and those of B and N vacancies combined with the isotope on the phonon modes of two-dimensional hexagonal boron nitride (h-BN). The phonon density of states and localization problems are solved using the forced vibrational method, which is suitable for an intricate and disordered system. We observe an upward shift of Raman-active E2g-mode optical phonons (32 cm-1) for a 100% 10B isotope, which matches well with the experiment and simple harmonic oscillator model. However, a downward shift of E2g-mode phonons is observed for B or N vacancies and the combination of the isotope and vacancy-type disordered BN. Strong localized eigenmodes are found for all types of defects, and a typical localization length is on the order of ˜7 nm for naturally occurring BN samples. These results are very important for understanding the heat dissipation and electron transport properties of BN-based nanoelectronics.

  10. Strong coupling effects in the polarized IR spectra of the chain hydrogen bond systems in imidazole crystals: H/D isotopic ?self-organization? effects in the IR spectra of isotopically diluted imidazole single crystals

    NASA Astrophysics Data System (ADS)

    Flakus, Henryk T.; Michta, Anna

    2004-11-01

    This paper presents the investigation results of the polarized IR spectra of H1245 imidazole crystals and of D1H245, D1245 and H1D245 imidazole deuterium derivative crystals. The spectra were measured using polarized light at the room temperature and at 77 K by a transmission method, for two different crystalline faces. Theoretical analysis of the results concerned linear dichroic effects, H/D isotopic and temperature effects, observed in the spectra of the hydrogen and of the deuterium bonds in imidazole crystals, at the frequency ranges of νN-H and νN-D bands. The basic crystal spectral properties can be satisfactorily interpreted in a quantitative way for a hydrogen bond linear dimer model. Such a model explains not only a two-branch structure of the νN-H and νN-D bands in crystalline spectra, but also some essential linear dichroic effects in the band frequency ranges, for isotopically diluted crystals. Model calculations, performed within the limits of the strong-coupling model, allowed for quantitative interpretation and for understanding of the basic properties of the hydrogen bond IR spectra of imidazole crystals, H/D isotopic, temperature and dichroic effects included. The results allowed verification of theoretical models proposed recently for the imidazole crystal spectra generation mechanisms. In the scope of our studies, the mechanism of H/D isotopic self-organization processes, taking place in the crystal hydrogen bond lattices, was also recognized. It was proved that for isotopically diluted crystalline samples of imidazole, a non-random distribution of protons and deuterons exclusively occurs in some restricted fragments (domains) of open chains of the hydrogen-bonded molecules. Nevertheless, these co-operative interactions between the hydrogen bonds do not concern adjacent fragments of neighboring hydrogen bond chains in the lattice. Analysis of the isotopic self-organization effects in the spectra of imidazole crystals delivered crucial

  11. Observations of Isotope Fractionation in Prestellar Cores: Interstellar Origin of Meteoritic Hot Spot?

    NASA Technical Reports Server (NTRS)

    Milam, S. N.; Charnley, S. B.

    2011-01-01

    Isotopically fractionated material is found in many solar system objects, including meteorites and comets. It is thought, in some cases, to trace interstellar material that was incorporated into the solar system without undergoing significant processing. Here, we show the results of models and observations of the nitrogen and carbon fractionation in proto-stellar cores.

  12. Western US Seismic Observations Viewed Through Lead Isotope Maps

    NASA Astrophysics Data System (ADS)

    Bouchet, R. A.; Blichert-Toft, J.; Levander, A.; Reid, M. R.; Albarede, F.

    2013-12-01

    To shed light on the nature and history of the different geological units identified by the seismic models that have come from USArray in the western US, we compiled literature Pb isotope compositions of ores (n=1200), K-feldspars from granites (n=400), and felsic plutonic rocks (n=1300), data that for most part were not in the NAVDAT database. We complemented this compilation by analyzing the Pb isotope compositions of K-feldspars (76) and whole-rocks (6) of felsic xenoliths and felsic plutonic rocks from the Colorado Plateau (CP). The raw Pb isotope abundances for the complete data set were converted into three independent, geologically informative parameters in the form of the model age T (time of last U/Pb fractionation) and the two chemical ratios 238U/204Pb (μ) and 232Th/238U (κ). These parameters were then imaged on isotopic maps of the western US using 0.5°×0.5° grid-cell averaging for μ and κ and a 0.5°×0.5° grid-cell maximum after removing the 2.5% highest values (outliers) for T. Comparing these chemical maps to seismic maps of tomographic anomalies [1] and Moho and LAB depths determined from receiver functions [2] leads to the following observations: (i) Pb model ages: they match geological ages mostly where the continental mantle is cold and the Moho is deep. Elsewhere, Pb model ages are younger than geological ages. We interpret this feature as the chronological expression of a delayed cooling of deep crustal layers below the closure temperature (˜550-700°C) of Pb in K-feldspar, the major host of this element in the crust [3] or of age resetting by orogenic activity. (ii) While U/Pb (μ) does not vary systematically with other geochemical or seismic data, high Th/U (κ) values are usually observed where Vp/Vs is also high, as in the Snake River basin and central Colorado. High kappa values also form a 'ridge' trending south from northwestern Utah through the Basin and Range into the Mojave-Yavapai block. High-κ areas may reflect the

  13. Martian Cryogenic Carbonate Formation: Stable Isotope Variations Observed in Laboratory Studies

    NASA Technical Reports Server (NTRS)

    Socki, Richard A.; Niles, Paul B.; Sun, Tao; Fu, Qi; Romanek, Christopher S.; Gibson, Everett K. Jr.

    2014-01-01

    The history of water on Mars is tied to the formation of carbonates through atmospheric CO2 and its control of the climate history of the planet. Carbonate mineral formation under modern martian atmospheric conditions could be a critical factor in controlling the martian climate in a means similar to the rock weathering cycle on Earth. The combination of evidence for liquid water on the martian surface and cold surface conditions suggest fluid freezing could be very common on the surface of Mars. Cryogenic calcite forms easily from freezing solutions when carbon dioxide degasses quickly from Ca-bicarbonate-rich water, a process that has been observed in some terrestrial settings such as arctic permafrost cave deposits, lake beds of the Dry Valleys of Antarctica, and in aufeis (river icings) from rivers of N.E. Alaska. A series of laboratory experiments were conducted that simulated cryogenic carbonate formation on Mars in order to understand their isotopic systematics. The results indicate that carbonates grown under martian conditions show variable enrichments from starting bicarbonate fluids in both carbon and oxygen isotopes beyond equilibrium values.

  14. What controls silicon isotope fractionation during dissolution of diatom opal?

    NASA Astrophysics Data System (ADS)

    Wetzel, F.; de Souza, G. F.; Reynolds, B. C.

    2014-04-01

    The silicon isotope composition of opal frustules from photosynthesising diatoms is a promising tool for studying past changes in the marine silicon cycle, and indirectly that of carbon. Dissolution of this opal may be accompanied by silicon isotope fractionation that could disturb the pristine silicon isotope composition of diatom opal acquired in the surface ocean. It has previously been shown that dissolution of fresh and sediment trap diatom opal in seawater does fractionate silicon isotopes. However, as the mechanism of silicon isotope fractionation remained elusive, it is uncertain whether opal dissolution in general is associated with silicon isotope fractionation considering that opal chemistry and surface properties are spatially and temporally (i.e. opal of different age) diverse. In this study we dissolved sediment core diatom opal in 5 mM NaOH and found that this process is not associated with significant silicon isotope fractionation. Since no variability of the isotope effect was observed over a wide range of dissolution rates, we can rule out the suggestion that back-reactions had a significant influence on the net isotope effect. Similarly, we did not observe an impact of temperature, specific surface area, or degree of undersaturation on silicon isotope partitioning during dissolution, such that these can most likely also be ruled out as controlling factors. We discuss the potential impacts of the chemical composition of the dissolution medium and age of diatom opal on silicon isotope fractionation during dissolution. It appears most likely that the controlling mechanism of silicon isotope fractionation during dissolution is related to the reactivity, or potentially, aluminium content of the opal. Such a dependency would imply that silicon isotope fractionation during dissolution of diatom opal is spatially and temporally variable. However, since the isotope effects during dissolution are small, the silicon isotope composition of diatom opal

  15. Investigating the Direct Meltwater Effect in Terrestrial Oxygen-Isotope Paleoclimate Records Using an Isotope-Enabled Earth System Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jiang; Liu, Zhengyu; Brady, Esther C.

    Variations in terrestrial oxygen-isotope reconstructions from ice cores and speleothems have been primarily attributed to climatic changes of surface air temperature, precipitation amount, or atmospheric circulation. In this work, we demonstrate with the fully coupled isotope-enabled Community Earth System Model an additional process contributing to the oxygen-isotope variations during glacial meltwater events. This process, termed “the direct meltwater effect,” involves propagating large amounts of isotopically depleted meltwater throughout the hydrological cycle and is independent of climatic changes. We find that the direct meltwater effect can make up 15–35% of the δ 18O signals in precipitation over Greenland and eastern Brazilmore » for large freshwater forcings (0.25–0.50 sverdrup (10 6 m 3/s)). Model simulations further demonstrate that the direct meltwater effect increases with the magnitude and duration of the freshwater forcing and is sensitive to both the location and shape of the meltwater. These new modeling results have important implications for past climate interpretations of δ 18O.« less

  16. Investigating the Direct Meltwater Effect in Terrestrial Oxygen-Isotope Paleoclimate Records Using an Isotope-Enabled Earth System Model

    DOE PAGES

    Zhu, Jiang; Liu, Zhengyu; Brady, Esther C.; ...

    2017-12-28

    Variations in terrestrial oxygen-isotope reconstructions from ice cores and speleothems have been primarily attributed to climatic changes of surface air temperature, precipitation amount, or atmospheric circulation. In this work, we demonstrate with the fully coupled isotope-enabled Community Earth System Model an additional process contributing to the oxygen-isotope variations during glacial meltwater events. This process, termed “the direct meltwater effect,” involves propagating large amounts of isotopically depleted meltwater throughout the hydrological cycle and is independent of climatic changes. We find that the direct meltwater effect can make up 15–35% of the δ 18O signals in precipitation over Greenland and eastern Brazilmore » for large freshwater forcings (0.25–0.50 sverdrup (10 6 m 3/s)). Model simulations further demonstrate that the direct meltwater effect increases with the magnitude and duration of the freshwater forcing and is sensitive to both the location and shape of the meltwater. These new modeling results have important implications for past climate interpretations of δ 18O.« less

  17. Effects of Iron and Nitrogen Limitation on Sulfur Isotope Fractionation during Microbial Sulfate Reduction

    PubMed Central

    Ono, Shuhei; Bosak, Tanja

    2012-01-01

    Sulfate-reducing microbes utilize sulfate as an electron acceptor and produce sulfide that is depleted in heavy isotopes of sulfur relative to sulfate. Thus, the distribution of sulfur isotopes in sediments can trace microbial sulfate reduction (MSR), and it also has the potential to reflect the physiology of sulfate-reducing microbes. This study investigates the relationship between the availability of iron and reduced nitrogen and the magnitude of S-isotope fractionation during MSR by a marine sulfate-reducing bacterium, DMSS-1, a Desulfovibrio species, isolated from salt marsh in Cape Cod, MA. Submicromolar levels of iron increase sulfur isotope fractionation by about 50% relative to iron-replete cultures of DMSS-1. Iron-limited cultures also exhibit decreased cytochrome c-to-total protein ratios and cell-specific sulfate reduction rates (csSRR), implying changes in the electron transport chain that couples carbon and sulfur metabolisms. When DMSS-1 fixes nitrogen in ammonium-deficient medium, it also produces larger fractionation, but it occurs at faster csSRRs than in the ammonium-replete control cultures. The energy and reducing power required for nitrogen fixation may be responsible for the reverse trend between S-isotope fractionation and csSRR in this case. Iron deficiency and nitrogen fixation by sulfate-reducing microbes may lead to the large observed S-isotope effects in some euxinic basins and various anoxic sediments. PMID:23001667

  18. Isotopic excesses of proton-rich nuclei related to space weathering observed in a gas-rich meteorite Kapoeta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hidaka, Hiroshi; Yoneda, Shigekazu, E-mail: hidaka@hiroshima-u.ac.jp, E-mail: s-yoneda@kahaku.go.jp

    2014-05-10

    The idea that solar system materials were irradiated by solar cosmic rays from the early Sun has long been suggested, but is still questionable. In this study, Sr, Ba, Ce, Nd, Sm, and Gd isotopic compositions of sequential acid leachates from the Kapoeta meteorite (howardite) were determined to find systematic and correlated variations in their isotopic abundances of proton-rich nuclei, leading to an understanding of the irradiation condition by cosmic rays. Significantly large excesses of proton-rich isotopes (p-isotopes), {sup 84}Sr, {sup 130}Ba, {sup 132}Ba, {sup 136}Ce, {sup 138}Ce, and {sup 144}Sm, were observed, particularly in the first chemical separate, whichmore » possibly leached out of the very shallow layer within a few μm from the surface of regolith grains in the sample. The results reveal the production of p-isotopes through the interaction of solar cosmic rays with the superficial region of the regolith grains before the formation of the Kapoeta meteorite parent body, suggesting strong activity in the early Sun.« less

  19. Investigating the direct meltwater effect in oxygen-isotope records using an isotope-enabled Earth system model

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Liu, Z.; Brady, E. C.; Otto-Bliesner, B. L.; Marcott, S. A.; Zhang, J.; Wang, X.; Noone, D.; Nusbaumer, J. M.; Wong, T. E.; Jahn, A.

    2017-12-01

    Oxygen isotopes (δ18O) in both terrestrial and marine paleoclimate archives have long been used to study the climate evolution of the late Quaternary. Based on the high-latitude "temperature effect" and the tropical "amount effect", the δ18O variations in ice cores and speleothems have been primarily interpreted as changes in surface air temperature and regional precipitation amount, respectively, although recent studies suggest that other climate processes may also play a role. However, one long-overlooked assumption for these climatic interpretations is that the δ18O variations in the terrestrial records can be exclusively explained by changes in climate variables. This assumption could be violated during past glacial meltwater events, as the meltwater discharged into the ocean by icebergs or surface runoff is considerably depleted in δ18O compared to the surface ocean. This depleted meltwater can significantly decrease the isotope composition of the seawater it deposits and propagate within the hydrological cycle to directly influence the δ18O values in adjacent precipitation (the direct effect), without involving any changes in the climate state (the indirect effect). Here, by conducting water isotope-enabled climate simulations, we aim to quantify the direct meltwater effect on the terrestrial δ18O records. We find that, for large meltwater events in the northern North Atlantic Ocean (e.g., around 0.25 Sv lasting 300 years), the direct meltwater effect contributes more than 15% and 35% of the total δ18O changes in the precipitation over Greenland and the eastern Brazil, respectively. Model simulations further demonstrate that the direct meltwater effect increases with the magnitude and duration of meltwater, and it is sensitive to both the location and the shape of the freshwater forcing. We argue that the direct meltwater effect on δ18O records could also be significant in other regions and for other terrestrial oxygen-isotope records, as long as the

  20. Isotope and mixture effects on neoclassical transport in the pedestal

    NASA Astrophysics Data System (ADS)

    Pusztai, Istvan; Buller, Stefan; Omotani, John T.; Newton, Sarah L.

    2017-10-01

    The isotope mass scaling of the energy confinement time in tokamak plasmas differs from gyro-Bohm estimates, with implications for the extrapolation from current experiments to D-T reactors. Differences in mass scaling in L-mode and various H-mode regimes suggest that the isotope effect may originate from the pedestal. In the pedestal, sharp gradients render local diffusive estimates invalid, and global effects due to orbit-width scale profile variations have to be taken into account. We calculate neoclassical cross-field fluxes from a radially global drift-kinetic equation using the PERFECT code, to study isotope composition effects in density pedestals. The relative reduction to the peak heat flux due to global effects as a function of the density scale length is found to saturate at an isotope-dependent value that is larger for heavier ions. We also consider D-T and H-D mixtures with a focus on isotope separation. The ability to reproduce the mixture results via single-species simulations with artificial ``DT'' and ``HD'' species has been considered. These computationally convenient single ion simulations give a good estimate of the total ion heat flux in corresponding mixtures. Funding received from the International Career Grant of Vetenskapsradet (VR) (330-2014-6313) with Marie Sklodowska Curie Actions, Cofund, Project INCA 600398, and Framework Grant for Strategic Energy Research of VR (2014-5392).

  1. Clumped isotope composition of cold-water corals: A role for vital effects?

    NASA Astrophysics Data System (ADS)

    Spooner, Peter T.; Guo, Weifu; Robinson, Laura F.; Thiagarajan, Nivedita; Hendry, Katharine R.; Rosenheim, Brad E.; Leng, Melanie J.

    2016-04-01

    The carbonate clumped isotope thermometer is a promising tool for determining past ocean temperatures. It is based on the temperature dependence of rare isotopes 'clumping' into the same carbonate ion group in the carbonate mineral lattice. The extent of this clumping effect is independent of the isotope composition of the water from which carbonate precipitates, providing unique advantages over many other paleotemperature proxies. Existing calibrations of this thermometer in cold-water and warm-water corals suggest clumped isotope 'vital effects' are negligible in cold-water corals but may be significant in warm-water corals. Here, we test the calibration of the carbonate clumped isotope thermometer in cold-water corals with a recently collected and well characterised sample set spanning a range of coral genera (Balanophyllia, Caryophyllia, Dasmosmilia, Desmophyllum, Enallopsammia and Javania). The clumped isotope compositions (Δ47) of these corals exhibit systematic dependences on their growth temperatures, confirming the basis of the carbonate clumped isotope thermometer. However, some cold-water coral genera show Δ47 values that are higher than the expected equilibrium values by up to 0.05‰ (equivalent to underestimating temperature by ∼9 °C) similar to previous findings for some warm-water corals. This finding suggests that the vital effects affecting corals Δ47 are common to both warm- and cold-water corals. By comparison with models of the coral calcification process we suggest that the clumped isotope offsets in these genera are related to the kinetic isotope effects associated with CO2 hydration/hydroxylation reactions in the corals' calcifying fluid. Our findings complicate the use of the carbonate clumped isotope thermometer in corals, but suggest that species- or genus-specific calibrations could be useful for the future application of this paleotemperature proxy.

  2. Accidental Predissociation: A Special Case of Photo-Induced Isotope Fractionation Effect and Possible Occurrence in Nature

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Thiemens, M. H.

    2009-12-01

    Photo-Induced Isotope Fractionation Effects (PHIFE) are known to produce isotopic frac-tionation in some photo-dissociating molecules (1-2). The PHIFE formalism is based on the Born-Oppenheimer approximation and the Reflection Principle. The isotopic fractionation arises principally from the spectral shift induced by the small difference in zero point energy between isotopologues and the contraction of the wave function due to isotopic substitution, consequently, the associated isotopic fractionations depends on the reduced mass of the isotopically substi-tuted species. The PHIFE formalism is only applicable to the molecules which undergo direct photo-dissociation that possess continuous absorption spectra. Simple molecules (N2, O2, CO) however do not follow a direct dissociation pathway and dissociate through an indirect process termed predissociation, which occurs when the molecule is excited to a quasi-bound state energetically above the dissociation continuum. The PHIFE formalism is not applicable when the absorption spectra are discrete. The assumption that the lightest isotopologues are preferentially predissociated is only valid for restricted predissociation cases. There is a special case of predissociation known as ‘accidental predissociation’ (3), which takes place through an intermediate bound state in two steps (i) leakage to an intermediate bound state (coupled through spin orbit interaction) and, (ii) predissociation to a third quasi-bound state from the intermediate state. Line broadening at an accidental predissociation is a function of the magnitude of coupling matrix elements and the linewidths are strongly influenced by isotopic substitution (4). An anomalous isotopic effect in accidental predissociation was spectroscopically observed in CO (5), N2 (4) and BeH (6). We measured the isotopic fractionation for the first time in two accidental predissociating states of CO through VUV photodissociation using the 9.0.2 beamline at ALS (7-8). In

  3. Observations of nitrogen isotope fractionation in deeply embedded protostars

    NASA Astrophysics Data System (ADS)

    Wampfler, S. F.; Jørgensen, J. K.; Bizzarro, M.; Bisschop, S. E.

    2014-12-01

    Context. The terrestrial planets, comets, and meteorites are significantly enriched in 15N compared to the Sun and Jupiter. While the solar and jovian nitrogen isotope ratio is believed to represent the composition of the protosolar nebula, a still unidentified process has caused 15N-enrichment in the solids. Several mechanisms have been proposed to explain the variations, including chemical fractionation. However, observational results that constrain the fractionation models are scarce. While there is evidence of 15N-enrichment in prestellar cores, it is unclear how the signature evolves into the protostellar phases. Aims: The aim of this study is to measure the 14N/15N ratio around three nearby, embedded low- to intermediate-mass protostars. Methods: Isotopologues of HCN and HNC were used to probe the 14N/15N ratio. A selection of J = 3-2 and 4-3 transitions of H13CN, HC15N, HN13C, and H15NC was observed with the Atacama Pathfinder EXperiment telescope (APEX). The 14N/15N ratios were derived from the integrated intensities assuming a standard 12C/13C ratio. The assumption of optically thin emission was verified using radiative transfer modeling and hyperfine structure fitting. Results: Two sources, IRAS 16293A and R CrA IRS7B, show 15N-enrichment by a factor of ~1.5-2.5 in both HCN and HNC with respect to the solar composition. IRAS 16293A falls in the range of typical prestellar core values. Solar composition cannot be excluded for the third source, OMC-3 MMS6. Furthermore, there are indications of a trend toward increasing 14N/15N ratios with increasing outer envelope temperature. Conclusions: The enhanced 15N abundances in HCN and HNC found in two Class 0 sources (14N /15N ~ 160-290) and the tentative trend toward a temperature-dependent 14N/15N ratio are consistent with the chemical fractionation scenario, but 14N/15N ratios from additional tracers are indispensable for testing the models. Spatially resolved observations are needed to distinguish between

  4. Isotopic effects on phonon anharmonicity in layered van der Waals crystals: Isotopically pure hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Cuscó, Ramon; Artús, Luis; Edgar, James H.; Liu, Song; Cassabois, Guillaume; Gil, Bernard

    2018-04-01

    Hexagonal boron nitride (h -BN) is a layered crystal that is attracting a great deal of attention as a promising material for nanophotonic applications. The strong optical anisotropy of this crystal is key to exploit polaritonic modes for manipulating light-matter interactions in 2D materials. h -BN has also great potential for solid-state neutron detection and neutron imaging devices, given the exceptionally high thermal neutron capture cross section of the boron-10 isotope. A good knowledge of phonons in layered crystals is essential for harnessing long-lived phonon-polariton modes for nanophotonic applications and may prove valuable for developing solid-state 10BN neutron detectors with improved device architectures and higher detection efficiencies. Although phonons in graphene and isoelectronic materials with a similar hexagonal layer structure have been studied, the effect of isotopic substitution on the phonons of such lamellar compounds has not been addressed yet. Here we present a Raman scattering study of the in-plane high-energy Raman active mode on isotopically enriched single-crystal h -BN. Phonon frequency and lifetime are measured in the 80-600-K temperature range for 10B-enriched, 11B-enriched, and natural composition high quality crystals. Their temperature dependence is explained in the light of perturbation theory calculations of the phonon self-energy. The effects of crystal anisotropy, isotopic disorder, and anharmonic phonon-decay channels are investigated in detail. The isotopic-induced changes in the phonon density of states are shown to enhance three-phonon anharmonic decay channels in 10B-enriched crystals, opening the possibility of isotope tuning of the anharmonic phonon decay processes.

  5. Melting point of high-purity germanium stable isotopes

    NASA Astrophysics Data System (ADS)

    Gavva, V. A.; Bulanov, A. D.; Kut'in, A. M.; Plekhovich, A. D.; Churbanov, M. F.

    2018-05-01

    The melting point (Tm) of germanium stable isotopes 72Ge, 73Ge, 74Ge, 76Ge was determined by differential scanning calorimetry. With the increase in atomic mass of isotope the decrease in Tm is observed. The decrease was equal to 0.15 °C per the unit of atomic mass which qualitatively agrees with the value calculated by Lindemann formula accounting for the effect of "isotopic compression" of elementary cell.

  6. Ab initio calculations of the Fe(II) and Fe(III) isotopic effects in citrates, nicotianamine, and phytosiderophore, and new Fe isotopic measurements in higher plants

    NASA Astrophysics Data System (ADS)

    Moynier, Frédéric; Fujii, Toshiyuki; Wang, Kun; Foriel, Julien

    2013-05-01

    Iron is one of the most abundant transition metal in higher plants and variations in its isotopic compositions can be used to trace its utilization. In order to better understand the effect of plant-induced isotopic fractionation on the global Fe cycling, we have estimated by quantum chemical calculations the magnitude of the isotopic fractionation between different Fe species relevant to the transport and storage of Fe in higher plants: Fe(II)-citrate, Fe(III)-citrate, Fe(II)-nicotianamine, and Fe(III)-phytosiderophore. The ab initio calculations show firstly, that Fe(II)-nicotianamine is ˜3‰ (56Fe/54Fe) isotopically lighter than Fe(III)-phytosiderophore; secondly, even in the absence of redox changes of Fe, change in the speciation alone can create up to ˜1.5‰ isotopic fractionation. For example, Fe(III)-phytosiderophore is up to 1.5‰ heavier than Fe(III)-citrate2 and Fe(II)-nicotianamine is up to 1‰ heavier than Fe(II)-citrate. In addition, in order to better understand the Fe isotopic fractionation between different plant components, we have analyzed the iron isotopic composition of different organs (roots, seeds, germinated seeds, leaves and stems) from six species of higher plants: the dicot lentil (Lens culinaris), and the graminaceous monocots Virginia wild rye (Elymus virginicus), Johnsongrass (Sorghum halepense), Kentucky bluegrass (Poa pratensis), river oat (Uniola latifolia), and Indian goosegrass (Eleusine indica). The calculations may explain that the roots of strategy-II plants (Fe(III)-phytosiderophore) are isotopically heavier (by about 1‰ for the δ56Fe) than the upper parts of the plants (Fe transported as Fe(III)-citrate in the xylem or Fe(II)-nicotianamine in the phloem). In addition, we suggest that the isotopic variations observed between younger and older leaves could be explained by mixing of Fe received from the xylem and the phloem.

  7. Deuterium and oxygen-18 isotope effects on nucleophilic displacement by water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.

    1981-01-01

    Kinetic deuterium isotope effects (k/sub H/sub 2/O//k/sub D/sub 2/O/) have been measured for nucleophilic attack by water at primary alkyl carbon (S-methylthiophenium ion (MeTh+), methyl trifluoromethane-sulfonate (MeOTf), methyl and ethyl perchlorate (MeOClO/sub 3/, EtOClO/sub 3/)) in aprotic solvents (acetonitrile (MeCN) and tetrahydrothiophene-1, 1-dioxide (TMSO/sub 2/; solfolane)) and L/sub 2/O. In L/sub 2/O solvent k/sub H/sub 2/O//k/sub D/sub 2/O/ is significantly greater than unity while it is reduced to near unity in aprotic solvents. The oxygen-18 isotope effect has also been observed to be 1.002 +- 0.004 for the reaction of MeTh/sup +/ with dilute H/sub 2/O in TMSO/sub 2/ atmore » 35/sup 0/C. For the reaction of MeTh/sup +/ and MeOClO/sub 3/ in aprotic solvents the chemical reaction kinetics are discussed.« less

  8. Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula

    NASA Technical Reports Server (NTRS)

    Podosek, Frank A.; Cassen, Patrick

    1994-01-01

    There are a variety of isotopic data for meteorites which suggest that the protostellar nebula existed and was involved in making planetary materials for some 10(exp 7) yr or more. Many cosmochemists, however, advocate alternative interpretations of such data in order to comply with a perceived constraint, from theoretical considerations, that the nebula existed only for a much shorter time, usually stated as less than or equal to 10(exp 6) yr. In this paper, we review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modeling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars. Theoretical models based on observations of present star-forming regions indicate that stars like the Sun form by dynamical gravitational collapse of dense cores of cold molcular clouds in the interstellar clouds in the interstellar medium. The collapse to a star and disk occurs rapidly, on a time scale of the order 10(exp 5) yr. Disks evolve by dissipating energy while redistributing angular momentum, but it is difficult to predict the rate of evolution, particularly for low mass (compared to the star) disks which nonetheless still contain enough material to account for the observed planetary system. There is no compelling evidence, from available theories of disk structure and evolution, that the solar nebula must have evolved rapidly and could not have persisted for more than 1 Ma. In considering chronoloically relevant isotopic data for meteorites, we focus on three methodologies: absolute ages by U-Pb/Pb-Pb, and relative ages by short-lived radionuclides (especially Al-26) and by evolution of Sr-87/Sr-86. Two kinds of meteoritic materials-refractory inclusions such as CAIs and differential meteorites (eucrites and augrites) -- appear to have experienced potentially dateable nebular events. In both cases, the most straightforward interpretations of the available data indicate

  9. Theoretical, observational, and isotopic estimates of the lifetime of the solar nebula

    NASA Technical Reports Server (NTRS)

    Podosek, Frank A.; Cassen, Patrick

    1994-01-01

    There are a variety of isotopic data for meteorites which suggest that the protostellar nebula existed and was involved in making planetary materials for some 10(exp 7) yr or more. Many cosmochemists, however, advocate alternative interpretations of such data in order to comply with a perceived constraint, from theoretical considerations, that the nebula existed only for a much shorter time, usually stated as less than or = 10(exp 6) yr. In this paper, we review evidence relevant to solar nebula duration which is available through three different disciplines: theoretical modelling of star formation, isotopic data from meteorites, and astronomical observations of T Tauri stars. Theoretical models based on observations of present star-forming regions indicate that stars like the Sun form by dynamical gravitational collapse of dense cores of cold molecular clouds in the interstellar medium. The collapse to a star and disk occurs rapidly on a time scale of the order 10(exp 5) yr. Disks evolve by dissipating energy while redistributing angular momentum, but it is difficult to predict the rate of evolution, particularly for low mass (compared to the star) disks which nonetheless still contain enough material to account for the observed planetary system. There is no compelling evidence, from available theories of disk structure and evolution, that the solar nebula must have evolved rapidly and could not have persisted for more than 1 Ma. In considering chronologically relevant isotopic data for meteorites, we focus on three methodologies: absolute ages by U-Pb/Pb-Pb, and relative ages by short-lived radionuclides (especially Al-26) and by evolution of Sr-87/Sr-86. Two kinds of meteoritic materials-refractory inclusions such as CAIs and differentiated meteorites (eucrites and angrites) - appear to have experience potentially dateable nebular events. In both case, the most straightforward interpretations of the available data indicate nebular events spanning several Ma. We

  10. Effect Of Substrates On The Fractionation Of Hydrogen Isotopes During Lipid-Biosynthesis By Haloarcula marismortui

    NASA Astrophysics Data System (ADS)

    Dirghangi, S. S.; Pagani, M.

    2010-12-01

    Lipids form an important class of proxies for paleoclimatological research, and hydrogen isotope ratios of lipids are being increasingly used for understanding changes in the hydrological system. Proper understanding of hydrogen isotope fractionation during lipid biosynthesis is therefore important and attention has been directed toward understanding the magnitude of hydrogen isotope fractionation that occurs during lipid biosynthesis in various organisms. Hydrogen isotope ratios of lipids depend on the hydrogen isotopic composition of the ambient water, hydrogen isotopic composition of NADPH used during biosynthesis, growth conditions, pathways of lipid biosynthesis, and substrates in the case of heterotrophic organisms. Recently it has been observed that NADPH contributes a significant part of the hydrogen in fatty acids synthesized by bacteria during heterotrophic growth (Zhang et al, 2009). As NADPH is formed by reduction of NADP+ during metabolism of substrates, different metabolic pathways form NADPH with different D/H ratios, which in turn results in variation in D/H ratios of lipids (Zhang et al, 2009). Therefore, substrates play a significant role in hydrogen isotopic compositions of lipids. For this study, we are investigating the effects of substrates on hydrogen isotope fractionation during biosynthesis of isoprenoidal lipids by heterotrophically growing halophilic archaea. Haloarcula marismortui is a halophilic archaea which synthesizes Archaeol (a diether lipid) and other isoprenoidal lipids. We have grown Haloarcula marismortui in pure cultures on three different substrates and are in the process of evaluating isotopic variability of Archaeol and other lipids associated with substrate and the D/H composition of ambient water. Our results will be helpful for a better understanding of hydrogen isotope fractionations during lipid synthesis by archaea. Also, halophilic archaea are the only source of archaeol in hypersaline environments. Therefore, our

  11. Heavy atom labeled nucleotides for measurement of kinetic isotope effects.

    PubMed

    Weissman, Benjamin P; Li, Nan-Sheng; York, Darrin; Harris, Michael; Piccirilli, Joseph A

    2015-11-01

    Experimental analysis of kinetic isotope effects represents an extremely powerful approach for gaining information about the transition state structure of complex reactions not available through other methodologies. The implementation of this approach to the study of nucleic acid chemistry requires the synthesis of nucleobases and nucleotides enriched for heavy isotopes at specific positions. In this review, we highlight current approaches to the synthesis of nucleic acids enriched site specifically for heavy oxygen and nitrogen and their application in heavy atom isotope effect studies. This article is part of a special issue titled: Enzyme Transition States from Theory and Experiment. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A Distinct Magnetic Isotope Effect Measured in Atmospheric Mercury in Epiphytes

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Odom, A. L.

    2007-12-01

    Due to the importance of Mercury as an environmental contaminant, mercury cycling in the atmosphere has been extensively studied. However, there still remain uncertainties in the relative amounts of natural and anthropogenic emissions, atmospheric deposition rates as well as the spatial variation of atmospheric mercury. Part of a study to determine the isotopic composition of mercury deposited from the atmosphere has involved the use of epiphytes as monitors. The greatest advantage of such natural monitors is that a widespread, high-density network is possible at low cost. One of the disadvantages at present is that these monitors likely contain different mercury species (for example both gaseous, elemental mercury trapped by adsorption and Hg (II) by wet deposition). The project began with the understanding that biochemical reactions involving metallothioneins within the epiphytes might have produced an isotopic effect. One such regional network was composed of samples of Tillandsia usenoides (common name: Spanish moss) collected along the eastern Coastal Plain of the U.S. from northern Florida to North Carolina. The isotopic composition of a sample is expressed as permil deviations from a standard. The deviations are defined as δAHg = \\left(\\frac{Rsample}{Rstd}-1 \\right)1000 ‰ , where A represents the atomic mass number. R=\\frac{AHg}{202Hg} were measured for the isotopes 198Hg, 199Hg, 200Hg, 201Hg, 202Hg and 204Hg relative to the mercury standard SRM NIST 3133, by a standard-sample bracketing technique. For all samples, the delta values of the even-N plotted against atomic mass numbers define a linear curve. For the odd-N isotopes, δ199Hg and δ201Hg deviate from this mass-dependent fractionation (MDF) relationship and indicate a mass-independent fractionation (MIF) effect and a negative anomaly, i.e. a depletion in 199Hg and 201Hg relative to the even-N isotopes. These deviations are expressed as Δ199Hg = δ199Hgtotal - δ199HgMDF. A Δ201Hg/Δ199Hg

  13. E2 transition probabilities for decays of isomers observed in neutron-rich odd Sn isotopes

    DOE PAGES

    Iskra, Ł. W.; Broda, R.; Janssens, R. V.F.; ...

    2015-01-01

    High-spin states were investigated with gamma coincidence techniques in neutron-rich Sn isotopes produced in fission processes following ⁴⁸Ca + ²⁰⁸Pb, ⁴⁸Ca + ²³⁸U, and ⁶⁴Ni + ²³⁸U reactions. By exploiting delayed and cross-coincidence techniques, level schemes have been delineated in odd ¹¹⁹⁻¹²⁵Sn isotopes. Particular attention was paid to the occurrence of 19/2⁺ and 23/2⁺ isomeric states for which the available information has now been significantly extended. Reduced transition probabilities, B(E2), extracted from the measured half-lives and the established details of the isomeric decays exhibit a striking regularity. This behavior was compared with the previously observed regularity of the B(E2) amplitudesmore » for the seniority ν = 2 and 3, 10⁺ and 27/2⁻ isomers in even- and odd-Sn isotopes, respectively.« less

  14. Electrochemically controlled iron isotope fractionation

    NASA Astrophysics Data System (ADS)

    Black, Jay R.; Young, Edward D.; Kavner, Abby

    2010-02-01

    Variations in the stable isotope abundances of transition metals have been observed in the geologic record and trying to understand and reconstruct the physical/environmental conditions that produced these signatures is an area of active research. It is clear that changes in oxidation state lead to large fractionations of the stable isotopes of many transition metals such as iron, suggesting that transition metal stable isotope signatures could be used as a paleo-redox proxy. However, the factors contributing to these observed stable isotope variations are poorly understood. Here we investigate how the kinetics of iron redox electrochemistry generates isotope fractionation. Through a combination of electrodeposition experiments and modeling of electrochemical processes including mass-transport, we show that electron transfer reactions are the cause of a large isotope separation, while mass transport-limited supply of reactant to the electrode attenuates the observed isotopic fractionation. Furthermore, the stable isotope composition of electroplated transition metals can be tuned in the laboratory by controlling parameters such as solution chemistry, reaction overpotential, and solution convection. These methods are potentially useful for generating isotopically-marked metal surfaces for tracking and forensic purposes. In addition, our studies will help interpret stable isotope data in terms of identifying underlying electron transfer processes in laboratory and natural samples.

  15. Spatial analysis of annual mean stable isotopes in precipitation across Japan based on an intensive observation period throughout 2013.

    PubMed

    Ichiyanagi, Kimpei; Tanoue, Masahiro

    2016-01-01

    Spatial distribution of annual mean stable isotopes in precipitation (δ(18)O, δ(2)H) was observed at 56 sites across Japan throughout 2013. Annual mean δ(18)O values showed a strong latitude effect, from -12.4 ‰ in the north to -5.1 ‰ in the south. Annual mean d-excess values ranged from 8 to 21 ‰, and values on the Sea of Japan side in Northern and Eastern Japan were relatively higher than those on the Pacific Ocean side. The local meteoric water line (LMWL) and isotope effects were based on the annual mean values from all sites across Japan as divided into distinct regions: the Sea of Japan side to the Pacific Ocean side and Northeastern to Southwestern Japan. Slopes and intercepts of LMWL ranged from 7.4 to 7.8 and 9.8 to 13.0, respectively. Slopes for latitude, altitude, and temperature effects ranged from -0.27 to -0.48 ‰/°N, -0.0034 to -0.0053 ‰/m, and 0.36 to 0.46 ‰/°C, respectively, with statistically significance at the 99 % level. However, there was no precipitation amount effect. From the result of a multiple regression analysis, the empirical formula of annual mean δ(18)O in precipitation from latitude and altitude for all sites across Japan was determined to be δ(18) O = -0.348 (LAT) - 0.00307 (ALT) + 4.29 (R(2) = 0.59). Slopes for latitude and altitude ranged from - 0.28 to - 0.51, and - 0.0019 to - 0.0045, respectively. Even though site distribution was uneven, these equations are the first trial estimation for annual mean stable isotopes in precipitation across Japan. Further research performed on the monthly basis is required to elucidate factors controlling the spatiotemporal variability of stable isotopes in precipitation across Japan.

  16. Observations of geomagnetically trapped light isotopes by NINA

    NASA Astrophysics Data System (ADS)

    Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Mikhailov, V.; Murashov, A.; Voronov, S.; Bidoli, V.; Casolino, M.; De Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Boezio, M.; Bonvicini, V.; Cirami, R.; Vacci, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; sCafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C.; Adriani, O.; Papini, P.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Bartalucci, S.; Ricci, M.; Castellini, G.; Wizard-NINA Collaboration

    2001-08-01

    The detector NINA aboard the satellite Resurs-01N4 detected hydrogen and helium isotopes geomagnetically trapped, while crossing the South Atlantic Anomaly. Deuterium and tritium at L-shell<1.2 were unambiguously recognized. The 3 He and 4 He power-law spectra, reconstructed at L-shell=1.2 and B<0.22 G, have indices equal to 2.30±0.08 in the energy range 12-50 MeV/n, and 3.4±0.2 in 10-40 MeV/n respectively. The measured 3 He/4 He ratio bring to the conclusion that the main source of radiation belt light isotopes is the interaction of trapped protons with residual atmospheric helium.

  17. Studies on the optogalvanic effect and isotope-selective excitation of ytterbium in a hollow cathode discharge lamp using a pulsed dye laser.

    PubMed

    Kumar, Pankaj; Kumar, Jitendra; Prakash, Om; Saini, Vinod K; Dixit, Sudhir K; Nakhe, Shankar V

    2013-09-01

    This paper presents studies on the pulsed optogalvanic effect and isotope-selective excitation of Yb 555.648 nm (0 cm(-1) → 17 992.007 cm(-1)) and 581.067 nm (17 992.007 cm(-1) → 35 196.98 cm(-1)) transitions, in a Yb/Ne hollow cathode lamp. The Yb atoms were excited by narrow linewidth (500-1000 MHz) Rh110 and Rh6G dye based pulsed lasers. Optogalvanic signal inversion for ground state transition at 555.648 nm was observed beyond a hollow cathode discharge current of 8.5 mA, in contrast to normal optogalvanic signal at 581.067 nm up to maximum current of 14 mA. The isotope-selective excitation studies of Yb were carried out by recording Doppler limited optogalvanic signals as a function of dye laser wavelength. For the 581.067 nm transition, three even isotopes, (172)Yb, (174)Yb, and (176)Yb, and one odd isotope, (171)Yb, were clearly resolved. These data were compared with selective isotope excitation by 10 MHz linewidth continuous-wave dye laser. For 555.648 nm transition, isotopes were not clearly resolved, although isotope peaks of low modulation were observed.

  18. Kinetically Relevant Steps and H2/D2 Isotope Effects in Fischer-Tropsch Synthesis on Fe and Co Catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojeda, Manuel; Li, Anwu; Nabar, Rahul P.

    2010-11-25

    H2/D2 isotope effects on Fischer-Tropsch synthesis (FTS) rate and selectivity are examined here by combining measured values on Fe and Co at conditions leading to high C5+ yields with theoretical estimates on model Fe(110) and Co(0001) surfaces with high coverages of chemisorbed CO (CO*). Inverse isotope effects (rH/rD < 1) are observed on Co and Fe catalysts as a result of compensating thermodynamic (H2 dissociation to H*; H* addition to CO* species to form HCO*) and kinetic (H* reaction with HCO*) isotope effects. These isotopic effects and their rigorous mechanistic interpretation confirm the prevalence of H-assisted CO dissociation routes onmore » both Fe and Co catalysts, instead of unassisted pathways that would lead to similar rates with H2 and D2 reactants. The small contributions from unassisted pathways to CO conversion rates on Fe are indeed independent of the dihydrogen isotope, as is also the case for the rates of primary reactions that form CO2 as the sole oxygen rejection route in unassisted CO dissociation paths. Isotopic effects on the selectivity to C5+ and CH4 products are small, and D2 leads to a more paraffinic product than does H2, apparently because it leads to preference for chain termination via hydrogen addition over abstraction. These results are consistent with FTS pathways limited by H-assisted CO dissociation on both Fe and Co and illustrate the importance of thermodynamic contributions to inverse isotope effects for reactions involving quasi-equilibrated H2 dissociation and the subsequent addition of H* in hydrogenation catalysis, as illustrated here by theory and experiment for the specific case of CO hydrogenation.« less

  19. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  20. A novel methodology to investigate isotopic biosignatures

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B. Y.; Henderson, G. M.; Rickaby, R. E. M.

    2012-04-01

    An enduring goal of trace metal isotopic studies of Earth History is to find isotopic 'fingerprints' of life or of life's individual physiochemical processes. Generally, such signatures are sought by relating an isotopic effect observed in controlled laboratory conditions or a well-characterized environment to a more complex system or the geological record. However, such an approach is ultimately limited because life exerts numerous isotopic fractionations on any one element so it is hard to dissect the resultant net fractionation into its individual components. Further, different organisms, often with the same apparent cellular function, can express different isotopic fractionation factors. We have used a novel method to investigate the isotopic fractionation associated with a single physiological process-enzyme specific isotopic fractionation. We selected Cd isotopes since only one biological use of Cd is known, CdCA (a Cd/Zn carbonic anhydrase from the coastal diatom T. Weissflogii). Thus, our investigation can also inform the long standing mystery as to why this generally toxic element appears to have a nutrient-like dissolved isotopic and concentration profile in the oceans. We used the pET-15b plasmid to insert the CdCA gene into the E. coli genome. There is no known biochemical function for Cd in E. coli, making it an ideal vector for studying distinct physiological processes within a single organism. The uptake of Cd and associated isotopic fractionation was determined for both normal cells and those expressing CdCA. It was found that whole cells always exhibited a preference for the light isotopes of Cd, regardless of the expression of CdCA; adsorption of Cd to cell surfaces was not seen to cause isotopic fractionation. However, the cleaning procedure employed exerted a strong control on the observed isotopic composition of cells. Using existing protein purification techniques, we measured the Cd isotopic composition of different subcellular fractions of E

  1. Effects of acidification on the isotopic ratios of Neotropical otter tooth dentin.

    PubMed

    Carrasco, Thayara S; Botta, Silvina; Machado, Rodrigo; Colares, Elton P; Secchi, Eduardo R

    2018-05-30

    Stable carbon and nitrogen isotope ratios are widely used in ecological studies providing important information on the trophic ecology and habitat use of consumers. However, some factors may lead to isotopic variability, which makes difficult the interpretation of data, such as the presence of inorganic carbon in mineralized tissues. In order to remove the inorganic carbon, acidification is a commonly used treatment. The effects of two methods of acidification were tested: (i) dentin acidification with 10% HCl using the 'drop-by-drop' technique, and (ii) dentin acidification in an 'HCl atmosphere', by exposing the dentin to vaporous 30% hydrochloric acid. Results were compared with untreated subsamples. The stable carbon and nitrogen ratios of untreated and acidified subsamples were measured using an elemental analyzer coupled to an isotope ratio mass spectrometer. The nitrogen isotopic ratios were statistically different between the two acidification treatments, but no significant changes in carbon isotopic ratios were found in acidified and untreated samples. The results indicated that acidification had no effect on carbon isotopic ratios of Neotropical otter tooth dentin, while introducing a source of error in nitrogen isotopic ratios. Therefore, we conclude that acidification is an unnecessary step for C and N stable isotope analysis. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Concentration effect on inter-mineral equilibrium isotope fractionation: insights from Mg and Ca isotopic systems

    NASA Astrophysics Data System (ADS)

    Huang, F.; Wang, W.; Zhou, C.; Kang, J.; Wu, Z.

    2017-12-01

    Many naturally occurring minerals, such as carbonate, garnet, pyroxene, and feldspar, are solid solutions with large variations in chemical compositions. Such variations may affect mineral structures and modify the chemical bonding environment around atoms, which further impacts the equilibrium isotope fractionation factors among minerals. Here we investigated the effects of Mg content on equilibrium Mg and Ca isotope fractionation among carbonates and Ca content on equilibrium Ca isotope fractionation between orthopyroxene (opx) and clinopyroxene (cpx) using first-principles calculations. Our results show that the average Mg-O bond length increases with decreasing Mg/(Mg+Ca) in calcite when it is greater than 1/48[1] and the average Ca-O bond length significantly decreases with decreasing Ca/(Ca+Mg+Fe) in opx when it ranges from 2/16 to 1/48[2]. Equilibrium isotope fractionation is mainly controlled by bond strengths, which could be measured by bond lengths. Thus, 103lnα26Mg/24Mg between dolomite and calcite dramatically increases with decreasing Mg/(Mg+Ca) in calcite [1] and it reaches a constant value when it is lower than 1/48. 103lnα44Ca/40Ca between opx and cpx significantly increases with decreasing Ca content in opx when Ca/(Ca+Mg+Fe) ranges from 2/16 to 1/48 [2]. If Ca/(Ca+Mg+Fe) is below 1/48, 103lnα44Ca/40Ca is not sensitive to Ca content. Based on our results, we conclude that the concentration effect on equilibrium isotope fractionation could be significant within a certain range of chemical composition of minerals, which should be a ubiquitous phenomenon in solid solution systems. [1] Wang, W., Qin, T., Zhou, C., Huang, S., Wu, Z., Huang, F., 2017. GCA 208, 185-197. [2] Feng, C., Qin, T., Huang, S., Wu, Z., Huang, F., 2014. GCA 143, 132-142.

  3. Steps toward identifying a biogeochemical signal in non-equilibrium methane clumped isotope measurements

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Eiler, J. M.; Sessions, A. L.; Dawson, K.; Walter Anthony, K. M.; Smith, D. A.; Lloyd, M. K.; Yanay, E.

    2016-12-01

    Microbially produced methane is a globally important greenhouse gas, energy source, and biological substrate. Methane clumped isotope measurements have recently been developed as a new analytical tool for understanding the source of methane in different environments. When methane forms in isotopic equilibrium clumped isotope values are determined by formation temperature, but in many cases microbial methane clumped isotope values deviate strongly from expected equilibrium values. Indeed, we observe a very wide range of clumped isotope values in microbial methane, which are likely strongly influenced by kinetic isotope effects, but thus far the biological and environmental parameters controlling this variability are not understood. We will present data from both culture experiments and natural environments to explore patterns of variability in non-equilibrium clumped isotope values on temporal and spatial scales. In methanogen batch cultures sampled at different time points along a growth curve we observe significant variability in clumped isotope values, with values decreasing from early to late exponential growth. Clumped isotope values then increase during stationary growth. This result is consistent with previous work suggesting that differences in the reversibility of methanogenesis related to metabolic rates control non-equilibrium clumped isotope values. Within single lakes in Alaska and Sweden we observe substantial variability in clumped isotope values on the order of 5‰. Lower clumped isotope values are associated with larger 2H isotopic fractionation between water and methane, which is also consistent with a kinetic isotope effect determined by the reversibility of methanogenesis. Finally, we analyzed a time-series clumped isotope compositions of methane emitted from two seeps in an Alaskan lake over several months. Temporal variability in these seeps is on the order of 2‰, which is much less than the observed spatial variability within the lake

  4. Molecular isotopic engineering (MIE): industrial manufacture of naproxen of predetermined stable carbon-isotopic compositions for authenticity and security protection and intellectual property considerations

    NASA Astrophysics Data System (ADS)

    Jasper, J. P.; Farina, P.; Pearson, A.; Mezes, P. S.; Sabatelli, A. D.

    2016-05-01

    Molecular Isotopic Engineering (MIE) is the directed stable-isotopic synthesis of chemical products for reasons of product identification and of product security, and also for intellectual property considerations. We report here a generally excellent correspondence between the observed and predicted stable carbon-isotopic (δ13C) results for a successful directed synthesis of racemic mixture from its immediate precursors. The observed results are readily explained by the laws of mass balance and isotope mass balance. Oxygen- and hydrogen isotopic results which require an additional assessment of the effects of O and H exchange, presumably due to interaction with water in the reaction solution, are addressed elsewhere. A previous, cooperative study with the US FDA-DPA showed that individual manufacturers of naproxen could readily be differentiated by their stable-isotopic provenance (δ13C, δ18O, and δD ref. 1). We suggest that MIE can be readily employed in the bio/pharmaceutical industry without alteration of present manufacturing processes other than isotopically selecting and/or monitoring reactants and products.

  5. Effect of Isotope Mass in Simulations of JET H-mode Discharges

    NASA Astrophysics Data System (ADS)

    Snyder, S. E.; Onjun, T.; Kritz, A. H.; Bateman, G.; Parail, V.

    2004-11-01

    In JET type-I ELMy H-mode discharges, it is found that the height of the pressure pedestal increases and the frequency of the ELMs decreases with increasing isotope mass. These experimentally observed trends are obtained in these simulations only if the pedestal width increases with isotope mass. Simulations are carried out using the JETTO integrated modeling code with a dynamic model for the H-mode pedestal and the ELMs.(T. Onjun et al, Phys. Plasmas 11 (2004) 1469 and 3006.) The HELENA and MISHKA stability codes are applied to calibrate the stability criteria used to trigger ELM crashes in the JETTO code and to explore possible access to second stability in the pedestal. In the simulations, transport in the pedestal is given by the ion thermal neoclassical diffusivity, which increases with isotope mass. Consequently, as the isotope mass is increased, the pressure gradient and the bootstrap current in the pedestal rebuild more slowly after each ELM crash. Several models are explored in which the pedestal width increases with isotope mass.

  6. Continuous measurements of stable isotopes of carbon dioxide and water vapour in an urban atmosphere: isotopic variations associated with meteorological conditions.

    PubMed

    Wada, Ryuichi; Matsumi, Yutaka; Nakayama, Tomoki; Hiyama, Tetsuya; Fujiyoshi, Yasushi; Kurita, Naoyuki; Muramoto, Kenichiro; Takanashi, Satoru; Kodama, Naomi; Takahashi, Yoshiyuki

    2017-12-01

    Isotope ratios of carbon dioxide and water vapour in the near-surface air were continuously measured for one month in an urban area of the city of Nagoya in central Japan in September 2010 using laser spectroscopic techniques. During the passages of a typhoon and a stationary front in the observation period, remarkable changes in the isotope ratios of CO 2 and water vapour were observed. The isotope ratios of both CO 2 and water vapour decreased during the typhoon passage. The decreases can be attributed to the air coming from an industrial area and the rainout effects of the typhoon, respectively. During the passage of the stationary front, δ 13 C-CO 2 and δ 18 O-CO 2 increased, while δ 2 H-H 2 Ov and δ 18 O-H 2 Ov decreased. These changes can be attributed to the air coming from rural areas and the air surrounding the observational site changing from a subtropical air mass to a subpolar air mass during the passage of the stationary front. A clear relationship was observed between the isotopic CO 2 and water vapour and the meteorological phenomena. Therefore, isotopic information of CO 2 and H 2 Ov could be used as a tracer of meteorological information.

  7. Effect of channel coupling on the elastic scattering of lithium isotopes

    NASA Astrophysics Data System (ADS)

    Furumoto, T.; Suhara, T.; Itagaki, N.

    2018-04-01

    Herein, we investigated the channel coupling (CC) effect on the elastic scatterings of lithium (Li) isotopes (A =6 -9) for 12C and 28Si targets at E /A =50 -60 MeV. The wave functions of the Li isotopes were obtained using the stochastic multi-configuration mixing method based on the microscopic-cluster model. The proton radii of the 7Li, 8Li, and 9Li nuclei became smaller as the number of valence neutrons increased. The valence neutrons in the 8Li and 9Li nuclei exhibited a glue-like behavior, thereby attracting the α and t clusters. Based on the transition densities derived from these microscopic wave functions, the elastic-scattering cross section was calculated using a microscopic coupled-channel method with a complex G -matrix interaction. The existing experimental data for the elastic scatterings of the Li isotopes and 10Be nuclei were well reproduced. The Li isotope elastic cross sections were demonstrated for the 12C and 28Si targets at E /A =53 MeV. The glue-like effect of the valence neutrons on the Li isotope was clearly demonstrated by the CC effect on elastic scattering. Finally, we realize that the valence neutrons stabilized the bindings of the core parts and the CC effect related to core excitation was indeed reduced.

  8. Introduction to Chemistry and Applications in Nature of Mass Independent Isotope Effects Special Feature

    PubMed Central

    Thiemens, Mark H.

    2013-01-01

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented. PMID:24167299

  9. Introduction to chemistry and applications in nature of mass independent isotope effects special feature.

    PubMed

    Thiemens, Mark H

    2013-10-29

    Stable isotope ratio variations are regulated by physical and chemical laws. These rules depend on a relation with mass differences between isotopes. New classes of isotope variation effects that deviate from mass dependent laws, termed mass independent isotope effects, were discovered in 1983 and have a wide range of applications in basic chemistry and nature. In this special edition, new applications of these effects to physical chemistry, solar system origin models, terrestrial atmospheric and biogenic evolution, polar paleo climatology, snowball earth geology, and present day atmospheric sciences are presented.

  10. FE and MG Isotopic Analyses of Isotopically Unusual Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Messenger, S.; Ito, M.; Rahman, Z.

    2011-01-01

    Interstellar and circumstellar silicate grains are thought to be Mg-rich and Fe-poor, based on astronomical observations and equilibrium condensation models of silicate dust formation in stellar outflows. On the other hand, presolar silicates isolated from meteorites have surprisingly high Fe contents and few Mg-rich grains are observed. The high Fe contents in meteoritic presolar silicates may indicate they formed by a non-equilibrium condensation process. Alternatively, the Fe in the stardust grains could have been acquired during parent body alteration. The origin of Fe in presolar silicates may be deduced from its isotopic composition. Thus far, Fe isotopic measurements of presolar silicates are limited to the Fe-54/Fe-56 ratios of 14 grains. Only two slight anomalies (albeit solar within error) were observed. However, these measurements suffered from contamination of Fe from the adjacent meteorite matrix, which diluted any isotopic anomalies. We have isolated four presolar silicates having unusual O isotopic compositions by focused ion beam (FIB) milling and obtained their undiluted Mg and Fe isotopic compositions. These compositions help to identify the grains stellar sources and to determine the source of Fe in the grains.

  11. Alpha heating and isotopic mass effects in JET plasmas with sawteeth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budny, R. V.; Team, JET

    2016-02-09

    The alpha heating experiment in the Joint European Torus (JET) 1997 DTE1 campaign is re-examined. Several effects correlated with tritium content and thermal hydrogenic isotopic mass < A> weaken the conclusion that alpha heating was clearly observed. These effects delayed the occurrence of significant sawtooth crashes allowing the electron and ion temperatures T e and T i to achieve higher values. Under otherwise equal circumstances T e and T i were typically higher for discharges with higher < A >, and significant scaling of T i, T e, and total stored energy with < A > were observed. The highermore » T i led to increased ion–electron heating rates with magnitudes comparable to those computed for alpha electron heating. Rates of other heating/loss processes also had comparable magnitudes. Simulations of T e assuming the observed scaling of T i are qualitatively consistent with the measured profiles, without invoking alpha heating« less

  12. Mass-independent isotope fractionation of Mo, Ru, Cd, and Te

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Moynier, F.; Albarède, F.

    2006-12-01

    The variation of the mean charge distribution in the nucleus with the neutron number of different isotopes induces a tenuous shift of the nuclear field. The mass fractionation induced during phase changes is irregular, notably with 'staggering' between odd and even masses, and becomes increasingly non-linear for neutron-rich isotopes. A strong correlation is observed between the deviation of the isotopic effects from the linear dependence with mass and the corresponding nuclear charge radii. We first demonstrated on a number of elements the existence of such mass-independent isotope fractionation in laboratory experiments of solvent extraction with a macrocyclic compound. The isotope ratios were analyzed by multiple-collector inductively coupled plasma mass spectrometry with a typical precision of <100 ppm. The isotopes of odd and even atomic masses are enriched in the solvent to an extent that closely follows the variation of their nuclear charge radii. The present results fit Bigeleisen's (1996) model, which is the standard mass-dependent theory modified to include a correction term named the nuclear field shift effect. For heavy elements like uranium, the mass-independent effect is important enough to dominate the mass-dependent effect. We subsequently set out to compare the predictions of Bigeleisen's theory with the isotopic anomalies found in meteorites. Some of these anomalies are clearly inconsistent with nucleosynthetic effects (either s- or r-processes). Isotopic variations of Mo and Ru in meteorites, especially in Allende (CV3), show a clear indication of nucleosynthetic components. However, the mass-independent anomaly of Ru observed in Murchison (CM2) is a remarkable exception which cannot be explained by the nucleosynthetic model, but fits the nuclear field shift theory extremely well. The abundances of the even atomic mass Te isotopes in the leachates of carbonaceous chondrites, Allende, Murchison, and Orgueil, fit a mass-dependent law well, but the

  13. Isotopic disproportionation during hydrogen isotopic analysis of nitrogen-bearing organic compounds

    USGS Publications Warehouse

    Nair, Sreejesh; Geilmann, Heike; Coplen, Tyler B.; Qi, Haiping; Gehre, Matthias; Schimmelmann, Arndt; Brand, Willi A.

    2015-01-01

    Rationale High-precision hydrogen isotope ratio analysis of nitrogen-bearing organic materials using high-temperature conversion (HTC) techniques has proven troublesome in the past. Formation of reaction products other than molecular hydrogen (H2) has been suspected as a possible cause of incomplete H2 yield and hydrogen isotopic fractionation. Methods The classical HTC reactor setup and a modified version including elemental chromium, both operated at temperatures in excess of 1400 °C, have been compared using a selection of nitrogen-bearing organic compounds, including caffeine. A focus of the experiments was to avoid or suppress hydrogen cyanide (HCN) formation and to reach quantitative H2 yields. The technique also was optimized to provide acceptable sample throughput. Results The classical HTC reaction of a number of selected compounds exhibited H2 yields from 60 to 90 %. Yields close to 100 % were measured for the experiments with the chromium-enhanced reactor. The δ2H values also were substantially different between the two types of experiments. For the majority of the compounds studied, a highly significant relationship was observed between the amount of missing H2and the number of nitrogen atoms in the molecules, suggesting the pyrolytic formation of HCN as a byproduct. A similar linear relationship was found between the amount of missing H2 and the observed hydrogen isotopic result, reflecting isotopic fractionation. Conclusions The classical HTC technique to produce H2 from organic materials using high temperatures in the presence of glassy carbon is not suitable for nitrogen-bearing compounds. Adding chromium to the reaction zone improves the yield to 100 % in most cases. The initial formation of HCN is accompanied by a strong hydrogen isotope effect, with the observed hydrogen isotope results on H2 being substantially shifted to more negative δ2H values. The reaction can be understood as an initial disproportionation leading to H2 and HCN

  14. The effect of phosphomonoesterases on the oxygen isotope composition of phosphate

    NASA Astrophysics Data System (ADS)

    von Sperber, Christian; Kries, Hajo; Tamburini, Federica; Bernasconi, Stefano M.; Frossard, Emmanuel

    2014-01-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. During the enzymatic hydrolysis an isotopic fractionation (ε) occurs leaving an imprint on the oxygen isotope composition of the released Pi which might be used to trace phosphorus in the environment. Therefore, enzymatic assays with acid phosphatases from wheat germ and potato tuber and alkaline phosphatase from Escherichia coli were prepared in order to determine the oxygen isotope fractionation caused by these enzymes. Adenosine 5‧ monophosphate and glycerol phosphate were used as substrates. The oxygen isotope fractionation caused by acid phosphatases is 20-30‰ smaller than for alkaline phosphatases, resulting in a difference of 5-7.5‰ in δ18O of Pi depending on the enzyme. We attribute the enzyme dependence of the isotopic fractionation to distinct reaction mechanisms of the two types of phosphatases. The observed difference is large enough to distinguish between the two enzymatic processes in environmental samples. These findings show that the oxygen isotope composition of Pi can be used to trace different enzymatic processes, offering an analytical tool that might contribute to a better understanding of the P-cycle in the environment.

  15. Isotopic inhomogeneity of leaf water: Evidence and implications for the use of isotopic signals transduced by plants

    NASA Astrophysics Data System (ADS)

    Yakir, Dan; DeNiro, Michael J.; Rundel, Philip W.

    1989-10-01

    Variations as large as 11%. in δ18O values and 50%. in δD values were observed among different fractions of water in leaves of ivy (Hedera helix) and sunflower (Helianthus annuus). This observation contradicts previous experimental approaches to leaf water as an isotopically uniform pool. Using ion analysis of the water fractions to identify sources within the leaf, we conclude that the isotopic composition of the water within cells, which is involved in biosynthesis and therefore recorded in the plant organic matter, differs substantially from that of total leaf water. This conclusion must be taken into account in studies in which isotope ratios of fossil plant cellulose are interpreted in paleoclimatic terms. In addition, our results have implications for attempts to explain the Dole effect and to account for the variations of 18O/16O ratios in atmospheric carbon dioxide, since the isotopic composition of cell water, not of total leaf water, influences theδ18O values of O2 and CO2 released from plants into the atmosphere.

  16. Negative Oxygen Isotope Effect in Manganites with an Ordered Cation Arrangement in a High Magnetic Field

    NASA Astrophysics Data System (ADS)

    Taldenkov, A. N.; Snegirev, V. V.; Babushkina, N. A.; Kalitka, V. S.; Kaul', A. R.

    2018-03-01

    The oxygen isotope effect in PrBaMn2 16-18 O5.97 manganite with an ordered cation arrangement is studied. The field dependences of magnetic susceptibility and magnetization are measured in the temperature range 100-270 K and magnetic fields up to 32 T. A significant increase in the temperature of the spin-reorientation antiferromagnet-ferromagnet phase transition is detected in samples enriched in heavy oxygen 18O (negative isotope effect). The transition temperature and the isotope effect depend strongly on the magnetic field. An H-T phase diagram is plotted for samples with various isotope compositions. An analysis of the experimental results demonstrates that the detected negative isotope effect and the giant positive isotope effect revealed earlier in doped manganites have the same nature. The mechanisms of appearance of isotope effects are discussed in terms of the double exchange model under a polaron narrowing of the free carrier band.

  17. Isotopic Changes During Digestion: Protein

    NASA Astrophysics Data System (ADS)

    Tuross, N.

    2013-12-01

    Nutrient and hydrological inputs traverse a complicated route of pH, enzymatic and cellular processes in digestion in higher animals. The end products of digestion are the starting products for biosynthesis that are often used to interpret past life-ways. Using an artificial gut system, the isotopic changes (dD, d18O, d13C and d15N) of protein are documented. Three separate protein sources are subjected to the conditions, chemical and enzymatic, found in the stomach and upper small intestine with only a small shift in the oxygen isotopic composition of the proteins observed. Middle to lower small intestine parameters produced both greater isotopic effects and significantly lower molecular weight products. The role of the gastric enterocyte and the likely involvement of the internal milieu of this cell in the isotopic composition of amino acids that are transported to the liver are reported.

  18. Stable Isotope Signatures of Middle Palaeozoic Ahermatypic Rugose Corals - Deciphering Secondary Alteration, Vital Fractionation Effects, and Palaeoecological Implications.

    PubMed

    Jakubowicz, Michal; Berkowski, Blazej; López Correa, Matthias; Jarochowska, Emilia; Joachimski, Michael; Belka, Zdzislaw

    2015-01-01

    This study investigates stable isotope signatures of five species of Silurian and Devonian deep-water, ahermatypic rugose corals, providing new insights into isotopic fractionation effects exhibited by Palaeozoic rugosans, and possible role of diagenetic processes in modifying their original isotopic signals. To minimize the influence of intraskeletal cements on the observed signatures, the analysed specimens included unusual species either devoid of large intraskeletal open spaces ('button corals': Microcyclus, Palaeocyclus), or typified by particularly thick corallite walls (Calceola). The corals were collected at four localities in the Holy Cross Mountains (Poland), Mader Basin (Morocco) and on Gotland (Sweden), representing distinct diagenetic histories and different styles of diagenetic alteration. To evaluate the resistance of the corallites to diagenesis, we applied various microscopic and trace element preservation tests. Distinct differences between isotopic compositions of the least-altered and most-altered skeleton portions emphasise a critical role of material selection for geochemical studies of Palaeozoic corals. The least-altered parts of the specimens show marine or near-marine stable isotope signals and lack positive correlation between δ13C and δ18O. In terms of isotopic fractionation mechanisms, Palaeozoic rugosans must have differed considerably from modern deep-water scleractinians, typified by significant depletion in both 18O and 13C, and pronounced δ13C-δ18O co-variance. The fractionation effects exhibited by rugosans seem similar rather to the minor isotopic effects typical of modern non-scleractinian corals (octocorals and hydrocorals). The results of the present study add to growing evidence for significant differences between Scleractinia and Rugosa, and agree with recent studies indicating that calcification mechanisms developed independently in these two groups of cnidarians. Consequently, particular caution is needed in using

  19. E2C mechanism of elimination reactions. IX. Secondary deuterium isotope effects on rates of bimolecular reactions in alicyclic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, D.

    1976-06-11

    Secondary ..cap alpha..-deuterium isotope effects on the rates of NBu/sub 4/OAc and NBu/sub 4/Cl promoted bimolecular reactions (E2 and SN2) of cyclohexyl tosylate and cyclohexyl bromide have been studied. The E2 reactions, previously categorized as E2C-like, show ..cap alpha..-deuterium isotope effects in the range 1.14--1.22, while the related SN2 reactions give values in the range 1.05--1.08. The discrepancy in the magnitude of the ..cap alpha..-deuterium isotope effect for the E2 and SN2 processes is consistent with the view that E2C-like reactions use ''looser'' transition states than those used in the concurrent SN2 reactions. While the reported ..cap alpha..-d isotope effectsmore » do not provide positive evidence to support the idea that the base interacts with C/sub ..cap alpha../ in the E2 transition states of the reactions studied, neither do they substantiate claims for dismissal of the concept. A comparison of the secondary ..gamma..-deuterium and ..beta..'-deuterium isotope effects arising in the reaction of cyclohexyl tosylate with NBu/sub 4/OAc in acetone indicates the two isotope effects to be of equivalent magnitude (k/sub ..beta..'-d/k/sub ..gamma..-d/ = 0.98). This observation can only be rationalized for this reaction in terms of a transition state structure in which there is extensive double bond development. It provides compelling evidence against the involvement of any transition state structure which accommodates extensive positive charge development at C/sub ..cap alpha../.« less

  20. An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5)

    NASA Astrophysics Data System (ADS)

    Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.; Ricciuto, Daniel; Thornton, Peter E.; Lin, John C.; Bowling, David R.

    2016-09-01

    Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. We distinguished between isotopic behavior in response to a decrease of δ13C within atmospheric CO2 (Suess effect) vs. photosynthetic discrimination (Δcanopy), by creating a site-customized atmospheric CO2 and δ13C of CO2 time series. We implemented a seasonally varying Vcmax model calibration that best matched site observations of net CO2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ13C of needle and stem tissue, but underestimated the δ13C of bulk soil carbon by 1-2 ‰. The model overestimated the multiyear (2006-2012) average Δcanopy relative to prior data-based estimates by 2-4 ‰. The amplitude of the average seasonal cycle of Δcanopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled An - gs (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled An - gs version used in the default model. The model attributed most of the seasonal variation in discrimination to An, whereas interannual variation in simulated Δcanopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination and water-use efficiency (WUE

  1. An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.

    Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO 2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. Wemore » distinguished between isotopic behavior in response to a decrease of δ 13C within atmospheric CO 2 (Suess effect) vs. photosynthetic discrimination (Δ canopy), by creating a site-customized atmospheric CO 2 and δ 13C of CO 2 time series. We implemented a seasonally varying V cmax model calibration that best matched site observations of net CO 2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ 13C of needle and stem tissue, but underestimated the δ 13C of bulk soil carbon by 1–2 ‰. The model overestimated the multiyear (2006–2012) average Δ canopy relative to prior data-based estimates by 2–4 ‰. The amplitude of the average seasonal cycle of Δ canopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled A n- g s (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled A n- g s version used in the default model. The model attributed most of the seasonal variation in discrimination to A n, whereas interannual variation in simulated Δ canopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination and

  2. An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5)

    DOE PAGES

    Raczka, Brett; Duarte, Henrique F.; Koven, Charles D.; ...

    2016-09-19

    Land surface models are useful tools to quantify contemporary and future climate impact on terrestrial carbon cycle processes, provided they can be appropriately constrained and tested with observations. Stable carbon isotopes of CO 2 offer the potential to improve model representation of the coupled carbon and water cycles because they are strongly influenced by stomatal function. Recently, a representation of stable carbon isotope discrimination was incorporated into the Community Land Model component of the Community Earth System Model. Here, we tested the model's capability to simulate whole-forest isotope discrimination in a subalpine conifer forest at Niwot Ridge, Colorado, USA. Wemore » distinguished between isotopic behavior in response to a decrease of δ 13C within atmospheric CO 2 (Suess effect) vs. photosynthetic discrimination (Δ canopy), by creating a site-customized atmospheric CO 2 and δ 13C of CO 2 time series. We implemented a seasonally varying V cmax model calibration that best matched site observations of net CO 2 carbon exchange, latent heat exchange, and biomass. The model accurately simulated observed δ 13C of needle and stem tissue, but underestimated the δ 13C of bulk soil carbon by 1–2 ‰. The model overestimated the multiyear (2006–2012) average Δ canopy relative to prior data-based estimates by 2–4 ‰. The amplitude of the average seasonal cycle of Δ canopy (i.e., higher in spring/fall as compared to summer) was correctly modeled but only when using a revised, fully coupled A n- g s (net assimilation rate, stomatal conductance) version of the model in contrast to the partially coupled A n- g s version used in the default model. The model attributed most of the seasonal variation in discrimination to A n, whereas interannual variation in simulated Δ canopy during the summer months was driven by stomatal response to vapor pressure deficit (VPD). The model simulated a 10 % increase in both photosynthetic discrimination and

  3. VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhne, W.

    2012-12-03

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample earlymore » in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies

  4. Microscopic model for the isotope effect in the high-Tc oxides

    NASA Astrophysics Data System (ADS)

    Kresin, V. Z.; Wolf, S. A.

    1994-02-01

    An unconventional microscopic mechanism relating Tc and the isotope substitution for the doped superconductors such as the high-Tc oxides is proposed. Strong nonadiabaticity, when it is impossible, strictly speaking, to separate fully the nuclear and electronic degrees of freedom, leads to a peculiar dependence of the carrier concentration n on the ionic mass M. This case corresponds, for example, to the isotopic substitution of the axial oxygen in YBa2Cu3O7-x. Because of the dependence of Tc on n, this leads to the dependence of Tc on M, that is to the isotope effect. The minimum value of the isotope coefficient corresponds to Tc=Tmaxc.

  5. Effects of alkalinity and salinity at low and high light intensity on hydrogen isotope fractionation of long-chain alkenones produced by Emiliania huxleyi

    NASA Astrophysics Data System (ADS)

    Weiss, Gabriella M.; Pfannerstill, Eva Y.; Schouten, Stefan; Sinninghe Damsté, Jaap S.; van der Meer, Marcel T. J.

    2017-12-01

    Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.

  6. Effect of Advection on Evaporative Fluxes and Vapor Isotopic Ratios: The Lake Size Effect

    NASA Astrophysics Data System (ADS)

    Feng, X.; Lauder, A. M.; Kopec, B. G.; Posmentier, E. S.

    2015-12-01

    It has been reported that advection of air from land can be identified hundreds of kilometers off shore. With advection, moisture builds up downwind, and the evaporative flux decreases and isotopic flux ratios increase with distance. If a lake is small relative to the equilibration distance, the fluxes of all water isotopologues averaged over the lake are different from those calculated using models without advection. The magnitude of the discrepancy depends on the lake size; we refer to this as the "lake size effect". In Kangerlussuaq, Greenland, we observed significant horizontal gradients in concentration, δD, and δ18O of vapor up to 5 km along the wind direction. Over a 0.5 km long lake, the observed average gradients were 1380 ppm/km for vapor content, 21‰/km for δD, 2.4‰/km for δ18O, and 5‰/km for d-excess. These gradients decreased with distance from the upwind shore. Over a stretch of another, much larger lake 4-5 km from the upwind shore, we observed gradients of 354 ppm/km, 1.5‰/km, 0.22‰/km and 0.3‰/km, for vapor concentration, δD, δ18O, and d-excess, respectively. These observations were modeled successfully using a two-dimensional (2-D, horizontal and vertical) steady state advection diffusion model. This model also computes evaporative fluxes. Using the model results, we assess the magnitude of the lake size effect and its impact on water balance calculations. Under the condition of our field observations and for lakes less than 500 m along the wind direction, the mean flux δ18O and δD were at least 2‰ lower than the corresponding values from a 1-D model (vertical only). If using biased isotopic flux values for water balance calculations, the lake size effect would lead to an underestimation of the lake I/E (input to evaporation) ratio. For example, if the lake effect is 1‰, the corresponding underestimation of the I/E ratio is about 10% if using δ18O, and less than 2% if using δD for the computation. This argues for

  7. Correcting speleothem oxygen isotopic variations for growth-rate controlled kinetic fractionation effects

    NASA Astrophysics Data System (ADS)

    Stoll, Heather; Moreno, Ana; Cacho, Isabel; Mendez Vicence, Ana; Gonzalez Lemos, Saul; Pirla Casasayas, Gemma; Cheng, Hai; Wang, Xianfeng; Edwards, R. Lawrence

    2015-04-01

    The oxygen isotopic signature may be the most widely used climate indicator in stalagmites, but recent experimental and theoretical studies indicate the potential for kinetic fractionation effects which may be significant, especially in situations where the primary signal from rainfall isotopic composition and cave temperature is limited to a few permil. Here we use a natural set of stalagmites to illustrate the magnitude of such effects and the potential for deconvolving kinetic signals from the primary temperature and rainfall signals. We compare isotopic records from 6 coeval stalagmites covering the interval 140 to 70 ka, from two proximal caves in NW Spain which experienced the same primary variations in temperature and rainfall d18O, but exhibit a large range in growth rates and temporal trends in growth rate. Stalagmites growing at faster rates near 50 microns/year have oxygen isotopic ratios more than 1 permil more negative than coeval stalagmites with very slow (5 micron/year) growth rates. Because growth rate variations also occur over time within any given stalagmite, the measured oxygen isotopic time series for a given stalagmite includes both climatic and kinetic components. Removal of the kinetic component of variation in each stalagmite, based on the dependence of the kinetic component on growth rate, is effective at distilling a common temporal evolution among the oxygen isotopic records of the multiple stalagmites. However, this approach is limited by the quality of the age model. For time periods characterized by very slow growth and long durations between dates, the presence of crypto-hiatus may result in average growth rates which underestimate the instantaneous speleothem deposition rates and which therefore underestimate the magnitude of kinetic effects. We compare the composite corrected oxygen isotopic record with other records of the timing of glacial inception in the North Atlantic realm.

  8. Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction.

    PubMed

    Einsiedl, Florian

    2009-01-01

    The effects of low NO2(-) concentrations on stable isotope fractionation during dissimilatory sulfate reduction by strain Desulfovibrio desulfuricans were investigated. Nitrite, formed as an intermediate during nitrification and denitrification processes in marine and freshwater habitats, inhibits the reduction of the sulfuroxy intermediate SO3(2-) to H2S even at low concentrations. To gain an understanding of the inhibition effect of the reduction of the sulfuroxy intermediate on stable isotope fractionation in sulfur and oxygen during bacterial sulfate reduction, nitrite was added in the form of short pulses. In the batch experiments that contained 0.02, 0.05, and 0.1 mM nitrite, sulfur enrichment factors epsilon of -12 +/- 1.6, -15 +/- 1.1, and -26 +/- 1.3 per thousand, respectively were observed. In the control experiment (no addition of nitrite) a sulfur enrichment factor epsilon of around -11 per thousand was calculated. In the experiments that contained no 18O enriched water (delta18O: -10 per thousand) and nitrite concentrations of 0.02, 0.05, and 0.1 mM, delta18O values in the remaining sulfate were fairly constant during the experiments (delta18O sulfate: approximately equal to 10 per thousand) and were similar to those obtained from the control experiment (no nitrite and no enriched water). However, in the batch experiments that contained 18O enriched water (+700 per thousand) and nitrite concentrations of 0.05 and 0.1 mM increasing delta18O values in the remaining sulfate from around 15 per thousand to approximately 65 and 85 per thousand, respectively, were found. Our experiments that contained isotopic enriched water and nitrite show clear evidence that the ratio of forward and backward fluxes regulated by adenosine-5'-phosphosulfate reductase (APSR) controls the extent of sulfur isotope fractionation during bacterial sulfate reduction in strain Desulfovibrio desulfuricans. Since the metabolic sulfuroxy intermediate SO3(2-) exchanges with water

  9. Deciphering the iron isotope message of the human body

    NASA Astrophysics Data System (ADS)

    Walczyk, Thomas; von Blanckenburg, Friedhelm

    2005-04-01

    Mass-dependent variations in isotopic composition are known since decades for the light elements such as hydrogen, carbon or oxygen. Multicollector-inductively coupled plasma mass spectrometry (MC-ICP-MS) and double-spike thermal ionization mass spectrometry (TIMS) permit us now to resolve small variations in isotopic composition even for the heavier elements such as iron. Recent studies on the iron isotopic composition of human blood and dietary iron sources have shown that lighter iron isotopes are enriched along the food chain and that each individual bears a certain iron isotopic signature in blood. To make use of this finding in biomedical research, underlying mechanisms of isotope fractionation by the human body need to be understood. In this paper available iron isotope data for biological samples are discussed within the context of isotope fractionation concepts and fundamental aspects of human iron metabolism. This includes evaluation of new data for body tissues which show that blood and muscle tissue have a similar iron isotopic composition while heavier iron isotopes are concentrated in the liver. This new observation is in agreement with our earlier hypothesis of a preferential absorption of lighter iron isotopes by the human body. Possible mechanisms for inducing an iron isotope effect at the cellular and molecular level during iron uptake are presented and the potential of iron isotope effects in human blood as a long-term measure of dietary iron absorption is discussed.

  10. Arrhenius curves of hydrogen transfers: tunnel effects, isotope effects and effects of pre-equilibria

    PubMed Central

    Limbach, Hans-Heinrich; Miguel Lopez, Juan; Kohen, Amnon

    2006-01-01

    In this paper, the Arrhenius curves of selected hydrogen-transfer reactions for which kinetic data are available in a large temperature range are reviewed. The curves are discussed in terms of the one-dimensional Bell–Limbach tunnelling model. The main parameters of this model are the barrier heights of the isotopic reactions, barrier width of the H-reaction, tunnelling masses, pre-exponential factor and minimum energy for tunnelling to occur. The model allows one to compare different reactions in a simple way and prepare the kinetic data for more-dimensional treatments. The first type of reactions is concerned with reactions where the geometries of the reacting molecules are well established and the kinetic data of the isotopic reactions are available in a large temperature range. Here, it is possible to study the relation between kinetic isotope effects (KIEs) and chemical structure. Examples are the tautomerism of porphyrin, the porphyrin anion and related compounds exhibiting intramolecular hydrogen bonds of medium strength. We observe pre-exponential factors of the order of kT/h≅1013 s−1 corresponding to vanishing activation entropies in terms of transition state theory. This result is important for the second type of reactions discussed in this paper, referring mostly to liquid solutions. Here, the reacting molecular configurations may be involved in equilibria with non- or less-reactive forms. Several cases are discussed, where the less-reactive forms dominate at low or at high temperature, leading to unusual Arrhenius curves. These cases include examples from small molecule solution chemistry like the base-catalysed intramolecular H-transfer in diaryltriazene, 2-(2′-hydroxyphenyl)-benzoxazole, 2-hydroxy-phenoxyl radicals, as well as in the case of an enzymatic system, thermophilic alcohol dehydrogenase. In the latter case, temperature-dependent KIEs are interpreted in terms of a transition between two regimes with different temperature

  11. Arrhenius curves of hydrogen transfers: tunnel effects, isotope effects and effects of pre-equilibria.

    PubMed

    Limbach, Hans-Heinrich; Miguel Lopez, Juan; Kohen, Amnon

    2006-08-29

    In this paper, the Arrhenius curves of selected hydrogen-transfer reactions for which kinetic data are available in a large temperature range are reviewed. The curves are discussed in terms of the one-dimensional Bell-Limbach tunnelling model. The main parameters of this model are the barrier heights of the isotopic reactions, barrier width of the H-reaction, tunnelling masses, pre-exponential factor and minimum energy for tunnelling to occur. The model allows one to compare different reactions in a simple way and prepare the kinetic data for more-dimensional treatments. The first type of reactions is concerned with reactions where the geometries of the reacting molecules are well established and the kinetic data of the isotopic reactions are available in a large temperature range. Here, it is possible to study the relation between kinetic isotope effects (KIEs) and chemical structure. Examples are the tautomerism of porphyrin, the porphyrin anion and related compounds exhibiting intramolecular hydrogen bonds of medium strength. We observe pre-exponential factors of the order of kT/h congruent with 10(13) s-1 corresponding to vanishing activation entropies in terms of transition state theory. This result is important for the second type of reactions discussed in this paper, referring mostly to liquid solutions. Here, the reacting molecular configurations may be involved in equilibria with non- or less-reactive forms. Several cases are discussed, where the less-reactive forms dominate at low or at high temperature, leading to unusual Arrhenius curves. These cases include examples from small molecule solution chemistry like the base-catalysed intramolecular H-transfer in diaryltriazene, 2-(2'-hydroxyphenyl)-benzoxazole, 2-hydroxy-phenoxyl radicals, as well as in the case of an enzymatic system, thermophilic alcohol dehydrogenase. In the latter case, temperature-dependent KIEs are interpreted in terms of a transition between two regimes with different temperature

  12. Estimating the Triple-Point Isotope Effect and the Corresponding Uncertainties for Cryogenic Fixed Points

    NASA Astrophysics Data System (ADS)

    Tew, W. L.

    2008-02-01

    The sensitivities of melting temperatures to isotopic variations in monatomic and diatomic atmospheric gases using both theoretical and semi-empirical methods are estimated. The current state of knowledge of the vapor-pressure isotope effects (VPIE) and triple-point isotope effects (TPIE) is briefly summarized for the noble gases (except He), and for selected diatomic molecules including oxygen. An approximate expression is derived to estimate the relative shift in the melting temperature with isotopic substitution. In general, the magnitude of the effects diminishes with increasing molecular mass and increasing temperature. Knowledge of the VPIE, molar volumes, and heat of fusion are sufficient to estimate the temperature shift or isotopic sensitivity coefficient via the derived expression. The usefulness of this approach is demonstrated in the estimation of isotopic sensitivities and uncertainties for triple points of xenon and molecular oxygen for which few documented estimates were previously available. The calculated sensitivities from this study are considerably higher than previous estimates for Xe, and lower than other estimates in the case of oxygen. In both these cases, the predicted sensitivities are small and the resulting variations in triple point temperatures due to mass fractionation effects are less than 20 μK.

  13. Fractionated Mercury Isotopes in Fish: The Effects of Nuclear Mass, Spin, and Volume

    NASA Astrophysics Data System (ADS)

    Das, R.; Odom, A. L.

    2007-12-01

    Mercury is long known as a common environmental contaminant. In methylated form it is even more toxic and the methylation process is facilitated by microbial activities. Methyl mercury easily crosses cell membrane and accumulates in soft tissues of fishes and finally biomagnifies with increasing trophic levels. Natural variations in the isotopic composition of mercury have been reported and such variations have emphasized mass dependent fractionations, while theory and laboratory experiments indicate that mass-independent isotopic fractionation (MIF) effects are likely to be found as well. This study focuses on the MIF of mercury isotopes in the soft tissues of fishes. Samples include both fresh water and marine fish, from different continents and oceans. Approximately 1 gm of fish soft tissue was dissolved in 5 ml of conc. aqua regia for 24 hrs and filtered through a ¬¬¬100 μm filter paper and diluted with DI water. Hg is measured as a gaseous phase generated by reduction of the sample with SnCl2 in a continuous- flow cold-vapor generator connected to a Thermo-Finnigan Neptune MC-ICPMS. To minimize instrumental fractionation isotope ratios were measured by sample standard bracketing and reported as δ‰ relative to NIST SRM 3133 Hg standard where δAHg = [(A Hg/202Hg)sample/(A Hg/202Hg)NIST313] -1 ×1000‰. In this study we have measured the isotope ratios 198Hg/202Hg, 199Hg/202Hg, 200Hg/202Hg, 201Hg/202Hg and 204Hg/202Hg. In all the fish samples δ198Hg, δ200Hg, δ202Hg, δ204Hg define a mass- dependent fractionation sequence, where as the δ199Hg and δ201Hg depart from the mass- dependent fractionation line and indicate an excess of the odd-N isotopes. The magnitude of the deviation (ΔAHg where A=199 or 201) as obtained by difference between the measured δ199Hg and δ201Hg of the samples and the value obtained by linear scaling defined by the even-N isotopes ranges from approximately 0.2 ‰ to 3‰. The ratios of Δ199Hg /Δ201Hg range from 0.8 to 1

  14. Unexpected variations in the triple oxygen isotope composition of stratospheric carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wiegel, Aaron A.; Cole, Amanda S.; Hoag, Katherine J.; Atlas, Elliot L.; Schauffler, Sue M.; Boering, Kristie A.

    2013-10-01

    We report observations of stratospheric CO2 that reveal surprisingly large anomalous enrichments in 17O that vary systematically with latitude, altitude, and season. The triple isotope slopes reached 1.95 ± 0.05(1σ) in the middle stratosphere and 2.22 ± 0.07 in the Arctic vortex versus 1.71 ± 0.03 from previous observations and a remarkable factor of 4 larger than the mass-dependent value of 0.52. Kinetics modeling of laboratory measurements of photochemical ozone-CO2 isotope exchange demonstrates that non-mass-dependent isotope effects in ozone formation alone quantitatively account for the 17O anomaly in CO2 in the laboratory, resolving long-standing discrepancies between models and laboratory measurements. Model sensitivities to hypothetical mass-dependent isotope effects in reactions involving O3, O(1D), or CO2 and to an empirically derived temperature dependence of the anomalous kinetic isotope effects in ozone formation then provide a conceptual framework for understanding the differences in the isotopic composition and the triple isotope slopes between the laboratory and the stratosphere and between different regions of the stratosphere. This understanding in turn provides a firmer foundation for the diverse biogeochemical and paleoclimate applications of 17O anomalies in tropospheric CO2, O2, mineral sulfates, and fossil bones and teeth, which all derive from stratospheric CO2.

  15. Constraints on post-depositional isotope modifications in East Antarctic firn from analysing temporal changes of isotope profiles

    NASA Astrophysics Data System (ADS)

    Münch, Thomas; Kipfstuhl, Sepp; Freitag, Johannes; Meyer, Hanno; Laepple, Thomas

    2017-09-01

    The isotopic composition of water in ice sheets is extensively used to infer past climate changes. In low-accumulation regions their interpretation is, however, challenged by poorly constrained effects that may influence the initial isotope signal during and after deposition of the snow. This is reflected in snow-pit isotope data from Kohnen Station, Antarctica, which exhibit a seasonal cycle but also strong interannual variations that contradict local temperature observations. These inconsistencies persist even after averaging many profiles and are thus not explained by local stratigraphic noise. Previous studies have suggested that post-depositional processes may significantly influence the isotopic composition of East Antarctic firn. Here, we investigate the importance of post-depositional processes within the open-porous firn (≳ 10 cm depth) at Kohnen Station by separating spatial from temporal variability. To this end, we analyse 22 isotope profiles obtained from two snow trenches and examine the temporal isotope modifications by comparing the new data with published trench data extracted 2 years earlier. The initial isotope profiles undergo changes over time due to downward advection, firn diffusion and densification in magnitudes consistent with independent estimates. Beyond that, we find further modifications of the original isotope record to be unlikely or small in magnitude (≪ 1 ‰ RMSD). These results show that the discrepancy between local temperatures and isotopes most likely originates from spatially coherent processes prior to or during deposition, such as precipitation intermittency or systematic isotope modifications acting on drifting or loose surface snow.

  16. Kinetic isotope effects and how to describe them

    PubMed Central

    Karandashev, Konstantin; Xu, Zhen-Hao; Meuwly, Markus; Vaníček, Jiří; Richardson, Jeremy O.

    2017-01-01

    We review several methods for computing kinetic isotope effects in chemical reactions including semiclassical and quantum instanton theory. These methods describe both the quantization of vibrational modes as well as tunneling and are applied to the ⋅H + H2 and ⋅H + CH4 reactions. The absolute rate constants computed with the semiclassical instanton method both using on-the-fly electronic structure calculations and fitted potential-energy surfaces are also compared directly with exact quantum dynamics results. The error inherent in the instanton approximation is found to be relatively small and similar in magnitude to that introduced by using fitted surfaces. The kinetic isotope effect computed by the quantum instanton is even more accurate, and although it is computationally more expensive, the efficiency can be improved by path-integral acceleration techniques. We also test a simple approach for designing potential-energy surfaces for the example of proton transfer in malonaldehyde. The tunneling splittings are computed, and although they are found to deviate from experimental results, the ratio of the splitting to that of an isotopically substituted form is in much better agreement. We discuss the strengths and limitations of the potential-energy surface and based on our findings suggest ways in which it can be improved. PMID:29282447

  17. The effects of nitrogen pollutants on the isotopic signal (δ15N) of Ulva lactuca: Microcosm experiments.

    PubMed

    Orlandi, Lucia; Calizza, Edoardo; Careddu, Giulio; Carlino, Pasquale; Costantini, Maria Letizia; Rossi, Loreto

    2017-02-15

    Effects of two chemical forms of Nitrogen (NH 4 + and NO 3 - ) on δ 15 N in Ulva lactuca were analysed separately and in mixture at two concentrations. We assessed whether the δ 15 N values of U. lactuca discriminate between Nitrogen from synthetic fertilisers (inorganic) and from fresh cow manure (organic), and the isotopic ability of the macroalga to reflect Nitrogen concentrations. Isotopic signature and N content of the macroalga reflected different nitrogenous sources and their concentrations after 48h. The inorganic Nitrogen source (NH 4 NO 3 ) altered the isotopic values of the macroalgae more than Nitrogen from fresh cow manure (NO 3 - ). δ 15 N values observed in the mixed solution did not differ from those displayed in NH 4 NO 3 treatment alone. We conclude that stable isotope analysis of U. lactuca collected in an unpolluted site and experimentally submerged in sites suspected of being affected by disturbance is a useful tool for rapid monitoring of anthropogenic discharges of Nitrogen pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Kinetic deuterium isotope effects in glucocorticoid receptor activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aranyi, P.

    1984-01-01

    Activation and deactivation of the chick thymus glucocorticoid receptor protein was studied in ordinary and heavy water by DNA-cellulose binding of the tritiated triamcinolone acetonide-receptor complex. Activation was significantly slower in heavy water if it was promoted by incubation at elevated temperature in buffers of low ionic strength. In the presence of 300 mM KC1 or after separation from the low molecular weight cytosol constituents, the complex was activated at the same rate in both solvents. Deactivation (time dependent loss of DNA-binding capacity) was much faster in ordinary than in heavy water regardless of gel filtration or the presence ofmore » KC1. A model of receptor activation-deactivation was constructed on the basis of these data that accounts for the observed kinetic deuterium isotope effects and reveals some submolecular details of the process.« less

  19. Isotopic incorporation and the effects of fasting and dietary lipid content on isotopic discrimination in large carnivorous mammals

    USGS Publications Warehouse

    Rode, Karyn D.; Stricker, Craig A.; Erlenbach, Joy; Robbins, Charles T.; Cherry, Seth; Newsome, Seth D.; Cutting, Amy; Jensen, Shannon; Stenhouse, Gordon; Brooks, Matt; Hash, Amy; Nicassio, Nicole

    2016-01-01

    There has been considerable emphasis on understanding isotopic discrimination for diet estimation in omnivores. However, discrimination may differ for carnivores, particularly species that consume lipid-rich diets. Here, we examined the potential implications of several factors when using stable isotopes to estimate the diets of bears, which can consume lipid-rich diets and, alternatively, fast for weeks to months. We conducted feeding trials with captive brown bears (Ursus arctos) and polar bears (Ursus maritimus). As dietary lipid content increased to ∼90%, we observed increasing differences between blood plasma and diets that had not been lipid extracted (∆13Ctissue-bulk diet) and slightly decreasing differences between plasma δ13C and lipid-extracted diet. Plasma Δ15Ntissue-bulk diet increased with increasing protein content for the four polar bears in this study and data for other mammals from previous studies that were fed purely carnivorous diets. Four adult and four yearling brown bears that fasted 120 d had plasma δ15N values that changed by <±2‰. Fasting bears exhibited no trend in plasma δ13C. Isotopic incorporation in red blood cells and whole blood was ≥6 mo in subadult and adult bears, which is considerably longer than previously measured in younger and smaller black bears (Ursus americanus). Our results suggest that short-term fasting in carnivores has minimal effects on δ13C and δ15N discrimination between predators and their prey but that dietary lipid content is an important factor directly affecting δ13C discrimination and indirectly affecting δ15N discrimination via the inverse relationship with dietary protein content.

  20. Calcium-aluminum-rich inclusions with fractionation and unidentified nuclear effects (FUN CAIs): II. Heterogeneities of magnesium isotopes and 26Al in the early Solar System inferred from in situ high-precision magnesium-isotope measurements

    NASA Astrophysics Data System (ADS)

    Park, Changkun; Nagashima, Kazuhide; Krot, Alexander N.; Huss, Gary R.; Davis, Andrew M.; Bizzarro, Martin

    2017-03-01

    Calcium-aluminum-rich inclusions with isotopic mass fractionation effects and unidentified nuclear isotopic anomalies (FUN CAIs) have been studied for more than 40 years, but their origins remain enigmatic. Here we report in situ high precision measurements of aluminum-magnesium isotope systematics of FUN CAIs by secondary ion mass spectrometry (SIMS). Individual minerals were analyzed in six FUN CAIs from the oxidized CV3 carbonaceous chondrites Axtell (compact Type A CAI Axtell 2271) and Allende (Type B CAIs C1 and EK1-4-1, and forsterite-bearing Type B CAIs BG82DH8, CG-14, and TE). Most of these CAIs show evidence for excess 26Mg due to the decay of 26Al. The inferred initial 26Al/27Al ratios [(26Al/27Al)0] and the initial magnesium isotopic compositions (δ26Mg0) calculated using an exponential law with an exponent β of 0.5128 are (3.1 ± 1.6) × 10-6 and 0.60 ± 0.10‰ (Axtell 2271), (3.7 ± 1.5) × 10-6 and -0.20 ± 0.05‰ (BG82DH8), (2.2 ± 1.1) × 10-6 and -0.18 ± 0.05‰ (C1), (2.3 ± 2.4) × 10-5 and -2.23 ± 0.37‰ (EK1-4-1), (1.5 ± 1.1) × 10-5 and -0.42 ± 0.08‰ (CG-14), and (5.3 ± 0.9) × 10-5 and -0.05 ± 0.08‰ (TE) with 2σ uncertainties. We infer that FUN CAIs recorded heterogeneities of magnesium isotopes and 26Al in the CAI-forming region(s). Comparison of 26Al-26Mg systematics, stable isotope (oxygen, magnesium, calcium, and titanium) and trace element studies of FUN and non-FUN igneous CAIs indicates that there is a continuum among these CAI types. Based on these observations and evaporation experiments on CAI-like melts, we propose a generic scenario for the origin of igneous (FUN and non-FUN) CAIs: (i) condensation of isotopically normal solids in an 16O-rich gas of approximately solar composition; (ii) formation of CAI precursors by aggregation of these solids together with variable abundances of isotopically anomalous grains-possible carriers of unidentified nuclear (UN) effects; and (iii) melt evaporation of these precursors

  1. The Influence of Non-spectral Matrix Effects on the Accuracy of Isotope Ratio Measurement by MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Barling, J.; Shiel, A.; Weis, D.

    2006-12-01

    Non-spectral interferences in ICP-MS are caused by matrix elements effecting the ionisation and transmission of analyte elements. They are difficult to identify in MC-ICP-MS isotopic data because affected analyses exhibit normal mass dependent isotope fractionation. We have therefore investigated a wide range of matrix elements for both stable and radiogenic isotope systems using a Nu Plasma MC-ICP-MS. Matrix elements commonly enhance analyte sensitivity and change the instrumental mass bias experienced by analyte elements. These responses vary with element and therefore have important ramifications for the correction of data for instrumental mass bias by use of an external element (e.g. Pb and many non-traditional stable isotope systems). For Pb isotope measurements (Tl as mass bias element), Mg, Al, Ca, and Fe were investigated as matrix elements. All produced signal enhancement in Pb and Tl. Signal enhancement varied from session to session but for Ca and Al enhancement in Pb was less than for Tl while for Mg and Fe enhancement levels for Pb and Tl were similar. After correction for instrumental mass fractionation using Tl, Mg effected Pb isotope ratios were heavy (e.g. ^{208}Pb/204Pbmatrix > ^{208}Pb/204Pbtrue) for both moderate and high [Mg] while Ca effected Pb showed little change at moderate [Ca] but were light at high [Ca]. ^{208}Pb/204Pbmatrix - ^{208}Pb/204Pbtrue for all elements ranged from +0.0122 to - 0.0177. Isotopic shifts of similar magnitude are observed between Pb analyses of samples that have seen either one or two passes through chemistry (Nobre Silva et al, 2005). The double pass purified aliquots always show better reproducibility. These studies show that the presence of matrix can have a significant effect on the accuracy and reproducibility of replicate Pb isotope analyses. For non-traditional stable isotope systems (e.g. Mo(Zr), Cd(Ag)), the different responses of analyte and mass bias elements to the presence of matrix can result in del

  2. Investigation of isotope effects of ozone as a function of temperature

    NASA Astrophysics Data System (ADS)

    McMahon, Daniel J.

    Ozone is an important oxidizer in the atmosphere and plays a crucial role as a cleanser, removing various compounds such NOx and SOx. It also is intriguing to those that study stable isotopes as it has a unique signature found in no other oxygen containing molecule. Ozone is observed to fractionate mass independently, which means it does not follow the typical delta 17O /delta18O = 0.52 ratio expected for molecules enriched with 17O and 18O. The magnitude of ozone's mass independent enrichment has been studied in laboratory experiments and atmospheric observations but its explanation is still incomplete. Symmetry of the isotopically substituted ozone is postulated to be the source of mass independent enrichment and this thesis will build on that explanation to examine the magnitude of isotopic enrichment as a function of temperature. Understanding of the kinetics of ozone formation has come a long way from early predictions of enrichments >200‰ However, while our ability to accurately model ozone's bulk isotopic enrichment has improved to include separate rates for the formation of asymmetric and symmetric ozone, rate experiments are sparse for 17O and of low precision. To improve our understanding of ozone's enrichment, this study presents a temperature dependent enrichment experiment and series of models to predict asymmetric mass independent fractionation. This also served to examine ozone's enrichment in the troposphere by using an open flow experimental setup which is in contrast to previous works examining ozone enrichment in a closed system. Our experimental observations show that under tropospheric conditions, ozone should have delta17O ≈ 75‰, delta18O ≈ 80‰, and delta 17O ≈ 33‰. The models were able to match experimental values, often within 1‰, and with minimal assumptions, predict asymmetric ozone to have delta17O=47.5‰. This value is important as ozone transfers its terminal atom to species it oxidizes and will be the starting point to

  3. Chemical stability of levoglucosan: An isotopic perspective

    NASA Astrophysics Data System (ADS)

    Sang, X. F.; Gensch, I.; Kammer, B.; Khan, A.; Kleist, E.; Laumer, W.; Schlag, P.; Schmitt, S. H.; Wildt, J.; Zhao, R.; Mungall, E. L.; Abbatt, J. P. D.; Kiendler-Scharr, A.

    2016-05-01

    The chemical stability of levoglucosan was studied by exploring its isotopic fractionation during the oxidation by hydroxyl radicals. Aqueous solutions as well as mixed (NH4)2SO4-levoglucosan particles were exposed to OH. In both cases, samples experiencing different extents of processing were isotopically analyzed by Thermal Desorption-Gas Chromatography-Isotope Ratio Mass Spectrometry (TD-GC-IRMS). From the dependence of levoglucosan δ13C and concentration on the reaction extent, the kinetic isotope effect (KIE) of the OH oxidation reactions was determined to be 1.00187±0.00027 and 1.00229±0.00018, respectively. Both show good agreement within the uncertainty range. For the heterogeneous oxidation of particulate levoglucosan by gas-phase OH, a reaction rate constant of (2.67±0.03)·10-12 cm3 molecule-1S-1 was derived. The laboratory kinetic data, together with isotopic source and ambient observations, give information on the extent of aerosol chemical processing in the atmosphere.

  4. Diffusion of multi-isotopic chemical species in molten silicates

    NASA Astrophysics Data System (ADS)

    Watkins, James M.; Liang, Yan; Richter, Frank; Ryerson, Frederick J.; DePaolo, Donald J.

    2014-08-01

    Diffusion experiments in a simplified Na2O-CaO-SiO2 liquid system are used to develop a general formulation for the fractionation of Ca isotopes during liquid-phase diffusion. Although chemical diffusion is a well-studied process, the mathematical description of the effects of diffusion on the separate isotopes of a chemical element is surprisingly underdeveloped and uncertain. Kinetic theory predicts a mass dependence on isotopic mobility, but it is unknown how this translates into a mass dependence on effective binary diffusion coefficients, or more generally, the chemical diffusion coefficients that are housed in a multicomponent diffusion matrix. Our experiments are designed to measure Ca mobility, effective binary diffusion coefficients, the multicomponent diffusion matrix, and the effects of chemical diffusion on Ca isotopes in a liquid of single composition. We carried out two chemical diffusion experiments and one self-diffusion experiment, all at 1250 °C and 0.7 GPa and using a bulk composition for which other information is available from the literature. The self-diffusion experiment is used to determine the mobility of Ca in the absence of diffusive fluxes of other liquid components. The chemical diffusion experiments are designed to determine the effect on Ca isotope fractionation of changing the counter-diffusing component from fast-diffusing Na2O to slow-diffusing SiO2. When Na2O is the main counter-diffusing species, CaO diffusion is fast and larger Ca isotopic effects are generated. When SiO2 is the main counter-diffusing species, CaO diffusion is slow and smaller Ca isotopic effects are observed. In both experiments, the liquid is initially isotopically homogeneous, and during the experiment Ca isotopes become fractionated by diffusion. The results are used as a test of a new general expression for the diffusion of isotopes in a multicomponent liquid system that accounts for both self diffusion and the effects of counter-diffusing species. Our

  5. Isotopic coherence of refractory inclusions from CV and CK meteorites: Evidence from multiple isotope systems

    NASA Astrophysics Data System (ADS)

    Shollenberger, Quinn R.; Borg, Lars E.; Render, Jan; Ebert, Samuel; Bischoff, Addi; Russell, Sara S.; Brennecka, Gregory A.

    2018-05-01

    Calcium-aluminum-rich inclusions (CAIs) are the oldest dated materials in the Solar System and numerous previous studies have revealed nucleosynthetic anomalies relative to terrestrial rock standards in many isotopic systems. However, most of the isotopic data from CAIs has been limited to the Allende meteorite and a handful of other CV3 chondrites. To better constrain the isotopic composition of the CAI-forming region, we report the first Sr, Mo, Ba, Nd, and Sm isotopic compositions of two CAIs hosted in the CK3 desert meteorites NWA 4964 and NWA 6254 along with two CAIs from the CV3 desert meteorites NWA 6619 and NWA 6991. After consideration of neutron capture processes and the effects of hot-desert weathering, the Sr, Mo, Ba, Nd, and Sm stable isotopic compositions of the samples show clearly resolvable nucleosynthetic anomalies that are in agreement with previous results from Allende and other CV meteorites. The extent of neutron capture, as manifested by shifts in the observed 149Sm-150Sm isotopic composition of the CAIs is used to estimate the neutron fluence experienced by some of these samples and ranges from 8.40 × 1013 to 2.11 × 1015 n/cm2. Overall, regardless of CAI type or host meteorite, CAIs from CV and CK chondrites have similar nucleosynthetic anomalies within analytical uncertainty. We suggest the region that CV and CK CAIs formed was largely uniform with respect to Sr, Mo, Ba, Nd, and Sm isotopes when CAIs condensed and that CAIs hosted in CV and CK meteorites are derived from the same isotopic reservoir.

  6. First-principles theory of anharmonicity and the inverse isotope effect in superconducting palladium-hydride compounds.

    PubMed

    Errea, Ion; Calandra, Matteo; Mauri, Francesco

    2013-10-25

    Palladium hydrides display the largest isotope effect anomaly known in the literature. Replacement of hydrogen with the heavier isotopes leads to higher superconducting temperatures, a behavior inconsistent with harmonic theory. Solving the self-consistent harmonic approximation by a stochastic approach, we obtain the anharmonic free energy, the thermal expansion, and the superconducting properties fully ab initio. We find that the phonon spectra are strongly renormalized by anharmonicity far beyond the perturbative regime. Superconductivity is phonon mediated, but the harmonic approximation largely overestimates the superconducting critical temperatures. We explain the inverse isotope effect, obtaining a -0.38 value for the isotope coefficient in good agreement with experiments, hydrogen anharmonicity being mainly responsible for the isotope anomaly.

  7. Enzymatic Kinetic Isotope Effects from Path-Integral Free Energy Perturbation Theory.

    PubMed

    Gao, J

    2016-01-01

    Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects. © 2016 Elsevier Inc. All rights reserved.

  8. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence.

    PubMed

    Berhanu, Tesfaye A; Meusinger, Carl; Erbland, Joseph; Jost, Rémy; Bhattacharya, S K; Johnson, Matthew S; Savarino, Joël

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. ["Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ((15)N, (17)O, and (18)O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ(15)N, δ(18)O, and Δ(17)O). From these measurements an average photolytic isotopic fractionation of (15)ɛ = (-15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of (15)ɛ = (-47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from -40 to -74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of (14)NO3 (-) and (15)NO3 (-) in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying this model under the experimental temperature as well as considering the

  9. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    NASA Astrophysics Data System (ADS)

    Berhanu, Tesfaye A.; Meusinger, Carl; Erbland, Joseph; Jost, Rémy; Bhattacharya, S. K.; Johnson, Matthew S.; Savarino, Joël

    2014-06-01

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. ["Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry," J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate (15N, 17O, and 18O) provide additional information concerning post-depositional processes. Here, we present results from studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ15N, δ18O, and Δ17O). From these measurements an average photolytic isotopic fractionation of 15ɛ = (-15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of 15ɛ = (-47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from -40 to -74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of 14NO3- and 15NO3- in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by applying this model under the experimental temperature as well as considering the shift in width and center well

  10. Observations of hydrogen and helium isotopes in solar cosmic rays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Hurford, G. J.

    1974-01-01

    The isotopic composition of hydrogen and helium in solar cosmic rays provides a means of studying solar flare particle acceleration mechanisms since the enhanced relative abundance of rare isotopes, such as H-2, H-3, and He-3, is due to their production by inelastic nuclear collisions in the solar atmosphere during the flare. Electron isotope spectrometer on an IMP spacecraft was used to measure this isotopic composition. The response of the dE/dx-E particle telescope is discussed, and alpha particle channeling in thin detectors is identified as an important background source affecting measurement of low values of (He-3/He-4). The flare-averaged results obtained for the period October, 1972 November, 1973 are given.

  11. Solvent and α-secondary kinetic isotope effects on β-glucosidase.

    PubMed

    Xie, Miaomiao; Byers, Larry D

    2015-11-01

    β-Glucosidase from sweet almond is a retaining, family 1, glycohydrolase. It is known that glycosylation of the enzyme by aryl glucosides occurs with little, if any, acid catalysis. For this reaction both the solvent and α-secondary kinetic isotope effects are 1.0. However, for the deglucosylation reaction (e.g., kcat for 2,4-dinitrophenyl-β-D-glucopyranoside) there is a small solvent deuterium isotope effect of 1.50 (±0.06) and an α-secondary kinetic isotope effect of 1.12 (±0.03). For aryl glucosides, kcat/KM is very sensitive to the pKa of the phenol leaving group [βlg≈-1; Dale et al., Biochemistry25 (1986) 2522-2529]. With alkyl glucosides the βlg is smaller (between -0.2 and -0.3) but still negative. This, coupled with the small solvent isotope effect on the pH-independent second-order rate constant for the glucosylation of the enzyme with 2,2,2-trifluoroethyl-β-glucoside [D2O(kcat/KM)=1.23 (±0.04)] suggests that there is more glycone-aglycone bond fission than aglycone oxygen protonation in the transition state for alkyl glycoside hydrolysis. The kinetics constants for the partitioning (between water and various alcohols) of the glucosyl-enzyme intermediate, coupled with the rate constants for the forward (hydrolysis) reaction provide an estimate of the stability of the glucosyl-enzyme intermediate. This is a relatively stable species with an energy about 2 to 4 kcal/mol higher than that of the ES complex. This article is part of a Special Issue entitled: Enzyme Transition States from Theory and Experiment. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Degradation and Volatilization of Chlorofluorocarbons in Contaminated Groundwater Explored by Stable Carbon Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Horst, A.; Lacrampe-Couloume, G.; Sherwood Lollar, B.

    2015-12-01

    Chlorofluorocarbons (CFCs) are ozone depleting compounds whose production was phased out by the regulations of the Montreal Protocol (1987). Accidental release and disposal also led to contamination of groundwater at many locations, however, and this legacy persists. Although very stable, CFCs may degrade via abiotic and biotic pathways. Quantification of the degree of transformation of CFCs has been challenging due to other processes such as dilution, sorption and volatilization. Compound specific stable carbon isotope analysis (CSIA) has been successfully applied for a variety of priority pollutants to distinguish degradation from other processes and to quantify transformation rates. A Purge & Trap - CSIA method developed in our lab was applied to determine the stable carbon isotopic signature of CFCs and HCFCs (hydrochlorofluorocarbons) in groundwater samples from a contaminated site. Preliminary results suggest that degradation of CFCs and HCFCs may result in enriched δ13C values, consistent with fractionation during bond breakage as has been reported for many other hydrocarbon pollutants. The effect of volatile loss during sampling on the isotopic signatures of CFCs was examined in laboratory experiments. Volatilization from pure phase CFCs showed a small inverse isotope effect during open system volatilization, opposite to the normal isotope effect generally observed during biodegradation. For volatilization of CFCs dissolved in water a much smaller isotope effect was observed. An important result from this work is that any volatile loss may introduce only a small change in CFC isotopic signatures in groundwater, and importantly, due to the opposite direction of isotope effects associated with volatilization versus degradation, any effects of volatile loss on the isotopic signatures cannot be confused with transformation of CFCs. At most, volatilization might contribute to a conservative estimate of the extent of degradation.

  13. Oxygen isotope anomaly observed in water vapor from Alert, Canada and the implication for the stratosphere

    PubMed Central

    Lin, Ying; Clayton, Robert N.; Huang, Lin; Nakamura, Noboru; Lyons, James R.

    2013-01-01

    To identify the possible anomalous oxygen isotope signature in stratospheric water predicted by model studies, 25 water vapor samples were collected in 2003−2005 at Alert station, Canada (82°30′N), where there is downward transport of stratospheric air to the polar troposphere, and were analyzed for δ17O and δ18O relative to Chicago local precipitation (CLP). The latter was chosen as a reference because the relatively large evaporative moisture source should erase any possible oxygen isotope anomaly from the stratosphere. A mass-dependent fractionation coefficient for meteoric waters, λMDF(H2O) = 0.529 ± 0.003 [2σ standard error (SE)], was determined from 27 CLP samples collected in 2003−2005. An oxygen isotopic anomaly of Δ17O = 76 ± 16 ppm (2σ SE) was found in water vapor samples from Alert relative to CLP. We propose that the positive oxygen isotope anomalies observed at Alert originated from stratospheric ozone, were transferred to water in the stratosphere, and subsequently mixed with tropospheric water at high latitudes as the stratospheric air descended into the troposphere. On the basis of this ground signal, the average Δ17O in stratospheric water vapor predicted by a steady-state box model is ∼40‰. Seven ice core samples (1930−1991) from Dasuopu glacier (Himalayas, China) and Standard Light Antarctic Precipitation did not show an obvious oxygen isotope anomaly, and Vienna Standard Mean Ocean Water exhibited a negative Δ17O relative to CLP. Six Alert snow samples collected in March 2011 and measured at Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France, had 17Oexcess of 45 ± 5 ppm (2σ SE) relative to Vienna Standard Mean Ocean Water. PMID:24009339

  14. Isotope effects in photo dissociation of ozone with visible light

    NASA Astrophysics Data System (ADS)

    Früchtl, Marion; Janssen, Christof; Röckmann, Thomas

    2014-05-01

    Ozone (O3) plays a key role for many chemical oxidation processes in the Earth's atmosphere. In these chemical reactions, ozone can transfer oxygen to other trace gases. This is particularly interesting, since O3 has a very peculiar isotope composition. Following the mass dependent fractionation equation δ17O = 0.52 * δ18O, most fractionation processes depend directly on mass. However, O3 shows an offset to the mass dependent fractionation line. Processes, which show such anomalies, are termed mass independent fractionations (MIF). A very well studied example for a chemical reaction that leads to mass independent fractionation is the O3 formation reaction. To what degree O3 destruction reactions need to be considered in order to understand the isotope composition of atmospheric O3 is still not fully understood and an open question within scientific community. We set up new experiments to investigate the isotope effect resulting from photo dissociation of O3 in the Chappuis band (R1). Initial O3 is produced by an electric discharge. After photolysis O3 is collected in a cold trap at the triple point temperature of nitrogen (63K). O3 is then converted to O2 in order to measure the oxygen isotopes of O3 using isotope ratio mass spectrometry. To isolate O3 photo dissociation (R1) from O3 decomposition (R2) and secondary O3 formation (R3), we use varying amounts of carbon monoxide (CO) as O atom quencher (R4). In this way we suppress the O + O3 reaction (R3) and determine the isotope fractionation in R1 and R2 separately. We present first results on the isotope effects in O3 photo dissociation with visible light in the presence of different bath gases. Results are interpreted based on chemical kinetics modeling. (R1) O3 + hυ → O (3P) + O2 (R2) O3 + O (3P) → 2 O2 (R3) O + O2 + M → O3 + M (R4) O (3P) + CO + M → CO2 + M

  15. Fractionation of Fe isotopes by soil microbes and organic acids

    USGS Publications Warehouse

    Brantley, Susan L.; Liermann, Laura; Bullen, Thomas D.

    2001-01-01

    Small natural variations in Fe isotopes have been attributed to biological cycling. However, without understanding the mechanism of fractionation, it is impossible to interpret such variations. Here we show that the δ56Fe of Fe dissolved from a silicate soil mineral by siderophore-producing bacteria is as much as 0.8% lighter than bulk Fe in the mineral. A smaller isotopic shift is observed for Fe released abiotically by two chelates, and the magnitude of the shift increases with affinity of the ligand for Fe, consistent with a kinetic isotope effect during hydrolysis of Fe at the mineral surface. Fe dissolved abiotically without chelates shows no isotopic shift. The δ56Fe of the exchange fraction on soil grains is also lighter by ~0.6%-1% than Fe from both hornblende and iron oxyhydroxides. The kinetic isotope effect is therefore preserved in open systems such as soils. when recorded in the rock record, Fe isotopic fractionation could document Fe transport by organic molecules or by microbes where such entities were present in the geologic past.

  16. Utilizing Stable Isotopes and Isotopic Anomalies to Study Early Solar System Formation Processes

    NASA Technical Reports Server (NTRS)

    Simon, Justin

    2017-01-01

    Chondritic meteorites contain a diversity of particle components, i.e., chondrules and calcium-, aluminum-rich refractory inclusions (CAIs), that have survived since the formation of the Solar System. The chemical and isotopic compositions of these materials provide a record of the conditions present in the protoplanetary disk where they formed and can aid our understanding of the processes and reservoirs in which solids formed in the solar nebula, an important step leading to the accretion of planetesimals. Isotopic anomalies associated with nucleosynthetic processes are observed in these discrete materials, and can be compared to astronomical observations and astrophysical formation models of stars and more recently proplyds. The existence and size of these isotopic anomalies are typically thought to reflect a significant state of isotopic heterogeneity in the earliest Solar System, likely left over from molecular cloud heterogeneities on the grain scale, but some could also be due to late stellar injection. The homogenization of these isotopic anomalies towards planetary values can be used to track the efficiency and timescales of disk wide mixing,

  17. Isotope effect on superconductivity and Raman phonons of Pyrochlore Cd2Re2O7

    NASA Astrophysics Data System (ADS)

    Razavi, F. S.; Hajialamdari, M.; Reedyk, M.; Kremer, R. K.

    2018-06-01

    Cd2Re2O7 is the only α-Pyrochlore exhibiting superconductivity with a transition temperature (Tc) of ∼ 1 K. In this study, we present the effect of oxygen isotope (18O) as well as combined 18O and cadmium isotope (116Cd) substitution on the superconductivity and Raman scattering spectrum of Cd2Re2O7. The change of Tc and the energy gap Δ(T) are reported using various techniques including point contact spectroscopy. The shift in Raman phonon frequencies upon isotope substitution will be compared with measurement of the isotope effect on the superconducting transition temperature.

  18. Predictive Framework and Experimental Tests of the Kinetic Isotope Effect at Redox-Active Interfaces

    NASA Astrophysics Data System (ADS)

    Kavner, A.; John, S.; Black, J. R.

    2013-12-01

    Electrochemical reactions provide a compelling framework to study kinetic isotope effects because redox-related processes are important for a wide variety of geological and environmental processes. In the laboratory, electrochemical reaction rates can be electronically controlled and measured in the laboratory using a potentiostat. This enables variation of redox reactions rates independent of changes in chemistry and, and the resulting isotope compositions of reactants and products can be separated and analyzed. In the past years, a series of experimental studies have demonstrated a large, light, and tunable kinetic isotope effect during electrodeposition of metal Fe, Zn, Li, Cu, and Mo from a variety of solutions (e.g. Black et al., 2009, 2010, 2011). A theoretical framework based on Marcus kinetic theory predicts a voltage-dependent kinetic isotope effect (Kavner et al., 2005, 2008), however while this framework was able to predict the tunable nature of the effect, it was not able to simultaneously predict absolute reaction rates and relative isotope rates. Here we present a more complete development of a statistical mechanical framework for simple interfacial redox reactions, which includes isotopic behavior. The framework is able to predict a kinetic isotope effect as a function of temperature and reaction rate, starting with three input parameters: a single reorganization energy which describes the overall kinetics of the electron transfer reaction, and the equilibrium reduced partition function ratios for heavy and light isotopes in the product and reactant phases. We show the framework, elucidate some of the predictions, and show direct comparisons against isotope fractionation data obtained during laboratory and natural environment redox processes. A. Kavner, A. Shahar, F. Bonet, J. Simon and E. Young (2005) Geochim. Cosmochim. Acta, 69(12), 2971-2979. A. Kavner, S. G. John, S. Sass, and E. A. Boyle (2008), Geochim. Cosmochim. Acta, vol 72, pp. 1731

  19. Rate-dependent carbon and nitrogen kinetic isotope fractionation in hydrolysis of isoproturon.

    PubMed

    Penning, Holger; Cramer, Christopher J; Elsner, Martin

    2008-11-01

    Stable isotope fractionation permits quantifying contaminant degradation in the field when the transformation reaction is associated with a consistent isotope enrichment factor epsilon. When interpreted in conjunction with dual isotope plots, isotope fractionation is also particularly useful for elucidating reaction mechanisms. To assess the consistency of epsilon and dual isotope slopes in a two-step reaction, we investigated the abiotic hydrolysis of the herbicide isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) using a fragmentation method that allows measuring isotope ratios in different parts of the molecule. Carbon and nitrogen position-specific isotope fractionation, as well as slopes in dual isotope plots, varied linearly with rate constants k(obs) depending on the presence of buffers that mediate the initial zwitterion formation. The correlation can be explained by two consecutive reaction steps (zwitterion formation followed by dimethylamine elimination) each of which has a different kinetic isotope effect and may be rate-limiting. Intrinsic isotope effects for both steps, extracted from our kinetic data using a novel theoretical treatment, agree well with values computed from density functional calculations. Our study therefore demonstrates that more variable isotope fractionation may be observed in simple chemical reactions than commonly thought, but that consistent epsilon or dual isotope slopes may nonetheless be encountered in certain molecular fragments.

  20. Isotopic Analysis and Evolved Gases

    NASA Technical Reports Server (NTRS)

    Swindle, Timothy D.; Boynton, William V.; Chutjian, Ara; Hoffman, John H.; Jordan, Jim L.; Kargel, Jeffrey S.; McEntire, Richard W.; Nyquist, Larry

    1996-01-01

    Precise measurements of the chemical, elemental, and isotopic composition of planetary surface material and gases, and observed variations in these compositions, can contribute significantly to our knowledge of the source(s), ages, and evolution of solar system materials. The analyses discussed in this paper are mostly made by mass spectrometers or some other type of mass analyzer, and address three broad areas of interest: (1) atmospheric composition - isotopic, elemental, and molecular, (2) gases evolved from solids, and (3) solids. Current isotopic data on nine elements, mostly from in situ analysis, but also from meteorites and telescopic observations are summarized. Potential instruments for isotopic analysis of lunar, Martian, Venusian, Mercury, and Pluto surfaces, along with asteroid, cometary and icy satellites, surfaces are discussed.

  1. Calcium Isotope Geochemistry: Research Horizons and Nanoscale Fractionation Processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, W; Simon, J I; DePaolo, D J

    Interest in studies of calcium isotope variations in nature continues to increase. Investigations span human biology, plants and soils, oceanography and paleoclimate, early solar system processes, aqueous geochemistry, and silicate liquid structure. Variations in the 44Ca/40Ca ratio are generally small, about 5 {per_thousand}, but gradual small improvements in analytical capability now yield 0.05 to 0.1 {per_thousand} resolution. The field is still plagued by a lack of universal standards for isotope ratios and data representation, but these are secondary issues. Traditional isotopic systems have been based in equilibrium thermodynamics, which can explain the magnitude and sign of observed mass-dependent fractionation behavior.more » For Ca isotopes this is not the case. There is still no reliable way to estimate the equilibrium free energy associated with isotopic exchange between most phases of interest. Experiments are difficult to interpret because it is almost impossible to precipitate minerals from aqueous solution at equilibrium at low temperature. Some studies suggest that, for example, there is no equilibrium isotopic fractionation between calcite and dissolved aqueous Ca. There is good evidence that most Ca isotopic fractionation is caused by kinetic effects. The details of the controlling processes are still missing, and without this mechanistic understanding it is difficult to fully understand the implications of natural isotopic variations. Recent work on dissolved Ca, calcite, and sulfates in both laboratory and natural settings is shedding light on where the fractionation may arise. There is emerging evidence for mass dependent fractionation associated with aqueous diffusion, but probably the primary source of the effects is in the details of precipitation of minerals from solution. This makes the fractionation potentially dependent on a number of factors, including solution composition and mineral growth rate. The next challenge is to develop

  2. Carbon kinetic isotope effect in the reaction of CH4 with HO

    NASA Technical Reports Server (NTRS)

    Davidson, J. A.; Cantrell, C. A.; Tyler, S. C.; Shetter, R. E.; Cicerone, R. J.

    1987-01-01

    The carbon kinetic isotope effect in the CH4 + HO reaction is measured experimentally and the use of carbon isotope ratios to diagnose atmospheric methane is examined. The chemical, photolysis, and analytical experimental conditions and procedures are described. It is determined that the CH4 + HO reaction has a carbon kinetic isotope effect of 1.010 + or 0.007 for k(12)k(13) (rate constants ratio) at 297 + or - 3 K. This value is compared with the data of Rust and Stevens (1980). Causes for the poor correlation between the data at high methane conversions are discussed. It is supposed that the difference between the k(12) and k(13) values is due to a difference in the activation energy of the two reactions.

  3. Temperature effects on the fractionation of multiple sulfur isotopes by Thermodesulfobacterium and Desulfovibrio strains

    NASA Astrophysics Data System (ADS)

    Wang, P.; Sun, C.; Ono, S.; Lin, L.

    2012-12-01

    Microbial dissimilatory sulfate reduction is one of the major mechanisms driving anaerobic mineralization of organic matter in global ocean. While sulfate-reducing prokaryotes are well known to fractionate sulfur isotopes during dissimilatory sulfate reduction, unraveling the isotopic compositions of sulfur-bearing minerals preserved in sedimentary records could provide invaluable constraints on the evolution of seawater chemistry and metabolic pathways. Variations in the sulfur isotope fractionations are partly due to inherent differences among species and also affected by environmental conditions. The isotope fractionations caused by microbial sulfate reduction have been interpreted to be a sequence of enzyme-catalyzed isotope fractionation steps. Therefore, the fractionation factor depends on (1) the sulfate flux into and out of the cell, and (2) the flux of sulfur transformation between the internal pools. Whether the multiple sulfur isotope effect could be quantitatively predicted using such a metabolic flux model would provide insights into the cellular machinery catalyzing with sulfate reduction. This study examined the multiple sulfur isotope fractionation patterns associated with a thermophilic Thermodesulfobacterium-related strain and a mesophilic Desulfovibrio gigas over a wide temperature range. The Thermodesulfobacterium-related strain grew between 34 and 79°C with an optimal temperature at 72°C and the highest cell-specific sulfate reduction rate at 77°C. The 34ɛ values ranged between 8.2 and 31.6‰ with a maximum at 68°C. The D. gigas grew between 10 and 45 °C with an optimal temperature at 30°C and the highest cell-specific sulfate reduction rate at 41°C. The 34ɛ values ranged between 10.3 and 29.7‰ with higher magnitude at both lower and higher temperatures. The results of multiple sulfur isotope measurements expand the previously reported range and cannot be described by a solution field of the metabolic flux model, which calculates

  4. Linear free energy relationship and deuterium kinetic isotope effect observed on phospho and thiophosphoryl transfer reactions in some organophosphorous compounds

    NASA Astrophysics Data System (ADS)

    Lumbiny, B. J.; Hui, Z.; Islam, M. A.; Quader, M. A.; Rahman, M.

    2014-04-01

    Tetracoordinated organophosphorous compounds were synthesized, characterized and nucleophilic substitution reaction were investigated by varying substituents around phosphorous centre or in nucleophile considering its utility in biological and environmental system. The reactivity is expressed in terms of second-order rate constant, k2 and measured conductometrically. Linear Free Energy Relationship (LFER) tools mainly Hammett (ρ), Brönsted (β) LFER coefficients and deuterium kinetic isotope effects (KIEs) being determined for the pyridinolysis of 4 - chlorophenyl 4 - methoxy phenyl chlorophosphate, 1 in acetonitrile at 5.0 °C. The experimental data's were compared with those of structurally similar organophosphorous compounds reported earlier in quest for the mechanistic information. Nice linear correlation being found for Hammett (logk2 vs σx), having negative value of the ρX = -5.85 and Brönsted (logk2 vs pKa(x)) plots having large positive value for βX = 1.18 for 1 can be interpreted as SN2 process with greater extent of bond formation in transition state (TS) of 1. The observed kH/kD values of 1 is 1.00 ± 0.05 and net KIE, 1.32 suggests the primary KIE and indicates frontside nucleophilic attack through the partial deprotonation of pyridine occurs by the hydrogen bonding in the rate-determining step.

  5. Isotope Geochemistry for Comparative Planetology of Exoplanets

    NASA Technical Reports Server (NTRS)

    Mandt, K. E.; Atreya, S.; Luspay-Kuti, A.; Mousis, O.; Simon, A.; Hofstadter, M. D.

    2017-01-01

    Isotope geochemistry has played a critical role in understanding processes at work in and the history of solar system bodies. Application of these techniques to exoplanets would be revolutionary and would allow comparative planetology with the formation and evolution of exoplanet systems. The roadmap for comparative planetology of the origins and workings of exoplanets involves isotopic geochemistry efforts in three areas: (1) technology development to expand observations of the isotopic composition of solar system bodies and expand observations to isotopic composition of exoplanet atmospheres; (2) theoretical modeling of how isotopes fractionate and the role they play in evolution of exoplanetary systems, atmospheres, surfaces and interiors; and (3) laboratory studies to constrain isotopic fractionation due to processes at work throughout the solar system.

  6. Kinetic commitment in the catalysis of glutamine synthesis by GS1 from Arabidopsis using 14N/15N and solvent isotope effects.

    PubMed

    Mauve, Caroline; Giraud, Nicolas; Boex-Fontvieille, Edouard R A; Antheaume, Ingrid; Tea, Illa; Tcherkez, Guillaume

    2016-11-01

    Glutamine synthetase (GS, EC 6.3.1.2) catalyzes the production of glutamine from glutamate, ammonium and ATP. Although being essential in plants for N assimilation and recycling, kinetic commitments and transition states of the reaction have not been clearly established yet. Here, we examined 12 C/ 13 C, 14 N/ 15 N and H 2 O/D 2 O isotope effects in Arabidopsis GS1 catalysis and compared to the prokaryotic (Escherichia coli) enzyme. A 14 N/ 15 N isotope effect ( 15 V/K ≈ 1.015, with respect to substrate NH 4 + ) was observed in the prokaryotic enzyme, indicating that ammonium utilization (deprotonation and/or amidation) was partially rate-limiting. In the plant enzyme, the isotope effect was inverse ( 15 V/K = 0.965), suggesting that the reaction intermediate is involved in an amidation-deamidation equilibrium favoring 15 N. There was no 12 C/ 13 C kinetic isotope effect ( 13 V/K = 1.000), suggesting that the amidation step of the catalytic cycle involves a transition state with minimal alteration of overall force constants at the C-5 carbon. Surprisingly, the solvent isotope effect was found to be inverse, that is, with a higher turn-over rate in heavy water ( D V ≈ 0.5), showing that restructuration of the active site due to displacement of H 2 O by D 2 O facilitates the processing of intermediates. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Tracing mantle processes with Fe isotopes

    NASA Astrophysics Data System (ADS)

    Weyer, S.; Ionov, D.

    2006-12-01

    High precision Fe isotope measurements have been performed on various mantle peridotites (fertile lherzolites, harzburgites, metasomatised Fe-enriched rocks) and volcanic rocks (mainly oceanic basalts) from different localities and tectonic settings. Pimitive peridotites (Mg# = 0.894) yield delta56Fe = 0.02 and are significantly lighter than the basalts (average delta56Fe = 0.11). Furthermore, the peridotites display a negative correlation of iron isotopes with Mg#. Taken together, these findings imply that Fe isotopes fractionate during partial melting, with heavy isotopes preferentially entering the melt [1, 2]. A particularly good correlation of the Fe isotope composition and Mg# shown by poorly metasomatised spinel lherzolites of three localities (Horoman, Kamchatka and Lherz) was used to model Fe isotope fractionation during partial melting, resulting in alphamantle-melt = 1.0003. This value implies higher Fe isotope fractionation between residual mantle and mantle-derived melts (i.e. Delta56Femantle-melt = 0.2-0.3) than the observed difference between the peridotites and the basalts in this study. Our data on plagioclase lherzolites from Horoman and spinel lherzolites from other localities indicate that the difference in Fe isotope composition between mantle and basalts may be reduced by partial re-equilibration between the isotopically heavy basalts and the isotopically light depleted lithospheric mantle during melt ascent. Besides partial melting, the Fe isotope composition of mantle peridotites can also be significantly modified by metasomatic events. At two localities (Tok, Siberia and Tariat, Mongolia) Fe isotopes correlates with the Fe concentration of the peridotites, which was increased up to 14.5% FeO by melt percolation. Such processes can be accompanied by chromatographic effects and produce a range of Fe isotope compositions in the percolation columns, from extremely light to heavy (delta56Fe = -0.42 to +0.17). We propose that Fe isotopes can be

  8. Temporal and spatial distribution of isotopes in river water in Central Europe: 50 years experience with the Austrian network of isotopes in rivers.

    PubMed

    Rank, Dieter; Wyhlidal, Stefan; Schott, Katharina; Weigand, Silvia; Oblin, Armin

    2018-05-01

    The Austrian network of isotopes in rivers comprises about 15 sampling locations and has been operated since 1976. The Danube isotope time series goes back to 1963. The isotopic composition of river water in Central Europe is mainly governed by the isotopic composition of precipitation in the catchment area; evaporation effects play only a minor role. Short-term and long-term isotope signals in precipitation are thus transmitted through the whole catchment. The influence of climatic changes has become observable in the long-term stable isotope time series of precipitation and surface waters. Environmental 3 H values were around 8 TU in 2015, short-term 3 H pulses up to about 80 TU in the rivers Danube and March were a consequence of releases from nuclear power plants. The complete isotope data series of this network will be included in the Global Network of Isotopes in Rivers database of the International Atomic Energy Agency (IAEA) in 2017. This article comprises a review of 50 years isotope monitoring on rivers and is also intended to provide base information on the (isotope-)hydrological conditions in Central Europe specifically for the end-users of these data, e.g. for modelling hydrological processes. Furthermore, this paper includes the 2006-2015 supplement adding to the Danube isotope set published earlier.

  9. Anomalously large isotope effect in the glass transition of water

    DOE PAGES

    Gainaru, Catalin; Agapov, Alexander L.; Fuentes-Landete, Violeta; ...

    2014-11-24

    Here we present the discovery of an unusually large isotope effect in the structural relaxation and the glass transition temperature T g of water. Dielectric relaxation spectroscopy of low-density as well as of vapor deposited amorphous water reveal T g differences of 10±2K between H 2O and D 2O, sharply contrasting with other hydrogen bonded liquids for which H/D exchange increases T g by typically less than 1K. We show that the large isotope effect and the unusual variation of relaxation times in water at low temperatures can be explained in terms of quantum effects. Thus, our findings shed newmore » light on water's peculiar low-temperature dynamics and the possible role of quantum effects in its structural relaxation, and possibly in dynamics of other low molecular weight liquids.« less

  10. Nuclear volume effects in equilibrium stable isotope fractionations of mercury, thallium and lead

    PubMed Central

    Yang, Sha; Liu, Yun

    2015-01-01

    The nuclear volume effects (NVEs) of Hg, Tl and Pb isotope systems are investigated with careful evaluation on quantum relativistic effects via the Dirac’s formalism of full-electron wave function. Equilibrium 202Hg/198Hg, 205Tl/203Tl, 207Pb/206Pb and 208Pb/206Pb isotope fractionations are found can be up to 3.61‰, 2.54‰, 1.48‰ and 3.72‰ at room temperature, respectively, larger than fractionations predicted by classical mass-dependent isotope fractionations theory. Moreover, the NVE can cause mass-independent fractionations (MIF) for odd-mass isotopes and even-mass isotopes. The plot of vs. for Hg-bearing species falls into a straight line with the slope of 1.66, which is close to previous experimental results. For the first time, Pb4+-bearing species are found can enrich heavier Pb isotopes than Pb2+-bearing species to a surprising extent, e.g., the enrichment can be up to 4.34‰ in terms of 208Pb/206Pb at room temperature, due to their NVEs are in opposite directions. In contrast, fractionations among Pb2+-bearing species are trivial. Therefore, the large Pb fractionation changes provide a potential new tracer for redox conditions in young and closed geologic systems. The magnitudes of NVE-driven even-mass MIFs of Pb isotopes (i.e., ) and odd-mass MIFs (i.e., ) are almost the same but with opposite signs. PMID:26224248

  11. Multi-scale study of the isotope effect in ISTTOK

    NASA Astrophysics Data System (ADS)

    Liu, B.; Silva, C.; Figueiredo, H.; Pedrosa, M. A.; van Milligen, B. Ph.; Pereira, T.; Losada, U.; Hidalgo, C.

    2016-05-01

    The isotope effect, namely the isotope dependence of plasma confinement, is still one of the principal scientific conundrums facing the magnetic fusion community. We have investigated the impact of isotope mass on multi-scale mechanisms, including the characterization of radial correlation lengths (\\boldsymbol{L}{r} ) and long-range correlations (LRC) of plasma fluctuations using multi-array Langmuir probe system, in hydrogen (H) and deuterium (D) plasmas in the ISTTOK tokamak. We found that when changing plasma composition from the H dominated to D dominated, the LRC amplitude increased markedly (10-30%) and the \\boldsymbol{L}{r} increased slightly (~10%). The particle confinement also improved by about 50%. The changes of LRC and \\boldsymbol{L}{r} are congruent with previous findings in the TEXTOR tokamak (Xu et al 2013 Phys. Rev. Lett. 110 265005). In addition, using biorthogonal decomposition, both geodesic acoustic modes and very low frequency (<5 kHz) coherent modes were found to be contributing to LRC.

  12. Nitrogen isotope fractionation during archaeal ammonia oxidation: Coupled estimates from isotopic measurements of ammonium and nitrite

    NASA Astrophysics Data System (ADS)

    Mooshammer, Maria; Stieglmeier, Michaela; Bayer, Barbara; Jochum, Lara; Melcher, Michael; Wanek, Wolfgang

    2014-05-01

    Ammonia-oxidizing archaea (AOA) are ubiquitous in marine and terrestrial environments and knowledge about the nitrogen (N) isotope effect associated with their ammonia oxidation activity will allow a better understanding of natural abundance isotope ratios, and therefore N transformation processes, in the environment. Here we examine the kinetic isotope effect for ammonia oxidation in a pure soil AOA culture (Ca. Nitrososphaera viennensis) and a marine AOA enrichment culture. We estimated the isotope effect from both isotopic signatures of ammonium and nitrite over the course of ammonia oxidation. Estimates of the isotope effect based on the change in the isotopic signature of ammonium give valuable insight, because these estimates are not subject to the same concerns (e.g., accumulation of an intermediate) as estimates based on isotopic measurements of nitrite. Our results show that both the pure soil AOA culture and a marine AOA enrichment culture have similar but substantial isotope effect during ammonia consumption (31-34 per mill; based on ammonium) and nitrite production (43-45 per mill; based on nitrite). The 15N fractionation factors of both cultures tested fell in the upper range of the reported isotope effects for archaeal and bacterial ammonia oxidation (10-41 per mill) or were even higher than those. The isotope fractionation for nitrite production was significantly larger than for ammonium consumption, indicating that (1) some intermediate (e.g., hydroxylamine) of ammonia oxidation accumulates, allowing for a second 15N fractionation step to be expressed, (2) a fraction of ammonia oxidized is lost via gaseous N forms (e.g., NO or N2O), which is 15N-enriched or (3) a fraction of ammonium is assimilated into AOA biomass, biomass becoming 15N-enriched. The significance of these mechanisms will be explored in more detail for the soil AOA culture, based on isotope modeling and isotopic measurements of biomass and N2O.

  13. Experimental investigation of nitrogen isotopic effects associated with ammonia degassing at 0-70 °C

    NASA Astrophysics Data System (ADS)

    Deng, Yuying; Li, Yingzhou; Li, Long

    2018-04-01

    Ammonia degassing is a common process in natural alkaline waters and in the atmosphere. To quantitatively assess the nitrogen cycle in these systems, the essential parameter of nitrogen isotope fractionation factors associated with ammonia degassing is required, but still not constrained yet. In this study, we carried out laboratory experiments to examine the nitrogen isotope behavior during ammonia degassing in alkaline conditions. The experiments started with ammonium sulfate solution with excess sodium hydroxide. The reaction can be described as: NH4+ + OH- (excess) → NH3·nH2O → NH3 (g)↑. Two sets of experiments, one with ammonia degassing under static conditions and the other with ammonia degassing by bubbling of N2 gas, were carried out at 2, 21, 50, and 70 °C. The results indicate that kinetic isotopic effects are dominated during efficient degassing of ammonia in the bubbling experiments, which yielded kinetic nitrogen isotope fractionation factors αNH3(g)-NH3(aq) of 0.9898 at 2 °C, 0.9918 at 21 °C, 0.9935 at 50 °C and 0.9948 at 70 °C. These values show a good relationship with temperature as 103lnαNH3(g)-NH3(aq) = 14.6 - 6.8 × 1000/T. In contrast, isotopic effects during less efficient degassing of ammonia in the static experiments are more complicated. The results do not match either kinetic isotope fractionation or equilibrium isotope fractionation but sit between these two. The most likely cause is that back dissolution of the degassed ammonia occurred in these experiments and consequently shifted kinetic isotope fractionation toward equilibrium isotope fractionation. Our experimental results highlight complicated isotopic effects may occur in natural environments, and need to be fully considered in the interpretation of field data.

  14. Calcium induced ATP synthesis: Isotope effect, magnetic parameters and mechanism

    NASA Astrophysics Data System (ADS)

    Buchachenko, A. L.; Kuznetsov, D. A.; Breslavskaya, N. N.; Shchegoleva, L. N.; Arkhangelsky, S. E.

    2011-03-01

    ATP synthesis by creatine kinase with calcium ions is accompanied by 43Ca/ 40Ca isotope effect: the enzyme with 43Ca 2+ was found to be 2.0 ± 0.3 times more active than enzymes, in which Ca 2+ ions have nonmagnetic nuclei 40Ca. The effect demonstrates that primary reaction in ATP synthesis is electron transfer between reaction partners, Сa( HO)n2+ ( n ⩽ 3) and Ca 2+(ADP) 3-. It generates ion-radical pair, in which spin conversion results in the isotope effect. Magnetic parameters (g-factors and HFC constants a( 43Ca) and a( 31P)) confirm that namely terminal oxygen atom of the ADP ligand in the complex Ca 2+(ADP) 3- donates electron to the Ca( HO)n2+ ion.

  15. Experimentally determined isotope effect during Mg-Fe interdiffusion in olivine

    NASA Astrophysics Data System (ADS)

    Sio, C. K. I.; Roskosz, M.; Dauphas, N.; Bennett, N.; Mock, T. D.; Shahar, A.

    2017-12-01

    Isotopic fractionation provides the most direct means to investigate the nature of chemical zoning in minerals, which can be produced by either diffusive transport or crystal growth. Misinterpreting the nature of chemical zoning can result in erroneous conclusions regarding magmatic cooling rates and diffusion timescales. Isotopes are useful in this regard because the light isotopes diffuse faster than their heavier counterparts. As a result, isotopic fractionations should be associated with chemical zoning profiles if they are diffusion-driven. In contrast, little isotopic fractionation is associated with crystal growth during slow cooling at magmatic temperatures. The isotope effect for diffusion is described by β and is related to the mass (m) and diffusivity (D) of isotopes i and j of an element via: Di/Dj = (mj/mi)β. To model isotopic profiles, knowledge of β is required. Several estimates of β for Mg and Fe diffusion in olivine have been reported using natural samples but these estimates are uncertain because they depend on the choice of modeling parameters (Sio et al., 2013; Oeser et al., 2015; Collinet et al., 2017). We have experimentally determined β for Fe (βFe) in olivine as a function of crystallographic orientation, composition, and temperature. Thirty experiments have been conducted by juxtaposing crystallographically oriented olivine crystals to make Fo83.4-Fo88.8 and Fo88.8-Fo100 diffusion couples. These diffusion couples were annealed in a 1 atm gas mixing furnace at 1200 °C, 1300 °C or 1400 °C at QFM - 1.5 for up to 15 days. Chemical profiles were characterized using an electron microprobe and isotopic analyses were done using laser ablation MC-ICPMS. We found a crystallographic dependence of βFe for the Fo88.8-Fo100 couple where βFe [100] ≈ βFe [010] > βFe [001]. For the Fo83.4-Fo88.8 couple, βFe is 0.16 ± 0.09 (2σ) for all 3 major crystallographic axes. A temperature dependence of βFe could not be resolved. These

  16. Geomagnetically trapped light isotopes observed with the detector NINA

    NASA Astrophysics Data System (ADS)

    Bakaldin, A.; Galper, A.; Koldashov, S.; Korotkov, M.; Leonov, A.; Mikhailov, V.; Murashov, A.; Voronov, S.; Bidoli, V.; Casolino, M.; De Pascale, M.; Furano, G.; Iannucci, A.; Morselli, A.; Picozza, P.; Sparvoli, R.; Boezio, M.; Bonvicini, V.; Cirami, R.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; Circella, M.; De Marzo, C.; Adriani, O.; Papini, P.; Spillantini, P.; Straulino, S.; Vannuccini, E.; Ricci, M.; Castellini, G.

    2002-08-01

    The detector New Instrument for Nuclear Analysis (NINA) aboard the satellite Resurs-01-N4 detected hydrogen and helium isotopes geomagnetically trapped, while crossing the South Atlantic Anomaly. Deuterium and tritium at L shell < 1.2 were unambiguously recognized. The 3He and 4He power law spectra, reconstructed at L shell = 1.2 and B < 0.22 G, have indices equal to 2.30 +/- 0.08 in the energy range 12-50 MeV nucleon-1 and 3.4 +/- 0.2 in 10-30 MeV nucleon-1, respectively. The measured 3He/4He ratio and the reconstructed deuterium profile as a function of L shell bring one to the conclusion that the main source of radiation belt light isotopes at Resurs altitudes (~800 km) and for energy greater than 10 MeV nucleon-1 is the interaction of trapped protons with residual atmospheric helium.

  17. EXAFS Reveals the Mechanism of U Isotope Fractionation During Adsorption to Mn Oxyhydroxide

    NASA Astrophysics Data System (ADS)

    Wasylenki, L. E.; Brennecka, G.; Bargar, J.; Weyer, S.; Anbar, A. D.

    2010-12-01

    Natural variations in the ratio of 238U/235U due to “stable” isotope fractionation have now been reported for a range of geological samples [1-3]. Among the observed variations are a small difference in 238U/235U between seawater and ferromanganese sediments (seawater slightly heavier) and a larger difference, with opposite sense, between seawater and black shales (seawater lighter). These variations suggest that long-term changes in the proportions of oxic and anoxic/sulfidic sinks for U in the ocean over Earth’s history may be recorded as shifts in the isotopic compositions of marine sediments. Thus U isotopes are a potential paleoredox proxy for the oceans, as suggested by [4]. In order to investigate the mechanism behind fractionation of U isotopes in oxidizing marine environments, we previously conducted simple adsorption experiments in which an isotopically known pool of dissolved U partly adsorbed onto synthetic birnessite, a common Mn oxyhydroxide in hydrogenetic ferromanganese crusts. Our experimental result agreed very well with that observed between seawater and natural ferromanganese sediments: δ238U/235U of adsorbed U was 0.2‰ lighter than δ238U/235U of dissolved U [5]. The magnitude of fractionation is constant as a function of experimental duration and fraction of U adsorbed, suggesting an equilibrium isotope effect. Many metal isotope effects are driven by changes in oxidation state for the metal of interest. Because both dissolved and adsorbed U are hexavalent in this system, a redox reaction cannot be causing isotope fractionation. We therefore hypothesized that a difference in uranium’s coordination environment between dissolved and adsorbed U is likely responsible for the isotope effect. We analyzed a sample from our experimental study with extended X-ray absorption fine structure (EXAFS) spectroscopy. Comparison of the EXAFS spectrum of U adsorbed on birnessite with the spectra of aqueous U species (UO22+ and UO2(CO3)34-) reveals

  18. Methane clumped isotopes: Progress and potential for a new isotopic tracer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douglas, Peter M. J.; Stolper, Daniel A.; Eiler, John M.

    The isotopic composition of methane is of longstanding geochemical interest, with important implications for understanding hydrocarbon systems, atmospheric greenhouse gas concentrations, the global carbon cycle, and life in extreme environments. Recent analytical developments focusing on multiply substituted isotopologues (‘clumped isotopes’) are opening a potentially valuable new window into methane geochemistry. When methane forms in internal isotopic equilibrium, clumped isotopes can provide a direct record of formation temperature, making this property particularly valuable for identifying different methane origins. However, it has also become clear that in certain settings methane clumped isotope measurements record kinetic rather than equilibrium isotope effects. Here wemore » present a substantially expanded dataset of methane clumped isotope analyses, and provide a synthesis of the current interpretive framework for this parameter. We review different processes affecting methane clumped isotope compositions, describe the relationships between conventional isotope and clumped isotope data, and summarize the types of information that this measurement can provide in different Earth and planetary environments.« less

  19. SAMPEX observations of energetic hydrogen isotopes in the inner zone

    NASA Technical Reports Server (NTRS)

    Looper, M. D.; Blake, J. B.; Cummings, J. R.; Mewaldt, R. A.

    1996-01-01

    We report observations of geomagnetically-trapped hydrogen isotopes at low altitudes, near the feet of field lines in the inner zone, made with the PET instrument aboard the SAMPEX satellite. We have mapped protons from 19 to 500 MeV, and have discovered a collocated belt of deuterons, which we have mapped from 18 to 58 MeV/nucleon. We found deuterium at about 1% of the level of the proton flux at the same energy per nucleon, and no tritium at energies of tens of MeV/nucleon with an upper limit of about 0.1% of the proton flux. Protons and deuterons showed similar time dependence, with fluxes approximately tripling from July 1992 to March 1996, and similar pitch-angle dependence. The high-L limits of the proton and deuteron belts as functions of energy were organized by rigidity, as was to be expected if these limits were set for both species by inability of particles to sustain adiabatic motion and stable trapping.

  20. Carbon and nitrogen isotope effects associated with the dioxygenation of aniline and diphenylamine.

    PubMed

    Pati, Sarah G; Shin, Kwanghee; Skarpeli-Liati, Marita; Bolotin, Jakov; Eustis, Soren N; Spain, Jim C; Hofstetter, Thomas B

    2012-11-06

    Dioxygenation of aromatic rings is frequently the initial step of biodegradation of organic subsurface pollutants. This process can be tracked by compound-specific isotope analysis to assess the extent of contaminant transformation, but the corresponding isotope effects, especially for dioxygenation of N-substituted, aromatic contaminants, are not well understood. We investigated the C and N isotope fractionation associated with the biodegradation of aniline and diphenylamine using pure cultures of Burkholderia sp. strain JS667, which can biodegrade both compounds, each by a distinct dioxygenase enzyme. For diphenylamine, the C and N isotope enrichment was normal with ε(C)- and ε(N)-values of -0.6 ± 0.1‰ and -1.0 ± 0.1‰, respectively. In contrast, N isotopes of aniline were subject to substantial inverse fractionation (ε(N) of +13 ± 0.5‰), whereas the ε(C)-value was identical to that of diphenylamine. A comparison of the apparent kinetic isotope effects for aniline and diphenylamine dioxygenation with those from abiotic oxidation by manganese oxide (MnO(2)) suggest that the oxidation of a diarylamine system leads to distinct C-N bonding changes compared to aniline regardless of reaction mechanism and oxidant involved. Combined evaluation of the C and N isotope signatures of the contaminants reveals characteristic Δδ(15)N/Δδ(13)C-trends for the identification of diphenylamine and aniline oxidation in contaminated subsurfaces and for the distinction of aniline oxidation from its formation by microbial and/or abiotic reduction of nitrobenzene.

  1. Investigating Uranium Mobility Using Stable Isotope Partitioning of 238U/235U and a Reactive Transport Model

    NASA Astrophysics Data System (ADS)

    Bizjack, M.; Johnson, T. M.; Druhan, J. L.; Shiel, A. E.

    2015-12-01

    We report a numerical reactive transport model which explicitly incorporates the effectively stable isotopes of uranium (U) and the factors that influence their partitioning in bioactive systems. The model reproduces trends observed in U isotope ratios and concentration measurements from a field experiment, thereby improving interpretations of U isotope ratios as a tracer for U reactive transport. A major factor contributing to U storage and transport is its redox state, which is commonly influenced by the availability of organic carbon to support metal-reducing microbial communities. Both laboratory and field experiments have demonstrated that biogenic reduction of U(VI) fractionates the stable isotope ratio 238U/235U, producing an isotopically heavy solid U(IV) product. It has also been shown that other common reactive transport processes involving U do not fractionate isotopes to a consistently measurable level, which suggests the capacity to quantify the extent of bioreduction occurring in groundwater containing U using 238U/235U ratios. A recent study of a U bioremediation experiment at the Rifle IFRC site (Colorado, USA) applied Rayleigh distillation models to quantify U stable isotope fractionation observed during acetate amendment. The application of these simplified models were fit to the observations only by invoking a "memory-effect," or a constant source of low-concentration, unfractionated U(VI). In order to more accurately interpret the measured U isotope ratios, we present a multi-component reactive transport model using the CrunchTope software. This approach is capable of quantifying the cycling and partitioning of individual U isotopes through a realistic network of transport and reaction pathways including reduction, oxidation, and microbial growth. The model incorporates physical heterogeneity of the aquifer sediments through zones of decreased permeability, which replicate the observed bromide tracer, major ion chemistry, U concentration, and U

  2. Laboratory study of nitrate photolysis in Antarctic snow. II. Isotopic effects and wavelength dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berhanu, Tesfaye A.; Erbland, Joseph; Savarino, Joël

    2014-06-28

    Atmospheric nitrate is preserved in Antarctic snow firn and ice. However, at low snow accumulation sites, post-depositional processes induced by sunlight obscure its interpretation. The goal of these studies (see also Paper I by Meusinger et al. [“Laboratory study of nitrate photolysis in Antarctic snow. I. Observed quantum yield, domain of photolysis, and secondary chemistry,” J. Chem. Phys. 140, 244305 (2014)]) is to characterize nitrate photochemistry and improve the interpretation of the nitrate ice core record. Naturally occurring stable isotopes in nitrate ({sup 15}N, {sup 17}O, and {sup 18}O) provide additional information concerning post-depositional processes. Here, we present results frommore » studies of the wavelength-dependent isotope effects from photolysis of nitrate in a matrix of natural snow. Snow from Dome C, Antarctica was irradiated in selected wavelength regions using a Xe UV lamp and filters. The irradiated snow was sampled and analyzed for nitrate concentration and isotopic composition (δ{sup 15}N, δ{sup 18}O, and Δ{sup 17}O). From these measurements an average photolytic isotopic fractionation of {sup 15}ε = (−15 ± 1.2)‰ was found for broadband Xe lamp photolysis. These results are due in part to excitation of the intense absorption band of nitrate around 200 nm in addition to the weaker band centered at 305 nm followed by photodissociation. An experiment with a filter blocking wavelengths shorter than 320 nm, approximating the actinic flux spectrum at Dome C, yielded a photolytic isotopic fractionation of {sup 15}ε = (−47.9 ± 6.8)‰, in good agreement with fractionations determined by previous studies for the East Antarctic Plateau which range from −40 to −74.3‰. We describe a new semi-empirical zero point energy shift model used to derive the absorption cross sections of {sup 14}NO{sub 3}{sup −} and {sup 15}NO{sub 3}{sup −} in snow at a chosen temperature. The nitrogen isotopic fractionations obtained by

  3. Isotope effect on the circular dichroism spectrum of methyl α-D-glucopyranoside in aqueous solution

    PubMed Central

    Kanematsu, Yusuke; Kamiya, Yukiko; Matsuo, Koichi; Gekko, Kunihiko; Kato, Koichi; Tachikawa, Masanori

    2015-01-01

    H/D isotope effect on the circular dichroism spectrum of methyl α-D-glucopyranoside in aqueous solution has been analyzed by multicomponent density functional theory calculations using the polarizable continuum model. By comparing the computational spectra with the corresponding experimental spectrum obtained with a vacuum-ultraviolet circular dichroism spectrophotometer, it was demonstrated that the isotope effect provides insights not only into the isotopic difference of the intramolecular interactions of the solutes, but also into that of the solute–solvent intermolecular interaction. PMID:26658851

  4. Safety of stable isotope use.

    PubMed

    Koletzko, B; Sauerwald, T; Demmelmair, H

    1997-08-01

    The increased employment of stable isotope tracers for diagnostic and research purposes frequently raises questions on potential risks associated with their use, which is of particular importance in the paediatric age group. Biological effects and the potential of adverse events has been evaluated in a large number of animal and, in part, also human studies. Possible differences in physical, chemical and biochemical behaviour resulting in kinetic and thermodynamic isotope effects between stable isotopes of the same element are related to the relative differences in atomic weight. Deuterium (2H), which differs markedly in mass from the predominant hydrogen isotope 1H, may induce serious side-effects at high concentrations in body fluids. The threshold dose for the occurrence of side-effects lies well above the usual tracer dosages for clinical use. In contrast to deuterium, heavier stable isotopes such as 13C, 15N or 18O that differ relatively little in mass from the predominant isotopes such as 12C, does not show any adverse biological effects even at highest enrichments. The doses of stable isotope tracer substances that are used for clinical diagnostic and research purposes appear safe and without any adverse effects. Stable isotope tracers should only be used in children if the trace is safe at the doses applied, and tracer is chemically pure and stable. In the case of intravenous application, the tracer preparation must also be sterile and pyrogen free.

  5. Effects of acidification, lipid removal and mathematical normalization on carbon and nitrogen stable isotope compositions in beaked whale (Ziphiidae) bone.

    PubMed

    Tatsch, Ana Carolina C; Secchi, Eduardo R; Botta, Silvina

    2016-02-15

    The analysis of stable isotopes in tissues such as teeth and bones has been used to study long-term trophic ecology and habitat use in marine mammals. However, carbon isotope ratios (δ(13) C values) can be altered by the presence of (12) C-rich lipids and carbonates. Lipid extraction and acidification are common treatments used to remove these compounds. The impact of lipids and carbonates on carbon and nitrogen isotope ratios (δ(15) N values), however, varies among tissues and/or species, requiring taxon-specific protocols to be developed. The effects of lipid extraction and acidification and their interaction on carbon and nitrogen isotope values were studied for beaked whale (Ziphiidae) bone samples. δ(13) C and δ(15) N values were determined in quadruplicate samples: control, lipid-extracted, acidified and lipid-extracted followed by acidification. Samples were analyzed by means of elemental analysis isotope ratio mass spectrometry. Furthermore, the efficiency of five mathematical models developed for estimating lipid-normalized δ(13) C values from untreated δ(13) C values was tested. Significant increases in δ(13) C values were observed after lipid extraction. No significant changes in δ(13) C values were found in acidified samples. An interaction between both treatments was demonstrated for δ(13) C but not for δ(15) N values. No change was observed in δ(15) N values for lipid-extracted and/or acidified samples. Although all tested models presented good predictive power to estimate lipid-free δ(13) C values, linear models performed best. Given the observed changes in δ(13) C values after lipid extraction, we recommend a priori lipid extraction or a posteriori lipid normalization, through simple linear models, for beaked whale bones. Furthermore, acidification seems to be an unnecessary step before stable isotope analysis, at least for bone samples of ziphiids. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  6. pH-dependent equilibrium isotope fractionation associated with the compound specific nitrogen and carbon isotope analysis of substituted anilines by SPME-GC/IRMS.

    PubMed

    Skarpeli-Liati, Marita; Turgeon, Aurora; Garr, Ashley N; Arnold, William A; Cramer, Christopher J; Hofstetter, Thomas B

    2011-03-01

    Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry (GC/IRMS) was used to elucidate the effects of N-atom protonation on the analysis of N and C isotope signatures of selected aromatic amines. Precise and accurate isotope ratios were measured using polydimethylsiloxane/divinylbenzene (PDMS/DVB) as the SPME fiber material at solution pH-values that exceeded the pK(a) of the substituted aniline's conjugate acid by two pH-units. Deviations of δ(15)N and δ(13)C-values from reference measurements by elemental analyzer IRMS were small (<0.9‰) and within the typical uncertainties of isotope ratio measurements by SPME-GC/IRMS. Under these conditions, the detection limits for accurate isotope ratio measurements were between 0.64 and 2.1 mg L(-1) for δ(15)N and between 0.13 and 0.54 mg L(-1) for δ(13)C, respectively. Substantial inverse N isotope fractionation was observed by SPME-GC/IRMS as the fraction of protonated species increased with decreasing pH leading to deviations of -20‰ while the corresponding δ(13)C-values were largely invariant. From isotope ratio analysis at different solution pHs and theoretical calculations by density functional theory, we derived equilibrium isotope effects, EIEs, pertinent to aromatic amine protonation of 0.980 and 1.001 for N and C, respectively, which were very similar for all compounds investigated. Our work shows that N-atom protonation can compromise accurate compound-specific N isotope analysis of aromatic amines.

  7. Ultrahigh thermal conductivity of isotopically enriched silicon

    NASA Astrophysics Data System (ADS)

    Inyushkin, Alexander V.; Taldenkov, Alexander N.; Ager, Joel W.; Haller, Eugene E.; Riemann, Helge; Abrosimov, Nikolay V.; Pohl, Hans-Joachim; Becker, Peter

    2018-03-01

    Most of the stable elements have two and more stable isotopes. The physical properties of materials composed of such elements depend on the isotopic abundance to some extent. A remarkably strong isotope effect is observed in the phonon thermal conductivity, the principal mechanism of heat conduction in nonmetallic crystals. An isotopic disorder due to random distribution of the isotopes in the crystal lattice sites results in a rather strong phonon scattering and, consequently, in a reduction of thermal conductivity. In this paper, we present new results of accurate and precise measurements of thermal conductivity κ(T) for silicon single crystals having three different isotopic compositions at temperatures T from 2.4 to 420 K. The highly enriched crystal containing 99.995% of 28Si, which is one of the most perfect crystals ever synthesized, demonstrates a thermal conductivity of about 450 ± 10 W cm-1 K-1 at 24 K, the highest measured value among bulk dielectrics, which is ten times greater than the one for its counterpart natSi with the natural isotopic constitution. For highly enriched crystal 28Si and crystal natSi, the measurements were performed for two orientations [001] and [011], a magnitude of the phonon focusing effect on thermal conductivity was determined accurately at low temperatures. The anisotropy of thermal conductivity disappears above 31 K. The influence of the boundary scattering on thermal conductivity persists sizable up to much higher temperatures (˜80 K). The κ(T) measured in this work gives the most accurate approximation of the intrinsic thermal conductivity of single crystal silicon which is determined solely by the anharmonic phonon processes and diffusive boundary scattering over a wide temperature range.

  8. Clumped Isotope Values from the Doushantuo Formation of South China: Evaluation of Hydrothermal Influence, Disequilibria and Diagenetic Effects

    NASA Astrophysics Data System (ADS)

    Foster, I. S.; Zhu, M.; Lu, M.; Bristow, T.; Bonifacie, M.; Tripati, A.

    2015-12-01

    The Ediacaran Doushantuo Formation (635 - 551 Ma) of southern China is a phosphate-dolostone-black shale sequence following the Marinoan "Snowball Earth" episode that represents an important period in Earth history. It contains abundant phosphate-preserved microfossils, and extremely low carbon isotope values in the cap dolostone unit that have been interpreted to reflect formation in a methane seep environment [1]. Previous clumped isotope analysis of 13C-depleted carbonate veins from the basal Doushantuo samples have been interpreted to reflect hydrothermally-derived thermogenic methane oxidation [2], however recent work on modern and ancient cold seep samples suggests clumped isotope signatures in these environments are influenced by disequilibria effects [3] and are vulnerable to post-depositional diagenesis via internal reordering at temperatures exceeding ~ 100 - 120 ˚C [4]. Here we present initial data from the cap-carbonates overlying the Nantuo diamictite. Our analysis includes a variety of micro-facies from the cap-carbonate including pure calcite and micrite, with a range of carbonate carbon isotopic values. Data presented here will be used to attempt to determine if the samples exhibit disequilibria effects such as those observed in modern cold seep environments, as well as to evaluate the role of hydrothermal activity in the Doushantuo Formation. [1] Jiang, G., Kennedy, M.J., Christie-Blick, N., 2003. Stable isotope evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426, 822-826. [2] Bristow, T.F., Bonifacie, M., Derkowski, A., Eiler, J.M., Grotzinger, J.P., 2011. A hydrothermal origin for isotopically anomalous cap dolostone cements from south China. Nature 474, 68-72. [3] Loyd, S., Sample, J.C., Orphan, V.J., Marlow, J., Eagle, R., Tripati, A.K., 2012. Clumped isotope analyses of cold seep carbonates: Insights into formation environment and mechanisms. Abstract B51G-0639 presented at 2012 Fall Meeting, AGU, San Francisco

  9. Multiple isotope effects with alternative dinucleotide substrates as a probe of the malic enzyme reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, P.M.; Urbauer, J.L.; Cleland, W.W.

    1991-06-11

    Deuterium isotope effects and {sup 13}C isotope effects with deuterium- and protium-labeled malate have been obtained for both NAD- and NADP-malic enzymes by using a variety of alternative dinucleotide substrates. With nicotinamide-containing dinucleotides as the oxidizing substrate, the {sup 13}C effect decreases when deuterated malate is the substrate compared to the value obtained with protium-labeled malate. These data are consistent with a stepwise chemical mechanism in which hydride transfer precedes decarboxylation of the oxalacetate intermediate as previously proposed. When dinucleotide substrates such as thio-NAD, 3-nicotinamide rings are used, the {sup 13}C effect increases when deuterated malate is the substrate comparedmore » to the value obtained with protium-labeled malate. These data, at face value, are consistent with a change in mechanism from stepwise to concerted for the oxidative decarboxylation portion of the mechanism. However, the increase in the deuterium isotope effect from 1.5 to 3 with a concomitant decrease in the {sup 13}C isotope effect from 1.034 to 1.003 as the dinucleotide substrate is changed suggests that the reaction may still be stepwise with the non-nicotinamide dinucleotides. A more likely explanation is that a {beta}-secondary {sup 13}C isotope effect accompanies hydride transfer as a result of hyperconjugation of the {beta}-carboxyl of malate as the transition state for the hydride transfer step is approached.« less

  10. Isotope effect in the organic superconductor β_H-(BEDT-TTF)2I3 where BEDT-TTF is bis (ethylenedithiotetrathiafulvalene)

    NASA Astrophysics Data System (ADS)

    Auban-Senzier, P.; Bourbonnais, C.; Jérome, D.; Lenoir, C.; Batail, P.; Canadell, E.; Buisson, J. P.; Lefrant, S.

    1993-03-01

    We have performed the simultaneous investigation of the isotope effect on the superconducting transition and on the Raman spectra in the organic superconductor β_H-(BEDT-TTF)2I3 (T_c = 8 K). For this purpose, we substitute ^{13}C for ^{12}C on the carbon sites of the central double bond of BEDT-TTF molecule. The isotope shifts measured by Raman experiments can be fairly well explained by standard molecular dynamics. However, the critical temperature is lowered by 0.2 K in the ^{13}C enriched material. We analyse the possible sources of this remarkable downward shift which leads to an isotope coefficient higher than the BCS value. The extended-Hückel calculations of the density of states for the two HOMO bands of β_H-(BEDT-TTF)2I3 do show that, within the framework of a weak coupling theory, its sizeable variation on the scale of ω_D cannot account for the observed isotope effect. On the other hand, we discuss how inelastic electronic scattering observed in resistivity measurements just above T_c can lead through a pair breaking mechanism to a sizeable increase of the isotope coefficient. Nous présentons une étude simultanée d'effet isotopique sur la transition supraconductrice et les spectres Raman dans le supraconducteur organique β_H-(BEDT-TTF)2I3 (T_c = 8 K). Pour cela, nous avons synthétisé le composé dans lequel les atomes de carbone de la double liaison centrale de la molécule BEDT-TTF sont substitués par l'isotope ^{13}C. Les déplacements isotopiques mesurés par spectroscopie Raman sont bien expliqués par la dynamique moléculaire standard. Cependant, la température critique est abaissée de 0.2 K dans le matériau enrichi en ^{13}C. Nous étudions les origines possibles de cet effet qui permet d'obtenir un coefficient isotopique supérieur à la valeur BCS. Des calculs de la densité d'états effectués par la méthode de Hückel étendue pour les deux bandes HOMO du composé montrent que, dans le cadre d'une théorie de couplage faible

  11. In Vivo Mass-independent Fractionation of Mercury Isotopes in Fish

    NASA Astrophysics Data System (ADS)

    Das, R.; Odom, L. A.

    2008-12-01

    Recent experimental work and analyses of natural samples have revealed both mass-dependent and mass- independent isotope fractionation effects in mercury. These findings portend new avenues toward understanding the global mercury cycle. It has been shown experimentally that photo reduction of Hg+2 and methylmercury in water with concomitant release of the reduced, gaseous species Hg° results in the residual methylmercury possessing a mass-independent isotope effect. This effect is a relative enrichment of isotopes 199Hg and 201Hg over the even mass number isotopes when compared to the mercury standard NIST SRM3133. Large mass independent fractionation (MIF) effects (Δ199Hg values of a few ‰) have been found in mercury in fish and interpreted as isotope effects inherited from the water. To evaluate the possibility that MIF might be produced within the fish, we have analyzed 38 samples that include zooplankton and twelve different species of fish from a single lake collected over a 2-month time period for mercury isotopic compositions. Trophic levels of the same fish specimens had previously been determined from stomach contents and nitrogen isotopes. Zooplankton in the lake contain mercury with Δ199Hg and Δ201Hg values of +0.43 (±0.07) and +0.44 (±0.07) respectively. Among the fish species there is a striking correspondence between trophic level and Δ199Hg and Δ201Hg values for primary, secondary, and tertiary consumers. The Δ199Hg values ranges over ~1‰ from ~+0.4 in zooplankton, juvenile bluegill and several other small fishes to Δ199Hg = + 1.36 for the Florida gar that is the top predator fish in the lake. These observations indicate that the MIF effect, rather than being an artifact of the water column is produced in vivo. Partial separation of 199Hg and 201Hg from isotopes of even neutron number can be achieved by the magnetic isotope effect in reactions involving sufficiently long-lived intermediate free radicals, where nuclear - electron

  12. Modeling of Isotope Fractionation in Stratospheric CO2, N2O, CH4, and O3: Investigations of Stratospheric Chemistry and Transport, Stratosphere-Troposphere Exchange, and Their Influence on Global Isotope Budgets

    NASA Technical Reports Server (NTRS)

    Boering, Kristie A.; Connell, Peter; Rotman, Douglas

    2004-01-01

    We investigated the isotopic fractionation of CH4 and hydrogen (H2) in the stratosphere by incorporating isotope-specific rate coefficients into the Lawrence Livermore National Laboratory (LLNL) 2D model and comparing the model results with new observations from the NASA ER-2 aircraft (funded through a separate task under the Upper Atmosphere Research Program). The model results reveal that fractionation which occurs in the stratosphere has a significant influence on isotope compositions in the free troposphere, an important point which had previously been ignored, unrecognized or unquantified for many long-lived trace gases, including CH4 and H2 which we have focused our efforts on to date. Our analyses of the model results and new isotope observations have also been used to test how well the kinetic isotope effects are known, at least to within the uncertainties in model chemistry and transport. Overall, these results represent an important step forward in our understanding of isotope fractionation in the atmosphere and demonstrate that stratospheric isotope fractionation cannot be ignored in modeling studies which use isotope observations in the troposphere to infer the global budgets of CH4 (an important greenhouse gas) and of H2 (a gas whose atmospheric budget must be better quantified, particularly before a large human perturbation from fuel cell use is realized). Our analyses of model results and observations from the NASA ER-2 aircraft are briefly summarized separately below for CH4, H2, and H2O and for the contribution of these modeling studies to date to our understanding of isotope fractionation for N2O, CO2, and O3 as well.

  13. Evaluation of the impact of matrix effect on quantification of pesticides in foods by gas chromatography-mass spectrometry using isotope-labeled internal standards.

    PubMed

    Yarita, Takashi; Aoyagi, Yoshie; Otake, Takamitsu

    2015-05-29

    The impact of the matrix effect in GC-MS quantification of pesticides in food using the corresponding isotope-labeled internal standards was evaluated. A spike-and-recovery study of nine target pesticides was first conducted using paste samples of corn, green soybean, carrot, and pumpkin. The observed analytical values using isotope-labeled internal standards were more accurate for most target pesticides than that obtained using the external calibration method, but were still biased from the spiked concentrations when a matrix-free calibration solution was used for calibration. The respective calibration curves for each target pesticide were also prepared using matrix-free calibration solutions and matrix-matched calibration solutions with blank soybean extract. The intensity ratio of the peaks of most target pesticides to that of the corresponding isotope-labeled internal standards was influenced by the presence of the matrix in the calibration solution; therefore, the observed slope varied. The ratio was also influenced by the type of injection method (splitless or on-column). These results indicated that matrix-matching of the calibration solution is required for very accurate quantification, even if isotope-labeled internal standards were used for calibration. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Compound-specific Isotope Analysis of Cyanobacterial Pure cultures and Microbial Mats: Effects of Photorespiration?

    NASA Technical Reports Server (NTRS)

    Jahnke, L. L.; Summons, R. E.

    2006-01-01

    Microbial mats are considered modern homologs of Precambrian stromatolites. The carbon isotopic compositions of organic matter and biomarker lipids provide clues to the depositional environments of ancient mat ecosystems. As the source of primary carbon fixation for over two billion years, an understanding of cyanobacterial lipid biosynthesis, associated isotopic discriminations, and the influence of physiological factors on growth and isotope expression is essential to help us compare modern microbial ecosystems to their ancient counterparts. Here, we report on the effects of photorespiration (PR) on the isotopic composition of cyanobacteria and biomarker lipids, and on potential PR effects associated with the composition of various microbial mats. The high light, high O2 and limiting CO2 conditions often present at the surface of microbial mats are known to support PR in cyanobacteria. The oxygenase function of ribulose bisphosphate carboxylase/oxygenase can result in photoexcretion of glycolate and subsequent degration by heterotrophic bacteria. We have found evidence which supports an isotopic depletion (increased apparent E) scaled to O2 level associated with growth of Phormidium luridum at low CO2 concentrations (less than 0.04%). Similar to previous studies, isotopic differences between biomass and lipid biomarkers, and between lipid classes were positively correlated with overall fractionation, and should provide a means of estimating the influence of PR on overall isotopic composition of microbial mats. Several examples of microbial mats growing in the hydrothermal waters of Yellowstone National Park and the hypersaline marine evaporation ponds at Guerrero Negro, Baja Sur Mexico will be compared with a view to PR as a possible explanation of the relatively heavy C-isotope composition of hypersaline mats.

  15. Carbon-Isotopic Dynamics of Streams, Taylor Valley, Antarctica: Biological Effects

    NASA Technical Reports Server (NTRS)

    Neumann, K.; DesMarais, D. J.

    1998-01-01

    We have investigated the role of biological processes in the C-isotopic dynamics of the aquatic ecosystems in Taylor Valley, Antarctica. This cold desert ecosystem is characterized by the complete lack of vascular plants, and the presence of algal mats in ephemeral streams and perennially ice covered lakes. Streams having abundant algal mats and mosses have very low sigma CO2 concentrations, as well as the most depleted delta C-13 values (-4%). Previous work has shown that algal mats in these streams have delta C-13 values averaging -7.01%. These values are similar to those observed in the algal mats in shallow areas of the lakes in Taylor Valley, where CO2 is thought to be colimiting to growth. These low Sigma CO2 concentrations, and delta C(13) signatures heavier than the algal mats, suggest that CO2 may be colimiting in the streams, as well. Streams with little algal growth, especially the longer ones in Fryxell Basin, have higher Sigma CO2 concentrations and much more enriched isotopic signatures (as high as +8%). In these streams, the dissolution of isotopically enriched, cryogenic CaCO3 is probably the major source of dissolved carbonate. The delta C(13) geochemistry of Antarctic streams is radically different from the geochemistry of more temperate streams, as it is not affected by terrestrially produced, isotopically depleted Sigma CO2. These results have important implications for the understanding of "biogenic" carbonate that might have been produced from aquatic ecosystems in the past on Mars.

  16. Molybdenum isotope systematics in subduction zones

    NASA Astrophysics Data System (ADS)

    König, Stephan; Wille, Martin; Voegelin, Andrea; Schoenberg, Ronny

    2016-08-01

    This study presents Mo isotope data for arc lavas from different subduction zones that range between δ 98 / 95 Mo = - 0.72 and + 0.07 ‰. Heaviest isotope values are observed for the most slab fluid dominated samples. Isotopically lighter signatures are related to increasing relevance of terrigenous sediment subduction and sediment melt components. Our observation complements previous conclusions that an isotopically heavy Mo fluid flux likely mirrors selective incorporation of isotopically light Mo in secondary minerals within the subducting slab. Analogue to this interpretation, low δ 98 / 95 Mo flux that coincides with terrigenous sediment subduction and sediment melting cannot be simply related to a recycled input signature. Instead, breakdown of the controlling secondary minerals during sediment melting may release the light component and lead to decreasing δ 98 / 95 Mo influx into subarc mantle sources. The natural range between slab dehydration and hydrous sediment melting may thus cause a large spread of δ 98 / 95 Mo in global subduction zone magmas.

  17. Transient signal isotope analysis: validation of the method for isotope signal synchronization with the determination of amplifier first-order time constants.

    PubMed

    Gourgiotis, Alkiviadis; Manhès, Gérard; Louvat, Pascale; Moureau, Julien; Gaillardet, Jérôme

    2015-09-30

    During transient signal acquisition by Multi-Collection Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS), an isotope ratio increase or decrease (isotopic drift hereafter) is often observed which is related to the different time responses of the amplifiers involved in multi-collection. This isotopic drift affects the quality of the isotopic data and, in a recent study, a method of internal amplifier signal synchronization for isotope drift correction was proposed. In this work the determination of the amplifier time constants was investigated in order to validate the method of internal amplifier signal synchronization for isotope ratio drift correction. Two different MC-ICPMS instruments, the Neptune and the Neptune Plus, were used, and both the lead transient signals and the signal decay curves of the amplifiers were investigated. Our results show that the first part of the amplifier signal decay curve is characterized by a pure exponential decay. This part of the signal decay was used for the effective calculation of the amplifier first-order time constants. The small differences between these time constants were compared with time lag values obtained from the method of isotope signal synchronization and were found to be in good agreement. This work proposes a way of determining amplifier first-order time constants. We show that isotopic drift is directly related to the amplifier first-order time constants and the method of internal amplifier signal synchronization for isotope ratio drift correction is validated. Copyright © 2015 John Wiley & Sons, Ltd.

  18. The stable isotope amount effect: New insights from NEXRAD echo tops, Luquillo Mountains, Puerto Rico

    USGS Publications Warehouse

    Scholl, Martha A.; Shanley, James B.; Zegarra, Jan Paul; Coplen, Tyler B.

    2009-01-01

    The stable isotope amount effect has often been invoked to explain patterns of isotopic composition of rainfall in the tropics. This paper describes a new approach, correlating the isotopic composition of precipitation with cloud height and atmospheric temperature using NEXRAD radar echo tops, which are a measure of the maximum altitude of rainfall within the clouds. The seasonal differences in echo top altitudes and their corresponding temperatures are correlated with the isotopic composition of rainfall. These results offer another factor to consider in interpretation of the seasonal variation in isotopic composition of tropical rainfall, which has previously been linked to amount or rainout effects and not to temperature effects. Rain and cloud water isotope collectors in the Luquillo Mountains in northeastern Puerto Rico were sampled monthly for three years and precipitation was analyzed for δ18O and δ2H. Precipitation enriched in 18O and 2H occurred during the winter dry season (approximately December–May) and was associated with a weather pattern of trade wind showers and frontal systems. During the summer rainy season (approximately June–November), precipitation was depleted in 18O and 2H and originated in low pressure systems and convection associated with waves embedded in the prevailing easterly airflow. Rain substantially depleted in 18O and 2H compared to the aforementioned weather patterns occurred during large low pressure systems. Weather analysis showed that 29% of rain input to the Luquillo Mountains was trade wind orographic rainfall, and 30% of rainfall could be attributed to easterly waves and low pressure systems. Isotopic signatures associated with these major climate patterns can be used to determine their influence on streamflow and groundwater recharge and to monitor possible effects of climate change on regional water resources.

  19. Thermal effects on rare earth element and strontium isotope chemistry in single conodont elements

    NASA Astrophysics Data System (ADS)

    Armstrong, H. A.; Pearson, D. G.; Griselin, M.

    2001-02-01

    A low-blank, high sensitivity isotope dilution, ICP-MS analytical technique has been used to obtain REE abundance data from single conodont elements weighing as little as 5 μg. Sr isotopes can also be measured from the column eluants enabling Sr isotope ratios and REE abundance to be determined from the same dissolution. Results are comparable to published analyses comprising tens to hundreds of elements. To study the effects of thermal metamorphism on REE and strontium mobility in conodonts, samples were selected from a single bed adjacent to a basaltic dyke and from the internationally used colour alteration index (CAI) "standard set." Our analyses span the range of CAI 1 to 8. Homogeneous REE patterns, "bell-shaped" shale-normalised REE patterns are observed across the range of CAI 1 to 6 in both sample sets. This pattern is interpreted as the result of adsorption during early diagenesis and could reflect original seawater chemistry. Above CAI 6 REE patterns become less predictable and perturbations from the typical REE pattern are likely to be due to the onset of apatite recrystallisation. Samples outside the contact aureole of the dyke have a mean 87Sr/ 86Sr ratio of 0.708165, within the broad range of published mid-Carboniferous seawater values. Our analysis indicates conodonts up to CAI 6 record primary geochemical signals that may be a proxy for ancient seawater.

  20. Discovering Mercury Protein Modifications in Whole Proteomes Using Natural Isotope Distributions Observed in Liquid Chromatography-Tandem Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polacco, Benjamin J.; Purvine, Samuel O.; Zink, Erika M.

    2011-08-01

    The identification of peptides that result from post-translational modifications is critical for understanding normal pathways of cellular regulation as well as identifying damage from, or exposures to xenobiotics, i.e. the exposome. However, because of their low abundance in proteomes, effective detection of modified peptides by mass spectrometry (MS) typically requires enrichment to eliminate false identifications. We present a new method for confidently identifying peptides with mercury (Hg)-containing adducts that is based on the influence of mercury’s seven stable isotopes on peptide isotope distributions detected by high-resolution MS. Using a pure protein and E. coli cultures exposed to phenyl mercuric acetate,more » we show the pattern of peak heights in isotope distributions from primary MS single scans efficiently identified Hg adducts in data from chromatographic separation coupled with tandem mass spectrometry with sensitivity and specificity greater than 90%. Isotope distributions are independent of peptide identifications based on peptide fragmentation (e.g. by SEQUEST), so both methods can be combined to eliminate false positives. Summing peptide isotope distributions across multiple scans improved specificity to 99.4% and sensitivity above 95%, affording identification of an unexpected Hg modification. We also illustrate the theoretical applicability of the method for detection of several less common elements including the essential element, selenium, as selenocysteine in peptides.« less

  1. Effects of preservatives on stable isotope analyses of four marine species

    NASA Astrophysics Data System (ADS)

    Carabel, Sirka; Verísimo, Patricia; Freire, Juan

    2009-04-01

    The aim of the present study is to quantify the effect of formalin-ethanol preservation on the carbon and nitrogen stable isotope signatures of four taxonomical groups of marine species ( Himanthalia elongata, Anemonia sulcata, Mytilus galloprovincialis and Patella vulgata). To examine temporal changes in the effects of preservation and to determine if preservation induced predictable shifts in δ13C and δ15N signatures, repeated analyses were carried out after 6, 12 and 24 months of preservation. Data from our study showed highly variable effects of the formalin-ethanol preservation on carbon and nitrogen isotope signatures between species. The use of a general correction factor was not possible, or else it should be species-specific. Differences in nitrogen isotopic values between preserved and unpreserved samples were minor compared to the assumed enrichment between trophic levels. The combined use of data from preserved and unpreserved samples could lead to biases in the estimation of the trophic level of organisms. Changes that preservatives caused in carbon values were variable between species and not always small enough to be ignored. So the use of data from preserved samples could change the interpretation of the mixing models used to determine the importance of multiple sources of carbon. In order to elucidate the effects that preservatives have in other species, further studies will be necessary.

  2. Stable Isotope Systematics of Martian Perchlorate

    NASA Astrophysics Data System (ADS)

    Martin, P.; Farley, K. A.; Archer, D., Jr.; Atreya, S. K.; Conrad, P. G.; Eigenbrode, J. L.; Fairen, A.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Malespin, C.; Ming, D. W.; Navarro-Gonzalez, R.; Sutter, B.

    2015-12-01

    Chlorine isotopic compositions in HCl released during evolved gas analysis (EGA) runs have been detected by the Sample Analysis at Mars (SAM) instrument on the Curiosity rover ranging from approximately -9‰ to -50‰ δ37Cl, with two spatially and isotopically separated groups of samples averaging -15‰ and -45‰. These extremely low values are the first such detection of any known natural material; common terrestrial values very rarely exceed ±5‰, and the most extreme isotopic signature yet detected elsewhere in the solar system are values of around +24‰ on the Moon. The only other known location in the solar system with large negative chlorine isotopes is the Atacama Desert, where perchlorate with -14‰ δ37Cl has been detected. The Atacama perchlorate has unusual Δ17O signatures associated with it, indicating a formation mechanism involving O3, which suggests an atmospheric origin of the perchlorate and associated large isotopic anomalies. Identification of non-zero positive Δ17O signatures in the O2 released during EGA runs would allow definitive evidence for a similar process having occurred on Mars. Perchlorate is thought to be the most likely source of HCl in EGA runs due to the simultaneous onset of O2 release. If perchlorate is indeed the HCl source, atmospheric chemistry could be responsible for the observed isotopic anomalies, with variable extents of perchlorate production producing the isotopic variability. However, chloride salts have also been observed to release HCl upon heating; if the timing of O2 release is merely coincidental, observed HCl could be coming from chlorides. At thermodynamic equilibrium, the fractionation factor of perchlorate reduction is 0.93, meaning that differing amounts of post-deposition reduction of isotopically normal perchlorate to chloride could account for the highly variable Cl isotopes. Additionally, post-deposition reduction could account for the difference between the two Cl isotopic groups if perchlorate

  3. Importance of depth and intensity of convection on the isotopic composition of water vapor as seen from IASI and TES δD observations

    NASA Astrophysics Data System (ADS)

    Lacour, Jean-Lionel; Risi, Camille; Worden, John; Clerbaux, Cathy; Coheur, Pierre-François

    2018-01-01

    We use tropical observations of the water vapor isotopic composition, derived from IASI and TES spaceborne measurements, to show that the isotopic composition of water vapor in the free troposphere is sensitive to both the depth and the intensity of convection. We find that for any given precipitation intensity, vapor associated with deep convection is isotopically depleted relative to vapor associated with shallow convection. The intensity of precipitation also plays a role as for any given depth of convection, the relative enrichment of water vapor decreases as the intensity of precipitation increases. Shallow convection, via the uplifting of enriched boundary layer air into the free troposphere and the convective detrainment, enriches the free troposphere. In contrast, deep convection is associated with processes that deplete the water vapor in the free troposphere, such as rain re-evaporation. The results of this study allow for a better identification of the parameters controlling the isotopic composition of the free troposphere and indicate that the isotopic composition of water vapor can be used to evaluate the relative contributions of shallow and deep convection in global models.

  4. Mass Independent Fractionation of Cadmium Isotopes During Thermal Ionization

    NASA Astrophysics Data System (ADS)

    Abouchami, W.; Galer, S. J.; Feldmann, H.; Schmitt, A. D.

    2008-12-01

    explained by appealing to the nuclear spin (and magnetic moment) of odd nuclei alone. The "magnetic isotope effect" is a consequence of hyperfine coupling, in which an electron interacts with a nucleus of non-zero magnetic moment - i.e. one that has an odd number of nucleons (Turro, 1983; Buchachenko, 1995, 2001). This is purely a kinetic phenomenon in which the life-time, and thus the outcome, of reaction transition states is altered by the hyperfine splitting present in atoms with odd nuclei. The mechanism by which silica gel activator enhances the thermal ionization of elements such as Cd, Pb and Zn has been outlined by Kessinger and Delmore (2002). The first step involves the in-situ reduction of Cd2+ ions to Cd metal in the molten silica gel-phosphoric acid glass. It is most likely in this step - whereby two electrons are added - that a suitably long-lived transition state exists, during which the magnetic isotope effect enhances (or inhibits) reduction of masses 111 and 113 to metal species compared to those of even isotopes of Cd. The resulting "odd" and "even" populations of Cd-metal in the molten silica gel then cannot be related simply in terms of MDF. Overall, the magnetic isotope effect provides the best explanation of the MIF effects observed for Pb, Cd and Zn during thermal ionization with silica gel activator, and, probably, why the measured fractionation is always biased towards light isotopes.

  5. Chromium isotope fractionation in ferruginous sediments

    NASA Astrophysics Data System (ADS)

    Bauer, Kohen W.; Gueguen, Bleuenn; Cole, Devon B.; Francois, Roger; Kallmeyer, Jens; Planavsky, Noah; Crowe, Sean A.

    2018-02-01

    Ferrous Fe is a potent reductant of Cr(VI), and while a number of laboratory studies have characterized Cr isotope fractionation associated with Cr(VI) reduction by ferrous iron, the expression of this fractionation in real-world ferrous Fe-rich environments remains unconstrained. Here we determine the isotope fractionation associated with Cr(VI) reduction in modern ferrous Fe-rich sediments obtained from the previously well studied Lake Matano, Indonesia. Whole core incubations demonstrate that reduction of Cr(VI) within ferruginous sediments provides a sink for Cr(VI) leading to Cr(VI) concentration gradients and diffusive Cr(VI) fluxes across the sediment water interface. As reduction proceeded, Cr(VI) remaining in the overlying lake water became progressively enriched in the heavy isotope (53Cr), increasing δ53Cr by 2.0 ± 0.1‰ at the end of the incubation. Rayleigh distillation modelling of the evolution of Cr isotope ratios and Cr(VI) concentrations in the overlying water yields an effective isotope fractionation of εeff = 1.1 ± 0.2‰ (53Cr/52Cr), whereas more detailed diagenetic modelling implies an intrinsic isotope fractionation of εint = 1.80 ± 0.04‰. Parallel slurry experiments performed using anoxic ferruginous sediment yield an intrinsic isotope fractionation of εint = 2.2 ± 0.1‰. These modelled isotope fractionations are corroborated by direct measurement of the δ53Cr composition on the upper 0.5 cm of Lake Matano sediment, revealing an isotopic offset from the lake water of Δ53Cr = 0.21-1.81‰. The data and models reveal that effective isotope fractionations depend on the depth at which Cr(VI) reduction takes place below the sediment water interface-the deeper the oxic non-reactive zone, the smaller the effective fractionation relative to the intrinsic fractionation. Based on the geochemistry of the sediment we suggest the electron donors responsible for reduction are a combination of dissolved Fe(II) and 0.5 M HCl extractable (solid

  6. Gamma-radiation and isotopic effect on the critical behavior in triglycine selenate crystals

    NASA Astrophysics Data System (ADS)

    Kassem, M. E.; Hamed, A. E.; Abulnasr, L.; Abboudy, S.

    1994-11-01

    Isotopic effects in pure and γ-irradiated triglycine selenate crystals were investigated using the specific heat ( Cp) technique. The obtained results showed an interesting dependence of the critical behavior of Cp on the deuterium content. With increasing content of deuterium, the character of the phase transition changed from a second order (γ-type) to a first order transition. After γ-irradiation, the behavior of Cp around the phase transition region was essentially affected. The transition temperature, Tc, decreased and Δ Cp depressed, and the transition became broad. It was noted that the effect of γ-irradiation is opposite to the isotopic effect.

  7. Oxygen and nitrogen isotope effects duing nitrification and denitrification occuring in Midwesern soils

    NASA Astrophysics Data System (ADS)

    Michalski, G. M.; Wilkens, B.; Sanchez, A. V.; Yount, J.

    2017-12-01

    The processes of nitrification and denitrification are key steps in the biogeochemical cycling of N and are a main control on ecosystem productivity. These processes are ephemeral and often difficult to assess across wide spatial and temporal scales. Natural abundance stable isotopes are a way of potentially assessing these two processes across multiple scales. We have conducted incubation experiments to assess the N and O isotope effects occurring during denitrification in soils typical of the Midwestern United States. Nitrification was examined by incubating soils amended with ammonium (with a known δ15N) mixed with H2O and O2 that had different δ18O values and then measured the δ15N and δ18O of the product nitrate. The fraction of nitrate oxygen arising from H2O and O2 was determined along with the N and O kinetic isotope effect (KIE). For denitrification, nitrate with a known δ15N, δ17O, and δ18O, was incubated in anaerobic soils from 12-48 hours. The residual nitrate was analyzed for isotope change and the KIE for O and N as well as exchange with H2O was determined. These data can be useful for interpreting nitrate isotopes in agricultural fields as a way off assessing nitrification and denitrification is agricultural ecosystems such as the IML-CZO.

  8. Equilibrium stable-isotope fractionation of thallium and mercury

    NASA Astrophysics Data System (ADS)

    Schauble, E. A.

    2005-12-01

    In this study first-principles quantum mechanical and empirical force-field models are used to estimate equilibrium mass-dependent isotopic fractionations among a variety of thallium and mercury compounds. High-precision MC-ICP-MS measurements have recently uncovered evidence of stable isotope fractionation for many elements, including 2-4‰ variability in the isotopic compositions of thallium[1] (atomic no. 81) and mercury[2] (atomic no. 80). The observed thallium- and mercury-isotope fractionations are remarkable, given that the magnitude of isotopic fractionation typically decreases as atomic number increases[3]. Stable isotope measurements could improve our understanding of geochemical and biogeochemical cycling of both elements, but little is known about the mechanisms driving these fractionations. A better understanding of the chemical processes controlling stable isotope compositions could help maximize the utility of these new geochemical tracers. Standard equilibrium stable isotope fractionation theory holds that the energy driving fractionation comes from isotopic effects on vibrational frequencies, which have generally not been measured. In the present study both quantum-mechanical and empirical force fields are used to estimate unknown frequencies. Results suggest that thallium and mercury fractionations of ≥ 0.5‰ are likely during the relevant redox reactions Tl+ ↔ Tl3+ and HgO ↔ Hg2+. Methyl-mercury and mercury-halide compounds like CH3HgCl will have ~ 1‰ higher 202Hg/198Hg than atomic vapor at room temperature. Fractionations between coexisting Hg2+ species appear to be much smaller, however. 205Tl/203Tl in Tl(H2O)_63+ is predicted to be ~0.5‰ higher than in coexisting Tl+-bearing substances. This result is in qualitative agreement with data from ferromanganese crusts [1], suggesting that Tl3+ in manganese-oxides will have higher 205Tl/203Tl than aqueous Tl+. Equilibrium fractionations for both elements are much smaller than the observed

  9. Predictions and Verification of an Isotope Marine Boundary Layer Model

    NASA Astrophysics Data System (ADS)

    Feng, X.; Posmentier, E. S.; Sonder, L. J.; Fan, N.

    2017-12-01

    A one-dimensional (1D), steady state isotope marine boundary layer (IMBL) model is constructed. The model includes meteorologically important features absent in Craig and Gordon type models, namely height-dependent diffusion/mixing and convergence of subsiding external air. Kinetic isotopic fractionation results from this height-dependent diffusion which starts as pure molecular diffusion at the air-water interface and increases linearly with height due to turbulent mixing. The convergence permits dry, isotopically depleted air subsiding adjacent to the model column to mix into ambient air. In δD-δ18O space, the model results fill a quadrilateral, of which three sides represent 1) vapor in equilibrium with various sea surface temperatures (SSTs) (high d18O boundary of quadrilateral); 2) mixture of vapor in equilibrium with seawater and vapor in the subsiding air (lower boundary depleted in both D and 18O); and 3) vapor that has experienced the maximum possible kinetic fractionation (high δD upper boundary). The results can be plotted in d-excess vs. δ18O space, indicating that these processes all cause variations in d-excess of MBL vapor. In particular, due to relatively high d-excess in the descending air, mixing of this air into the MBL causes an increase in d-excess, even without kinetic isotope fractionation. The model is tested by comparison with seven datasets of marine vapor isotopic ratios, with excellent correspondence; >95% of observational data fall within the quadrilateral area predicted by the model. The distribution of observations also highlights the significant influence of vapor from the nearby converging descending air on isotopic variations in the MBL. At least three factors may explain the <5% of observations that fall slightly outside of the predicted region in both δD-δ18O and d-excess - δ18O space: 1) variations in seawater isotopic ratios, 2) variations in isotopic composition of subsiding air, and 3) influence of sea spray. The model

  10. Semiclassical study of quantum coherence and isotope effects in ultrafast electron transfer reactions coupled to a proton and a phonon bath.

    PubMed

    Venkataraman, Charulatha

    2011-11-28

    The linearized semiclassical initial value representation is employed to describe ultrafast electron transfer processes coupled to a phonon bath and weakly coupled to a proton mode. The goal of our theoretical investigation is to understand the influence of the proton on the electronic dynamics in various bath relaxation regimes. More specifically, we study the impact of the proton on coherences and analyze if the coupling to the proton is revealed in the form of an isotope effect. This will be important in distinguishing reactions in which the proton does not undergo significant rearrangement from those in which the electron transfer is accompanied by proton transfer. Unlike other methodologies widely employed to describe nonadiabatic electron transfer, this approach treats the electronic and nuclear degrees of freedom consistently. However, due to the linearized approximation, quantum interference effects are not captured accurately. Our study shows that at small phonon bath reorganization energies, coherent oscillations and isotope effect are observed in both slow and fast bath regimes. The coherences are more substantially damped by deuterium in comparison to the proton. Further, in contrast to the dynamics of the spin-boson model, the coherences are not long-lived. At large bath reorganization energies, the decay is incoherent in the slow and fast bath regimes. In this case, the extent of the isotope effect depends on the relative relaxation timescales of the proton mode and the phonon bath. The isotope effect is magnified for baths that relax on picosecond timescales in contrast to baths that relax in femtoseconds.

  11. Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects

    NASA Astrophysics Data System (ADS)

    Markowski, A.; Quitté, G.; Halliday, A. N.; Kleine, T.

    2006-02-01

    High-precision W isotopic compositions are presented for 35 iron meteorites from 7 magmatic groups (IC, IIAB, IID, IIIAB, IIIF, IVA, and IVB) and 3 non-magmatic groups (IAB, IIICD, and IIE). Small but resolvable isotopic variations are present both within and between iron meteorite groups. Variations in the 182W/ 184W ratio reflect either time intervals of metal-silicate differentiation, or result from the burnout of W isotopes caused by a prolonged exposure to galactic cosmic rays. Calculated apparent time spans for some groups of magmatic iron meteorites correspond to 8.5 ± 2.1 My (IID), 5.1 ± 2.3 My (IIAB), and 5.3 ± 1.3 My (IVB). These time intervals are significantly longer than those predicated from models of planetesimal accretion. It is shown that cosmogenic effects can account for a large part of the W isotopic variation. No simple relationship exists with exposure ages, compromising any reliable method of correction. After allowance for maximum possible cosmogenic effects, it is found that there is no evidence that any of the magmatic iron meteorites studied here have initial W isotopic compositions that differ from those of Allende CAIs [ ɛ182W = - 3.47 ± 0.20; [T. Kleine, K. Mezger, H. Palme, E. Scherer and C. Münker, Early core formation in asteroids and late accretion of chondrite parent bodies: evidence from 182Hf- 182W in CAIs, metal-rich chondrites and iron meteorites, Geochim. Cosmochim. Acta (in press)]. Cosmogenic corrections cannot yet be made with sufficient accuracy to obtain highly precise ages for iron meteorites. Some of the corrected ages nevertheless require extremely early metal-silicate segregation no later than 1 My after formation of CAIs. Therefore, magmatic iron meteorites appear to provide the best examples yet identified of material derived from the first planetesimals that grew by runaway growth, as modelled in dynamic simulations. Non-magmatic iron meteorites have a more radiogenic W isotopic composition than magmatic

  12. How to explain Si isotopes of chert?

    NASA Astrophysics Data System (ADS)

    Liu, Y.

    2016-12-01

    The variations of d30Si values in diagenetic chert and chert- associated BIFs over time can be used to reconstruct the environmental conditions of the early Earth, and become a hot topic in the Si isotope society. However, there are several different views of explaining the variation of d30Si values over time. Moreover, there are disputes in explaining the distribution of Si isotope in several main reservoirs in surface systems. Those disagreements are caused by lacking key Si isotope fractionation factors associated with the formation processes of chert and its altered products. There are many unexplained observations about Si isotope distributions in Earth's surface systems (Opfergelt and Delmelle, 2012). For example, the deduced Si isotope equilibrium fractionation factors by Rayleigh model at ambient temperature between clay and the solution D30Siclay-solution = -1.5 ‰ and -2.05 ‰ (Hughes et al., 2013) obviously disagree with common sense, which dictates that stiffer chemical bonds will enrich heavier isotopes, i.e., the precipitated minerals will preferentially incorporate heavy isotopes relative to aqueous H4SiO4 due to their shorter Si-O bonds. Another similar case is the fractionation between quartz and solution. Most field observations suggested that solution will be enriched with heavier Si isotope compared to quartz, conflicting to the fact that quartz is the one with much shorter Si-O bonds than aqueous H4SiO4 (ca. 1.610Å vs. 1.639Å). Here we provide equilibrium and kinetic Si isotope fractionation factors associated with the formation of amorphous quartz and other secondary minerals in polymerization, co-precipitation and adsorption processes. The adsorption processes of silica gel to Fe-hydroxides have been carefully examined. The Si isotope fractionations due to the formation of mono-dentate to quadru-dentate adsorbed Fe-Si complexes have been calculated. These data can explain well the experimental observations (e.g., Zheng et al., 2016) and

  13. Radiometric assay for cytochrome P-450-catalyzed progesterone 16 alpha-hydroxylation and determination of an apparent isotope effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osawa, Y.; Coon, M.J.

    1987-08-01

    In the course of studies on the oxygenation of steroids by purified P-450 cytochromes, particularly rabbit liver microsomal cytochrome P-450 form 3b, a rapid and reliable radiometric assay has been devised for progesterone 16 alpha-hydroxylation. In view of the lack of a commercially available, suitably tritiated substrate, (1,2,6,7,16,17-3H)progesterone was treated with alkali to remove the label from potential hydroxylation sites other than the 16 alpha position. The resulting (1,7,16-3H)progesterone was added to a reconstituted enzyme system containing cytochrome P-450 form 3b, NADPH-cytochrome P-450 reductase, and NADPH, and the rate of 16 alpha-hydroxylation was measured by the formation of /sup 3/H/submore » 2/O. This reaction was shown to be linear with respect to time and to the cytochrome P-450 concentration. An apparent tritium isotope effect of 2.1 was observed by comparison of the rates of formation of tritium oxide and 16 alpha-hydroxyprogesterone, and the magnitude of the isotope effect was confirmed by an isotope competition assay in which a mixture of (1,7,16-/sup 3/H)progesterone and (4-14C)progesterone was employed.« less

  14. Oxygen isotope effects of enzyme-catalyzed organophosphorus hydrolysis reactions: implications for interpretation of dissolved PO4 δ18O values in natural waters

    NASA Astrophysics Data System (ADS)

    Liang, Y.; Blake, R. E.

    2002-12-01

    The geochemical cycling of P in Earth surface environments is controlled largely by biota. It has been recently demonstrated that intracellular cycling of P in microbial cultures and biological turnover of P in natural waters leads to temperature-dependent O isotope equilibrium between dissolved inorganic PO4 (Pi) and ambient water, and that the δ18O of Pi can be a useful tracer of biological reactions and P cycling in aquatic systems/sediments. Oxygen isotope exchange between Pi and water during biological turnover of P is catalyzed by enzymes at low-temperature. Phosphoenzymes play a crucial role in the intracellular functions of all living organisms and also have important extracellular functions in aquatic ecosystems such as regeneration of Pi from organophosphorus compounds (e.g., phosphoesters). Laboratory experiments indicate that extracellular enzyme reactions may result in incomplete Pi turnover and non-equilibrium Pi-water O isotope exchange. Determination of the O isotope effects of phosphoenzyme-catalyzed reactions is fundamental to the understanding of mechanisms of PO4-water O isotope exchange, pathways of biogeochemical P cycling, and interpretation of PO4 δ18O values from natural systems. Here we report on the O isotope fractionation between enzymatically-released Pi and water, in cell-free abiotic systems. Alkaline phosphatase (Apase) is a non-specific phosphohydrolase commonly found in fresh and marine coastal waters that catalyzes the hydrolysis of Pi from phosphomonoesters. We examined the O isotope effects of Apase derived from both microbial and eukaryotic sources and acting on different phosphomonoester substrates (e.g., α-D-Glucose 1-Phosphate, β-Glycerophosphate, AMP) in 18O-labeled waters. Oxygen isotope ratios of Pi released by Apase indicate that only 1 of the 4 O atoms in PO4 is incorporated from water with little or no apparent O isotopic fractionation at the site of incorporation. This observation is consistent with

  15. Polarization IR spectra of hydrogen bonded pyrazole crystals: self-organization effects in proton and deuteron mixture systems. Long-range H/D isotopic effects

    NASA Astrophysics Data System (ADS)

    Flakus, Henryk T.; Machelska, Aleksandra

    2002-02-01

    This paper deals with experimental studies of the polarization IR spectra of solid-state pyrazole H1345, as well as of its H1D345, D1H345 and D1345 deuterium derivatives. Spectra were measured for the νNH and νND band frequency ranges at temperatures of 298 and 77 K. The spectra were found to strongly change their intensity distribution and their polarization properties with the decrease of temperature. These effects were ascribed to some temperature-induced conformational changes in the hydrogen bond lattices. The studies reported allowed the finding of new kind of isotopic effects H/D in the open-chain hydrogen bond systems, i.e. the self-organization effects. It was found that the spectrally active aggregates of hydrogen bonds remain unchanged despite the growing isotope H/D exchange rate. This statement was supported by analysis of the residual polarized νNH and νND band properties, measured for the isotopically diluted crystalline samples. Analysis of the band shapes of the four hydrogen isotope derivative crystals proved the existence of another kind of H/D isotopic effect, i.e. the long-range isotopic effect. It depends on an influence of the pyrazole ring hydrogen atoms onto the νNH and νND band widths and onto the band fine structures.

  16. Stable oxygen and hydrogen isotopes of brines - comparing isotope ratio mass spectrometry and isotope ratio infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Ahrens, Christian; Koeniger, Paul; van Geldern, Robert; Stadler, Susanne

    2013-04-01

    Today's standard analytical methods for high precision stable isotope analysis of fluids are gas-water equilibration and high temperature pyrolysis coupled to isotope ratio mass spectrometers (IRMS). In recent years, relatively new laser-based analytical instruments entered the market that are said to allow high isotope precision data on nearly every media. This optical technique is referred to as isotope ratio infrared spectroscopy (IRIS). The objective of this study is to evaluate the capability of this new instrument type for highly saline solutions and a comparison of the analytical results with traditional IRMS analysis. It has been shown for the equilibration method that the presence of salts influences the measured isotope values depending on the salt concentration (see Lécuyer et al, 2009; Martineau, 2012). This so-called 'isotope salt effect' depends on the salt type and salt concentration. These factors change the activity in the fluid and therefore shift the isotope ratios measured by the equilibration method. Consequently, correction factors have to be applied to these analytical data. Direct conversion techniques like pyrolysis or the new laser instruments allow the measurement of the water molecule from the sample directly and should therefore not suffer from the salt effect, i.e. no corrections of raw values are necessary. However, due to high salt concentrations this might cause technical problems with the analytical hardware and may require labor-intensive sample preparation (e.g. vacuum distillation). This study evaluates the salt isotope effect for the IRMS equilibration technique (Thermo Gasbench II coupled to Delta Plus XP) and the laser-based IRIS instruments with liquid injection (Picarro L2120-i). Synthetic salt solutions (NaCl, KCl, CaCl2, MgCl2, MgSO4, CaSO4) and natural brines collected from the Stassfurt Salt Anticline (Germany; Stadler et al., 2012) were analysed with both techniques. Salt concentrations ranged from seawater salinity

  17. Laser Spectroscopic Study on Oxygen Isotope Effects in Ozone Surface Decomposition

    NASA Astrophysics Data System (ADS)

    Minissale, Marco; Boursier, Corinne; Elandaloussi, Hadj; Te, Yao; Jeseck, Pascal; Rouille, Christian; Zanon-Willette, Thomas; Janssen, Christof

    2016-04-01

    The isotope kinetics of ozone formation in the Chapman reaction [1] O + O2 + M → O3 + M (1) provides the primary example for a chemically induced oxygen isotope anomaly and is associated with large [2] and mass independent [3] oxygen isotope enrichments in the product molecule, linked to a symmetry selection in the ozone formation kinetics [4-5]. The isotopic composition of ozone and its transfer to other molecules is a powerful tracer in the atmospheric and biogeochemical sciences [6] and serves as a primary model for a possible explanation of the oxygen isotopic heterogeneity in the Solar system [7-8]. Recently, the isotope fractionation in the photolytic decomposition process O3 + hν → O2 + O (2) using visible light has been studied in detail [9-10]. Much less is currently known about the isotope fractionation in the dry deposition or in the gas phase thermal decomposition of ozone O3 + M → O2 + O +M. (3) Here we report on first spectroscopic studies of non-photolytic ozone decomposition using a cw-quantum cascade laser at 9.5 μm. The concentration of individual ozone isotopomers (16O3,16O16O17O, and 16O17O16O) in a teflon coated reaction cell is followed in real time at temperatures between 25 and 150 °C. Observed ozone decay rates depend on homogeneous (reaction (3)) processes in the gas phase and on heterogeneous reactions on the wall. A preliminary analysis reveals agreement with currently recommended ozone decay rates in the gas phase and the absence of a large symmetry selection in the surface decomposition process, indicating the absence of a mass independent fractionation effect. This result is in agreement with previous mass spectrometer (MS) studies on heterogeneous ozone formation on pyrex [11], but contradicts an earlier MS study [12] on ozone surface decomposition on pyrex and quartz. Implications for atmospheric chemistry will be discussed. [1] Morton, J., Barnes, J., Schueler, B. and Mauersberger, K. J. Geophys. Res. 95, 901 - 907 (1990

  18. Atmospheric controls on the precipitation isotopes over the Andaman Islands, Bay of Bengal

    PubMed Central

    Chakraborty, S.; Sinha, N.; Chattopadhyay, R.; Sengupta, S.; Mohan, P. M.; Datye, A.

    2016-01-01

    Isotopic analysis of precipitation over the Andaman Island, Bay of Bengal was carried out for the year 2012 and 2013 in order to study the atmospheric controls on rainwater isotopic variations. The oxygen and hydrogen isotopic compositions are typical of the tropical marine sites but show significant variations depending on the ocean-atmosphere conditions; maximum depletion was observed during the tropical cyclones. The isotopic composition of rainwater seems to be controlled by the dynamical nature of the moisture rather than the individual rain events. Precipitation isotopes undergo systematic depletions in response to the organized convection occurring over a large area and are modulated by the integrated effect of convective activities. Precipitation isotopes appear to be linked with the monsoon intraseasonal variability in addition to synoptic scale fluctuations. During the early to mid monsoon the amount effect arose primarily due to rain re-evaporation but in the later phase it was driven by moisture convergence rather than evaporation. Amount effect had distinct characteristics in these two years, which appeared to be modulated by the intraseasonal variability of monsoon. It is shown that the variable nature of amount effect limits our ability to reconstruct the past-monsoon rainfall variability on annual to sub-annual time scale. PMID:26806683

  19. Vibrationally-Resolved Kinetic Isotope Effects in the Proton-Transfer Dynamics of Ground-State Tropolone

    NASA Astrophysics Data System (ADS)

    Chew, Kathryn; Vealey, Zachary; Vaccaro, Patrick

    2015-06-01

    The vibrational and isotopic dependence of the hindered (tunneling-mediated) proton-transfer reaction taking place in the ground electronic state ( X1{A}1) of monodeuterated tropolone (TrOD) has been explored under ambient (bulk-gas) conditions by applying two-color variants of resonant four-wave mixing (RFWM) spectroscopy in conjunction with polarization-resolved detection schemes designed to alleviate spectral complexity and facilitate rovibrational assignments. Full rotation-tunneling analyses of high-resolution spectral profiles acquired for the fundamental and first-overtone bands of a reaction-promoting O-D\\cdotsO deformation/ring-breathing mode, νb{36}(a1), were performed, thereby extracting refined structural and dynamical information that affords benchmarks for the quantitative interpretation of tunneling-induced signatures found in long-range scans of X1{A}1 vibrational levels residing below Etilde{X}vib = 1700 wn}. Observed kinetic isotope effects, which reflect changes in both reaction kinematics and vibrational displacements, will be discussed, with high-level quantum-chemical calculations serving to elucidate state-resolved propensities for proton transfer in TrOH and TrOD.

  20. The effect of the isotope on the H-mode density limit

    NASA Astrophysics Data System (ADS)

    Huber, A.; Wiesen, S.; Bernert, M.; Brezinsek, S.; Chankin, A. V.; Sergienko, G.; Huber, V.; Abreu, P.; Boboc, A.; Brix, M.; Carralero, D.; Delabie, E.; Eich, T.; Esser, H. G.; Guillemaut, C.; Jachmich, S.; Joffrin, E.; Kallenbach, A.; Kruezi, U.; Lang, P.; Linsmeier, Ch.; Lowry, C. G.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Mertens, Ph.; Reimold, F.; Schweinzer, J.; Sips, G.; Stamp, M.; Viezzer, E.; Wischmeier, M.; Zohm, H.; contributors, JET; ASDEX Upgrade Team

    2017-08-01

    In order to understand the mechanisms for the H-mode density limit in machines with fully metallic walls, systematic investigations of H-mode density limit plasmas in experiments with deuterium and hydrogen external gas fuelling have been performed on JET-ILW. The observed H-mode density limit on JET in D- as well as in H-plasmas demonstrates similar operation phases: the stable H-mode phase, degrading H-mode, breakdown of the H-mode with energy confinement deterioration accompanied by a dithering cycling phase, followed by the L-mode phase. The density limit is not related to an inward collapse of the hot core plasma due to an overcooling of the plasma periphery by radiation. Indeed, independently of the isotopic effect, the total radiated power stay almost constant during the H-mode phase until the H-L back transition. It was observed in D- and H-plasmas that neither detachment, nor the X-point MARFE itself do trigger the H-L transition and that they thus do not present a limit on the plasma density. It is the plasma confinement, most likely determined by edge parameters, which is ultimately responsible for the H-mode DL. By comparing similar discharges but fuelled with either deuterium or hydrogen, we have found that the H-mode density limit exhibits a dependence on the isotope mass: the density limit is up to 35% lower in hydrogen compared to similar deuterium plasma conditions (the obtained density limit is in agreement with the Greenwald limit for D-plasma). In addition, the density limit is nearly independent of the applied power both in deuterium or hydrogen fuelling conditions. The measured Greenwald fractions are consistent with the predictions from a theoretical model based on an MHD instability theory in the near-SOL. The JET operational domains are significantly broadened when increasing the plasma effective mass (e.g. tritium or deuterium-tritium operation), i.e. the L to H power threshold is reduced whereas the density limit for the L-mode back

  1. Nuclear quantum effects and kinetic isotope effects in enzyme reactions.

    PubMed

    Vardi-Kilshtain, Alexandra; Nitoker, Neta; Major, Dan Thomas

    2015-09-15

    Enzymes are extraordinarily effective catalysts evolved to perform well-defined and highly specific chemical transformations. Studying the nature of rate enhancements and the mechanistic strategies in enzymes is very important, both from a basic scientific point of view, as well as in order to improve rational design of biomimetics. Kinetic isotope effect (KIE) is a very important tool in the study of chemical reactions and has been used extensively in the field of enzymology. Theoretically, the prediction of KIEs in condensed phase environments such as enzymes is challenging due to the need to include nuclear quantum effects (NQEs). Herein we describe recent progress in our group in the development of multi-scale simulation methods for the calculation of NQEs and accurate computation of KIEs. We also describe their application to several enzyme systems. In particular we describe the use of combined quantum mechanics/molecular mechanics (QM/MM) methods in classical and quantum simulations. The development of various novel path-integral methods is reviewed. These methods are tailor suited to enzyme systems, where only a few degrees of freedom involved in the chemistry need to be quantized. The application of the hybrid QM/MM quantum-classical simulation approach to three case studies is presented. The first case involves the proton transfer in alanine racemase. The second case presented involves orotidine 5'-monophosphate decarboxylase where multidimensional free energy simulations together with kinetic isotope effects are combined in the study of the reaction mechanism. Finally, we discuss the proton transfer in nitroalkane oxidase, where the enzyme employs tunneling as a catalytic fine-tuning tool. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Oxygen isotope fractionation between analcime and water - An experimental study

    NASA Technical Reports Server (NTRS)

    Karlsson, Haraldur R.; Clayton, Robert N.

    1990-01-01

    The oxygen isotope fractionation between analcime and water is studied to test the feasibility of using zeolites as low-temperature thermometers. The fractionation of oxygen isotopes between natural analcime and water is determined at 300, 350, and 400 C, and at fluid pressures ranging from 1.5 to 5.0 kbar. Also, isotope ratios for the analcime framework, the channel water, and bulk water are obtained. The results suggest that the channel water is depleted in O-18 relative to bulk water by a constant value of about 5 percent, nearly independent of temperature. The analcime-water fractionation curve is presented, showing that the exchange has little effect on grain morphology and does not involve recrystallization. The exchange is faster than any other observed for a silicate. The exchange rates suggest that zeolites in active high-temperature geothermal areas are in oxygen isotopic equilibrium with ambient fluids. It is concluded that calibrated zeolites may be excellent low-temperature oxygen isotope geothermometers.

  3. The use of carbon stable isotope ratios in drugs characterization

    NASA Astrophysics Data System (ADS)

    Magdas, D. A.; Cristea, G.; Bot, A.; Mirel, V.

    2013-11-01

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies. Differences in δ13C between batches from -29.7 to -31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between -31.3 to -34.9% for the same type of analgesic, but from different manufactures.

  4. Microbes: Agents of Isotopic Change

    NASA Astrophysics Data System (ADS)

    Fogel, M. L.

    2012-12-01

    Microbes drive many of the important oxidation and reduction reactions on Earth; digest almost all forms of organic matter; and can serve as both primary and secondary producers. Because of their versatile biochemistry and physiology, they impart unique isotopic signatures to organic and inorganic materials, which have proven to be key measurements for understanding elemental cycling now and throughout Earth's history. Understanding microbial isotope fractionations in laboratory experiments has been important for interpreting isotopic patterns measured in natural settings. In fact, the pairing of simple experiment with natural observation has been the pathway for interpreting the fingerprint of microbial processes in ancient sediments and rocks. Examples of how key experiments have explained stable isotope fractionations by microbes and advanced the field of microbial ecology will be presented. Learning the isotopic signatures of Earth's microbes is a valuable exercise for predicting what isotopic signatures could be displayed by possible extant or extinct extraterrestrial life. Given the potential for discovery on Mars, Enceladus, and other solar system bodies, new methods and techniques for pinpointing what is unique about microbial isotope signatures is particularly relevant.

  5. The carbon isotope biogeochemistry of methane production in anoxic sediments. 1: Field observations

    NASA Technical Reports Server (NTRS)

    Blair, Neal E.; Boehme, Susan E.; Carter, W. Dale, Jr.

    1993-01-01

    The natural abundance C-13/C-12 ratio of methane from anoxic marine and freshwater sediments in temperate climates varies seasonally. Carbon isotopic measurements of the methanogenic precursors, acetate and dissolved inorganic carbon, from the marine sediments of Cape Lookout Bight, North Carolina were used to determine the sources of the seasonal variations at that site. Movement of the methanogenic zone over an isotopic gradient within the dissolved CO2 pool appears to be the dominant control of the methane C-13/C-12 ratio from February to June. The onset of acetoclastic methane-production is a second important controlling process during mid-summer. An apparent temperature dependence on the fractionation factor for CO2-reduction may have a significant influence on the isotopic composition of methane throughout the year.

  6. Osmium isotopic homogeneity in the CK carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Goderis, Steven; Brandon, Alan D.; Mayer, Bernhard; Humayun, Munir

    2017-11-01

    Variable proportions of isotopically diverse presolar components are known to account for nucleosynthetic isotopic anomalies for a variety of elements (e.g., Ca, Ti, Cr, Ni, Sr, Zr, Mo, Ru, Pd, Ba, Nd, and Sm) in both bulk chondrites and achondrites. However, although large Os isotopic anomalies have been measured in acid leachates and residues of unequilibrated chondrites, bulk chondrites of various groups, iron meteorites, and pallasites exhibit Os isotopic compositions that are indistinguishable from terrestrial or bulk solar isotopic abundances. Since the magnitude of nucleosynthetic anomalies is typically largest in the carbonaceous chondrites, this study reports high-precision Os isotopic compositions and highly siderophile element (HSE) concentrations for ten CK chondrites. The isotope dilution concentration data for HSE and high-precision Os isotope ratios were determined on the same digestion aliquots, to precisely correct for radiogenic contributions to 186Os and 187Os. While acid leached bulk unequilibrated carbonaceous chondrites show deficits of s-process Os components to the same extent as revealed by unequilibrated enstatite, ordinary, and Rumuruti chondrites, equilibrated bulk CK chondrites exhibit no resolvable Os isotopic anomalies. These observations support the idea that acid-resistant, carbon-rich presolar grains, such as silicon carbide (SiC) or graphite, are major carriers for nucleosynthetic isotopic anomalies of Os. The destruction of these presolar grains, which are omnipresent in unequilibrated meteorites, must have occurred during aqueous alteration and thermal metamorphism, early in the CK chondrite parent body history. The dispersal of CK chondrites along the IIIAB iron meteorite isochron on a 187Os/188Os versus 187Re/188Os diagram, with Re/Os ratios from 0.032 to 0.083, in combination with the observed redistribution of other HSE (e.g., Pt, Pd), highlights the influence of parent body processes, overprinted by effects of recent

  7. Isotopic characteristics of canopies in simulated leaf assemblages

    NASA Astrophysics Data System (ADS)

    Graham, Heather V.; Patzkowsky, Mark E.; Wing, Scott L.; Parker, Geoffrey G.; Fogel, Marilyn L.; Freeman, Katherine H.

    2014-11-01

    The geologic history of closed-canopy forests is of great interest to paleoecologists and paleoclimatologists alike. Closed canopies have pronounced effects on local, continental and global rainfall and temperature patterns. Although evidence for canopy closure is difficult to reconstruct from the fossil record, the characteristic isotope gradients of the ;canopy effect; could be preserved in leaves and proxy biomarkers. To assess this, we employed new carbon isotopic data for leaves collected in diverse light environments within a deciduous, temperate forest (Maryland, USA) and for leaves from a perennially closed canopy, moist tropical forest (Bosque Protector San Lorenzo, Panamá). In the tropical forest, leaf carbon isotope values range 10‰, with higher δ13Cleaf values occurring both in upper reaches of the canopy, and with higher light exposure and lower humidity. Leaf fractionation (Δleaf) varied negatively with height and light and positively with humidity. Vertical 13C enrichment in leaves largely reflects changes in Δleaf, and does not trend with δ13C of CO2 within the canopy. At the site in Maryland, leaves express a more modest δ13C range (∼6‰), with a clear trend that follows both light and leaf height. Using a model we simulate leaf assemblage isotope patterns from canopy data binned by elevation. The re-sampling (bootstrap) model determined both the mean and range of carbon isotope values for simulated leaf assemblages ranging in size from 10 to over 1000 leaves. For the tropical forest data, the canopy's isotope range is captured with 50 or more randomly sampled leaves. Thus, with a sufficient number of fossil leaves it is possible to distinguish isotopic gradients in an ancient closed canopy forest from those in an open forest. For very large leaf assemblages, mean isotopic values approximate the δ13C of carbon contributed by leaves to soil and are similar to observed δ13Clitter values at forested sites within Panamá, including the

  8. Redefining the utility of the three-isotope method

    NASA Astrophysics Data System (ADS)

    Cao, Xiaobin; Bao, Huiming

    2017-09-01

    The equilibrium isotope fractionation factor αeq is a fundamental parameter in the study of stable isotope effects. Experimentally, it has been difficult to establish that a system has attained equilibrium. The three-isotope method, using the initial trajectory of changing isotope ratios (e.g. 16O, 17O, and 18O) to deduce the final equilibrium point of isotope exchange, has long been hailed as the most rigorous experimental approach. However, over the years some researchers have cautioned on the limitations of this method, but the foundation of three-isotope method has not been properly examined and the method is still widely used in calibrating αeq for both traditional and increasingly non-traditional isotope systems today. Here, using water-water and dissolved CO2-water oxygen exchange as model systems, we conduct an isotopologues-specific kinetic analysis of the exchange processes and explore the underlying assumptions and validity of the three-isotope method. We demonstrate that without knowing the detailed exchange kinetics a priori the three-isotope method cannot lead to a reliable αeq. For a two-reservoir exchanging system, α determined by this method may be αeq, kinetic isotope effect, or apparent kinetic isotope effect, which can all bear different values. When multiple reservoirs exist during exchange, the evolving trajectory can be complex and hard to predict. Instead of being a tool for αeq determination, three-isotope method should be used as a tool for studying kinetic isotope effect, apparent kinetic isotope effect, and detailed exchange kinetics in diverse systems.

  9. Isotopic decoupling during porous melt flow: A case-study in the Lherz peridotite

    NASA Astrophysics Data System (ADS)

    Le Roux, V.; Bodinier, J.-L.; Alard, O.; O'Reilly, S. Y.; Griffin, W. L.

    2009-03-01

    Most peridotite massifs and mantle xenoliths show a wide range of isotopic variations, often involving significant decoupling between Hf, Nd and Sr isotopes. These variations are generally ascribed either to mingling of individual components of contrasted isotopic compositions or to time integration of parent-element enrichment by percolating melts/fluids, superimposed onto previous depletion event(s). However, strong isotopic decoupling may also arise during porous flow as a result of daughter-elements fractionation during solid-liquid interaction. Although porous flow is recognized as an important process in mantle rocks, its effects on mantle isotopic variability have been barely investigated so far. The peridotites of the Lherz massif (French Pyrenees) display a frozen melt percolation front separating highly refractory harzburgites from refertilized lherzolites. Isotopic signatures observed at the melt percolation front show a strong decoupling of Hf from Nd and Sr isotopes that cannot be accounted for by simple mixing involving the harzburgite protolith and the percolating melt. Using one dimensional percolation-diffusion and percolation-reaction modeling, we show that these signatures represent transient isotopic compositions generated by porous flow. These signatures are governed by a few critical parameters such as daughter element concentrations in melt and peridotite, element diffusivity, and efficiency of isotopic homogenization rather than by the chromatographic effect of melt transport and the refertilization reaction. Subtle variations in these parameters may generate significant inter-isotopic decoupling and wide isotopic variations in mantle rocks.

  10. Environmental isotope investigation for the identification of source of springs observed in the hillock on the left flank of Gollaleru Earthen Dam, Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Noble, J.; Arzoo Ansari, MD

    2017-07-01

    A hydrometric, hydrochemical and environmental isotopic study was conducted to identify the source and origin of observed springs on the foot of the hillock abutting the left flank of the Gollaleru earthen dam, Nandyal, Andhra Pradesh, India. Water samples (springs, reservoir water and groundwater) in and around the dam area were collected and analyzed for environmental isotopes (δ^{18}!O, δ2H and 3H) and hydrochemistry. Reservoir level, spring discharges and physico-chemical parameters (temperature, electrical conductivity, pH, etc.) were monitored in-situ. Isotopic results indicated that the source of springs is from the Owk reservoir and groundwater contribution to the springs is insignificant. Based on hydrometric observations, it is inferred that the springs might be originated from the reservoir level of 209 m amsl. It is found that the lower spring discharges were derived from diffuse sources (seepage) which could be a mixture of reservoir water and the groundwater, while the relatively higher spring discharges were resulted from concentrated sources (leakage) from the reservoir. Thus, the study portraits the usefulness of isotope techniques in understanding the dam seepage/leakage related problems.

  11. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  12. Verification of the isotopic composition of precipitation simulated by a regional isotope circulation model over Japan.

    PubMed

    Tanoue, Masahiro; Ichiyanagi, Kimpei; Yoshimura, Kei

    2016-01-01

    The isotopic composition (δ(18)O and δ(2)H) of precipitation simulated by a regional isotope circulation model with a horizontal resolution of 10, 30 and 50 km was compared with observations at 56 sites over Japan in 2013. All simulations produced reasonable spatio-temporal variations in δ(18)O in precipitation over Japan, except in January. In January, simulated δ(18)O values in precipitation were higher than observed values on the Pacific side of Japan, especially during an explosively developing extratropical cyclone event. This caused a parameterisation of precipitation formulation about the large fraction of precipitated water to liquid detrained water in the lower troposphere. As a result, most water vapour that transported from the Sea of Japan precipitated on the Sea of Japan side. The isotopic composition of precipitation was a useful verification tool for the parameterisation of precipitation formulation as well as large-scale moisture transport processes in the regional isotope circulation model.

  13. Enrichment of 57Fe isotope in neutron flux of nuclear reactors observed by Mössbauer spectroscopy.

    PubMed

    Sawicki, Jerzy A

    2018-02-01

    The abundance of 57 Fe isotope in nuclear reactor core materials can be considerably enriched by neutron-capture 56 Fe(n,γ) reactions. This is demonstrated using the sections of Zr-2.5 wt.%Nb pressure tubes removed from two CANDU* reactors. The tubes contained 0.11 and 0.04wt% Fe and were irradiated for about 10 effective full power years (EFPY) up to ~10 26 n/m 2 fast neutron (E > 1MeV) fluencies. The Mössbauer spectra of 57 Fe in irradiated samples indicated up to 10 times larger areas than unirradiated off-cuts from the same pressure tubes. The observed effect is in accord with the values calculated for known thermal neutron-capture cross-sections and resonance capture integrals, neutron flux profiles and spectra, and times of irradiation. The build-up of 57 Fe facilitated recording Mössbauer absorption spectra of alloys with minor amount of Fe down to ~ 400ppm, despite intense background radiation emitted by samples. These findings can open new possibilities in post-irradiation studies of alloys used in nuclear reactors and in other objects subjected to large neutron fluencies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Latitudinal change in precipitation and water vapor isotopes over Southern ocean

    NASA Astrophysics Data System (ADS)

    Rahul, P.

    2015-12-01

    The evaporation process over ocean is primary source of water vapor in the hydrological cycle. The Global Network of Isotopes in Precipitation (GNIP) dataset of rainwater and water vapor isotopes are predominantly based on continental observations, with very limited observation available from the oceanic area. Stable isotope ratios in precipitation provide valuable means to understand the process of evaporation and transport of water vapor. This is further extended in the study of past changes in climate from the isotopic composition of ice core. In this study we present latitudinal variability of water vapor and rainwater isotopic composition and compared it with factors like physical condition of sea surface water from near equator (1°S) to the polar front (56°S) during the summer time expedition of the year 2013. The water vapor and rainwater isotopes showed a sharp depletion in isotopes while progressively move southward from the tropical regions (i.e. >30°S), which follows the pattern recorded in the surface ocean water isotopic composition. From the tropics to the southern latitudes, the water vapor d18O varied between -11.8‰ to -14.7‰ while dD variation ranges between -77.7‰ to -122.2‰. Using the data we estimated the expected water vapor isotopic composition under kinetic as well as equilibrium process. Our observation suggests that the water vapor isotopic compositions are in equilibrium with the sea water in majority of cases. At one point of observation, where trajectory of air parcel originated from the continental region, we observed a large deviation from the existing trend of latitudinal variability. The deduced rainwater composition adopting equilibrium model showed a consistent pattern with observed values at the tropical region, while role of kinetic process become dominant on progressive shift towards the southern latitudes. We will draw comparison of our observation with other data available in the literature together with isotope

  15. Rare Isotopes Physics in the Multimessenger Era

    NASA Astrophysics Data System (ADS)

    Schatz, Hendrik

    2018-06-01

    While these isotopes only exist for fractions of seconds, their properties shape the resulting cosmic distribution of elements and the astronomical observables including spectra, neutrinos, and gravitational waves. The long standing challenge in nuclear astrophysics of the production of the relevant isotopes in the laboratory is now overcome with a new generation of rare isotope accelerator facilities now coming online. One example is the FRIB facility under construction at Michigan State University for the US Department of Energy, Office of Science, Office of Nuclear Physics. These new capabilities in nuclear physics coincide with advances in astronomy directly related to the cosmic sites where these isotopes are created, in particular in time domain and gravitational wave astronomy. I will discuss the importance of rare isotope physics in interpreting multi-messenger observations and how advances in nuclear physics and astronomy when combined promise to lead us towards a comprehensive theory of the origin of the elements.

  16. The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of Mid-Ocean Ridge Basalts

    NASA Astrophysics Data System (ADS)

    Bezard, Rachel; Fischer-Gödde, Mario; Hamelin, Cédric; Brennecka, Gregory A.; Kleine, Thorsten

    2016-11-01

    Molybdenum (Mo) stable isotopes hold great potential to investigate the processes involved in planetary formation and differentiation. However their use is currently hampered by the lack of understanding of the dominant controls driving mass-dependent fractionations at high temperature. Here we investigate the role of magmatic processes and mantle source heterogeneities on the Mo isotope composition of Mid-Ocean Ridges Basalts (MORBs) using samples from two contrasting ridge segments: (1) the extremely fast spreading Pacific-Antarctic (66-41°S) section devoid of plume influence and; (2) the slow spreading Mohns-Knipovich segment (77-71°N) intercepted by the Jan Mayen Plume (71°N). We show that significant variations in Mo stable isotope composition exist in MORBs with δ98/95Mo ranging from - 0.24 ‰ to + 0.15 ‰ (relative to NIST SRM3134). The absence of correlation between δ98/95Mo and indices of magma differentiation or partial melting suggests a negligible impact of these processes on the isotopic variations observed. On the other hand, the δ98/95Mo variations seem to be associated with changes in radiogenic isotope signatures and rare earth element ratios (e.g., (La/Sm)N), suggesting mantle source heterogeneities as a dominant factor for the δ98/95Mo variations amongst MORBs. The heaviest Mo isotope compositions correspond to the most enriched signatures, suggesting that recycled crustal components are isotopically heavy compared to the uncontaminated depleted mantle. The uncontaminated depleted mantle shows slightly sub-chondritic δ98/95Mo, which cannot be produced by core formation and, therefore, more likely result from extensive anterior partial melting of the mantle. Consequently, the primitive δ98/95Mo composition of the depleted mantle appears overprinted by the effects of both partial melting and crustal recycling.

  17. Iron isotope effect in the iron arsenide superconductor (Ca0.4Na0.6)Fe2As2

    NASA Astrophysics Data System (ADS)

    Tsuge, Y.; Nishio, T.; Iyo, A.; Tanaka, Y.; Eisaki, H.

    2014-05-01

    We report a new sample synthesis technique for polycrystalline (Ca1-xNax)Fe2As2 (0isotope effect in optimally doped (Ca0.4Na0.6)Fe2As2 with three types of iron isotopes (54Fe, natural Fe, and 57Fe). We synthesized isotope samples carefully not to give rise to a difference in the Na content x between different isotope samples, which becomes potentially a factor for an extrinsic difference in the superconducting transition temperature Tc between those samples. No significant difference in lattice parameters between those samples is shown by measurements of powder x-ray diffraction (XRD), implying that the Na content in samples is well-controlled. Our estimate of the iron isotope coefficient αFe defined by -d InTc/d lnMFe, where MFe is the iron isotope mass, is -0.19. These indicate that in (Ca0.4Na0.6)Fe2As2, the iron isotope coefficient becomes definitely negative. We discuss the implications of this fact, considering previous measurements of an iron isotope effect in different iron-based superconductors.

  18. Compound-Specific Carbon and Hydrogen Isotope Analysis - Field Evidence of MTBE Bioremediation

    NASA Astrophysics Data System (ADS)

    Kuder, T.; Kolhatkar, R. V.; Philp, P.; Wilson, J. T.; Landmeyer, J. E.; Allen, J.

    2002-12-01

    Compound-specific stable isotope analysis allows opportunity to determine the isotopic ratios of individual contaminants. The technique has been applied to confirm biodegradation in studies of chlorinated solvents and recently BTEX, MTBE and TBA. Chemical reactions (including bio- and inorganic degradation) tend to favor molecules with the lighter isotopic species (e.g., 12C, 1H), resulting with enrichment of the unreacted substrate in the heavier isotopic species (13C, D), referred to as kinetic isotopic fractionation, so that the extent of fractionation may be used as a proxy for biodegradation. Processes such as volatilization, sorption etc., result in minimal degree of fractionation and do not interfere with the isotopic signal due to biodegradation. The results presented here show the first successful applications of compound-specific isotope analysis to understanding MTBE biodegradation in the field, at both aerobic and anaerobic sites. Observed fractionations suggest that two different biodegradation pathways may be involved. At a number of anaerobic locations major fractionation effects were observed for both C and H; enrichment factors Ÿnfor both elements were approaching or exceeding -10. A laboratory microcosm study using an enrichment culture yielded similar results (C data only). A characteristic feature of these sites was the presence of high concentrations of TBA. Conversely, at a number of sites, the C composition remained stable with little fractionation and stayed within the analytical precision range or changed minimally, while H displayed significant fractionation in excess of 60 per mil. Moderate agreement of the data with Rayleigh fractionation model was observed, suggesting that biodegradation effect was distorted by variability at the source or the plume was not homogeneous. The enrichment factor calculated for these data is similar to the one Ÿnpublished for aerobic microcosm of MTBE-degrading culture from Vandenberg AFB by Gray et al

  19. Carbon Isotope Fractionation Effects During Degradation of Methyl Halides in Agricultural Soils

    NASA Astrophysics Data System (ADS)

    Miller, L. G.; Baesman, S. M.; Oremland, R. S.; Bill, M.; Goldstein, A. H.

    2001-12-01

    Fumigation of agricultural soils prior to planting row crops constitutes the largest anthropogenic source of methyl bromide (MeBr) to the atmosphere. Typically, more than 60% of the MeBr added is lost to the atmosphere during the 5-6 day fumigation period. The remainder is oxidized by bacteria or otherwise degraded in the soil. In experiments using washed cells of methylotrophic bacteria isolated from agricultural soil (strain IMB-1), oxidation of MeBr, methyl chloride (MeCl) and methyl iodide to CO2 resulted in large (up to 70‰ ) fractionation of stable carbon isotopes (Miller, et al. 2001). By contrast, fractionation measured in field soils using both in situ techniques and bottle incubations with MeBr was less than 35‰ . This discrepancy was initially attributed to the large transportation losses that occur without isotopic fractionation during field fumigation. However, this rationale cannot explain why bottle incubations with soil resulted in lower fractionation factors than incubations with bacterial cultures. We conducted additional laboratory bottle experiments to examine the biological and chemical controls of carbon isotope fractionation during degradation of MeBr and MeCl by soils and bacteria. Soils were collected from a strawberry field in Santa Cruz County, California within two weeks of the start of each experiment. The rate of removal of methyl halides from the headspace was greatest during incubations at soil moisture contents around 8%. Increasing the amount of soil and hence native bacteria in each bottle minimized the lag in uptake by up to several days. No lag was observed during incubations of soils with added IMB-1. Stable isotope fractionation factors were similar for degradation by live soil and live soil with added IMB-1. Heat-killed controls of cell cultures showed little uptake (<10% over 5 days) and no isotope fractionation. Heat-killed soil controls, by contrast, demonstrated significant loss of MeBr (20-30%) with isotope

  20. Isotope dependence of the Zeeman effect in lithium-like calcium

    PubMed Central

    Köhler, Florian; Blaum, Klaus; Block, Michael; Chenmarev, Stanislav; Eliseev, Sergey; Glazov, Dmitry A.; Goncharov, Mikhail; Hou, Jiamin; Kracke, Anke; Nesterenko, Dmitri A.; Novikov, Yuri N.; Quint, Wolfgang; Minaya Ramirez, Enrique; Shabaev, Vladimir M.; Sturm, Sven; Volotka, Andrey V.; Werth, Günter

    2016-01-01

    The magnetic moment μ of a bound electron, generally expressed by the g-factor μ=−g μB s ħ−1 with μB the Bohr magneton and s the electron's spin, can be calculated by bound-state quantum electrodynamics (BS-QED) to very high precision. The recent ultra-precise experiment on hydrogen-like silicon determined this value to eleven significant digits, and thus allowed to rigorously probe the validity of BS-QED. Yet, the investigation of one of the most interesting contribution to the g-factor, the relativistic interaction between electron and nucleus, is limited by our knowledge of BS-QED effects. By comparing the g-factors of two isotopes, it is possible to cancel most of these contributions and sensitively probe nuclear effects. Here, we present calculations and experiments on the isotope dependence of the Zeeman effect in lithium-like calcium ions. The good agreement between the theoretical predicted recoil contribution and the high-precision g-factor measurements paves the way for a new generation of BS-QED tests. PMID:26776466

  1. Paleoproxies: Heavy Stable Isotope Perspectives

    NASA Astrophysics Data System (ADS)

    Nagler, T. F.; Hippler, D.; Siebert, C.; Kramers, J. D.

    2002-12-01

    Recent advances in isotope ratio mass spectrometry, namely multiple collector ICP-MS and refined TIMS techniques, will significantly enhance the ability to measure heavy stable isotope fractionation, which will lead to the development of a wide array of process-identifying (bio)-geochemical tools. Thus far research in this area is not easily assessable to scientists outside the isotope field. This is due to the fact that analyzing heavy stable isotopes does not provide routine numbers which are per se true (the preciser the truer) but is still a highly experimental field. On the other hand resolving earth science problems requires specialists familiar with the environment being studied. So what is in there for paleoceanographers? In a first order approach, relating isotope variations to physical processes is straightforward. A prominent example are oxygen isotope variations with temperature. The total geological signal is of course far more complicated. At low temperatures, heavy stable isotopes variations have been reported for e.g. Ca, Cr, Fe, Cu, Zn, Mo and Tl. Fractionation mechanisms and physical parameters responsible for the observed variations are not yet resolved for most elements. Significant equilibrium isotope fractionation is expected from redox reactions of transition metals. However a difference in coordination number between two coexisting speciations of an element in the same oxidation state can also cause fractionation. Protonation of dissolved Mo is one case currently discussed. For paleoceanography studies, a principal distinction between transition metals essential for life (V to Zn plus Mo) or not will be helpful. In case of the former group, distinction between biogenic and abiogenic isotope fractionation will remain an important issue. For example, abiotic Fe redox reactions result in isotope fractionations indistinguishable in direction and magnitude from microbial effects. Only a combination of different stable isotope systems bears the

  2. An NMR Study of Isotope Effect on Keto-Enol Tautomerization: A Physical Organic Chemistry Experiment

    ERIC Educational Resources Information Center

    Atkinson, D.; Chechik, V.

    2004-01-01

    Isotope substitution often affects the rate of an organic reaction and can be used to reveal the underlying mechanism. A series of experiments that use (super 1)H NMR to determine primary and secondary isotope effects, activation parameters, and the regioselectivity of butanone enolization are described.

  3. Future stable water isotope projection with an isotope-AGCM driven by CMIP5 SSTs

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.

    2016-12-01

    Stable water isotope ratios (dD and d18O) are widely used as proxy of past climate changes, and it is extremely important to understand and predict the mechanism of current isotopic spatio-temporal behavior with regard to the on-going climate change. However, as compared many studies on reproduction of isotopes for the past, there are few studies on future projection of isotopes. Therefore, in this study, a set of experiments using an isotope-incorporate AGCM (IsoGSM) with SST and sea ice field simulated from multiple CMIP5 models, namely MIROC5, CCSM4, and MRI-CGCM3, were conducted for the end of 20th century (1980-1990) and the end of 21st century (2080-2090) under RCP2.6 and RCP8.5 scenarios. Thus the responses in stable water isotope ratio in precipitation and water vapor in accordance to the global warming were investigated. As results, the changes in global surface air temperature were about +1K and +3K with RCP2.6 and RCP8.5, respectively. Similarly, the global precipitation changes were about +0.07mm/day (about +2%) and +0.18mm/day (about +5%), and the global precipitable water changes were about +2mm (+7%) and +6mm (+24%), respectively. The moisture was increased in accordance to the Clausius-Clapayron theory (7%/K), but the increase in precipitation is not that large. This indicates that the global hydrological cycle was slowed down in the globally warmed experiments. On the other hand, for the isotopic signals, the changes in globally averaged d18O in precipitation were about 0.2‰ and 0.4‰, and those in precipitable water were 0.2‰ and 0.5‰, in RCP2.6 and RCP8.5, respectively. It is well-known that there are temperature effect (positive correlation in air temperature and precipitation isotopes) and amount effect (negative correlation in precipitation amount and isotopes), but in the globally warmed world, these effects were offset, and only weaker temperature effect was appeared in the global mean isotope signals. Regional details will be shown

  4. Isotope effect on electron-phonon interaction in the multiband superconductor MgB 2

    DOE PAGES

    Mou, Daixiang; Manni, Soham; Taufour, Valentin; ...

    2016-04-07

    We investigate the effect of isotope substitution on the electron-phonon interaction in the multiband superconductor MgB 2 using tunable laser-based angle-resolved photoemission spectroscopy. The kink structure around 70 meV in the σ band, which is caused by electron coupling to the E 2g phonon mode, is shifted to higher binding energy by ~3.5 meV in Mg 10B 2 and the shift is not affected by superconducting transition. Furthermore, these results serve as the benchmark for investigations of isotope effects in known, unconventional superconductors and newly discovered superconductors where the origin of pairing is unknown.

  5. Isotope Ratio Monitoring Gas Chromatography Mass Spectrometry (IRM-GCMS)

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Ricci, S. A.; Studley, A.; Hayes, J. M.

    1989-01-01

    On Earth, the C-13 content of organic compounds is depleted by roughly 13 to 23 permil from atmospheric carbon dioxide. This difference is largely due to isotope effects associated with the fixation of inorganic carbon by photosynthetic organisms. If life once existed on Mars, then it is reasonable to expect to observe a similar fractionation. Although the strongly oxidizing conditions on the surface of Mars make preservation of ancient organic material unlikely, carbon-isotope evidence for the existence of life on Mars may still be preserved. Carbon depleted in C-13 could be preserved either in organic compounds within buried sediments, or in carbonate minerals produced by the oxidation of organic material. A technique is introduced for rapid and precise measurement of the C-13 contents of individual organic compounds. A gas chromatograph is coupled to an isotope-ratio mass spectrometer through a combustion interface, enabling on-line isotopic analysis of isolated compounds. The isotope ratios are determined by integration of ion currents over the course of each chromatographic peak. Software incorporates automatic peak determination, corrections for background, and deconvolution of overlapped peaks. Overall performance of the instrument was evaluated by the analysis of a mixture of high purity n-alkanes of know isotopic composition. Isotopic values measured via IRM-GCMS averaged withing 0.55 permil of their conventionally measured values.

  6. Integrated carbon and chlorine isotope modeling: applications to chlorinated aliphatic hydrocarbons dechlorination.

    PubMed

    Jin, Biao; Haderlein, Stefan B; Rolle, Massimo

    2013-02-05

    We propose a self-consistent method to predict the evolution of carbon and chlorine isotope ratios during degradation of chlorinated hydrocarbons. The method treats explicitly the cleavage of isotopically different C-Cl bonds and thus considers, simultaneously, combined carbon-chlorine isotopologues. To illustrate the proposed modeling approach we focus on the reductive dehalogenation of chlorinated ethenes. We compare our method with the currently available approach, in which carbon and chlorine isotopologues are treated separately. The new approach provides an accurate description of dual-isotope effects regardless of the extent of the isotope fractionation and physical characteristics of the experimental system. We successfully applied the new approach to published experimental results on dehalogenation of chlorinated ethenes both in well-mixed systems and in situations where mass-transfer limitations control the overall rate of biodegradation. The advantages of our self-consistent dual isotope modeling approach proved to be most evident when isotope fractionation factors of carbon and chlorine differed significantly and for systems with mass-transfer limitations, where both physical and (bio)chemical transformation processes affect the observed isotopic values.

  7. CNO isotopes in red giant stars

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    The production and distribution of the CNO nuclides is discussed in light of observed abundance ratios in red giants and in the interstellar medium. Isotope abundances have been measured in the atmospheres and in the recent ejecta of cool giants, including carbon stars, S-type stars and red supergiants as well as in oxygen-rich giants making their first ascent of the giant branch. Several of the observations suggest revision of currently accepted nuclear cross-sections and of the mixing processes operating in giant envelopes. By comparing red giant abundances with high-quality observations of the interstellar medium, conclusions are reached about the contribution of intermediate-mass stars to galactic nuclear evolution. The three oxygen isotopes, O-16, -17 and -18, are particularly valuable for such comparison because they reflect three different stages of stellar nucleosynthesis. One remarkable result comes from observations of O-17/O-18 in several classes of red giant stars. The observed range of values for red giants excludes the entire range of values seen in interstellar molecular clouds. Furthermore, both the observations of stars and interstellar clouds exclude the isotopic ratio found in the solar system.

  8. Isotope analysis of diamond-surface passivation effect of high-temperature H{sub 2}O-grown atomic layer deposition-Al{sub 2}O{sub 3} films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiraiwa, Atsushi, E-mail: hiraiwa@aoni.waseda.jp, E-mail: qs4a-hriw@asahi-net.or.jp; Saito, Tatsuya; Matsumura, Daisuke

    2015-06-07

    The Al{sub 2}O{sub 3} film formed using an atomic layer deposition (ALD) method with trimethylaluminum as Al precursor and H{sub 2}O as oxidant at a high temperature (450 °C) effectively passivates the p-type surface conduction (SC) layer specific to a hydrogen-terminated diamond surface, leading to a successful operation of diamond SC field-effect transistors at 400 °C. In order to investigate this excellent passivation effect, we carried out an isotope analysis using D{sub 2}O instead of H{sub 2}O in the ALD and found that the Al{sub 2}O{sub 3} film formed at a conventional temperature (100 °C) incorporates 50 times more CH{sub 3} groups thanmore » the high-temperature film. This CH{sub 3} is supposed to dissociate from the film when heated afterwards at a higher temperature (550 °C) and causes peeling patterns on the H-terminated surface. The high-temperature film is free from this problem and has the largest mass density and dielectric constant among those investigated in this study. The isotope analysis also unveiled a relatively active H-exchange reaction between the diamond H-termination and H{sub 2}O oxidant during the high-temperature ALD, the SC still being kept intact. This dynamic and yet steady H termination is realized by the suppressed oxidation due to the endothermic reaction with H{sub 2}O. Additionally, we not only observed the kinetic isotope effect in the form of reduced growth rate of D{sub 2}O-oxidant ALD but found that the mass density and dielectric constant of D{sub 2}O-grown Al{sub 2}O{sub 3} films are smaller than those of H{sub 2}O-grown films. This is a new type of isotope effect, which is not caused by the presence of isotopes in the films unlike the traditional isotope effects that originate from the presence of isotopes itself. Hence, the high-temperature ALD is very effective in forming Al{sub 2}O{sub 3} films as a passivation and/or gate-insulation layer of high-temperature-operation diamond SC devices, and the

  9. Origin of isotopically light Zn in lunar samples through vaporization and the Zn isotope composition of the Moon

    NASA Astrophysics Data System (ADS)

    Kato, C.; Valdes, M. C.; Dhaliwal, J.; Day, J. M.; Moynier, F.

    2013-12-01

    The origin of the volatile element depletion of the Moon compared to Earth remains a key question in planetary science. It has recently been shown that both high-Ti and low-Ti lunar basalts are enriched in the heavier isotopes of Zn compared to Earth with an effect of ~1.3 permil on the 66Zn/64Zn ratio (Paniello et al., Nature, 2012). In order to obtain a better understanding of Zn behavior in and on the Moon, we present new measurements of lunar basalts, pyroclastic green glass 15426, highland anorthosites, cataclastic dunite 77215, cataclastic norite 72415 and some lunar soils. Samples were analyzed using a Thermo-Fisher Neptune Plus multi collector inductively coupled plasma mass spectrometer (MC-ICP-MS) at Washington University in St Louis. The data presented below are reported as the permil deviation of the 66Zn/64Zn ratio from the JMC-Lyon standard (δ66Zn). Four new high Ti basalts and three low Ti basalts confirm the observations of Paniello et al. (2012), that there is an enrichment in the heavier isotopes of Zn compared with chondrites and terrestrial samples. Combining these data together with Paniello et al. (2012) and Herzog et al. (GCA, 2009) we calculate a new average for lunar basalts of δ66Zn= 1.4×0.4 (1sd, n = 27). A few exceptions (5 samples out of 32) are isotopically light and probably represent addition of isotopically light Zn condensed onto the lunar surface from Zn isotopic fractionation during meteoritic impact, creating correspondingly isotopically heavy soils. In contrast to the homogeneity of mare basalts, highland samples show large Zn isotopic variability (δ66Zn -11.4 up to +4.24 permil) which encompasses the entire Zn isotopic variability measured so far in the Solar System. These δ66Zn variations are negatively correlated with the Zn abundance, with the isotopically light samples having the highest Zn concentrations. We interpret these results as the consequence of meteoritic bombardment and volatilization/condensation of Zn at

  10. Hydrogen Isotope Fractionation As a Tool to Identify Aerobic and Anaerobic PAH Biodegradation.

    PubMed

    Kümmel, Steffen; Starke, Robert; Chen, Gao; Musat, Florin; Richnow, Hans H; Vogt, Carsten

    2016-03-15

    Aerobic and anaerobic polycyclic aromatic hydrocarbon (PAH) biodegradation was characterized by compound specific stable isotope analysis (CSIA) of the carbon and hydrogen isotope effects of the enzymatic reactions initiating specific degradation pathways, using naphthalene and 2-methylnaphtalene as model compounds. Aerobic activation of naphthalene and 2-methylnaphthalene by Pseudomonas putida NCIB 9816 and Pseudomonas fluorescens ATCC 17483 containing naphthalene dioxygenases was associated with moderate carbon isotope fractionation (εC = -0.8 ± 0.1‰ to -1.6 ± 0.2‰). In contrast, anaerobic activation of naphthalene by a carboxylation-like mechanism by strain NaphS6 was linked to negligible carbon isotope fractionation (εC = -0.2 ± 0.2‰ to -0.4 ± 0.3‰). Notably, anaerobic activation of naphthalene by strain NaphS6 exhibited a normal hydrogen isotope fractionation (εH = -11 ± 2‰ to -47 ± 4‰), whereas an inverse hydrogen isotope fractionation was observed for the aerobic strains (εH = +15 ± 2‰ to +71 ± 6‰). Additionally, isotope fractionation of NaphS6 was determined in an overlaying hydrophobic carrier phase, resulting in more reliable enrichment factors compared to immobilizing the PAHs on the bottle walls without carrier phase. The observed differences especially in hydrogen fractionation might be used to differentiate between aerobic and anaerobic naphthalene and 2-methylnaphthalene biodegradation pathways at PAH-contaminated field sites.

  11. Fe and Cu isotope mass balances in the human body

    NASA Astrophysics Data System (ADS)

    Balter, V.; Albarede, F.; Jaouen, K.

    2011-12-01

    The ranges of the Fe and Cu isotope compositions in the human body are large, i.e. ~3% and ~2%, respectively. Both isotopic fractionations appear to be mainly controlled by redox conditions. The Fe and Cu isotope compositions of the tissues analyzed so far plot on a mixing hyperbolae between a reduced and an oxidized metals pools. The reduced metals pool is composed by erythrocytes, where Fe is bounded to hemoglobin as Fe(II) and Cu to superoxide-dismutase as Cu(I). The oxidized metals pool is composed by hepatocytes, where Fe and Cu are stored as Fe(III) ferritin and as Cu(II) ceruloplasmine, respectively. The position of each biological component in the δ56Fe-δ65Cu diagram therefore reflects the oxidation state of Fe and Cu of the predominant metal carrier protein and allows to quantify Fe and Cu fluxes between organs using mass balance calculations. For instance, serum and clot Fe and Cu isotope compositions show that current biological models of erythropoiesis violates mass conservation requirements, and suggest hidden Fe and Cu pathways during red blood cells synthesis. The results also show that a coupled Fe-Cu strong gender isotopic effect is observed in various organs. The isotopic difference between men and women is unlikely to be due to differential dietary uptake or endometrium loss, but rather reflects the effect of menstrual losses and a correlative solicitation of hepatic stores. We speculate that thorough studies of the metabolism of stable isotopes in normal conditions is a prerequisite for the understanding of the pathological dysregulations.

  12. Relating Carbon and Nitrogen Isotope Effects to Reaction Mechanisms during Aerobic or Anaerobic Degradation of RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine) by Pure Bacterial Cultures

    PubMed Central

    Heraty, Linnea; Condee, Charles W.; Vainberg, Simon; Sturchio, Neil C.; Böhlke, J. K.; Hatzinger, Paul B.

    2016-01-01

    ABSTRACT Kinetic isotopic fractionation of carbon and nitrogen during RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation was investigated with pure bacterial cultures under aerobic and anaerobic conditions. Relatively large bulk enrichments in 15N were observed during biodegradation of RDX via anaerobic ring cleavage (ε15N = −12.7‰ ± 0.8‰) and anaerobic nitro reduction (ε15N = −9.9‰ ± 0.7‰), in comparison to smaller effects during biodegradation via aerobic denitration (ε15N = −2.4‰ ± 0.2‰). 13C enrichment was negligible during aerobic RDX biodegradation (ε13C = −0.8‰ ± 0.5‰) but larger during anaerobic degradation (ε13C = −4.0‰ ± 0.8‰), with modest variability among genera. Dual-isotope ε13C/ε15N analyses indicated that the three biodegradation pathways could be distinguished isotopically from each other and from abiotic degradation mechanisms. Compared to the initial RDX bulk δ15N value of +9‰, δ15N values of the NO2− released from RDX ranged from −7‰ to +2‰ during aerobic biodegradation and from −42‰ to −24‰ during anaerobic biodegradation. Numerical reaction models indicated that N isotope effects of NO2− production were much larger than, but systematically related to, the bulk RDX N isotope effects with different bacteria. Apparent intrinsic ε15N-NO2− values were consistent with an initial denitration pathway in the aerobic experiments and more complex processes of NO2− formation associated with anaerobic ring cleavage. These results indicate the potential for isotopic analysis of residual RDX for the differentiation of degradation pathways and indicate that further efforts to examine the isotopic composition of potential RDX degradation products (e.g., NOx) in the environment are warranted. IMPORTANCE This work provides the first systematic evaluation of the isotopic fractionation of carbon and nitrogen in the organic explosive RDX during degradation by different pathways. It also

  13. Mg isotopes in biocarbonates: new insight into vital effects associated to echinoderms and bivalves calcification

    NASA Astrophysics Data System (ADS)

    Planchon, F.; Hermans, J.; Borremans, C.; Dubois, P.; Poulain, C.; Paulet, Y.; Andre, L.

    2007-12-01

    Mg isotopes can be helpful tracers to reveal the fundamental pathways of Mg incorporation during biomineralisation. We report in this study a detailed characterisation of the Mg isotopic signatures of different biominerals: high magnesium calcitic skeletons of selected echinoderms (sea urchins and starfish) and low magnesium aragonitic shells of a bivalve species (clam). State of the art analytical procedures were applied including sample purification step followed by high precision measurements using MC-ICP-MS (Nu instrument) in dry plasma conditions. 26Mg/24Mg and 25Mg/24Mg are expressed as per mil deviations from the DSM3 (Dead Sea Metal 3) reference standard in delta notation (d26Mg and d25Mg). For echinoderms, we considered: (a) adult specimens of six starfish species (Asteria r., Marthasterias g., Anseropoda p., Asterina g., Echinaster s. and Henricia o.), sampled in Brittany (France); (b) a sea urchin species (Paracentrotus lividus) with field samples (Mediterranean Sea, Marseille, France) and culture specimen under T and S controlled conditions. In vivo endoskeletons display negative, but different d26Mg values of -3.06 for starfish (with uniform interspecies signatures) and -2.65 for sea urchin. Relative to seawater signature (-0.82), all echinoderms favour the incorporation of light isotopes during biocalcification. The d26Mg depletion is lower than theoretically expected from a inorganic calcite precipitation from seawater (at -3.5). These differences suggest that on its route from seawater to the shell, Mg isotopes are partly biologically fractionationated through "vital effects" leaving heavier Mg isotopic signatures. Taken into account that calcification in echinoderms is an intra- cellular process involving transient amorphous calcium carbonate (ACC) phase, the observed bio-fractionation factors can be related to: (1) changes in the isotopic composition of the precipitating intracellular fluids due to active pumping in and out of the cell; (2) a

  14. Coupled extremely light Ca and Fe isotopes in peridotites

    NASA Astrophysics Data System (ADS)

    Zhao, Xinmiao; Zhang, Zhaofeng; Huang, Shichun; Liu, Yufei; Li, Xin; Zhang, Hongfu

    2017-07-01

    Large metal stable isotopic variations have been observed in both extraterrestrial and terrestrial samples. For example, Ca exhibits large mass-dependent isotopic variation in terrestrial igneous rocks and mantle minerals (on the order of ∼2‰ variation in 44Ca/40Ca). A thorough assessment and understanding of such isotopic variations in peridotites provides important constraints on the evolution and compositon of the Earth's mantle. In order to better understand the Ca and Fe isotopic variations in terrestrial silicate rocks, we report Ca isotopic compositions in a set of peridotitic xenoliths from North China Craton (NCC), which have been studied for Fe isotopes. These NCC peridotites have large Ca and Fe isotopic variations, with δ44/40Ca ranging from -0.08 to 0.92 (delta value relative to SRM915a) and δ57/54Fe (delta value relative to IRMM-014) ranging from -0.61 to 0.16, and these isotopic variations are correlated with large Mg# (100 × Mg/(Mg + Fe) molar ratio) variation, ranging from 80 to 90. Importantly, NCC Fe-rich peridotites have the lowest 44Ca/40Ca and 57Fe/54Fe ratios in all terrestrial silicate rocks. In contrast, although ureilites, mantle rocks from a now broken differentiated asteroid(s), have large Mg# variation, from 70 to 92, they have very limited δ57Fe/54Fe variation (0.03-0.21, delta value relative to IRMM-014). Our model calculations show that the coupled extremely light Ca-Fe isotopic signatures in NCC Fe-rich peridotites most likely reflect kinetic isotopic fractionation during melt-peridotite reaction on a timescale of several to 104 years. In addition, our new data and compiled literature data show a possible compositional effect on the inter-mineral Ca isotopic fractionation between co-existing clinopyroxene and orthopyroxene pairs.

  15. The use of carbon stable isotope ratios in drugs characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magdas, D. A., E-mail: gabriela.cristea@itim-cj.ro; Cristea, G., E-mail: gabriela.cristea@itim-cj.ro; Bot, A., E-mail: gabriela.cristea@itim-cj.ro

    Isotopic Ratio Mass Spectrometry (IRMS) is an effective toll to be used for drug product authentication. The isotopic composition could be used to assist in the differentiation between batches of drugs and assist in the identification of counterfeit materials on the market. Only two factors affect the isotopic ratios in pharmaceutical components: the isotopic composition of the raw materials and the synthetic processes performed upon them. Counterfeiting of pharmaceutical drugs threatens consumer confidence in drug products companies' economical well-being. In this preliminary study, the analyzed samples consist in two types of commercially available analgesics, which were purchases from Romanian pharmacies.more » Differences in δ{sup 13}C between batches from −29.7 to −31.6% were observed, demonstrating that this method can be used to differentiate among individual drug batches and subsequently identify counterfeits on the market. On the other hand, carbon isotopic ratios differences among producers were recorded, the variations being between −31.3 to −34.9% for the same type of analgesic, but from different manufactures.« less

  16. Mechanistic investigations of the hydrolysis of amides, oxoesters and thioesters via kinetic isotope effects and positional isotope exchange.

    PubMed

    Robins, Lori I; Fogle, Emily J; Marlier, John F

    2015-11-01

    The hydrolysis of amides, oxoesters and thioesters is an important reaction in both organic chemistry and biochemistry. Kinetic isotope effects (KIEs) are one of the most important physical organic methods for determining the most likely transition state structure and rate-determining step of these reaction mechanisms. This method induces a very small change in reaction rates, which, in turn, results in a minimum disturbance of the natural mechanism. KIE studies were carried out on both the non-enzymatic and the enzyme-catalyzed reactions in an effort to compare both types of mechanisms. In these studies the amides and esters of formic acid were chosen because this molecular structure allowed development of methodology to determine heavy-atom solvent (nucleophile) KIEs. This type of isotope effect is difficult to measure, but is rich in mechanistic information. Results of these investigations point to transition states with varying degrees of tetrahedral character that fit a classical stepwise mechanism. This article is part of a special issue entitled: Enzyme Transition States from Theory and Experiment. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. How the oxygen isotope ratio of rain water influences the isotope ratio of chicken eggshell carbonate

    NASA Astrophysics Data System (ADS)

    Price, Gregory; Grimes, Stephen

    2015-04-01

    The stable oxygen isotope ratio of chicken eggshell carbonate was analysed from chicken eggs laid under free range, and organic farming regimes from across the UK. The eggshell carbonate oxygen isotope data shows a clear depletion in delta18O distribution from the southwest to the northeast. Although consistently offset by around 1 permil, the same isotopic distribution as that seen in eggshell carbonate is observed in the delta18O ratio of rainfall and groundwater from across the UK. This distribution is related to the Rayleigh distillation of rainfall driven by westerly winds across the UK landmass. The clear relationship observed between eggshell delta18O values and that of rainwater presumably reflects the nature of free range chickens which must be drinking locally derived rainwater and supplementing their diet and water intake with locally derived food. These results suggest that the oxygen isotope value of chicken eggshells can be used as a forensic tool to identify the locality that free range and organic eggs were laid within the UK. Furthermore, if suitable material is preserved in the archaeological and geological record then such a relationship can potentially be used to establish the oxygen isotope value of rainwater from which ancient and / or ancestral birds lived.

  18. Cadmium isotope fractionation during adsorption to Mn-oxyhydroxide

    NASA Astrophysics Data System (ADS)

    Wasylenki, L. E.; Swihart, J. W.

    2013-12-01

    The heavy metal cadmium is of interest both as a toxic contaminant in groundwater and as a critical nutrient for some marine diatoms [1], yet little is known about the biogeochemistry of this element. Horner et al. [2] suggested that Cd stable isotopes could potentially enable reconstruction of biological use of Cd in the marine realm: since cultured diatoms fractionate Cd isotopes [3], and ferromanganese crusts appear to incorporate a faithful record of deepwater Cd isotopes [2], depth profiles in such crusts may yield information about the extent of Cd assimilation of isotopically light Cd by diatoms over time. Although no work has yet been published regarding the use of stable isotopes to track reactive transport of Cd in contaminated aquifers, others have recently demonstrated the potential of isotopes to track reactions affecting the mobility of other toxic metals (e.g., [4]). With both of these potential applications in mind, we conducted two sets of experiments, at low and high ionic strength, in which Cd partially adsorbed to potassium birnessite. Our goals are to quantify the fractionations and to constrain the mechanisms governing Cd isotope behavior during adsorption to an environmentally abundant scavenger of Cd. Suspensions of synthetic birnessite were doped with various amounts of dissolved Cd2+ at pH ~8.3. Following reaction, the dissolved and adsorbed pools of Cd were separated by filtration, purified by anion exchange chromatography, and analyzed by multicollector ICP-MS using a double-spike routine. In all cases, lighter isotopes preferentially adsorbed to the birnessite particles. At low ionic strength (I<0.01m), we observed a small fractionation of 0.15‰×0.05 (Δ114/112) that was constant as a function of the fraction of Cd adsorbed. This indicates a small equilibrium isotope effect, likely driven by a subtle shift in coordination geometry for Cd during adsorption. In a groundwater system with continuous flow of dissolved Cd, this

  19. Mechanistic Analysis of Oxidative C–H Cleavages Using Inter- and Intramolecular Kinetic Isotope Effects

    PubMed Central

    Jung, Hyung Hoon; Floreancig, Paul E.

    2009-01-01

    A series of monodeuterated benzylic and allylic ethers were subjected to oxidative carbon–hydrogen bond cleavage to determine the impact of structural variation on intramolecular kinetic isotope effects in DDQ-mediated cyclization reactions. These values are compared to the corresponding intermolecular kinetic isotope effects that were accessed through subjecting mixtures of non-deuterated and dideuterated substrates to the reaction conditions. The results indicate that carbon–hydrogen bond cleavage is rate determining and that a radical cation is most likely a key intermediate in the reaction mechanism. PMID:20640173

  20. Vibronic origin of sulfur mass-independent isotope effect in photoexcitation of SO2 and the implications to the early earth’s atmosphere

    PubMed Central

    Whitehill, Andrew R.; Xie, Changjian; Hu, Xixi; Xie, Daiqian; Guo, Hua; Ono, Shuhei

    2013-01-01

    Signatures of mass-independent isotope fractionation (MIF) are found in the oxygen (16O,17O,18O) and sulfur (32S, 33S, 34S, 36S) isotope systems and serve as important tracers of past and present atmospheric processes. These unique isotope signatures signify the breakdown of the traditional theory of isotope fractionation, but the physical chemistry of these isotope effects remains poorly understood. We report the production of large sulfur isotope MIF, with Δ33S up to 78‰ and Δ36S up to 110‰, from the broadband excitation of SO2 in the 250–350-nm absorption region. Acetylene is used to selectively trap the triplet-state SO2 (3B1), which results from intersystem crossing from the excited singlet (1A2/1B1) states. The observed MIF signature differs considerably from that predicted by isotopologue-specific absorption cross-sections of SO2 and is insensitive to the wavelength region of excitation (above or below 300 nm), suggesting that the MIF originates not from the initial excitation of SO2 to the singlet states but from an isotope selective spin–orbit interaction between the singlet (1A2/1B1) and triplet (3B1) manifolds. Calculations based on high-level potential energy surfaces of the multiple excited states show a considerable lifetime anomaly for 33SO2 and 36SO2 for the low vibrational levels of the 1A2 state. These results demonstrate that the isotope selectivity of accidental near-resonance interactions between states is of critical importance in understanding the origin of MIF in photochemical systems. PMID:23836655

  1. Atmospheric CO2 effect on stable carbon isotope composition of terrestrial fossil archives.

    PubMed

    Hare, Vincent J; Loftus, Emma; Jeffrey, Amy; Ramsey, Christopher Bronk

    2018-01-17

    The 13 C/ 12 C ratio of C 3 plant matter is thought to be controlled by the isotopic composition of atmospheric CO 2 and stomatal response to environmental conditions, particularly mean annual precipitation (MAP). The effect of CO 2 concentration on 13 C/ 12 C ratios is currently debated, yet crucial to reconstructing ancient environments and quantifying the carbon cycle. Here we compare high-resolution ice core measurements of atmospheric CO 2 with fossil plant and faunal isotope records. We show the effect of pCO 2 during the last deglaciation is stronger for gymnosperms (-1.4 ± 1.2‰) than angiosperms/fauna (-0.5 ± 1.5‰), while the contributions from changing MAP are -0.3 ± 0.6‰ and -0.4 ± 0.4‰, respectively. Previous studies have assumed that plant 13 C/ 12 C ratios are mostly determined by MAP, an assumption which is sometimes incorrect in geological time. Atmospheric effects must be taken into account when interpreting terrestrial stable carbon isotopes, with important implications for past environments and climates, and understanding plant responses to climate change.

  2. Daily Variation of Isotope Ratios in Mars Atmospheric Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Livengood, Timothy A.; Kostiuk, Theodor; Kolasinski, John R.; Hewagama, Tilak; Henning, Wade G.; Sornig, Manuela; Stangier, Tobias; Krause, Pia; Sonnabend, Guido; Mahaffy, Paul R.

    2014-11-01

    The atmosphere of Mars has been shown by ground based high-resolution infrared spectroscopy and in situ measurements with the Phoenix lander and Mars Science Laboratory Curiosity rover to be enriched in C and O heavy isotopes, consistent with preferential loss of light isotopes in eroding Mars’ primordial atmosphere. The relative abundance of heavy isotopes, combined with contemporary measurements of loss rates to be obtained with MAVEN, will enable estimating the primordial atmospheric inventory on Mars. IR spectroscopy of Mars collected in May 2012 as well as in March and May of 2014 from the NASA IRTF has resolved transitions of all three singly-substituted minor isotopologues of carbon dioxide in addition to the normal isotope, enabling remote measurements of all the carbon and oxygen isotope ratios as a function of latitude, longitude, and time of day. Earlier measurements obtained in October 2007 demonstrated that the relative abundance of O-18 increased linearly with increasing surface temperature over a relatively warm early-afternoon temperature range, but did not extend far enough to inspect the effect of late-afternoon cooling. These results imply that isotopically enriched gas is sequestered overnight when surface temperature is minimum and desorbs through the course of the day as temperature increases. Current spectroscopic constants indicate that the peak isotopic enrichment could be significantly greater than what has been measured in situ, apparently due to sampling the atmosphere at different time of day and surface temperature. The observing runs in 2012 and 2014 measured O-18 enrichment at several local times in both morning and afternoon sectors as well as at the subsolar, equatorial, and anti-subsolar latitudes. The two runs in 2014 have additionally observed O-17 and C-13 transitions in the morning sector, from local dawn to noon. These observations include a limited sampling of measurements over Gale Crater, which can be compared with

  3. Intra-event isotope and raindrop size data of tropical rain reveal effects concealed by event averaged data

    NASA Astrophysics Data System (ADS)

    Managave, S. R.; Jani, R. A.; Narayana Rao, T.; Sunilkumar, K.; Satheeshkumar, S.; Ramesh, R.

    2016-08-01

    Evaporation of rain is known to contribute water vapor, a potent greenhouse gas, to the atmosphere. Stable oxygen and hydrogen isotopic compositions (δ18O and, δD, respectively) of precipitation, usually measured/presented as values integrated over rain events or monthly mean values, are important tools for detecting evaporation effects. The slope ~8 of the linear relationship between such time-averaged values of δD and δ18O (called the meteoric water line) is widely accepted as a proof of condensation under isotopic equilibrium and absence of evaporation of rain during atmospheric fall. Here, through a simultaneous investigation of the isotopic and drop size distributions of seventeen rain events sampled on an intra-event scale at Gadanki (13.5°N, 79.2°E), southern India, we demonstrate that the evaporation effects, not evident in the time-averaged data, are significantly manifested in the sub-samples of individual rain events. We detect this through (1) slopes significantly less than 8 for the δD-δ18O relation on intra-event scale and (2) significant positive correlations between deuterium excess ( d-excess = δD - 8*δ18O; lower values in rain indicate evaporation) and the mass-weighted mean diameter of the raindrops ( D m ). An estimated ~44 % of rain is influenced by evaporation. This study also reveals a signature of isotopic equilibration of rain with the cloud base vapor, the processes important for modeling isotopic composition of precipitation. d-excess values of rain are modified by the post-condensation processes and the present approach offers a way to identify the d-excess values least affected by such processes. Isotope-enabled global circulation models could be improved by incorporating intra-event isotopic data and raindrop size dependent isotopic effects.

  4. Apparatus and process for separating hydrogen isotopes

    DOEpatents

    Heung, Leung K; Sessions, Henry T; Xiao, Xin

    2013-06-25

    The apparatus and process for separating hydrogen isotopes is provided using dual columns, each column having an opposite hydrogen isotopic effect such that when a hydrogen isotope mixture feedstock is cycled between the two respective columns, two different hydrogen isotopes are separated from the feedstock.

  5. Primary deuterium and tritium isotope effects upon V/K in the liver alcohol dehydrogenase reaction with ethanol.

    PubMed

    Damgaard, S E

    1981-09-29

    The primary isotope effect upon V/K when ethanol stereospecifically labeled with deuterium or tritium is oxidized by liver alcohol dehydrogenase has been measured between pH 6 and 9. The deuterium isotope effect was obtained with high reproducibility by the use of two different radioactive tracers, viz. 14C and 3H, to follow the rate of acetaldehyde formation from deuterium-labeled ethanol and normal ethanol, respectively. Synthesis of the necessary labeled compounds is described in this and earlier work referred to. V/K isotope effects for both tritium and deuterium have been measured with three different coenzymes, NAD+, thio-NAD+, and acetyl-NAD+. With NAD+ at pH 7, D(V/K) was 3.0 and T(V/K) was 6.5. With increasing pH, these values decreased to 1.5 and 2.5 at pH 9. The intrinsic isotope effect evaluated by the method of Northrop [Northrop, D.B. (1977) in Isotope Effects on Enzyme-Catalyzed Reactions (Cleland, W. W., O'Leary, M, H., & Northrop, D. B., Eds.) pp 112-152, University Park Press, Baltimore] varies little with pH. It amounts to about 10 with NAD+ and about 5 with the coenzyme analogues. Commitment functions and their dependence upon pH calculated in this connection appear to be in agreement with known kinetic parameters of liver alcohol dehydrogenase. This assay method was also applied in vivo in the rat. Being a noninvasive method because only trace amounts of isotopes are needed, it may yield information about alternative routes of ethanol oxidation in vivo. In naive rats at low concentrations of ethanol, it confirms the discrete role of the non alcohol dehydrogenase systems.

  6. Isotope and fast ions turbulence suppression effects: Consequences for high-β ITER plasmas

    NASA Astrophysics Data System (ADS)

    Garcia, J.; Görler, T.; Jenko, F.

    2018-05-01

    The impact of isotope effects and fast ions on microturbulence is analyzed by means of non-linear gyrokinetic simulations for an ITER hybrid scenario at high beta obtained from previous integrated modelling simulations with simplified assumptions. Simulations show that ITER might work very close to threshold, and in these conditions, significant turbulence suppression is found from DD to DT plasmas. Electromagnetic effects are shown to play an important role in the onset of this isotope effect. Additionally, even external ExB flow shear, which is expected to be low in ITER, has a stronger impact on DT than on DD. The fast ions generated by fusion reactions can additionally reduce turbulence even more although the impact in ITER seems weaker than in present-day tokamaks.

  7. Freezing and fractionation: effects of preservation on carbon and nitrogen stable isotope ratios of some limnetic organisms.

    PubMed

    Wolf, J Marshall; Johnson, Brett; Silver, Douglas; Pate, William; Christianson, Kyle

    2016-03-15

    Stable isotopes of carbon and nitrogen have become important natural tracers for studying food-web structure and function. Considerable research has demonstrated that chemical preservatives and fixatives shift the isotopic ratios of aquatic organisms. Much less is known about the effects of freezing as a preservation method although this technique is commonly used. We conducted a controlled experiment to test the effects of freezing (-10 °C) and flash freezing (–79 °C) on the carbon and nitrogen isotope ratios of zooplankton (Cladocera), Mysis diluviana and Rainbow Trout (Oncorhynchus mykiss). Subsamples (~0.5 mg) of dried material were analyzed for percentage carbon, percentage nitrogen, and the relative abundance of stable carbon and nitrogen isotopes (δ13C and δ15N values) using a Carlo Erba NC2500 elemental analyzer interfaced to a ThermoFinnigan MAT Delta Plus isotope ratio mass spectrometer. The effects of freezing were taxon-dependent. Freezing had no effect on the isotopic or elemental values of Rainbow Trout muscle. Effects on the δ13C and δ15N values of zooplankton and Mysis were statistically significant but small relative to typical values of trophic fractionation. The treatment-control offsets had larger absolute values for Mysis (δ13C: ≤0.76 ± 0.41‰, δ15N: ≤0.37 ± 0.16‰) than for zooplankton (δ13C: ≤0.12 ± 0.06‰, δ15N: ≤0.30 ± 0.27‰). The effects of freezing were more variable for the δ13C values of Mysis, and more variable for the δ15N values of zooplankton. Generally, both freezing methods reduced the carbon content of zooplankton and Mysis, but freezing had a negative effect on the %N of zooplankton and a positive effect on the %N of Mysis. The species-dependencies and variability of freezing effects on aquatic organisms suggest that more research is needed to understand the mechanisms responsible for freezing-related fractionation before standardized protocols for freezing as a preservation method can be adopted.

  8. Isotopes in the Arctic atmospheric water cycle

    NASA Astrophysics Data System (ADS)

    Bonne, Jean-Louis; Werner, Martin; Meyer, Hanno; Kipfstuhl, Sepp; Rabe, Benjamin; Behrens, Melanie; Schönicke, Lutz; Steen Larsen, Hans Christian; Masson-Delmotte, Valérie

    2016-04-01

    The ISO-ARC project aims at documenting the Arctic atmospheric hydrological cycle, by assessing the imprint of the marine boundary conditions (e.g. temperature variations, circulation changes, or meltwater input) to the isotopic composition of the atmospheric water cycle (H218O and HDO) with a focus on North Atlantic and Arctic oceans. For this purpose, two continuous monitoring water vapour stable isotopes cavity ring-down spectrometers have been installed in July 2015: on-board the Polarstern research vessel and in the Siberian Lena delta Samoylov research station (N 72° 22', E 126° 29'). The Polarstern measurements cover the summer 2015 Arctic campaign from July to mid-October, including six weeks in the Fram Strait region in July- August, followed by a campaign reaching the North Pole and a transect from the Norwegian Sea to the North Sea. These vapour observations are completed by water isotopic measurements in samples from the surface ocean water for Polarstern and from precipitation in Samoylov and Tiksi (120 km south-east of the station). A custom-made designed automatic calibration system has been implemented in a comparable manner for both vapour instruments, based on the injection of different liquid water standards, which are completely vaporised in dry air at high temperature. Subsequent humidity level can be adjusted from 2000 to at least 30000 ppm. For a better resilience, an independent calibration system has been added on the Samoylov instrument, allowing measurements of one standard at humidity levels ranging from 2000 to 15000 ppm: dry air is introduced in a tank containing a large amount of liquid water standard, undergoing evaporation under a controlled environment. The measurement protocol includes an automatic calibration every 25 hours. First instrument characterisation experiments depict a significant isotope-humidity effect at low humidity, dependant on the isotopic composition of the standard. For ambient air, our first isotope

  9. Non-linear mixing effects on mass-47 CO2 clumped isotope thermometry: Patterns and implications.

    PubMed

    Defliese, William F; Lohmann, Kyger C

    2015-05-15

    Mass-47 CO(2) clumped isotope thermometry requires relatively large (~20 mg) samples of carbonate minerals due to detection limits and shot noise in gas source isotope ratio mass spectrometry (IRMS). However, it is unreasonable to assume that natural geologic materials are homogenous on the scale required for sampling. We show that sample heterogeneities can cause offsets from equilibrium Δ(47) values that are controlled solely by end member mixing and are independent of equilibrium temperatures. A numerical model was built to simulate and quantify the effects of end member mixing on Δ(47). The model was run in multiple possible configurations to produce a dataset of mixing effects. We verified that the model accurately simulated real phenomena by comparing two artificial laboratory mixtures measured using IRMS to model output. Mixing effects were found to be dependent on end member isotopic composition in δ(13)C and δ(18)O values, and independent of end member Δ(47) values. Both positive and negative offsets from equilibrium Δ(47) can occur, and the sign is dependent on the interaction between end member isotopic compositions. The overall magnitude of mixing offsets is controlled by the amount of variability within a sample; the larger the disparity between end member compositions, the larger the mixing offset. Samples varying by less than 2 ‰ in both δ(13)C and δ(18)O values have mixing offsets below current IRMS detection limits. We recommend the use of isotopic subsampling for δ(13)C and δ(18)O values to determine sample heterogeneity, and to evaluate any potential mixing effects in samples suspected of being heterogonous. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Observation of Isotope Ratios (δ2H, δ18O, 87Sr/86Sr) of Tap Water in Urban Environments

    NASA Astrophysics Data System (ADS)

    Mancuso, C. J.; Tipple, B. J.; Ehleringer, J. R.

    2014-12-01

    Urban environments are centers for rapidly growing populations. In order to meet the culinary water needs of these areas, municipal water departments use water from multiple locations and/or sources, often piped differentially to different locations within a municipality. This practice creates isotopically distinct locations within an urban area and therefore provides insight to urban water management practices. In our study we selected urban locations in the Salt Lake Valley, UT (SLV) and San Francisco Bay Area, CA (SFB) where we hypothesized geographically distinct water isotopic ratio differences existed. Within the SLV, municipal waters come from the same mountainous region, but are derived from different geologically distinct watersheds. In contrast, SFB waters are derived from regionally distinct water sources. We hypothesized that the isotope ratios of tap waters would differ based upon known municipal sources. To test this, tap water samples were collected throughout the urban regions in SLV and SFB and analyzed for δ2H, δ18O and 87Sr/86Sr isotope ratios. Seasonal collections were also made to assess if isotope ratios differed throughout the year. Within SLV and SFB, different regions were characterized by distinct paired δ18O and 87Sr/86Sr values. These different realms also agreed with known differences in municipal water supplies within the general geographic region. Waters from different cities within Marin County showed isotopic differences, consistent with water derived from different local reservoirs. Seasonal variation was observed in paired δ18O and 87Sr/86Sr values of tap water for some locations within SLV and SFB, indicating management decisions to shift from one water source to another depending on demand and available resources. Our study revealed that the δ18O and 87Sr/86Sr values of tap waters in an urban region can exhibit significant differences despite close spatial proximity if districts differ in their use of local versus

  11. Molybdenum isotope fractionation during acid leaching of a granitic uranium ore

    NASA Astrophysics Data System (ADS)

    Migeon, Valérie; Bourdon, Bernard; Pili, Eric; Fitoussi, Caroline

    2018-06-01

    As an attempt to prevent illicit trafficking of nuclear materials, it is critical to identify the origin and transformation of uranium materials from the nuclear fuel cycle based on chemical and isotope tracers. The potential of molybdenum (Mo) isotopes as tracers is considered in this study. We focused on leaching, the first industrial process used to release uranium from ores, which is also known to extract Mo depending on chemical conditions. Batch experiments were performed in the laboratory with pH ranging from 0.3 to 5.5 in sulfuric acid. In order to span a large range in uranium and molybdenum yields, oxidizers such as nitric acid, hydrogen peroxide and manganese dioxide were also added. An enrichment in heavy Mo isotopes is produced in the solution during leaching of a granitic uranium ore, when Mo recovery is not quantitative. At least two Mo reservoirs were identified in the ore: ∼40% as Mo oxides soluble in water or sulfuric acid, and ∼40% of Mo hosted in sulfides soluble in nitric acid or hydrogen peroxide. At pH > 1.8, adsorption and/or precipitation processes induce a decrease in Mo yields with time correlated with large Mo isotope fractionations. Quantitative models were used to evaluate the relative importance of the processes involved in Mo isotope fractionation: dissolution, adsorption, desorption, precipitation, polymerization and depolymerization. Model best fits are obtained when combining the effects of dissolution/precipitation, and adsorption/desorption onto secondary minerals. These processes are inferred to produce an equilibrium isotope fractionation, with an enrichment in heavy Mo isotopes in the liquid phase and in light isotopes in the solid phase. Quantification of Mo isotope fractionation resulting from uranium leaching is thus a promising tool to trace the origin and transformation of nuclear materials. Our observations of Mo leaching are also consistent with observations of natural Mo isotope fractionation taking place during

  12. Ab initio study of nitrogen and position-specific oxygen kinetic isotope effects in the NO + O3 reaction

    NASA Astrophysics Data System (ADS)

    Walters, Wendell W.; Michalski, Greg

    2016-12-01

    Ab initio calculations have been carried out to investigate nitrogen (k15/k14) and position-specific oxygen (k17/k16O & k18/k16) kinetic isotope effects (KIEs) for the reaction between NO and O3 using CCSD(T)/6-31G(d) and CCSD(T)/6-311G(d) derived frequencies in the complete Bigeleisen equations. Isotopic enrichment factors are calculated to be -6.7‰, -1.3‰, -44.7‰, -14.1‰, and -0.3‰ at 298 K for the reactions involving the 15N16O, 14N18O, 18O16O16O, 16O18O16O, and 16O16O18O isotopologues relative to the 14N16O and 16O3 isotopologues, respectively (CCSD(T)/6-311G(d)). Using our oxygen position-specific KIEs, a kinetic model was constructed using Kintecus, which estimates the overall isotopic enrichment factors associated with unreacted O3 and the oxygen transferred to NO2 to be -19.6‰ and -22.8‰, respectively, (CCSD(T)/6-311G(d)) which tends to be in agreement with previously reported experimental data. While this result may be fortuitous, this agreement suggests that our model is capturing the most important features of the underlying physics of the KIE associated with this reaction (i.e., shifts in zero-point energies). The calculated KIEs will useful in future NOx isotopic modeling studies aimed at understanding the processes responsible for the observed tropospheric isotopic variations of NOx as well as for tropospheric nitrate.

  13. Nitrogen isotopic fractionation during abiotic synthesis of organic solid particles

    NASA Astrophysics Data System (ADS)

    Kuga, Maïa; Carrasco, Nathalie; Marty, Bernard; Marrocchi, Yves; Bernard, Sylvain; Rigaudier, Thomas; Fleury, Benjamin; Tissandier, Laurent

    2014-05-01

    The formation of organic compounds is generally assumed to result from abiotic processes in the Solar System, with the exception of biogenic organics on Earth. Nitrogen-bearing organics are of particular interest, notably for prebiotic perspectives but also for overall comprehension of organic formation in the young Solar System and in planetary atmospheres. We have investigated abiotic synthesis of organics upon plasma discharge, with special attention to N isotope fractionation. Organic aerosols were synthesized from N2-CH4 and N2-CO gaseous mixtures using low-pressure plasma discharge experiments, aimed at simulating chemistry occurring in Titan's atmosphere and in the protosolar nebula, respectively. The nitrogen content, the N speciation and the N isotopic composition were analyzed in the resulting organic aerosols. Nitrogen is efficiently incorporated into the synthesized solids, independently of the oxidation degree, of the N2 content of the starting gas mixture, and of the nitrogen speciation in the aerosols. The aerosols are depleted in 15N by 15-25‰ relative to the initial N2 gas, whatever the experimental setup is. Such an isotopic fractionation is attributed to mass-dependent kinetic effect(s). Nitrogen isotope fractionation upon electric discharge cannot account for the large N isotope variations observed among Solar System objects and reservoirs. Extreme N isotope signatures in the Solar System are more likely the result of self-shielding during N2 photodissociation, exotic effect during photodissociation of N2 and/or low temperature ion-molecule isotope exchange. Kinetic N isotope fractionation may play a significant role in the Titan's atmosphere. On the Titan's night side, 15N-depletion resulting from electron driven reactions may counterbalance photo-induced 15N enrichments occurring on the day's side. We also suggest that the low δ15N values of Archaean organic matter (Beaumont and Robert, 1999) are partly the result of abiotic synthesis of

  14. Calcium Isotope Systematics During Development of the Domestic Chicken (Gallus gallus)

    NASA Astrophysics Data System (ADS)

    Wheatley, P. V.

    2003-12-01

    Calcium isotope distributions have been recognized as showing systematic and predictable fractionation in nature. However, most of the observed calcium isotope fractionation to date is due to biological processes. The presence of abundant amounts of calcium in mineralized tissues makes the isotopic system of calcium particularly valuable in biological and paleobiological questions involving biomineralization. In order to apply calcium isotope systematics to paleobiological questions the changes in the calcium isotope signatures of mineralized tissue in modern animals should be studied. My study observed the domestic chicken (Gallus gallus) through embryologic ontogeny. This was accomplished by obtaining fertilized eggs staged in a growth series from day 12 to day 20. The eggs were dissected and shell, embryonic bone, albumen, and yolk were analyzed in order to characterize the calcium isotopic composition of the individual components over the course of the growth series. Several systematic changes in the isotopic signatures of various tissues were observed during the course of the development of the embryos. In general, mineralization in biological systems preferentially partitions the lighter isotopes of calcium into hard parts. As a result of this fractionation during mineralization, partitioning of light isotopes of calcium into the mineralized tissues may result in residual tissues being enriched in the heavier isotopes as ontogeny progresses. Better understanding of the behavior of calcium in modern biological systems will improve its application to fossils and expand the number of paleobiological and evolutionary questions that can be addressed using calcium isotopic data.

  15. A carbon isotope mass balance for an anoxic marine sediment: Isotopic signatures of diagenesis

    NASA Technical Reports Server (NTRS)

    Boehme, Susan E.

    1993-01-01

    A carbon isotope mass balance was determined for the sediments of Cape Lookout Bight, NC to constrain the carbon budgets published previously. The diffusive, ebullitive and burial fluxes of sigma CO2 and CH4, as well as the carbon isotope signatures of these fluxes, were measured. The flux-weighted isotopic signature of the remineralized carbon (-18.9 plus or minus 2.7 per mil) agreed with the isotopic composition of the remineralized organic carbon determined from the particulate organic carbon (POC) delta(C-13) profiles (-19.2 plus or minus 0.2), verifying the flux and isotopic signature estimates. The measured delta(C-13) values of the sigma CO2 and CH4 diffusive fluxes were significantly different from those calculated from porewater gradients. The differences appear to be influenced by methane oxidation at the sediment-water interface, although other potential processes cannot be excluded. The isotope mass balance provides important information concerning the locations of potential diagenetic isotope effects. Specifically, the absence of downcore change in the delta(C-13) value of the POC fraction and the identical isotopic composition of the POC and the products of remineralization indicate that no isotopic fractionation is expressed during the initial breakdown of the POC, despite its isotopically heterogeneous composition.

  16. In situ observations of the isotopic composition of methane at the Cabauw tall tower site

    NASA Astrophysics Data System (ADS)

    Röckmann, Thomas; Eyer, Simon; van der Veen, Carina; Popa, Maria E.; Tuzson, Béla; Monteil, Guillaume; Houweling, Sander; Harris, Eliza; Brunner, Dominik; Fischer, Hubertus; Zazzeri, Giulia; Lowry, David; Nisbet, Euan G.; Brand, Willi A.; Necki, Jaroslav M.; Emmenegger, Lukas; Mohn, Joachim

    2016-08-01

    High-precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS)-based technique for in situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands and performed in situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of (+0.25 ± 0.04) ‰ for δ13C and (-4.3 ± 0.4) ‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high-precision and high-temporal-resolution dataset not only reveals the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget when they are performed at multiple sites that are representative for the entire European domain.

  17. In-situ observations of the isotopic composition of methane at the Cabauw tall tower site

    NASA Astrophysics Data System (ADS)

    Röckmann, Thomas; Eyer, Simon; van der Veen, Carina; E Popa, Maria; Tuzson, Béla; Monteil, Guillaume; Houweling, Sander; Harris, Eliza; Brunner, Dominik; Fischer, Hubertus; Zazzeri, Giulia; Lowry, David; Nisbet, Euan G.; Brand, Willi A.; Necki, Jaroslav M.; Emmenegger, Lukas; Mohn, Joachim

    2017-04-01

    High precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS) based technique for in-situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in-situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of +0.05 ± 0.03 ‰ for δ13C-CH4 and -3.6 ± 0.4 ‰ for δD-CH4. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high precision and temporal resolution dataset does not only reveal the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site, but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget, when they are performed at multiple sites that are representative for the entire European

  18. Highly effective hydrogen isotope separation in nanoporous metal-organic frameworks with open metal sites: direct measurement and theoretical analysis.

    PubMed

    Oh, Hyunchul; Savchenko, Ievgeniia; Mavrandonakis, Andreas; Heine, Thomas; Hirscher, Michael

    2014-01-28

    Separating gaseous mixtures that consist of very similar size is one of the critical issues in modern separation technology. Especially, the separation of the isotopes hydrogen and deuterium requires special efforts, even though these isotopes show a very large mass ratio. Conventionally, H/D separation can be realized through cryogenic distillation of the molecular species or the Girdler-sulfide process, which are among the most energy-intensive separation techniques in the chemical industry. However, costs can be significantly reduced by using highly mass-selective nanoporous sorbents. Here, we describe a hydrogen isotope separation strategy exploiting the strongly attractive open metal sites present in nanoporous metal-organic frameworks of the CPO-27 family (also referred to as MOF-74). A theoretical analysis predicts an outstanding hydrogen isotopologue separation at open metal sites due to isotopal effects, which has been directly observed through cryogenic thermal desorption spectroscopy. For H2/D2 separation of an equimolar mixture at 60 K, the selectivity of 12 is the highest value ever measured, and this methodology shows extremely high separation efficiencies even above 77 K. Our theoretical results imply also a high selectivity for HD/H2 separation at similar temperatures, and together with catalytically active sites, we propose a mechanism to produce D2 from HD/H2 mixtures with natural or enriched deuterium content.

  19. Iron isotope composition of depleted MORB

    NASA Astrophysics Data System (ADS)

    Labidi, J.; Sio, C. K. I.; Shahar, A.

    2015-12-01

    In terrestrial basalts, iron isotope ratios are observed to weakly fractionate as a function of olivine and pyroxene crystallization. However, a ~0.1‰ difference between chondrites and MORB had been reported (Dauphas et al. 2009, Teng et al. 2013 and ref. therein). This observation could illustrate an isotope fractionation occurring during partial melting, as a function of the Fe valence in melt versus crystals. Here, we present high-precision Fe isotopic data measured by MC-ICP-MS on well-characterized samples from the Pacific-Antarctic Ridge (PAR, n=9) and from the Garrett Transform Fault (n=8). These samples allow exploring the Fe isotope fractionation between melt and magnetite, and the role of partial melting on Fe isotope fractionation. Our average δ56Fe value is +0.095±0.013‰ (95% confidence, n=17), indistinguishable from a previous estimate of +0.105±0.006‰ (95% confidence, n=43, see ref. 2). Our δ56Fe values correlate weakly with MgO contents, and correlate positively with K/Ti ratios. PAC1 DR10 shows the largest Ti and Fe depletion after titanomagnetite fractionation, with a δ56Fe value of +0.076±0.036‰. This is ~0.05‰ below other samples at a given MgO. This may illustrate a significant Fe isotope fractionation between the melt and titanomagnetite, in agreement with experimental determination (Shahar et al. 2008). GN09-02, the most incompatible-element depleted sample, has a δ56Fe value of 0.037±0.020‰. This is the lowest high-precision δ56Fe value recorded for a MORB worldwide. This basalt displays an incompatible-element depletion consistent with re-melting beneath the transform fault of mantle source that was depleted during a first melting event, beneath the ridge axis (Wendt et al. 1999). The Fe isotope observation could indicate that its mantle source underwent 56Fe depletion after a first melting event. It could alternatively indicate a lower Fe isotope fractionation during re-melting, if the source was depleted of its Fe3

  20. The identification of meteorite inclusions with isotope anomalies

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Brigham, C. A.

    1989-01-01

    Ca-Al refractory inclusions with characteristic chemical and mineralogical compositions show an enhanced occurrence of 20 pct of isotope anomalies reflecting unknown nucleosynthetic effects for O and Mg. The anomalies are characterized by large isotope fractionation in Mg, apparent deficits in Mg-26/Mg-24, and large correlated effects for isotopes of Ca, Ti, and Cr. These isotope patterns define exotic components depleted in the most neutron-rich isotopes of Ca, Ti, and Cr, or components depleted in isotopes produced in explosive O and Si burning. An opaque assemblage within one of the inclusions yields isotope anomalies in Cr similar to the bulk inclusion and must be intrinsically part of the inclusion and not a trapped, foreign grain aggregate.

  1. Development of a direct procedure for the measurement of sulfur isotope variability in beers by MC-ICP-MS.

    PubMed

    Giner Martínez-Sierra, J; Santamaria-Fernandez, R; Hearn, R; Marchante Gayón, J M; García Alonso, J I

    2010-04-14

    In this work, a multi-collector inductively coupled plasma mass spectrometer (MC-ICP-MS) was evaluated for the direct measurement of sulfur stable isotope ratios in beers as a first step toward a general study of the natural isotope variability of sulfur in foods and beverages. Sample preparation consisted of a simple dilution of the beers with 1% (v/v) HNO(3). It was observed that different sulfur isotope ratios were obtained for different dilutions of the same sample indicating that matrix effects affected differently the transmission of the sulfur ions at masses 32, 33, and 34 in the mass spectrometer. Correction for mass bias related matrix effects was evaluated using silicon internal standardization. For that purpose, silicon isotopes at masses 29 and 30 were included in the sulfur cup configuration and the natural silicon content in beers used for internal mass bias correction. It was observed that matrix effects on differential ion transmission could be corrected adequately using silicon internal standardization. The natural isotope variability of sulfur has been evaluated by measuring 26 different beer brands. Measured delta(34)S values ranged from -0.2 to 13.8 per thousand. Typical combined standard uncertainties of the measured delta(34)S values were < or = 2 per thousand. The method has therefore great potential to study sulfur isotope variability in foods and beverages.

  2. Method for separating boron isotopes

    DOEpatents

    Rockwood, Stephen D.

    1978-01-01

    A method of separating boron isotopes .sup.10 B and .sup.11 B by laser-induced selective excitation and photodissociation of BCl.sub.3 molecules containing a particular boron isotope. The photodissociation products react with an appropriate chemical scavenger and the reaction products may readily be separated from undissociated BCl.sub.3, thus effecting the desired separation of the boron isotopes.

  3. Isotope effects in the evaporation of water: a status report of the Craig-Gordon model.

    PubMed

    Horita, Juske; Rozanski, Kazimierz; Cohen, Shabtai

    2008-03-01

    The Craig-Gordon model (C-G model) [H. Craig, L.I. Gordon. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In Stable Isotopes in Oceanographic Studies and Paleotemperatures, E. Tongiorgi (Ed.), pp. 9-130, Laboratorio di Geologia Nucleare, Pisa (1965).] has been synonymous with the isotope effects associated with the evaporation of water from surface waters, soils, and vegetations, which in turn constitutes a critical component of the global water cycle. On the occasion of the four decades of its successful applications to isotope geochemistry and hydrology, an attempt is made to: (a) examine its physical background within the framework of modern evaporation models, (b) evaluate our current knowledge of the environmental parameters of the C-G model, and (c) comment on a general strategy for the use of these parameters in field applications. Despite its simplistic representation of evaporation processes at the water-air interface, the C-G model appears to be adequate to provide the isotopic composition of the evaporation flux. This is largely due to its nature for representing isotopic compositions (a ratio of two fluxes of different isotopic water molecules) under the same environmental conditions. Among many environmental parameters that are included in the C-G model, accurate description and calculations are still problematic of the kinetic isotope effects that occur in a diffusion-dominated thin layer of air next to the water-air interface. In field applications, it is of importance to accurately evaluate several environmental parameters, particularly the relative humidity and isotopic compositions of the 'free-atmosphere', for a system under investigation over a given time-scale of interest (e.g., hourly to daily to seasonally). With a growing interest in the studies of water cycles of different spatial and temporal scales, including paleoclimate and water resource studies, the importance and utility of the C-G model is also likely to

  4. Tin isotope fractionation during magmatic processes and the isotope composition of the bulk silicate Earth

    NASA Astrophysics Data System (ADS)

    Wang, Xueying; Amet, Quentin; Fitoussi, Caroline; Bourdon, Bernard

    2018-05-01

    Tin is a moderately volatile element whose isotope composition can be used to investigate Earth and planet differentiation and the early history of the Solar System. Although the Sn stable isotope composition of several geological and archaeological samples has been reported, there is currently scarce information about the effect of igneous processes on Sn isotopes. In this study, high-precision Sn isotope measurements of peridotites and basalts were obtained by MC-ICP-MS with a double-spike technique. The basalt samples display small variations in δ124/116Sn ranging from -0.01 ± 0.11 to 0.27 ± 0.11‰ (2 s.d.) relative to NIST SRM 3161a standard solution, while peridotites have more dispersed and more negative δ124Sn values ranging from -1.04 ± 0.11 to -0.07 ± 0.11‰ (2 s.d.). Overall, basalts are enriched in heavy Sn isotopes relative to peridotites. In addition, δ124Sn in peridotites become more negative with increasing degrees of melt depletion. These results can be explained by different partitioning behavior of Sn4+ and Sn2+ during partial melting. Sn4+ is overall more incompatible than Sn2+ during partial melting, resulting in Sn4+-rich silicate melt and Sn2+-rich residue. As Sn4+ has been shown experimentally to be enriched in heavy isotopes relative to Sn2+, the effect of melting is to enrich residual peridotites in relatively more compatible Sn2+, which results in isotopically lighter peridotites and isotopically heavier mantle-derived melts. This picture can be disturbed partly by the effect of refertilization. Similarly, the presence of enriched components such as recycled oceanic crust or sediments could explain part of the variations in Sn isotopes in oceanic basalts. The most primitive peridotite analyzed in this study was used for estimating the Sn isotope composition of the BSE, with δ124Sn = -0.08 ± 0.11‰ (2 s.d.) relative to the Sn NIST SRM 3161a standard solution. Altogether, this suggests that Sn isotopes may be a powerful probe of

  5. The Power of Integrating Kinetic Isotope Effects into the Formalism of the Michaelis-Menten Equation

    PubMed Central

    Klinman, Judith P.

    2014-01-01

    The final arbiter of enzyme mechanism is the ability to establish and test a kinetic mechanism. Isotope effects play a major role in expanding the scope and insight derived from the Michaelis-Menten equation. The integration of isotope effects into the formalism of the Michaelis-Menten equation began in the 1970s and has continued to this day. This review discusses a family of eukaryotic copper proteins that includes dopamine β-monooxygenase, tyramine β-monooxygenase, and peptidylglycine α-amidating enzyme, responsible for the synthesis of the neuro-active compounds, norepinephrine, octopamine and C-terminally carboxamidated peptides, respectively. Highlighted are results that show how combining kinetic isotope effects with initial rate parameters permits an evaluation of: (i) the order of substrate binding to multi-substrate enzymes; (ii) the magnitude of individual rate constants in complex, multi-step reactions; (iii) the identification of chemical intermediates; and (iv) the role of non-classical (tunneling) behavior in C–H activation. PMID:23937475

  6. Experimental Artifacts in Nitrogen Isotope Measurements of Meteorites

    NASA Astrophysics Data System (ADS)

    Kim, J. S.; Marti, K.

    1993-07-01

    Several research groups have studied contamination problems and molecular interferences in nitrogen isotope measurements, but some problems still require clarification. Protocols adopted for nitrogen isotope measurements generally consider questions such as CO interference, removal of hydrocarbons, and N2O and NO conversion [1]. In the analysis of nanogram amounts of N, contamination, exchange reactions, and interferences are more visible than in large N samples. During nitrogen measurements we observed several potential problems and developed an improved protocol to achieve high-quality isotopic data: 1. Nitrogen loss and isotopic exchange were observed on the extraction system wall. The wall has active surfaces produced by vapor deposition (previous samples) that absorb many molecules, including nitrogen. This absorbed nitrogen releases or exchanges nitrogen with sample N in the following extraction steps. Therefore the losses need to be calibrated and the extent of isotopic exchange determined at the nanogram level. A continuous adsorption during sample extraction of the gas phase onto zeolite at liquid nitrogen temperature reduces nitrogen loss and amount of exchange. 2. We also found nitrogen isotopic memory effect by CuO. During sample gas cleaning by CuO, nitrogen exchanges with residual nitrogen in the CuO, and losses to CuO by solubility and/or uptake of nitrogen during oxygen uptake. This effect is clearly visible after analysis of large amounts of nitrogen. In such cases the CuO blank showed traces of previously measured isotopic signatures. Therefore, the isotopic signature of the CuO blank must be assessed before proceeding. 3. NO interference was recognized. In measurements of N in bulk H chondrites, the steps above 900 degrees C show anomalous contribution to the mass 30 peak, which decreases rapidly with time in the mass spectrometer. Using the ratio mass 30 to mass 31 and the corresponding physical properties of the interfering compound, we

  7. Cosmogenic effects on Cu isotopes in IVB iron meteorites

    NASA Astrophysics Data System (ADS)

    Chen, Heng; Moynier, Frédéric; Humayun, Munir; Bishop, M. Cole; Williams, Jeffrey T.

    2016-06-01

    We measured Cu isotope compositions of 12 out of the 14 known IVB iron meteorites. Our results show that IVB iron meteorites display a very large range of δ65Cu values (-5.84‰ < δ65Cu < -0.24‰; defined as per mil deviation of the 65Cu/63Cu ratio from the NIST-976 standard). These Cu isotopic data display clear correlations with W, Pt, and Os isotope ratios, which are very sensitive to secondary neutron capture due to galactic cosmic ray (GCR) irradiation. This demonstrates that δ65Cu in IVB irons is majorly modified by neutron capture by the reaction 62Ni(n,γ)63Ni followed by beta decay to 63Cu. Using correlations with Pt and Os neutron dosimeters, we calculated a pre-exposure δ65Cu of -0.3 ± 0.8‰ (95% conf.) of IVB irons that agrees well with the Cu isotopic compositions of other iron meteorite groups and falls within the range of chondrites. This shows that the volatile depletion of the IVB parent body is not due to evaporation that should have enriched IVB irons in the heavy Cu isotopes.

  8. Boron Isotopic Composition Correlates with Ultra-Structure in a - Sea Coral Lophelia Pertusa: Implications for Biomineralization and - PH

    NASA Astrophysics Data System (ADS)

    Blamart, D.; Rollion-Bard, C.; Meibom, A.; Cuif, J.; Juillet-Leclerc, A.; Dauphin, Y.; Douarin, M.

    2007-12-01

    The geochemistry (stable isotopes and trace elements) of biogenic carbonates has been widely used for more than fifty years to reconstruct past climatic variability. During this time, the studies were mainly based on bulk sampling limiting sometimes the interpretations of the geochemical data as paleoclimatic proxies. Recently, high spatial resolution sampling techniques, such as micro-mill and SIMS, have been employed in the study of C, O and B isotopic compositions and trace elements (Mg, Sr) in the skeletons of a variety of (deep-sea) coral species. These studies have documented dramatic 'vital effects' and uncovered a systematic relationship between skeletal ultra-structure and stable isotopic composition. The formation of skeleton corals follows a universal two-step growth process. At the tips of the skeletal structures, the mineralizing cell layer produces centers of calcification (COC) or, equivalently, Early Mineralization Zone (EMZ). These EMZ are subsequently overgrown by fibrous aragonite(FA) consisting of cyclically added layers. The EMZ are characterized by systematically lighter C and O isotopic compositions compared with the adjacent FA. A number of geochemical models have been proposed, in which this systematic stable isotopic difference between EMZ and FA is ascribed to a biologically induced variation in the pH of a proposed Extra-cytoplasmic Calcifying Fluid (ECF) reservoir. In these models, relatively high pH conditions during the formation of EMZ result in relatively light C and O isotopic compositions compared with FA, which form under generally lower pH conditions. A direct test of such models would be possible if the Boron isotopic composition, which is pH sensitive, of EMZ and FA could be measured. We performed ion microprobe d11B measurements for EMZ and FA in Lophelia pertusa, a deep-sea coral common in the North-East Atlantic Ocean. We observe a systematic difference in B isotopic composition between the EMZ and FA skeleton. In EMZ, the

  9. Mercury Isotopes in Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Blum, Joel D.; Sherman, Laura S.; Johnson, Marcus W.

    2014-05-01

    Virtually all biotic, dark abiotic, and photochemical transformations of mercury (Hg) produce Hg isotope fractionation, which can be either mass dependent (MDF) or mass independent (MIF). The largest range in MDF is observed among geological materials and rainfall impacted by anthropogenic sources. The largest positive MIF of Hg isotopes (odd-mass excess) is caused by photochemical degradation of methylmercury in water. This signature is retained through the food web and measured in all freshwater and marine fish. The largest negative MIF of Hg isotopes (odd-mass deficit) is caused by photochemical reduction of inorganic Hg and has been observed in Arctic snow and plant foliage. Ratios of MDF to MIF and ratios of 199Hg MIF to 201Hg MIF are often diagnostic of biogeochemical reaction pathways. More than a decade of research demonstrates that Hg isotopes can be used to trace sources, biogeochemical cycling, and reactions involving Hg in the environment.

  10. Experimental identification of mechanisms controlling calcium isotopic fractionations by the vegetation.

    NASA Astrophysics Data System (ADS)

    Cobert, Florian; Schimtt, Anne-Désirée.; Bourgeade, Pascale; Stille, Peter; Chabaux, François; Badot, Pierre-Marie; Jaegler, Thomas

    2010-05-01

    This study aims to better understand the role of vegetation on the Ca cycle at the level of the critical zone of the Earth, in order to specify the mechanisms controlling the Ca absorption by plants at the rock/plant interface. To do this, we performed experiments using hydroponic plant cultures in a way that we could control the co-occuring geochemical and physiological process and determine the impact of the nutritive solution on the Ca cycle within plants. A dicotyledon and calcicole plant with rapid growth, the French bean (Phaseolus vulgaris L.), has been chosen to have access to one complete growth cycle. Several experiments have been conducted with two Ca concentrations, 6 (L) and 60 (H) ppm and two pH values (4 and 6) in the nutritive solution, for which the Ca concentration was maintained constant, so its Ca content is considered as infinite. A second experiment (non infinite L6) allowed Ca depletion in the solution through time; therefore, response effects on the Ca isotopic signatures in the plant organs and in the nutritive solution were observed. We determined Ca concentrations and isotopic ratios in the nutritive solution and in different organs (main roots, secondary roots, old and young stems, old and young leaves and fruits) at two different growth stages (10 days and 6 weeks). Preliminary results show that: (1) the roots (main and secondary) were enriched in the light isotope (40Ca) compared to the nutritive solution, and leaves were enriched in the heavy isotope (44Ca) compared to stems. These results are in accord with previously published field studies (Wigand et al., 2005; Page et al., 2008; Cenki-Tok et al., 2009; Holmden and Bélanger, 2010). Leaves and secondary roots were however enriched in the heavy isotope (44Ca) compared to bean pods, stems and main roots. These results could be related to kinetic fractionation processes occurring either during the Ca root uptake, or during the Ca transport within the plant, or physiological mechanisms

  11. Molybdenum isotope fractionation during adsorption to organic matter

    USGS Publications Warehouse

    King, Elizabeth K.; Perakis, Steven; Pett-Ridge, Julie C.

    2018-01-01

    Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2–170 h) and pH (2–7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (± 0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.

  12. Molybdenum isotope fractionation during adsorption to organic matter

    NASA Astrophysics Data System (ADS)

    King, E. K.; Perakis, S. S.; Pett-Ridge, J. C.

    2018-02-01

    Organic matter is of emerging interest as a control on molybdenum (Mo) biogeochemistry, and information on isotope fractionation during adsorption to organic matter can improve interpretations of Mo isotope variations in natural settings. Molybdenum isotope fractionation was investigated during adsorption onto insolubilized humic acid (IHA), a surrogate for organic matter, as a function of time (2-170 h) and pH (2-7). For the time series experiment performed at pH 4.2, the average Mo isotope fractionation between the solution and the IHA (Δ98Mosolution-IHA) was 1.39‰ (±0.16‰, 2σ, based on 98Mo/95Mo relative to the NIST 3134 standard) at steady state. For the pH series experiment, Mo adsorption decreased as pH increased from 2.0 to 6.9, and the Δ98Mosolution-IHA increased from 0.82‰ to 1.79‰. We also evaluated natural Mo isotope patterns in precipitation, foliage, organic horizon, surface mineral soil, and bedrock from 12 forested sites in the Oregon Coast Range. The average Mo isotope offset observed between precipitation and organic (O) horizon soil was 2.1‰, with light Mo isotopes adsorbing preferentially to organic matter. Fractionation during adsorption to organic matter is similar in magnitude and direction to prior observations of Mo fractionation during adsorption to Fe- and Mn- (oxyhydr)oxides. Our finding that organic matter influences Mo isotope composition has important implications for the role of organic matter as a driver of trace metal retention and isotopic fractionation.

  13. Investigation of mass dependence effects for the accurate determination of molybdenum isotope amount ratios by MC-ICP-MS using synthetic isotope mixtures.

    PubMed

    Malinovsky, Dmitry; Dunn, Philip J H; Petrov, Panayot; Goenaga-Infante, Heidi

    2015-01-01

    Methodology for absolute Mo isotope amount ratio measurements by multicollector inductively coupled plasma-mass spectrometry (MC-ICP-MS) using calibration with synthetic isotope mixtures (SIMs) is presented. For the first time, synthetic isotope mixtures prepared from seven commercially available isotopically enriched molybdenum metal powders ((92)Mo, (94)Mo, (95)Mo, (96)Mo, (97)Mo, (98)Mo, and (100)Mo) are used to investigate whether instrumental mass discrimination of Mo isotopes in MC-ICP-MS is consistent with mass-dependent isotope distribution. The parent materials were dissolved and mixed as solutions to obtain mixtures with accurately known isotope amount ratios. The level of elemental impurities in the isotopically enriched molybdenum metal powders was quantified by ICP-MS by using both high-resolution and reaction cell instruments to completely resolve spectral interferences. The Mo isotope amount ratio values with expanded uncertainty (k = 2), determined by MC-ICP-MS for a high-purity Mo rod from Johnson Matthey, were as follows: (92)Mo/(95)Mo = 0.9235(9), (94)Mo/(95)Mo = 0.5785(8), (96)Mo/(95)Mo = 1.0503(9), (97)Mo/(95)Mo = 0.6033(6), (98)Mo/(95)Mo = 1.5291(20), and (100)Mo/(95)Mo = 0.6130(7). A full uncertainty budget for the measurements is presented which shows that the largest contribution to the uncertainty budget comes from correction for elemental impurities (∼51%), followed by the contribution from weighing operations (∼26 %). The atomic weight of molybdenum was calculated to be 95.947(2); the uncertainty in parentheses is expanded uncertainty with the coverage factor of 2. A particular advantage of the developed method is that calibration factors for all six Mo isotope amount ratios, involving the (95)Mo isotope, were experimentally determined. This allows avoiding any assumption on mass-dependent isotope fractions in MC-ICP-MS, inherent to the method of double spike previously used for Mo isotope amount ratio

  14. Carbon isotope ratios and isotopic correlations between components in fruit juices

    NASA Astrophysics Data System (ADS)

    Wierzchnicki, Ryszard

    2013-04-01

    Nowadays food products are defined by geographical origin, method of production and by some regulations concerning terms of their authenticity. Important data for confirm the authenticity of product are providing by isotopic methods of food control. The method checks crucial criteria which characterize the authenticity of inspected product. The European Union Regulations clearly show the tendency for application of the isotopic methods for food authenticity control (wine, honey, juice). The aim of the legislation steps is the protection of European market from possibility of the commercial frauds. Method of isotope ratio mass spectrometry is very effective tool for the use distinguishably the food products of various geographical origin. The basic problem for identification of the sample origin is the lack of databases of isotopic composition of components and information about the correlations of the data. The subject of the work was study the isotopic correlations existing between components of fruits. The chemical and instrumental methods of separation: water, sugars, organic acids and pulp from fruit were implemented. IRMS technique was used to measure isotopic composition of samples. The final results for original samples of fruits (apple, strawberry etc.) will be presented and discussed. Acknowledgement: This work was supported by the Polish Ministry of Science and Higher Education under grant NR12-0043-10/2010.

  15. Fractionation of Hydrogen Isotopes by Sulfate- and Nitrate-Reducing Bacteria.

    PubMed

    Osburn, Magdalena R; Dawson, Katherine S; Fogel, Marilyn L; Sessions, Alex L

    2016-01-01

    Hydrogen atoms from water and food are incorporated into biomass during cellular metabolism and biosynthesis, fractionating the isotopes of hydrogen-protium and deuterium-that are recorded in biomolecules. While these fractionations are often relatively constant in plants, large variations in the magnitude of fractionation are observed for many heterotrophic microbes utilizing different central metabolic pathways. The correlation between metabolism and lipid δ(2)H provides a potential basis for reconstructing environmental and ecological parameters, but the calibration dataset has thus far been limited mainly to aerobes. Here we report on the hydrogen isotopic fractionations of lipids produced by nitrate-respiring and sulfate-reducing bacteria. We observe only small differences in fractionation between oxygen- and nitrate-respiring growth conditions, with a typical pattern of variation between substrates that is broadly consistent with previously described trends. In contrast, fractionation by sulfate-reducing bacteria does not vary significantly between different substrates, even when autotrophic and heterotrophic growth conditions are compared. This result is in marked contrast to previously published observations and has significant implications for the interpretation of environmental hydrogen isotope data. We evaluate these trends in light of metabolic gene content of each strain, growth rate, and potential flux and reservoir-size effects of cellular hydrogen, but find no single variable that can account for the differences between nitrate- and sulfate-respiring bacteria. The emerging picture of bacterial hydrogen isotope fractionation is therefore more complex than the simple correspondence between δ(2)H and metabolic pathway previously understood from aerobes. Despite the complexity, the large signals and rich variability of observed lipid δ(2)H suggest much potential as an environmental recorder of metabolism.

  16. Decoding mass-independent fractionation of sulfur isotopes in modern atmosphere using cosmogenic 35S: A five-isotope approach and possible implications for Archean sulfur isotope records

    NASA Astrophysics Data System (ADS)

    Lin, M.; Thiemens, M. H.; Shen, Y.; Zhang, X.; Huang, X.; Chen, K.; Zhang, Z.; Tao, J.

    2017-12-01

    The signature of sulfur isotopic mass-independent fractionation (S-MIF) observed in Archean sediments have been interpreted as a proxy of the origins and evolution of atmospheric oxygen and early life on Earth [1]. Photochemistry of SOx in the short (< 290 nm) wavelength region accounts for much of the Archean record, but the S-MIF widely observed in modern tropospheric sulfate aerosols remains unexplained, indicating embedded uncertainties in interpreting Archean S-MIF records [2]. Here we present combined measurements of cosmogenic 35S (a stratospheric tracer) [3] and all four stable sulfur isotopes in the same modern atmospheric sulfate samples to define the mechanisms. The five-sulfur-isotope approach reveals that an altitude-dependent process (probably SOx photochemistry) mainly contributes to a positive Δ33S and a combustion-related process mainly leads to a negative Δ36S. After eliminating combustion impacts, the obtained Δ36S/Δ33S slope of -4.0 in the modern atmosphere is close to the Δ36S/Δ33S slope (-3.6) in some records from Paleoarchean [4], an era probably with active volcanism [5]. The significant role of volcanic OCS in the Archean atmosphere has been called for in terms of its ability to provide a continual SO2 high altitude source for photolysis [2]. The strong but previously underappreciated stratospheric signature of S-MIF in tropospheric sulfates suggests that a more careful investigation of wavelength-dependent sulfur isotopic fractionation at different altitudes are required. The combustion-induced negative Δ36S may be linked to recombination reactions of elemental sulfur [6], and relevant experiments are being conducted to test the isotope effect. Although combustion is unlikely in Archean, recombination reactions may occur in other previously unappreciated processes such as volcanism and may contribute in part to the heavily depleted 36S in some Paleoarchean records [5,7]. The roles of both photochemical and non

  17. Carbon isotope effect during abiogenic oxidation of methane

    NASA Astrophysics Data System (ADS)

    Kiyosu, Yasuhiro; Roy Krouse, H.

    1989-11-01

    The oxidation of methane during flow over CuO and Fe 2O 3 has been examined in the temperature range of 400-650°C. The reaction rate and carbon isotope fractionation are dependent upon the choice of oxide and temperature. The activation energy is lower for hematite (8.0 kcal mole -1) than for cupric oxide (16.6 kcal mole -1). The measured ratios of the isotopic rate constants α =k 12/k 13 were found to have temperature dependences given by: 10 3(α - 1) =2.93 × 10 6/T 2 + 8.11 (cupric oxide) 10 3(α - 1) =7.44 × 10 6/T 2 + 6.56 (hematite) Abiogenic oxidation of methane is probably a significant mechanism for fractionating carbon isotopes in nature.

  18. Measurement of isotope abundance variations in nature by gravimetric spiking isotope dilution analysis (GS-IDA).

    PubMed

    Chew, Gina; Walczyk, Thomas

    2013-04-02

    Subtle variations in the isotopic composition of elements carry unique information about physical and chemical processes in nature and are now exploited widely in diverse areas of research. Reliable measurement of natural isotope abundance variations is among the biggest challenges in inorganic mass spectrometry as they are highly sensitive to methodological bias. For decades, double spiking of the sample with a mix of two stable isotopes has been considered the reference technique for measuring such variations both by multicollector-inductively coupled plasma mass spectrometry (MC-ICPMS) and multicollector-thermal ionization mass spectrometry (MC-TIMS). However, this technique can only be applied to elements having at least four stable isotopes. Here we present a novel approach that requires measurement of three isotope signals only and which is more robust than the conventional double spiking technique. This became possible by gravimetric mixing of the sample with an isotopic spike in different proportions and by applying principles of isotope dilution for data analysis (GS-IDA). The potential and principle use of the technique is demonstrated for Mg in human urine using MC-TIMS for isotopic analysis. Mg is an element inaccessible to double spiking methods as it consists of three stable isotopes only and shows great potential for metabolically induced isotope effects waiting to be explored.

  19. Silicon isotope fractionation by marine sponges and the reconstruction of the silicon isotope composition of ancient deep water

    NASA Astrophysics Data System (ADS)

    de La Rocha, Christina L.

    2003-05-01

    The silicon isotope composition (δ30Si) of biogenic opal provides a view of the silica cycle at times in the past. Reconstructions require the knowledge of silicon isotope fractionation during opal biomineralization. The δ30Si of specimens of hexactinellid sponges and demosponges growing in the modern ocean ranged from -1.2‰ to -3.7‰ (n = 6), corresponding to the production of opal that has a δ30Si value 3.8‰ ± 0.8‰ more negative than seawater silicic acid and a fractionation factor (α) of 0.9964. This is three times the fractionation observed during opal formation by marine diatoms and terrestrial plants and is the largest fractionation of silicon isotopes observed for any natural process on Earth. The δ30Si values of sponge spicules across the Eocene-Oligocene boundary at Ocean Drilling Program Site 689 on Maud Rise range from -1.1‰ to -3.0‰, overlapping the range observed for sponges growing in modern seawater.

  20. Carbon and hydrogen isotope fractionation by moderately thermophilic methanogens

    NASA Astrophysics Data System (ADS)

    Valentine, David L.; Chidthaisong, Amnat; Rice, Andrew; Reeburgh, William S.; Tyler, Stanley C.

    2004-04-01

    A series of laboratory studies were conducted to increase understanding of stable carbon (13C/12C) and hydrogen (D/H) isotope fractionation arising from methanogenesis by moderately thermophilic acetate- and hydrogen-consuming methanogens. Studies of the aceticlastic reaction were conducted with two closely related strains of Methanosaeta thermophila. Results demonstrate a carbon isotope fractionation of only 7‰ (α = 1.007) between the methyl position of acetate and the resulting methane. Methane formed by this process is enriched in 13C when compared with other natural sources of methane; the magnitude of this isotope effect raises the possibility that methane produced at elevated temperature by the aceticlastic reaction could be mistaken for thermogenic methane based on carbon isotopic content. Studies of H2/CO2 methanogenesis were conducted with Methanothermobacter marburgensis. The fractionation of carbon isotopes between CO2 and CH4 was found to range from 22 to 58‰ (1.023 ≤ α ≤ 1.064). Greater fractionation was associated with low levels of molecular hydrogen and steady-state metabolism. The fractionation of hydrogen isotopes between source H2O and CH4 was found to range from 127 to 275‰ (1.16 ≤ α ≤ 1.43). Fractionation was dependent on growth phase with greater fractionation associated with later growth stages. The maximum observed fractionation factor was 1.43, independent of the δD-H2 supplied to the culture. Fractionation was positively correlated with temperature and/or metabolic rate. Results demonstrate significant variability in both hydrogen and carbon isotope fractionation during methanogenesis from H2/CO2. The relatively small fractionation associated with deuterium during H2/CO2 methanogenesis provides an explanation for the relatively enriched deuterium content of biogenic natural gas originating from a variety of thermal environments. Results from these experiments are used to develop a hypothesis that differential

  1. Carbon and hydrogen isotope fractionation during aerobic biodegradation of quinoline and 3-methylquinoline.

    PubMed

    Cui, Mingchao; Zhang, Wenbing; Fang, Jun; Liang, Qianqiong; Liu, Dongxuan

    2017-08-01

    Compound-specific isotope analysis has been used extensively to investigate the biodegradation of various organic pollutants. To date, little isotope fractionation information is available for the biodegradation of quinolinic compounds. In this study, we report on the carbon and hydrogen isotope fractionation during quinoline and 3-methylquinoline aerobic microbial degradation by a Comamonas sp. strain Q10. Degradation of quinoline and 3-methylquinoline was accompanied by isotope fractionation. Large hydrogen and small carbon isotope fractionation was observed for quinoline while minor carbon and hydrogen isotope fractionation effects occurred for 3-methylquinoline. Bulk carbon and hydrogen enrichment factors (ε bulk ) for quinoline biodegradation were -1.2 ± 0.1 and -38 ± 1‰, respectively, while -0.7 ± 0.1 and -5 ± 1‰ for 3-methylquinoline, respectively. This reveals a potential advantage for employing quinoline as the model compound and hydrogen isotope analysis for assessing aerobic biodegradation of quinolinic compounds. The apparent kinetic isotope effects (AKIE C ) values of carbon were 1.008 ± 0.0005 for quinoline and 1.0048 ± 0.0005 for 3-methylquinoline while AKIE H values of hydrogen of 1.264 ± 0.011 for quinoline and 1.0356 ± 0.0103 for 3-methylquinoline were obtained. The combined evaluation of carbon and hydrogen isotope fractionation yields Λ values (Λ = Δδ 2 H/Δδ 13 C ≈ εH bulk /εC bulk ) of 29 ± 2 for quinoline and 8 ± 2 for 3-methylquinoline. The results indicate that the substrate specificity may have a significant influence on the isotope fractionation for the biodegradation of quinolinic compounds. The substrate-specific isotope enrichment factors would be important for assessing the behavior and fate of quinolinic compounds in the environment.

  2. Power law behavior of the isotope yield distributions in the multifragmentation regime of heavy ion reactions

    NASA Astrophysics Data System (ADS)

    Huang, M.; Wada, R.; Chen, Z.; Keutgen, T.; Kowalski, S.; Hagel, K.; Barbui, M.; Bonasera, A.; Bottosso, C.; Materna, T.; Natowitz, J. B.; Qin, L.; Rodrigues, M. R. D.; Sahu, P. K.; Schmidt, K. J.; Wang, J.

    2010-11-01

    Isotope yield distributions in the multifragmentation regime were studied with high-quality isotope identification, focusing on the intermediate mass fragments (IMFs) produced in semiviolent collisions. The yields were analyzed within the framework of a modified Fisher model. Using the ratio of the mass-dependent symmetry energy coefficient relative to the temperature, asym/T, extracted in previous work and that of the pairing term, ap/T, extracted from this work, and assuming that both reflect secondary decay processes, the experimentally observed isotope yields were corrected for these effects. For a given I=N-Z value, the corrected yields of isotopes relative to the yield of C12 show a power law distribution Y(N,Z)/Y(12C)~A-τ in the mass range 1⩽A⩽30, and the distributions are almost identical for the different reactions studied. The observed power law distributions change systematically when I of the isotopes changes and the extracted τ value decreases from 3.9 to 1.0 as I increases from -1 to 3. These observations are well reproduced by a simple deexcitation model, with which the power law distribution of the primary isotopes is determined to be τprim=2.4±0.2, suggesting that the disassembling system at the time of the fragment formation is indeed at, or very near, the critical point.

  3. Assessment of shock effects on amphibole water contents and hydrogen isotope compositions: 1. Amphibolite experiments

    NASA Astrophysics Data System (ADS)

    Minitti, Michelle E.; Rutherford, Malcolm J.; Taylor, Bruce E.; Dyar, M. Darby; Schultz, Peter H.

    2008-02-01

    ). Extrapolating the shock signature of the regrouped data to grains that experienced Martian meteorite-like shock pressures suggests that shock-induced water losses and hydrogen isotope enrichments could approach 1 wt.% H 2O and Δ D = + 100‰, respectively. If these values are valid, then impact shock effects could explain a substantial fraction of the low water contents and variable hydrogen isotope compositions of the Martian meteorite kaersutites.

  4. The Application of Methane Clumped Isotope Measurements to Determine the Source of Large Methane Seeps in Alaskan Lakes

    NASA Astrophysics Data System (ADS)

    Douglas, P. M.; Stolper, D. A.; Eiler, J. M.; Sessions, A. L.; Walter Anthony, K. M.

    2014-12-01

    Natural methane emissions from the Arctic present an important potential feedback to global warming. Arctic methane emissions may come from either active microbial sources or from deep fossil reservoirs released by the thawing of permafrost and melting of glaciers. It is often difficult to distinguish between and quantify contributions from these methane sources based on stable isotope data. Analyses of methane clumped isotopes (isotopologues with two or more rare isotopes such as 13CH3D) can complement traditional stable isotope-based classifications of methane sources. This is because clumped isotope abundances (for isotopically equilibrated systems) are a function of temperature and can be used to identify pathways of methane generation. Additionally, distinctive effects of mixing on clumped isotope abundances make this analysis valuable for determining the origins of mixed gasses. We find large variability in clumped isotope compositions of methane from seeps in several lakes, including thermokarst lakes, across Alaska. At Lake Sukok in northern Alaska we observe the emission of dominantly thermogenic methane, with a formation temperature of at least 100° C. At several other lakes we find evidence for mixing between thermogenic methane and biogenic methane that forms in low-temperature isotopic equilibrium. For example, at Eyak Lake in southeastern Alaska, analysis of three methane samples results in a distinctive isotopic mixing line between a high-temperature end-member that formed between 100-170° C, and a biogenic end-member that formed in isotopic equilibrium between 0-20° C. In this respect, biogenic methane in these lakes resembles observations from marine gas seeps, oil degradation, and sub-surface aquifers. Interestingly, at Goldstream Lake in interior Alaska, methane with strongly depleted clumped-isotope abundances, indicative of disequilibrium gas formation, is found, similar to observations from methanogen culture experiments.

  5. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes

    NASA Astrophysics Data System (ADS)

    Mazzuca, James W.; Haut, Nathaniel K.

    2018-06-01

    It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.

  6. Theoretical description of quantum mechanical permeation of graphene membranes by charged hydrogen isotopes.

    PubMed

    Mazzuca, James W; Haut, Nathaniel K

    2018-06-14

    It has been recently shown that in the presence of an applied voltage, hydrogen and deuterium nuclei can be separated from one another using graphene membranes as a nuclear sieve, resulting in a 10-fold enhancement in the concentration of the lighter isotope. While previous studies, both experimental and theoretical, have attributed this effect mostly to differences in vibrational zero point energy (ZPE) of the various isotopes near the membrane surface, we propose that multi-dimensional quantum mechanical tunneling of nuclei through the graphene membrane influences this proton permeation process in a fundamental way. We perform ring polymer molecular dynamics calculations in which we include both ZPE and tunneling effects of various hydrogen isotopes as they permeate the graphene membrane and compute rate constants across a range of temperatures near 300 K. While capturing the experimentally observed separation factor, our calculations indicate that the transverse motion of the various isotopes across the surface of the graphene membrane is an essential part of this sieving mechanism. An understanding of the multi-dimensional quantum mechanical nature of this process could serve to guide the design of other such isotopic enrichment processes for a variety of atomic and molecular species of interest.

  7. Experimental investigation on the carbon isotope fractionation of methane during gas migration by diffusion through sedimentary rocks at elevated temperature and pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Tongwei; Krooss, Bernhard M.

    2001-08-01

    Molecular transport (diffusion) of methane in water-saturated sedimentary rocks results in carbon isotope fractionation. In order to quantify the diffusive isotope fractionation effect and its dependence on total organic carbon (TOC) content, experimental measurements have been performed on three natural shale samples with TOC values ranging from 0.3 to 5.74%. The experiments were conducted at 90°C and fluid pressures of 9 MPa (90 bar). Based on the instantaneous and cumulative composition of the diffused methane, effective diffusion coefficients of the 12CH4 and 13CH4 species, respectively, have been calculated. Compared with the carbon isotopic composition of the source methane (δ13C1 = -39.1‰), a significant depletion of the heavier carbon isotope (13C) in the diffused methane was observed for all three shales. The degree of depletion is highest during the initial non-steady state of the diffusion process. It then gradually decreases and reaches a constant difference (Δ δ = δ13Cdiff -δ13Csource) when approaching the steady-state. The degree of the isotopic fractionation of methane due to molecular diffusion increases with the TOC content of the shales. The carbon isotope fractionation of methane during molecular migration results practically exclusively from differences in molecular mobility (effective diffusion coefficients) of the 12CH4 and 13CH4 entities. No measurable solubility fractionation was observed. The experimental isotope-specific diffusion data were used in two hypothetical scenarios to illustrate the extent of isotopic fractionation to be expected as a result of molecular transport in geological systems with shales of different TOC contents. The first scenario considers the progression of a diffusion front from a constant source (gas reservoir) into a homogeneous ;semi-infinite; shale caprock over a period of 10 Ma. In the second example, gas diffusion across a 100 m caprock sequence is analyzed in terms of absolute quantities and isotope

  8. High precision isotope ratio measurements of mercury isotopes in cinnabar ores using multi-collector inductively coupled plasma mass spectrometry.

    PubMed

    Hintelmann, Holger; Lu, ShengYong

    2003-06-01

    Variations in Hg isotope ratios in cinnabar ores obtained from different countries were detected by high precision isotope ratio measurements using multi-collector inductively coupled mass spectrometry (MC-ICP-MS). Values of delta198/202Hg varied from 0.0-1.3 percent per thousand relative to a NIST SRM 1641d Hg solution. The typical external uncertainty of the delta values was 0.06 to 0.26 percent per thousand. Hg was introduced into the plasma as elemental Hg after reduction by sodium borohydride. A significant fractionation of lead isotopes was observed during the simultaneous generation of lead hydride, preventing normalization of the Hg isotope ratios using the measured 208/206Pb ratio. Hg ratios were instead corrected employing the simultaneously measured 205/203T1 ratio. Using a 10 ng ml(-1) Hg solution and 10 min of sampling, introducing 60 ng of Hg, the internal precision of the isotope ratio measurements was as low as 14 ppm. Absolute Hg ratios deviated from the representative IUPAC values by approximately 0.2% per u. This observation is explained by the inadequacy of the exponential law to correct for mass bias in MC-ICP-MS measurements. In the absence of a precisely characterized Hg isotope ratio standard, we were not able to determine unambiguously the absolute Hg ratios of the ore samples, highlighting the urgent need for certified standard materials.

  9. Biodegradation of Chlorofluorocarbons in a Groundwater Plume using Compound Specific Carbon Isotope Analysis

    NASA Astrophysics Data System (ADS)

    Phillips, E.; Manna, J.; Horst, A.; Gilevska, T.; Sherwood Lollar, B.; Mack, E. E.; Seger, E.; Lutz, E. J.; Norcoss, S.; Morgan, S. E.; West, K. A.; Dworatzek, S.; Webb, J.

    2017-12-01

    Compound specific isotope analysis (CSIA) measures isotope ratios of organic hydrocarbons to monitor intrinsic bioremediation processes that can transform contaminants in field settings. The fraction of original contaminant remaining can be determined using the measured isotope ratio of the contaminant by an experimentally determined fractionation factor. In this study, two separate biotransformation experiments were performed in the Stable Isotope Laboratory at the University of Toronto using CSIA. In these two experiments, a mixed culture derived from a contaminated site was amended with trichlorotrifluoroethane (CFC-113), or trichlorofluoromethane (CFC-11), respectively. The concentrations and carbon isotope ratios of CFC-113, or CFC-11 were analyzed to calculate the fractionation factor for the transformation of each compound. Subsequently, groundwater samples from 9 wells at a historically contaminated site were collected and analyzed. The experimentally determined fractionation factors were then used to evaluate the extent of transformation that had occurred at the field site. In the laboratory studies, significant carbon isotope fractionation was observed for both CFC-113 and CFC-11 as biotransformation proceeded. This significant fractionation is beneficial when evaluating biotransformation at field sites as it can be clearly differentiated from the effects of other physical processes such as transport, or volatilization. Although there was significant variation in the carbon isotope values of CFC-113 between different well locations at the field site, these variations may be due to differences in source carbon isotope signatures. For CFC-11, much more significant isotopic variation was observed within the same well and between wells, showing trends consistent with in situ biotransformation. Results from this study demonstrate that CSIA can be successfully applied to evaluate the extent of transformation of chlorofluorocarbons (CFCs) at contaminated field

  10. Relativistic impulse approximation analysis of unstable calcium isotopes: {sup 60-74}Ca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaki, K.

    2009-06-15

    Recent relativistic mean-field calculations have provided nuclear distributions of Ca isotopes whose mass numbers are 60 through 74. We calculate observables of proton elastic scattering from these unstable isotopes and discuss relations between observables and nuclear distributions of such unstable nuclei. The calculations are based on relativistic impulse approximation (RIA) at incident proton energies from 100 through 500 MeV where predictions of RIA have been shown to provide good agreement with experimental data. To validate the use of optimal factorization and first-order calculations at these energies, contributions from the Fermi motion of the target nuclei and multiple scattering are estimatedmore » and compared with results calculated without these effects.« less

  11. Anomalous 13C isotope abundances in C3S and C4H observed toward the cold interstellar cloud, Taurus Molecular Cloud-1.

    PubMed

    Sakai, Nami; Takano, Shuro; Sakai, Takeshi; Shiba, Shoichi; Sumiyoshi, Yoshihiro; Endo, Yasuki; Yamamoto, Satoshi

    2013-10-03

    We have studied the abundances of the (13)C isotopic species of C3S and C4H in the cold molecular cloud, Taurus Molecular Cloud-1 (Cyanopolyyne Peak), by radioastronomical observations of their rotational emission lines. The CCCS/(13)CCCS and CCCS/C(13)CCS ratios are determined to be >206 and 48 ± 15, respectively. The CC(13)CS line is identified with the aid of laboratory microwave spectroscopy, and the range of the CCCS/CC(13)CS ratio is found to be from 30 to 206. The abundances of at least two (13)C isotopic species of C3S are thus found to be different. Similarly, it is found that the abundances of the four (13)C isotopic species of C4H are not equivalent. The CCCCH/(13)CCCCH, CCCCH/C(13)CCCH, CCCCH/CC(13)CCH, and CCCCH/CCC(13)CH ratios are evaluated to be 141 ± 44, 97 ± 27, 82 ± 15, and 118 ± 23, respectively. Here the errors denote 3 times the standard deviation. These results will constrain the formation pathways of C3S and C4H, if the nonequivalence is caused during the formation processes of these molecules. The exchange reactions after the formation of these two molecules may also contribute to the nonequivalence. In addition, we have confirmed that the (12)C/(13)C ratio of some species are significantly higher than the interstellar elemental (12)C/(13)C ratio of 60-70. The observations of the (13)C isotopic species provide us with rich information on chemical processes in cold interstellar clouds.

  12. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Hayes, J. M.; Trendel, J. M.; Albrecht, P.

    1990-01-01

    The organic matter found in sedimentary rocks must derive from many sources; not only from ancient primary producers but also from consumers and secondary producers. In all of these organisms, isotope effects can affect the abundance and distribution of 13C in metabolites. Here, by using an improved form of a previously described technique in which the effluent of a gas chromatograph is continuously analysed isotopically, we report evidence of the diverse origins of sedimentary organic matter. The record of 13C abundances in sedimentary carbonate and total organic carbon can be interpreted in terms of variations in the global carbon cycle. Our results demonstrate, however, that isotope variations within sedimentary organic mixtures substantially exceed those observed between samples of total organic carbon. Resolution of isotope variations at the molecular level offers a new and convenient means of refining views both of localized palaeoenvironments and of control mechanisms within the global carbon cycle.

  13. Quantum and isotope effects in lithium metal

    NASA Astrophysics Data System (ADS)

    Ackland, Graeme J.; Dunuwille, Mihindra; Martinez-Canales, Miguel; Loa, Ingo; Zhang, Rong; Sinogeikin, Stanislav; Cai, Weizhao; Deemyad, Shanti

    2017-06-01

    The crystal structure of elements at zero pressure and temperature is the most fundamental information in condensed matter physics. For decades it has been believed that lithium, the simplest metallic element, has a complicated ground-state crystal structure. Using synchrotron x-ray diffraction in diamond anvil cells and multiscale simulations with density functional theory and molecular dynamics, we show that the previously accepted martensitic ground state is metastable. The actual ground state is face-centered cubic (fcc). We find that isotopes of lithium, under similar thermal paths, exhibit a considerable difference in martensitic transition temperature. Lithium exhibits nuclear quantum mechanical effects, serving as a metallic intermediate between helium, with its quantum effect-dominated structures, and the higher-mass elements. By disentangling the quantum kinetic complexities, we prove that fcc lithium is the ground state, and we synthesize it by decompression.

  14. Dolomite clumped isotope constraints on the oxygen isotope composition of the Phanerozoic Sea

    NASA Astrophysics Data System (ADS)

    Ryb, U.; Eiler, J. M.

    2017-12-01

    The δ18O value of the Phanerozoic Sea has been debated several decades, largely motivated by an 8‰ increase in δ18O of sedimentary carbonates between the Cambrian and the present. Some previous studies have interpreted this increase to be a primary depositional signal, resulting from an increase in the 18O content of ocean water over time, or from a decrease in ocean temperature increasing the oxygen isotope fractionation between seawater and carbonates. In contrast, other studies have interpreted lower δ18O compositions as the products of diagenetic alteration at elevated burial temperatures. Here, we show that the Phanerozoic dolomite δ18O record overlaps with that of well-preserved calcite fossils, and use carbonate clumped isotope measurements of Cambrian to Pleistocene dolomites to calculate their formation temperatures and the isotopic compositions of their parent-waters. The observed variation in dolomite δ18O is largely explained by dolomite formation at burial temperatures of up to 158°C. The δ18O values of dolomite parent-waters range -2 to +12‰ and are correlated with formation temperatures. Such correlation is consistent with the modification of seawater (0±2‰, VSMOW) toward isotopically heavier compositions through water-rock reactions at elevated burial temperatures. The similarity between the dolomite and calcite δ18O records, and published clumped isotope-based calculations of water compositions, suggests that like dolomite, temporal variations of the calcite δ18O record may also be largely driven by diagenetic alteration. Finally, the relationship we observe between temperature of dolomitization and d18O of dolomite suggests platform carbonates generally undergo dolomitization through reaction with modified marine waters, and that there is no evidence those waters were ever significantly lower in d18O than the modern ocean.

  15. The earliest Lunar Magma Ocean differentiation recorded in Fe isotopes

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Jacobsen, Stein B.; Sedaghatpour, Fatemeh; Chen, Heng; Korotev, Randy L.

    2015-11-01

    Recent high-precision isotopic measurements show that the isotopic similarity of Earth and Moon is unique among all known planetary bodies in our Solar System. These observations provide fundamental constraints on the origin of Earth-Moon system, likely a catastrophic Giant Impact event. However, in contrast to the isotopic composition of many elements (e.g., O, Mg, Si, K, Ti, Cr, and W), the Fe isotopic compositions of all lunar samples are significantly different from those of the bulk silicate Earth. Such a global Fe isotopic difference between the Moon and Earth provides an important constraint on the lunar formation - such as the amount of Fe evaporation as a result of a Giant Impact origin of the Moon. Here, we show through high-precision Fe isotopic measurements of one of the oldest lunar rocks (4.51 ± 0.10 Gyr dunite 72 415), compared with Fe isotope results of other lunar samples from the Apollo program, and lunar meteorites, that the lunar dunite is enriched in light Fe isotopes, complementing the heavy Fe isotope enrichment in other lunar samples. Thus, the earliest olivine accumulation in the Lunar Magma Ocean may have been enriched in light Fe isotopes. This new observation allows the Fe isotopic composition of the bulk silicate Moon to be identical to that of the bulk silicate Earth, by balancing light Fe in the deep Moon with heavy Fe in the shallow Moon rather than the Moon having a heavier Fe isotope composition than Earth as a result of Giant Impact vaporization.

  16. Fractionation of metal stable isotopes by higher plants

    USGS Publications Warehouse

    Von Blanckenburg, F.; Von Wiren, N.; Guelke, M.; Weiss, D.J.; Bullen, T.D.

    2009-01-01

    Higher plants induce chemical reactions in the rhizosphere, facilitating metal uptake by roots. Fractionation of the isotopes in nutrients such as calcium, iron, magnesium, and zinc produces a stable isotope composition in the plants that generally differs from that of the growth medium. Isotope fractionation also occurs during transport of the metals within most plants, but its extent depends on plant species and on the metal, in particular, on the metal's redox state and what ligand it is bound to. The metal stable isotope variations observed in plants create an isotope signature of life at the Earth's surface, contributing substantially to our understanding of metal cycling processes in the environment and in individual organisms.

  17. Separation of sulfur isotopes

    DOEpatents

    DeWitt, Robert; Jepson, Bernhart E.; Schwind, Roger A.

    1976-06-22

    Sulfur isotopes are continuously separated and enriched using a closed loop reflux system wherein sulfur dioxide (SO.sub.2) is reacted with sodium hydroxide (NaOH) or the like to form sodium hydrogen sulfite (NaHSO.sub.3). Heavier sulfur isotopes are preferentially attracted to the NaHSO.sub.3, and subsequently reacted with sulfuric acid (H.sub.2 SO.sub.4) forming sodium hydrogen sulfate (NaHSO.sub.4) and SO.sub.2 gas which contains increased concentrations of the heavier sulfur isotopes. This heavy isotope enriched SO.sub.2 gas is subsequently separated and the NaHSO.sub.4 is reacted with NaOH to form sodium sulfate (Na.sub.2 SO.sub.4) which is subsequently decomposed in an electrodialysis unit to form the NaOH and H.sub.2 SO.sub.4 components which are used in the aforesaid reactions thereby effecting sulfur isotope separation and enrichment without objectionable loss of feed materials.

  18. Disentangling effects of growth and nutritional status on seabird stable isotope ratios.

    PubMed

    Sears, Justine; Hatch, Scott A; O'Brien, Diane M

    2009-02-01

    A growing number of studies suggest that an individual's physiology affects its carbon and nitrogen stable isotope signatures, obscuring a signal often assumed to be only a reflection of diet and foraging location. We examined effects of growth and moderate food restriction on red blood cell (RBC) and feather delta(15)N and delta(13)C in rhinoceros auklet chicks (Cerorhinca monocerata), a piscivorous seabird. Chicks were reared in captivity and fed either control (75 g/day; n = 7) or ~40% restricted (40 g/day; n = 6) amounts of high quality forage fish. We quantified effects of growth on isotopic fractionation by comparing delta(15)N and delta(13)C in control chicks to those of captive, non-growing subadult auklets (n = 11) fed the same diet. To estimate natural levels of isotopic variation, we also collected blood from a random sample of free-living rhinoceros auklet adults and chicks in the Gulf of Alaska (n = 15 for each), as well as adult feather samples (n = 13). In the captive experiment, moderate food restriction caused significant depletion in delta(15)N of both RBCs and feathers in treatment chicks compared to control chicks. Growth also induced depletion in RBC delta(15)N, with chicks exhibiting lower delta(15)N when they were growing the fastest. As growth slowed, delta(15)N increased, resulting in an overall pattern of enrichment over the course of the nestling period. Combined effects of growth and restriction depleted delta(15)N in chick RBCs by 0.92 per thousand. We propose that increased nitrogen-use efficiency is responsible for (15)N depletion in both growing and food-restricted chicks. delta(15)N values in RBCs of free-ranging auklets fell within a range of only 1.03 per thousand, while feather delta(15)N varied widely. Together, our captive and field results suggest that both growth and moderate food restriction can affect stable isotope ratios in an ecologically meaningful way in RBCs although not feathers due to greater natural variability in

  19. Disentangling effects of growth and nutritional status on seabird stable isotope ratios

    USGS Publications Warehouse

    Sears, J.; Hatch, Shyla A.; O'Brien, D. M.

    2009-01-01

    A growing number of studies suggest that an individual's physiology affects its carbon and nitrogen stable isotope signatures, obscuring a signal often assumed to be only a reflection of diet and foraging location. We examined effects of growth and moderate food restriction on red blood cell (RBC) and feather ??15N and ??13C in rhinoceros auklet chicks (Cerorhinca monocerata), a piscivorous seabird. Chicks were reared in captivity and fed either control (75 g/day; n = 7) or ~40% restricted (40 g/day; n = 6) amounts of high quality forage fish. We quantified effects of growth on isotopic fractionation by comparing ??15N and ??13C in control chicks to those of captive, non-growing subadult auklets (n = 11) fed the same diet. To estimate natural levels of isotopic variation, we also collected blood from a random sample of free-living rhinoceros auklet adults and chicks in the Gulf of Alaska (n = 15 for each), as well as adult feather samples (n = 13). In the captive experiment, moderate food restriction caused significant depletion in ??15N of both RBCs and feathers in treatment chicks compared to control chicks. Growth also induced depletion in RBC ??15N, with chicks exhibiting lower ??15N when they were growing the fastest. As growth slowed, ??15N increased, resulting in an overall pattern of enrichment over the course of the nestling period. Combined effects of growth and restriction depleted ??15N in chick RBCs by 0.92???. We propose that increased nitrogen-use efficiency is responsible for 15N depletion in both growing and food-restricted chicks. ??15N values in RBCs of free-ranging auklets fell within a range of only 1.03???, while feather ??15N varied widely. Together, our captive and field results suggest that both growth and moderate food restriction can affect stable isotope ratios in an ecologically meaningful way in RBCs although not feathers due to greater natural variability in this tissue. ?? 2008 Springer-Verlag.

  20. Stable-isotope fingerprints of biological agents as forensic tools.

    PubMed

    Horita, Juske; Vass, Arpad A

    2003-01-01

    Naturally occurring stable isotopes of light elements in chemical and biological agents may possess unique "stable-isotope fingerprints" depending on their sources and manufacturing processes. To test this hypothesis, two strains of bacteria (Bacillus globigii and Erwinia agglomerans) were grown under controlled laboratory conditions. We observed that cultured bacteria cells faithfully inherited the isotopic composition (hydrogen, carbon, and nitrogen) of media waters and substrates in predictable manners in terms of bacterial metabolism and that even bacterial cells of the same strain, which grew in media water and substrates of different isotopic compositions, have readily distinguishable isotopic signatures. These "stable-isotopic fingerprints" of chemical and biological agents can be used as forensic tools in the event of biochemical terrorist attacks.

  1. Effects of climatic seasonality on the isotopic composition of evaporating soil waters

    NASA Astrophysics Data System (ADS)

    Benettin, Paolo; Volkmann, Till H. M.; von Freyberg, Jana; Frentress, Jay; Penna, Daniele; Dawson, Todd E.; Kirchner, James W.

    2018-05-01

    Stable water isotopes are widely used in ecohydrology to trace the transport, storage, and mixing of water on its journey through landscapes and ecosystems. Evaporation leaves a characteristic signature on the isotopic composition of the water that is left behind, such that in dual-isotope space, evaporated waters plot below the local meteoric water line (LMWL) that characterizes precipitation. Soil and xylem water samples can often plot below the LMWL as well, suggesting that they have also been influenced by evaporation. These soil and xylem water samples frequently plot along linear trends in dual-isotope space. These trend lines are often termed "evaporation lines" and their intersection with the LMWL is often interpreted as the isotopic composition of the precipitation source water. Here we use numerical experiments based on established isotope fractionation theory to show that these trend lines are often by-products of the seasonality in evaporative fractionation and in the isotopic composition of precipitation. Thus, they are often not true evaporation lines, and, if interpreted as such, can yield highly biased estimates of the isotopic composition of the source water.

  2. Influence of water on clumped-isotope bond reordering kinetics in calcite

    NASA Astrophysics Data System (ADS)

    Brenner, Dana C.; Passey, Benjamin H.; Stolper, Daniel A.

    2018-03-01

    Oxygen self-diffusion in calcite and many other minerals is considerably faster under wet conditions relative to dry conditions. Here we investigate whether this "water effect" also holds true for solid-state isotope exchange reactions that alter the abundance of carbonate groups with multiple rare isotopes ('clumped' isotope groups) via the process of solid-state bond reordering. We present clumped-isotope reordering rates for optical calcite heated under wet, high-pressure (100 MPa) conditions. We observe only modest increases in reordering rates under such conditions compared with rates for the same material reacted in dry CO2 under low-pressure conditions. Activation energies under wet, high-pressure conditions are indistinguishable from those for dry, low-pressure conditions, while rate constants are resolvably higher (up to ∼3 times) for wet, high-pressure relative to dry, low-pressure conditions in most of our interpretations of experimental results. This contrasts with the water effect for oxygen self-diffusion in calcite, which is associated with lower activation energies, and diffusion coefficients that are ≥103 times higher compared with dry (pure CO2) conditions in the temperature range of this study (385-450 °C). The water effect for clumped-isotopes leads to calculated apparent equilibrium temperatures ("blocking temperatures") for typical geological cooling rates that are only a few degrees higher than those for dry conditions, while O self-diffusion blocking temperatures in calcite grains are ∼150-200 °C lower in wet conditions compared with dry conditions. Since clumped-isotope reordering is a distributed process that occurs throughout the mineral volume, our clumped-isotope results support the suggestion of Labotka et al. (2011) that the water effect in calcite does not involve major changes in bulk (volume) diffusivity, but rather is primarily a surface phenomenon that facilitates oxygen exchange between the calcite surface and external

  3. Negligible fractionation of Kr and Xe isotopes by molecular diffusion in water

    NASA Astrophysics Data System (ADS)

    Tyroller, Lina; Brennwald, Matthias S.; Busemann, Henner; Maden, Colin; Baur, Heinrich; Kipfer, Rolf

    2018-06-01

    Molecular diffusion is a key transport process for noble gases in water. Such diffusive transport is often thought to cause a mass-dependent fractionation of noble gas isotopes that is inversely proportional to the square root of the ratio of their atomic mass, referred to as the square root relation. Previous studies, challenged the commonly held assumption that the square root relation adequately describes the behaviour of noble gas isotopes diffusing through water. However, the effect of diffusion on noble gas isotopes has only been determined experimentally for He, Ne and Ar to date, whereas the extent of fractionation of Kr and Xe has not been measured. In the present study the fractionation of Kr and Xe isotopes diffusing through water immobilised by adding agar was quantified through measuring the respective isotope ratio after diffusing through the immobilised water. No fractionation of Kr and Xe isotopes was observed, even using high-precision noble gas analytics. These results complement our current understanding on isotopic fractionation of noble gases diffusing through water. Therefore this complete data set builds a robust basis to describe molecular diffusion of noble gases in water in a physical sound manner which is fundamental to assess the physical aspects of gas dynamics in aquatic systems.

  4. Arctic Ocean Cyclostratigraphy: An Alternative to Marine Oxygen Isotope curves as measures of Cryospheric and Sea-Level History

    NASA Astrophysics Data System (ADS)

    Cronin, T. M.; Marzen, R.; O'Regan, M.; Dwyer, G. S.

    2016-12-01

    The stable isotope compositions of biogenic carbonates have been used for paleoceanographic and paleoclimatic reconstructions for decades, and produced some of the most iconic records in the field. However, we still lack a fully mechanistic understanding of the stable isotope proxies, especially the biological overprint on the environmental signals termed "vital effects". A ubiquitous feature of stable isotope vital effects in marine calcifying organisms is a strong correlation between δ18O and δ13C in a range of values that are depleted from equilibrium. Two mechanisms have been proposed to explain this correlation, one based on kinetic isotope effects during CO2(aq)-HCO3- inter-conversion, the other based on equilibrium isotope exchange during pH dependent speciation of the dissolved inorganic carbon pool. Neither mechanism explains all the stable isotope features observed in biogenic carbonates. Here we present a fully kinetic model of biomineralization and its isotope effects using deep sea corals as a test organism. A key component of our model is the consideration of the enzyme carbonic anhydrase in catalyzing the CO2(aq)-HCO3- inter-conversion reactions in the extracellular calcifying fluid (ECF). We find that the amount of carbonic anhydrase not only modulates the carbonate chemistry of the calcifying fluid, but also helps explain the slope of the δ18O-δ13C correlation. With this model, we are not only able to fit deep sea coral data, but also explain the stable isotope vital effects of other calcifying organisms. This fully kinetic model of stable isotope vital effects and the underlying calcification dynamics may also help us better understand mechanisms of other paleoceanographic tracers in biogenic carbonates, including boron isotopes and trace metal proxies.

  5. Calcium Isotope Analysis by Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Boulyga, S.; Richter, S.

    2010-12-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. This presentation discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. Additionally, the availability of Ca isotope reference materials will be discussed.

  6. An isotopic comparison of cross-latitudinal horse hair data

    NASA Astrophysics Data System (ADS)

    Thompson, Elisabeth; Ramsey, Christopher

    2017-04-01

    This study explores whether the Rayleigh distillation process latitude effect, of depleted δ18O in precipitation toward the poles, can be observed in horse hair. This study specifically compares δ18O values in horse hair with meteorological variables, and examines whether regional changes in global climate can be observed. The sampling sites and the pony breeds used in this study will add to the increasing network of isotopic horse hair data and will create an even better understanding of the intra-species variation within the δ18O values of horse hair. By directly correlating the meteorological variables to δ18O variations, the effects of specific weather events at different latitudes can also be explored at a very high resolution. 24 horses were sampled within approximately 24 hours on the 7th March 2016 from Thordale Stud in Shetland; the Icelandic Food And Veterinary Authority in Iceland; the Exmoor Pony Centre in Exmoor; and the Pigeon House Equestrian Centre in Oxfordshire. Starting the sampling process from the most recent growth at the follicle, the sampling date becomes a chronological marker, temporally fixing the first sample within a sequential set of data points extending for one year or longer, depending on the length of each individual hair. Preliminary results confirm the hypothesis, demonstrating that a study of oxygen isotope ratios in horse hair from Oxfordshire to Iceland shows a latitudinal depletion gradient, consistent with a depletion of oxygen isotope ratios due to decreasing temperatures.

  7. Transition State Geometry Measurements from 13C Isotope Effects. The Experimental Transition State for the Epoxidation of Alkenes with Oxaziridines

    PubMed Central

    Hirschi, Jennifer S.; Takeya, Tetsuya; Hang, Chao; Singleton, Daniel A.

    2009-01-01

    We suggest here and evaluate a methodology for the measurement of specific interatomic distances from a combination of theoretical calculations and experimentally measured 13C kinetic isotope effects. This process takes advantage of a broad diversity of transition structures available for the epoxidation of 2-methyl-2-butene with oxaziridines. From the isotope effects calculated for these transition structures, a theory-independent relationship between the C-O bond distances of the newly forming bonds and the isotope effects is established. Within the precision of the measurement, this relationship in combination with the experimental isotope effects provides a highly accurate picture of the C-O bonds forming at the transition state. The diversity of transition structures also allows an evaluation of the Schramm process for defining transition state geometries based on calculations at non-stationary points, and the methodology is found to be reasonably accurate. PMID:19146405

  8. Lattice Boltzmann Simulation of Kinetic Isotope Effect During Snow Crystal Formation

    NASA Astrophysics Data System (ADS)

    Lu, G.; Depaolo, D. J.; Kang, Q.; Zhang, D.

    2007-12-01

    and allows us to scale the numerical calculations to atmospheric conditions. Our calculations confirm that the crystal/vapor isotopic fractionation approaches the equilibrium value, and the crystals are compact (circular in 2D) as the saturation factor approaches unity (S= 1.0). However, few natural crystals form under such conditions. At higher oversaturation (e.g. S = 1.2), dendritic crystals of millimeter size develop on timescales appropriate to cloud processes, and kinetic effects control isotopic fractionation. Fractionation factors for dendritic crystals are similar to those predicted by the spherical diffusion model, but the model also gives estimates of crystal heterogeneity. Dendritic crystals are constrained to be relatively large, with dimension much greater than about 20D/k. The most difficult aspect of the modeling is to account for the large density difference between air and ice, which requires us to use a fictitious higher density for the vapor-oversaturated air and scale the crystal growth time accordingly. An approach using a larger scale simulation and the domain decomposition method can provide a vapor flux for a nested smaller scale calculation. The results clarify the controls on crystal growth, and the relationships between saturation state, growth rate, crystal morphology and isotopic fractionation.

  9. The neodymium stable isotope composition of the silicate Earth and chondrites

    NASA Astrophysics Data System (ADS)

    McCoy-West, Alex J.; Millet, Marc-Alban; Burton, Kevin W.

    2017-12-01

    The non-chondritic neodymium (Nd) 142Nd/144Nd ratio of the silicate Earth potentially provides a key constraint on the accretion and early evolution of the Earth. Yet, it is debated whether this offset is due to the Earth being formed from material enriched in s-process Nd isotopes or results from an early differentiation process such as the segregation of a late sulfide matte during core formation, collisional erosion or a some combination of these processes. Neodymium stable isotopes are potentially sensitive to early sulfide segregation into Earth's core, a process that cannot be resolved using their radiogenic counterparts. This study presents the first comprehensive Nd stable isotope data for chondritic meteorites and terrestrial rocks. Stable Nd measurements were made using a double spike technique coupled with thermal ionisation mass spectrometry. All three of the major classes of chondritic meteorites, carbonaceous, enstatite and ordinary chondrites have broadly similar isotopic compositions allowing calculation of a chondritic mean of δ146/144Nd = -0.025 ± 0.025‰ (±2 s.d.; n = 39). Enstatite chondrites yield the most uniform stable isotope composition (Δ146/144Nd = 26 ppm), with considerably more variability observed within ordinary (Δ146/144Nd = 72 ppm) and carbonaceous meteorites (Δ146/144Nd = 143 ppm). Terrestrial weathering, nucleosynthetic variations and parent body thermal metamorphism appear to have little measurable effect on δ146/144Nd in chondrites. The small variations observed between ordinary chondrite groups most likely reflect inherited compositional differences between parent bodies, with the larger variations observed in carbonaceous chondrites being linked to varying modal proportions of calcium-aluminium rich inclusions. The terrestrial samples analysed here include rocks ranging from basaltic to rhyolitic in composition, MORB glasses and residual mantle lithologies. All of these terrestrial rocks possess a broadly similar Nd

  10. Continental sedimentary processes decouple Nd and Hf isotopes

    NASA Astrophysics Data System (ADS)

    Garçon, Marion; Chauvel, Catherine; France-Lanord, Christian; Huyghe, Pascale; Lavé, Jérôme

    2013-11-01

    The neodymium and hafnium isotopic compositions of most crustal and mantle rocks correlate to form the "Terrestrial Array". However, it is now well established that whereas coarse detrital sediments follow this trend, fine-grained oceanic sediments have high Hf ratios relative to their Nd isotopic ratios. It remains uncertain whether this "decoupling" of the two isotopic systems only occurs in the oceanic environment or if it is induced by sedimentary processes in continental settings. In this study, the hafnium and neodymium isotopic compositions of sediments in large rivers is expressly used to constrain the behavior of the two isotopic systems during erosion and sediment transport from continent to ocean. We report major and trace element concentrations together with Nd and Hf isotopic compositions of bedloads, suspended loads and river banks from the Ganges River and its tributaries draining the Himalayan Range i.e. the Karnali, the Narayani, the Kosi and the Marsyandi Rivers. The sample set includes sediments sampled within the Himalayan Range in Nepal, at the Himalayan mountain front, and also downstream on the floodplain and at the outflow of the Ganges in Bangladesh. Results show that hydrodynamic sorting of minerals explains the entire Hf isotopic range, i.e. more than 10 εHf units, observed in the river sediments but does not affect the Nd isotopic composition. Bedloads and bank sediments have systematically lower εHf values than suspended loads sampled at the same location. Coarse-grained sediments lie below or on the Terrestrial Array in an εHf vs. εNd diagram. In contrast, fine-grained sediments, including most of the suspended loads, deviate from the Terrestrial Array toward higher εHf relative to their εNd, as is the case for oceanic terrigenous clays. The observed Nd-Hf decoupling is explained by mineralogical sorting processes that enrich bottom sediments in coarse and dense minerals, including unradiogenic zircons, while surface sediments

  11. Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision.

    PubMed

    Schnedermann, C; Yang, X; Liebel, M; Spillane, K M; Lugtenburg, J; Fernández, I; Valentini, A; Schapiro, I; Olivucci, M; Kukura, P; Mathies, R A

    2018-04-01

    Vibronic coupling is key to efficient energy flow in molecular systems and a critical component of most mechanisms invoking quantum effects in biological processes. Despite increasing evidence for coherent coupling of electronic states being mediated by vibrational motion, it is not clear how and to what degree properties associated with vibrational coherence such as phase and coupling of atomic motion can impact the efficiency of light-induced processes under natural, incoherent illumination. Here, we show that deuteration of the H 11 -C 11 =C 12 -H 12 double-bond of the 11-cis retinal chromophore in the visual pigment rhodopsin significantly and unexpectedly alters the photoisomerization yield while inducing smaller changes in the ultrafast isomerization dynamics assignable to known isotope effects. Combination of these results with non-adiabatic molecular dynamics simulations reveals a vibrational phase-dependent isotope effect that we suggest is an intrinsic attribute of vibronically coherent photochemical processes.

  12. Variation of the stable isotopes of water with altitiude in the Saint Elias Mountains of Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holdsworth, G.; Fogarasi, S.; Krouse, H.R.

    1991-04-20

    The stable isotopes of water, measured in melt samples taken from snow pits and cores at locations between 1,750- and 5,930-m altitude on Mount Logan and between 2,900 and 4,900 m on Mount Steele, in the Saint Elias Mountains, Yukon, show a distinctive altitudinal distribution. Several {delta}{sup 18}O and {delta}D versus altitude profiles indicate the general persistence of a nearly iso-{delta} step, or staircase structure, separating a lower region of altitude dependent isotopic fractionation between 1,750 and 3,350 m from another apparent frictionation sequence appearing above about 5,300 m. On the one hand, postdepositional changes to isotope ratios in snowmore » at different altitudes may cause distortions to an otherwise nearly monotonic isotope fractionation sequence, but the main anomaly appears to be far too large to be explained this way. On the other hand, an explanation linked to processes occuring in the lower and midtroposphere is based on established meteorological principles as well as on upper air data. This hypothesis is proposed as the primary one to explain the gross features of the observed isotope profiles. It is compatible with the concept of secondary-source moisture arriving via the upper troposphere, and it does not exclude the effects of postdepositional stratigraphic and stable isotope ratio changes. Over interannual time scales, any vertical modulation of the observed isotope-altitude structure, from, for example, changes in wind regime, would give rise to an additional signal in any ice core {delta} time series. These findings identify a potential difficulty in the interpretation of stable isotope records obtained from high mountain ice core sites. It is possible that the results may have application to atmospheric circulation modeling, where the effects of extreme topography are being studied.« less

  13. Maternal meddling in neonatal sharks: implications for interpreting stable isotopes in young animals.

    PubMed

    Olin, Jill A; Hussey, Nigel E; Fritts, Mark; Heupel, Michelle R; Simpfendorfer, Colin A; Poulakis, Gregg R; Fisk, Aaron T

    2011-04-30

    Stable isotopes of neonatal vertebrates reflect those of their mother's diet and foraging location. Evaluating feeding strategies and habitat use of neonates is consequently complicated by the maternal isotopic signal and its subsequent elimination with growth. Thus, methods that measure the loss of the maternal signal, i.e. when the isotopic signal of a neonate reflects its own diet, are needed. Values of δ(13)C and δ(15)N were measured in liver and muscle tissues of <1 year old bull (Carcharhinus leucas) and Atlantic sharpnose (Rhizoprionodon terraenovae) sharks and related to age using, total length, date sampled and umbilical scar stage (USS). We observed a decline in δ(13)C and δ(15)N values with age that was different among species, similar among isotopes, and greater in liver than in muscle; highlighting that retention of the maternal signal is dependent on species-specific life history and tissue characteristics. USS was most effective for assessing the loss of the maternal isotopic signal in the faster growing Atlantic sharpnose shark, but was less effective for the slower growing bull shark. Total length and date sampled were overall less effective and may be more informative for slower growing species when coupled with USS, as variable size at birth and misclassification of animals >1 year old, which remain in nursery habitats, increase the variability of the isotopic values. Consideration of the maternal signal and measuring its loss are thus necessary when analyzing the stable isotopes of young animals, as there is potential to misinterpret feeding strategies, over-estimate trophic position and incorrectly assign carbon source. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Oxygen isotopes in nitrite: Analysis, calibration, and equilibration

    USGS Publications Warehouse

    Casciotti, K.L.; Böhlke, J.K.; McIlvin, M.R.; Mroczkowski, S.J.; Hannon, J.E.

    2007-01-01

    Nitrite is a central intermediate in the nitrogen cycle and can persist in significant concentrations in ocean waters, sediment pore waters, and terrestrial groundwaters. To fully interpret the effect of microbial processes on nitrate (NO3-), nitrite (NO2-), and nitrous oxide (N2O) cycling in these systems, the nitrite pool must be accessible to isotopic analysis. Furthermore, because nitrite interferes with most methods of nitrate isotopic analysis, accurate isotopic analysis of nitrite is essential for correct measurement of nitrate isotopes in a sample that contains nitrite. In this study, nitrite salts with varying oxygen isotopic compositions were prepared and calibrated and then used to test the denitrifier method for nitrite oxygen isotopic analysis. The oxygen isotopic fractionation during nitrite reduction to N2O by Pseudomonas aureofaciens was lower than for nitrate conversion to N2O, while oxygen isotopic exchange between nitrite and water during the reaction was similar. These results enable the extension of the denitrifier method to oxygen isotopic analysis of nitrite (in the absence of nitrate) and correction of nitrate isotopes for the presence of nitrite in “mixed” samples. We tested storage conditions for seawater and freshwater samples that contain nitrite and provide recommendations for accurate oxygen isotopic analysis of nitrite by any method. Finally, we report preliminary results on the equilibrium isotope effect between nitrite and water, which can play an important role in determining the oxygen isotopic value of nitrite where equilibration with water is significant.

  15. Iron Isotope Constraints on Planetesimal Core Formation

    NASA Astrophysics Data System (ADS)

    Jordan, M.; Young, E. D.

    2016-12-01

    The prevalence of iron in both planetary cores and silicate mantles renders the element a valuable tool for understanding core formation. Magmatic iron meteorites exhibit an enrichment in 57Fe/54Fe relative to chondrites and HED meteorites. This is suggestive of heavy Fe partitioning into the cores of differentiated bodies. If iron isotope fractionation accompanies core formation, we can elucidate details about the history of accretion for planetary bodies as well as their compositions and relative core sizes. The equilibrium 57Fe/54Fe between metal and silicate is necessary for understanding observed iron isotope compositions and placing constraints on core formation. We measure this fractionation in two Aubrite meteorites, Norton County and Mount Egerton, which have known temperatures of equilibration and equilibrated silicon isotopes. Iron was purified using ion-exchange chromatography. Data were collected on a ThermoFinnigan NeptuneTM multiple-collector inductively coupled plasma-source mass spectrometer (MC-ICP-MS) run in wet plasma mode. The measured fractionation Δ57Femetal-silicate is 0.08‰ ± 0.039 (2 SE) for Norton County and 0.09‰ ± 0.019 (2 SE) for Mount Egerton, indicating that the heavy isotopes of Fe partition into the metallic phase. These rocks are in isotopic equilibrium at a temperature of 1130 K and 1200 K ± 80 K, respectively. The concentration of the heavy isotopes of iron in the metallic phase is consistent with recent experimental studies. Using our measured metal-silicate Fe isotope fractionation and the resulting temperature calibration, while taking into account impurities in the metallic phase and temperatures of equilibration, determine that core formation could explain the observed difference between magmatic iron meteorites and chondrites if parent bodies have small cores. In order to verify that Rayleigh distillation during fractional crystallization was not a cause of iron isotope fractionation in iron meteorites, we measured

  16. The reaction of indole with the aminoacrylate intermediate of Salmonella typhimurium tryptophan synthase: observation of a primary kinetic isotope effect with 3-[(2)H]indole.

    PubMed

    Cash, Michael T; Miles, Edith W; Phillips, Robert S

    2004-12-15

    The bacterial tryptophan synthase alpha(2)beta(2) complex catalyzes the final reactions in the biosynthesis of L-tryptophan. Indole is produced at the active site of the alpha-subunit and is transferred through a 25-30 A tunnel to the beta-active site, where it reacts with an aminoacrylate intermediate. Lane and Kirschner proposed a two-step nucleophilic addition-tautomerization mechanism for the reaction of indole with the aminoacrylate intermediate, based on the absence of an observed kinetic isotope effect (KIE) when 3-[(2)H]indole reacts with the aminoacrylate intermediate. We have now observed a KIE of 1.4-2.0 in the reaction of 3-[(2)H]indole with the aminoacrylate intermediate in the presence of monovalent cations, but not when an alpha-subunit ligand, disodium alpha-glycerophosphate (Na(2)GP), is present. Rapid-scanning stopped flow kinetic studies were performed of the reaction of indole and 3-[(2)H]indole with tryptophan synthase preincubated with L-serine, following the decay of the aminoacrylate intermediate at 350 nm, the formation of the quinonoid intermediate at 476 nm, and the formation of the L-Trp external aldimine at 423 nm. The addition of Na(2)GP dramatically slows the rate of reaction of indole with the alpha-aminoacrylate intermediate. A primary KIE is not observed in the reaction of 3-[(2)H]indole with the aminoacrylate complex of tryptophan synthase in the presence of Na(2)GP, suggesting binding of indole with tryptophan synthase is rate limiting under these conditions. The reaction of 2-methylindole does not show a KIE, either in the presence of Na(+) or Na(2)GP. These results support the previously proposed mechanism for the beta-reaction of tryptophan synthase, but suggest that the rate limiting step in quinonoid intermediate formation from indole and the aminoacrylate intermediate is deprotonation.

  17. U-Pb isotopic systematics of shock-loaded and annealed baddeleyite: Implications for crystallization ages of Martian meteorite shergottites

    NASA Astrophysics Data System (ADS)

    Niihara, Takafumi; Kaiden, Hiroshi; Misawa, Keiji; Sekine, Toshimori; Mikouchi, Takashi

    2012-08-01

    Shock-recovery and annealing experiments on basalt-baddeleyite mixtures were undertaken to evaluate shock effects on U-Pb isotopic systematics of baddeleyite. Shock pressures up to 57 GPa caused fracturing of constituent phases, mosaicism of olivine, maskelynitization of plagioclase, and melting, but the phase transition from monoclinic baddeleyite structure to high-pressure/temperature polymorphs of ZrO2 was not confirmed. The U-Pb isotopic systems of the shock-loaded baddeleyite did not show a large-scale isotopic disturbance. The samples shock-recovered from 47 GPa were then employed for annealing experiments at 1000 or 1300 °C, indicating that the basalt-baddeleyite mixture was almost totally melted except olivine and baddeleyite. Fine-grained euhedral zircon crystallized from the melt was observed around the relict baddeleyite in the sample annealed at 1300 °C for 1 h. The U-Pb isotopic systems of baddeleyite showed isotopic disturbances: many data points for the samples annealed at 1000 °C plotted above the concordia. Both radiogenic lead loss/uranium gain and radiogenic lead gain/uranium loss were observed in the baddeleyite annealed at 1300 °C. Complete radiogenic lead loss due to shock metamorphism and subsequent annealing was not observed in the shock-loaded/annealed baddeleyites studied here. These results confirm that the U-Pb isotopic systematics of baddeleyite are durable for shock metamorphism. Since shergottites still preserve Fe-Mg and/or Ca zonings in major constituent phases (i.e. pyroxene and olivine), the shock effects observed in Martian baddeleyites seem to be less intense compared to that under the present experimental conditions. An implication is that the U-Pb systems of baddeleyite in shergottites will provide crystallization ages of Martian magmatic rocks.

  18. Isotope effects of trapped electron modes in the presence of impurities in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Shen, Yong; Dong, J. Q.; Sun, A. P.; Qu, H. P.; Lu, G. M.; He, Z. X.; He, H. D.; Wang, L. F.

    2016-04-01

    The trapped electron modes (TEMs) are numerically investigated in toroidal magnetized hydrogen, deuterium and tritium plasmas, taking into account the effects of impurity ions such as carbon, oxygen, helium, tungsten and others with positive and negative density gradients with the rigorous integral eigenmode equation. The effects of impurity ions on TEMs are investigated in detail. It is shown that impurity ions have substantially-destabilizing (stabilizing) effects on TEMs in isotope plasmas for {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 (<0 ), opposite to the case of ion temperature gradient (ITG) driven modes. Detailed analyses of the isotope mass dependence for TEM turbulences in hydrogenic isotope plasmas with and without impurities are performed. The relations between the maximum growth rate of the TEMs with respect to the poloidal wave number and the ion mass number are given in the presence of the impurity ions. The results demonstrate that the maximum growth rates scale as {γ\\max}\\propto Mi-0.5 in pure hydrogenic plasmas. The scale depends on the sign of its density gradient and charge number when there is a second species of (impurity) ions. When impurity ions have density profiles peaking inwardly (i.e. {{L}ez}\\equiv {{L}ne}/{{L}nz}>0 ), the scaling also depends on ITG parameter {ηi} . The maximum growth rates scale as {γ\\max}\\propto M\\text{eff}-0.5 for the case without ITG ({ηi}=0 ) or the ITG parameter is positive ({ηi}>0 ) but the impurity ion charge number is low (Z≤slant 5.0 ). However, when {ηi}>0 and the impurity ion charge number is moderate (Z=6.0-8.0 ), the scaling law is found as {γ\\max}\\propto M\\text{eff}-1.0 . Here, Z is impurity ion charge number, and the effective mass number, {{M}\\text{eff}}=≤ft(1-{{f}z}\\right){{M}i}+{{f}z}{{M}z} , with {{M}i} and {{M}Z} being the mass numbers of the hydrogenic and impurity ions, respectively, and {{f}z}=Z{{n}0z}/{{n}0e} being the charge concentration of impurity ions. In addition, with regard

  19. Isotopic Abundances as Tracers of the Processes of Lunar Formation

    NASA Astrophysics Data System (ADS)

    Pahlevan, K.

    2011-12-01

    Ever since Apollo, isotopic abundances have been used as tracers to study lunar formation, in particular, to study the sources of the lunar material. In the last decade, however, a number of isotopic similarities have been observed between the lunar samples and the Earth's mantle such that these two reservoirs are now known to be indistinguishable from one another to high precision for a variety of isotopic tracers. This occurs against the backdrop of a Solar System that exhibits widespread heterogeneity with respect to these tracers, a situation that strongly argues that the source of the lunar material is the silicate Earth. To reconcile this observation with the fact that the Moon is thought to result from the collision of two isotopically distinct planetary bodies, a scenario has emerged in which the material from the Moon-forming impactor and the proto-Earth are homogenized in the aftermath of the giant impact. This takes place via turbulent mixing in the time after the giant impact but before lunar accretion while the Earth-Moon system exists in the form of a continuous, high-temperature fluid. Importantly, this high-temperature phase of the evolution occurs in the presence of at least two phases (liquid + vapor) making possible chemical and isotopic fractionation. While equilibrium isotopic fractionation tends to zero at high temperatures, and the post giant impact environment experiences some of the highest temperatures encountered in the Earth sciences, there are several factors that nevertheless make equilibrium isotope effects important probes of this early evolution. (1) Because the vaporization of silicates involves decomposition reactions, the bonding environment for elements in the liquid is often very different from that in the vapor. This difference makes the magnitude of isotopic fractionation intrinsically large, even at the relevant temperatures. (2) Since the isotopic composition of a silicate liquid and co-existing vapor are distinctly

  20. Osmium Isotope Evidence for an S-Process Carrier in Primitive Chondrites

    NASA Technical Reports Server (NTRS)

    Brandon, A. D.; Puchtel, I. S.; Humayun, M.; Zolensky, M.

    2005-01-01

    The degree of isotopic mixing in the solar nebula and the nature of pre-solar components that have contributed to our solar system remain subjects of vigorous debate. Isotopic anomalies have been identified in Ca-Al inclusions in chondrites [1-4]. This indicates that refractory pre-solar components were not completely homogenized or processed away at the high temperatures experienced by CAIs. Pre-solar grains (SiC, C, etc.) are prevalent in primitive chondrites, and preserve isotopic heterogeneity resulting from the nucleosynthetic processes occurring in the stars from which these grains formed [2,4]. Several recent studies employing precise techniques for measuring Ru, Mo and Zr isotopes in bulk meteorites, have come up with varying conclusions on the degree of effectiveness of nebular mixing on the scale of bulk meteorite material. Some of these studies have reported isotopic anomalies in Mo and Ru [3,5-7], while others have not observed anomalies in Mo, Ru, or Zr [8-10]. Debate over the quality of the data, the normalization techniques employed, the absence or presence of isobaric interferences during the measurements on different types of instruments (e.g. TIMS versus ICP-MS), and other factors, has ensued [11,12].

  1. Stable Nd isotope variations in the inner Solar System: The effect of sulfide during differentiation?

    NASA Astrophysics Data System (ADS)

    McCoy-West, A.

    2017-12-01

    Radiogenic neodymium isotopes have been widely used in studies of planetary accretion to constrain the timescales of early planetary differention [1]. Whereas stable isotope varitaions potentially provide information on the the processes that occur during planet formation. Experimental work suggests that the Earth's core contains a significant proportion of sulfide [2], and recent experimental work shows that under reducing conditions sulfide can incorporate substantial quantities of refractory lithophile elements [including Nd; 3]. If planetary embroyos also contain sulfide-rich cores, Nd stable isotopes have the potential to trace this sulfide segregation event in highly reduced environments, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Here we present 146Nd/144Nd data, obtained using a double spike TIMS technique, for a range of planetary bodies formed at variable oxidation states including samples from the Moon, Mars, the asteriod 4Vesta and the Angrite and Aubrite parent bodies. Analyses of chondritic meteorites and terrestrial igneous rocks indicate that the Earth has a Nd stable isotope composition that is indistinguishable from that of chondrites [4]. Eucrites and martian meteorites also have compositons within error of the chondritic average. Significantly more variabilty is observed in the low concentration lunar samples and diogienite meteorites with Δ146Nd = 0.16‰. Preliminary results suggest that the Nd stable isotope composition of oxidised planetary bodies are homogeneous and modifications are the result of subordinate magmatic processes. [1] Boyet & Carlson, Science 309, 576 (2005) [2] Labidi et al. Nature 501, 208 (2013); [3] Wohlers &Wood, Nature 520, 337 (2015); [4] McCoy-West et al. Goldschmidt Ab. 429 (2017).

  2. Selenium stable isotope investigation into selenium biogeochemical cycling in a lacustrine environment: Sweitzer Lake, Colorado.

    PubMed

    Clark, Scott K; Johnson, Thomas M

    2010-01-01

    We present a comprehensive set of Se concentration and isotope ratio data collected over a 3-yr period from dissolved, sediment-hosted, and organically bound Se in a Se-contaminated lake and littoral wetland. Median isotope ratios of these various pools of Se spanned a narrow isotopic range (delta80/76Se(SRM-3149)) = 1.14-2.40 per thousand). Selenium (VI) reduction in the sediments is an important process in this system, but its isotopic impact is muted by the lack of direct contact between surface waters and reduction sites within sediments. This indicates that using Se isotope data as an indicator of microbial or abiotic Se oxyanion reduction is not effective in this or other similar systems. Isotopic data suggest that most Se(IV) in the lake originates from oxidation of organically bound Se rather than directly through Se(VI) reduction. Mobilization of Se(VI) from bedrock involves only a slight isotopic shift. Temporally constant isotopic differences observed in Se(VI) from two catchment areas suggest the potential for tracing Se(VI) from different source areas. Phytoplankton isotope ratios are close to those of the water, with a small depletion in heavy isotopes (0.56 per thousand). Fish tissues nearly match the phytoplankton, being only slightly depleted in the heavier isotopes. This suggests the potential for Se isotopes as migration indicators. Volatile, presumably methylated Se was isotopically very close to median values for phytoplankton and macrophytes, indicating a lack of isotopic fractionation during methylation.

  3. Kinetic isotope effect in malonaldehyde determined from path integral Monte Carlo simulations.

    PubMed

    Huang, Jing; Buchowiecki, Marcin; Nagy, Tibor; Vaníček, Jiří; Meuwly, Markus

    2014-01-07

    The primary H/D kinetic isotope effect on the intramolecular proton transfer in malonaldehyde is determined from quantum instanton path integral Monte Carlo simulations on a fully dimensional and validated potential energy surface for temperatures between 250 and 1500 K. Our calculations, based on thermodynamic integration with respect to the mass of the transferring particle, are significantly accelerated by the direct evaluation of the kinetic isotope effect instead of computing it as a ratio of two rate constants. At room temperature, the KIE from the present simulations is 5.2 ± 0.4. The KIE is found to vary considerably as a function of temperature and the low-T behaviour is dominated by the fact that the free energy derivative in the reactant state increases more rapidly than in the transition state. Detailed analysis of the various contributions to the quantum rate constant together with estimates for rates from conventional transition state theory and from periodic orbit theory suggest that the KIE in malonaldehyde is dominated by zero point energy effects and that tunneling plays a minor role at room temperature.

  4. Effect of amino acids on the precipitation kinetics and Ca isotopic composition of gypsum

    NASA Astrophysics Data System (ADS)

    Harouaka, Khadouja; Kubicki, James D.; Fantle, Matthew S.

    2017-12-01

    Stirred gypsum (CaSO4 · 2H2O) precipitation experiments (initial Ωgypsum = 2.4 ± 0.14, duration ≈ 1.0-1.5 h) were conducted in the presence of the amino acids glycine (190 μM), L-alanine (190 μM), D- and L-arginine (45 μM), and L-tyrosine (200 μM) to investigate the effect of simple organic compounds on both the precipitation kinetics and Ca isotopic composition of gypsum. Relative to abiotic controls, glycine, tyrosine, and alanine inhibited precipitation rates by ∼22%, 27%, and 29%, respectively, while L- and D-arginine accelerated crystal growth by ∼8% and 48%, respectively. With the exception of tyrosine, amino acid induced inhibition resulted in fractionation factors (αs-f) associated with precipitation that were no more than 0.3‰ lower than amino acid-free controls. In contrast, the tyrosine and D- and L-arginine experiments had αs-f values associated with precipitation that were similar to the controls. Our experimental results indicate that Ca isotopic fractionation associated with gypsum precipitation is impacted by growth inhibition in the presence of amino acids. Specifically, we propose that the surface-specific binding of amino acids to gypsum can change the equilibrium fractionation factor of the bulk mineral. We investigate the hypothesis that amino acids can influence the growth of gypsum at specific crystal faces via adsorption and that different faces have distinct fractionation factors (αface-fluid). Accordingly, preferential sorption of amino acids at particular faces changes the relative, face-specific mass fluxes of Ca during growth, which influences the bulk isotopic composition of the mineral. Density functional theory (DFT) calculations suggest that the energetic favorability of glycine sorption onto gypsum crystal faces occurs in the order: (1 1 0) > (0 1 0) > (1 2 0) > (0 1 1), while glycine sorption onto the (-1 1 1) face was found to be energetically unfavorable. Face-specific fractionation factors constrained by

  5. Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen

    NASA Technical Reports Server (NTRS)

    Schidlowski, M.; Hayes, J. M.; Kaplan, I. R.

    1983-01-01

    In processes of biological incorporation and subsequent biochemical processing sizable isotope effects occur as a result of both thermodynamic and kinetic fractionations which take place during metabolic and biosynthetic reactions. In this chapter a review is provided of earlier work and recent studies on isotope fractionations in the biogeochemical cycles of carbon, sulfur, hydrogen, and nitrogen. Attention is given to the biochemistry of carbon isotope fractionation, carbon isotope fractionation in extant plants and microorganisms, isotope fractionation in the terrestrial carbon cycle, the effects of diagenesis and metamorphism on the isotopic composition of sedimentary carbon, the isotopic composition of sedimentary carbon through time, implications of the sedimentary carbon isotope record, the biochemistry of sulfur isotope fractionation, pathways of the biogeochemical cycle of nitrogen, and the D/H ratio in naturally occurring materials.

  6. Mass dependence of calcium isotope fractionations in crown-ether resin chromatography.

    PubMed

    Fujii, Yasuhiko; Nomura, Masao; Kaneshiki, Tositaka; Sakuma, Yoichi; Suzuki, Tatsuya; Umehara, Saori; Kishimoto, Tadahumi

    2010-06-01

    Benzo 18-crown-6-ether resin was synthesised by the phenol condensation polymerisation process in porous silica beads, of which particle diameter was ca 60micro Calcium adsorption chromatography was performed with the synthesised resin packed in a glass column. The effluent was sampled in fractions, and the isotopic abundance ratios of (42)Ca, (43)Ca, (44)Ca, and (48)Ca against (40)Ca were measured by a thermo-ionisation mass spectrometer. The enrichment of heavier calcium isotopes was observed at the front boundary of calcium adsorption chromatogram. The mass dependence of mutual separation of calcium isotopes was analysed by using the three-isotope-plots method. The slopes of three-isotope-plots indicate the relative values of mutual separation coefficients for concerned isotopic pairs. The results have shown the normal mass dependence; isotope fractionation is proportional to the reduced mass difference, (M - M')/MM', where M and M' are masses of heavy and light isotope, respectively. The mass dependence clarifies that the isotope fractionations are originated from molecular vibration. The observed separation coefficient epsilon is 3.1x10(-3) for the pair of (40)Ca and (48)Ca. Productivity of enriched (48)Ca by crown-ether-resin was discussed as the function of the separation coefficient and the height equivalent to the theoretical plate.

  7. Temperature dependence of the isotope chemistry of the heavy elements.

    PubMed Central

    Bigeleisen, J

    1996-01-01

    The temperature coefficient of equilibrium isotope fractionation in the heavy elements is shown to be larger at high temperatures than that expected from the well-studied vibrational isotope effects. The difference in the isotopic behavior of the heavy elements as compared with the light elements is due to the large nuclear isotope field shifts in the heavy elements. The field shifts introduce new mechanisms for maxima, minima, crossovers, and large mass-independent isotope effects in the isotope chemistry of the heavy elements. The generalizations are illustrated by the temperature dependence of the isotopic fractionation in the redox reaction between U(VI) and U(IV) ions. PMID:8790340

  8. The calibration of the intramolecular nitrogen isotope distribution in nitrous oxide measured by isotope ratio mass spectrometry.

    PubMed

    Westley, Marian B; Popp, Brian N; Rust, Terri M

    2007-01-01

    Two alternative approaches for the calibration of the intramolecular nitrogen isotope distribution in nitrous oxide using isotope ratio mass spectrometry have yielded a difference in the 15N site preference (defined as the difference between the delta15N of the central and end position nitrogen in NNO) of tropospheric N2O of almost 30 per thousand. One approach is based on adding small amounts of labeled 15N2O to the N2O reference gas and tracking the subsequent changes in m/z 30, 31, 44, 45 and 46, and this yields a 15N site preference of 46.3 +/- 1.4 per thousand for tropospheric N2O. The other involves the synthesis of N2O by thermal decomposition of isotopically characterized ammonium nitrate and yields a 15N site preference of 18.7 +/- 2.2 per thousand for tropospheric N2O. Both approaches neglect to fully account for isotope effects associated with the formation of NO+ fragment ions from the different isotopic species of N2O in the ion source of a mass spectrometer. These effects vary with conditions in the ion source and make it impossible to reproduce a calibration based on the addition of isotopically enriched N2O on mass spectrometers with different ion source configurations. These effects have a much smaller impact on the comparison of a laboratory reference gas with N2O synthesized from isotopically characterized ammonium nitrate. This second approach was successfully replicated and leads us to advocate the acceptance of the site preference value 18.7 +/- 2.2 per thousand for tropospheric N2O as the provisional community standard until further independent calibrations are developed and validated. We present a technique for evaluating the isotope effects associated with fragment ion formation and revised equations for converting ion signal ratios into isotopomer ratios. Copyright 2007 John Wiley & Sons, Ltd.

  9. Isotope variations of dissolved Zn in the Rio Grande watershed, USA: The role of adsorption on Zn isotope composition

    NASA Astrophysics Data System (ADS)

    Szynkiewicz, Anna; Borrok, David M.

    2016-01-01

    In order to better understand the factors influencing zinc (Zn) isotope composition in hydrological systems, we analyzed the δ66Zn of dissolved Zn in the streams and groundwater of the Upper and Middle Rio Grande watershed in Colorado and New Mexico, United States. The stream water samples have a wider variation of δ66Zn (-0.57 to + 0.41 ‰ relative to the JMC 3-0749-Lyon standard) than groundwater samples (-0.13 to + 0.12 ‰) and than samples from streams that are in close proximity to abandoned mining sites (+0.24 to + 0.40 ‰). Regional changes of bedrock geology, from primarily igneous rocks to primarily sedimentary rocks, have no resolvable effect on the δ66Zn of aqueous samples. Instead, an increase in water pH from 7.5 to 8.5 corresponds to a considerable decrease in the δ66Zn of dissolved Zn (R2 = - 0.37, p = 0.003, n = 22). Consequently, we link the observed Zn isotope variations to the process of adsorption of Zn onto suspended sediment and bedrock minerals (average Δ66Znadsorbed-dissolved = + 0.31 ‰). Our results are in good agreement with previous experimental and empirical studies suggesting that Zn adsorption leads to a residual dissolved pool enriched in light Zn isotopes. Given that anthropogenic Zn sources can also be responsible for lowering of δ66Zn, and may overlap with the pH/adsorption effect on δ66Zn, the latter needs to be carefully considered in future studies to differentiate between natural and anthropogenic factors influencing Zn isotopes in this and other aquatic systems.

  10. The effect of aromatization on the isotopic compositions of hydrocarbons during early diagenesis

    NASA Technical Reports Server (NTRS)

    Freeman, K. H.; Boreham, C. J.; Summons, R. E.; Hayes, J. M.

    1994-01-01

    Polycyclic aromatic hydrocarbons with varying degrees of aromatization were isolated from the Eocene Messel Shale (Rheingraben, Germany). The high abundances of these compounds and their structural resemblances to cyclic triterpenoid lipids are consistent with derivation from microbial rather than thermal processes. Compounds structurally related to oleanane contain from five to nine double bonds; those within a series of aromatized hopanoids contain from three to nine. All are products of diagenetic reactions that remove hydrogen or methyl groups, and, in several cases, break carbon-carbon bonds to open rings. Aromatized products are on average depleted in 13C relative to possible precursors by l.2% (range: l.5% enrichment to 4% depletion, n = 9). The dependence of 13C content on the number of double bonds is not, however, statistically significant and it must be concluded that there is no strong evidence for isotopic fractionation accompanying diagenetic aromatization. Isotopic differences between series (structures related to ursane, des-A-ursane, des-A-lupane, des-A-arborane, and possibly, des-A-gammacerane are present) are much greater, indicating that 13C contents are controlled primarily by source effects. Fractionations due to chromatographic isotope effects during HPLC ranged from 0.1 to 2.8%.

  11. Triple oxygen isotope composition of leaf waters in Mpala, central Kenya

    NASA Astrophysics Data System (ADS)

    Li, Shuning; Levin, Naomi E.; Soderberg, Keir; Dennis, Kate J.; Caylor, Kelly K.

    2017-06-01

    Variations in triple oxygen isotopes have been used in studies of atmospheric photochemistry, global productivity and increasingly in studies of hydroclimate. Understanding the distribution of triple oxygen isotopes in plant waters is critical to studying the fluxes of oxygen isotopes between the atmosphere and hydrosphere, in which plants play an important role. In this paper we report triple oxygen isotope data for stem and leaf waters from Mpala, Kenya and explore how Δ17 O, the deviation from an expected relationship between 17O /16O and 18O /16O ratios, in plant waters vary with respect to relative humidity and deuterium excess (d-excess). We observe significant variation in Δ17 O among waters in leaves and stems from a single plant (up to 0.16‰ range in Δ17 O in leaf water in a plant over the course of a signal day), which correlates to changes in relative humidity. A steady state model for evaporation in leaf water reproduces the majority of variation in Δ17 O and d-excess we observed in leaf waters, except for samples that were collected in the morning, when relative humidity is high and the degree of fractionation in the system is minimal. The data and the steady state model indicate that the slope, λtransp, that links δ17 O and δ18 O values of stem and leaf waters and characterizes the fractionation during transpiration, is strongly influenced by the isotopic composition of ambient vapor when relative humidity is high. We observe a strong, positive relationship between d-excess and Δ17 O, with a slope 2.2 ± 0.2 per meg ‰-1, which is consistent with the observed relationship in tropical rainfall and in water in an evaporating open pan. The strong linear relationship between d-excess and Δ17 O should be typical for any process involving evaporation or any other fractionation that is governed by kinetic effects.

  12. Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)

    DOE PAGES

    Jahn, A.; Lindsay, K.; Giraud, X.; ...

    2015-08-05

    Carbon isotopes in the ocean are frequently used as paleoclimate proxies and as present-day geochemical ocean tracers. In order to allow a more direct comparison of climate model results with this large and currently underutilized data set, we added a carbon isotope module to the ocean model of the Community Earth System Model (CESM), containing the cycling of the stable isotope 13C and the radioactive isotope 14C. We implemented the 14C tracer in two ways: in the "abiotic" case, the 14C tracer is only subject to air–sea gas exchange, physical transport, and radioactive decay, while in the "biotic" version, themore » 14C additionally follows the 13C tracer through all biogeochemical and ecological processes. Thus, the abiotic 14C tracer can be run without the ecosystem module, requiring significantly fewer computational resources. The carbon isotope module calculates the carbon isotopic fractionation during gas exchange, photosynthesis, and calcium carbonate formation, while any subsequent biological process such as remineralization as well as any external inputs are assumed to occur without fractionation. Given the uncertainty associated with the biological fractionation during photosynthesis, we implemented and tested three parameterizations of different complexity. Compared to present-day observations, the model is able to simulate the oceanic 14C bomb uptake and the 13C Suess effect reasonably well compared to observations and other model studies. Lastly, at the same time, the carbon isotopes reveal biases in the physical model, for example, too sluggish ventilation of the deep Pacific Ocean.« less

  13. Observations of Hydrogen and Oxygen Isotopes in Leaf Water Confirm the Craig-Gordon Model under Wide-Ranging Environmental Conditions1

    PubMed Central

    Roden, John S.; Ehleringer, James R.

    1999-01-01

    The Craig-Gordon evaporative enrichment model of the hydrogen (δD) and oxygen (δ18O) isotopes of water was tested in a controlled-environment gas exchange cuvette over a wide range (400‰ δD and 40‰ δ18O) of leaf waters. (Throughout this paper we use the term “leaf water” to describe the site of evaporation, which should not be confused with “bulk leaf water” a term used exclusively for uncorrected measurements obtained from whole leaf water extractions.) Regardless of how the isotopic composition of leaf water was achieved (i.e. by changes in source water, atmospheric vapor δD or δ18O, vapor pressure gradients, or combinations of all three), a modified version of the Craig-Gordon model was shown to be sound in its ability to predict the δD and δ18O values of water at the site of evaporation. The isotopic composition of atmospheric vapor was shown to have profound effects on the δD and δ18O of leaf water and its influence was dependent on vapor pressure gradients. These results have implications for conditions in which the isotopic composition of atmospheric vapor is not in equilibrium with source water, such as experimental systems that grow plants under isotopically enriched water regimes. The assumptions of steady state were also tested and found not to be a major limitation for the utilization of the leaf water model under relatively stable environmental conditions. After a major perturbation in the δD and δ18O of atmospheric vapor, the leaf reached steady state in approximately 2 h, depending on vapor pressure gradients. Following a step change in source water, the leaf achieved steady state in 24 h, with the vast majority of changes occurring in the first 3 h. Therefore, the Craig-Gordon model is a useful tool for understanding the environmental factors that influence the hydrogen and oxygen isotopic composition of leaf water as well as the organic matter derived from leaf water. PMID:10444100

  14. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    PubMed

    Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L

    2013-09-01

    During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  15. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream

    PubMed Central

    Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-01-01

    ABSTRACT Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ15NNO2− and δ18ONO2−, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of “Candidatus Nitrosocaldus.” The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ18O value of nitrite produced from ammonia oxidation varied with the δ18O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ18ONO2− in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. IMPORTANCE Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying

  16. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream.

    PubMed

    Nishizawa, Manabu; Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-08-01

    Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ(15)NNO2- and δ(18)ONO2-, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of "Candidatus Nitrosocaldus." The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ(18)O value of nitrite produced from ammonia oxidation varied with the δ(18)O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ(18)ONO2- in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of

  17. A Method to Determine 18O Kinetic Isotope Effects in the Hydrolysis of Nucleotide Triphosphates

    PubMed Central

    Du, Xinlin; Ferguson, Kurt; Sprang, Stephen R.

    2007-01-01

    A method to determine 18O kinetic isotope effects (KIE) in the hydrolysis of GTP is described that is generally applicable to reactions involving other nucleotide triphosphates. Internal competition, wherein the substrate of the reaction is a mixture of 18O-labeled and unlabeled nucleotides, is employed and the change in relative abundance of the two species in the course of the reaction is used to calculate KIE. The nucleotide labeled with 18O at sites of mechanistic interest also contains 13C at all carbon positions, while the 16O-nucleotide is depleted of 13C. The relative abundance of the labeled and unlabeled substrates or products is reflected in the carbon isotope ratio (13C/12C) in GTP or GDP, which is determined by use of a liquid chromatography-coupled isotope ratio mass spectrometer (LC-coupled IRMS). The LC is coupled to the IRMS by an Isolink™ interface (ThermoFinnigan). Carbon isotope ratios can be determined with accuracy and precision greater than 0.04%, and are consistent over an order of magnitude in sample amount. KIE values for Ras/NF1333-catalyzed hydrolysis of [β18O3,13C]GTP were determined by change in the isotope ratio of GTP or GDP or the ratio of the isotope ratio of GDP to that of GTP. KIE values computed in the three ways agree within 0.1%, although the method using the ratio of isotope ratios of GDP and GTP gives superior precision (< 0.1%). A single KIE measurement can be conducted in 25 minutes with less than 5 μg nucleotide reaction product. PMID:17963711

  18. Coulomb Excitation of Neutron-Rich Zn Isotopes: First Observation of the 21+ State in Zn80

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Aksouh, F.; Ames, F.; Behrens, T.; Bildstein, V.; Blazhev, A.; Cederkäll, J.; Clément, E.; Cocolios, T. E.; Davinson, T.; Delahaye, P.; Eberth, J.; Ekström, A.; Fedorov, D. V.; Fedosseev, V. N.; Fraile, L. M.; Franchoo, S.; Gernhauser, R.; Georgiev, G.; Habs, D.; Heyde, K.; Huber, G.; Huyse, M.; Ibrahim, F.; Ivanov, O.; Iwanicki, J.; Jolie, J.; Kester, O.; Köster, U.; Kröll, T.; Krücken, R.; Lauer, M.; Lisetskiy, A. F.; Lutter, R.; Marsh, B. A.; Mayet, P.; Niedermaier, O.; Nilsson, T.; Pantea, M.; Perru, O.; Raabe, R.; Reiter, P.; Sawicka, M.; Scheit, H.; Schrieder, G.; Schwalm, D.; Seliverstov, M. D.; Sieber, T.; Sletten, G.; Smirnova, N.; Stanoiu, M.; Stefanescu, I.; Thomas, J.-C.; Valiente-Dobón, J. J.; van Duppen, P.; Verney, D.; Voulot, D.; Warr, N.; Weisshaar, D.; Wenander, F.; Wolf, B. H.; Zielińska, M.

    2007-10-01

    Neutron-rich, radioactive Zn isotopes were investigated at the Radioactive Ion Beam facility REX-ISOLDE (CERN) using low-energy Coulomb excitation. The energy of the 21+ state in Zn78 could be firmly established and for the first time the 2+→01+ transition in Zn80 was observed at 1492(1) keV. B(E2,21+→01+) values were extracted for Zn74,76,78,80 and compared to large scale shell model calculations. With only two protons outside the Z=28 proton core, Zn80 is the lightest N=50 isotone for which spectroscopic information has been obtained to date. Two sets of advanced shell model calculations reproduce the observed B(E2) systematics. The results for N=50 isotones indicate a good N=50 shell closure and a strong Z=28 proton core polarization. The new results serve as benchmarks to establish theoretical models, predicting the nuclear properties of the doubly magic nucleus Ni78.

  19. Calcium isotope analysis by mass spectrometry.

    PubMed

    Boulyga, Sergei F

    2010-01-01

    The variations in the isotopic composition of calcium caused by fractionation in heterogeneous systems and by nuclear reactions can provide insight into numerous biological, geological, and cosmic processes, and therefore isotopic analysis finds a wide spectrum of applications in cosmo- and geochemistry, paleoclimatic, nutritional, and biomedical studies. The measurement of calcium isotopic abundances in natural samples has challenged the analysts for more than three decades. Practically all Ca isotopes suffer from significant isobaric interferences, whereas low-abundant isotopes can be particularly affected by neighboring major isotopes. The extent of natural variations of stable isotopes appears to be relatively limited, and highly precise techniques are required to resolve isotopic effects. Isotope fractionation during sample preparation and measurements and instrumental mass bias can significantly exceed small isotope abundance variations in samples, which have to be investigated. Not surprisingly, a TIMS procedure developed by Russell et al. (Russell et al., 1978. Geochim Cosmochim Acta 42: 1075-1090) for Ca isotope measurements was considered as revolutionary for isotopic measurements in general, and that approach is used nowadays (with small modifications) for practically all isotopic systems and with different mass spectrometric techniques. Nevertheless, despite several decades of calcium research and corresponding development of mass spectrometers, the available precision and accuracy is still not always sufficient to achieve the challenging goals. The present article discusses figures of merits of presently used analytical methods and instrumentation, and attempts to critically assess their limitations. In Sections 2 and 3, mass spectrometric methods applied to precise stable isotope analysis and to the determination of (41)Ca are described. Section 4 contains a short summary of selected applications, and includes tracer experiments and the potential use

  20. Methyl-coenzyme M reductase from methanogenic archaea: isotope effects on label exchange and ethane formation with the homologous substrate ethyl-coenzyme M.

    PubMed

    Scheller, Silvan; Goenrich, Meike; Thauer, Rudolf K; Jaun, Bernhard

    2013-10-09

    Ethyl-coenzyme M (CH3CH2-S-CH2CH2-SO3(-), Et-S-CoM) serves as a homologous substrate for the enzyme methyl-coenzyme M reductase (MCR) resulting in the product ethane instead of methane. The catalytic reaction proceeds via an intermediate that already contains all six C-H bonds of the product. Because product release occurs after a second, rate-limiting step, many cycles of intermediate formation and reconversion to substrate occur before a substantial amount of ethane is released. In deuterated buffer, the intermediate becomes labeled, and C-H activation in the back reaction rapidly leads to labeled Et-S-CoM, which enables intermediate formation to be detected. Here, we present a comprehensive analysis of this pre-equilibrium. (2)H- and (13)C-labeled isotopologues of Et-S-CoM were used as the substrates, and the time course of each isotopologue was followed by NMR spectroscopy. A kinetic simulation including kinetic isotope effects allowed determination of the primary and α- and β-secondary isotope effects for intermediate formation and for the C-H/C-D bond activation in the ethane-containing intermediate. The values obtained are in accordance with those found for the native substrate Me-S-CoM (see preceding publication, Scheller, S.; Goenrich, M.; Thauer, R. K.; Jaun, B. J. Am. Chem. Soc. 2013, 135, DOI: 10.1021/ja406485z) and thus imply the same catalytic mechanism for both substrates. The experiment by Floss and co-workers, demonstrating a net inversion of configuration to chiral ethane with CH3CDT-S-CoM as the substrate, is compatible with the observed rapid isotope exchange if the isotope effects measured here are taken into account.

  1. Matrix effects of calcium on high-precision sulfur isotope measurement by multiple-collector inductively coupled plasma mass spectrometry.

    PubMed

    Liu, Chenhui; Bian, Xiao-Peng; Yang, Tao; Lin, An-Jun; Jiang, Shao-Yong

    2016-05-01

    Multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) has been successfully applied in the rapid and high-precision measurement for sulfur isotope ratios in recent years. During the measurement, the presence of matrix elements would affect the instrumental mass bias for sulfur and these matrix-induced effects have aroused a lot of researchers' interest. However, these studies have placed more weight on highlighting the necessity for their proposed correction protocols (e.g., chemical purification and matrix-matching) while less attention on the key property of the matrix element gives rise to the matrix effects. In this study, four groups of sulfate solutions, which have different concentrations of sulfur (0.05-0.60mM) but a constant sequence of atomic calcium/sulfur ratios (0.1-50), are investigated under wet (solution) and dry (desolvation) plasma conditions to make a detailed evaluation on the matrix effects from calcium on sulfur isotope measurement. Based on a series of comparative analyses, we indicated that, the matrix effects of calcium on both measured sulfur isotope ratios and detected (32)S signal intensities are dependent mainly on the absolute calcium concentration rather than its relative concentration ratio to sulfur (i.e., atomic calcium/sulfur ratio). Also, for the same group of samples, the matrix effects of calcium under dry plasma condition are much more significant than that of wet plasma. This research affords the opportunity to realize direct and relatively precise sulfur isotope measurement for evaporite gypsum, and further provides some suggestions with regard to sulfur isotope analytical protocols for sedimentary pore water. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Exotic Structure of Carbon Isotopes

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Sagawa, Hiroyuki; Hagino, Kouichi

    2003-12-01

    Ground state properties of C isotopes, deformation and elecromagnetic moments, as well as electric dipole transition strength are investigated. We first study the ground state properties of C isotopes using a deformed Hartree-Fock (HF) + BCS model with Skyrme interactions. Isotope dependence of the deformation properties is investigated. Shallow deformation minima are found in several neutron-rich C isotopes. It is also shown that the deformation minima appear in both the oblate and the prolate sides in 17C and 19C having almost the same binding energies. Next, we carry out shell model calculations to study electromagnetic moments and electric dipole transitions of C isotopes. We point out the clear configuration dependence of the quadrupole and magnetic moments in the odd C isotopes, which will be useful to find out the deformation and spin-parities of the ground states of these nuclei. Electric dipole states of C isotopes are studied focusing on the interplay between low energy Pigmy strength and giant dipole resonances. Low peak energies, two-peak structure and large widths of the giant resonances show deformation effects. Calculated transition strength below dipole giant resonance in heavier C isotopes than 15C is found to exhaust 12 ~ 15% of the Thomas-Reiche-Kuhn sum rule value and 50 ~ 80% of the cluster sum rule value.

  3. Iron isotopic composition of blood serum in anemia of chronic kidney disease.

    PubMed

    Anoshkina, Yulia; Costas-Rodríguez, Marta; Speeckaert, Marijn; Van Biesen, Wim; Delanghe, Joris; Vanhaecke, Frank

    2017-05-24

    Chronic kidney disease (CKD) is a general term for disorders that affect the structure and function of the kidneys. Iron deficiency (ID) and anemia occur in the vast majority of CKD patients, most of whom are elderly. However, establishing the cause of anemia in CKD, and therefore making an informed decision concerning the corresponding therapeutic treatment, is still a challenge. High-precision Fe isotopic analysis of blood serum samples of CKD patients with and without ID/anemia was performed via multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS) for such a purpose. Patients with CKD and/or iron disorders showed a heavier serum Fe isotopic composition than controls. Many clinical parameters used for the diagnosis and follow-up of anemia correlated significantly with the serum Fe isotopic composition. In contrast, no relation was observed between the serum Fe isotopic composition and the estimated glomerular filtration rate as a measure of kidney function. Among the CKD patients, the serum Fe isotopic composition was substantially heavier in the occurrence of ID anemia, while erythropoietin-related anemia did not exert this effect. The Fe isotopic composition can thus be useful for distinguishing these different types of anemias in CKD patients, i.e. ID anemia vs. erythropoietin-related anemia.

  4. Radiogenic Isotopes in Weathering and Hydrology

    NASA Astrophysics Data System (ADS)

    Blum, J. D.; Erel, Y.

    2003-12-01

    There are a small group of elements that display variations in their isotopic composition, resulting from radioactive decay within minerals over geological timescales. These isotopic variations provide natural fingerprints of rock-water interactions and have been widely utilized in studies of weathering and hydrology. The isotopic systems that have been applied in such studies are dictated by the limited number of radioactive parent-daughter nuclide pairs with half-lives and isotopic abundances that result in measurable differences in daughter isotope ratios among common rocks and minerals. Prior to their application to studies of weathering and hydrology, each of these isotopic systems was utilized in geochronology and petrology. As in the case of their original introduction into geochronology and petrology, isotopic systems with the highest concentrations of daughter isotopes in common rocks and minerals and systems with the largest observed isotopic variations were introduced first and have made the largest impact on our understanding of weathering and hydrologic processes. Although radiogenic isotopes have helped elucidate many important aspects of weathering and hydrology, it is important to note that in almost every case that will be discussed in this chapter, our fundamental understanding of these topics came from studies of variations in the concentrations of major cations and anions. This chapter is a "tools chapter" and thus it will highlight applications of radiogenic isotopes that have added additional insight into a wide spectrum of research areas that are summarized in almost all of the other chapters of this volume.The first applications of radiogenic isotopes to weathering processes were based on studies that sought to understand the effects of chemical weathering on the geochronology of whole-rock samples and geochronologically important minerals (Goldich and Gast, 1966; Dasch, 1969; Blaxland, 1974; Clauer, 1979, 1981; Clauer et al., 1982); as well

  5. High resolution water stable isotope profiles of abrupt climate transitions in Greenland ice with new observations from NEEM

    NASA Astrophysics Data System (ADS)

    Popp, T. J.; White, J. W. C.; Gkinis, V.; Vinther, B. M.; Johnsen, S. J.

    2012-04-01

    In 1989 Willi Dansgaard and others, using the DYE3 ice core, showed that the abrupt termination of the Younger Dryas expressed in water stable isotope ratios and deuterium excess was completed in less than 50 years. A few years later, using the GISP2 ice core, Richard Alley and others proposed that snow accumulation at the site doubled in as little as 1-3 years across the same climate transition at the end of the Younger Dryas. Over the next two decades, in large part due to such observations from Greenland ice cores, a paradigm of linked, abrupt changes in the North Atlantic region has been developed around North Atlantic deep water formation, North Atlantic sea ice extent, and widespread atmospheric circulation changes occurring repeatedly during the last glacial period in response to changing freshwater fluxes to the region, or perhaps other causes. More recently, with the NGRIP ice core, using a suite of high resolution proxy data, and in particular deuterium excess, it was observed again that certain features in the climate system can switch modes from one year to the next, while other proxies can take from decades to centuries to completely switch modes. Thus, an event seen in the proxy records such as the abrupt end of the Younger Dryas (or other interstadial events) may comprise multiple climatic or oceanic responses with different relative timing and duration which potentially follow a predictable sequence of events, in some cases separated by only a few years. Today, the search continues for these emerging patterns through isotopic and other highly resolvable proxy data series from ice cores. With the recent completion of the drilling at NEEM, many abrupt transitions have now been measured in detail over a geographic transect with drilling sites spanning from DYE3 in Southern Greenland, GISP2 in the central summit region, and up to NGRIP and NEEM in the far north. The anatomy of abrupt climate transitions can therefore be examined both spatially and

  6. Isotopic Randomness and Maxwell's Demon

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2005-03-01

    Isotopic disorder in crystals can lead to suppression of thermal conductivity, mobility variations and (weak) Anderson localization on isotopic fluctuations. The latter (AAB, J.ChemPhys.1984) is akin to polaron effect (self-localization due polarization). Possibility of isotopic patterning (IP) increases near melting point (thermally activated isotopic hopping swaps). Crystal near melting threshold become “informationally sensitive” as if its IP is operated by some external Maxwell’s Demon, MD (AAB, URAM J, 2002). At this state short range (e.g. electrostatic inverse square) forces evolve into long-range interactions (due to divergence of order parameter) and information sensitivity can be further amplified by (say) a single fast electron (e.g. beta-particle from decay of 14-C or other radioactive isotope) which may result in cascade of impact ionization events and (short time-scale) enhancement of screening by impact-generated non-equilibrium (non-thermal) electrons. In this state informationally driven (MD-controlled) IP (Eccles effect) can result in decrease of positional entropy signifying emergence of physical complexity out of pure information, similar to peculiar “jinni effect” on closed time loops in relativistic cosmology (R.J.Gott, 2001) or Wheeler’s “it from bit” metaphor. By selecting special IP, MD modifies ergodicity principle in favor of info rich states.

  7. The Canadian Geo-location Endeavour Using Isotopes and Trace Elements in Hair

    NASA Astrophysics Data System (ADS)

    Chartrand, Michelle M. G.; St-Jean, Gilles; Dalpe, Claude; Wojtyk, James

    2010-05-01

    The Canadian human hair provenance project has two main objectives: 1) to build a Canadian database of isotopes and trace elements from tap water and hair samples, and 2) to assess the extent of temporal effects on these samples. To address objective 1, a cross-Canada sampling campaign has been started to collect hair and tap water samples. In the past two years, our group has collected samples from the eastern part of Canada (Newfoundland, Nova Scotia, New Brunswick, Prince Edward Island, Quebec and Ontario). Water samples are divided into three groups - groundwater, surface water and bottled water. The GIS maps show the isotopic distribution of the tap water sources varies with latitude. Hair is analyzed for carbon (C), nitrogen (N) and hydrogen (H) isotopes. The C and N results show that in general, Canadians eat a typical diet showing a small isotopic variation. However, some cases will be presented which may explain why some people have C and N values outlying the collected sample average. In terms of H isotopes in human hair, GIS maps illustrate the distribution of this isotope in the eastern provinces of Canada. In some cases, a large variation in H was observed for the same locality with no significant difference in human activities and/or consumption. However, based on hair collected from across Canada from previous years, H isotopes in hair show a correlation to water collected from the same locality. To address objective 2, hair and tap water samples were collected at 4 month intervals (to represent different seasons in Canada) from several volunteers residing in two cities located in the province of Ontario (i.e. Sudbury and Ottawa) and one city from the province of Quebec (i.e. Montreal). For all isotopes measured, there was little variation observed over the course of the year in any individual from those small to medium-size cities. On-going sampling efforts will address if any variation may occur on a yearly basis.

  8. Mass Dependency of Isotope Fractionation of Gases Under Thermal Gradient and Its Possible Implications for Planetary Atmosphere Escaping Process

    NASA Technical Reports Server (NTRS)

    Sun, Tao; Niles, Paul; Bao, Huiming; Socki, Richard

    2014-01-01

    Physical processes that unmix elements/isotopes of gas molecules involve phase changes, diffusion (chemical or thermal), effusion and gravitational settling. Some of those play significant roles for the evolution of chemical and isotopic compositions of gases in planetary bodies which lead to better understanding of surface paleoclimatic conditions, e.g. gas bubbles in Antarctic ice, and planetary evolution, e.g. the solar-wind erosion induced gas escaping from exosphere on terrestrial planets.. A mass dependent relationship is always expected for the kinetic isotope fractionations during these simple physical processes, according to the kinetic theory of gases by Chapman, Enskog and others [3-5]. For O-bearing (O16, -O17, -O18) molecules the alpha O-17/ alpha O-18 is expected at 0.5 to 0.515, and for S-bearing (S32,-S33. -S34, -S36) molecules, the alpha S-33/ alpha S-34 is expected at 0.5 to 0.508, where alpha is the isotope fractionation factor associated with unmixing processes. Thus, one isotope pair is generally proxied to yield all the information for the physical history of the gases. However, we recently] reported the violation of mass law for isotope fractionation among isotope pairs of multiple isotope system during gas diffusion or convection under thermal gradient (Thermal Gradient Induced Non-Mass Dependent effect, TGI-NMD). The mechanism(s) that is responsible to such striking observation remains unanswered. In our past studies, we investigated polyatomic molecules, O2 and SF6, and we suggested that nuclear spin effect could be responsible to the observed NMD effect in a way of changing diffusion coefficients of certain molecules, owing to the fact of negligible delta S-36 anomaly for SF6.. On the other hand, our results also showed that for both diffusion and convection under thermal gradient, this NMD effect is increased by lower gas pressure, bigger temperature gradient and lower average temperature, which indicate that the nuclear spin effect may

  9. Rare Isotopes in Cosmic Explosions and Accelerators on Earth

    ScienceCinema

    Schatz, Hendrick

    2017-12-28

    Rare isotopes are nature’s stepping stones to produce the heavy elements, and they are produced in large quantities in stellar explosions. Despite their fleeting existence, they shape the composition of the universe and the observable features of stellar explosions. The challenge for nuclear science is to produce and study the very same rare isotopes so as to understand the origin of the elements and a range of astronomical observations. I will review the progress that has been made to date in astronomy and nuclear physics, and the prospects of finally addressing many of the outstanding issues with the future Facility for Rare Isotope Beams (FRIB), which DOE will build at Michigan State University.

  10. Quantum Dynamics Study of the Isotopic Effect on Capture Reactions: HD, D2 + CH3

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Time-dependent wave-packet-propagation calculations are reported for the isotopic reactions, HD + CH3 and D2 + CH3, in six degrees of freedom and for zero total angular momentum. Initial state selected reaction probabilities for different initial rotational-vibrational states are presented in this study. This study shows that excitations of the HD(D2) enhances the reactivities; whereas the excitations of the CH3 umbrella mode have the opposite effects. This is consistent with the reaction of H2 + CH3. The comparison of these three isotopic reactions also shows the isotopic effects in the initial-state-selected reaction probabilities. The cumulative reaction probabilities (CRP) are obtained by summing over initial-state-selected reaction probabilities. The energy-shift approximation to account for the contribution of degrees of freedom missing in the six dimensionality calculation is employed to obtain approximate full-dimensional CRPs. The rate constant comparison shows H2 + CH3 reaction has the biggest reactivity, then HD + CH3, and D2 + CH3 has the smallest.

  11. Hydrogen and Oxygen Isotope Ratios in Body Water and Hair: Modeling Isotope Dynamics in Nonhuman Primates

    PubMed Central

    O’Grady, Shannon P.; Valenzuela, Luciano O.; Remien, Christopher H.; Enright, Lindsey E.; Jorgensen, Matthew J.; Kaplan, Jay R.; Wagner, Janice D.; Cerling, Thure E.; Ehleringer, James R.

    2012-01-01

    The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water (2H/1H, 18O/16O expressed as δ2H and δ18O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ2H and δ18O values of body water and a second model to predict the δ2H and δ18O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ2H and δ18O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ2H and δ18O values of gut water and the 18O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (αow). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of αow was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems. PMID:22553163

  12. Inverse Kinetic and Equilibrium Isotope Effects on Self-Assembly and Supramolecular Chirality of Porphyrin J-Aggregates.

    PubMed

    Zagami, Roberto; Romeo, Andrea; Castriciano, Maria A; Monsù Scolaro, Luigi

    2017-01-01

    When mixtures of D 2 O/DCl are used to foster the self-assembly formation of TPPS 4 porphyrin J-aggregates in aqueous solutions, an inverse kinetic isotope effect of 0.4 and an inverse equilibrium isotope effect of 0.6 are clearly detected. Most importantly, the addition of at least 10 % D 2 O causes an inversion in the handedness of the final chiral J-aggregates, thus evidencing an important role of deuterium in driving the enantiomeric excess in the scalemic mixture of such supramolecular assemblies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. N-loss isotope effects in the Peru oxygen minimum zone studied using a mesoscale eddy as a natural tracer experiment

    NASA Astrophysics Data System (ADS)

    Bourbonnais, Annie; Altabet, Mark A.; Charoenpong, Chawalit N.; Larkum, Jennifer; Hu, Haibei; Bange, Hermann W.; Stramma, Lothar

    2015-06-01

    Mesoscale eddies in Oxygen Minimum Zones (OMZs) have been identified as important fixed nitrogen (N) loss hotspots that may significantly impact both the global rate of N-loss as well as the ocean's N isotope budget. They also represent "natural tracer experiments" with intensified biogeochemical signals that can be exploited to understand the large-scale processes that control N-loss and associated isotope effects (ɛ; the ‰ deviation from 1 in the ratio of reaction rate constants for the light versus heavy isotopologues). We observed large ranges in the concentrations and N and O isotopic compositions of nitrate (NO3-), nitrite (NO2-), and biogenic N2 associated with an anticyclonic mode-water eddy in the Peru OMZ during two cruises in November and December 2012. In the eddy's center where NO3- was nearly exhausted, we measured the highest δ15N values for both NO3- and NO2- (up to ~70‰ and 50‰) ever reported for an OMZ. Correspondingly, N deficit and biogenic N2-N concentrations were also the highest near the eddy's center (up to ~40 µmol L-1). δ15N-N2 also varied with biogenic N2 production, following kinetic isotopic fractionation during NO2- reduction to N2 and, for the first time, provided an independent assessment of N isotope fractionation during OMZ N-loss. We found apparent variable ɛ for NO3- reduction (up to ~30‰ in the presence of NO2-). However, the overall ɛ for N-loss was calculated to be only ~13-14‰ (as compared to canonical values of ~20-30‰) assuming a closed system and only slightly higher assuming an open system (16-19‰). Our results were similar whether calculated from the disappearance of DIN (NO3- + NO2-) or from the appearance of N2 and changes in isotopic composition. Further, we calculated the separate ɛ values for NO3- reduction to NO2- and NO2- reduction to N2 of ~16-21‰ and ~12‰, respectively, when the effect of NO2- oxidation could be removed. These results, together with the relationship between N and O of NO

  14. The isotopic composition of cosmic-ray calcium

    NASA Technical Reports Server (NTRS)

    Wiedenbeck, M. E.; George, J. S.; Binns, W. R.; Christian, E. R.; Cummings, A. C.; Davis, A. J.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A.; Stone, E. C.; hide

    2001-01-01

    We find that the relative abundance of cosmic ray calcium isotopes in the cosmic-ray source are very similar to those found in solar-system material, in spite of the fact that different types of stars are thought to be responsible for producing these two isotopes. This observation is consistent with the view that cosmic rays are derived from a mixed sample of interstellar matter.

  15. Benthic Foraminifera Clumped Isotope Calibration

    NASA Astrophysics Data System (ADS)

    Piasecki, A.; Marchitto, T. M., Jr.; Bernasconi, S. M.; Grauel, A. L.; Tisserand, A. A.; Meckler, N.

    2017-12-01

    Due to the widespread spatial and temporal distribution of benthic foraminifera within ocean sediments, they are a commonly used for reconstructing past ocean temperatures and environmental conditions. Many foraminifera-based proxies, however, require calibration schemes that are species specific, which becomes complicated in deep time due to extinct species. Furthermore, calibrations often depend on seawater chemistry being stable and/or constrained, which is not always the case over significant climate state changes like the Eocene Oligocene Transition. Here we study the effect of varying benthic foraminifera species using the clumped isotope proxy for temperature. The benefit of this proxy is that it is independent of seawater chemistry, whereas the downside is that it requires a relatively large sample amounts. Due to recent advancements in sample processing that reduce the sample weight by a factor of 10, clumped isotopes can now be applied to a range paleoceanographic questions. First however, we need to prove that, unlike for other proxies, there are no interspecies differences with clumped isotopes, as is predicted by first principles modeling. We used a range of surface sediment samples covering a temperature range of 1-20°C from the Pacific, Mediterranean, Bahamas, and the Atlantic, and measured the clumped isotope composition of 11 different species of benthic foraminifera. We find that there are indeed no discernible species-specific differences within the sample set. In addition, the samples have the same temperature response to the proxy as inorganic carbonate samples over the same temperature range. As a result, we can now apply this proxy to a wide range of samples and foraminifera species from different ocean basins with different ocean chemistry and be confident that observed signals reflect variations in temperature.

  16. The production of ultra-high purity single isotopes or tailored isotope mixtures by ICP-MS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liezers, Martin; Farmer, Orville T.; Dion, Michael P.

    2015-01-01

    We report the development and testing of a simple collector arrangement for a commercial quadrupole ICP-MS that for the first time has been used to produce small quantities of highly enriched (>99.99%) single isotopes, with deposition rates >10 ng/hour. The collector assembly replaces the standard instrument detector allowing for implantation with simultaneous monitoring of the incident ion current. Even under zero bias implant conditions, low energy (<10 eV), ion collection efficiency was observed to be very high ~99%. 151Eu ion currents of 0.1-0.5 nA were collected on a simple, planar foil without resorting to any type of cup configuration. Recoverymore » of the enriched isotope from such foils is much simpler than from a more complex cup configuration. High rejection of adjacent mass isotopes was demonstrated by selectively implanting 167Er without any discernible co-implantation of 166Er and 168Er. The important analytical possibilities of the new approach to isotope ratio measurement, tracer purification and radiation measurements are discussed.« less

  17. Interstellar Isotopes: Prospects with ALMA

    NASA Technical Reports Server (NTRS)

    Charnley Steven B.

    2010-01-01

    Cold molecular clouds are natural environments for the enrichment of interstellar molecules in the heavy isotopes of H, C, N and O. Anomalously fractionated isotopic material is found in many primitive Solar System objects, such as meteorites and comets, that may trace interstellar matter that was incorporated into the Solar Nebula without undergoing significant processing. Models of the fractionation chemistry of H, C, N and O in dense molecular clouds, particularly in cores where substantial freeze-out of molecules on to dust has occurred, make several predictions that can be tested in the near future by molecular line observations. The range of fractionation ratios expected in different interstellar molecules will be discussed and the capabilities of ALMA for testing these models (e.g. in observing doubly-substituted isotopologues) will be outlined.

  18. Isotopic disequilibrium in Globigerina bulloides and carbon isotope response to productivity increase in Southern Ocean.

    PubMed

    Prasanna, K; Ghosh, Prosenjit; Bhattacharya, S K; Mohan, K; Anilkumar, N

    2016-02-23

    Oxygen and carbon isotope ratios in planktonic foraminifera Globigerina bulloides collected from tow samples along a transect from the equatorial Indian ocean to the Southern Ocean (45°E and 80°E and 10°N to 53°S) were analysed and compared with the equilibrium δ(18)O and δ(13)C values of calcite calculated using the temperature and isotopic composition of the water column. The results agree within ~0.25‰ for the region between 10°N and 40°S and 75-200 m water depth which is considered to be the habitat of Globigerina bulloides. Further south (from 40°S to 55°S), however, the measured δ(18)O and δ(13)C values are higher than the expected values by ~2‰ and ~1‰ respectively. These enrichments can be attributed to either a 'vital effect' or a higher calcification rate. An interesting pattern of increase in the δ(13)C(DIC) value of the surface water with latitude is observed between 35°S and~ 60°S, with a peak at~ 42°S. This can be caused by increased organic matter production and associated removal. A simple model accounting for the increase in the δ(13)C(DIC) values is proposed which fits well with the observed chlorophyll abundance as a function of latitude.

  19. [Impacts of dominated landscape types on hydrogen and oxygen isotope effects of spring water in the Hani Rice Terraces].

    PubMed

    Jiao, Yuan Mei; Liu, Cheng Jing; Liu, Xin; Liu, Zhi Lin; Ding, Yin Ping

    2017-07-18

    Analysis of hydrogen and oxygen stable isotopes is an effective method to track the water cycle in watershed. Impact of landscape pattern on the isotope effects of spring water is a new interdisciplinary topic between landscape ecology and isotope hydrology. Taking the Quanfuzhuang River basin located in the core area of UNESCO World Cultural Heritage of Honghe Hani Rice Terrace as the object, collecting the monthly samples of 78 points of spring water and 39 precipitation at altitude of 1500 m (terraces), 1700 m (terraces) and 1900 m (forest) from March 2015 to March 2016, we analyzed the hydrogen and oxygen stable isotopes of water samples under the different landscape types. The results indicated that the dominated landscape types were forests and rice terraces, being 66.6% and 22.1% of the whole landscape area respectively, and they had a spatial vertical pattern of forest located at the mountain top and rice terraces at the down-slope. The correlation analysis showed that the spring water not only came from the precipitation, but also from other water sources which had a more positive δ 18 O and δD values, the spring water in up-slope forests mainly came from precipitation, while that in down-slope rice terraces came from precipitation, ri-ver water, rice terrace water and under ground water. Therefore, the mixing effects of spring water δ 18 O and δD were more significant in rice terraces. The overall altitude effect of the hydrogen and oxygen stable isotopes in spring water was obvious. The linear decreasing rates of δ 18 O and δD values were -0.125‰·(100 m) -1 and -0.688‰·(100 m) -1 , respectively. The deuterium surplus value increased with the altitude because of the impacts of landscape pattern and the local cycle of water isotopes. In summary, the dominant landscape types had a significant impact on the hydrogen and oxygen isotopes of spring water, which could be used as response indicator to reveal the impacts of landscape pattern on

  20. Integrating isotopic fingerprinting with petrology: how do igneous rocks evolve?

    NASA Astrophysics Data System (ADS)

    Davidson, J. P.

    2002-12-01

    In the title of his seminal work, N.L. Bowen recognized the fundamental importance of magmatic evolution in producing the spectrum of igneous rocks. Indeed it is difficult to imagine a hot highly reactive fluid passing through c. 100 km of a chemically distinct medium (lithosphere) without evolving through cooling, crystallization and interaction with the wall rocks. The fact that magmas evolve - almost invariably through open system processes - has been largely marginalized in the past 30 years by the desire to use them as probes of mantle source regions. This perspective has been driven principally by advances offered by isotope geochemistry, through which components and sources can be effectively fingerprinted. Two fundamental observations urge caution in ignoring differentiation effects; 1) the scarcity of truly primary magmas according to geochemical criteria (recognized long ago by petrologists), and 2) the common occurrence of petrographic criteria attesting to open system evolution. Recent advances in multicollector mass spectrometry permit integration of the powerful diagnostic tools of isotope geochemistry with petrographic observations through accurate and precise analysis of small samples. Laser ablation and microdrilling enable sampling within and between mineral phases. The results of our microsampling investigations give widespread support for open system evolution of magmas, and provide insights into the mechanisms and timescales over which this occurs. For example; 1) core-rim decreases in 87Sr/86Sr in zoned plagioclase crystals from 1982 lavas of El Chichon volcano, Mexico, argue that the zoning and isotopic changes are in response to magma recharge mixing with an originally contaminated resident magma; 2) Single grain and intra-grain isotopic analyses of mineral phases from Ngauruhoe andesites (New Zealand) are highly variable, arguing that bulk rock data reflect mechanical aggregations of components which have evolved in discrete domains of the

  1. Matrix Effects Originating from Coexisting Minerals and Accurate Determination of Stable Silver Isotopes in Silver Deposits.

    PubMed

    Guo, Qi; Wei, Hai-Zhen; Jiang, Shao-Yong; Hohl, Simon; Lin, Yi-Bo; Wang, Yi-Jing; Li, Yin-Chuan

    2017-12-19

    Except for extensive studies in core formation and volatile-element depletion processes using radiogenic Ag isotopes (i.e., the Pd-Ag chronometer), recent research has revealed that the mass fractionation of silver isotopes is in principle controlled by physicochemical processes (e.g., evaporation, diffusion, chemical exchange, etc.) during magmatic emplacement and hydrothermal alteration. As these geologic processes only produce very minor variations of δ 109 Ag from -0.5 to +1.1‰, more accurate and precise measurements are required. In this work, a robust linear relationship between instrumental mass discrimination of Ag and Pd isotopes was obtained at the Ag/Pd molar ratio of 1:20. In Au-Ag ore deposits, silver minerals have complex paragenetic relationships with other minerals (e.g., chalcopyrite, sphalerite, galena, pyrite, etc.). It is difficult to remove such abundant impurities completely because the other metals are tens to thousands of times richer than silver. Both quantitative evaluation of matrix effects and modification of chemical chromatography were carried out to deal with the problems. Isobaric inferences (e.g., 65 Cu 40 Ar + to 105 Pd, 208 Pb 2+ to 104 Pd, and 67 Zn 40 Ar + to 107 Ag + ) and space charge effects dramatically shift the measured δ 109 Ag values. The selection of alternative Pd isotope pairs is effective in eliminating spectral matrix effects so as to ensure accurate analysis under the largest possible ranges for metal impurities, which are Cu/Ag ≤ 50:1, Fe/Ag ≤ 600:1, Pb/Ag ≤ 10:1, and Zn/Ag ≤ 1:1, respectively. With the modified procedure, we reported silver isotope compositions (δ 109 Ag) in geological standard materials and typical Au-Ag ore deposit samples varying from -0.029 to +0.689 ‰ with external reproducibility of ±0.009-0.084 ‰. A systemic survey of δ 109 Ag (or ε 109 Ag) variations in rocks, ore deposits, and environmental materials in nature is discussed.

  2. Oxygen and iron isotope studies of magnetite produced by magnetotactic bacteria

    USGS Publications Warehouse

    Mandernack, K.W.; Bazylinski, D.A.; Shanks, Wayne C.; Bullen, T.D.

    1999-01-01

    A series of carefully controlled laboratory studies was carried out to investigate oxygen and iron isotope fractionation during the intracellular production of magnetite (Fe3O4) by two different species of magnetotactic bacteria at temperatures between 4??and 35??C under microaerobic and anaerobic conditions. No detectable fractionation of iron isotopes in the bacterial magnetites was observed. However, oxygen isotope measurements indicated a temperature-dependent fractionation for Fe3O4 and water that is consistent with that observed for Fe3O4 produced extracellularly by thermophilic Fe3+-reducing bacteria. These results contrast with established fractionation curves estimated from either high-temperature experiments or theoretical calculations. With the fractionation curve established in this report, oxygen-18 isotope values of bacterial Fe3O4 may be useful in paleoenvironmental studies for determining the oxygen-18 isotope values of formation waters and for inferring paleotemperatures.

  3. Isotope Effects Reveal the Mechanism of Enamine Formation in l-Proline-Catalyzed α-Amination of Aldehydes.

    PubMed

    Ashley, Melissa A; Hirschi, Jennifer S; Izzo, Joseph A; Vetticatt, Mathew J

    2016-02-17

    The mechanism of l-proline-catalyzed α-amination of 3-phenylpropionaldehyde was studied using a combination of experimental kinetic isotope effects (KIEs) and theoretical calculations. Observation of a significant carbonyl (13)C KIE and a large primary α-deuterium KIE support rate-determining enamine formation. Theoretical predictions of KIEs exclude the widely accepted mechanism of enamine formation via intramolecular deprotonation of an iminium carboxylate intermediate. An E2 elimination mechanism catalyzed by a bifunctional base that directly forms an N-protonated enamine species from an oxazolidinone intermediate accounts for the experimental KIEs. These findings provide the first experimental picture of the transition-state geometry of enamine formation and clarify the role of oxazolidinones as nonparasitic intermediates in proline catalysis.

  4. The Isotopic Record of Elevation Thresholds in Continental Plateaus to Atmospheric Circulation

    NASA Astrophysics Data System (ADS)

    Mulch, A.; Chamberlain, C. P.; Graham, S. A.; Teyssier, C.; Cosca, M. A.

    2011-12-01

    High-elevation orogenic plateaus and mountain ranges exert a strong control on global climate and precipitation patterns and interact with lithospheric and upper mantle tectonic processes as well as atmospheric circulation. Reconstructing the history of surface elevation thus not only provides a critical link between erosional and tectonic processes but also ties Earth surface processes to the long-term climate history of our planet. This interaction, however, has important implications when using stable isotopes (O, H) as proxies for landscape and terrestrial climate evolution as interacting land surface properties (elevation, relief, vegetation cover) and atmospheric circulation patterns (upstream moisture path) may attain threshold conditions that can cloak or amplify the impact of topography on isotopes in precipitation. A large number of stable isotope studies in lacustrine and pedogenic environments of intermontane basins record the isotopic and sedimentologic fingerprint of the evolving landscape of the Cenozoic western North American Cordillera. In general we observe the onset of strong oxygen isotope in precipitation gradients along the eastward and westward flanks of the Cordilleran orogen and associated 18O-depleted moisture within the Cordilleran hinterland to develop no later than 50-55 Ma in British Columbia and Washington, 49 Ma in Montana, and 39-40 Ma in Nevada. However, some of these shifts to very low oxygen isotope compositions in meteoric water occur at rates that by far exceed those that could be attributed to tectonic surface uplift alone. Here we present a multi-proxy approach from the Elko Basin (NV) that ties stable and radiogenic tracers of landscape evolution with high resolution Ar-Ar geochronology. In pedogenic and lacustrine deposits of the Elko basin we observe a change in oxygen isotope ratios that is far too large (6-8 %) and rapid (<200 000 a) to be solely due to changes in elevation. Rather we suggest that the combined effects of

  5. Site-Specific Carbon Isotopes in Organics

    NASA Astrophysics Data System (ADS)

    Piasecki, A.; Eiler, J. M.

    2012-12-01

    propane and labeled propane (13CH3-12CH2-12CH3). Results are consistent with the expected relative fractionations between the two fragments, indicating limited 'scrambling' of carbon positions of less than 2% in the source. The limits of precision of this method are currently ~0.5 ‰, sufficient to resolve known or suspected position-specific isotope effects in propane. We have explored the expected temperature-dependent equilibrium isotopic distributions of propane using density functional theory and quantum mechanical models of vibrational isotope effects. These models predict the homogeneous isotope exchange equilibria among the various isotopologues of propane, which include several of a wide range of effects that should be measurable by our methods. At 300 K we predict that the central carbon site is 15‰ higher in δ13C and 95 ‰ higher in δD than the terminal carbon site; similarly the molecule containing both a 13C and D in the central site is enriched by ~120 ‰ relative to a random isotopic distribution at 300 K. These predictions present targets for future experimental and empirical studies of the temperature dependence of isotopic ordering in propane. More generally, the methods we are developing for the study of intramolecular isotopic distributions in propane will serve as a model for future study of similar effects in other organic compounds. [1]DeNiro, Epstein (1977) Science Volume 197, 261-263.

  6. Methane seep carbonates yield clumped isotope signatures out of equilibrium with formation temperatures

    DOE PAGES

    Loyd, S. J.; Sample, J.; Tripati, R. E.; ...

    2016-07-22

    Here, methane cold seep systems typically exhibit extensive buildups of authigenic carbonate minerals, resulting from local increases in alkalinity driven by methane oxidation. Here, we demonstrate that modern seep authigenic carbonates exhibit anomalously low clumped isotope values (Δ47), as much as ~0.2‰ lower than expected values. In modern seeps, this range of disequilibrium translates into apparent temperatures that are always warmer than ambient temperatures, by up to 50 °C. We examine various mechanisms that may induce disequilibrium behaviour in modern seep carbonates, and suggest that the observed values result from several factors including kinetic isotopic effects during methane oxidation, mixingmore » of inorganic carbon pools, pH effects and rapid precipitation. Ancient seep carbonates studied here also exhibit potential disequilibrium signals. Ultimately, these findings indicate the predominance of disequilibrium clumped isotope behaviour in modern cold seep carbonates that must be considered when characterizing environmental conditions in both modern and ancient cold seep settings.« less

  7. Mechanism of Nitrogenase H 2 Formation by Metal-Hydride Protonation Probed by Mediated Electrocatalysis and H/D Isotope Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khadka, Nimesh; Milton, Ross D.; Shaw, Sudipta

    Nitrogenase catalyzes the reduction of dinitrogen (N2) to ammonia (NH3) with obligatory reduction of protons (H+) to dihydrogen (H2) through a mechanism involving reductive elimination of two [Fe-H-Fe] bridging hydrides at its active site FeMo-cofactor. The overall rate-limiting step is associated with ATP-driven electron delivery from Fe protein, precluding isotope effect measurements on substrate reduction steps. Here, we use mediated bioelectrocatalysis to drive electron delivery to MoFe protein without Fe protein and ATP hydrolysis, thereby eliminating the normal rate-limiting step. The ratio of catalytic current in mixtures of H2O and D2O, the proton inventory, changes linearly with the D2O/H2O ratio,more » revealing that a single H/D is involved in the rate limiting step. Kinetic models, along with measurements that vary the electron/proton delivery rate and use different substrates, reveal that the rate-limiting step under these conditions is the H2 formation reaction. Altering the chemical environment around the active site FeMo-cofactor in the MoFe protein either by substituting nearby amino acids or transferring the isolated FeMo-cofactor into a different peptide matrix, changes the net isotope effect, but the proton inventory plot remains linear, consistent with an unchanging rate-limiting step. Density functional theory predicts a transition state for H2 formation where the proton from S-H+ moves to the hydride in Fe-H-, predicting the number and magnitude of the observed H/D isotope effect. This study not only reveals the mechanism of H2 formation, but also illustrates a strategy for mechanistic study that can be applied to other enzymes and to biomimetic complexes.« less

  8. Equilibrium isotope effects on noncovalent interactions in a supramolecular host-guest system.

    PubMed

    Mugridge, Jeffrey S; Bergman, Robert G; Raymond, Kenneth N

    2012-02-01

    The self-assembled supramolecular complex [Ga(4)L(6)](12-) (1; L = 1,5-bis[2,3-dihydroxybenzamido]naphthalene) can act as a molecular host in aqueous solution and bind cationic guest molecules to its highly charged exterior surface or within its hydrophobic interior cavity. The distinct internal cavity of host 1 modifies the physical properties and reactivity of bound guest molecules and can be used to catalyze a variety of chemical transformations. Noncovalent host-guest interactions in large part control guest binding, molecular recognition and the chemical reactivity of bound guests. Herein we examine equilibrium isotope effects (EIEs) on both exterior and interior guest binding to host 1 and use these effects to probe the details of noncovalent host-guest interactions. For both interior and exterior binding of a benzylphosphonium guest in aqueous solution, protiated guests are found to bind more strongly to host 1 (K(H)/K(D) > 1) and the preferred association of protiated guests is driven by enthalpy and opposed by entropy. Deuteration of guest methyl and benzyl C-H bonds results in a larger EIE than deuteration of guest aromatic C-H bonds. The observed EIEs can be well explained by considering changes in guest vibrational force constants and zero-point energies. DFT calculations further confirm the origins of these EIEs and suggest that changes in low-frequency guest C-H/D vibrational motions (bends, wags, etc.) are primarily responsible for the observed EIEs. © 2011 American Chemical Society

  9. Molybdenum Isotopic Composition of Iron Meteorites, Chondrites and Refractory Inclusions

    NASA Technical Reports Server (NTRS)

    Becker, H.; Walker, R. J.

    2003-01-01

    Recent Mo isotopic studies of meteorites reported evidence for differences in isotopic compositions for whole rocks of some primitive and differentiated meteorites relative to terrestrial materials. Enrichments of r- and p-process isotopes of up to 3-4 units (e unit = parts in 10(exp 4) over s-process dominated isotopes are the most prominent features. Certain types of presolar grains show large enrichments in s-process isotopes, however, it was concluded on grounds of mass balance that incomplete digestion of such grains cannot explain the enrichments of r- and p-process isotopes in whole rocks of primitive chondrites. If the reported variability in r- and p-process isotope enrichments reflects the true isotopic characteristics of the whole rocks, the implications are quite profound. It would suggest the presence of large scale Mo isotopic heterogeneity within the solar accretion disk with likely collateral effects for other elements. However, such effects were not found for Ru isotopes, nor for Zr isotopes. Another recent Mo isotopic study by multi collector ICP-MS could not confirm the reported deviations in Allende, Murchison or iron meteorites. Here, we present new results for the Mo isotopic composition of iron meteorites, chondrites and CAIs obtained by negative thermal ionization mass spectrometry (NTIMS). We discuss analytical aspects and the homogeneity of Mo isotopic compositions in solar system materials.

  10. Quantitative Determination of Isotope Ratios from Experimental Isotopic Distributions

    PubMed Central

    Kaur, Parminder; O’Connor, Peter B.

    2008-01-01

    Isotope variability due to natural processes provides important information for studying a variety of complex natural phenomena from the origins of a particular sample to the traces of biochemical reaction mechanisms. These measurements require high-precision determination of isotope ratios of a particular element involved. Isotope Ratio Mass Spectrometers (IRMS) are widely employed tools for such a high-precision analysis, which have some limitations. This work aims at overcoming the limitations inherent to IRMS by estimating the elemental isotopic abundance from the experimental isotopic distribution. In particular, a computational method has been derived which allows the calculation of 13C/12C ratios from the whole isotopic distributions, given certain caveats, and these calculations are applied to several cases to demonstrate their utility. The limitations of the method in terms of the required number of ions and S/N ratio are discussed. For high-precision estimates of the isotope ratios, this method requires very precise measurement of the experimental isotopic distribution abundances, free from any artifacts introduced by noise, sample heterogeneity, or other experimental sources. PMID:17263354

  11. Sulfur isotopes in Icelandic thermal fluids

    NASA Astrophysics Data System (ADS)

    Gunnarsson-Robin, Jóhann; Stefánsson, Andri; Ono, Shuhei; Torssander, Peter

    2017-10-01

    Multiple sulfur isotope compositions of thermal fluids from Iceland were measured in order to evaluate the sources and reactions of sulfur and sulfur isotope fractionation in geothermal systems at Icelandic divergent plate boundaries, characterized by MORB-like basalts. The geothermal systems studied had a wide range of reservoir temperatures of 56-296 °C and Cl concentrations of 18-21,000 ppm. Dissolved sulfide (∑ S- II) and SO4 concentrations in liquid water measured < 0.01-165 ppm and 1.3-300 ppm, respectively, and H2S(g) concentrations in the vapor 4.9-2000 ppm. The δ34S and Δ33S values for different phases and oxidation states were highly variable: δ34S∑ S- II = - 11.6 to 10.5‰ (n = 99), Δ33S∑ S- II = - 0.12 to 0.00‰ (n = 45), δ34SSO4 = - 1.0 to 24.9‰ (n = 125), Δ33SSO4 = - 0.04 to 0.02‰ (n = 50), δ34SH2S(g) = - 2.6 to 5.9‰ (n = 112) and Δ33SH2S(g) = - 0.03 to 0.00‰ (n = 56). The multiple sulfur isotope values of the thermal fluids are interpreted to reflect various sources of sulfur in the fluids, as well as isotope fractionation occurring within the geothermal systems associated with fluid-rock interaction, boiling and oxidation and reduction reactions. The results of isotope geochemical modeling demonstrate that the sources of S- II in the thermal fluid are leaching of basalt (MORB) and seawater SO4 reduction for saline systems with insignificant magma gas input, and that the observed ranges of δ34S and Δ33S for ∑ S- II and H2S(g) reflect isotope fractionation between minerals and aqueous and gaseous species upon fluid-rock interaction and boiling. The sources of SO4 are taken to be multiple, including oxidation of S- II originating from basalt, leaching of SVI from the basalts and the seawater itself in the case of saline systems. In low-temperature fluids, the δ34S and Δ33S values reflect the various sources of sulfur. For high-temperature fluids, fluid-rock interaction, ∑ S- II oxidation and SO4 reduction and sulfide

  12. Experimentally determined sulfur isotope fractionation between metal and silicate and implications for planetary differentiation

    NASA Astrophysics Data System (ADS)

    Labidi, J.; Shahar, A.; Le Losq, C.; Hillgren, V. J.; Mysen, B. O.; Farquhar, J.

    2016-02-01

    The Earth's mantle displays a subchondritic 34S/32S ratio. Sulfur is a moderately siderophile element (i.e. iron-loving), and its partitioning into the Earth's core may have left such a distinctive isotope composition on the terrestrial mantle. In order to constrain the sulfur isotope fractionation occurring during core-mantle differentiation, high-pressure and temperature experiments were conducted with synthetic mixtures of metal and silicate melts. With the purpose to identify the mechanism(s) responsible for the S isotope fractionations, we performed our experiments in different capsules - namely, graphite and boron nitride capsules - and thus at different fO2, with varying major element chemistry of the silicate and metal fractions. The S isotope fractionations Δ34Smetal-silicate of equilibrated metal alloys versus silicate melts is +0.2 ± 0.1‰ in a boron-free and aluminum-poor system quenched at 1-1.5 GPa and 1650 °C. The isotope fractionation increases linearly with increasing boron and aluminum content, up to +1.4 ± 0.2‰, and is observed to be independent of the silicon abundance as well as of the fO2 over ∼3.5 log units of variations explored here. The isotope fractionations are also independent of the graphite or nitride saturation of the metal. Only the melt structural changes associated with aluminum and boron concentration in silicate melts have been observed to affect the strength of sulfur bonding. These results establish that the structure of silicate melts has a direct influence on the S2- average bonding strengths. These results can be interpreted in the context of planetary differentiation. Indeed, the structural environments of silicate evolve strongly with pressure. For example, the aluminum, iron or silicon coordination numbers increase under the effect of pressure. Consequently, based on our observations, the sulfur-bonding environment is likely to be affected. In this scheme, we tentatively hypothesize that S isotope fractionations

  13. THE DEUTERIUM ISOTOPE RATE EFFECT IN FREE RADICAL REACTIONS OF t-CARBON DEUTERATED DDT AND ITS ANALOGS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dachauer, A.C.

    1962-01-01

    DDT and several of its analogs were synthesized with deuterium in the t- carbon position so that any chemical reaction involving this site in the molecule would then be subject to the deuterium isotope rate effect. Lithium aluminum deuteride, used as the source of the deuterium, was employed to reduce trichloromethyl p-chlorophenyl ketone, trichloromethyl p-bromophenyl ketone, and trichloromethyl p-methoxyphenyl ketone to the corresponding alcohols. The alcohols were then condensed with chlorobenzene, bromobenzene, and anisole respectively to form 1,1,1-trichloro2,2-bis(p-chloro-phenyl)ethane-2-d (d-DDT), 1,1,1-trichloro-2,2-bis (p-bromophenyl)ethane-2-d (d-DBrDT), and 1,1, 1-trichloro- 2,2-bis (p-methoxyphenyl)ethane (d-methoxychlor). The deuterated and non- deuterated insecticides were identical in physical appearance andmore » melting points. Infrared spectra showed sigrificant differences; in particular, each deuterated compound had a distinctive band at ca 10.5 mu , missing in the spectra of the non-deuterated insecticides. NMR analysis confirmed the tertiary position of the deuterium and gave proof of high isotopic purity, each insecticide being 98% deuterated in the desired site. The isotope rate effect was first studied in the reaction of DDT, methoxychlor, and their deuterated analogs with alcoholic sodium- hydroxide. The base catalyzed dehydrohalogenation showed an isotope rate effect, k/sub H//k/sub D/, of the order of 5.4 for DDT and 8 for methoxychlor. The results were considered to be of a magnitude sufficient for the isotope rate effect to be manifested in the in vivo studies. The insecticides and their deuterated analogs were tested for toxicity on houseflies. The results showed that d-DDT and d-DBrDT were more toxic than their non-deuterated counterparts by a factor of ca 1.5 while d-methoxychlor showed a toxicity equal to methoxychlor. The results are explained on the basis of the detoxication process in the insects. In vitro studies showed that

  14. Nickel distribution and isotopic fractionation in a Brazilian lateritic regolith: Coupling Ni isotopes and Ni K-edge XANES

    NASA Astrophysics Data System (ADS)

    Ratié, G.; Garnier, J.; Calmels, D.; Vantelon, D.; Guimarães, E.; Monvoisin, G.; Nouet, J.; Ponzevera, E.; Quantin, C.

    2018-06-01

    Ultramafic (UM) rocks are known to be nickel (Ni) rich and to weather quickly, which makes them a good candidate to look at the Ni isotope systematics during weathering processes at the Earth's surface. The present study aims at identifying the Ni solid speciation and discussing the weathering processes that produce Ni isotope fractionation in two deep laterite profiles under tropical conditions (Barro Alto, Goiás State, Brazil). While phyllosilicates and to a lower extent goethite are the main Ni-bearing phases in the saprolitic part of the profile, iron (Fe) oxides dominate the Ni budget in the lateritic unit. Nickel isotopic composition (δ60Ni values) has been measured in each unit of the regolith, i.e., rock, saprock, saprolite and laterite (n = 52). δ60Ni varies widely within the two laterite profiles, from -0.10 ± 0.05‰ to 1.43 ± 0.05‰, showing that significant Ni isotope fractionation occurs during the weathering of UM rocks. Overall, our results show that during weathering, the solid phase is depleted in heavy Ni isotopes due to the preferential sorption and incorporation of light Ni isotopes into Fe oxides; the same mechanisms likely apply to the incorporation of Ni into phyllosilicates (type 2:1). However, an isotopically heavy Ni pool is observed in the solid phase at the bottom of the saprolitic unit. This feature can be explained by two hypotheses that are not mutually exclusive: (i) a depletion in light Ni isotopes during the first stage of weathering due to the preferential dissolution of light Ni-containing minerals, and (ii) the sorption or incorporation of isotopically heavy Ni carried by percolating waters (groundwater samples have δ60Ni of 2.20 and 2.27‰), that were enriched in heavy Ni isotopes due to successive weathering processes in the overlying soil and laterite units.

  15. Quantum path integral simulation of isotope effects in the melting temperature of ice Ih.

    PubMed

    Ramírez, R; Herrero, C P

    2010-10-14

    The isotope effect in the melting temperature of ice Ih has been studied by free energy calculations within the path integral formulation of statistical mechanics. Free energy differences between isotopes are related to the dependence of their kinetic energy on the isotope mass. The water simulations were performed by using the q-TIP4P/F model, a point charge empirical potential that includes molecular flexibility and anharmonicity in the OH stretch of the water molecule. The reported melting temperature at ambient pressure of this model (T=251 K) increases by 6.5±0.5 and 8.2±0.5 K upon isotopic substitution of hydrogen by deuterium and tritium, respectively. These temperature shifts are larger than the experimental ones (3.8 and 4.5 K, respectively). In the classical limit, the melting temperature is nearly the same as that for tritiated ice. This unexpected behavior is rationalized by the coupling between intermolecular interactions and molecular flexibility. This coupling makes the kinetic energy of the OH stretching modes larger in the liquid than in the solid phase. However, the opposite behavior is found for intramolecular modes, which display larger kinetic energy in ice than in liquid water.

  16. Heterogenous Oxygen Isotopic Composition of a Complex Wark-Lovering Rim and the Margin of a Refractory Inclusion from Leoville

    NASA Technical Reports Server (NTRS)

    Simon, J. I.; Matzel, J. E. P.; Simon, S. B.; Weber, P. K.; Grossman, L.; Ross, D. K.; Hutcheon, I. D.

    2014-01-01

    Wark-Lovering (WL) rims [1] surrounding many refractory inclusions represent marker events in the early evolution of the Solar System in which many inclusions were exposed to changes in pressure [2], temperature [3], and isotopic reservoirs [4-7]. The effects of these events can be complex, not only producing mineralogical variability of WL rims [2], but also leading to mineralogical [8-10] and isotopic [7, 11, 12] changes within inclusion interiors. Extreme oxygen isotopic heterogeneity measured in CAIs has been explained by mixing between distinct oxygen gas reservoirs in the nebula [13]. Some WL rims contain relatively simple mineral layering and/or are isotopically homogeneous [14, 15]. As part of a larger effort to document and understand the modifications observed in some CAIs, an inclusion (L6) with a complex WL rim from Leoville, a member of the reduced CV3 subgroup was studied. Initial study of the textures and mineral chemistry was presented by [16]. Here we present NanoSIMS oxygen isotopic measurements to complement these petrologic observations.

  17. Isotope fractionation by multicomponent diffusion (Invited)

    NASA Astrophysics Data System (ADS)

    Watkins, J. M.; Liang, Y.; Richter, F. M.; Ryerson, F. J.; DePaolo, D. J.

    2013-12-01

    Isotope fractionation by multicomponent diffusion The isotopic composition of mineral phases can be used to probe the temperatures and rates of mineral formation as well as the degree of post-mineralization alteration. The ability to interpret stable isotope variations is limited by our knowledge of three key parameters and their relative importance in determining the composition of a mineral grain and its surroundings: (1) thermodynamic (equilibrium) partitioning, (2) mass-dependent diffusivities, and (3) mass-dependent reaction rate coefficients. Understanding the mechanisms of diffusion and reaction in geological liquids, and how these mass transport processes discriminate between isotopes, represents an important problem that is receiving considerable attention in the geosciences. Our focus in this presentation will be isotope fractionation by chemical diffusion. Previous studies have documented that diffusive isotope effects vary depending on the cation as well as the liquid composition, but the ability to predict diffusive isotope effects from theory is limited; for example, it is unclear whether the magnitude of diffusive isotopic fractionations might also vary with the direction of diffusion in composition space. To test this hypothesis and to further guide the theoretical treatment of isotope diffusion, two chemical diffusion experiments and one self diffusion experiment were conducted at 1250°C and 0.7 GPa. In one experiment (A-B), CaO and Na2O counter-diffuse rapidly in the presence of a small SiO2 gradient. In the other experiment (D-E), CaO and SiO2 counter-diffuse more slowly in a small Na2O gradient. In both chemical diffusion experiments, Ca isotopes become fractionated by chemical diffusion but by different amounts, documenting for the first time that the magnitude of isotope fractionation by diffusion depends on the direction of diffusion in composition space. The magnitude of Ca isotope fractionation that develops is positively correlated with

  18. Chlorophyll-a Photosynthesis and Mg Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Black, J.; Yin, Q.; Casey, B. H.

    2006-12-01

    Mg is the metal center of all the chlorophyll pigments and therefore at the center of the process of photosynthesis. Chlorophyll (Chl) is often used as a biomarker of photosynthesis and is an enormous contributor to the global carbon cycle. Biosynthetic processes fractionate isotopes of light elements and this led us to examine the isotopic composition of Mg in Chl, as another potential biomarker. Here we detail the Mg isotopic composition of Chl-a, extracted from cultures of Synechococcus elongatus, and the culture medium (Black et al., 2006). After Chl extraction, the Mg was liberated from Chl and purified on cation-exchange columns, with a final yield of 100 ± 5%. ^{26}Mg/^{24}Mg and ^{25}Mg/^{24}Mg, were measured relative to Cambridge 1 and DSM3 standards by a standard-sample-bracketing technique on an MC-ICP-MS (Nu Instruments Ltd). We have measured the average isotopic fractionation of Mg from six samples of Chl-a from early growth phase and 4 samples from late growth phase, 9 samples of the culture medium and the Cambridge 1 Std, all relative to the DSM3 Std. We demonstrate for the first time that there is a clearly resolved depletion in the heavy isotopes of Mg in Chl-a relative to the culture medium (Δ^{26}Mg =-0.61‰; Δ^{25}Mg =-0.30‰). The heavy isotope depletion observed may be caused by chelation effects during the biosynthesis of Chl-a. We are now evaluating two hypotheses about the cause of the fractionation. One hypothesis is that the insertion step induces a fractionation via the Mg- chelatase enzyme. The second is that transport into the cell, such as via an ion channel, causes the fractionation. In either case, no difference between Chl-a and Chl-b is anticipated. Experiments and field studies are underway to examine these ideas. References Black, J., Yin, Q.-Z., Casey, W.H., 2006. Geochim. Cosmochim. Acta, 70, 4072-4079.

  19. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization.

    PubMed

    Salim, Michael A; Willow, Soohaeng Yoo; Hirata, So

    2016-05-28

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D2O ice greater than that of H2O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born-Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of

  20. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization

    NASA Astrophysics Data System (ADS)

    Salim, Michael A.; Willow, Soohaeng Yoo; Hirata, So

    2016-05-01

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D2O ice greater than that of H2O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born-Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of

  1. Forward Modeling of Oxygen Isotope Variability in Tropical Andean Ice Cores

    NASA Astrophysics Data System (ADS)

    Vuille, M. F.; Hurley, J. V.; Hardy, D. R.

    2016-12-01

    Ice core records from the tropical Andes serve as important archives of past tropical Pacific SST variability and changes in monsoon intensity upstream over the Amazon basin. Yet the interpretation of the oxygen isotopic signal in these ice cores remains controversial. Based on 10 years of continuous on-site glaciologic, meteorologic and isotopic measurements at the summit of the world's largest tropical ice cap, Quelccaya, in southern Peru, we developed a process-based physical forward model (proxy system model), capable of simulating intraseasonal, seasonal and interannual variability in delta-18O as observed in snow pits and short cores. Our results highlight the importance of taking into account post-depositional effects (sublimation and isotopic enrichment) to properly simulate the seasonal cycle. Intraseasonal variability is underestimated in our model unless the effects of cold air incursions, triggering significant monsoonal snowfall and more negative delta-18O values, are included. A number of sensitivity test highlight the influence of changing boundary conditions on the final snow isotopic profile. Such tests also show that our model provides much more realistic data than applying direct model output of precipitation delta-18O from isotope-enabled climate models (SWING ensemble). The forward model was calibrated with and run under present-day conditions, but it can also be driven with past climate forcings to reconstruct paleo-monsoon variability and investigate the influence of changes in radiative forcings (solar, volcanic) on delta-18O variability in Andean snow. The model is transferable and may be used to render a paleoclimatic context at other ice core locations.

  2. Palaeoclimate signal recorded by stable isotopes in cave ice: a modeling approach

    NASA Astrophysics Data System (ADS)

    Perşoiu, A.; Bojar, A.-V.

    2012-04-01

    Ice accumulations in caves preserve a large variety of geochemical information as candidate proxies for both past climate and environmental changes, one of the most significant being the stable isotopic composition of the ice. A series of recent studies have targeted oxygen and hydrogen stable isotopes in cave ice as proxies for past air temperatures, but the results are far from being as straightforward as they are in high latitude and altitude glaciers and ice caps. The main problems emerging from these studies are related to the mechanisms of cave ice formation (i.e., freezing of water) and post-formation processes (melting and refreezing), which both alter the original isotopic signal in water. Different methods have been put forward to solve these issues and a fair understanding of the present-day link between stable isotopes in precipitation and cave ice exists now. However, the main issues still lays unsolved: 1) is it possible to extend this link to older ice and thus reconstruct past changes in air temperature?; 2) to what extent are ice dynamics processes modifying the original climatic signal and 3) what is the best method to be used in extracting a climatic signal from stable isotopes in cave ice? To respond to these questions, we have conducted a modeling experiment, in which a theoretical cave ice stable isotope record was constructed using present-day observations on stable isotope behavior in cave ice and ice dynamics, and different methods (presently used for both polar and cave glaciers), were used to reconstruct the original, known, isotopic values. Our results show that it is possible to remove the effects of ice melting and refreezing on stable isotope composition of cave ice, and thus reconstruct the original isotopic signal, and further the climatic one.

  3. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes

    PubMed Central

    Morgan, Jennifer L. L.; Skulan, Joseph L.; Gordon, Gwyneth W.; Romaniello, Stephen J.; Smith, Scott M.; Anbar, Ariel D.

    2012-01-01

    The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible. PMID:22652567

  4. Low-temperature chemistry between water and hydroxyl radicals: H/D isotopic effects

    NASA Astrophysics Data System (ADS)

    Lamberts, T.; Fedoseev, G.; Puletti, F.; Ioppolo, S.; Cuppen, H. M.; Linnartz, H.

    2016-01-01

    Sets of systematic laboratory experiments are presented - combining Ultra High Vacuum cryogenic and plasma-line deposition techniques - that allow us to compare H/D isotopic effects in the reaction of H2O (D2O) ice with the hydroxyl radical OD (OH). The latter is known to play a key role as intermediate species in the solid-state formation of water on icy grains in space. The main finding of our work is that the reaction H2O + OD → OH + HDO occurs and that this may affect the HDO/H2O abundances in space. The opposite reaction D2O + OH → OD + HDO is much less effective, and also given the lower D2O abundances in space not expected to be of astronomical relevance. The experimental results are extended to the other four possible reactions between hydroxyl and water isotopes and are subsequently used as input for Kinetic Monte Carlo simulations. This way we interpret our findings in an astronomical context, qualitatively testing the influence of the reaction rates.

  5. Diffusion-driven magnesium and iron isotope fractionation at a gabbro-granite boundary

    NASA Astrophysics Data System (ADS)

    Wu, Hongjie; He, Yongsheng; Teng, Fang-Zhen; Ke, Shan; Hou, Zhenhui; Li, Shuguang

    2018-02-01

    Significant magnesium and iron isotope fractionations were observed in an adjacent gabbro and granite profile from the Dabie Orogen, China. Chilled margin and granitic veins at the gabbro side and gabbro xenoliths in the granite indicate the two intrusions were emplaced simultaneously. The δ26Mg decreases from -0.28 ± 0.04‰ to -0.63 ± 0.08‰ and δ56Fe increases from -0.07 ± 0.03‰ to +0.25 ± 0.03‰ along a ∼16 cm traverse from the contact to the granite. Concentrations of major elements such as Al, Na, Ti and most trace elements also systematically change with distance to the contact. All the observations suggest that weathering, magma mixing, fluid exsolution, fractional crystallization and thermal diffusion are not the major processes responsible for the observed elemental and isotopic variations. Rather, the negatively correlated Mg and Fe isotopic compositions as well as co-variations of Mg and Fe isotopes with Mg# reflect Mg-Fe inter-diffusion driven isotope fractionation, with Mg diffusing from the chilled gabbro into the granitic melt and Fe oppositely. The diffusion modeling yields a characteristic diffusive transport distance of ∼6 cm. Consequently, the diffusion duration, during which the granite may have maintained a molten state, can be constrained to ∼2 My. The cooling rate of the granite is calculated to be 52-107 °C/My. Our study suggests diffusion profiles can be a powerful geospeedometry. The observed isotope fractionations also indicate that Mg-Fe inter-diffusion can produce large stable isotope fractionations at least on a decimeter scale, with implications for Mg and Fe isotope study of mantle xenoliths, mafic dikes, and inter-bedded lavas.

  6. The effect of fusion-relevant helium levels on the mechanical properties of isotopically tailored ferritic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hankin, G.L.; Hamilton, M.L.; Gelles, D.S.

    1997-04-01

    The yield and maximum strengths of an irradiated series of isotopically tailored ferritic alloys were evaluated using the shear punch test. The composition of three of the alloys was Fe-12Cr-1.5Ni. Different balances of nickel isotopes were used in each alloy in order to produce different helium levels. A fourth alloy, which contained no nickel, was also irradiated. The addition of nickel at any isotopic balance to the Fe-12Cr base alloy significantly increased the shear yield and maximum strengths of the alloys, and as expected, the strength of the alloys decreased with increasing irradiation temperature. Helium itself, up to 75 appmmore » over 7 dpa appears to have little effect on the mechanical properties of the alloys.« less

  7. Stable water isotope patterns in a climate change hotspot: the isotope hydrology framework of Corsica (western Mediterranean).

    PubMed

    van Geldern, Robert; Kuhlemann, Joachim; Schiebel, Ralf; Taubald, Heinrich; Barth, Johannes A C

    2014-06-01

    The Mediterranean is regarded as a region of intense climate change. To better understand future climate change, this area has been the target of several palaeoclimate studies which also studied stable isotope proxies that are directly linked to the stable isotope composition of water, such as tree rings, tooth enamel or speleothems. For such work, it is also essential to establish an isotope hydrology framework of the region of interest. Surface waters from streams and lakes as well as groundwater from springs on the island of Corsica were sampled between 2003 and 2009 for their oxygen and hydrogen isotope compositions. Isotope values from lake waters were enriched in heavier isotopes and define a local evaporation line (LEL). On the other hand, stream and spring waters reflect the isotope composition of local precipitation in the catchment. The intersection of the LEL and the linear fit of the spring and stream waters reflect the mean isotope composition of the annual precipitation (δP) with values of-8.6(± 0.2) ‰ for δ(18)O and-58(± 2) ‰ for δ(2)H. This value is also a good indicator of the average isotope composition of the local groundwater in the island. Surface water samples reflect the altitude isotope effect with a value of-0.17(± 0.02) ‰ per 100 m elevation for oxygen isotopes. At Vizzavona Pass in central Corsica, water samples from two catchments within a lateral distance of only a few hundred metres showed unexpected but systematic differences in their stable isotope composition. At this specific location, the direction of exposure seems to be an important factor. The differences were likely caused by isotopic enrichment during recharge in warm weather conditions in south-exposed valley flanks compared to the opposite, north-exposed valley flanks.

  8. Hydrogen and oxygen isotope ratios in body water and hair: modeling isotope dynamics in nonhuman primates.

    PubMed

    O'Grady, Shannon P; Valenzuela, Luciano O; Remien, Christopher H; Enright, Lindsey E; Jorgensen, Matthew J; Kaplan, Jay R; Wagner, Janice D; Cerling, Thure E; Ehleringer, James R

    2012-07-01

    The stable isotopic composition of drinking water, diet, and atmospheric oxygen influence the isotopic composition of body water ((2)H/(1)H, (18)O/(16)O expressed as δ(2) H and δ(18)O). In turn, body water influences the isotopic composition of organic matter in tissues, such as hair and teeth, which are often used to reconstruct historical dietary and movement patterns of animals and humans. Here, we used a nonhuman primate system (Macaca fascicularis) to test the robustness of two different mechanistic stable isotope models: a model to predict the δ(2)H and δ(18)O values of body water and a second model to predict the δ(2)H and δ(18)O values of hair. In contrast to previous human-based studies, use of nonhuman primates fed controlled diets allowed us to further constrain model parameter values and evaluate model predictions. Both models reliably predicted the δ(2)H and δ(18)O values of body water and of hair. Moreover, the isotope data allowed us to better quantify values for two critical variables in the models: the δ(2)H and δ(18)O values of gut water and the (18)O isotope fractionation associated with a carbonyl oxygen-water interaction in the gut (α(ow)). Our modeling efforts indicated that better predictions for body water and hair isotope values were achieved by making the isotopic composition of gut water approached that of body water. Additionally, the value of α(ow) was 1.0164, in close agreement with the only other previously measured observation (microbial spore cell walls), suggesting robustness of this fractionation factor across different biological systems. © 2012 Wiley Periodicals, Inc.

  9. An experiment to assess the effects of diatom dissolution on oxygen isotope ratios.

    PubMed

    Smith, Andrew C; Leng, Melanie J; Swann, George E A; Barker, Philip A; Mackay, Anson W; Ryves, David B; Sloane, Hilary J; Chenery, Simon R N; Hems, Mike

    2016-01-30

    Current studies which use the oxygen isotope composition from diatom silica (δ(18) Odiatom ) as a palaeoclimate proxy assume that the δ(18) Odiatom value reflects the isotopic composition of the water in which the diatom formed. However, diatoms dissolve post mortem, preferentially losing less silicified structures in the water column and during/after burial into sediments. The impact of dissolution on δ(18) Odiatom values and potential misinterpretation of the palaeoclimate record are evaluated. Diatom frustules covering a range of ages (6 samples from the Miocene to the Holocene), environments and species were exposed to a weak alkaline solution for 48 days at two temperatures (20 °C and 4 °C), mimicking natural dissolution post mucilage removal. Following treatment, dissolution was assessed using scanning electron microscope images and a qualitative diatom dissolution index. The diatoms were subsequently analysed for their δ(18) O values using step-wise fluorination and isotope ratio mass spectrometry. Variable levels of diatom dissolution were observed between the six samples; in all cases higher temperatures resulted in more frustule degradation. Dissolution was most evident in younger samples, probably as a result of the more porous nature of the silica. The degree of diatom dissolution does not directly equate to changes in the isotope ratios; the δ(18) Odiatom value was, however, lower after dissolution, but in only half the samples was this reduction outside the analytical error (2σ analytical error = 0.46‰). We have shown that dissolution can have a small negative impact on δ(18) Odiatom values, causing reductions of up to 0.59‰ beyond analytical error (0.46‰) at natural environmental temperatures. These findings need to be considered in palaeoenvironmental reconstructions using δ(18) Odiatom values, especially when interpreting variations in these values of <1‰. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Determination of nitrogen-15 isotope fractionation in tropine: evaluation of extraction protocols for isotope ratio measurement by isotope ratio mass spectrometry.

    PubMed

    Molinié, Roland; Kwiecień, Renata A; Silvestre, Virginie; Robins, Richard J

    2009-12-01

    N-Demethylation of tropine is an important step in the degradation of this compound and related metabolites. With the purpose of understanding the reaction mechanism(s) involved, it is desirable to measure the 15N kinetic isotope effects (KIEs), which can be accessed through the 15N isotope shift (Deltadelta15N) during the reaction. To measure the isotope fractionation in 15N during tropine degradation necessitates the extraction of the residual substrate from dilute aqueous solution without introducing artefactual isotope fractionation. Three protocols have been compared for the extraction and measurement of the 15N/14N ratio of tropine from aqueous medium, involving liquid-liquid phase partitioning or silica-C18 solid-phase extraction. Quantification was by gas chromatography (GC) on the recovered organic phase and delta15N values were obtained by isotope ratio measurement mass spectrometry (irm-MS). Although all the protocols used can provide satisfactory data and both irm-EA-MS and irm-GC-MS can be used to obtain the delta15N values, the most convenient method is liquid-liquid extraction from a reduced aqueous volume combined with irm-GC-MS. The protocols are applied to the measurement of 15N isotope shifts during growth of a Pseudomonas strain that uses tropane alkaloids as sole source of carbon and nitrogen. The accuracy of the determination of the 15N/14N ratio is sufficient to be used for the determination of 15N-KIEs. Copyright 2009 John Wiley & Sons, Ltd.

  11. Non-linear isotope and fast ions effects: routes for low turbulence in DT plasmas

    NASA Astrophysics Data System (ADS)

    Garcia, Jeronimo

    2017-10-01

    The isotope effect, i.e. the fact that heat and particle fluxes do not follow the expected Gyro-Bohm estimate for turbulent transport when the plasma mass is changed, is one of the main challenges in plasma theory. Of particular interest is the isotope exchange between the fusion of deuterium (DD) and deuterium-tritium (DT) nuclei as there are no clear indications of what kind of transport difference can be expected in burning plasmas. The GENE code is therefore used for computing DD vs DT linear and nonlinear microturbulence characteristics in the core plasma region of a previously ITER hybrid scenario at high beta obtained in the framework of simplified integrated modelling. Scans on common turbulence related quantitates as external ExB flow shear, Parallel Velocity Gradient (PVG), plasma beta, colisionality or the number of ion species have been performed. Additionally, the role of energetic particles, known to reduce Ion Temperature Gradient (ITG) turbulence has been also addressed. It is obtained that the ITER operational point will be close to threshold and in these conditions turbulence is dominated by ITG modes. A purely weak non-linear isotope effect, absent in linear scans, can be found when separately adding moderate ExB flow shear or electromagnetic effects, whereas collisionality just modulates the intensity. The isotope effect, on the other hand, becomes very strong in conditions with simultaneously moderate ExB flow shear, beta and low q profile with significant reductions of ion heat transport from DD to DT. By analyzing the radial structure of the two point electrostatic potential correlation function it has been found that the inherent Gyro-Bohm scaling for plasma microturbulence, which increases the radial correlation length at short scales form DD to DT, is counteracted by the concomitant appearance of a complex nonlinear multiscale space interaction involving external ExB flow shear, zonal flow activity, magnetic geometry and electromagnetic

  12. Isotopic composition of water vapor near the air-water interface

    NASA Astrophysics Data System (ADS)

    Zannoni, Daniele; Bergamasco, Andrea; Peschiutta, Mirco; Rampazzo, Giancarlo; Stenni, Barbara

    2017-04-01

    Evaporation is a key process in water cycle that links liquid water to the atmosphere. In the last fifty years stable isotopes of hydrogen and oxygen have been intensively used to describe climate processes related to evaporation and precipitation, ranging in different spatial and temporal scales. Evaporation introduces large isotopic effects in the phases involved. The well known Craig-Gordon model (Craig & Gordon, 1965) describes those isotopic effects involving several steps and different processes, moving from the air-water interface to the free atmosphere. However, very few works in literature have tested the vertical behavior of the Craig-Gordon model in natural conditions on both fresh and marine waters. In this work we present the results from four field experiments aimed to describe the vertical variability of δ18O and δD in the first few meters over a large water body (the coastal lagoon of Venice, northern Italy) and to test the Craig-Gordon model in such conditions. Each experiment involved cryotrapping of water vapor at different height over the water surface (0.1m, 2m and 4m) and the sampling of the liquid water at two depth (surface and 0.5m). During the experiments, water vapor was also sampled in the nearest mainland (˜2.5 km from gradient measurements) to determine the isotopic composition of background water vapor. Liquid samples were then analyzed with a Picarro L1102-i and Thermo-Fisher Delta Plus Advantage for water vapor and lagoon water, respectively. The last two experiments have also involved simultaneous measurements of relative humidity using commercially-available humidity probes at each height. This approach was used to determine a reference scale in order to compare observations to modeled estimates. Despite the coarse time resolution due to cryotrapping method (measurements are averaged over 1.5 hours), preliminary results show measurable differences in the isotopic composition of water vapor along the vertical gradient and good

  13. Zinc isotope fractionation during adsorption onto Mn oxyhydroxide at low and high ionic strength

    NASA Astrophysics Data System (ADS)

    Bryan, Allison L.; Dong, Shuofei; Wilkes, Elise B.; Wasylenki, Laura E.

    2015-05-01

    Marine ferromanganese sediments represent one of the largest sinks from global seawater for Zn, a critical trace metal nutrient. These sediments are variably enriched in heavier isotopes of Zn relative to deep seawater, and some are among the heaviest natural samples analyzed to date. New experimental results demonstrate that adsorption of Zn to poorly crystalline Mn oxyhydroxide results in preferential association of heavier isotopes with the sorbent phase. At low ionic strength our experimental system displayed a short-lived kinetic isotope effect, with light isotopes adsorbed to birnessite (Δ66/64Znadsorbed-dissolved ∼ -0.2‰). After 100 h the sense of fractionation was opposite, such that heavier isotopes were preferentially adsorbed at steady state, but the magnitude of Δ66/64Znadsorbed-dissolved was indistinguishable from zero (+0.05 ± 0.08‰). At high ionic strength, we observed preferential sorption of heavy isotopes, with a strong negative correlation between Δ66/64Znadsorbed-dissolved and the percentage of Zn on the birnessite. Values of Δ66/64Znadsorbed-dissolved ranged from nearly +3‰ at low surface loading to +0.16‰ at high surface loading. Based on previous EXAFS work we infer that Zn adsorbs first as tetrahedral, inner-sphere complexes at low surface loading, with preferential incorporation of heavier isotopes relative to the octahedral Zn species predominating in solution. As surface loading increases, so does the proportion of Zn adsorbing as octahedral complexes, thus diminishing the magnitude of fractionation between the dissolved and adsorbed pools of Zn. The magnitude of fractionation at high ionic strength is also governed by aqueous speciation of Zn in synthetic seawater; a substantial fraction of Zn ions reside in chloro complexes, which preferentially incorporate light Zn isotopes, and this drives the adsorbed pool to be heavier relative to the bulk solution than it was at low ionic strength. Our results explain the observation

  14. An isotopic mass effect on the intermolecular potential

    DOE PAGES

    Herman, Michael F.; Currier, Robert Patrick; Clegg, Samuel M.

    2015-09-28

    The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born–Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this paper, the intermolecular dipole–dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born–Oppenheimer surface. Finally, the analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologuemore » thermodynamics.« less

  15. Covariance of oxygen and hydrogen isotopic composition in plant water: Species effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, L.W.; DeNiro, M.J.

    1989-12-01

    Leaf water becomes enriched in the heavy isotopes of oxygen and hydrogen during evapotranspiration. The magnitude of the enrichment has been shown to be influenced by temperature and humidity, but the effects of species-specific factors on leaf water enrichment of D and {sup 18}O have not been studied for different plants growing together. To learn whether leaf water enrichment patterns and processes for D and {sup 18}O are different for individual species growing under the same environmental conditions the authors tested the proposal that leaf waters in plants with crassulacean acid metabolism (CAM) show high sloped (m in the leafmore » water equation {delta}D = m {delta}{sup 18}O + b) than in C{sub 3} plants. They determined the relationships between the stable hydrogen ({delta}D) and oxygen ({delta}{sup 18}O) isotope ratios of leaf waters collected during the diurnal cycle of evapotranspiration for Yucca schidigera, Ephedra aspera, Agave deserti, Prunus ilicifolia, Yucca whipplei, Heteromeles arbutifolia, Dyckia fosteriana, Simmondsia chinensis, and Encelia farinosa growing at two sites in southern California. The findings indicate that m in the aforementioned equation is related to the overall residence time for water in the leaf and proportions of water subjected to repeated evapotranspiration enrichments of heavy isotopes.« less

  16. Insights into Mechanistic Models for Evaporation of Organic Liquids in the Environment Obtained by Position-Specific Carbon Isotope Analysis.

    PubMed

    Julien, Maxime; Nun, Pierrick; Robins, Richard J; Remaud, Gérald S; Parinet, Julien; Höhener, Patrick

    2015-11-03

    Position-specific isotope effects (PSIEs) have been measured by isotope ratio monitoring (13)C nuclear magnetic resonance spectrometry during the evaporation of 10 liquids of different polarities under 4 evaporation modes (passive evaporation, air-vented evaporation, low pressure evaporation, distillation). The observed effects are used to assess the validity of the Craig-Gordon isotope model for organic liquids. For seven liquids the overall isotope effect (IE) includes a vapor-liquid contribution that is strongly position-specific in polar compounds but less so in apolar compounds and a diffusive IE that is not position-specific, except in the alcohols, ethanol and propan-1-ol. The diffusive IE is diminished under forced evaporation. The position-specific isotope pattern created by liquid-vapor IEs is manifest in five liquids, which have an air-side limitation for volatilization. For the alcohols, undefined processes in the liquid phase create additional PSIEs. Three other liquids with limitations on the liquid side have a lower, highly position-specific, bulk diffusive IE. It is concluded that evaporation of organic pollutants creates unique position-specific isotope patterns that may be used to assess the progress of remediation or natural attenuation of pollution and that the Craig-Gordon isotope model is valid for the volatilization of nonpolar organic liquids with air-side limitation of the volatilization rate.

  17. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates.

    PubMed

    Skulan, J; DePaolo, D J

    1999-11-23

    Calcium from bone and shell is isotopically lighter than calcium of soft tissue from the same organism and isotopically lighter than source (dietary) calcium. When measured as the (44)Ca/(40)Ca isotopic ratio, the total range of variation observed is 5.5 per thousand, and as much as 4 per thousand variation is found in a single organism. The observed intraorganismal calcium isotopic variations and the isotopic differences between tissues and diet indicate that isotopic fractionation occurs mainly as a result of mineralization. Soft tissue calcium becomes heavier or lighter than source calcium during periods when there is net gain or loss of mineral mass, respectively. These results suggest that variations of natural calcium isotope ratios in tissues may be useful for assessing the calcium and mineral balance of organisms without introducing isotopic tracers.

  18. Calcium isotope fractionation between soft and mineralized tissues as a monitor of calcium use in vertebrates

    PubMed Central

    Skulan, Joseph; DePaolo, Donald J.

    1999-01-01

    Calcium from bone and shell is isotopically lighter than calcium of soft tissue from the same organism and isotopically lighter than source (dietary) calcium. When measured as the 44Ca/40Ca isotopic ratio, the total range of variation observed is 5.5‰, and as much as 4‰ variation is found in a single organism. The observed intraorganismal calcium isotopic variations and the isotopic differences between tissues and diet indicate that isotopic fractionation occurs mainly as a result of mineralization. Soft tissue calcium becomes heavier or lighter than source calcium during periods when there is net gain or loss of mineral mass, respectively. These results suggest that variations of natural calcium isotope ratios in tissues may be useful for assessing the calcium and mineral balance of organisms without introducing isotopic tracers. PMID:10570137

  19. Calculation of individual isotope equilibrium constants for geochemical reactions

    USGS Publications Warehouse

    Thorstenson, D.C.; Parkhurst, D.L.

    2004-01-01

    Theory is derived from the work of Urey (Urey H. C. [1947] The thermodynamic properties of isotopic substances. J. Chem. Soc. 562-581) to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by ?? = (Kex)1/n, where n is the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example 13C16O18O and 1H2H18O. The equilibrium constants of the isotope exchange reactions can be expressed as ratios of individual isotope equilibrium constants for geochemical reactions. Knowledge of the equilibrium constant for the dominant isotopic species can then be used to calculate the individual isotope equilibrium constants. Individual isotope equilibrium constants are calculated for the reaction CO2g = CO2aq for all species that can be formed from 12C, 13C, 16O, and 18O; for the reaction between 12C18 O2aq and 1H218Ol; and among the various 1H, 2H, 16O, and 18O species of H2O. This is a subset of a larger number of equilibrium constants calculated elsewhere (Thorstenson D. C. and Parkhurst D. L. [2002] Calculation of individual isotope equilibrium constants for implementation in geochemical models. Water-Resources Investigation Report 02-4172. U.S. Geological Survey). Activity coefficients, activity-concentration conventions for the isotopic variants of H2O in the solvent 1H216Ol, and salt effects on isotope fractionation have been included in the derivations. The effects of nonideality are small because of the chemical similarity of different isotopic species of the same molecule or ion. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation

  20. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data.

    PubMed

    Estrada, Nubia Luz; Böhlke, J K; Sturchio, Neil C; Gu, Baohua; Harvey, Greg; Burkey, Kent O; Grantz, David A; McGrath, Margaret T; Anderson, Todd A; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B; Jackson, W Andrew

    2017-10-01

    Natural perchlorate (ClO 4 - ) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ 37 Cl, δ 18 O, and Δ 17 O), indicating that ClO 4 - may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO 4 - , but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO 4 - in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO 4 - was transported from solutions into plants similarly to NO 3 - but preferentially to Cl - (4-fold). The ClO 4 - isotopic compositions of initial ClO 4 - reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO 4 - uptake or accumulation. The ClO 4 - isotopic composition of field-grown snap beans was also consistent with that of ClO 4 - in varying proportions from irrigation water and precipitation. NO 3 - uptake had little or no effect on NO 3 - isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε ( 15 N/ 18 O) ratio of 1.05 was observed between NO 3 - in hydroponic solutions and leaf extracts, consistent with partial NO 3 - reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO 4 - in commercial produce, as illustrated by spinach, for which the ClO 4 - isotopic composition was similar to that of indigenous natural ClO 4 - . Our results indicate that some types of plants can accumulate and (presumably) release ClO 4 - to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO 4 - and NO 3 - in plants may be useful for determining sources of fertilizers and sources of ClO 4 - in their growth

  1. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data

    USGS Publications Warehouse

    Estrada, Nubia Luz; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua; Harvey, Greg; Burkey, Kent O.; Grantz, David A.; McGrath, Margaret T.; Anderson, Todd A.; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B.; Jackson, W. Andrew

    2017-01-01

    Natural perchlorate (ClO4−) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ37Cl, δ18O, and Δ17O), indicating that ClO4− may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO4−, but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO4− in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO4− was transported from solutions into plants similarly to NO3− but preferentially to Cl− (4-fold). The ClO4− isotopic compositions of initial ClO4− reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO4− uptake or accumulation. The ClO4− isotopic composition of field-grown snap beans was also consistent with that of ClO4− in varying proportions from irrigation water and precipitation. NO3− uptake had little or no effect on NO3− isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε (15N/18O) ratio of 1.05 was observed between NO3− in hydroponic solutions and leaf extracts, consistent with partial NO3− reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO4− in commercial produce, as illustrated by spinach, for which the ClO4− isotopic composition was similar to that of indigenous natural ClO4−. Our results indicate that some types of plants can accumulate and (presumably) release ClO4− to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO4−and NO3− in plants may be useful for determining sources of fertilizers and sources of ClO4− in their growth environments and

  2. Study of thermochemical sulfate reduction mechanism using compound specific sulfur isotope analysis

    NASA Astrophysics Data System (ADS)

    Meshoulam, Alexander; Ellis, Geoffrey S.; Said Ahmad, Ward; Deev, Andrei; Sessions, Alex L.; Tang, Yongchun; Adkins, Jess F.; Liu, Jinzhong; Gilhooly, William P.; Aizenshtat, Zeev; Amrani, Alon

    2016-09-01

    The sulfur isotopic fractionation associated with the formation of organic sulfur compounds (OSCs) during thermochemical sulfate reduction (TSR) was studied using gold-tube pyrolysis experiments to simulate TSR. The reactants used included n-hexadecane (n-C16) as a model organic compound with sulfate, sulfite, or elemental sulfur as the sulfur source. At the end of each experiment, the S-isotopic composition and concentration of remaining sulfate, H2S, benzothiophene, dibenzothiophene, and 2-phenylthiophene (PT) were measured. The observed S-isotopic fractionations between sulfate and BT, DBT, and H2S in experimental simulations of TSR correlate well with a multi-stage model of the overall TSR process. Large kinetic isotope fractionations occur during the first, uncatalyzed stage of TSR, 12.4‰ for H2S and as much as 22.2‰ for BT. The fractionations decrease as the H2S concentration increases and the reaction enters the second, catalyzed stage. Once all of the oxidizable hydrocarbons have been consumed, sulfate reduction ceases and equilibrium partitioning then dictates the fractionation between H2S and sulfate (∼17‰). Experiments involving sparingly soluble CaSO4 show that during the second catalytic phase of TSR the rate of sulfate reduction exceeds that of sulfate dissolution. In this case, there is no apparent isotopic fractionation between source sulfate and generated H2S, as all of the available sulfate is effectively reduced at all reaction times. When CaSO4 is replaced with fully soluble Na2SO4, sulfate dissolution is no longer rate limiting and significant S-isotopic fractionation is observed. This supports the notion that CaSO4 dissolution can lead to the apparent lack of fractionation between H2S and sulfate produced by TSR in nature. The S-isotopic composition of individual OSCs record information related to geochemical reactions that cannot be discerned from the δ34S values obtained from bulk phases such as H2S, oil, and sulfate minerals, and

  3. Mass dependent stable isotope fractionation of mercury during mer mediated microbial degradation of monomethylmercury

    NASA Astrophysics Data System (ADS)

    Kritee, K.; Barkay, Tamar; Blum, Joel D.

    2009-03-01

    degradation experiments and, based on estimates of the rates of the various steps involved in this mer mediated pathway, suggest which steps in the process could contribute towards the observed extent of fractionation. This framework suggests that at lower cell densities catalysis by MerB was the rate limiting step while at higher cell densities transport into the cell, which does not cause fractionation, became the rate limiting step. In addition to presenting evidence for absence of MIF during mer mediated Hg transformations, based on the nature of Hg compounds and microbe-Hg interactions, we suggest that the nuclear spin dependent MIF (i.e., the magnetic isotope effect) is also unlikely to occur during other non mer mediated 'dark' microbial Hg transformations (e.g., formation of MMHg and oxidative degradation of MMHg). Because of the important implications of the absence of MIF during biological processes on Hg isotope systematics, we discuss theoretical considerations and experimental strategies that could be used to confirm this suggestion.

  4. Stable Chlorine Isotope Study: Application to Early Solar System Materials

    NASA Technical Reports Server (NTRS)

    Mala,ira. M/; Nyquist, L. E.; Reese, Y.; Shih, C-Y; Fujitani, T.; Okano, O.

    2010-01-01

    A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each other [4], some authors have claimed that the Cl-37/Cl-35 ratio of geological samples obtained by TIMS technique are, in general, misleadingly too high and variable compared to those of IRMS [3]. For example, almost no differences of Cl isotope composition were observed among mantle materials and carbonaceous meteorites by [3]. On the other hand, according to more recent IRMS work [2], significant Cl isotope variations are confirmed for mantle materials. Therefore, additional careful investigation of Cl isotope analyses are now required to confirm real chlorine isotope variations for planetary materials including carbonaceous chondrites [5]. A significantly large mass fractionation between two stable chlorine isotopes is expected during planetary processes In addition, in view of the isotopic heterogeneity of other light elements, the chlorine isotopes can potentially be used as a tracer for the origins and evolutionary processes of early solar system materials. Due to analytical difficulties, however, current chlorine isotope studies on planetary materials are quite controversial among IRMS (gas source mass spectrometry) and/or TIMS (Thermal Ionization Mass Spectrometry) groups [i.e. 1-3]. Although a cross-calibration of IRMS and TIMS indicates that both techniques are sufficiently consistent with each

  5. Relating carbon and nitrogen isotope effects to reaction mechanisms during aerobic or anaerobic degradation of RDX (Hexahydro-1,3,5-Trinitro-1,3,5-Triazine) by pure bacterial cultures

    USGS Publications Warehouse

    Fuller, Mark E.; Heraty, Linnea J.; Condee, Charles W.; Vainberg, Simon; Sturchio, Neil C.; Böhlke, John Karl; Hatzinger, Paul B.

    2016-01-01

    Kinetic isotopic fractionation of carbon and nitrogen during RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) biodegradation was investigated with pure bacterial cultures under aerobic and anaerobic conditions. Relatively large bulk enrichments in 15N were observed during biodegradation of RDX via anaerobic ring cleavage (ε15N = −12.7‰ ± 0.8‰) and anaerobic nitro reduction (ε15N = −9.9‰ ± 0.7‰), in comparison to smaller effects during biodegradation via aerobic denitration (ε15N = −2.4‰ ± 0.2‰). 13C enrichment was negligible during aerobic RDX biodegradation (ε13C = −0.8‰ ± 0.5‰) but larger during anaerobic degradation (ε13C = −4.0‰ ± 0.8‰), with modest variability among genera. Dual-isotope ε13C/ε15N analyses indicated that the three biodegradation pathways could be distinguished isotopically from each other and from abiotic degradation mechanisms. Compared to the initial RDX bulk δ15N value of +9‰, δ15N values of the NO2− released from RDX ranged from −7‰ to +2‰ during aerobic biodegradation and from −42‰ to −24‰ during anaerobic biodegradation. Numerical reaction models indicated that N isotope effects of NO2− production were much larger than, but systematically related to, the bulk RDX N isotope effects with different bacteria. Apparent intrinsic ε15N-NO2− values were consistent with an initial denitration pathway in the aerobic experiments and more complex processes of NO2− formation associated with anaerobic ring cleavage. These results indicate the potential for isotopic analysis of residual RDX for the differentiation of degradation pathways and indicate that further efforts to examine the isotopic composition of potential RDX degradation products (e.g., NOx) in the environment are warranted.

  6. Using Beads and Divided Containers to Study Kinetic and Equilibrium Isotope Effects in the Laboratory and in the Classroom

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Brewer, Emily R.; Martinez, Keri A.; Fitzjarrald, Tamara J.

    2017-01-01

    The purpose of this laboratory experiment is to study fundamental concepts of kinetics and equilibria and the isotope effects associated with both of these concepts. The concepts of isotopes in introductory and general chemistry courses are typically used within the contexts of atomic weights and radioactivity. Kinetic and equilibrium isotope…

  7. Solvent isotope-induced equilibrium perturbation for isocitrate lyase.

    PubMed

    Quartararo, Christine E; Hadi, Timin; Cahill, Sean M; Blanchard, John S

    2013-12-23

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacterium's life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage ((D₂O)V = 2.0 ± 0.1, and (D₂O)[V/K(isocitrate)] = 2.2 ± 0.3) arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of the succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate, and succinate prepared in D₂O would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by ¹H NMR spectroscopy shows a clear equilibrium perturbation in D₂O. The final equilibrium isotopic composition of reactants in D₂O revealed dideuterated succinate, protiated glyoxylate, and monodeuterated isocitrate, with the transient appearance and disappearance of monodeuterated succinate. A model for the equilibrium perturbation of substrate species and their time-dependent isotopic composition is presented.

  8. Solvent Isotope-induced Equilibrium Perturbation for Isocitrate Lyase

    PubMed Central

    Quartararo, Christine E.; Hadi, Timin; Cahill, Sean M.; Blanchard, John S.

    2014-01-01

    Isocitrate lyase (ICL) catalyzes the reversible retro-aldol cleavage of isocitrate to generate glyoxylate and succinate. ICL is the first enzyme of the glyoxylate shunt, which allows for the anaplerosis of citric acid cycle intermediates under nutrient limiting conditions. In Mycobacterium tuberculosis, the source of ICL for these studies, ICL is vital for the persistence phase of the bacteria’s life cycle. Solvent kinetic isotope effects (KIEs) in the direction of isocitrate cleavage of D2OV = 2.0 ± 0.1 and D2O[V/Kisocitrate] = 2.2 ± 0.3 arise from the initial deprotonation of the C2 hydroxyl group of isocitrate or the protonation of the aci-acid of succinate product of the isocitrate aldol cleavage by a solvent-derived proton. This KIE suggested that an equilibrium mixture of all protiated isocitrate, glyoxylate and succinate prepared in D2O, would undergo transient changes in equilibrium concentrations as a result of the solvent KIE and solvent-derived deuterium incorporation into both succinate and isocitrate. No change in the isotopic composition of glyoxylate was expected or observed. We have directly monitored the changing concentrations of all isotopic species of all reactants and products using a combination of NMR spectroscopy and mass spectrometry. Continuous monitoring of glyoxylate by 1H NMR spectroscopy shows a clear equilibrium perturbation in D2O. The final equilibrium isotopic composition of reactants in D2O revealed di-deuterated succinate, protiated glyoxylate, and mono-deuterated isocitrate, with the transient appearance and disappearance of mono-deuterated succinate. A model for the equilibrium perturbation of substrate species, and their time-dependent isotopic composition is presented. PMID:24261638

  9. Effect of baking and fermentation on the stable carbon and nitrogen isotope ratios of grain-based food.

    PubMed

    Bostic, Joshua N; Palafox, Sherilyn J; Rottmueller, Marina E; Jahren, A Hope

    2015-05-30

    Isotope ratio mass spectrometry (IRMS) is used extensively to reconstruct general attributes of prehistoric and modern diets in both humans and animals. In order to apply these methods to the accurate determination of specific intakes of foods/nutrients of interest, the isotopic signature of individually consumed foods must be constrained. For example, 86% of the calories consumed in the USA are derived from processed and prepared foods, but the relationship between the stable isotope composition of raw ingredients and the resulting products has not been characterized. To examine the effect of common cooking techniques on the stable isotope composition of grain-based food items, we prepared yeast buns and sugar cookies from standardized recipes and measured bulk δ(13) C and δ(15) N values of samples collected throughout a 75 min fermentation process (buns) and before and after baking at 190°C (buns and cookies). Simple isotope mixing models were used to determine if the isotopic signatures of 13 multi-ingredient foods could be estimated from the isotopic signatures of their constituent raw ingredients. No variations in δ(13) C or δ(15) N values were detected between pre- and post-baked yeast buns (pre: -24.78‰/2.61‰, post: -24.75‰/2.74‰), beet-sugar cookies (pre: -24.48‰/3.84‰, post: -24.47‰/3.57‰), and cane-sugar cookies (pre: -19.07‰/2.97‰, post: -19.02‰/3.21‰), or throughout a 75 min fermentation process in yeast buns. Using isotopic mass balance equations, the δ(13) C/δ(15) N values of multi-ingredient foods were estimated from the isotopic composition of constituent raw ingredients to within 0.14 ± 0.13‰/0.24 ± 0.17‰ for gravimetrically measured recipes and 0.40 ± 0.38‰/0.58 ± 0.53‰ for volumetrically measured recipes. Two common food preparation techniques, baking and fermentation, do not substantially affect the carbon or nitrogen isotopic signature of grain-based foods. Mass-balance equations can be used to

  10. Isotopic evolution of Mauna Loa volcano

    NASA Astrophysics Data System (ADS)

    Kurz, Mark D.; Kammer, David P.

    1991-04-01

    In an effort to understand the temporal helium isotopic variations in Mauna Loa volcano, we have measured helium, strontium and lead isotopes in a suite of Mauna Loa lavas that span most of the subaerial eruptive history of the volcano. The lavas range in age from historical flows to Ninole basalt which are thought to be several hundred thousand years old. Most of the samples younger than 30 ka in age (Kau Basalt) are radiocarbon-dated flows, while the samples older than 30 ka are stratigraphically controlled (Kahuku and Ninole Basalt). The data reveal a striking change in the geochemistry of the lavas approximately 10 ka before present. The lavas older than 10 ka are characterized by high 3He/ 4He ( ˜ 16-20 times atmospheric), higher 206Pb/ 204Pb ( ˜ 18.2), and lower 87Sr/ 86Sr ( ˜ 0.70365) ratios than the younger Kau samples (having He, Pb and Sr ratios of approximately 8.5 × atmospheric, 18.1 and 0.70390, respectively). The historical lavas are distinct in having intermediate Sr and Pb isotopic compositions with 3He/ 4He ratios similar to the other young Kau basalt ( ˜ 8.5 × atmospheric). The isotopic variations are on a shorter time scale (100 to 10,000 years) than has previously been observed for Hawaiian volcanoes, and demonstrate the importance of geochronology and stratigraphy to geochemical studies. The data show consistency between all three isotope systems, which suggests that the variations are not related to magma chamber degassing processes, and that helium is not decoupled from the other isotopes. However, the complex temporal evolution suggests that three distinct mantle sources are required to explain the isotopic data. Most of the Mauna Loa isotopic variations could be explained by mixing between a plume type source, similar to Loihi, and an asthenospheric source with helium isotopic composition close to MORB and elevated Sr isotopic values. An asthenospheric source, or variation within the plume source, is considered more likely than

  11. Calcium Isotopes in Foraminifera Shells: Evaluation for Paleo-temperature Reconstruction

    NASA Astrophysics Data System (ADS)

    Paytan, A.; Revello, C. A.; Bullen, T. D.

    2002-12-01

    The Ca stable isotope ratio of foraminifera shells has been suggested as a potential paleo-temperature proxy and has recently been applied in several studies to reconstruct glacial interglacial fluctuations in seawater temperatures. The major advantage of using Ca isotopes for paleo-temperature reconstruction is the relatively long residence time of Ca in the ocean. Thus, no spatial or temporal change in the Ca isotopic composition of seawater is expected over time scales much shorter than a million years. Moreover, since Ca is a major constituent of carbonate, and an isotopic ratio rather than an element concentration or element-element ratio (e.g. Mg/Ca, Sr/Ca) is measured, the Ca isotope proxy is much less likely to be affected by post depositional diagenetic alteration. However, preliminary results indicate that kinetic effects might largely control the Ca isotope fractionation involved in calcite shell formation. Before this new and exciting proxy can be utilized routinely, a better understanding of the parameters controlling Ca isotope fractionation in carbonate minerals in general and in foraminifera and other carbonate-secreting organisms is required. We have measured the Ca stable isotope ratio of several foraminifera species from core top sediments from two well-studied sites to determine the inter-species and within-species variability in Ca isotopes. We assess the effects of water temperature, calcification rate, and vital effects on the Ca stable isotope ratio of modern foraminifera and evaluate the potential of this proxy for paleo-temperature reconstruction.

  12. Combined C and Cl isotope effects indicate differences between corrinoids and enzyme (Sulfurospirillum multivorans PceA) in reductive dehalogenation of tetrachloroethene, but not trichloroethene.

    PubMed

    Renpenning, Julian; Keller, Sebastian; Cretnik, Stefan; Shouakar-Stash, Orfan; Elsner, Martin; Schubert, Torsten; Nijenhuis, Ivonne

    2014-10-21

    The role of the corrinoid cofactor in reductive dehalogenation catalysis by tetrachloroethene reductive dehalogenase (PceA) of Sulfurospirillum multivorans was investigated using isotope analysis of carbon and chlorine. Crude extracts containing PceA--harboring either a native norpseudo-B12 or the alternative nor-B12 cofactor--were applied for dehalogenation of tetrachloroethene (PCE) or trichloroethene (TCE), and compared to abiotic dehalogenation with the respective purified corrinoids (norpseudovitamin B12 and norvitamin B12), as well as several commercially available cobalamins and cobinamide. Dehalogenation of TCE resulted in a similar extent of C and Cl isotope fractionation, and in similar dual-element isotope slopes (εC/εCl) of 5.0-5.3 for PceA enzyme and 3.7-4.5 for the corrinoids. Both observations support an identical reaction mechanism. For PCE, in contrast, observed C and Cl isotope fractionation was smaller in enzymatic dehalogenation, and dual-element isotope slopes (2.2-2.8) were distinctly different compared to dehalogenation mediated by corrinoids (4.6-7.0). Remarkably, εC/εCl of PCE depended in addition on the corrinoid type: εC/εCl values of 4.6 and 5.0 for vitamin B12 and norvitamin B12 were significantly different compared to values of 6.9 and 7.0 for norpseudovitamin B12 and dicyanocobinamide. Our results therefore suggest mechanistic and/or kinetic differences in catalytic PCE dehalogenation by enzymes and different corrinoids, whereas such differences were not observed for TCE.

  13. Reactive transport modeling of stable carbon isotope fractionation in a multi-phase multi-component system during carbon sequestration

    DOE PAGES

    Zhang, Shuo; DePaolo, Donald J.; Zheng, Liange; ...

    2014-12-31

    Carbon stable isotopes can be used in characterization and monitoring of CO 2 sequestration sites to track the migration of the CO 2 plume and identify leakage sources, and to evaluate the chemical reactions that take place in the CO 2-water-rock system. However, there are few tools available to incorporate stable isotope information into flow and transport codes used for CO 2 sequestration problems. We present a numerical tool for modeling the transport of stable carbon isotopes in multiphase reactive systems relevant to geologic carbon sequestration. The code is an extension of the reactive transport code TOUGHREACT. The transport modulemore » of TOUGHREACT was modified to include separate isotopic species of CO 2 gas and dissolved inorganic carbon (CO 2, CO 3 2-, HCO 3 -,…). Any process of transport or reaction influencing a given carbon species also influences its isotopic ratio. Isotopic fractionation is thus fully integrated within the dynamic system. The chemical module and database have been expanded to include isotopic exchange and fractionation between the carbon species in both gas and aqueous phases. The performance of the code is verified by modeling ideal systems and comparing with theoretical results. Efforts are also made to fit field data from the Pembina CO 2 injection project in Canada. We show that the exchange of carbon isotopes between dissolved and gaseous carbon species combined with fluid flow and transport, produce isotopic effects that are significantly different from simple two-component mixing. These effects are important for understanding the isotopic variations observed in field demonstrations.« less

  14. Multiconfiguration calculations of electronic isotope shift factors in Al i

    NASA Astrophysics Data System (ADS)

    Filippin, Livio; Beerwerth, Randolf; Ekman, Jörgen; Fritzsche, Stephan; Godefroid, Michel; Jönsson, Per

    2016-12-01

    The present work reports results from systematic multiconfiguration Dirac-Hartree-Fock calculations of electronic isotope shift factors for a set of transitions between low-lying levels of neutral aluminium. These electronic quantities together with observed isotope shifts between different pairs of isotopes provide the changes in mean-square charge radii of the atomic nuclei. Two computational approaches are adopted for the estimation of the mass- and field-shift factors. Within these approaches, different models for electron correlation are explored in a systematic way to determine a reliable computational strategy and to estimate theoretical error bars of the isotope shift factors.

  15. Controls over spatial and seasonal variations on isotopic composition of the precipitation along the central and eastern portion of Brazil.

    PubMed

    Gastmans, Didier; Santos, Vinícius; Galhardi, Juliana Aparecida; Gromboni, João Felipe; Batista, Ludmila Vianna; Miotlinski, Konrad; Chang, Hung Kiang; Govone, José Silvio

    2017-10-01

    Based on Global Network Isotopes in Precipitation (GNIP) isotopic data set, a review of the spatial and temporal variability of δ 18 O and δ 2 H in precipitation was conducted throughout central and eastern Brazil, indicating that dynamic interactions between Intertropical and South Atlantic Convergence Zones, Amazon rainforest, and Atlantic Ocean determine the variations on the isotopic composition of precipitation over this area. Despite the seasonality and latitude effects observed, a fair correlation with precipitation amount was found. In addition, Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) air mass back trajectories were used to quantify the factors controlling daily variability in stable isotopes in precipitation. Through a linear multiple regression analysis, it was observed that temporal variations were consistent with the meteorological parameters derived from HYSPLIT, particularly precipitation amount along the trajectory and mix depth, but are not dependent on vapour residence time in the atmosphere. These findings also indicate the importance of convective systems to control the isotopic composition of precipitation in tropical and subtropical regions.

  16. Theoretical estimation of 13C-D clumped isotope effects in methyl of several organic compound

    NASA Astrophysics Data System (ADS)

    LIU, Q.; Yin, X.; Liu, Y.

    2015-12-01

    Recent developments in mass spectrometry and tunable infrared laser direct absorption spectroscopy make it possible to measure 13C-D clumped isotope effects of methane. These techniques can be further applied to determine 13C-D clumped isotope effects of methyl fragments, therefore need accurate equilirbium Δi values to calibrate experimental measurements. In this study, we calculate temperature depandences of 13C-D clumped isotope signatures in methyl of several organic compounds including ethane, propane, acetic acid, etc. Our calculation are performed at CCSD/6-311+G(3df,3pd) by using Gaussian 03 program with no scale treament. Our results show that the Δi values of 13C-D clumping in methyl fragments of different organic compounds yield similar signals (~5.5‰ at 25˚C, slightly lower than Δi value of 13C-D clumping in methane). For testing the calculated accuracy, theoretical treaments beyond the harmonic level by including several higher-order corrections to the Bigeleisen-Mayer equation are used. Contributions from higher-order corrections (e.g., AnZPE, AnEXC, VrZPE, VrEXC, QmCorr and CenDist) are estimated to repire the ignorings of the Bigeleisen-Mayer equation (the anharmonic effects of vibration, vibration-rotation coupling, quantum mechanics and centrifugal distortion for rotation, etc.) for the calculation of partition function ratios. The results show that the higher-order corrections contribute ~0.05‰ at 25˚C, which is similar to the contribution for calculating 13C-D clumped isotope signature of methane. By comparing our calculated frequencies to the measured ones, the uncertainty of our calculation of Δi values 13C-D clumping in methyl fragments is considered to be within ~0.05‰ at room temperature.

  17. Study of the isotopic features of Swan bands in comets

    NASA Technical Reports Server (NTRS)

    Krishna Swamy, K. S.

    1987-01-01

    It is shown from a detailed statistical equilibrium calculation of the (C-12)(C-13) molecule that the interpretation of the observed intensities of Swan bands of the normal and the isotopic molecule of C2 in terms of the abundance ratio of C-12 and C-13 is a reasonable one. The synthetic profile of some isotopic features in the (0.0) Swan band is compared with the observed profiles for comet West.

  18. Mass-dependent and -independent fractionation of Fe isotopes in magnetotactic bacteria

    NASA Astrophysics Data System (ADS)

    Amor, M.; Busigny, V.; Louvat, P.; Gelabert, A.; Cartigny, P.; Durand-Dubief, M.; Ona-Nguema, G.; Alphandéry, E.; Chebbi, I.; Guyot, F. J.

    2016-12-01

    Magnetotactic bacteria (MTB) perform biomineralization of intracellular magnetite (Fe3O4) nanoparticles. Although they may be among the oldest microorganisms capable of biomineralization on Earth, identification of their activity in the geological record remains poorly resolved because of the lack of reliable signatures. Here, we determined Fe isotope fractionation by the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1 to better understand Fe cycling in MTB and provide new signatures of the contribution of MTB to iron geochemistry. AMB-1 strain was cultivated with either Fe(III)-quinate or Fe(II)-ascorbate as Fe sources. Iron isotope composition of Fe sources, bacterial growth media after AMB-1 cultures, bacterial lysates (corresponding to AMB-1 cells devoid of magnetite) and magnetite samples were analyzed by MC-ICP-MS after column chromatography. In the two culture conditions, growth media after AMB-1 cultures were enriched in light Fe isotopes relative to Fe sources. Two distinct bacterial Fe reservoirs were characterized in AMB-1: (1) magnetite enriched in the light Fe isotopes by 1.5 to 2.5‰ in δ56Fe relative to Fe sources, and (2) lysate enriched in the heavy Fe isotopes by 0.3 to 0.8‰ relative to Fe sources. More importantly, mass-independent fractionations in odd (57Fe) but not in even isotopes (54Fe, 56Fe and 58Fe) were observed for the first time, highlighting a magnetic isotope effect. Magnetite samples were significantly enriched in 57Fe by 0.23‰ relative to 54Fe, 56Fe and 58Fe. Based on our results, we propose a model for Fe cycling and magnetite biomineralization in AMB-1, and propose to use this specific mass-independent signature of Fe isotopes to evaluate the contribution of MTB to the iron biogeochemistry of recent and ancient environmental samples.

  19. Isotopic Dependence of GCR Fluence behind Shielding

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Saganti, Premkumar; Kim, Myung-Hee Y.; Cleghorn, Timothy; Zeitlin, Cary; Tripathi, Ram K.

    2006-01-01

    In this paper we consider the effects of the isotopic composition of the primary galactic cosmic rays (GCR), nuclear fragmentation cross-sections, and isotopic-grid on the solution to transport models used for shielding studies. Satellite measurements are used to describe the isotopic composition of the GCR. For the nuclear interaction data-base and transport solution, we use the quantum multiple-scattering theory of nuclear fragmentation (QMSFRG) and high-charge and energy (HZETRN) transport code, respectively. The QMSFRG model is shown to accurately describe existing fragmentation data including proper description of the odd-even effects as function of the iso-spin dependence on the projectile nucleus. The principle finding of this study is that large errors (+/-100%) will occur in the mass-fluence spectra when comparing transport models that use a complete isotopic-grid (approx.170 ions) to ones that use a reduced isotopic-grid, for example the 59 ion-grid used in the HZETRN code in the past, however less significant errors (<+/-20%) occur in the elemental-fluence spectra. Because a complete isotopic-grid is readily handled on small computer workstations and is needed for several applications studying GCR propagation and scattering, it is recommended that they be used for future GCR studies.

  20. Isotopic constraints on the origin of meteoritic organic matter

    NASA Technical Reports Server (NTRS)

    Kerridge, J. F.

    1991-01-01

    Salient features of the isotopic distribution of H, C and N in the organic material found in carbonaceous meteorites are noted. Most organic fractions are strongly enriched in D with respect to the D/H ratio characteristic of H2 in the protosolar system; substantial variations in C-13/C-12 ratio are found among different molecular species, with oxidised species tending to be C-13 enriched relative to reduced species; some homologous series reveal systematic decrease in C-13/C-12 with increasing C number; considerable variation in N-15/N-14 ratio is observed within organic matter, though no systematic pattern to its distribution has yet emerged; no interelement correlations have been observed between isotope enrichments for the different biogenic elements. The isotopic complexity echoes the molecular diversity observed in meteoritic organic matter and suggests that the organic matter was formed by multiple processes and/or from multiple sources. However, existence of a few systematic patterns points towards survival of isotopic signatures characteristic of one or more specific processes. The widespread D enrichment implies either survival of many species of interstellar molecule or synthesis from a reservoir containing a significant interstellar component. Several of the questions raised above can be addressed by more detailed determination of the distribution of the H, C and N isotopes among different well-characterized molecular fractions. Thus, the present study is aimed at discovering whether the different amino acids have comparable D enrichments, which would imply local synthesis from a D-enriched reservoir, or very viable D enrichments, which would imply survival of some interstellar amino acids. The same approach is also being applied to polycyclic aromatic hydrocarbons. Because the analytical technique employed (secondary ion mass spectrometry) can acquire data for all three isotopic systems from each molecular fraction, any presently obscured interelement

  1. C and N isotope fractionation during biodegradation of the pesticide metabolite 2,6-dichlorobenzamide (BAM): potential for environmental assessments.

    PubMed

    Reinnicke, Sandra; Simonsen, Allan; Sørensen, Sebastian R; Aamand, Jens; Elsner, Martin

    2012-02-07

    2,6-Dichlorobenzamide (BAM) is a metabolite of the herbicide 2,6-dichlorobenzonitrile (dichlobenil), and a prominent groundwater contaminant. Observable compound-specific isotope fractionation during BAM formation-through transformation of dichlobenil by Rhodococcus erythropolis DSM 9685-was small. In contrast, isotope fractionation during BAM degradation-with Aminobacter sp. MSH1 and ASI1, the only known bacterial strains capable of mineralizing BAM-was large, with pronounced carbon (ε(C) = -7.5‰ to -7.8‰) and nitrogen (ε(N) = -10.7‰ to -13.5‰) isotopic enrichment factors. BAM isotope values in natural samples are therefore expected to be dominated by the effects of its degradation rather than formation. Dual isotope slopes Δ (=Δδ(15)N/Δδ(13)C ≈ ε(N)/ε(C)) showed only small differences for MSH1 (1.75 ± 0.03) and ASI1 (1.45 ± 0.03) suggesting similar transformation mechanisms of BAM hydrolysis. Observations are in agreement with either a tetrahedral intermediate promoted by OH(-) or H(3)O(+) catalysis, or a concerted reaction mechanism. Therefore, owing to consistent carbon isotopic fractionation, isotope shifts of BAM can be linked to BAM biodegradation, and may even be used to quantify degradation of this persistent metabolite. In contrast, nitrogen isotope values may be rather indicative of different sources. Our results delineate a new approach to assessing the fate of BAM in the environment.

  2. Large sulfur isotope fractionations in Martian sediments at Gale crater

    NASA Astrophysics Data System (ADS)

    Franz, H. B.; McAdam, A. C.; Ming, D. W.; Freissinet, C.; Mahaffy, P. R.; Eldridge, D. L.; Fischer, W. W.; Grotzinger, J. P.; House, C. H.; Hurowitz, J. A.; McLennan, S. M.; Schwenzer, S. P.; Vaniman, D. T.; Archer, P. D., Jr.; Atreya, S. K.; Conrad, P. G.; Dottin, J. W., III; Eigenbrode, J. L.; Farley, K. A.; Glavin, D. P.; Johnson, S. S.; Knudson, C. A.; Morris, R. V.; Navarro-González, R.; Pavlov, A. A.; Plummer, R.; Rampe, E. B.; Stern, J. C.; Steele, A.; Summons, R. E.; Sutter, B.

    2017-09-01

    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from -47 +/- 14‰ to 28 +/- 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods.

  3. Effects of Simple Leaching of Crushed and Powdered Materials on High-precision Pb Isotope Analyses

    NASA Astrophysics Data System (ADS)

    Todd, E.; Stracke, A.

    2013-12-01

    We present new results of simple leaching experiments on the Pb isotope composition of USGS standard reference material powders and on ocean island basalt whole rock splits and powders. Rock samples were leached with 6N HCl in two steps, first hot and then in an ultrasonic bath, and washed with ultrapure H2O before conventional sample digestion and chromatographic purification of Pb. Pb isotope analyses were determined with Tl-doped MC-ICP-MS. Intra- and inter-session analytical reproducibility of repeated analyses of both synthetic Pb solutions and Pb from single digests of chemically processed natural samples were generally < 100 ppm (2 S.D.). The comparison of leached and unleached samples shows that leaching reliably removes variable amounts of different contaminants for different starting materials. For repeated digests of a single sample, the leached samples reproduce better than the unleached ones, showing that leaching effectively removes heterogeneously distributed extraneous Pb. However, the reproducibility of repeated digests of variably contaminated natural samples is up to an order of magnitude worse than the analytical reproducibility of ca. 100 ppm. More complex leaching methods (e.g., Nobre Silva et al., 2009) yield Pb isotope ratios within error of and with similar reproducibility to our method, showing that the simple leaching method is reliable. The remaining Pb isotope heterogeneity of natural samples, which typically exceeds 100 ppm, is thus attributed to inherent isotopic sample heterogeneity. Tl-doped MC-ICP-MS Pb ratio determination is therefore a sufficiently precise method for Pb isotope analyses in natural rocks. More precise Pb double- or triple-spike methods (e.g., Galer, 1999; Thirlwall, 2000), may exploit their full potential only in cases where natural isotopic sample heterogeneity is demonstrably negligible. References: Galer, S., 1999, Chem. Geol. 157, 255-274. Nobre Silva, et al. 2009, Geochemistry Geophysics Geosystems 10, Q08012

  4. Modes of planetary-scale Fe isotope fractionation

    NASA Astrophysics Data System (ADS)

    Schoenberg, Ronny; von Blanckenburg, Friedhelm

    2006-12-01

    A comprehensive set of high-precision Fe isotope data for the principle meteorite types and silicate reservoirs of the Earth is used to investigate iron isotope fractionation at inter- and intra-planetary scales. 14 chondrite analyses yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of - 0.015 ± 0.020‰ (2 SE) relative to the international iron standard IRMM-014. Eight non-cumulate and polymict eucrite meteorites that sample the silicate portion of the HED (howardite-eucrite-diogenite) parent body yield an average δ56Fe/ 54Fe value of - 0.001 ± 0.017‰, indistinguishable to the chondritic Fe isotope composition. Fe isotope ratios that are indistinguishable to the chondritic value have also been published for SNC meteorites. This inner-solar system homogeneity in Fe isotopes suggests that planetary accretion itself did not significantly fractionate iron. Nine mantle xenoliths yield a 2 σ envelope of - 0.13‰ to + 0.09‰ in δ56Fe/ 54Fe. Using this range as proxy for the bulk silicate Earth in a mass balance model places the Fe isotope composition of the outer liquid core that contains ca. 83% of Earth's total iron to within ± 0.020‰ of the chondritic δ56Fe/ 54Fe value. These calculations allow to interprete magmatic iron meteorites ( δ56Fe/ 54Fe = + 0.047 ± 0.016‰; N = 8) to be representative for the Earth's inner metallic core. Eight terrestrial basalt samples yield a homogeneous Fe isotope composition with an average δ56Fe/ 54Fe value of + 0.072 ± 0.016‰. The observation that terrestrial basalts appear to be slightly heavier than mantle xenoliths and that thus partial mantle melting preferentially transfers heavy iron into the melt [S. Weyer, A.D. Anbar, G.P. Brey, C. Munker, K. Mezger and A.B. Woodland, Iron isotope fractionation during planetary differentiation, Earth and Planetary Science Letters 240(2), 251-264, 2005.] is intriguing, but also raises some important questions: first it is questionable whether the

  5. The role of stable isotopes in understanding rainfall ...

    EPA Pesticide Factsheets

    The isotopic composition of water transmitted by the canopy as throughfall or stemflow reflects important hydrologic processes occurring in the canopy. A synthesis of the literature shows that complex spatiotemporal variations of isotopic composition are created by canopy interception. As a whole, the studies suggest a set of controlling factors including fractionation, exchange among liquid and vapor phase water, and spatiotemporal redistribution along varying canopy flowpaths. However, our limited understanding of physical processes and water routing in the canopy limits the ability to discern all details for predicting interception isotope effects. We suggest that the isotopic composition of throughfall and stemflow may be the key to improve our understanding of water storage and transport in the canopy, similar to how isotopic analysis contributed to progress in our understanding of watershed runoff processes. While interception isotope effects have largely been studied under the premise that they are a source of error, previous works also indicate a wide range of possible interactions that intercepted water may have with the canopy and airspace. We identify new research questions that may be answered by stable isotopes as a path forward in examining and generalizing small-scale interception processes that could facilitate integration of interception into watershed ecohydrological concepts. Evaporation from forest canopies (interception loss) is a prominent

  6. Position-specific isotope modeling of organic micropollutants transformations through different reaction pathways

    NASA Astrophysics Data System (ADS)

    Jin, Biao; Rolle, Massimo

    2016-04-01

    Organic compounds are produced in vast quantities for industrial and agricultural use, as well as for human and animal healthcare [1]. These chemicals and their metabolites are frequently detected at trace levels in fresh water environments where they undergo degradation via different reaction pathways. Compound specific stable isotope analysis (CSIA) is a valuable tool to identify such degradation pathways in different environmental systems. Recent advances in analytical techniques have promoted the fast development and implementation of multi-element CSIA. However, quantitative frameworks to evaluate multi-element stable isotope data and incorporating mechanistic information on the degradation processes [2,3] are still lacking. In this study we propose a mechanism-based modeling approach to simultaneously evaluate concentration as well as bulk and position-specific multi-element isotope evolution during the transformation of organic micropollutants. The model explicitly simulates position-specific isotopologues for those atoms that experience isotope effects and, thereby, provides a mechanistic description of isotope fractionation occurring at different molecular positions. We validate the proposed approach with the concentration and multi-element isotope data of three selected organic micropollutants: dichlorobenzamide (BAM), isoproturon (IPU) and diclofenac (DCF). The model precisely captures the dual element isotope trends characteristic of different reaction pathways and their range of variation consistent with observed multi-element (C, N) bulk isotope fractionation. The proposed approach can also be used as a tool to explore transformation pathways in scenarios for which position-specific isotope data are not yet available. [1] Schwarzenbach, R.P., Egli, T., Hofstetter, T.B., von Gunten, U., Wehrli, B., 2010. Global Water Pollution and Human Health. Annu. Rev. Environ. Resour. doi:10.1146/annurev-environ-100809-125342. [2] Jin, B., Haderlein, S.B., Rolle, M

  7. Mass spectrometric measurement of hydrogen isotope fractionation for the reactions of chloromethane with OH and Cl

    NASA Astrophysics Data System (ADS)

    Keppler, Frank; Bahlmann, Enno; Greule, Markus; Schöler, Heinz Friedrich; Wittmer, Julian; Zetzsch, Cornelius

    2018-05-01

    Chloromethane (CH3Cl) is an important provider of chlorine to the stratosphere but detailed knowledge of its budget is missing. Stable isotope analysis is a potentially powerful tool to constrain CH3Cl flux estimates. The largest degree of isotope fractionation is expected to occur for deuterium in CH3Cl in the hydrogen abstraction reactions with its main sink reactant tropospheric OH and its minor sink reactant Cl atoms. We determined the isotope fractionation by stable hydrogen isotope analysis of the fraction of CH3Cl remaining after reaction with hydroxyl and chlorine radicals in a 3.5 m3 Teflon smog chamber at 293 ± 1 K. We measured the stable hydrogen isotope values of the unreacted CH3Cl using compound-specific thermal conversion isotope ratio mass spectrometry. The isotope fractionations of CH3Cl for the reactions with hydroxyl and chlorine radicals were found to be -264±45 and -280±11 ‰, respectively. For comparison, we performed similar experiments using methane (CH4) as the target compound with OH and obtained a fractionation constant of -205±6 ‰ which is in good agreement with values previously reported. The observed large kinetic isotope effects are helpful when employing isotopic analyses of CH3Cl in the atmosphere to improve our knowledge of its atmospheric budget.

  8. NMR studies of double proton transfer in hydrogen bonded cyclic N,N'-diarylformamidine dimers: conformational control, kinetic HH/HD/DD isotope effects and tunneling.

    PubMed

    Lopez, Juan Miguel; Männle, Ferdinand; Wawer, Iwona; Buntkowsky, Gerd; Limbach, Hans-Heinrich

    2007-08-28

    Using dynamic NMR spectroscopy, the kinetics of the degenerate double proton transfer in cyclic dimers of polycrystalline (15)N,(15)N'-di-(4-bromophenyl)-formamidine (DBrFA) have been studied including the kinetic HH/HD/DD isotope effects in a wide temperature range. This transfer is controlled by intermolecular interactions, which in turn are controlled by the molecular conformation and hence the molecular structure. At low temperatures, rate constants were determined by line shape analysis of (15)N NMR spectra obtained using cross-polarization (CP) and magic angle spinning (MAS). At higher temperatures, in the microsecond time scale, rate constants and kinetic isotope effects were obtained by a combination of longitudinal (15)N and (2)H relaxation measurements. (15)N CPMAS line shape analysis was also employed to study the non-degenerate double proton transfer of polycrystalline (15)N,(15)N'-diphenyl-formamidine (DPFA). The kinetic results are in excellent agreement with the kinetics of DPFA and (15)N,(15)N'-di-(4-fluorophenyl)-formamidine (DFFA) studied previously for solutions in tetrahydrofuran. Two large HH/HD and HD/DD isotope effects are observed in the whole temperature range which indicates a concerted double proton transfer mechanism in the domain of the reaction energy surface. The Arrhenius curves are non-linear indicating a tunneling mechanism. Arrhenius curve simulations were performed using the Bell-Limbach tunneling model. The role of the phenyl group conformation and hydrogen bond compression on the barrier of the proton transfer is discussed.

  9. Modeling stable isotope transport in metamorphic and hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Baumgartner, L. P.; Mueller, T.; Skora, S.; Begue, F.

    2007-12-01

    Stable isotopes are powerful tools for deciphering the fluid flow histories of metamorphic terrains. The nature of fluid flow, fluid sources, and fluid fluxes can be delineated in well constrained studies. Continuum mechanics models for stable isotope fluid-rock exchange were developed and used over the last three decades in an attempt to accurately interpret the signatures left behind by fluid flow in the earths crust. The efforts have been hampered by the realization that the exchange of many stable isotopes, e.g. oxygen and carbon, by intracrystalline diffusion, hence without re-organization of the crystal lattice, appears to be too slow to achieve significant exchange. This should lead to relatively flat isotopic exchange profiles on hand-, outcrop, or aureole scale. Nevertheless, isotopic fronts are typically sharp (sub mm to cm scale), when measured in the field. This has lead to the suggestion that these sharp fronts correspond to the sides of infiltration fronts, implying the data to have been collected at a high angle to the infiltration direction. Nevertheless, the fact that the oxygen and carbon fronts are located at the same place is not explained by this. A review of published carbon and oxygen data reveals that many contact aureoles show linear trends in oxygen-carbon isotope ratio diagrams for carbonate sample suits. This implies that the fluid composition infiltrating the aureoles had essentially an X(CO2) of 0.5. This is in contrast to skarn mineralogy developed, which requires a water-rich fluid, in agreement with the general notion that igneous fluids are water-rich. These and other observations indicate that the mass transport equation used for stable isotope exchange needs to be improved to model appropriately the actual isotope kinetics during fluid-rock exchange. Detailed isotope studies on systems where net transport reactions are driven by mass transport have led us to identify different exchange mechanisms, including: a) the stable isotope

  10. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearson, Scott, F.; Levey, Douglas, J.; Greenberg, Catheryn, H.

    2003-02-28

    Pearson, S.F., D.J. Levey, C.H. Greenberg, and C.M. del Rio. 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia. 135:516-523. The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped warblers (Dendroica coronata) to determine d15N and d13C turnover rates for blood, d15N and d13C diet-tissue discrimination factors, andmore » diet-tissue relationships for blood and feathers. After 3 weeks on a common diet, 36 warblers were assigned to one of four diets differing in the relative proportion of fruit and insects. Plasma half-life estimates ranged from 0.4 to 0.7 days for d13C and from 0.5 to 1.7 days for d15N. Half-life did not differ among diets. Whole blood half-life for d13C ranged from 3.9 to 6.1 days. Yellow-rumped warbler tissues were enriched relative to diet by 1.7.3.6% for nitrogen isotopes and by 1.2 to 4.3% for carbon isotopes, depending on tissue and diet. Consistent with previous studies, feathers were the most enriched and whole blood and plasma were the least enriched or, in the case of carbon, slightly depleted relative to diet. In general, tissues were more enriched relative to diet for birds with high percentages of insects. For all tissues, carbon and nitrogen isotope discrimination factors increased with carbon and nitrogen concentrations of diets. The isotopic signature of plasma increased linearly with the sum of the isotopic signature of the diet and the discrimination factor. Because the isotopic signature of tissues depends on both elemental concentration and isotopic signature of the diet, attempts to reconstruct diet from stable isotope

  11. The Effects of Core Composition on Iron Isotope Fractionation During Planetary Differentiation

    NASA Astrophysics Data System (ADS)

    Elardo, S. M.; Shahar, A.; Caracas, R.; Mock, T. D.; Sio, C. K. I.

    2018-05-01

    High pressure and temperature isotope exchange experiments and density functional theory calculations show how the composition of planetary cores affects the fractionation of iron isotopes during planetary differentiation.

  12. Compelling Research Opportunities using Isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    ) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.« less

  13. Methane Production Pathways in a California Rice Paddy: Isotopic Evidence for Substantial CO2 Reduction as Cause for Isotopically Light Emitted CH4 Carbon

    NASA Astrophysics Data System (ADS)

    Tyler, S. C.; McMillan, A. M.; Bearden, K.; Chidthaisong, A.; Macalady, J.

    2003-12-01

    We report measurements of δ 13C of emitted CH4 and sediment CH4 and CO2 during the 1999 rice-growing season near Maxwell, CA. Two treatments, one with rice straw incorporated from the previous season and one without rice straw were studied. The δ 13C value of emitted CH4 was consistently lighter isotopically (-67‰ to -83‰ throughout the season) in both straw incorporated and straw removed (burned) plots than in fields we have studied in Texas, Kenya, and Japan. Measured isotopic values of the production zone CH4 were compared to a two-point mixing curve representative of isotopic CH4 produced from either pure methyl-group fermentation or CO2 reduction pathways to partition the production pathways and to track seasonal changes in the production processes. Our sediment CH4 and CO2 isotope data indicate that fermentation was rarely the dominant methanogenic pathway - on the contrary CO2 reduction with H2 was more prevalent than fermentation methanogenesis throughout most of the season. The relatively isotopically light CH4 emitted by the paddy fields is also a product of oxidation and stem-transport processes which have isotopic effects of their own. These effects are discussed in context with the methanogenic isotope effects to provide a complete picture of the paddy field CH4 carbon isotope system.

  14. A kinetic model for thermally induced hydrogen and carbon isotope fractionation of individual n-alkanes in crude oil

    NASA Astrophysics Data System (ADS)

    Tang, Yongchun; Huang, Yongsong; Ellis, Geoffrey S.; Wang, Yi; Kralert, Paul G.; Gillaizeau, Bruno; Ma, Qisheng; Hwang, Rong

    2005-09-01

    A quantitative kinetic model has been proposed to simulate the large D and 13C isotope enrichments observed in individual n-alkanes (C 13-C 21) during artificial thermal maturation of a North Sea crude oil under anhydrous, closed-system conditions. Under our experimental conditions, average n-alkane δ 13C values increase by ˜4‰ and δD values increase by ˜50‰ at an equivalent vitrinite reflectance value of 1.5%. While the observed 13C-enrichment shows no significant dependence on hydrocarbon chain length, thermally induced D-enrichment increases with increasing n-alkane carbon number. This differential fractionation effect is speculated to be due to the combined effect of the greater extent of thermal cracking of higher molecular weight, n-alkanes compared to lower molecular weight homologues, and the generation of isotopically lighter, lower molecular weight compounds. This carbon-number-linked hydrogen isotopic fractionation behavior could form the basis of a new maturity indicator to quantitatively assess the extent of oil cracking in petroleum reservoirs. Quantum mechanical calculations of the average change in enthalpy (ΔΔH ‡) and entropy (ΔΔS ‡) as a result of isotopic substitution in n-alkanes undergoing homolytic cleavage of C-C bonds lead to predictions of isotopic fractionation that agree quite well with our experimental results. For n-C 20 ( n-icosane), the changes in enthalpy are calculated to be ˜1340 J mol -1 (320 cal mol -1) and 230 J mol -1 (55 cal mol -1) for D-H and 13C- 12C, respectively. Because the enthalpy term associated with hydrogen isotope fractionation is approximately six times greater than that for carbon, variations in δD values for individual long-chain hydrocarbons provide a highly sensitive measure of the extent of thermal alteration experienced by the oil. Extrapolation of the kinetic model to typical geological heating conditions predicts significant enrichment in 13C and D for n-icosane at equivalent vitrinite

  15. Effects of preservation methods of muscle tissue from upper-trophic level reef fishes on stable isotope values (δ (13)C and δ (15)N).

    PubMed

    Stallings, Christopher D; Nelson, James A; Rozar, Katherine L; Adams, Charles S; Wall, Kara R; Switzer, Theodore S; Winner, Brent L; Hollander, David J

    2015-01-01

    Research that uses stable isotope analysis often involves a delay between sample collection in the field and laboratory processing, therefore requiring preservation to prevent or reduce tissue degradation and associated isotopic compositions. Although there is a growing literature describing the effects of various preservation techniques, the results are often contextual, unpredictable and vary among taxa, suggesting the need to treat each species individually. We conducted a controlled experiment to test the effects of four preservation methods of muscle tissue from four species of upper trophic-level reef fish collected from the eastern Gulf of Mexico (Red Grouper Epinephelus morio, Gag Mycteroperca microlepis, Scamp Mycteroperca phenax, and Red Snapper Lutjanus campechanus). We used a paired design to measure the effects on isotopic values for carbon and nitrogen after storage using ice, 95% ethanol, and sodium chloride (table salt), against that in a liquid nitrogen control. Mean offsets for both δ (13)C and δ (15)N values from controls were lowest for samples preserved on ice, intermediate for those preserved with salt, and highest with ethanol. Within species, both salt and ethanol significantly enriched the δ (15)N values in nearly all comparisons. Ethanol also had strong effects on the δ (13)C values in all three groupers. Conversely, for samples preserved on ice, we did not detect a significant offset in either isotopic ratio for any of the focal species. Previous studies have addressed preservation-induced offsets in isotope values using a mass balance correction that accounts for changes in the isotope value to that in the C/N ratio. We tested the application of standard mass balance corrections for isotope values that were significantly affected by the preservation methods and found generally poor agreement between corrected and control values. The poor performance by the correction may have been due to preferential loss of lighter isotopes and

  16. Insights into dechlorination of PCE and TCE from carbon isotope fractionation by vitamin B12

    NASA Astrophysics Data System (ADS)

    Slater, G.; Sherwood Lollar, B.; Lesage, S.; Brown, S.

    2003-04-01

    Reductive dechlorination of perchloroethylene (PCE) and trichloroethylene (TCE) by vitamin B12 is both a potential remediation technique and an analogue of the microbial reductive dechlorination reaction. Stable carbon isotopic analysis, an effective and powerful tool for the investigation and monitoring of contaminant remediation, was used to characterize the isotopic effects of reductive dechlorination of PCE and TCE by vitamin B12 in laboratory microcosms. 10 mg/L vitamin B12 degraded greater than 90% of an initial concentration of PCE of 20 mg/L. TCE, the primary product of PCE degradation, accounted for between 64 - 72% of the PCE degraded. In experiments with TCE, 147 mg/L vitamin B12 degraded greater than 90% of an initial concentration of TCE of 20 mg/L. Cis-dichloroethene (cDCE), the primary product of TCE degradation, accounted for between 30 - 35% of the TCE degraded. Degradation of both PCE and TCE exhibited first order kinetics. Strong isotopic fractionation of the reactant PCE and of the reactant TCE was observed over the course of degradation. This fractionation could be described by a Rayleigh model with enrichment factors between -16.5 ppm and -15.8 ppm for PCE, and -17.2 ppm and -16.6 ppm for TCE. Fractionation was similar in all four experiments, with a mean enrichment factor of -16.5 +/- 0.6 ppm. These large enrichment factors indicate that isotopic analysis can be used to assess the occurrence of dechlorination of PCE and TCE by vitamin B12 in remediation situations. Significantly, the Rayleigh model could be used to predict the isotopic compositions of the major products of the reaction as well as the reactant, notwithstanding the lack of complete mass balance observed between product and reactant. This evidence suggests that isotopic fractionation is taking place during complexation of the chlorinated ethenes to vitamin B12, as has been suggested for reductive dechlorination by zero valent iron. The differences between e for this reaction and

  17. Soil drying effects on the carbon isotope composition of soil respiration

    EPA Science Inventory

    Stable isotopes are used widely as a tool for determining sources of carbon (C) fluxes in ecosystem C studies. Environmental factors that change over time, such as moisture, can create dynamic changes in the isotopic composition of C assimilated by plants, and offers a unique opp...

  18. The Effect of Nickel on Iron Isotope Fractionation and Implications for the Earth's Core

    NASA Astrophysics Data System (ADS)

    Reagan, M. M.; Shahar, A.; Elardo, S. M.; Liu, J.; Xiao, Y.; Mao, W. L.

    2017-12-01

    The Earth's core is thought to be composed mainly of an iron-rich iron nickel (FeNi) alloy. Therefore, determining the behavior of these alloys at core conditions is crucial for interpreting and constraining geophysical and geochemical models. Understanding the effect of nickel on iron isotope fractionation can shed light on planetary core formation. We collected a series of phonon excitation spectra using nuclear resonant inelastic x-ray scattering (NRIXS) on 57Fe-enriched FeNi alloys with varying (Fe0.9Ni0.1, Fe0.8Ni0.2, Fe0.7Ni0.3) nickel content in a diamond anvil cell at pressures up to 50 GPa. All three alloys studied exhibited differences from pure Fe, indicating that increasing nickel content could have an effect on iron isotope fractionation which would have implications for planetary core formation and provide constraints the bulk composition for terrestrial planets.

  19. Finite mixture models for the computation of isotope ratios in mixed isotopic samples

    NASA Astrophysics Data System (ADS)

    Koffler, Daniel; Laaha, Gregor; Leisch, Friedrich; Kappel, Stefanie; Prohaska, Thomas

    2013-04-01

    Finite mixture models have been used for more than 100 years, but have seen a real boost in popularity over the last two decades due to the tremendous increase in available computing power. The areas of application of mixture models range from biology and medicine to physics, economics and marketing. These models can be applied to data where observations originate from various groups and where group affiliations are not known, as is the case for multiple isotope ratios present in mixed isotopic samples. Recently, the potential of finite mixture models for the computation of 235U/238U isotope ratios from transient signals measured in individual (sub-)µm-sized particles by laser ablation - multi-collector - inductively coupled plasma mass spectrometry (LA-MC-ICPMS) was demonstrated by Kappel et al. [1]. The particles, which were deposited on the same substrate, were certified with respect to their isotopic compositions. Here, we focus on the statistical model and its application to isotope data in ecogeochemistry. Commonly applied evaluation approaches for mixed isotopic samples are time-consuming and are dependent on the judgement of the analyst. Thus, isotopic compositions may be overlooked due to the presence of more dominant constituents. Evaluation using finite mixture models can be accomplished unsupervised and automatically. The models try to fit several linear models (regression lines) to subgroups of data taking the respective slope as estimation for the isotope ratio. The finite mixture models are parameterised by: • The number of different ratios. • Number of points belonging to each ratio-group. • The ratios (i.e. slopes) of each group. Fitting of the parameters is done by maximising the log-likelihood function using an iterative expectation-maximisation (EM) algorithm. In each iteration step, groups of size smaller than a control parameter are dropped; thereby the number of different ratios is determined. The analyst only influences some control

  20. Iron and zinc isotope fractionation during uptake and translocation in rice (Oryza sativa) grown in oxic and anoxic soils

    NASA Astrophysics Data System (ADS)

    Arnold, Tim; Markovic, Tamara; Kirk, Guy J. D.; Schönbächler, Maria; Rehkämper, Mark; Zhao, Fangjie J.; Weiss, Dominik J.

    2015-11-01

    Stable isotope fractionation is emerging quickly as a powerful novel technique to study metal uptake and translocation in plants. Fundamental to this development is a thorough understanding of the processes that lead to isotope fractionation under differing environmental conditions. In this study, we investigated Zn and Fe isotope fractionation in rice grown to maturity in anaerobic and aerobic soils under greenhouse conditions. The overall Zn isotope fractionation between the soil and above ground plant material was negligible in aerobic soil but significant in anaerobic soil with isotopically lighter Zn in the rice plant. The observed range of fractionation is in line with previously determined fractionations of Zn in rice grown in hydroponic solutions and submerged soils and emphasizes the effect of taking up different chemical forms of Zn, most likely free and organically complexed Zn. The Zn in the grain was isotopically lighter than in the rest of the above ground plant in rice grown in aerobic and anaerobic soils alike. This suggests that in the course of the grain loading and during the translocation within the plant important biochemical and/or biophysical processes occur. The isotope fractionation observed in the grains would be consistent with an unidirectional controlled transport from shoot to grain with a fractionation factor of α ≈ 0.9994. Iron isotopes showed an isotopic lighter signature in shoot and grain compared to the bulk soil or the leachate in aerobic and anaerobic soils alike. The negative direction of isotopic fractionation is consistent with possible changes in the redox state of Fe occurring during the uptake and translocation processes. The isotope fractionation pattern between shoots and grain material are different for Zn and Fe which finally suggests that different mechanisms operate during translocation and grain-loading in rice for these two key micronutrients.