Science.gov

Sample records for observed large circular

  1. Reading Materials in Large Type. Reference Circular.

    ERIC Educational Resources Information Center

    Ovenshire, Ruthann, Comp.

    Listed in the circular are approximately 32 commercial and volunteer producers of large type materials, approximately 50 large type books for reference and special needs, and five further sources of large type materials. Usually given for each alphabetically listed producer are the address, specialty (whether producer of specific categories or of…

  2. Large Circular Basin - 1300-km diameter

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Close-up view of one-half of a 1300-km diameter circular basin the largest observed on Mercury. The other half is hidden beyond the terminator to the left. Hills and valleys extend in a radial fashion outward from the main ring. Interior of the large basin is completely flooded by plains materials; adjacent lowlands are also partially flooded and superimposed on the plains are bowl shaped craters. Wrinkle ridges are abundant on the plains materials. The area shown is 1008 miles (1600 km) from the top to the bottom of the picture. Sun's illumination is from the right. Blurred linear lines extending across the picture near bottom are missing data lines that have been filled in by the computer. Mariner 10 encountered Mercury on Friday, March 29th, 1974, passing the planet on the darkside 431 miles (690-km) from the surface.

    The Mariner 10 mission, managed by the Jet Propulsion Laboratory for NASA's Office of Space Science, explored Venus in February 1974 on the way to three encounters with Mercury-in March and September 1974 and in March 1975. The spacecraft took more than 7,000 photos of Mercury, Venus, the Earth and the Moon.

    NOTE: This image was scanned from physical media.

  3. Accelerator considerations of large circular colliders

    NASA Astrophysics Data System (ADS)

    Chao, Alex

    2016-07-01

    As we consider the tremendous physics reaches of the big future circular electron-positron and proton-proton colliders, it might be advisable to keep a close track of what accelerator challenges they face. Good progresses are being made, and yet it is reported here that substantial investments in funding, manpower, as well as a long sustained time to the R&D efforts will be required in preparation to realize these dream colliders.

  4. Large-amplitude circularly polarized electromagnetic waves in magnetized plasma

    SciTech Connect

    Vasko, I. Y. Artemyev, A. V.; Zelenyi, L. M.

    2014-05-15

    We consider large-amplitude circularly polarized (LACP) waves propagating in a magnetized plasma. It is well-known that the dispersion relation for such waves coincides with the dispersion relation given by the linear theory. We develop the model of LACP wave containing a finite population of Cerenkov resonant particles. We find that the current of resonant particles modifies the linear dispersion relation. Dispersion curves of low-frequency (i.e., whistler and magnetosonic) waves are shifted toward larger values of the wave vector, i.e., waves with arbitrarily large wavelengths do not exist in this case. Dispersion curves of high-frequency waves are modified so that the wave phase velocity becomes smaller than the speed of light.

  5. Large quasi-circular features beneath frost on Triton

    NASA Astrophysics Data System (ADS)

    Helfenstein, Paul; Veverka, Joseph; McCarthy, Derek; Lee, Pascal; Hillier, John

    1992-02-01

    Specially processed Voyager 2 images of Neptune's largest moon, Triton, reveal three large quasi-circular features ranging in diameter from 280 to 935 km within Triton's equatorial region. The largest of these features contains a central irregularly shaped area of comparatively low albedo about 380 km in diameter, surrounded by crudely concentric annuli of higher albedo materials. None of the features exhibit significant topographic expression, and all appear to be primarily albedo markings. The features are located within a broad equatorial band of anomalously transparent frost that renders them nearly invisible at the large phase angles (alpha greater than 90 deg) at which Voyager obtained its highest resolution coverage of Triton. The features can be discerned at smaller phase angles (alpha = 66 deg) at which the frost only partially masks underlying albedo contrasts. The origin of the features is uncertain but may have involved regional cryovolcanic activity.

  6. Large quasi-circular features beneath frost on Triton

    NASA Technical Reports Server (NTRS)

    Helfenstein, Paul; Veverka, Joseph; Mccarthy, Derek; Lee, Pascal; Hillier, John

    1992-01-01

    Specially processed Voyager 2 images of Neptune's largest moon, Triton, reveal three large quasi-circular features ranging in diameter from 280 to 935 km within Triton's equatorial region. The largest of these features contains a central irregularly shaped area of comparatively low albedo about 380 km in diameter, surrounded by crudely concentric annuli of higher albedo materials. None of the features exhibit significant topographic expression, and all appear to be primarily albedo markings. The features are located within a broad equatorial band of anomalously transparent frost that renders them nearly invisible at the large phase angles (alpha greater than 90 deg) at which Voyager obtained its highest resolution coverage of Triton. The features can be discerned at smaller phase angles (alpha = 66 deg) at which the frost only partially masks underlying albedo contrasts. The origin of the features is uncertain but may have involved regional cryovolcanic activity.

  7. Microfabrication of large-area circular high-stress silicon nitride membranes for optomechanical applications

    NASA Astrophysics Data System (ADS)

    Serra, E.; Bawaj, M.; Borrielli, A.; Di Giuseppe, G.; Forte, S.; Kralj, N.; Malossi, N.; Marconi, L.; Marin, F.; Marino, F.; Morana, B.; Natali, R.; Pandraud, G.; Pontin, A.; Prodi, G. A.; Rossi, M.; Sarro, P. M.; Vitali, D.; Bonaldi, M.

    2016-06-01

    In view of the integration of membrane resonators with more complex MEMS structures, we developed a general fabrication procedure for circular shape SiNx membranes using Deep Reactive Ion Etching (DRIE). Large area and high-stress SiNx membranes were fabricated and used as optomechanical resonators in a Michelson interferometer, where Q values up to 1.3 × 106 were measured at cryogenic temperatures, and in a Fabry-Pérot cavity, where an optical finesse up to 50000 has been observed.

  8. Large-eddy simulation of turbulent circular jet flows

    SciTech Connect

    Jones, S. C.; Sotiropoulos, F.; Sale, M. J.

    2002-07-01

    This report presents a numerical method for carrying out large-eddy simulations (LES) of turbulent free shear flows and an application of a method to simulate the flow generated by a nozzle discharging into a stagnant reservoir. The objective of the study was to elucidate the complex features of the instantaneous flow field to help interpret the results of recent biological experiments in which live fish were exposed to the jet shear zone. The fish-jet experiments were conducted at the Pacific Northwest National Laboratory (PNNL) under the auspices of the U.S. Department of Energy’s Advanced Hydropower Turbine Systems program. The experiments were designed to establish critical thresholds of shear and turbulence-induced loads to guide the development of innovative, fish-friendly hydropower turbine designs.

  9. Circularity measuring system: A shape gauge designed especially for use on large objects

    NASA Technical Reports Server (NTRS)

    Rohrkaste, G. R.

    1990-01-01

    The Circularity Measuring System (CMS) was developed to make an in-situ determination of shape similarity for selected fit large cylinders (RSRM segments). It does this to a repeatable accuracy of 0.10 mm (0.004 inch). This is less that the goal of 0.07 mm (0.003 inch), but was determined adequate because of the addition of an assembly aid that increased the entry chamfer of the clevis side of the joint. The usefulness of the CMS is demonstrated by the application to measurements other than its specified design purpose, such as submarine hull circularity, SRM mid-case circularity, as well as circularity of interfacing SRM tooling, specifically the rounding devices and horizontal disassembly devices. Commercialization of the tool is being pursued, since it is an enhancement of metrology technology for circularity determination. The most accurate in-situ technology it replaces is determined from a template. The CMS is an improvement in accuracy and operation.

  10. Large-Scale periodic solar velocities: An observational study

    NASA Technical Reports Server (NTRS)

    Dittmer, P. H.

    1977-01-01

    Observations of large-scale solar velocities were made using the mean field telescope and Babcock magnetograph of the Stanford Solar Observatory. Observations were made in the magnetically insensitive ion line at 5124 A, with light from the center (limb) of the disk right (left) circularly polarized, so that the magnetograph measures the difference in wavelength between center and limb. Computer calculations are made of the wavelength difference produced by global pulsations for spherical harmonics up to second order and of the signal produced by displacing the solar image relative to polarizing optics or diffraction grating.

  11. Intensity-dependent circular polarization and circumstellar magnetic fields from the observation of SiO masers

    NASA Technical Reports Server (NTRS)

    Nedoluha, Gerald E.; Watson, William D.

    1994-01-01

    A new aspect of the propagation of astrophysical maser radiation in the presence of a magnetic field is described in which circular polarization is created. The resulting antisymmetric spectral line profile for this circular polarization resembles that produced by the ordinary Zeeman effect when the Zeeman splittings are much less than the spectral line breadth. It is caused by the change, with increasing maser intensity, in the axis of symmetry for the molecular quantum states from a direction that is parallel to the magnetic field to a direction that is parallel to the direction of propagation. When the maser is radiatively saturated, and the rate for stimulated emission is within an order of magnitude of the Zeeman splitting in frequency units, this 'intensity-dependent circular polarization' is greater than that due to the ordinary Zeeman effect by factors as large as 1000. The circular polarization that is observed in the spectra of circumstellar SiO (J = 1-0) masers associated with late-type giants and supergiants may then be caused by magnetic fields as weak as about 10 mG. With the standard Zeeman interpretation of the observations, magnetic fields of 10-100 G are indicated. The lower fields are similar to the limits obtained from the observation of the 22 GHz water masers which are typically somewhat further from the central star. The observed tendency for the fractional linear polarization of SiO masers to increase with increasing angular momentum of the molecular state is shown to be a likely result of anisotropic pumping. Errors are identified that invalidate a recent conflicting claim in the literature about the basic theory of maser polarization in the regime that is relevant here.

  12. Experimental study of noise emitted by circular cylinders with large roughness

    NASA Astrophysics Data System (ADS)

    Alomar, Antoni; Angland, David; Zhang, Xin; Molin, Nicolas

    2014-12-01

    The aerodynamic noise generated by high Reynolds number flow around a bluff body with large surface roughness was investigated. This is a relevant problem in many applications, in particular aircraft landing gear noise. A circular cylinder in cross-flow and a zero-pressure-gradient turbulent boundary layer with various types of roughness was tested in a series of wind tunnel experiments. It has been shown that distributed roughness covering a circular cylinder affects the spectra over the entire frequency range. Roughness noise is dominant at high frequencies, and the peak frequency is well described by Howe's roughness noise model when scaled with the maximum outer velocity. There are differences between hemispherical and cylindrical roughness elements for both the circular cylinder and the zero-pressure-gradient turbulent boundary layer cases, indicating a dependence on roughness shape, not described by the considered roughness noise models. Cylindrical roughness generates higher noise levels at the highest frequencies, especially for the zero-pressure-gradient turbulent boundary layer case. Cable-type roughness aligned with the mean flow does not generate roughness noise, and its spectrum has been found to collapse with the smooth cylinder at medium and high frequencies. At low and medium frequencies the noise spectra have the same features as the smooth cylinder, but with higher shedding peak levels and fall-off levels, despite the decrease in spanwise correlation length. Roughness induces early separation, and thus a shift of the spectra to lower frequencies.

  13. Vibrational Circular Dichroism Spectra for Large Molecules through Molecules-in-Molecules Fragment-Based Approach.

    PubMed

    Jose, K V Jovan; Beckett, Daniel; Raghavachari, Krishnan

    2015-09-01

    We present the first implementation of the vibrational circular dichroism (VCD) spectrum of large molecules through the Molecules-in-Molecules (MIM) fragment-based method. An efficient projection of the relevant higher energy derivatives from smaller fragments to the parent molecule enables the extension of the MIM method for the evaluation of VCD spectra (MIM-VCD). The overlapping primary subsystems in this work are constructed from interacting fragments using a number-based scheme and the dangling bonds are saturated with link hydrogen atoms. Independent fragment calculations are performed to evaluate the energies, Hessian matrix, atomic polar tensor (APT), and the atomic axial tensor (AAT). Subsequently, the link atom tensor components are projected back onto the corresponding host and supporting atoms through the Jacobian projection method, as in the ONIOM approach. In the two-layer model, the long-range interactions between fragments are accounted for using a less computationally intensive lower level of theory. The performance of the MIM model is calibrated on the d- and l-enantiomers of 10 carbohydrate benchmark molecules, with strong intramolecular interactions. The vibrational frequencies and VCD intensities are accurately reproduced relative to the full, unfragmented, results for these systems. In addition, the MIM-VCD method is employed to predict the VCD spectra of perhydrotriphenylene and cryptophane-A, yielding spectra in agreement with experiment. The accuracy and performance of the benchmark systems validate the MIM-VCD model for exploring vibrational circular dichroism spectra of large molecules.

  14. Circular polarization dependent cyclotron resonance in large-area graphene in ultrahigh magnetic fields

    NASA Astrophysics Data System (ADS)

    Booshehri, L. G.; Mielke, C. H.; Rickel, D. G.; Crooker, S. A.; Zhang, Q.; Ren, L.; Hároz, E. H.; Rustagi, A.; Stanton, C. J.; Jin, Z.; Sun, Z.; Yan, Z.; Tour, J. M.; Kono, J.

    2012-05-01

    Using ultrahigh magnetic fields up to 170 T and polarized midinfrared radiation with tunable wavelengths from 9.22 to 10.67 μm, we studied cyclotron resonance in large-area graphene grown by chemical vapor deposition. Circular polarization dependent studies reveal strong p-type doping for as-grown graphene, and the dependence of the cyclotron resonance on radiation wavelength allows for a determination of the Fermi energy. Thermal annealing shifts the Fermi energy to near the Dirac point, resulting in the simultaneous appearance of hole and electron cyclotron resonance in the magnetic quantum limit, even though the sample is still p-type, due to graphene's linear dispersion and unique Landau level structure. These high-field studies therefore allow for a clear identification of cyclotron resonance features in large-area, low-mobility graphene samples.

  15. Distribution of circular proteins in plants: large-scale mapping of cyclotides in the Violaceae

    PubMed Central

    Burman, Robert; Yeshak, Mariamawit Y.; Larsson, Sonny; Craik, David J.; Rosengren, K. Johan; Göransson, Ulf

    2015-01-01

    During the last decade there has been increasing interest in small circular proteins found in plants of the violet family (Violaceae). These so-called cyclotides consist of a circular chain of approximately 30 amino acids, including six cysteines forming three disulfide bonds, arranged in a cyclic cystine knot (CCK) motif. In this study we map the occurrence and distribution of cyclotides throughout the Violaceae. Plant material was obtained from herbarium sheets containing samples up to 200 years of age. Even the oldest specimens contained cyclotides in the preserved leaves, with no degradation products observable, confirming their place as one of the most stable proteins in nature. Over 200 samples covering 17 of the 23–31 genera in Violaceae were analyzed, and cyclotides were positively identified in 150 species. Each species contained a unique set of between one and 25 cyclotides, with many exclusive to individual plant species. We estimate the number of different cyclotides in the Violaceae to be 5000–25,000, and propose that cyclotides are ubiquitous among all Violaceae species. Twelve new cyclotides from six phylogenetically dispersed genera were sequenced. Furthermore, the first glycosylated derivatives of cyclotides were identified and characterized, further increasing the diversity and complexity of this unique protein family. PMID:26579135

  16. Post Main Sequence Orbital Circularization of Binary Stars in the Large and Small Magellanic Clouds.

    SciTech Connect

    Faccioli, L; Alcock, C; Cook, K

    2007-11-20

    We present results from a study of the orbits of eclipsing binary stars (EBs) in the Magellanic Clouds. The samples comprise 4510 EBs found in the Large Magellanic Cloud (LMC) by the MACHO project, 2474 LMC EBs found by the OGLE-II project (of which 1182 are also in the MACHO sample), 1380 in the Small Magellanic Cloud (SMC) found by the MACHO project, and 1317 SMC EBs found by the OGLE-II project (of which 677 are also in the MACHO sample); we also consider the EROS sample of 79 EBs in the bar of the LMC. Statistics of the phase differences between primary and secondary minima allow us to infer the statistics of orbital eccentricities within these samples. We confirm the well-known absence of eccentric orbit in close binary stars. We also find evidence for rapid circularization in longer period systems when one member evolves beyond the main sequence, as also found by previous studies.

  17. Null reconstruction of orthogonal circular polarization hologram with large recording angle.

    PubMed

    Wu, An'an; Kang, Guoguo; Zang, Jinliang; Liu, Ying; Tan, Xiaodi; Shimura, Tsutomu; Kuroda, Kazuo

    2015-04-01

    We report on the null reconstruction of polarization volume hologram recorded by orthogonal circularly polarized waves with a large cross angle. Based on the recently developed tensor theory for polarization holography, the disappearance of the reconstruction was analytically verified, where a nice agreement was found between the experimental and theoretical results. When the polarization and intensity hologram attain a balance, not only the null reconstruction but also the faithful reconstruction can be realized by the illumination of the orthogonal reference wave and original reference wave. As a consequence of the hologram recorded without paraxial approximation, the null reconstruction may lead to important applications, such as a potential enhancement in optical storage capacity for volume holograms.

  18. Nonlinear evolution of a large-amplitude circularly polarized Alfven wave: High beta

    NASA Technical Reports Server (NTRS)

    Ghosh, S.; Vinas, A. F.; Goldstein, M. L.

    1994-01-01

    The nonlinear dynamics following saturation of the parametric instabilities of a monochromatic field-aligned large-amplitude circularly polarized Alfven wave is investigated via direct numerical simulation in the case of high plasma beta and no wave dispersion. The magnetohydrodynamic (MHD) code permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Turbulent cascades develop after saturation of two coupled oblique three-wave parametric instabilities; one of which is an oblique filamentationlike instability reported earlier. Remnants of the parametric processes, as well as of the original Alfven pump wave, persist during late nonlinear times. Nearly incompressible MHD features such as spectral anisotropies appear as well.

  19. Nonlinear evolution of a large-amplitude circularly polarized Alfven wave: Low beta

    NASA Technical Reports Server (NTRS)

    Ghosh, S.; Goldstein, M. L.

    1994-01-01

    The nature of turbulent cascades arising from the parametric instabilities of a monochromatic field-aligned large-amplitude circularly polarized Alfven wave is investigated via direct numerical simulation for the case of low plasma Beta and no wave dispersion. The magnetohydrodynamic code permits nonlinear couplings in the parallel direction to the ambient magnetic field and one perpendicular direction. Compressibility is included in the form of a polytropic equation of state. Anisotropic turbulent cascades, similar to those found in early incompressible two-dimensional simulations, occur after nonlinear saturation of the parallel propagating decay instability. The turbulent spectrum can be divided into three regimes: the lowest wave numbers are dominated by lower sideband remnants of the parametric process, intermediate wave numbers display nearly incompressible dynamics, and the highest wave numbers are dominated by acoustic turbulence.

  20. Free boundary, high beta equilibrium in a large aspect ratio tokamak with nearly circular plasma boundary

    SciTech Connect

    Qin, H.; Reiman, A.

    1996-09-25

    An analytic solution is obtained for free-boundary, high-beta equilibria in large aspect ratio tokamaks with a nearly circular plasma boundary. In the absence of surface currents at the plasma-vacuum interface, the free-boundary equilibrium solution introduces constraints arising from the need to couple to an external vacuum field which is physically realizable with a reasonable set of external field coils. This places a strong constraint on the pressure profiles that are consistent with a given boundary shape at high {epsilon}{beta}{sub p}. The equilibrium solution also provides information on the flux surface topology. The plasma is bounded by a separatrix. Increasing the plasma pressure at fixed total current causes the plasma aperture to decrease in a manner that is described.

  1. Survey of large circular and octagonal tanks operated at Norwegian commercial smolt and post-smolt sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A survey was conducted to determine the geometry, operating parameters, and other key features of large circular or octagonal culture tanks used to produce Atlantic salmon smolt and post-smolt at six major Norwegian Atlantic salmon production companies. A total of 55 large tanks were reported at sev...

  2. Fabrication of a microarray using a combination of the large circular sense and antisense DNA.

    PubMed

    Doh, Kyung-Oh; Lee, Yun-Han; Han, Kil-Hwan; Uhm, Seok-Yong; Kim, Jong-Pil; Bae, Yun-Ui; Park, Jeong-Hoh; Moon, Ik-Jae; Park, Jong-Gu

    2010-01-01

    In the present study, single-stranded large circular (LC)-sense molecules were utilized as probes for DNA microarrays and showed stronger binding signals than those of PCR-amplified cDNA probes. A microarray experiment using 284 LC-sense DNA probes found 6 upregulated and 7 downregulated genes in A549 cells as compared to WI38VA13 cells. Repeated experiments showed largely consistent results, and microarray data strongly correlated with data acquired from quantitative real-time RT-PCR. A large array comprising 5,079 LC-sense DNA was prepared, and analysis of the mean differential expression from dye-swap experiments revealed 332 upregulated and 509 downregulated genes in A549 cells compared to WI38VA13 cells. Subsequent functional analysis using an LC-antisense library of overexpressed genes identified 28 genes involved in A549 cell growth. These experiments demonstrated the proper features of LC-sense molecules as probe DNA for microarray and the potential utility of the combination of LC-sense and -antisense libraries for an effective functional validation of genes.

  3. Fermi Observations of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Knödlseder, J.

    2010-05-01

    We report on observations of the Large Magellanic Cloud (LMC) with the Fermi Gamma-Ray Space Telescope. The LMC is clearly detected with the Large Area Telescope (LAT) and for the first time the emission is spatially well resolved in gamma-rays. Our observations reveal that the bulk of the gamma-ray emission arises from the 30 Doradus region. We discuss this result in light of the massive star populations that are hosted in this area and address implications for cosmic ray physics. We conclude by exploring the scientific potential of the ongoing Fermi observations on the study of high-energy phenomena in massive stars.

  4. An experimental approach to measure particle deposition in large circular ventilation ducts.

    PubMed

    Da, Guillaume; Géhin, Evelyne; Ben-Othmane, Mourad; Havet, Michel; Solliec, Camille; Motzkus, Charles

    2015-04-01

    The topic of this study is related to airborne particle dynamics in indoor environments. Lab-scale experiments have been performed to investigate particle deposition velocity to six different surfaces orientations (with respect to gravity) for fully developed turbulent flow in horizontal large circular ventilation ducts. Monodispersed aerosol particles (1-6 μm) were used in the deposition experiments. A very low particle mass (40 ng) was measured reliably above background level on duct surfaces by a means of a nondestructive stencil technique associated with fluorescence analysis. For 2-6 μm particles (diffusion and impaction regime), deposition rates to floors were much greater than rates to the ceiling and greater than rates to the wall. For 1-μm particles, the effect of surface orientation to particle deposition was not significant. Results were compared to the very few similar and published studies. This work was conducted in the frame of the CleanAirNet project which aimed at producing new knowledge, models, and techniques to help controlling the safety food stuffs, through a better control of aerosol particle (bioaerosols) transport and deposition in the ventilation networks of the food industry. PMID:24756675

  5. Psi-type circular dichroism of large molecular aggregates. III. Calculations

    SciTech Connect

    Kim, M.; Ulibarri, L.; Keller, D.; Maestre, M.F.; Bustamante, C.

    1986-03-15

    Computations have been carried out to determine how the magnitude and shape of the polymer and salt induced (psi)-type CD spectra depend on the structural properties of a collection of randomly oriented large chiral aggregates. Uniaxial polarizable groups located at the cubic lattice points have been used to model the aggregates. The structure of the model is similar to that of a cholesteric liquid crystal. All computations have been carried out for the case of polarizable groups possessing only one electronic transition between 200 and 320 nm. It is found that the radiation and intermediate couplings between the chromophores in the aggregate which are neglected in previous theories play an important role in determining the shape and magnitude of the psi-type CD spectrum. It is shown that when these couplings are included, only three-dimensional large chiral aggregates show huge and nonconservative psi-type CD spectra. It is shown that the magnitude of the psi-type CD spectrum is controlled by the volume, the chromophore density, and the pitch of the aggregate, while the shape of the psi-type CD spectrum is determined mostly by the pitch and the handedness of an aggregate. When the pitch is close to the center of the absorption band of the chromophore in the aggregate the most distorted (least conservative) psi-type CD spectrum is obtained. The CD spectra of aggregates with opposite handedness are mirror images of each other. It is shown that a rotationally disordered collection of chiral aggregates cannot give rise to a selective reflection of one circular polarization over the other as shown by liquid crystals. The results obtained confirm the theoretical predictions of the two previous papers in this series.

  6. Infrasonic observations of large scale HE events

    SciTech Connect

    Whitaker, R.W.; Mutschlecner, J.P.; Davidson, M.B.; Noel, S.D.

    1990-01-01

    The Los Alamos Infrasound Program has been operating since about mid-1982, making routine measurements of low frequency atmospheric acoustic propagation. Generally, we work between 0.1 Hz to 10 Hz; however, much of our work is concerned with the narrower range of 0.5 to 5.0 Hz. Two permanent stations, St. George, UT, and Los Alamos, NM, have been operational since 1983, collecting data 24 hours a day. This discussion will concentrate on measurements of large, high explosive (HE) events at ranges of 250 km to 5330 km. Because the equipment is well suited for mobile deployments, it can easily establish temporary observing sites for special events. The measurements in this report are from our permanent sites, as well as from various temporary sites. In this short report will not give detailed data from all sites for all events, but rather will present a few observations that are typical of the full data set. The Defense Nuclear Agency sponsors these large explosive tests as part of their program to study airblast effects. A wide variety of experiments are fielded near the explosive by numerous Department of Defense (DOD) services and agencies. This measurement program is independent of this work; use is made of these tests as energetic known sources, which can be measured at large distances. Ammonium nitrate and fuel oil (ANFO) is the specific explosive used by DNA in these tests. 6 refs., 6 figs.

  7. Circular Dichroism Observed by Photoemission from Ultrathin Bi2Te3 Films

    NASA Astrophysics Data System (ADS)

    Xu, Cai-Zhi; Liu, Yang; Yukawa, Ryu; Zhang, Long-Xiang; Miller, Tom; Chiang, Tai-Chang

    2015-03-01

    Circular dichroism (CD) observed by photoemission from the surface states of topological insulators has drawn much interest. It was initially attributed to the spin polarization or chiral orbital momentum of the initial states, but later proven to also involve the final states. The detailed mechanism remains controversial. To address this question, we have performed measurements of ultrathin films of the prototypical topological insulator Bi2Te3 over a wide range of film thickness and photon energy. The results show that the CD depends not only on the photon energy, but also on the film thickness in a nontrivial manner. A theoretical model has been developed that involves dipole transition, surface photoemission, and spin-orbit coupling. The computed results are in good agreement with the general trends of the data including sign reversals as a function of photon energy and film thickness. The complex behavior of the measured CD function is partially caused by modifications of both the initial and final states in the thin film geometry.

  8. Direct observation of depth profile of magnetic moment by magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Mun, Bongjin Simon; Yang, See-Hun; Mannella, Norman; Kay, Alex W.; Kim, Sang-Koog; Kortright, Jeffrey B.; Underwood, Jim H.; Hussain, Zahid; Fadley, Charles S.

    2001-03-01

    The magnetic properties at the interface between Fe and Cr wedge layers are investigated with a new depth-resolved soft x-ray photoemission spectroscopy (SXPS)[1], combined with magnetic circular dichroism (MCD). The layers of Fe (10 A)/ Cr (50 A wedge- shaped) are grown on a periodic multilayer (B 4 C(22.5A)/W(17.1 A)) _40, which provides the strong standing wave effects of 40 The unique angular dependence of photoelectron intensity of Fe and Cr has been observed at each different Cr wedge thickness and show excellent agreement with the theoretical calculation. To maximize the enhancement and contrast of standing wave effect inside of sample, the sample position is tuned to the Bragg angle position, at which the MCD measurement with SXPS along the different thickness of Cr wedge layer provides the depth profile of the magnetic moment of Fe and Cr. A strong antiparallel coupling across the interface of Cr magnetic moment is clearly resolved while the apparent reduction of Fe magnetic moment is observed near the interface. This observation is consistent with the other works on the same system [2] and even describes how the magnetic moment behaves inside of the sample from the top surface to the interface in one single sample preparation. In this experiment, a new depth-resolved SXPS has been successfully implemented to magnetic multilayer system and prove to be powerful technique to study the buried interface of magnetic system, as proposed by our former work [1]. [1] S.-H. Yang, B. S. Mun, A.W. Kay, S.-K. Kim, J. B. Kortright , J.H. Underwood, Z. Hussain, C. S. Fadley, Surf. Sci. 461 L557-L564 (2000) [2] G. Panaccione, F. Sirotti, E. Narducci, and G. Rossi, Phys. Rev. B 55, 389 (1997)

  9. Linear and circular polarimetry observations of gamma-ray burst afterglows

    NASA Astrophysics Data System (ADS)

    Wiersema, K.

    2013-07-01

    Follow-up observations of large numbers of gamma-ray burst (GRB) afterglows, facilitated by the Swift satellite, have produced a large sample of spectral energy distributions and light curves, from which the basic micro- and macrophysical parameters of afterglows may be derived. However, a number of phenomena have been observed that defy explanation by simple versions of the standard fireball model, leading to a variety of new models. Polarimetry has shown great promise as a diagnosis of afterglow physics, probing the magnetic field properties of the afterglow and geometrical effects (e.g. jet breaks). Unfortunately, high quality polarimetry of a significant sample of afterglows is difficult to acquire, requiring specialised instrumentation and observing modes. In this talk I will review the recent successes in afterglow polarimetry, also showing first results of new instruments and observing campaigns. I will particularly focus on jet breaks.

  10. Photo-induced large-scale circular surface-relief diffraction gratings on azo-glass

    NASA Astrophysics Data System (ADS)

    Leibold, James; Sabat, Ribal Georges

    2015-03-01

    Novel metallic light-interfering fixtures were designed and fabricated in order to achieve a laser interference pattern of constant-pitch, concentric and sinusoidal light variations. These fixtures consisted of annular rings with the inner diameter shaped conically. Azobenzene-containing solid thin-films were subsequently placed behind the fixture and circular surface-relief diffraction gratings were inscribed due to the azo molecules photochemical isomerization process. Gratings pitches were dependent on the fixture dimensions and ranged from 600 to 1400 nm with depths up to 250 nm.

  11. Relativistic mergers of black hole binaries have large, similar masses, low spins and are circular

    NASA Astrophysics Data System (ADS)

    Amaro-Seoane, Pau; Chen, Xian

    2016-05-01

    Gravitational waves are a prediction of general relativity, and with ground-based detectors now running in their advanced configuration, we will soon be able to measure them directly for the first time. Binaries of stellar-mass black holes are among the most interesting sources for these detectors. Unfortunately, the many different parameters associated with the problem make it difficult to promptly produce a large set of waveforms for the search in the data stream. To reduce the number of templates to develop, one must restrict some of the physical parameters to a certain range of values predicted by either (electromagnetic) observations or theoretical modelling. In this work, we show that `hyperstellar' black holes (HSBs) with masses 30 ≲ MBH/M⊙ ≲ 100, i.e black holes significantly larger than the nominal 10 M⊙, will have an associated low value for the spin, i.e. a < 0.5. We prove that this is true regardless of the formation channel, and that when two HSBs build a binary, each of the spin magnitudes is also low, and the binary members have similar masses. We also address the distribution of the eccentricities of HSB binaries in dense stellar systems using a large suite of three-body scattering experiments that include binary-single interactions and long-lived hierarchical systems with a highly accurate integrator, including relativistic corrections up to O(1/c^5). We find that most sources in the detector band will have nearly zero eccentricities. This correlation between large, similar masses, low spin and low eccentricity will help to accelerate the searches for gravitational-wave signals.

  12. Amplicon structure in multidrug-resistant murine cells: a nonrearranged region of genomic DNA corresponding to large circular DNA.

    PubMed Central

    Ståhl, F; Wettergren, Y; Levan, G

    1992-01-01

    Multidrug resistance (MDR) in tumor cell lines is frequently correlated with amplification of one or more mdr genes. Usually the amplified domain also includes several neighboring genes. Using pulsed-field gel electrophoresis, we have established a restriction map covering approximately 2,200 kb in the drug-sensitive mouse tumor cell line TC13K. The mapped region is located on mouse chromosome 5 and includes the three mdr genes, the gene for the calcium-binding sorcin protein, and a gene with unknown function designated class 5. Long-range maps of the amplified DNA sequences in five of six MDR sublines that had been independently derived from TC13K generally displayed the same pattern as did the parental cell line. All six MDR sublines exhibited numerous double minutes, and one of them displayed a homogeneously staining region in a subpopulation. Large circular molecules, most likely identical to one chromatid of the double minutes, were detected in four of the sublines by linearization with gamma irradiation. The size of the circles was about 2,500 kb, which correlated to a single unit of the amplified domain. We therefore propose that in four independent instances of MDR development, a single unit of about 2,500 kb has been amplified in the form of circular DNA molecules. The restriction enzyme map of the amplified unit is unchanged compared with that of the parental cell line, whereas the joining sites of the circular DNA molecules are not identical but are in the same region. Images PMID:1545798

  13. Crowder/grader units improve harvest efficiency in large circular tanks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of larger and deeper tanks can reduce building, labor and other aquaculture production costs. However, the ability to grade and transfer large numbers of fish is more challenging when using large tanks. At The Conservation Fund Freshwater Institute, the authors have developed and evaluated i...

  14. Observations of a large Dent disease cohort.

    PubMed

    Blanchard, Anne; Curis, Emmanuel; Guyon-Roger, Tiphaine; Kahila, Diana; Treard, Cyrielle; Baudouin, Véronique; Bérard, Etienne; Champion, Gérard; Cochat, Pierre; Dubourg, Julie; de la Faille, Renaud; Devuyst, Olivier; Deschenes, Georges; Fischbach, Michel; Harambat, Jérôme; Houillier, Pascal; Karras, Alexandre; Knebelmann, Bertrand; Lavocat, Marie-Pierre; Loirat, Chantal; Merieau, Elodie; Niaudet, Patrick; Nobili, François; Novo, Robert; Salomon, Rémi; Ulinski, Tim; Jeunemaître, Xavier; Vargas-Poussou, Rosa

    2016-08-01

    Dent disease classically combines low-molecular-weight proteinuria, hypercalciuria with nephrocalcinosis, and renal failure. Nephrotic range proteinuria, normal calciuria, and hypokalemia have been rarely reported. It is unknown whether the changes in phenotype observed over time are explained by a decrease in glomerular filtration rate (GFR) or whether there is any phenotype-genotype relationship. To answer this we retrospectively analyzed data from 109 male patients with CLCN5 mutations (Dent-1) and 9 patients with mutation of the OCRL gene (Dent-2). In Dent-1 disease, the estimated GFR decreased with age, by 1.0 to 1.6 ml/min per 1.73 m(2)/yr in the absence and presence of nephrocalcinosis, respectively, with no significant difference. Median values of low-molecular-weight proteinuria were in the nephrotic range and remained at the same level even in late renal disease. End-stage renal disease occurred in 12 patients, at a median age of 40 years. Hypercalciuria decreased with glomerular filtration and was absent in 40% of the patients under 30 and 85% of those over the age of 30. Hypophosphatemia did not resolve with age and calcitriol concentrations were in the upper normal range. Kalemia decreased with age, with half of the patients over the age of 18 presenting with hypokalemia. Thus, no phenotype/genotype correlation was observed in this cohort of patients with Dent disease.

  15. Launch window analysis of satellites in high eccentricity or large circular orbits

    NASA Technical Reports Server (NTRS)

    Renard, M. L.; Bhate, S. K.; Sridharan, R.

    1973-01-01

    Numerical methods and computer programs for studying the stability and evolution of orbits of large eccentricity are presented. Methods for determining launch windows and target dates are developed. Mathematical models are prepared to analyze the characteristics of specific missions.

  16. Large-eddy simulation of circular cylinder flow at subcritical Reynolds number: Turbulent wake and sound radiation

    NASA Astrophysics Data System (ADS)

    Guo, Li; Zhang, Xing; He, Guowei

    2016-02-01

    The flows past a circular cylinder at Reynolds number 3900 are simulated using large-eddy simulation (LES) and the far-field sound is calculated from the LES results. A low dissipation energy-conserving finite volume scheme is used to discretize the incompressible Navier-Stokes equations. The dynamic global coefficient version of the Vreman's subgrid scale (SGS) model is used to compute the sub-grid stresses. Curle's integral of Lighthill's acoustic analogy is used to extract the sound radiated from the cylinder. The profiles of mean velocity and turbulent fluctuations obtained are consistent with the previous experimental and computational results. The sound radiation at far field exhibits the characteristic of a dipole and directivity. The sound spectra display the -5/3 power law. It is shown that Vreman's SGS model in company with dynamic procedure is suitable for LES of turbulence generated noise.

  17. A model for simulating the influence of a spatial distribution of large circular macropores on surface runoff

    NASA Astrophysics Data System (ADS)

    Léonard, J.; Perrier, E.; de Marsily, G.

    2001-12-01

    This paper reports the development and test, at the scale of 1 m2, of an event- based model that aims at simulating the influence of a spatial distribution of large circular macropores on surface runoff. The main originality of this model is that it focuses on the way macropores are supplied with water at the soil surface, by coupling an original model for water interception by individual macropores to a high-resolution spatialized overland flow model. A three-step evaluation of the model was carried out, involving (1) an experimental test of the model for water interception by macropores; (2) a sensitivity analysis of the model to time and space discretization; and (3) a comparison between numerical and field results in the case of runoff on a crusted soil surface with a population of large macropores made by termites in the Sahel. The model was found to accurately simulate the effect of a spatial distribution of large macropores on runoff, and it showed that small heterogeneities, like macropores or areas where a crust has been destroyed, which cover a very limited proportion of the soil surface, can have a high impact on runoff.

  18. On the stability of self-consistent large amplitude waves in a cold plasma. I - Transverse circularly polarized waves in the absence of a large scale magnetic field

    NASA Technical Reports Server (NTRS)

    Lee, M. A.; Lerche, I.

    1978-01-01

    It is demonstrated that a self-consistent circularly polarized wave in an otherwise field-free homogeneous cold plasma is unstable to small amplitude perturbations. For either an electron-positron plasma or an electron-proton plasma the instability rate is at least about the order of the effective plasma frequency when the bulk flow speed is zero. For finite bulk flow speeds of the plasma, it is shown that the electron-positron plasma is unstable, again with a growth rate of the order of the effective plasma frequency; it is also shown that the electron-proton plasma is unstable (at least at small wave numbers, k) with a growth rate proportional to k. The calculated instability rates are conservative, for other modes not investigated here may be more unstable. The results of these calculations bear directly on the understanding of plasma systems thought to be driven by large amplitude waves.

  19. Characterization of Circular RNAs.

    PubMed

    Zhang, Yang; Yang, Li; Chen, Ling-Ling

    2016-01-01

    Accumulated lines of evidence reveal that a large number of circular RNAs are produced in transcriptomes from fruit fly to mouse and human. Unlike linear RNAs shaped with 5' cap and 3' tail, circular RNAs are characterized by covalently closed loop structures without open terminals, thus requiring specific treatments for their identification and validation. Here, we describe a detailed pipeline for the characterization of circular RNAs. It has been successfully applied to the study of circular intronic RNAs derived from intron lariats (ciRNAs) and circular RNAs produced from back spliced exons (circRNAs) in human. PMID:26721494

  20. Moon-based Earth Observation for Large Scale Geoscience Phenomena

    NASA Astrophysics Data System (ADS)

    Guo, Huadong; Liu, Guang; Ding, Yixing

    2016-07-01

    The capability of Earth observation for large-global-scale natural phenomena needs to be improved and new observing platform are expected. We have studied the concept of Moon as an Earth observation in these years. Comparing with manmade satellite platform, Moon-based Earth observation can obtain multi-spherical, full-band, active and passive information,which is of following advantages: large observation range, variable view angle, long-term continuous observation, extra-long life cycle, with the characteristics of longevity ,consistency, integrity, stability and uniqueness. Moon-based Earth observation is suitable for monitoring the large scale geoscience phenomena including large scale atmosphere change, large scale ocean change,large scale land surface dynamic change,solid earth dynamic change,etc. For the purpose of establishing a Moon-based Earth observation platform, we already have a plan to study the five aspects as follows: mechanism and models of moon-based observing earth sciences macroscopic phenomena; sensors' parameters optimization and methods of moon-based Earth observation; site selection and environment of moon-based Earth observation; Moon-based Earth observation platform; and Moon-based Earth observation fundamental scientific framework.

  1. Observation of x-ray absorption magnetic circular dichroism in well-characterized iron-cobalt-platinum multilayers

    SciTech Connect

    Jankowski, A.F.; Waddill, G.D.; Tobin, J.G.

    1993-04-01

    Magnetic circular dichroism in the Fe 2p x-ray absorption is observed in multilayers of(Fe9.5{Angstrom}/Pt9.5{Angstrom}){sub 92}. The magnetization and helicity are both in the plane of this multilayer which is prepared by magnetron sputter deposition. This sample is part of a study to examine magnetization in the ternary multilayer system of FeCo/Pt. Lattice and layer pair spacings are measured using x-ray scattering. The atomic concentration profiles of the multilayer films are characterized using Auger electron spectroscopy coupled with depth profiling. Conventional and high resolution transmission electron microscopy are used to examine the thin film, growth morphology and atomic structure.

  2. Circular Coinduction

    NASA Technical Reports Server (NTRS)

    Rosu, Grigore; Goguen, Joseph; Norvig, Peter (Technical Monitor)

    2001-01-01

    Circular coinduction is a technique for behavioral reasoning that extends cobasis coinduction to specifications with circularities. Because behavioral satisfaction is not recursively enumerable, no algorithm can work for every behavioral statement. However. algorithms using circular coinduction can prove every practical behavioral result that we know. This paper proves the correctness of circular coinduction and some consequences.

  3. Measurement of nonlinear observables in the Large Hadron Collider using kicked beams

    NASA Astrophysics Data System (ADS)

    Maclean, E. H.; Tomás, R.; Schmidt, F.; Persson, T. H. B.

    2014-08-01

    The nonlinear dynamics of a circular accelerator such as the Large Hadron Collider (LHC) may significantly impact its performance. As the LHC progresses to more challenging regimes of operation it is to be expected that the nonlinear single particle dynamics in the transverse planes will play an increasing role in limiting the reach of the accelerator. As such it is vital that the nonlinear sources are well understood. The nonlinear fields of a circular accelerator may be probed through measurement of the amplitude detuning: the variation of tune with single particle emittance. This quantity may be assessed experimentally by exciting the beam to large amplitudes with kicks, and obtaining the tunes and actions from turn-by-turn data at Beam Position Monitors. The large amplitude excitations inherent to such a measurement also facilitate measurement of the dynamic aperture from an analysis of beam losses following the kicks. In 2012 these measurements were performed on the LHC Beam 2 at injection energy (450 GeV) with the nominal magnetic configuration. Nonlinear coupling was also observed. A second set of measurements were performed following the application of corrections for b4 and b5 errors. Analysis of the experimental results, and a comparison to simulation are presented herein.

  4. Toroidal circular dichroism

    NASA Astrophysics Data System (ADS)

    Raybould, T. A.; Fedotov, V. A.; Papasimakis, N.; Kuprov, I.; Youngs, I. J.; Chen, W. T.; Tsai, D. P.; Zheludev, N. I.

    2016-07-01

    We demonstrate that the induced toroidal dipole, represented by currents flowing on the surface of a torus, makes a distinct and indispensable contribution to circular dichroism. We show that toroidal circular dichroism supplements the well-known mechanism involving electric dipole and magnetic dipole transitions. We illustrate this with rigorous analysis of the experimentally measured polarization-sensitive transmission spectra of an artificial metamaterial, constructed from elements of toroidal symmetry. We argue that toroidal circular dichroism will be found in large biomolecules with elements of toroidal symmetry and should be taken into account in the interpretation of circular dichroism spectra of organics.

  5. The use of a circular external skeletal fixation device for the management of long bone osteotomies in large ruminants: an experimental study.

    PubMed

    Aithal, H P; Singh, G R; Hoque, M; Maiti, S K; Kinjavdekar, P; Pawde, A M; Setia, H C

    2004-08-01

    The study was undertaken to evaluate the feasibility of a simple, inexpensive model of circular external fixator (CEF) for use in large ruminants. A simple model of CEF frames consisting of four full rings (13-19 cm diameter, 4 cm wide and 4 mm thick with 18-24 holes) connected by threaded rods (8 mm diameter, 10-15 cm long) and nuts was developed using mild (low carbon) steel and were nickel-plated. In the first phase of the study, three male cow calves were utilized to study the feasibility of application of the fixators in the metatarsus, tibia and radius, in reference of adaptation and tolerance by animals. In the second phase, the fixators were tested in osteotomized bones. Six bull calves of 1.5-2 years of age weighing about 200-250 kg were utilized for this purpose. After preparing the area for aseptic surgery, under xylazine (at 0.1 mg/kg, i.m.)-ketamine (i.v. till effect) general anaesthesia, the test bone (metatarsus, radius and tibia in two animals each) was approached through the medial surface and an osteotomy was created with a saw and chisel at the mid-diaphysis. The pre-constructed 4-ring CEF was mounted on the limb around the test bone in such a way that it formed a cylinder with the axis of the limb at the centre. Each ring was then fixed to the bone with a pair of beaded wires (316 SS) of 3.5 mm diameter. During the post-operative period, the animals were observed for any change in behaviour, tolerance of the fixators, the weight bearing on the test limb, the status of the fixator, and the level of reduction of the osteotomy, alignment and healing at different intervals. The fixation of CEF was easier in the metatarsus and radius than in the tibia. The inner ring diameters found adequate for metatarsus, radius and tibia were 13-15 cm, 15-17 cm and 17-19 cm, respectively. The fixators applied to different bones were well-tolerated, and the animals could lay down, stand and walk freely with the fixator without any problems. All the animals showed

  6. Large-amplitude, circularly polarized, compressive, obliquely propagating electromagnetic proton cyclotron waves throughout the Earth's magnetosheath: low plasma β conditions

    SciTech Connect

    Remya, B.; Reddy, R. V.; Lakhina, G. S.; Tsurutani, B. T.; Falkowski, B. J.; Echer, E.; Glassmeier, K.-H.

    2014-09-20

    During 1999 August 18, both Cassini and WIND were in the Earth's magnetosheath and detected transverse electromagnetic waves instead of the more typical mirror-mode emissions. The Cassini wave amplitudes were as large as ∼14 nT (peak to peak) in a ∼55 nT ambient magnetic field B {sub 0}. A new method of analysis is applied to study these waves. The general wave characteristics found were as follows. They were left-hand polarized and had frequencies in the spacecraft frame (f {sub scf}) below the proton cyclotron frequency (f{sub p} ). Waves that were either right-hand polarized or had f {sub scf} > f{sub p} are shown to be consistent with Doppler-shifted left-hand waves with frequencies in the plasma frame f{sub pf} < f{sub p} . Thus, almost all waves studied are consistent with their being electromagnetic proton cyclotron waves. Most of the waves (∼55%) were found to be propagating along B {sub 0} (θ{sub kB{sub 0}}<30{sup ∘}), as expected from theory. However, a significant fraction of the waves were found to be propagating oblique to B {sub 0}. These waves were also circularly polarized. This feature and the compressive ([B {sub max} – B {sub min}]/B {sub max}, where B {sub max} and B {sub min} are the maximum and minimum field magnitudes) nature (ranging from 0.27 to 1.0) of the waves are noted but not well understood at this time. The proton cyclotron waves were shown to be quasi-coherent, theoretically allowing for rapid pitch-angle transport of resonant protons. Because Cassini traversed the entire subsolar magnetosheath and WIND was in the dusk-side flank of the magnetosheath, it is surmised that the entire region was filled with these waves. In agreement with past theory, it was the exceptionally low plasma β (0.35) that led to the dominance of the proton cyclotron wave generation during this interval. A high-speed solar wind stream ((V{sub sw} ) = 598 km s{sup –1}) was the source of this low-β plasma.

  7. Circular codes, symmetries and transformations.

    PubMed

    Fimmel, Elena; Giannerini, Simone; Gonzalez, Diego Luis; Strüngmann, Lutz

    2015-06-01

    Circular codes, putative remnants of primeval comma-free codes, have gained considerable attention in the last years. In fact they represent a second kind of genetic code potentially involved in detecting and maintaining the normal reading frame in protein coding sequences. The discovering of an universal code across species suggested many theoretical and experimental questions. However, there is a key aspect that relates circular codes to symmetries and transformations that remains to a large extent unexplored. In this article we aim at addressing the issue by studying the symmetries and transformations that connect different circular codes. The main result is that the class of 216 C3 maximal self-complementary codes can be partitioned into 27 equivalence classes defined by a particular set of transformations. We show that such transformations can be put in a group theoretic framework with an intuitive geometric interpretation. More general mathematical results about symmetry transformations which are valid for any kind of circular codes are also presented. Our results pave the way to the study of the biological consequences of the mathematical structure behind circular codes and contribute to shed light on the evolutionary steps that led to the observed symmetries of present codes. PMID:25008961

  8. Zeeman Splitting of Ferromagnetic GaMnAs on InP Observed by Magnetic Circular Dichroism in Reflection Mode

    NASA Astrophysics Data System (ADS)

    Tanaka, H.; Bsatee, M.; Jadwisienczak, W. M.

    2016-08-01

    Systematic investigations of Ga1- x Mn x As grown on InP with different Mn concentrations have been conducted using magnetic circular dichroism (MCD) in reflection mode. The MCD spectrum of Ga0.97Mn0.03As/InP was decomposed into two dispersion curves originating from E 1 and E 1 + Δ1 optical transitions using the energy derivative of a Gaussian function. The Zeeman splitting energy E 1 at the L critical point (0.6 meV) of ferromagnetic Ga0.97Mn0.03As/InP was estimated using a rigid band shift model. Based on the relationship between E 1 and E 0 (Γ critical point) observed in Cd1- x Mn x Te dilute magnetic semiconductor (DMS), the Zeeman splitting energy E 1 (9.6 meV) of ferromagnetic Ga1- x Mn x As/InP was calculated. In addition, it was established that the peaks in the MCD spectra at L critical points shift toward the lower energy side as the Mn concentration is increased, and the observed shift saturates for Mn content of x = 0.001. Furthermore, the measured absorption spectra for Ga1- x Mn x As/InP did not show noticeable peak shifts with increasing Mn content. This suggests that the s, p- d exchange interaction induced in Ga1- x Mn x As/InP has localized nature due to the presence of a Mn rigid sphere of influence.

  9. Large deployable reflectors for telecom and earth observation applications

    NASA Astrophysics Data System (ADS)

    Scialino, L.; Ihle, A.; Migliorelli, M.; Gatti, N.; Datashvili, L.; 't Klooster, K.; Santiago Prowald, J.

    2013-12-01

    Large deployable antennas are one of the key components for advanced missions in the fields of telecom and earth observation. In the recent past, missions have taken on board large deployable reflector (LDR) up to 22 m of diameter and several missions have already planned embarking large reflectors, such as the 12 m of INMARSAT XL or BIOMASS. At the moment, no European LDR providers are available and the market is dominated by Northrop-Grumman and Harris. Consequently, the development of European large reflector technology is considered a key step to maintain commercial and strategic competitiveness (ESA Large Reflector Antenna Working Group Final Report, TEC-EEA/2010.595/CM, 2010). In this scenario, the ESA General Study Project RESTEO (REflector Synergy between Telecom and Earth Observation), starting from the identification of future missions needs, has identified the most promising reflector concepts based on European heritage/technology, able to cover the largest range of potential future missions for both telecom and earth observation. This paper summarizes the activities and findings of the RESTEO Study.

  10. Solar Observations with the Atacama Large Millimeter/submillimeter Array

    NASA Astrophysics Data System (ADS)

    Wedemeyer, Sven

    2015-08-01

    The interferometric Atacama Large Millimeter/submillimeter Array (ALMA) has already demonstrated its impressive capabilities by observing a large variety of targets ranging from protoplanetary disks to galactic nuclei. ALMA is also capable of observing the Sun and has been used for five solar test campaigns so far. The technically challenging solar observing modes are currently under development and regular observations are expected to begin in late 2016.ALMA consists of 66 antennas located in the Chilean Andes at an altitude of 5000 m and is a true leap forward in terms of spatial resolution at millimeter wavelengths. The resolution of reconstructed interferometric images of the Sun is anticipated to be close to what current optical solar telescopes can achieve. In combination with the high temporal and spectral resolution, these new capabilities open up new parameter spaces for solar millimeter observations.The solar radiation at wavelengths observed by ALMA originates from the chromosphere, where the height of the sampled layer increases with selected wavelength. The continuum intensity is linearly correlated to the local gas temperature in the probed layer, which makes ALMA essentially a linear thermometer. During flares, ALMA can detect additional non-thermal emission contributions. Measurements of the polarization state facilitate the valuable determination of the chromospheric magnetic field. In addition, spectrally resolved observations of radio recombination and molecular lines may yield great diagnostic potential, which has yet to be investigated and developed.Many different scientific applications for a large range of targets from quiet Sun to active regions and prominences are possible, ranging from ultra-high cadence wave studies to flare observations. ALMA, in particular in combination with other ground-based and space-borne instruments, will certainly lead to fascinating new findings, which will advance our understanding of the atmosphere of our Sun

  11. Quantum tunneling observed without its characteristic large kinetic isotope effects

    PubMed Central

    Hama, Tetsuya; Ueta, Hirokazu; Kouchi, Akira; Watanabe, Naoki

    2015-01-01

    Classical transition-state theory is fundamental to describing chemical kinetics; however, quantum tunneling is also important in explaining the unexpectedly large reaction efficiencies observed in many chemical systems. Tunneling is often indicated by anomalously large kinetic isotope effects (KIEs), because a particle’s ability to tunnel decreases significantly with its increasing mass. Here we experimentally demonstrate that cold hydrogen (H) and deuterium (D) atoms can add to solid benzene by tunneling; however, the observed H/D KIE was very small (1–1.5) despite the large intrinsic H/D KIE of tunneling (≳100). This strong reduction is due to the chemical kinetics being controlled not by tunneling but by the surface diffusion of the H/D atoms, a process not greatly affected by the isotope type. Because tunneling need not be accompanied by a large KIE in surface and interfacial chemical systems, it might be overlooked in other systems such as aerosols or enzymes. Our results suggest that surface tunneling reactions on interstellar dust may contribute to the deuteration of interstellar aromatic and aliphatic hydrocarbons, which could represent a major source of the deuterium enrichment observed in carbonaceous meteorites and interplanetary dust particles. These findings could improve our understanding of interstellar physicochemical processes, including those during the formation of the solar system. PMID:26034285

  12. Observation of large nematic domains of discotic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shinde, Abhijeet; Wang, Xuezhen; Cheng, Zhengdong

    2015-03-01

    Discotic liquid crystals are commonly found in nature in the form of clay, nacre. They are technologically important in applications such as conductive polymers, semiconductors and photovoltaics. Size and its distribution play an important role in their self-assemblies. Here we observed large nematic domains of discotic liquid crystals grown on a time scale of months. The development of such domains is observed to be faster for nanodisks that relatively smaller in size. The orientation of nanodisks is affected by gravity and inter-particle interactions which are yet to be fully understood.

  13. Mid-latitude lidar observations of large sporadic sodium layers

    SciTech Connect

    Senft, D.C.; Collins, R.L.; Gardner, C.S. )

    1989-07-01

    During the early morning of October 31, 1988 two large sporadic Na (Na{sub s}) layers were observed near the mesopause above Urbana, IL (40{degree}N, 88{degree}W) with a Na lidar system. The layers began forming near 102 km at 0026 LST and 0110 LST and moved downward with vertical velocities as high as 4 ms{sup {minus}1} before dissipating between 94 and 96 km. The duration of each layer was approximately 80 min. The layers were narrow ({approximately} 1 km FWHM) and dense with maximum densities approaching 7,800 cm{sup {minus}3}. The characteristics of these two Na{sub s} layers are very similar to those of similar phenomena observed recently at Andoya, Norway and Mauna Kea, Hawaii. Lidar observations of the mesospheric Na layer have been conducted routinely by several groups at mid-latitudes for almost 20 years. Although large Na{sub s} layers now appear to be relatively common at low- and high-latitudes, to our knowledge the two layers described in this letter are only the second observation of this puzzling phenomenon at mid-latitudes.

  14. Observations of large biologically important interstellar and cometary molecules

    NASA Astrophysics Data System (ADS)

    Remijan, Anthony John

    There has been much interest in recent years in astronomical searches for large biologically-important molecules which possess known millimeter wavelength transitions. Biologically-important species include amino acids, possible precursors to amino acids, and other biologically interesting molecules. This thesis continued the search for large biomolecules towards hot molecular cores (HMCs) associated with ultracompact (HC) HII regions and comets. First, we followed up the detection of acetic acid (CH3COOH) towards Sgr B2(N-LMH) by performing a survey of transitions with large line strengths toward several hot core regions. There has been great interest in searching a variety of star forming regions for interstellar acetic acid because it shares common structural elements with glycine (NH2CH2 COOH), the simplest amino acid, and because it is an isomer to both methyl formate (HCOOCH3) and glycolaldehyde (CH2OHCHO). In our survey we detected two new sources of acetic acid and placed constraints on the detectability of acetic acid elsewhere with current generation radio telescopes. Second, in order to study the physical conditions that lead to the formation of large biomolecules toward HMCs, we observed the hot core regions W51 e1 and e2 using the symmetric top species methyl cyanide (CH3CN). Symmetric tops have properties that make them ideal probes of hot molecular cores. Thus, we obtained better measurements of the physical conditions present in these regions and a better understanding of the chemistry that forms large molecular species. Third, using multiply degenerate transitions in both the 3 mm and 1 mm wavelength regions, we conducted the most extensive survey for the elusive biomolecule urea [(NH2)2CO] toward the high mass hot molecular core sources, Sgr B2(N-LMH) and W51 e2. As a result, our spectral line data support the first detection of interstellar urea toward Sgr B2(N-LMH). Finally, we discuss the observational results of an extensive survey for

  15. Interferometric observations of large biologically interesting interstellar and cometary molecules.

    PubMed

    Snyder, Lewis E

    2006-08-15

    Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have substantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled "biomolecules." Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated interstellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to understanding hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from observations with the next generation of sensitive, high-resolution arrays.

  16. Interferometric observations of large biologically interesting interstellar and cometary molecules

    PubMed Central

    Snyder, Lewis E.

    2006-01-01

    Interferometric observations of high-mass regions in interstellar molecular clouds have revealed hot molecular cores that have substantial column densities of large, partly hydrogen-saturated molecules. Many of these molecules are of interest to biology and thus are labeled “biomolecules.” Because the clouds containing these molecules provide the material for star formation, they may provide insight into presolar nebular chemistry, and the biomolecules may provide information about the potential of the associated interstellar chemistry for seeding newly formed planets with prebiotic organic chemistry. In this overview, events are outlined that led to the current interferometric array observations. Clues that connect this interstellar hot core chemistry to the solar system can be found in the cometary detection of methyl formate and the interferometric maps of cometary methanol. Major obstacles to understanding hot core chemistry remain because chemical models are not well developed and interferometric observations have not been very sensitive. Differentiation in the molecular isomers glycolaldehdye, methyl formate, and acetic acid has been observed, but not explained. The extended source structure for certain sugars, aldehydes, and alcohols may require nonthermal formation mechanisms such as shock heating of grains. Major advances in understanding the formation chemistry of hot core species can come from observations with the next generation of sensitive, high-resolution arrays. PMID:16894168

  17. Infrasonic observations of large-scale HE events

    NASA Technical Reports Server (NTRS)

    Whitaker, Rodney W.; Mutschlecner, J. Paul; Davidson, Masha B.; Noel, Susan D.

    1990-01-01

    The Los Alamos Infrasound Program has been operating since about mid-1982, making routine measurements of low frequency atmospheric acoustic propagation. Generally, the authors work between 0.1 Hz to 10 Hz; however, much of the work is concerned with the narrower range of 0.5 to 5.0 Hz. Two permanent stations, St. George, UT, and Los Alamos, NM, have been operational since 1983, collecting data 24 hours a day. For the purposes of this discussion, the authors concentrate on their measurements of large, high explosive (HE) events at ranges of 250 km to 5330 km. Because their equipment is well suited for mobile deployments, they can easily establish temporary observing sites for special events. The measurements are from the permanent sites, as well as from various temporary sites. A few observations that are typical of the full data set are given.

  18. Magnetodynamical response of large-area close-packed arrays of circular dots fabricated by nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Semenova, E. K.; Montoncello, F.; Tacchi, S.; Dürr, G.; Sirotkin, E.; Ahmad, E.; Madami, M.; Gubbiotti, G.; Neusser, S.; Grundler, D.; Ogrin, F. Y.; Hicken, R. J.; Kruglyak, V. V.; Berkov, D. V.; Gorn, N. L.; Giovannini, L.

    2013-05-01

    We report a combined experimental and theoretical study of the quasistatic hysteresis and dynamic excitations in large-area arrays of NiFe nanodisks forming a hexagonal lattice with the lattice constant of 390 nm. Arrays were fabricated by patterning a 20-nm-thick NiFe film using the etched nanosphere lithography. We have studied a close-packed (edge-to-edge separation between disks dcp = 65 nm) and an ultraclosed packed (ducp = 20 nm) array. Hysteresis loops for both arrays were qualitatively similar and nearly isotropic, i.e., independent on the in-plane external field orientation. The shape of these loops revealed that magnetization reversal is governed by the formation and expulsion of vortices inside the nanodisks. When we assumed that the nanodisks’ magnetization significantly decreases near their edges, micromagnetic simulations with material parameters deter-mined independently from continuous film measu-rements could satisfactorily reproduce the hysteresis. Despite the isotropic hysteresis, significant in-plane anisotropy of the dynamic response of the ultraclose-packed array was found experimentally by the all-electrical spin-wave spectroscopy and Brillouin light scattering. Dynamical simulations could successfully reproduce the difference between excitation spectra for fields directed along the two main symmetry axes of the hexagonal lattice. Simulations revealed that this difference is caused by the magnetodipolar interaction between nanodisks, which leads to a strong variation of the spatial distribution of the oscillation power both for bulk and edge modes as a function of the bias field orientation. Comparison of simulated and measured frequencies enabled the unambiguous identification of experimentally observed modes. Results of this systematic research are relevant both for fundamental studies of spin-wave modes in patterned magnetic structures and for the design of magnonic crystals for potential applications as, e.g., spin-wave guides and

  19. Testing coupled dark energy with large scale structure observation

    SciTech Connect

    Yang, Weiqiang; Xu, Lixin E-mail: lxxu@dlut.edu.cn

    2014-08-01

    The coupling between the dark components provides a new approach to mitigate the coincidence problem of cosmological standard model. In this paper, dark energy is treated as a fluid with a constant equation of state, whose coupling with dark matter is Q-bar =3Hξ{sub x}ρ-bar {sub x}. In the frame of dark energy, we derive the evolution equations for the density and velocity perturbations. According to the Markov Chain Monte Carlo method, we constrain the model by currently available cosmic observations which include cosmic microwave background radiation, baryon acoustic oscillation, type Ia supernovae, and fσ{sub 8}(z) data points from redshift-space distortion. The results show the interaction rate in σ regions: ξ{sub x} = 0.00328{sub -0.00328-0.00328-0.00328}{sup +0.000736+0.00549+0.00816}, which means that the recently cosmic observations favor a small interaction rate which is up to the order of 10{sup -2}, meanwhile, the measurement of redshift-space distortion could rule out the large interaction rate in the σ region.

  20. Large Scale Constraints on Methane Emissions Determined from Observations

    NASA Astrophysics Data System (ADS)

    Dlugokencky, E. J.; Lang, P.; Masarie, K.; Crotwell, A. M.; Bruhwiler, L.

    2011-12-01

    Measurements of atmospheric CH4 from the NOAA Global Monitoring Division's, Global Cooperative Air Sampling Network began in 1983. These high-precision observations offer key constraints on CH4's budget including the global burden, the rate of increase, and the spatial distribution of CH4 at the surface. These observations allow estimates of total global CH4 emissions without using a chemical transport model. A surprising result of this analysis is that, if the CH4 lifetime has been constant, then total global emissions have been approximately constant since the mid-1980s. This result is difficult to reconcile with bottom-up inventories that report increasing anthropogenic emissions, unless natural emissions have decreased considerably. Analysis of anomalies in CH4 growth rate also allow us to test our understanding of the processes that affect the atmospheric CH4 burden. Large anomalies have been attributed to decreased CH4 sink after the eruption of Mt. Pinatubo in 1992, decreased emissions from wetlands because of cooler than normal temperatures in 1992, and increased emissions from biomass burning and wetlands in 1997/98. The most recent anomaly, starting in 2007 and continuing into early-2011 with an average rate of increase of ~6 ppb yr-1, is more persistent than previous ones and may indicate a permanent change to the global CH4 budget. Dlugokencky et al. [Geophys. Res. Lett., 36, 2009] attributed the increases in 2007 and 2008 to anomalously high temperatures in the Arctic (2007) and greater than average precipitation in the tropics (2007 and 2008). Continuing increases in 2009 and 2010 may be related to a very strong La Niña starting in 2010, the same climate pattern responsible for large positive precipitation anomalies in tropical wetland regions in 2007 and 2008. Indeed, strong precipitation anomalies were observed in SE Asia during 2010. This is a likely cause of continued CH4 increase, and it is consistent with the observation that the largest growth

  1. The Flux of Large Meteoroids Observed with Lunar Impact Monitoring

    NASA Technical Reports Server (NTRS)

    Cooke, W. J.; Suggs, R. M.; Moser, D. E.; Suggs, R. J.

    2014-01-01

    The flux of large meteoroids is not well determined due to relatively low number statistics, due mainly to the lack of collecting area available to meteor camera systems (10(2)-10(5) km2). Larger collecting areas are needed to provide reasonable statistics for flux calculations. The Moon, with millions of square kilometers of lunar surface, can be used as a detector for observing the population of large meteoroids in the tens of grams to kilogram mass range. This is accomplished by observing the flash of light produced when a meteoroid impacts the lunar surface, converting a portion of its kinetic energy to visible light detectable from Earth. A routine monitoring program at NASA's Marshall Space Flight Center has recorded over 300 impact flashes since early 2006. The program utilizes multiple 0.35 m (14 inch) Schmidt-Cassegrain telescopes, outfitted with video cameras using the 1/2 inch Sony EXview HAD CCDTM chip, to perform simultaneous observations of the earthshine hemisphere of the Moon when the lunar phase is between 0.1 and 0.5. This optical arrangement permits monitoring of approximately 3.8x10(6) km2 of lunar surface. A selection of 126 flashes recorded in 266.88 hours of photometric skies was analyzed, creating the largest and most homogeneous dataset of lunar impact flashes to date. Standard CCD photometric techniques outlined in [1] were applied to the video to determine the luminous energy, kinetic energy, and mass for each impactor, considering a range of luminous efficiencies. The flux to a limiting energy of 2.5x10(-6) kT TNT or 1.05×10(7) J is 1.03×10(-7) km(-2) hr(-1) and the flux to a limiting mass of 30 g is 6.14×10(-10) m(-2) yr(-1). Comparisons made with measurements and models of the meteoroid population indicate that the flux of objects in this size range is slightly lower (but within the error bars) than the power law distribution determined for the near Earth object population by [2].

  2. Circular epidemiology.

    PubMed

    Kuller, L H

    1999-11-01

    Circular epidemiology can be defined as the continuation of specific types of epidemiologic studies beyond the point of reasonable doubt of the true existence of an important association or the absence of such an association. Circular epidemiology is an extreme example of studies of the consistency of associations. A basic problem for epidemiology is the lack of a systematic approach to acquiring new knowledge to reach a goal of improving public health and preventive medicine. For epidemiologists, research support unfortunately is biased toward the continued study of already proven hypotheses. Circular epidemiology, however, freezes at one point in the evolution of epidemiologic studies, failing to move from descriptive to analytical case-control and longitudinal studies, for example, to experimental, clinical trials. Good epidemiology journals are filled with very well-conducted epidemiologic studies that primarily repeat the obvious or are variations on the theme.

  3. Observing Planetary Nebulae with JWST and Extremely Large Telescopes

    NASA Astrophysics Data System (ADS)

    Sahai, Raghvendra

    2015-01-01

    Most stars in the Universe that leave the main sequence in a Hubble time will end their lives evolving through the Planetary Nebula (PN) evolutionary phase. The heavy mass loss which occurs during the preceding AGB phase is important across astrophysics, dramatically changing the course of stellar evolution, dominantly contributing to the dust content of the interstellar medium, and influencing its chemical composition. The evolution from the AGB phase to the PN phases remains poorly understood, especially the dramatic transformation that occurs in the morphology of the mass-ejecta as AGB stars and their round circumstellar envelopes evolve into mostly PNe, the majority of which deviate strongly from spherical symmetry. In addition, although the PN [OIII] luminosity function (PNLF) has been used as a standard candle (on par with distance indicators such as Cepheids), we do not understand why it works. It has been argued that the resolution of these issues may be linked to binarity and associated processes such as mass transfer and common envelope evolution.Thus, understanding the formation and evolution of PNe is of wide astrophysical importance. PNe have long been known to emit across a very large span of wavelengths, from the radio to X-rays. Extensive use of space-based observatories at X-ray (Chandra/ XMM-Newton), optical (HST) and far-infrared (Spitzer, Herschel) wavelengths in recent years has produced significant new advances in our knowledge of these objects. Given the expected advent of the James Webb Space Telescope in the near future, and ground-based Extremely Large Telescope(s) somewhat later, this talk will focus on future high-angular-resolution, high-sensitivity observations at near and mid-IR wavelengths with these facilities that can help in addressing the major unsolved problems in the study of PNe.

  4. Large anisotropic Fe orbital moments in perpendicularly magnetized Co2FeAl Heusler alloy thin films revealed by angular-dependent x-ray magnetic circular dichroism

    NASA Astrophysics Data System (ADS)

    Okabayashi, Jun; Sukegawa, Hiroaki; Wen, Zhenchao; Inomata, Koichiro; Mitani, Seiji

    2013-09-01

    Perpendicular magnetic anisotropy (PMA) in Heusler alloy Co2FeAl thin films sharing an interface with a MgO layer is investigated by angular-dependent x-ray magnetic circular dichroism. Orbital and spin magnetic moments are deduced separately for Fe and Co 3d electrons. In addition, the PMA energies are estimated using the orbital magnetic moments parallel and perpendicular to the film surfaces. We found that PMA in Co2FeAl is determined mainly by the contribution of Fe atoms with large orbital magnetic moments, which are enhanced at the interface between Co2FeAl and MgO. Furthermore, element specific magnetization curves of Fe and Co are found to be similar, suggesting the existence of ferromagnetic coupling between Fe and Co PMA directions.

  5. Experimental observation of very large magnetoconductance in microbial nanowires

    NASA Astrophysics Data System (ADS)

    Malvankar, Nikhil; Vargas, Madeline; Lovley, Derek; Tuominen, Mark

    2011-03-01

    Microbial nanowires are 2-5 nm-wide conductive proteinous pili filaments secreted by some bacteria, which can grow tens of micrometers long and may serve as a conduit for long-distance electron transport. Our previous studies demonstrated that pili of Geobacter sulfurreducens exhibit properties akin to disordered metals, and indicated a temperature-driven crossover from the regime of weak localization (WL) to strong localization (SL). Here we report a very large positive magnetoconductance (MC), up to 10,000 %, at 300K. MC increased exponentially with magnetic field. A crossover from positive MC (WL regime) to negative MC (SL) was observed at ~ 280 K when the localization and the phase-breaking lengths are expected to become comparable. We attribute positive MC to destruction of the quantum interference of delocalized electron wavefunctions and negative MC to shrinkage of the localized electron wavefunctions due to applied magnetic field, which is consistent with the temperature dependence of conductivity. Funded by U.S. DOE Genomic Sciences and Office of Naval Research.

  6. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE VELA PULSAR

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Bartelt, J.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bogart, J. R.; Atwood, W. B.; Bagagli, R.; Baldini, L.; Bellardi, F.; Bellazzini, R.; Ballet, J.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bisello, D.; Baughman, B. M. E-mail: massimiliano.razzano@pi.infn.it

    2009-05-10

    The Vela pulsar is the brightest persistent source in the GeV sky and thus is the traditional first target for new {gamma}-ray observatories. We report here on initial Fermi Large Area Telescope observations during verification phase pointed exposure and early sky survey scanning. We have used the Vela signal to verify Fermi timing and angular resolution. The high-quality pulse profile, with some 32,400 pulsed photons at E {>=} 0.03 GeV, shows new features, including pulse structure as fine as 0.3 ms and a distinct third peak, which shifts in phase with energy. We examine the high-energy behavior of the pulsed emission; initial spectra suggest a phase-averaged power-law index of {gamma} = 1.51{sup +0.05} {sub -0.04} with an exponential cutoff at E{sub c} = 2.9 {+-} 0.1 GeV. Spectral fits with generalized cutoffs of the form e{sup -(E/E{sub c}){sup b}} require b {<=} 1, which is inconsistent with magnetic pair attenuation, and thus favor outer-magnetosphere emission models. Finally, we report on upper limits to any unpulsed component, as might be associated with a surrounding pulsar wind nebula.

  7. The nature of circular maria based on gravity studies.

    NASA Technical Reports Server (NTRS)

    Phillips, R. J.; Conel, J. E.; Sjogren, W. L.

    1973-01-01

    Current thinking on the evolution of major lunar morphological features, i.e., large lunar circular basins, and on the nature and origin of surface structures observed in the fill deposits is summarized. The great lunar circular basins must result from high-velocity impact of large bodies with the moon. A hydrostatic mechanism is outlined, and a working hypothesis is presented for the evolution of lunar circular basins subsequent to their origin by impact. In the main appeal is made to Doppler gravity data to support the hypothesis, although photographic and altimetric information is also used. It is considered that all large ringed circular basins follow a common evolutionary path of superisostatic volcanic flooding followed by partial and variable isostatic adjustment. The difference between basins is the amount of flooding, which in turn may be related to the center of figure-center of mass offset of the moon.

  8. Observations Regarding Small Eolian Dunes and Large Ripples on Mars

    NASA Technical Reports Server (NTRS)

    Edgett, Kenneth S.

    2001-01-01

    Eolian bedforms occur at the interface between a planetary surface and its atmosphere; they present a proxy record of the influence of climate, expressed in sediment transport, over that surface. High resolution images (1.5 - 12 m/pixel) from the Mars Global Surveyor (MGS) Mars Orbiter Camera provide glimpses of the most recent events shaping the martian landscape. Thousands of images exhibit small transverse dunes or large eolian ripples that have crest-to-crest spacings of 10 to 60 m, heights of a few to 10 m. Bedforms of the size and patterns seen in the Mars photographs are rarely described among Earth's eolian landforms; in terms of size and morphology, most of these fall between traditional definitions of "ripples" and "dunes". Dunes are composed chiefly of materials transported by saltation, ripples are smaller forms moved along by the impact of saltating grains (traction). The largest reported eolian ripples on Earth (granule ripples, megaripples) are typically smaller than the bedforms observed on Mars; likewise, most dunes are typically larger. The small dunes and large ripples on Mars come in a variety of relative albedos, despite an early MGS impression that they are all of high albedo. Some ripples occur on the surfaces of sand dunes; these are most likely true granule ripples. However, most of these bedforms occur in troughs, pits, craters, and on deflated plains. Despite impressions early in the MGS mission, they do not occur everywhere (e.g., they are rare on the northern plains) but they do occur at a range of elevations from the highest volcanoes to the deepest basins. Where they occur on a hard substrate among larger sand dunes, the big dunes have over-ridden the smaller bedforms, indicating that the smaller features are older and perhaps indurated or very coarse-grained. At other locales, the small bedforms have been mantled by material settled from suspension, in other cases they are being exhumed and may be lithified. Still other examples are

  9. Large breast compressions: Observations and evaluation of simulations

    SciTech Connect

    Tanner, Christine; White, Mark; Guarino, Salvatore; Hall-Craggs, Margaret A.; Douek, Michael; Hawkes, David J.

    2011-02-15

    Purpose: Several methods have been proposed to simulate large breast compressions such as those occurring during x-ray mammography. However, the evaluation of these methods against real data is rare. The aim of this study is to learn more about the deformation behavior of breasts and to assess a simulation method. Methods: Magnetic resonance (MR) images of 11 breasts before and after applying a relatively large in vivo compression in the medial direction were acquired. Nonrigid registration was employed to study the deformation behavior. Optimal material properties for finite element modeling were determined and their prediction performance was assessed. The realism of simulated compressions was evaluated by comparing the breast shapes on simulated and real mammograms. Results: Following image registration, 19 breast compressions from 8 women were studied. An anisotropic deformation behavior, with a reduced elongation in the anterior-posterior direction and an increased stretch in the inferior-superior direction was observed. Using finite element simulations, the performance of isotropic and transverse isotropic material models to predict the displacement of internal landmarks was compared. Isotropic materials reduced the mean displacement error of the landmarks from 23.3 to 4.7 mm, on average, after optimizing material properties with respect to breast surface alignment and image similarity. Statistically significantly smaller errors were achieved with transverse isotropic materials (4.1 mm, P=0.0045). Homogeneous material models performed substantially worse (transverse isotropic: 5.5 mm; isotropic: 6.7 mm). Of the parameters varied, the amount of anisotropy had the greatest influence on the results. Optimal material properties varied less when grouped by patient rather than by compression magnitude (mean: 0.72 vs 1.44). Employing these optimal materials for simulating mammograms from ten MR breast images of a different cohort resulted in more realistic breast

  10. Large Scale Surface Radiation Budget from Satellite Observation

    NASA Technical Reports Server (NTRS)

    Pinker, R. T.

    1995-01-01

    During the current reporting period, the focus of our work was on preparing and testing an improved version of our Surface Radiation Budget algorithm for processing the ISCCP D1 data routinely at the SRB Satellite Data Analysis Center (SDAC) at NASA Langley Research Center. The major issues addressed are related to gap filling and to testing whether observations made from ERBE could be used to improve current procedures of converting narrowband observations, as available from ISCCP, into broadband observations at the TOA. The criteria for selecting the optimal version are to be based on results of intercomparison with ground truth.

  11. SEARCH Workshop on Large-Scale Atmosphere/Cryosphere Observations

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The purpose of the workshop held in Seattle during 27-29 November 2001 was to review existing land, sea ice, and atmospheric observations and the prospect for an Arctic System Reanalysis, through white papers, invited speakers, and panels. A major task for SEARCH was to determine how existing observation systems can be best used and enhanced to understand and anticipate the course of the ongoing changes in the Arctic. The primary workshop conclusion is that there is no cohesion among various Arctic disciplines and data types to form a complete observation set of Arctic change; a second workshop conclusion is that present data sets are vastly underutilized in understanding Arctic change; a third conclusion is that a distributed observing system must accommodate a wide range of spatial patterns of variability.

  12. Very Large Array observations of Uranus at 2. 0 cm

    SciTech Connect

    Berge, G.L.; Muhleman, D.O.; Linfield, R.P.

    1988-07-01

    Radio observations of Uranus obtained at 2.0 cm with the B configuration of the VLA during April 1985 are reported. The calibration and data-reduction procedures are described in detail, and the results are presented in tables, maps, and graphs and compared with IRIS 44-micron observations (Hanel et al., 1986). Features discussed include highest brightness centered on the pole rather than on the subearth point, a decrease in brightness temperature (by up to 9 K) at latitudes between -20 and -50 deg (well correlated with the IRIS data), and disk-center position (corrected for the observed radio asymmetry) in good agreement with that found on the basis of the outer contours of the image. 15 references.

  13. MESSENGER Observations of Large Flux Transfer Events at Mercury

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Lepping, Ronald P.; Wu, Chin-Chun; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Killen, Rosemary M.; Korth, Haje; Krimigis, Stamatios M.; McClintock, William E.; McNutt, Ralph L., Jr.; Sarantos, Menelaos; Schriver, David; Solomon, Sean C.; Travnicek, Pavel; Zurbuchen, Thomas H.

    2010-01-01

    Six flux transfer events (FTEs) were encountered during MESSENGER's first two flybys of Mercury (M1 and M2). For M1 the interplanetary magnetic field (IMF) was predominantly northward and four FTEs with durations of 1 to 6 s were observed in the magnetosheath following southward IMF turnings. The IMF was steadily southward during M2, and an FTE 4 s in duration was observed just inside the dawn magnetopause followed approx. 32 s later by a 7 s FTE in the magnetosheath. Flux rope models were fit to the magnetic field data to determine FTE dimensions and flux content. The largest FTE observed by MESSENGER had a diameter of approx. 1 R(sub M) (where R(sub M) is Mercury s radius), and its open magnetic field increased the fraction of the surface exposed to the solar wind by 10 - 20 percent and contributed up to approx. 30 kV to the cross-magnetospheric electric potential.

  14. MESSENGER Observations of Large Flux Transfer Events at Mercury

    NASA Technical Reports Server (NTRS)

    Slavin, James A.; Lepping, Ronald P.; Wu, Chin-Chun; Anderson, Brian J.; Baker, Daniel N.; Benna, Mehdi; Boardsen, Scott A.; Killen, Rosemary M.; Korth, Haje; Krimigis, Stamatios M.; McClintock, William E.; McNutt, Ralph L., Jr.; Sarantos, Menelaos; Schriver, David; Solomon, Sean C.; Travnicek, Pavel; Zurbuchen, Thomas H.

    2010-01-01

    Six flux transfer events (FTEs) were encountered during MESSENGER's first two flybys of Mercury (MI and M2). For MI the interplanetary magnetic field (IMF) was predominantly northward and four FTEs with durations of 1 to 6 s were observed in the magnetosheath following southward 1M F turnings. The IMF was steadily southward during M2, and an FTE 4 s in duration was observed just inside the dawn magnetopause followed approx.32 s later by a 7-s FTE in the magnetosheath. Flux rope models were fit to the magnetic field data to detem11ne PTE dimensions and flux content The largest FTE observed by MESSENGER had a diameter of approx. 1 R(sub M) (where R(sub M) is Mercury's radius), and its open magnetic field increased the fraction of the surface exposed to the solar wind by 10 - 20 percent and contributed up to approx.30 kV to the cross-magnetospheric electric potential.

  15. Neutral hydrogen observations of a large sample of galaxies

    SciTech Connect

    Fisher, J.R.; Tully, R.B.

    1981-10-01

    A sample of 1787 nearby galaxies has been observed in the 21 cm line with the NRAO 91 m and 43 m telescopes and the Bonn 100 m telescope. A total of 1171 galaxies were detected. The radio observations provide an accurate heliocentric velocity, an H I flux, and a line profile width for each detection. Literature optical magnitudes, dimensions, and morphological types are reduced to common systems and tabulated. Intrinsic luminosities, dimensions, H I masses, and total masses are determined, assuming distances derived from redshifts.

  16. Complex circular subsidence structures in tephra deposited on large blocks of ice: Varða tuff cone, Öræfajökull, Iceland

    NASA Astrophysics Data System (ADS)

    Smellie, J. L.; Walker, A. J.; McGarvie, D. W.; Burgess, R.

    2016-08-01

    Several broadly circular structures up to 16 m in diameter, into which higher strata have sagged and locally collapsed, are present in a tephra outcrop on southwest Öræfajökull, southern Iceland. The tephra was sourced in a nearby basaltic tuff cone at Varða. The structures have not previously been described in tuff cones, and they probably formed by the melting out of large buried blocks of ice emplaced during a preceding jökulhlaup that may have been triggered by a subglacial eruption within the Öræfajökull ice cap. They are named ice-melt subsidence structures, and they are analogous to kettle holes that are commonly found in proglacial sandurs and some lahars sourced in ice-clad volcanoes. The internal structure is better exposed in the Varða examples because of an absence of fluvial infilling and reworking, and erosion of the outcrop to reveal the deeper geometry. The ice-melt subsidence structures at Varða are a proxy for buried ice. They are the only known evidence for a subglacial eruption and associated jökulhlaup that created the ice blocks. The recognition of such structures elsewhere will be useful in reconstructing more complete regional volcanic histories as well as for identifying ice-proximal settings during palaeoenvironmental investigations.

  17. Large-scale coordinated observations of Pc5 pulsation events

    NASA Astrophysics Data System (ADS)

    Mtumela, Zolile; Walker, Anthony D. M.; Stephenson, Judy A. E.; Kosch, Michael J.

    2016-09-01

    HF (high-frequency) radars belonging to SuperDARN (Super Dual Auroral Radar Network) receive backscatter over substantial fields of view which, when combined, allow for simultaneous returns over extensive regions of the polar caps and midlatitudes. This makes them ideal instruments for the observation of pulsations in the Pc5 (1-5 mHz) frequency band. Relatively few pulsation events observed by multiple radars have been reported in the literature. Here we describe observations of three such events which extend over more than 120° of magnetic longitude in the Northern Hemisphere and one of which is also detected in the Southern Hemisphere. All three events show characteristics of field line resonances. In one case the pulsation has also been observed by magnetometers under or near the radar fields of view. The extensive longitudinal coverage allows accurate determination of azimuthal wave numbers. These are at the upper end of the lower values associated with external sources such as those in the solar wind. Such sources imply antisunward flow. However, the azimuthal wave number is negative, implying westward propagation at magnetic local times on both sides of noon, as would be expected from drift-bounce resonance with positive particles. Quiet conditions and a very low ring current during the events argue against this. The identification of the source of pulsations from a number of different mechanisms remains a problem of interest.

  18. Efficient inference of hidden Markov models from large observation sequences

    NASA Astrophysics Data System (ADS)

    Priest, Benjamin W.; Cybenko, George

    2016-05-01

    The hidden Markov model (HMM) is widely used to model time series data. However, the conventional Baum- Welch algorithm is known to perform poorly when applied to long observation sequences. The literature contains several alternatives that seek to improve the memory or time complexity of the algorithm. However, for an HMM with N states and an observation sequence of length T, these alternatives require at best O(N) space and O(N2T) time. Given the preponderance of applications that increasingly deal with massive amounts of data, an alternative whose time is O(T)+poly(N) is desired. Recent research presents an alternative to the Baum-Welch algorithm that relies on nonnegative matrix factorization. This document examines the space complexity of this alternative approach and proposes further optimizations using approaches adopted from the matrix sketching literature. The result is a streaming algorithm whose space complexity is constant and time complexity is linear with respect to the size of the observation sequence. The paper also presents a batch algorithm that allow for even further improved space complexity at the expense of an additional pass over the observation sequence.

  19. Experimental Observation of Large Chern Numbers in Photonic Crystals.

    PubMed

    Skirlo, Scott A; Lu, Ling; Igarashi, Yuichi; Yan, Qinghui; Joannopoulos, John; Soljačić, Marin

    2015-12-18

    Despite great interest in the quantum anomalous Hall phase and its analogs, all experimental studies in electronic and bosonic systems have been limited to a Chern number of one. Here, we perform microwave transmission measurements in the bulk and at the edge of ferrimagnetic photonic crystals. Band gaps with large Chern numbers of 2, 3, and 4 are present in the experimental results, which show excellent agreement with theory. We measure the mode profiles and Fourier transform them to produce dispersion relations of the edge modes, whose number and direction match our Chern number calculations. PMID:26722920

  20. Observation of EAS using a large water tank

    NASA Technical Reports Server (NTRS)

    Inoue, K.; Sakuyama, H.; Suzuki, N.; Suzuki, T.

    1985-01-01

    Using a large water tank (30 m in diameter, 4.5 m in depth) transition of extensive air showers (EAS) was investigated at Taro (200 m above sea level). There are set 150,0.4 sq m proportional counters on the bottom of the water tank. A conventional EAS array of 25 plastic scintillation detectors was arranged within several tens meter from the water tank. A proportional counter (10x10x200 cc x2) is made of a square shaped pipe of iron. Tungsten wire (100 mu m phi) is stretched tight in the center of the counter. A gas mixture of 90% argon and 10% methane is used at 760 mmHg. About 3000 EAS were obtained through 1 m of water since 1984.

  1. Observation of EAS using a large water tank

    NASA Astrophysics Data System (ADS)

    Inoue, K.; Sakuyama, H.; Suzuki, N.; Suzuki, T.

    1985-08-01

    Using a large water tank (30 m in diameter, 4.5 m in depth) transition of extensive air showers (EAS) was investigated at Taro (200 m above sea level). There are set 150,0.4 sq m proportional counters on the bottom of the water tank. A conventional EAS array of 25 plastic scintillation detectors was arranged within several tens meter from the water tank. A proportional counter (10x10x200 cc x2) is made of a square shaped pipe of iron. Tungsten wire (100 mu m phi) is stretched tight in the center of the counter. A gas mixture of 90% argon and 10% methane is used at 760 mmHg. About 3000 EAS were obtained through 1 m of water since 1984.

  2. The large-scale environment of Betelgeuse from radio observations

    NASA Astrophysics Data System (ADS)

    Le Bertre, T.; Matthews, L. D.; Gérard, E.

    2012-12-01

    We present HI data obtained with the Nançay Radiotelescope and with the Very Large Array (VLA) on the red supergiant α Ori (Betelgeuse). The high spectral resolution allows us to identify three components emitting in narrow spectral lines (FWHM ˜ 3 km s^{-1}). By selecting different ranges of baselines from the VLA data, it is possible to obtain images revealing different structures in the environment of α Ori. The confusion arising from the emission by the interstellar medium on the same line of sight can also be identified and thus be mitigated by filtering short spacings. The HI data reveal a quasi-stationary detached shell of neutral atomic hydrogen ˜4' in diameter (˜0.24 pc at 200 pc), and also atomic hydrogen emission associated with the 6' radius far-infrared arc discovered by IRAS and with a newly discovered far-ultraviolet emitting arc.

  3. Solar wind stream structure at large heliocentric distances Pioneer observations

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.

    1987-01-01

    Time profiles and histograms of plasma data from Pioneers 10 and 11 are examined for the period between 1975 and 1983. During this time, Pioneer 10 traveled between a heliocentric distance of 8.7 and 30.4 AU. The velocity structure of the solar wind at these heliocentric distances is found to have one of two distinct forms: approximately 70 percent of the time the solar wind has a nearly flat velocity profile. Occasionally, this flat velocity profile is accompanied by quasi-periodic variations in density and in thermal speed consistent with the concept that the 'corotating interaction regions' which are produced by the interaction of high- and low-speed streams at intermediate heliocentric distances are replaced by 'pressure regions' in the outer heliosphere. The remaining 30 percent of the time the solar wind is marked by large (50-200 km/s) long-term (30-120 days) shifts in the average solar wind velocity.

  4. Cold Rydberg atoms in circular states

    NASA Astrophysics Data System (ADS)

    Anderson, David; Schwarzkopf, Andrew; Raithel, Georg

    2012-06-01

    Circular-state Rydberg atoms are interesting in that they exhibit a unique combination of extraordinary properties; long lifetimes (˜n^5), large magnetic moments (l=|m|=n-1) and no first order Stark shift. Circular states have found applications in cavity quantum electrodynamics and precision measurements [1,2], among other studies. In this work we present the production of circular states in an atom trapping apparatus using an adiabatic state-switching method (the crossed-field method [3]). To date, we have observed lifetimes of adiabatically prepared states of several milliseconds. Their relatively large ionization electric fields have been verified by time-of-flight signatures of ion trajectories. We intend to explore the magnetic trapping of circular state Rydberg atoms, as well as their production and interaction properties in ultra-cold and degenerate samples.[4pt] [1] P. Bertet et al., Phys. Rev. Lett., 88, 14 (2002)[0pt] [2] M. Brune et al., Phys. Rev. Lett., 72, 21 (1994)[0pt] [3] D. Delande and J.C. Gay, Europhys. Lett., 5, 303-308 (1988).

  5. Interactive analysis of a large aperture Earth observations satellite

    NASA Technical Reports Server (NTRS)

    Wright, R. L.; Deryder, D. D.; Ferebee, M. J., Jr.; Smith, J. C.

    1983-01-01

    A system level design and analysis has been conducted on an Earth Observation Satellite (EOS) system using the Interactive Design and Evaluation of Advanced Spacecraft (IDEAS) computer-aided design and analysis program. The IDEAS program consists of about 40 user-friendly technical modules and an interactive graphics display. The reflector support system and feed mast of the EOS spacecraft are constructed with box-truss structural concept, a lattice configuration which can be packaged for delivery in a single Shuttle flight and deployed in orbit. The deployed spacecraft consists of a 120-m by 60-m parabolic focal axis. The spacecraft was modeled for structural, thermal, and control systems analysis and structural elements were designed. On-orbit dynamic and thermal loading analyses were conducted; spacecraft weights and developmental and first unit costs were determined.

  6. Cosmological parameter estimation with large scale structure observations

    SciTech Connect

    Dio, Enea Di; Montanari, Francesco; Durrer, Ruth; Lesgourgues, Julien E-mail: Francesco.Montanari@unige.ch E-mail: Julien.Lesgourgues@cern.ch

    2014-01-01

    We estimate the sensitivity of future galaxy surveys to cosmological parameters, using the redshift dependent angular power spectra of galaxy number counts, C{sub ℓ}(z{sub 1},z{sub 2}), calculated with all relativistic corrections at first order in perturbation theory. We pay special attention to the redshift dependence of the non-linearity scale and present Fisher matrix forecasts for Euclid-like and DES-like galaxy surveys. We compare the standard P(k) analysis with the new C{sub ℓ}(z{sub 1},z{sub 2}) method. We show that for surveys with photometric redshifts the new analysis performs significantly better than the P(k) analysis. For spectroscopic redshifts, however, the large number of redshift bins which would be needed to fully profit from the redshift information, is severely limited by shot noise. We also identify surveys which can measure the lensing contribution and we study the monopole, C{sub 0}(z{sub 1},z{sub 2})

  7. Circular causality.

    PubMed

    Thomas, R

    2006-07-01

    The problem of disentangling complex dynamic systems is addressed, especially with a view to identifying those variables that take part in the essential qualitative behaviour of systems. The author presents a series of reflections about the methods of formalisation together with the principles that govern the global operation of systems. In particular, a section on circuits, nuclei, and circular causality and a rather detailed description of the analytic use of the generalised asynchronous logical description, together with a brief description of its synthetic use (OreverseO logic). Some basic rules are recalled, such as the fact that a positive circuit is a necessary condition of multistationarity. Also, the interest of considering as a model, rather than a well-defined set of differential equations, a variety of systems that differ from each other only by the values of constant terms is emphasised. All these systems have a common Jacobian matrix and for all of them phase space has exactly the same structure. It means that all can be partitioned in the same way as regards the signs of the eigenvalues and thus as regards the precise nature of any steady states that might be present. Which steady states are actually present, depends on the values of terms of order zero in the ordinary differential equations (ODEs), and it is easy to find for which values of these terms a given point in phase space is steady. Models can be synthesised first at the level of the circuits involved in the Jacobian matrix (that determines which types and numbers of steady states are consistent with the model), then only at the level of terms of order zero in the ODE's (that determines which of the steady states actually exist), hence the title 'Circular casuality'.

  8. Circular RNA is expressed across the eukaryotic tree of life.

    PubMed

    Wang, Peter L; Bao, Yun; Yee, Muh-Ching; Barrett, Steven P; Hogan, Gregory J; Olsen, Mari N; Dinneny, José R; Brown, Patrick O; Salzman, Julia

    2014-01-01

    An unexpectedly large fraction of genes in metazoans (human, mouse, zebrafish, worm, fruit fly) express high levels of circularized RNAs containing canonical exons. Here we report that circular RNA isoforms are found in diverse species whose most recent common ancestor existed more than one billion years ago: fungi (Schizosaccharomyces pombe and Saccharomyces cerevisiae), a plant (Arabidopsis thaliana), and protists (Plasmodium falciparum and Dictyostelium discoideum). For all species studied to date, including those in this report, only a small fraction of the theoretically possible circular RNA isoforms from a given gene are actually observed. Unlike metazoans, Arabidopsis, D. discoideum, P. falciparum, S. cerevisiae, and S. pombe have very short introns (∼ 100 nucleotides or shorter), yet they still produce circular RNAs. A minority of genes in S. pombe and P. falciparum have documented examples of canonical alternative splicing, making it unlikely that all circular RNAs are by-products of alternative splicing or 'piggyback' on signals used in alternative RNA processing. In S. pombe, the relative abundance of circular to linear transcript isoforms changed in a gene-specific pattern during nitrogen starvation. Circular RNA may be an ancient, conserved feature of eukaryotic gene expression programs.

  9. New Observations Reveal How the Martian Residual South Polar Cap Develops Quasi-Circular Pits, Heart-Shaped Pits, Troughs, and Moats

    NASA Astrophysics Data System (ADS)

    Buhler, Peter Benjamin; Ingersoll, Andrew P.; Ehlmann, Bethany; Fassett, Caleb; Head, James W.

    2016-10-01

    The martian residual south polar cap (RSPC) is a ~1-10 m thick deposit of CO2 ice perched on the much larger H2O ice cap. Because it is the only known CO2 reservoir annually exchanging with the predominantly-CO2 martian atmosphere, understanding its evolution is important to understanding the modern martian climate. The 8 x 105 m2 RSPC is perennial and characterized by mesas dissected by quasi-circular pits, heart-shaped pits, linear troughs and ridges, and moats (a low, CO2-free boundary surrounding a mesa wholly contained within another mesa) that evolve at meter-scales each year [1,2]. However, the underlying processes leading to the development of these landforms have not yet been described. Using repeat-coverage HiRISE (25-50 cm/px) imagery, we observe previously undescribed features on the RSPC, which reveal the processes leading to the emergence of its meter-to-kilometer-scale morphology. We observe dark fans emanating from the sides of RSPC mesas and widespread fracturing and collapse of the upper surface of mesas, which we interpret as evidence for sublimation in the interiors of mesas. On relatively smooth areas of the RSPC, even small relief (~10 cm) collapses generate surface roughness, which concentrates sunlight and enhances sublimation, leading to the development of steep, eroding scarps. Typically, CO2 deposition during the winter then smooths terrain and creates gently sloping scarps (although uneven CO2 deposition can also create steep scarps). A collapse that drops down, such that it is entirely bounded by a steep scarp, develops into a quasi-circular pit. However, when a portion of the collapsing area remains attached to the upper surface, the perimeter is partially bounded by a steep scarp and partially bounded by a gently sloping ramp, which develops into either a heart-shaped pit, linear trough, or moat, depending on the local interplay between deposition and erosion. Finally, we use the spatial distribution of pits in order to determine the

  10. Negative circular polarization as a universal property of quantum dots

    SciTech Connect

    Taylor, Matthew W.; Spencer, Peter; Murray, Ray

    2015-03-23

    This paper shows that negative circular polarization, a spin flip of polarized carriers resulting in emission of opposite helicity, can be observed in undoped, n-doped, and p-doped InAs/GaAs quantum dots. These results contradict the usual interpretation of the effect. We show using power dependent and time resolved spectroscopy that the generation of negative circular polarization correlates with excited state emission. Furthermore, a longer spin lifetime of negatively polarized excitons is observed where emission is largely ground state in character.

  11. Circular inferences in schizophrenia.

    PubMed

    Jardri, Renaud; Denève, Sophie

    2013-11-01

    A considerable number of recent experimental and computational studies suggest that subtle impairments of excitatory to inhibitory balance or regulation are involved in many neurological and psychiatric conditions. The current paper aims to relate, specifically and quantitatively, excitatory to inhibitory imbalance with psychotic symptoms in schizophrenia. Considering that the brain constructs hierarchical causal models of the external world, we show that the failure to maintain the excitatory to inhibitory balance results in hallucinations as well as in the formation and subsequent consolidation of delusional beliefs. Indeed, the consequence of excitatory to inhibitory imbalance in a hierarchical neural network is equated to a pathological form of causal inference called 'circular belief propagation'. In circular belief propagation, bottom-up sensory information and top-down predictions are reverberated, i.e. prior beliefs are misinterpreted as sensory observations and vice versa. As a result, these predictions are counted multiple times. Circular inference explains the emergence of erroneous percepts, the patient's overconfidence when facing probabilistic choices, the learning of 'unshakable' causal relationships between unrelated events and a paradoxical immunity to perceptual illusions, which are all known to be associated with schizophrenia. PMID:24065721

  12. Circular inferences in schizophrenia.

    PubMed

    Jardri, Renaud; Denève, Sophie

    2013-11-01

    A considerable number of recent experimental and computational studies suggest that subtle impairments of excitatory to inhibitory balance or regulation are involved in many neurological and psychiatric conditions. The current paper aims to relate, specifically and quantitatively, excitatory to inhibitory imbalance with psychotic symptoms in schizophrenia. Considering that the brain constructs hierarchical causal models of the external world, we show that the failure to maintain the excitatory to inhibitory balance results in hallucinations as well as in the formation and subsequent consolidation of delusional beliefs. Indeed, the consequence of excitatory to inhibitory imbalance in a hierarchical neural network is equated to a pathological form of causal inference called 'circular belief propagation'. In circular belief propagation, bottom-up sensory information and top-down predictions are reverberated, i.e. prior beliefs are misinterpreted as sensory observations and vice versa. As a result, these predictions are counted multiple times. Circular inference explains the emergence of erroneous percepts, the patient's overconfidence when facing probabilistic choices, the learning of 'unshakable' causal relationships between unrelated events and a paradoxical immunity to perceptual illusions, which are all known to be associated with schizophrenia.

  13. Real time observation of proteolysis with Fourier transform infrared (FT-IR) and UV-circular dichroism spectroscopy: Watching a protease eat a protein

    NASA Astrophysics Data System (ADS)

    Güler, Günnur; Džafić, Enela; Vorob'ev, Mikhail M.; Vogel, Vitali; Mäntele, Werner

    2011-06-01

    Fourier transform infrared (FT-IR)- and UV-circular dichroism (UV-CD) spectroscopy have been used to study real-time proteolytic digestion of β-lactoglobulin (β-LG) and β-casein (β-CN) by trypsin at various substrate/enzyme ratios in D 2O-buffer at 37 °C. Both techniques confirm that protein substrate looses its secondary structure upon conversion to the peptide fragments. This perturbation alters the backbone of the protein chain resulting in conformational changes and degrading of the intact protein. Precisely, the most significant spectral changes which arise from digestion take place in the amide I and amide II regions. The FT-IR spectra for the degraded β-LG show a decrease around 1634 cm -1, suggesting a decrease of β-sheet structure in the course of hydrolysis. Similarly, the intensity around the 1654 cm -1 band decreases for β-CN digested by trypsin, indicating a reduction in the α-helical part. On the other hand, the intensity around ˜1594 cm -1 and ˜1406 cm -1 increases upon enzymatic breakdown of both substrates, suggesting an increase in the antisymmetric and symmetric stretching modes of free carboxylates, respectively, as released digestion products. Observation of further H/D exchange in the course of digestion manifests the structural opening of the buried groups and accessibility to the core of the substrate. On the basis of the UV-CD spectra recorded for β-LG and β-CN digested by trypsin, the unordered structure increases concomitant with a decrease in the remaining structure, thus, revealing breakdown of the intact protein into smaller fragments. This model study in a closed reaction system may serve as a basis for the much more complex digestion processes in an open reaction system such as the stomach.

  14. 17 CFR 230.253 - Offering circular.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... presented in a clear, concise and understandable manner and in a type size that is easily readable... permitted. (2) Where an offering circular is distributed through an electronic medium, issuers may satisfy... in boldfaced type at least as large as that used generally in the body of such offering circular:...

  15. Synthetic-Aperture Coherent Imaging From A Circular Path

    NASA Technical Reports Server (NTRS)

    Jin, Michael Y.

    1995-01-01

    Imaging algorithms based on exact point-target responses. Developed for use in reconstructing image of target from data gathered by radar, sonar, or other transmitting/receiving coherent-signal sensory apparatus following circular observation path around target. Potential applications include: Wide-beam synthetic-aperture radar (SAR) from aboard spacecraft in circular orbit around target planet; SAR from aboard airplane flying circular course at constant elevation around central ground point, toward which spotlight radar beam pointed; Ultrasonic reflection tomography in medical setting, using one transducer moving in circle around patient or else multiple transducers at fixed positions on circle around patient; and Sonar imaging of sea floor to high resolution, without need for large sensory apparatus.

  16. Modeling a decrease in hydraulic losses during turbulent flow in a U-bend channel with a circular cavern with a large opening angle

    NASA Astrophysics Data System (ADS)

    Isaev, S. A.; Kalinin, E. I.; Tereshkin, A. A.; Usachov, A. E.

    2015-03-01

    The Reynolds equations for incompressible viscous fluid, closed using the Menter shear-stress-transfer model modified with allowance for the curvature of flow lines, have been numerically solved using multiblock computational technologies. The obtained solution has been used to calculate the turbulent flow in a U-bend channel containing a circular cavern with a variable opening angle. Predictions based on the results of numerical simulations agree well with the experimental data of Savelsberg and Castro at moderate cavern opening angles. It is established that hydraulic losses in a U-bend channel with completely open cavern are significantly (by ˜25%) decreased as compared to those in a smooth channel at Re = 105.

  17. Topologically non-linked circular duplex DNA.

    PubMed

    Biegeleisen, Ken

    2002-05-01

    The discovery of circular DNA, over 30 years ago, introduced an element of uneasiness in what had been, up to that point, the almost picture-perfect story of the elucidation of the molecular biology of heredity. If DNA indeed has the Watson-Crick right-handed helical secondary structure, then in circular DNA, thousands, or perhaps even millions of twists must be removed in each generation, and re-wound in the next generation. Although enzyme systems adequate for this task have long since been found and characterized, there have nevertheless arisen a number of proposals for alternative DNA structures in which the strands are topologically non-linked, so that they might separate during replication without having to be unwound. These structures have generally been put forth as theory only, and have been largely unaccompanied by experimental evidence to support their applicability to native DNA from living systems. Recently, however, a report has emerged suggesting that it might be possible to separate, intact, the individual single-stranded circular half-chromosomes which constitute the double-stranded circular chromosomes of certain plasmids. This would not be possible unless the chromosomes had one of the alternative, topologically non-linked structures. It is widely believed that after a half-century of worldwide DNA research, any significant change to the Watson-Crick structure is unlikely to stand up to scrutiny. Nevertheless, the present author has found that in many instances in which the behavior of circular duplex DNA is considered to be explicable only in terms of the topologically linked helical model, it is also possible to explain that same behavior in terms of a topologically non-linked model. It is necessary, in these instances, to make certain logical assumptions which cannot be conclusively proven at the present time. The author herein offers an example of one such instance, namely an examination of the behavior of circular duplex DNA in an alkaline

  18. HST Observations of a Large-Amplitude, Long-Period Trojan: (11351) Leucus

    NASA Astrophysics Data System (ADS)

    Noll, Keith S.; Levison, Harold F.; Buie, Marc W.; Grundy, William M.

    2016-10-01

    (11351) Leucus (1997 TS25) is a Trojan that is notable for having one of the longest known rotation periods of any small body, T=514 h. A possible cause for this long period would be the existence of a tidally locked binary similar to the already-known long period binary Trojan, (617) Patroclus. If this were the case, the system would become tidally circularized in a time short compared to the age of the solar system. In such a case, the components would be separated by ~0.18 arcsec at lightcurve maximum, resolvable by WFC3. We carried out observations in June 2016, coordinated with groundbased observations to schedule near a maximum to test whether (11351) Leucus is binary. We describe the results of these observations.Observations of (11351) Leucus are of particular interest because it is a target of the Lucy mission, a Discovery mission currently in phase A and one of five that may be selected in early 2017. Searches for binary Trojans also offer multiple scientific benefits independent of mission status. Orbit-derived mass and density can be used to constrain planetary migration models. Low density is characteristic of bodies found in the dynamically cold Kuiper Belt, a remnant of the solar system's protoplanetary disk. Only one undisputed density has been measured in the Trojans, that of the binary (617) Patroclus, which has a low density of 0.8 g/cm3, similar to the low densities found in the Kuiper Belt. Slow rotators offer a set of targets that are tidally evolved systems and therefore are among the most attractive potential targets for an HST search.

  19. A LEKID-based CMB instrument design for large-scale observations in Greenland

    NASA Astrophysics Data System (ADS)

    Araujo, D. C.; Ade, P. A. R.; Bond, J. R.; Bradford, K. J.; Chapman, D.; Che, G.; Day, P. K.; Didier, J.; Doyle, S.; Eriksen, H. K.; Flanigan, D.; Groppi, C. E.; Hillbrand, Seth N.; Johnson, B. R.; Jones, G.; Limon, Michele; Miller, A. D.; Mauskopf, P.; McCarrick, H.; Mroczkowski, T.; Reichborn-Kjennerud, B.; Smiley, B.; Sobrin, Joshua; Wehus, I. K.; Zmuidzinas, J.

    2014-08-01

    We present the results of a feasibility study, which examined deployment of a ground-based millimeter-wave polarimeter, tailored for observing the cosmic microwave background (CMB), to Isi Station in Greenland. The instrument for this study is based on lumped-element kinetic inductance detectors (LEKIDs) and an F/2.4 catoptric, crossed-Dragone telescope with a 500 mm aperture. The telescope is mounted inside the receiver and cooled to < 4 K by a closed-cycle 4He refrigerator to reduce background loading on the detectors. Linearly polarized signals from the sky are modulated with a metal-mesh half-wave plate that is rotated at the aperture stop of the telescope with a hollow-shaft motor based on a superconducting magnetic bearing. The modular detector array design includes at least 2300 LEKIDs, and it can be configured for spectral bands centered on 150 GHz or greater. Our study considered configurations for observing in spectral bands centered on 150, 210 and 267 GHz. The entire polarimeter is mounted on a commercial precision rotary air bearing, which allows fast azimuth scan speeds with negligible vibration and mechanical wear over time. A slip ring provides power to the instrument, enabling circular scans (360 degrees of continuous rotation). This mount, when combined with sky rotation and the latitude of the observation site, produces a hypotrochoid scan pattern, which yields excellent cross-linking and enables 34% of the sky to be observed using a range of constant elevation scans. This scan pattern and sky coverage combined with the beam size (15 arcmin at 150 GHz) makes the instrument sensitive to 5 < ` < 1000 in the angular power spectra.

  20. Circular Dammann grating

    NASA Astrophysics Data System (ADS)

    Zhou, Changhe; Jia, Jia; Liu, Liren

    2003-11-01

    A circular Dammann grating that can produce circular equal intensities at various orders in the far field is described. A set of parameters such as order, circular number, uniformity, and diffraction efficiency has been defined to describe the novel diffractive phase elements. Numerical solutions of binary-phase (0, π) circular Dammann gratings are given. The results of experiments with a four-order circular Dammann grating made by a lithographic technique are presented. This novel diffractive optical element should be highly interesting in a wide variety of practical applications.

  1. Large scale evaluation of soil moisture retrievals from passive microwave observations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For several years passive microwave observations have been used to retrieve surface soil moisture from the Earth’s surface. Several satellite sensors such as the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and WindSat have been used for this purpose using multi-channel observations. Large sc...

  2. Spectra of circularly polarized radiation from astrophysical OH masers

    NASA Technical Reports Server (NTRS)

    Nedoluha, Gerald E.; Watson, William D.

    1990-01-01

    A striking feature of astrophysical masers is the tendency for either one or the other of the circular polarizations to dominate in the radiation from the strong, widely observed masing transitions of OH at 18 cm. Spectral line profiles are calculated for polarized maser radiation due to the combined effects of a velocity gradient and, as is indicated for these transitions, a Zeeman splitting that is at least comparable with the thermal contributions to the breadths of the spectral lines. The resulting spectral features are similar in appearance, including the presence of large net circular polarization and narrow line breadths, to the commonly observed spectra of OH masers in molecular clouds. The calculations presented here are performed as a function of frequency without making the approximations of a large velocity gradient. Rapid cross relaxation, which has been advocated by others for the OH masers, is assumed.

  3. Circular Dichroism Spectra of Granal and Agranal Chloroplasts of Maize

    PubMed Central

    Faludi-Dániel, Ágnes; Demeter, S.; Garay, A. S.

    1973-01-01

    Granum-containing chloroplasts from mesophyll cells of maize (Zea mays L. var. MV 861) leaves exhibited circular dichroism spectra with a large double signal; peaks at 696 nm (+) and 680 nm (−). In the circular dichroism spectra obtained with agranal chloroplasts of bundle sheath cells, this large double signal is absent. Separation of grana lamellae, in a medium of low salt concentration and in KSCN solution, resulted only in a slight decrease of the amplitude, while upon treatment with digitonin the large double signal disappeared. A negative signal of the chlorophyll b peak at 654 nm was observed in the case of both granal and agranal chloroplasts, and it was not affected either by low salt or by digitonin treatment. A positive peak at about 515 nm was higher in granal than in agranal chloroplasts. PMID:16658498

  4. Observation of a large spin-dependent transport length in organic spin valves at room temperature.

    PubMed

    Zhang, Xianmin; Mizukami, Shigemi; Kubota, Takahide; Ma, Qinli; Oogane, Mikihiko; Naganuma, Hiroshi; Ando, Yasuo; Miyazaki, Terunobu

    2013-01-01

    The integration of organic semiconductors and magnetism has been a fascinating topic for fundamental scientific research and future applications in electronics, because organic semiconductors are expected to possess a large spin-dependent transport length based on weak spin-orbit coupling and weak hyperfine interaction. However, to date, this length has typically been limited to several nanometres at room temperature, and a large length has only been observed at low temperatures. Here we report on a novel organic spin valve device using C(60) as the spacer layer. A magnetoresistance ratio of over 5% was observed at room temperature, which is one of the highest magnetoresistance ratios ever reported. Most importantly, a large spin-dependent transport length of approximately 110 nm was experimentally observed for the C(60) layer at room temperature. These results provide insights for further understanding spin transport in organic semiconductors and may strongly advance the development of spin-based organic devices. PMID:23340432

  5. Extreme Ultraviolet Explorer deep survey observations of a large flare on AU Microscopii

    NASA Technical Reports Server (NTRS)

    Cully, Scott L.; Siegmund, Oswald H. W.; Vedder, Peter W.; Vallerga, John V.

    1993-01-01

    We have made the first extended observation of a stellar flare in the EUV with 100 s time resolution. The flare was detected on AU Mic by the Extreme Ultraviolet Explorer satellite at 12:38 UT on 1992 July 15 during a 4 d observation from 1992 July 14 to 18. This was a large flare detected in the Lexan/boron (65-190 A) band with an observed peak count rate of 7.0 +/- 0.5 counts/s, corresponding to a peak luminosity of 10 exp 30 erg/s in the Lexan/boron bandpass. This is significantly above the measured quiescent level of 0.4 +/- 0.2 counts/s. The flare consisted of a sharp peak lasting about 2 hr, followed by a decaying tail that lasted more than a day. The total EUV energy of the event is estimated to be 3 x 10 exp 34 ergs. A second, smaller flare was also observed and is described. We conclude that the large emission measures on order of 6 x 10 exp 53/cu cm are due to large volumes with characteristic length scales of order the stellar radius. We compare these EUV observations with stellar flare observations in other bandpasses and estimate the likelihood of seeing similar flares in future observations.

  6. Direct observation of high-spin states in manganese dimer and trimer cations by x-ray magnetic circular dichroism spectroscopy in an ion trap

    SciTech Connect

    Zamudio-Bayer, V.; Hirsch, K.; Langenberg, A.; Kossick, M.; Ławicki, A.; Lau, J. T.; Terasaki, A.; Issendorff, B. von

    2015-06-21

    The electronic structure and magnetic moments of free Mn{sub 2}{sup +} and Mn{sub 3}{sup +} are characterized by 2p x-ray absorption and x-ray magnetic circular dichroism spectroscopy in a cryogenic ion trap that is coupled to a synchrotron radiation beamline. Our results directly show that localized magnetic moments of 5 μ{sub B} are created by 3d{sup 5}({sup 6}S) states at each ionic core, which are coupled ferromagnetically to form molecular high-spin states via indirect exchange that is mediated in both cases by a delocalized valence electron in a singly occupied 4s derived antibonding molecular orbital with an unpaired spin. This leads to total magnetic moments of 11 μ{sub B} for Mn{sub 2}{sup +} and 16 μ{sub B} for Mn{sub 3}{sup +}, with no contribution of orbital angular momentum.

  7. Wideband very large array observations of A2256. I. Continuum, rotation measure, and spectral imaging

    SciTech Connect

    Owen, Frazer N.; Rau, Urvashi; Bhatnagar, Sanjay; Kogan, Leonid; Rudnick, Lawrence; Jean Eilek

    2014-10-10

    We report new observations of A2256 with the Karl G. Jansky Very Large Array (VLA) at frequencies between 1 and 8 GHz. These observations take advantage of the 2:1 bandwidths available during a single observation to study the spectral index, polarization, and rotation measure as well as using the associated higher sensitivity per unit time to image total intensity features down to ∼0.''5 resolution. We find that the Large Relic, which dominates the cluster, is made up of a complex of filaments that show correlated distributions in intensity, spectral index, and fractional polarization. The rotation measure varies across the face of the Large Relic but is not well correlated with the other properties of the source. The shape of individual filaments suggests that the Large Relic is at least 25 kpc thick. We detect a low surface brightness arc connecting the Large Relic to the Halo and other radio structures, suggesting a physical connection between these features. The center of the F-complex is dominated by a very steep-spectrum, polarized, ring-like structure, F2, without an obvious optical identification, but the entire F-complex does have interesting morphological similarities to the radio structure of NGC 1265. Source C, the Long Tail, is unresolved in width near the galaxy core and is ≲ 100 pc in diameter there. This morphology suggests either that C is a one-sided jet or that the bending of the tails takes place very near the core, consistent with the parent galaxy having undergone extreme stripping. Overall it seems that many of the unusual phenomena can be understood in the context of A2256 being near the pericenter of a slightly off-axis merger between a cluster and a smaller group. Given the lack of evidence for a strong shock associated with the Large Relic, other models should be considered, such as reconnection between two large-scale magnetic domains.

  8. The x ray properties of a large, uniform QSO sample: Einstein observations of the LBQS

    NASA Technical Reports Server (NTRS)

    Margon, B.; Anderson, S. F.; Xu, X.; Green, P. J.; Foltz, C. B.

    1992-01-01

    Although there are large numbers of Quasi Stellar Objects (QSO's) now observed in X rays, extensive X-ray observations of uniformly selected, 'complete' QSO samples are more rare. The Large Bright QSO Survey (LBQS) consists of about 1000 objects with well understood properties, most brighter than B = 18.8 and thus amenable to X-ray detections in relatively brief exposures. The sample is thought to be highly complete in the range 0.2 less than z less than 3.3, a significantly broader interval than many other surveys. The Einstein IPC observed 150 of these objects, mostly serendipitously, during its lifetime. We report the results of an analysis of these IPC data, considering not only the 20 percent of the objects we find to have positive X-ray detections, but also the ensemble X-ray properties derived by 'image stacking'.

  9. Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.

    2010-01-01

    We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.

  10. Taming of the Slew: Optimization of the Large Scale X-Ray Surveys with Observing Strategy

    NASA Technical Reports Server (NTRS)

    Ptak, Andrew

    2010-01-01

    We will discuss simulations intended to address the relative efficiency of observing large areas with a slew observing strategy as opposed to pointing at fields individually. We will emphasize observing with the Wide Field X-ray Telescope (WFXT) but will also discuss optimization of observing strategy with the IXO Wide-Field Imager (WFI) and eRosita. The slew survey simulation is being implemented by translating the point direction along an arbitrary direction which addresses the impact of smoothing the telescope response during a given slew. However the simulation software is being designed to also allow the visibility of the sky to also be incorporated, in which case long-term observing plans could be developed to optimize the total sky coverage at a given depth and spatial resolution.

  11. ARRIVAL TIME CALCULATION FOR INTERPLANETARY CORONAL MASS EJECTIONS WITH CIRCULAR FRONTS AND APPLICATION TO STEREO OBSERVATIONS OF THE 2009 FEBRUARY 13 ERUPTION

    SciTech Connect

    Moestl, C.; Rollett, T.; Temmer, M.; Veronig, A. M.; Biernat, H. K.; Lugaz, N.; Farrugia, C. J.; Galvin, A. B.; Davies, J. A.; Harrison, R. A.; Crothers, S.; Luhmann, J. G.; Zhang, T. L.; Baumjohann, W.

    2011-11-01

    One of the goals of the NASA Solar TErestrial RElations Observatory (STEREO) mission is to study the feasibility of forecasting the direction, arrival time, and internal structure of solar coronal mass ejections (CMEs) from a vantage point outside the Sun-Earth line. Through a case study, we discuss the arrival time calculation of interplanetary CMEs (ICMEs) in the ecliptic plane using data from STEREO/SECCHI at large elongations from the Sun in combination with different geometric assumptions about the ICME front shape [fixed-{Phi} (FP): a point and harmonic mean (HM): a circle]. These forecasting techniques use single-spacecraft imaging data and are based on the assumption of constant velocity and direction. We show that for the slow (350 km s{sup -1}) ICME on 2009 February 13-18, observed at quadrature by the two STEREO spacecraft, the results for the arrival time given by the HM approximation are more accurate by 12 hr than those for FP in comparison to in situ observations of solar wind plasma and magnetic field parameters by STEREO/IMPACT/PLASTIC, and by 6 hr for the arrival time at Venus Express (MAG). We propose that the improvement is directly related to the ICME front shape being more accurately described by HM for an ICME with a low inclination of its symmetry axis to the ecliptic. In this case, the ICME has to be tracked to >30{sup 0} elongation to obtain arrival time errors < {+-} 5 hr. A newly derived formula for calculating arrival times with the HM method is also useful for a triangulation technique assuming the same geometry.

  12. A bifunctional amorphous polymer exhibiting equal linear and circular photoinduced birefringences.

    PubMed

    Royes, Jorge; Provenzano, Clementina; Pagliusi, Pasquale; Tejedor, Rosa M; Piñol, Milagros; Oriol, Luis

    2014-11-01

    The large and reversible photoinduced linear and circular birefringences in azo-compounds are at the basis of the interest in these materials, which are potentially useful for several applications. Since the onset of the linear and circular anisotropies relies on orientational processes, which typically occur on the molecular and supramolecular length scale, respectively, a circular birefringence at least one order of magnitude lower than the linear one is usually observed. Here, the synthesis and characterization of an amorphous polymer with a dimeric repeating unit containing a cyanoazobenzene and a cyanobiphenyl moiety are reported, in which identical optical linear and circular birefringences are induced for proper light dose and ellipticity. A pump-probe technique and an analytical method based on the Stokes-Mueller formalism are used to investigate the photoinduced effects and to evaluate the anisotropies. The peculiar photoresponse of the polymer makes it a good candidate for applications in smart functional devices. PMID:25257542

  13. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; Jiang, Jonathan H.

    2012-01-01

    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5

  14. Observation of large magnetocaloric effect in HoRu{sub 2}Si{sub 2}

    SciTech Connect

    Paramanik, Tapas Das, Kalipada; Das, I.

    2014-02-28

    Detailed magnetic, magnetotransport, and magnetocaloric measurements on HoRu{sub 2}Si{sub 2} have been performed. In this Letter, we report presence of spin reorientation transition below paramagnetic to antiferromagnetic transition temperature (T{sub N} = 19 K). Large magnetic entropy change 9.1 J/kg K and large negative magnetoresistance ∼21% in a magnetic field of 5 T has been observed around T{sub N}, which is associated with field induced spin-flip metamagnetic transition.

  15. Element and orbital-specific observation of two-step magnetic transition in NpNiGa5 : X-ray magnetic circular dichroism study

    NASA Astrophysics Data System (ADS)

    Okane, T.; Ohkochi, T.; Inami, T.; Takeda, Y.; Fujimori, S.-I.; Kawamura, N.; Suzuki, M.; Tsutsui, S.; Yamagami, H.; Fujimori, A.; Tanaka, A.; Aoki, D.; Homma, Y.; Shiokawa, Y.; Yamamoto, E.; Haga, Y.; Nakamura, A.; Ōnuki, Y.

    2009-09-01

    X-ray magnetic circular dichroism (XMCD) experiments were performed at the NpM4,5 and the GaK absorption edges of NpNiGa5 to investigate the temperature-dependent changes of magnetic properties of Np5f and Ga4p electron states. By the sum-rule analysis of the NpM4,5 XMCD data, the orbital magnetic moment μL and the spin magnetic moment μS were estimated for the Np5f3 and 5f4 electronic configurations and their comparison to the previous magnetization and neutron-scattering experiments suggests that the 5f4 configuration is more likely than the 5f3 configuration in NpNiGa5 . It was found that |μL/μS| tends to increase from the high-temperature low-moment ordered state to the low-temperature high-moment ordered state. The result of the GaK XMCD indicates that the Ga4p electrons are magnetically polarized and the temperature and magnetic-field dependences of the Ga4p orbital moment are proportional to those of the magnetization measurements.

  16. Direct observation of ferromagnetism in grain boundary phase of Nd-Fe-B sintered magnet using soft x-ray magnetic circular dichroism

    SciTech Connect

    Nakamura, T.; Yasui, A.; Kotani, Y.; Iwai, H.; Akiya, T.; Ohkubo, T.; Hono, K.; Hirosawa, S.; Gohda, Y.

    2014-11-17

    We have investigated the magnetism of the grain boundary (GB) phase in a Nd{sub 14.0}Fe{sub 79.7}Cu{sub 0.1}B{sub 6.2} sintered magnet using soft x-ray magnetic circular dichroism (XMCD) at the Fe L{sub 2,3}-edges. Soft XMCD spectra were measured from the fractured surface that was confirmed to be covered with a thin GB phase by Auger electron spectroscopy. The magnetic moment of Fe in the GB phase was estimated to be m{sub GB}=1.4 μ{sub B} at 30 °C using the sum rule analysis for XMCD spectra, which is 60% of that of Fe in the Nd{sub 2}Fe{sub 14}B compound. The temperature dependence of m{sub GB} evaluated with reference to Fe in the Nd{sub 2}Fe{sub 14}B phase indicated that the Curie temperature of the GB phase is more than 50 °C lower compared to that of Nd{sub 2}Fe{sub 14}B.

  17. Comparing GOSAT observations of localized CO2 enhancements by large emitters with inventory-based estimates

    NASA Astrophysics Data System (ADS)

    Janardanan, Rajesh; Maksyutov, Shamil; Oda, Tomohiro; Saito, Makoto; Kaiser, Johannes W.; Ganshin, Alexander; Stohl, Andreas; Matsunaga, Tsuneo; Yoshida, Yukio; Yokota, Tatsuya

    2016-04-01

    We employed an atmospheric transport model to attribute column-averaged CO2 mixing ratios (XCO2) observed by Greenhouse gases Observing SATellite (GOSAT) to emissions due to large sources such as megacities and power plants. XCO2 enhancements estimated from observations were compared to model simulations implemented at the spatial resolution of the satellite observation footprint (0.1° × 0.1°). We found that the simulated XCO2 enhancements agree with the observed over several continental regions across the globe, for example, for North America with an observation to simulation ratio of 1.05 ± 0.38 (p < 0.1), but with a larger ratio over East Asia (1.22 ± 0.32; p < 0.05). The obtained observation-model discrepancy (22%) for East Asia is comparable to the uncertainties in Chinese emission inventories (~15%) suggested by recent reports. Our results suggest that by increasing the number of observations around emission sources, satellite instruments like GOSAT can provide a tool for detecting biases in reported emission inventories.

  18. Comparing GOSAT Observations of Localized CO2 Enhancements by Large Emitters with Inventory-Based Estimates

    NASA Technical Reports Server (NTRS)

    Janardanan, Rajesh; Maksyutov, Shamil; Oda, Tomohiro; Saito, Makoto; Kaiser, Johannes W.; Ganshin, Alexander; Stohl, Andreas; Matsunaga, Tsuneo; Yoshida, Yukio; Yokota, Tatsuya

    2016-01-01

    We employed an atmospheric transport model to attribute column-averaged CO2 mixing ratios (XCO2) observed by Greenhouse gases Observing SATellite (GOSAT) to emissions due to large sources such as megacities and power plants. XCO2 enhancements estimated from observations were compared to model simulations implemented at the spatial resolution of the satellite observation footprint (0.1deg × 0.1deg). We found that the simulated XCO2 enhancements agree with the observed over several continental regions across the globe, for example, for North America with an observation to simulation ratio of 1.05 +/- 0.38 (p<0.1), but with a larger ratio over East Asia (1.22 +/- 0.32; p<0.05). The obtained observation-model discrepancy (22%) for East Asia is comparable to the uncertainties in Chinese emission inventories (approx.15%) suggested by recent reports. Our results suggest that by increasing the number of observations around emission sources, satellite instruments like GOSAT can provide a tool for detecting biases in reported emission inventories.

  19. Characteristics of Electron Distributions Observed During Large Amplitude Whistler Wave Events in the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Wilson, Lynn B., III

    2010-01-01

    We present a statistical study of the characteristics of electron distributions associated with large amplitude whistler waves inside the terrestrial magnetosphere using waveform capture data as an addition of the study by Kellogg et al., [2010b]. We identified three types of electron distributions observed simultaneously with the whistler waves including beam-like, beam/flattop, and anisotropic distributions. The whistlers exhibited different characteristics dependent upon the observed electron distributions. The majority of the waveforms observed in our study have f/fce < or = 0.5 and are observed primarily in the radiation belts outside the plasmapause simultaneously with anisotropic electron distributions. We also present an example waveform capture of the largest magnetic field amplitude (> or = 8 nT pk-pk) whistler wave measured in the radiation belts. The majority of the largest amplitude whistlers occur during magnetically active periods (AE > 200 nT).

  20. Ultraviolet interstellar extinction in the large Magellanic Cloud using observations with the International Ultraviolet Explorer

    NASA Technical Reports Server (NTRS)

    Koornneef, J.; Code, A. D.

    1981-01-01

    Ten early-type supergiants in the Large Magellanic Cloud (LMC) have been observed with the International Ultraviolet Explorer (IUE). The spectra (1150-3200 A) are shown, and their photometric properties are discussed. It is confirmed that the LMC interstellar extinction law for these stars deviates significantly from the average galactic law in the sense that the 2200 A feature is deficient in strength and that, in the far-ultraviolet (wavelength less than 2000 A), the observed LMC extinction law is significantly above the galactic curve.

  1. ISIS observations of auroral particles and large-scale Birkeland currents

    NASA Technical Reports Server (NTRS)

    Klumpar, D. M.

    1981-01-01

    Simultaneous electron and positive ion observations made with single-component magnetic perturbations on the ISIS-2 satellite are used to compare and contrast the relationships between primary and secondary auroral particle distributions at 5 eV-15 keV, and the large-scale Birkeland currents, in the pre- and post-midnight local time sectors. No unique relation is found between the regions of the Birkeland current system and regions of auroral particle distribution, though repeatable systematics in the region of upward-directed current are observed, and little evidence exists in either local time sector for the direct detection of the downward current-associated current carriers.

  2. Simultaneous effect of modified gravity and primordial non-Gaussianity in large scale structure observations

    SciTech Connect

    Mirzatuny, Nareg; Khosravi, Shahram; Baghram, Shant; Moshafi, Hossein E-mail: khosravi@mail.ipm.ir E-mail: hosseinmoshafi@iasbs.ac.ir

    2014-01-01

    In this work we study the simultaneous effect of primordial non-Gaussianity and the modification of the gravity in f(R) framework on large scale structure observations. We show that non-Gaussianity and modified gravity introduce a scale dependent bias and growth rate functions. The deviation from ΛCDM in the case of primordial non-Gaussian models is in large scales, while the growth rate deviates from ΛCDM in small scales for modified gravity theories. We show that the redshift space distortion can be used to distinguish positive and negative f{sub NL} in standard background, while in f(R) theories they are not easily distinguishable. The galaxy power spectrum is generally enhanced in presence of non-Gaussianity and modified gravity. We also obtain the scale dependence of this enhancement. Finally we define galaxy growth rate and galaxy growth rate bias as new observational parameters to constrain cosmology.

  3. IMAGE-EUV Observation of Large Scale Standing Wave Pattern in the Nightside Plasmasphere

    NASA Technical Reports Server (NTRS)

    Six, N. Frank (Technical Monitor); Gallagher, D. L.; Adrian, M. L.; Sandel, B. R.

    2002-01-01

    We present analyses of a nightside plasmaspheric pattern of bifurcated, filamentary He(+) 30.4-nm emission enhancements observed by IMAGE EUV between approximately 19:40-22:13 UT on 28 June 2000 that indicate the presence of a large-scale, global ULF standing wave pattern. Analysis of coincident IMAGE magnetometer chain data reveals that these ULF waves extend across the magnetic latitude-longitude range of the chain and possess multiple spectral features between 0.6-5-mHz (3-30 minute period). Additionally, analysis of ACE SWE data reveals similarly structured spectral components in the solar wind. Collectively, these analyses lead to the conclusion that the observed large-scale ULF wave pattern is the result of solar wind pressure pulses 'ringing' the inner-magnetosphere.

  4. Trains of large Kelvin-Helmholtz billows observed in the Kuroshio above a seamount

    NASA Astrophysics Data System (ADS)

    Chang, Ming-Huei; Jheng, Sin-Ya; Lien, Ren-Chieh

    2016-08-01

    Trains of large Kelvin-Helmholtz (KH) billows within the Kuroshio current at ~230 m depth off southeastern Taiwan and above a seamount were observed by shipboard instruments. The trains of large KH billows were present in a strong shear band along the 0.55 m s-1 isotach within the Kuroshio core; they are presumably produced by flow interactions with the rapidly changing topography. Each individual billow, resembling a cat's eye, had a horizontal length scale of 200 m, a vertical scale of 100 m, and a timescale of 7 min, near the local buoyancy frequency. Overturns were observed frequently in the billow cores and the upper eyelids. The turbulent kinetic energy dissipation rates estimated using the Thorpe scale had an average value of O(10-4) W kg-1 and a maximum value of O(10-3) W kg-1. The turbulence mixing induced by the KH billows may exchange Kuroshio water with the surrounding water masses.

  5. Orbital circularization of a planet accreting disk gas: the formation of distant jupiters in circular orbits based on a core accretion model

    SciTech Connect

    Kikuchi, Akihiro; Higuchi, Arika; Ida, Shigeru E-mail: higuchia@geo.titech.ac.jp

    2014-12-10

    Recently, gas giant planets in nearly circular orbits with large semimajor axes (a ∼ 30-1000 AU) have been detected by direct imaging. We have investigated orbital evolution in a formation scenario for such planets, based on a core accretion model. (1) Icy cores accrete from planetesimals at ≲ 30 AU, (2) they are scattered outward by an emerging nearby gas giant to acquire highly eccentric orbits, and (3) their orbits are circularized through the accretion of disk gas in outer regions, where they spend most of their time. We analytically derived equations to describe the orbital circularization through gas accretion. Numerical integrations of these equations show that the eccentricity decreases by a factor of more than 5 while the planetary mass increases by a factor of 10. Because runaway gas accretion increases planetary mass by ∼10-300, the orbits are sufficiently circularized. On the other hand, a is reduced at most only by a factor of two, leaving the planets in the outer regions. If the relative velocity damping by shock is considered, the circularization slows down, but is still efficient enough. Therefore, this scenario potentially accounts for the formation of observed distant jupiters in nearly circular orbits. If the apocenter distances of the scattered cores are larger than the disk sizes, their a shrink to a quarter of the disk sizes; the a-distribution of distant giants could reflect the outer edges of the disks in a similar way that those of hot jupiters may reflect inner edges.

  6. Very Large Array and Ratan 600 Observations in Support of the Coronas I Mission

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1997-01-01

    The world's two largest radio telescopes, the VLA and RATAN 600, were used to observe the Sun in support of the Terek Soft X-ray telescope aboard CORONA-1 spacecraft, thereby enhancing the scientific return of all three instruments beyond that expected from using each one alone. The large collecting areas of these radio telescopes were uniquely suited for investigating quiescent coronal structures, and they each provided unique perspectives of high spatial resolution (VLA) and high frequency resolution with polarization (RATAN 600).

  7. Hot-electron flux observation in large-area microwave sustained plasmas

    NASA Astrophysics Data System (ADS)

    Kudela, Jozef; Terebessy, Tibor; Kando, Masashi

    2000-03-01

    Flux of hot electrons directed away from the waveguiding plasma-dielectric interface was experimentally observed in large-area microwave discharges. The energy of these electrons attains values of some 60 eV, and they are believed to be originating from the resonantly-enhanced electric field region localized near the dielectric. The phenomenon appears to play a significant role in discharge heating mechanism, which is demonstrated by plasma parameter profiles.

  8. Radiometer requirements for Earth-observation systems using large space antennas

    NASA Technical Reports Server (NTRS)

    Keafer, L. S., Jr.; Harrington, R. F.

    1983-01-01

    Requirements are defined for Earth observation microwave radiometry for the decade of the 1990's by using large space antenna (LSA) systems with apertures in the range from 50 to 200 m. General Earth observation needs, specific measurement requirements, orbit mission guidelines and constraints, and general radiometer requirements are defined. General Earth observation needs are derived from NASA's basic space science program. Specific measurands include soil moisture, sea surface temperature, salinity, water roughness, ice boundaries, and water pollutants. Measurements are required with spatial resolution from 10 to 1 km and with temporal resolution from 3 days to 1 day. The primary orbit altitude and inclination ranges are 450 to 2200 km and 60 to 98 deg, respectively. Contiguous large scale coverage of several land and ocean areas over the globe dictates large (several hundred kilometers) swaths. Radiometer measurements are made in the bandwidth range from 1 to 37 GHz, preferably with dual polarization radiometers with a minimum of 90 percent beam efficiency. Reflector surface, root mean square deviation tolerances are in the wavelength range from 1/30 to 1/100.

  9. Considerations for observational research using large data sets in radiation oncology.

    PubMed

    Jagsi, Reshma; Bekelman, Justin E; Chen, Aileen; Chen, Ronald C; Hoffman, Karen; Shih, Ya-Chen Tina; Smith, Benjamin D; Yu, James B

    2014-09-01

    The radiation oncology community has witnessed growing interest in observational research conducted using large-scale data sources such as registries and claims-based data sets. With the growing emphasis on observational analyses in health care, the radiation oncology community must possess a sophisticated understanding of the methodological considerations of such studies in order to evaluate evidence appropriately to guide practice and policy. Because observational research has unique features that distinguish it from clinical trials and other forms of traditional radiation oncology research, the International Journal of Radiation Oncology, Biology, Physics assembled a panel of experts in health services research to provide a concise and well-referenced review, intended to be informative for the lay reader, as well as for scholars who wish to embark on such research without prior experience. This review begins by discussing the types of research questions relevant to radiation oncology that large-scale databases may help illuminate. It then describes major potential data sources for such endeavors, including information regarding access and insights regarding the strengths and limitations of each. Finally, it provides guidance regarding the analytical challenges that observational studies must confront, along with discussion of the techniques that have been developed to help minimize the impact of certain common analytical issues in observational analysis. Features characterizing a well-designed observational study include clearly defined research questions, careful selection of an appropriate data source, consultation with investigators with relevant methodological expertise, inclusion of sensitivity analyses, caution not to overinterpret small but significant differences, and recognition of limitations when trying to evaluate causality. This review concludes that carefully designed and executed studies using observational data that possess these qualities hold

  10. Considerations for Observational Research Using Large Data Sets in Radiation Oncology

    SciTech Connect

    Jagsi, Reshma; Bekelman, Justin E.; Chen, Aileen; Chen, Ronald C.; Hoffman, Karen; Tina Shih, Ya-Chen; Smith, Benjamin D.; Yu, James B.

    2014-09-01

    The radiation oncology community has witnessed growing interest in observational research conducted using large-scale data sources such as registries and claims-based data sets. With the growing emphasis on observational analyses in health care, the radiation oncology community must possess a sophisticated understanding of the methodological considerations of such studies in order to evaluate evidence appropriately to guide practice and policy. Because observational research has unique features that distinguish it from clinical trials and other forms of traditional radiation oncology research, the International Journal of Radiation Oncology, Biology, Physics assembled a panel of experts in health services research to provide a concise and well-referenced review, intended to be informative for the lay reader, as well as for scholars who wish to embark on such research without prior experience. This review begins by discussing the types of research questions relevant to radiation oncology that large-scale databases may help illuminate. It then describes major potential data sources for such endeavors, including information regarding access and insights regarding the strengths and limitations of each. Finally, it provides guidance regarding the analytical challenges that observational studies must confront, along with discussion of the techniques that have been developed to help minimize the impact of certain common analytical issues in observational analysis. Features characterizing a well-designed observational study include clearly defined research questions, careful selection of an appropriate data source, consultation with investigators with relevant methodological expertise, inclusion of sensitivity analyses, caution not to overinterpret small but significant differences, and recognition of limitations when trying to evaluate causality. This review concludes that carefully designed and executed studies using observational data that possess these qualities hold

  11. Considerations for observational research using large data sets in radiation oncology.

    PubMed

    Jagsi, Reshma; Bekelman, Justin E; Chen, Aileen; Chen, Ronald C; Hoffman, Karen; Shih, Ya-Chen Tina; Smith, Benjamin D; Yu, James B

    2014-09-01

    The radiation oncology community has witnessed growing interest in observational research conducted using large-scale data sources such as registries and claims-based data sets. With the growing emphasis on observational analyses in health care, the radiation oncology community must possess a sophisticated understanding of the methodological considerations of such studies in order to evaluate evidence appropriately to guide practice and policy. Because observational research has unique features that distinguish it from clinical trials and other forms of traditional radiation oncology research, the International Journal of Radiation Oncology, Biology, Physics assembled a panel of experts in health services research to provide a concise and well-referenced review, intended to be informative for the lay reader, as well as for scholars who wish to embark on such research without prior experience. This review begins by discussing the types of research questions relevant to radiation oncology that large-scale databases may help illuminate. It then describes major potential data sources for such endeavors, including information regarding access and insights regarding the strengths and limitations of each. Finally, it provides guidance regarding the analytical challenges that observational studies must confront, along with discussion of the techniques that have been developed to help minimize the impact of certain common analytical issues in observational analysis. Features characterizing a well-designed observational study include clearly defined research questions, careful selection of an appropriate data source, consultation with investigators with relevant methodological expertise, inclusion of sensitivity analyses, caution not to overinterpret small but significant differences, and recognition of limitations when trying to evaluate causality. This review concludes that carefully designed and executed studies using observational data that possess these qualities hold

  12. Very Large Array and Jansky Very Large Array observations of the compact radio sources in M8

    SciTech Connect

    Masqué, Josep M.; Rodríguez, Luis F.; Dzib, Sergio

    2014-12-10

    We analyze high-resolution Very Large Array continuum observations of the M8 region carried out at several epochs that span a period of 30 yr. Our maps reveal two compact sources. One is associated with Her 36 SE, a possible companion of the O7 luminous massive star Her 36, and the other is associated with G5.97–1.17, whose proplyd nature was previously established. Using the analyzed data, we do not find significant time variability in any of these sources. The derived spectral index of ≥0.1 for Her 36 SE, the marginal offset of the radio emission with the previous infrared detection, and the associated X-ray emission previously reported suggest the presence of an unresolved interaction region between the strong winds of Her 36 and Her 36 SE. This region would contribute non-thermal contamination to the global wind emission of Her 36, flattening its spectral index. On the other hand, the emission of G5.97–1.17 can also be explained by a mixture of thermal and non-thermal emission components, with different relative contributions of both emission mechanisms along the proplyd. We argue that the shock created by the photo-evaporation flow of the proplyd with the collimated stellar wind of Her 36 accelerates charged particles in G5.97–1.17, producing considerable synchrotron emission. On the contrary, an electron density enhancement at the southwest of G5.97–1.17 makes the thermal emission dominant over this region.

  13. Microwave observations of a large-scale coronal wave with the Nobeyama radioheliograph

    NASA Astrophysics Data System (ADS)

    Warmuth, A.; Shibasaki, K.; Iwai, K.; Mann, G.

    2016-09-01

    Context. Large-scale globally propagating waves in the solar corona have been studied extensively, mainly using extreme ultraviolet (EUV) observations. In a few events, corresponding wave signatures have been detected in microwave radioheliograms provided by the Nobeyama radioheliograph (NoRH). Several aspects of these observations seem to contradict the conclusions drawn from EUV observations. Aims: We investigate whether the microwave observations of global waves are consistent with previous findings. Methods: We revisited the wave of 1997 Sep. 24, which is still the best-defined event in microwaves. We obtained radioheliograms at 17 and 34 GHz from NoRH and studied the morphology, kinematics, perturbation profile evolution, and emission mechanism of the propagating microwave signatures. Results: We find that the NoRH wave signatures are morphologically consistent with both the associated coronal wave as observed by SOHO/EIT and the Moreton wave seen in Hα. The NoRH wave is clearly decelerating, which is typically found for large-amplitude coronal waves associated with Moreton waves, and its kinematical curve is consistent with the EIT wavefronts. The perturbation profile shows a pronounced decrease in amplitude. Based on the derivation of the spectral index of the excess microwave emission, we conclude that the NoRH wave is due to optically thick free-free bremsstrahlung from the chromosphere. Conclusions: The wavefronts seen in microwave radioheliograms are chromospheric signatures of coronal waves, and their characteristics support the interpretation of coronal waves as large-amplitude fast-mode MHD waves or shocks.

  14. Simulating observations with HARMONI: the integral field spectrograph for the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Zieleniewski, Simon; Thatte, Niranjan; Kendrew, Sarah; Houghton, Ryan; Tecza, Matthias; Clarke, Fraser; Fusco, Thierry; Swinbank, Mark

    2014-07-01

    With the next generation of extremely large telescopes commencing construction, there is an urgent need for detailed quantitative predictions of the scientific observations that these new telescopes will enable. Most of these new telescopes will have adaptive optics fully integrated with the telescope itself, allowing unprecedented spatial resolution combined with enormous sensitivity. However, the adaptive optics point spread function will be strongly wavelength dependent, requiring detailed simulations that accurately model these variations. We have developed a simulation pipeline for the HARMONI integral field spectrograph, a first light instrument for the European Extremely Large Telescope. The simulator takes high-resolution input data-cubes of astrophysical objects and processes them with accurate atmospheric, telescope and instrumental effects, to produce mock observed cubes for chosen observing parameters. The output cubes represent the result of a perfect data reduc- tion process, enabling a detailed analysis and comparison between input and output, showcasing HARMONI's capabilities. The simulations utilise a detailed knowledge of the telescope's wavelength dependent adaptive op- tics point spread function. We discuss the simulation pipeline and present an early example of the pipeline functionality for simulating observations of high redshift galaxies.

  15. Simultaneous Solar Maximum Mission (SMM) and Very Large Array (VLA) observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Willson, Robert F.

    1991-01-01

    Very Large Array observations at 20 cm wavelength can detect the hot coronal plasma previously observed at soft x ray wavelengths. Thermal cyclotron line emission was detected at the apex of coronal loops where the magnetic field strength is relatively constant. Detailed comparison of simultaneous Solar Maximum Mission (SMM) Satellite and VLA data indicate that physical parameters such as electron temperature, electron density, and magnetic field strength can be obtained, but that some coronal loops remain invisible in either spectral domain. The unprecedent spatial resolution of the VLA at 20 cm wavelength showed that the precursor, impulsive, and post-flare components of solar bursts originate in nearby, but separate loops or systems of loops.. In some cases preburst heating and magnetic changes are observed from loops tens of minutes prior to the impulsive phase. Comparisons with soft x ray images and spectra and with hard x ray data specify the magnetic field strength and emission mechanism of flaring coronal loops. At the longer 91 cm wavelength, the VLA detected extensive emission interpreted as a hot 10(exp 5) K interface between cool, dense H alpha filaments and the surrounding hotter, rarefield corona. Observations at 91 cm also provide evidence for time-correlated bursts in active regions on opposite sides of the solar equator; they are attributed to flare triggering by relativistic particles that move along large-scale, otherwise-invisible, magnetic conduits that link active regions in opposite hemispheres of the Sun.

  16. CARMA LARGE AREA STAR FORMATION SURVEY: OBSERVATIONAL ANALYSIS OF FILAMENTS IN THE SERPENS SOUTH MOLECULAR CLOUD

    SciTech Connect

    Fernández-López, M.; Looney, L.; Lee, K.; Segura-Cox, D.; Arce, H. G.; Plunkett, A.; Mundy, L. G.; Storm, S.; Teuben, P. J.; Pound, M.; Isella, A.; Kauffmann, J.; Tobin, J. J.; Rosolowsky, E.; Kwon, W.; Ostriker, E.; Tassis, K.; Shirley, Y. L.

    2014-08-01

    We present the N{sub 2}H{sup +} (J = 1 → 0) map of the Serpens South molecular cloud obtained as part of the CARMA Large Area Star Formation Survey. The observations cover 250 arcmin{sup 2} and fully sample structures from 3000 AU to 3 pc with a velocity resolution of 0.16 km s{sup –1}, and they can be used to constrain the origin and evolution of molecular cloud filaments. The spatial distribution of the N{sub 2}H{sup +} emission is characterized by long filaments that resemble those observed in the dust continuum emission by Herschel. However, the gas filaments are typically narrower such that, in some cases, two or three quasi-parallel N{sub 2}H{sup +} filaments comprise a single observed dust continuum filament. The difference between the dust and gas filament widths casts doubt on Herschel ability to resolve the Serpens South filaments. Some molecular filaments show velocity gradients along their major axis, and two are characterized by a steep velocity gradient in the direction perpendicular to the filament axis. The observed velocity gradient along one of these filaments was previously postulated as evidence for mass infall toward the central cluster, but these kind of gradients can be interpreted as projection of large-scale turbulence.

  17. Estimating the Concentration of Large Raindrops from Polarimetric Radar and Disdrometer Observations

    NASA Technical Reports Server (NTRS)

    Carey, Lawrence D.; Petersen, Walter A; Gatlink, Patrick N.

    2013-01-01

    Estimation of rainfall integral parameters, including radar observables, and empirical relations between them are sensitive to the truncation of the drop size distribution (DSD), particularly at the large drop end. The sensitivity of rainfall integral parameters to the maximum drop diameter (D(sub max)) is exacerbated at C-band since resonance effects are pronounced for large drops in excess of 5 mm diameter (D). Due to sampling limitations, it is often difficult to reliably estimate D(sub max) with disdrometers. The resulting uncertainties in D(sub max0 potentially increase errors in radar retrieval methods, particularly at C-band, that rely on disdrometer observations for DSD input to radar models. In fact, D(sub max) is typically an assumed DSD parameter in the development of radar retrieval methods. Because of these very uncertainties, it is difficult to independently confirm disdrometer estimates of D(sub max) with polarimetric radar observations. A couple of approaches can be taken to reduce uncertainty in large drop measurement. Longer integration times can be used for the collection of larger disdrometer samples. However, integration periods must be consistent with a radar resolution volume (RRV) and the temporal and spatial scales of the physical processes affecting the DSD therein. Multiple co-located disdrometers can be combined into a network to increase the sample size within a RRV. However, over a reasonable integration period, a single disdrometer sample volume is many orders of magnitudes less than a RRV so it is not practical to devise a network of disdrometers that has an equivalent volume to a typical RRV. Since knowledge of DSD heterogeneity and large drop occurrence in time and space is lacking, the specific accuracy or even general representativeness of disdrometer based D(sub max) and large drop concentration estimates within a RRV are currently unknown. To address this complex issue, we begin with a simpler question. Is the frequency of

  18. Observation of shock waves in a large Bose-Einstein condensate

    SciTech Connect

    Meppelink, R.; Koller, S. B.; Vogels, J. M.; Straten, P. van der; Ooijen, E. D. van; Heckenberg, N. R.; Rubinsztein-Dunlop, H.; Haine, S. A.; Davis, M. J.

    2009-10-15

    We observe the formation of shock waves in a Bose-Einstein condensate containing a large number of sodium atoms. The shock wave is initiated with a repulsive blue-detuned light barrier, intersecting the Bose-Einstein condensate, after which two shock fronts appear. We observe breaking of these waves when the size of these waves approaches the healing length of the condensate. At this time, the wave front splits into two parts and clear fringes appear. The experiment is modeled using an effective one-dimensional Gross-Pitaevskii-like equation and gives excellent quantitative agreement with the experiment, even though matter waves with wavelengths two orders of magnitude smaller than the healing length are present. In these experiments, no significant heating or particle loss is observed.

  19. Large-scale FAC in the nightside magnetosphere: simultaneous observation by Double Star and Cluster

    NASA Astrophysics Data System (ADS)

    Shi, Jiankui; Cheng, Zhengwei; Dunlop, Malcolm; Zhang, Tielong; Liu, Zhenxing

    The data from the coordinated observation of the TC-1, TC-2 and Cluster in the nightside magnetosphere are used for analysis the large scale Field Aligned Current (FAC) along the field lines between the magnetotail and polar ionosphere. Two cases during the substorm times were chosen to do study. One was on the September 14, 2004 and the other was on the September 17, 2004. It is the first time to give a confirmation by observation that the FAC is a lager scale phenomenon from the polar ionosphere to the magnetotail. The results also show that the FAC in the magnetotail just takes place in the Plasma sheet Boundary layers (PSBL). During the whole substorm time, the FAC disturbance has a positive co-relation with the AE index. In the beginning of the substorm, sometime Cluster couldn't observe the FAC in the magnetotail because of the plasma sheet thinning.

  20. Simultaneous Solar Maximum Mission (SMM) and very large array observations of solar active regions

    NASA Technical Reports Server (NTRS)

    Lang, K. R.

    1986-01-01

    The research deals mainly with Very Large Array and Solar Maximum Mission observations of the ubiquitous coronal loops that dominate the structure of the low corona. As illustrated, the observations of thermal cyclotron lines at microwave wavelengths provide a powerful new method of accurately specifying the coronal magnetic field strength. Processes are delineated that trigger solar eruptions from coronal loops, including preburst heating and the magnetic interaction of coronal loops. Evidence for coherent burst mechanisms is provided for both the Sun and nearby stars, while other observations suggest the presence of currents that may amplify the coronal magnetic field to unexpectedly high levels. The existence is reported of a new class of compact, variable moving sources in regions of apparently weak photospheric field.

  1. Observation of the Crab Pulsar and Nebula with the Fermi Large Area Telescope

    SciTech Connect

    Grondin, M.-H.; Lemoine-Goumard, M.; Mazziotta, M. N.

    2010-03-26

    The Crab Pulsar and Nebula are the remnants of the explosion of the supernova SN1054, which was observed by Chinese astronomers. Previously detected by EGRET, the Crab Pulsar and Nebula have been extensively observed in the gamma-ray energy band by the Large Area Telescope (LAT) onboard the Fermi satellite. The data collected by the LAT during its early operation stage have allowed a detailed measurement of the fluxes and of the energy spectra of both sources. The pulsar spectrum is consistent with the EGRET measurement in the region below 1 GeV and is well described by a power law with exponential cutoff at a few GeV. The nebula spectrum is well modeled by a sum of two power laws, identified respectively as the falling edge of the synchrotron and the rising edge of the inverse Compton components, and is in agreement with the observations from Earth-based telescopes.

  2. Large-scale motions of the tropics in observations and theory

    NASA Technical Reports Server (NTRS)

    Paegle, J.; Paegle, J. N.; Lewis, F. P.

    1983-01-01

    Charney (1963) characterized the tropical atmosphere in terms of a superposition of large regions of nearly nondivergent circulations containing local subdomains, or 'fissures', of active convection and latent heating. Tropical wave evolution is then appropriately treated in terms of quasi-rotational waves, to the extent that the divergent contribution is small. An attempt is presently made to interpret recent tropical analyses in the aforementioned terms, suggesting extensions of the simplest quasi-rotational model capable of reconciling observations and theory. First GARP Global Experiment (FGGE) observations suggest that strongly divergent local tropical circulations are forced by latent heating and produce important direct modifications of the total wind field; after describing the extent to which the resulting field consists of divergent and rotational components in different analyses of the FGGE data, independent supporting documentation of the results in terms of heating estimates and rainfall observations are given.

  3. First Frequency-Domain Interferometry Observations of Large-Scale Vertical Motion in the Atmosphere.

    NASA Astrophysics Data System (ADS)

    Muschinski, Andreas; Chilson, Phillip B.; Kern, Stefan; Nielinger, Jost; Schmidt, Gerhard; Prenosil, Thomas

    1999-05-01

    The spatiotemporal distribution of the vertical velocity at synoptic and subsynoptic scales is key to the patterns of weather and climate on earth. On these scales, the vertical velocity is on the order of one to a few centimeters per second, typically about three orders of magnitude smaller than typical horizontal wind velocities. Because of the smallness of large-scale vertical velocities relative to typical horizontal velocities, a direct observation of the large-scale vertical air velocity is extremely difficult.In a case study on observational material obtained during a 68-h experiment using the SOUSY very high frequency (VHF) radar in the Harz Mountains in Germany, the authors present the first intercomparison between three different sources of physical information that can provide large-scale vertical wind velocities: (i) the Doppler shifts observed with a vertically pointing VHF radar; (ii) the rates of change of the altitudes of refractive-index discontinuities as identified with frequency-domain interferometry (FDI), which is still a relatively unexplored technique in meteorology; and (iii) the output of a regional numerical weather prediction model (NWPM), which has been set up to model the meteorological situation during the observational period.There are several phenomena that have been known to possibly cause significant biases in mean vertical velocities retrieved from the Doppler shifts measured with vertically pointing clear-air VHF radars: (i) stationary or nonstationary gravity waves with vertical-velocity amplitudes up to the order of 1 m s1; (ii) stationary or horizontally advected tilted refractive-index discontinuities that are aspect sensitive in the VHF regime; and (iii) a correlation between the radar-reflectivity fluctuations and the vertical-velocity fluctuations within a vertically propagating gravity wave.On the basis of an intercomparison between the vertical velocities retrieved from (i) `standard Doppler' VHF radar observations, (ii

  4. Small vs. Large Convective Cloud Objects from CERES Aqua Observations: Where are the Intraseasonal Variation Signals?

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2016-01-01

    During inactive phases of Madden-Julian oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES observations for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In terms of the probability density functions of radiative and cloud physical properties, there are virtually no differences between the MJO phases for the small group, but there are significant differences for the large groups for both DC and CS types. These results suggest that the intreseasonal variation signals reside at the

  5. Background Noises Versus Intraseasonal Variation Signals: Small vs. Large Convective Cloud Objects From CERES Aqua Observations

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man

    2015-01-01

    During inactive phases of Madden-Julian Oscillation (MJO), there are plenty of deep but small convective systems and far fewer deep and large ones. During active phases of MJO, a manifestation of an increase in the occurrence of large and deep cloud clusters results from an amplification of large-scale motions by stronger convective heating. This study is designed to quantitatively examine the roles of small and large cloud clusters during the MJO life cycle. We analyze the cloud object data from Aqua CERES (Clouds and the Earth's Radiant Energy System) observations between July 2006 and June 2010 for tropical deep convective (DC) and cirrostratus (CS) cloud object types according to the real-time multivariate MJO index, which assigns the tropics to one of the eight MJO phases each day. The cloud object is a contiguous region of the earth with a single dominant cloud-system type. The criteria for defining these cloud types are overcast footprints and cloud top pressures less than 400 hPa, but DC has higher cloud optical depths (=10) than those of CS (<10). The size distributions, defined as the footprint numbers as a function of cloud object diameters, for particular MJO phases depart greatly from the combined (8-phase) distribution at large cloud-object diameters due to the reduced/increased numbers of cloud objects related to changes in the large-scale environments. The medium diameter corresponding to the combined distribution is determined and used to partition all cloud objects into "small" and "large" groups of a particular phase. The two groups corresponding to the combined distribution have nearly equal numbers of footprints. The medium diameters are 502 km for DC and 310 km for cirrostratus. The range of the variation between two extreme phases (typically, the most active and depressed phases) for the small group is 6-11% in terms of the numbers of cloud objects and the total footprint numbers. The corresponding range for the large group is 19-44%. In

  6. Estimating the impact of SWOT observations on the predictability of large-scale hydraulic models

    NASA Astrophysics Data System (ADS)

    Schumann, G. J.; Andreadis, K.

    2012-12-01

    The proposed NASA/CNES Surface Water Ocean Topography (SWOT) satellite mission would provide unprecedented measurements of hydraulic variables globally. This paper investigates the impact of different SWOT-like observations on the capability to model and predict hydrodynamics over large scales. In order to achieve this, the Ensemble Sensitivity (ET) method was adopted, examining the cost functional between two 'models' run on a 40,000 km2 area of the Ohio basin. The ET method is similar to the adjoint method but uses an ensemble of model perturbations to calculate the sensitivity to observations. The experiment consists of two configurations of the LISFLOOD-FP hydraulic model. The first (baseline) simulation represents a calibrated 'best effort' model based on a sub-grid channel structure using observations for parameters and boundary conditions, whereas the second (background) simulation consists of estimated parameters and SRTM-based boundary conditions. Using accurate SWOT-like observations such as water level, water surface width and slope in an Ensemble Sensitivity framework allowed us to assess the true impact of SWOT observables over different temporal and spatial scales on our current capabilities to model and predict hydrodynamic characteristics at a potentially global scale. Estimating the model sensitivity to observations could also allow the identification of errors in the model structure and parameterizations, as well as facilitate the derivation of a SWOT data product with optimal characteristics (e.g. reach-averaging).

  7. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE

    SciTech Connect

    Xie, Shaocheng; Hume, Timothy; Jakob, Christian; Klein, Stephen A.; McCoy, Renata B.; Zhang, Minghua

    2010-01-01

    This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence and horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.

  8. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE

    DOE PAGES

    Xie, Shaocheng; Hume, Timothy; Jakob, Christian; Klein, Stephen A.; McCoy, Renata B.; Zhang, Minghua

    2010-01-01

    This study documents the characteristics of the large-scale structures and diabatic heating and drying profiles observed during the Tropical Warm Pool–International Cloud Experiment (TWP-ICE), which was conducted in January–February 2006 in Darwin during the northern Australian monsoon season. The examined profiles exhibit significant variations between four distinct synoptic regimes that were observed during the experiment. The active monsoon period is characterized by strong upward motion and large advective cooling and moistening throughout the entire troposphere, while the suppressed and clear periods are dominated by moderate midlevel subsidence and significant low- to midlevel drying through horizontal advection. The midlevel subsidence andmore » horizontal dry advection are largely responsible for the dry midtroposphere observed during the suppressed period and limit the growth of clouds to low levels. During the break period, upward motion and advective cooling and moistening located primarily at midlevels dominate together with weak advective warming and drying (mainly from horizontal advection) at low levels. The variations of the diabatic heating and drying profiles with the different regimes are closely associated with differences in the large-scale structures, cloud types, and rainfall rates between the regimes. Strong diabatic heating and drying are seen throughout the troposphere during the active monsoon period while they are moderate and only occur above 700 hPa during the break period. The diabatic heating and drying tend to have their maxima at low levels during the suppressed periods. Furthermore, the diurnal variations of these structures between monsoon systems, continental/coastal, and tropical inland-initiated convective systems are also examined.« less

  9. Large-Scale Overlays and Trends: Visually Mining, Panning and Zooming the Observable Universe.

    PubMed

    Luciani, Timothy Basil; Cherinka, Brian; Oliphant, Daniel; Myers, Sean; Wood-Vasey, W Michael; Labrinidis, Alexandros; Marai, G Elisabeta

    2014-07-01

    We introduce a web-based computing infrastructure to assist the visual integration, mining and interactive navigation of large-scale astronomy observations. Following an analysis of the application domain, we design a client-server architecture to fetch distributed image data and to partition local data into a spatial index structure that allows prefix-matching of spatial objects. In conjunction with hardware-accelerated pixel-based overlays and an online cross-registration pipeline, this approach allows the fetching, displaying, panning and zooming of gigabit panoramas of the sky in real time. To further facilitate the integration and mining of spatial and non-spatial data, we introduce interactive trend images-compact visual representations for identifying outlier objects and for studying trends within large collections of spatial objects of a given class. In a demonstration, images from three sky surveys (SDSS, FIRST and simulated LSST results) are cross-registered and integrated as overlays, allowing cross-spectrum analysis of astronomy observations. Trend images are interactively generated from catalog data and used to visually mine astronomy observations of similar type. The front-end of the infrastructure uses the web technologies WebGL and HTML5 to enable cross-platform, web-based functionality. Our approach attains interactive rendering framerates; its power and flexibility enables it to serve the needs of the astronomy community. Evaluation on three case studies, as well as feedback from domain experts emphasize the benefits of this visual approach to the observational astronomy field; and its potential benefits to large scale geospatial visualization in general.

  10. Large-Scale Overlays and Trends: Visually Mining, Panning and Zooming the Observable Universe.

    PubMed

    Luciani, Timothy Basil; Cherinka, Brian; Oliphant, Daniel; Myers, Sean; Wood-Vasey, W Michael; Labrinidis, Alexandros; Marai, G Elisabeta

    2014-07-01

    We introduce a web-based computing infrastructure to assist the visual integration, mining and interactive navigation of large-scale astronomy observations. Following an analysis of the application domain, we design a client-server architecture to fetch distributed image data and to partition local data into a spatial index structure that allows prefix-matching of spatial objects. In conjunction with hardware-accelerated pixel-based overlays and an online cross-registration pipeline, this approach allows the fetching, displaying, panning and zooming of gigabit panoramas of the sky in real time. To further facilitate the integration and mining of spatial and non-spatial data, we introduce interactive trend images-compact visual representations for identifying outlier objects and for studying trends within large collections of spatial objects of a given class. In a demonstration, images from three sky surveys (SDSS, FIRST and simulated LSST results) are cross-registered and integrated as overlays, allowing cross-spectrum analysis of astronomy observations. Trend images are interactively generated from catalog data and used to visually mine astronomy observations of similar type. The front-end of the infrastructure uses the web technologies WebGL and HTML5 to enable cross-platform, web-based functionality. Our approach attains interactive rendering framerates; its power and flexibility enables it to serve the needs of the astronomy community. Evaluation on three case studies, as well as feedback from domain experts emphasize the benefits of this visual approach to the observational astronomy field; and its potential benefits to large scale geospatial visualization in general. PMID:26357360

  11. Challenging Large-scale Hydrological Simulations with Streamflow Observations: Response versus Persistence

    NASA Astrophysics Data System (ADS)

    Stahl, K.

    2014-12-01

    Land surface models and large-scale hydrological models are often used to study climate change impacts on hydrology at regional to global scales. These impacts are then presented as maps of change in specific runoff metrics that are relevant to basin management and water resources planning. Knowing the limits of model performance for the respective metrics of interest at different spatial and temporal scales is thus important, but often performance is only known for annual or long-term means. This contribution summarizes and reflects on the challenge of continental hydrological model simulations from the WATCH multi-model ensemble with distributed streamflow observations from small basins of reference networks in Europe. Characteristics of hydrological dynamics that were compared include spatial and temporal runoff persistence, high and low flows, and long-term trends and variability. Whereas common annual statistics between models and observations correlate well even if the amounts disagree, larger differences were found for metrics that focus on the dynamics of streamflow response and persistence. For example, models appear to respond comparably fast to precipitation, and as a consequence underestimate the duration of streamflow drought events. Investigating the general streamflow persistence in time and space, however, also showed large differences among the different models. Long-term trends in annual flow and annual weekly peak flow in Europe agreed on the large-scale patterns, but particularly seasonal trends and trends in extremes in regions with mixed observed runoff trends or in complex terrain revealed discrepancies to the observations even regarding the sign of the trend. Before the display of changes in hydrological characteristics related to response and persistence of flow situations, models should therefore always be tested specifically for their limits to represent such metrics.

  12. Planetary Rings: Circular and Non-circular

    NASA Astrophysics Data System (ADS)

    French, R. G.; Nicholson, P. D.; Colwell, J.; Marouf, E. A.; Rappaport, N. J.; Hedman, M. M.; McGhee, C.; Lonergan, K.; Sepersky, T.

    2011-12-01

    Although Saturn's rings appear at first glance to be axisymmetric, more precise measurements reveal that many of the gap edges and narrow ringlets within the rings are noncircular, a characteristic they share with the narrow uranian rings. A careful study of these features is of interest for several reasons: (i) resonantly-forced perturbations are believed to prevent the rings from spreading under the influence of collisions, (ii) unforced distortions, mostly eccentricities, can lead to estimates of the surface mass density and viscosity of the rings, and (iii) accurately-measured apsidal precession rates provide information on Saturn's zonal gravity harmonics. We present preliminary results from a comprehensive study of noncircular features in the Cassini Division and in the C ring. The data used in this study come from three Cassini experiments, and cover the period from May 2005 to September 2010. Over 120 stellar occultations have been observed by the Ultraviolet Imaging Spectrometer (UVIS) and by the Visual and Infrared Imaging Spectrometer (VIMS). In addition, we include 12 occultations of the spacecraft's radio Radio Science Subsystem (RSS) by the rings observed on Earth in May-September 2005. The simplest noncircular features can be modeled as inclined Keplerian ellipses, freely precessing under the influence of Saturn's oblate gravity field. In agreement with similar fits to the VIMS occultation data alone, we find that the inner edges of 7 of the 8 gaps within the Cassini Division are eccentric, with amplitudes ranging from 0.9 km to 28.3 km. In contrast, most of the outer gap edges are near-circular. We also find a rich assortment of normal modes on the edges of both ringlets and gaps. We have searched for modes with wavenumber m as high as 8, and find convincing evidence for modes with m = 0, 2, 3, 4 and 5, all with amplitudes of 1 km or greater. In some cases, as many as 3 or 4 normal modes coexist at a single edge with comparable amplitudes. Our fits

  13. Optical observations of very low ionization HII regions in the large Magellanic cloud

    NASA Technical Reports Server (NTRS)

    Pena, M.; Ruiz, M. T.; Rubio, M.

    1986-01-01

    Several very low ionization isolated HII regions were detected on a prism-objective plate of the Large Magellanic Cloud. Most of the objects show a very weak (OIII) lambda 5007 emission line and, on the other hand the (OII) lambda 6584 doublets are very intense. This kind of objects seem to be ideal in order to determine accurate N and O abundance, avoiding the use of large ionization correction factors in the N abundance determination. Spectrophotometric observations of these regions were carried out with the 4 m telescope and the 2-D Frutti spectrograph at Cerro Tololo, and with the 1.52 m and the Image Dissector Scanner (IDS) at La Silla, ESO. The wavelength range lambda lambda 3700 to 7000 A was covered. Calibrated fluxes of the emission lines detected were measured, and from these data preliminary results of physical conditions of the gas as well as some ionic abundances were derived. Comparisons of the observations with ionization structure models show that the effective temperatures of the ionizing stars are less than 35,000 K. Possible abundances gradients across the large megallanic cloud are discussed.

  14. Squaring a Circular Segment

    ERIC Educational Resources Information Center

    Gordon, Russell

    2008-01-01

    Consider a circular segment (the smaller portion of a circle cut off by one of its chords) with chord length c and height h (the greatest distance from a point on the arc of the circle to the chord). Is there a simple formula involving c and h that can be used to closely approximate the area of this circular segment? Ancient Chinese and Egyptian…

  15. High-resolution Observations of a Large Fan-shaped Surge

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Fang, Cheng; Guo, Yang; Chen, P. F.; Zou, Peng; Cao, Wenda

    2016-08-01

    We present high-resolution observations of a large fan-shaped surge, which was observed on 2013 June 5 with the current largest solar telescope, the 1.6 m New Solar Telescope (NST), at the Big Bear Solar Observatory. The observations are made at TiO, Hα, and 10830 Å wavebands with a spatial resolution better than 0\\buildrel{\\prime\\prime}\\over{.} 1 and a full-run cadence of ˜30 s. The fan-shaped surge consists of many small-scale threads with a typical width of 100 km and a length of up to 200 Mm at the maximum. The threads come from material ejections, which start with a velocity of several km s‑1, and then accelerate up to 60–80 km s‑1 over six to seven minutes with an acceleration of up to 0.2–0.3 km s‑2. The threads can be observed in the Hα band and in SDO/AIA 171 Å images as absorbed objects, implying that they are cool material ejections. The surge is ejected along open magnetic field lines in the extrapolated non-linear force-free field, which might actually be a part of a large-scale magnetic loop stretching back to the solar surface. After 10–20 minutes, the ejections gradually decay and the surge eventually vanishes. The total lifetime is about 35 minutes. The Hα brightening at the root of the fan-shaped surge implies that there is heating in the chromosphere, which could be produced by low-atmosphere interchange magnetic reconnection. Our observation provides evidence of the reconnection model for the fan-shaped surges, which was proposed by Jiang et al.

  16. High-resolution Observations of a Large Fan-shaped Surge

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Fang, Cheng; Guo, Yang; Chen, P. F.; Zou, Peng; Cao, Wenda

    2016-08-01

    We present high-resolution observations of a large fan-shaped surge, which was observed on 2013 June 5 with the current largest solar telescope, the 1.6 m New Solar Telescope (NST), at the Big Bear Solar Observatory. The observations are made at TiO, Hα, and 10830 Å wavebands with a spatial resolution better than 0\\buildrel{\\prime\\prime}\\over{.} 1 and a full-run cadence of ˜30 s. The fan-shaped surge consists of many small-scale threads with a typical width of 100 km and a length of up to 200 Mm at the maximum. The threads come from material ejections, which start with a velocity of several km s-1, and then accelerate up to 60-80 km s-1 over six to seven minutes with an acceleration of up to 0.2-0.3 km s-2. The threads can be observed in the Hα band and in SDO/AIA 171 Å images as absorbed objects, implying that they are cool material ejections. The surge is ejected along open magnetic field lines in the extrapolated non-linear force-free field, which might actually be a part of a large-scale magnetic loop stretching back to the solar surface. After 10-20 minutes, the ejections gradually decay and the surge eventually vanishes. The total lifetime is about 35 minutes. The Hα brightening at the root of the fan-shaped surge implies that there is heating in the chromosphere, which could be produced by low-atmosphere interchange magnetic reconnection. Our observation provides evidence of the reconnection model for the fan-shaped surges, which was proposed by Jiang et al.

  17. Large-Amplitude Oscillation of an Erupting Filament as Seen in EUV, Hα, and Microwave Observations

    NASA Astrophysics Data System (ADS)

    Isobe, H.; Tripathi, D.; Asai, A.; Jain, R.

    2007-11-01

    We present multiwavelength observations of a large-amplitude oscillation of a polar-crown filament on 15 October 2002, which has been reported by Isobe and Tripathi ( Astron. Astrophys. 449, L17, 2006). The oscillation occurred during the slow rise (≈1 km s-1) of the filament. It completed three cycles before sudden acceleration and eruption. The oscillation and following eruption were clearly seen in observations recorded by the Extreme-Ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). The oscillation was seen only in a part of the filament, and it appears to be a standing oscillation rather than a propagating wave. The amplitudes of velocity and spatial displacement of the oscillation in the plane of the sky were about 5 km s-1 and 15 000 km, respectively. The period of oscillation was about two hours and did not change significantly during the oscillation. The oscillation was also observed in Hα by the Flare Monitoring Telescope at the Hida Observatory. We determine the three-dimensional motion of the oscillation from the Hα wing images. The maximum line-of-sight velocity was estimated to be a few tens of kilometers per second, although the uncertainty is large owing to the lack of line-profile information. Furthermore, we also identified the spatial displacement of the oscillation in 17-GHz microwave images from Nobeyama Radio Heliograph (NoRH). The filament oscillation seems to be triggered by magnetic reconnection between a filament barb and nearby emerging magnetic flux as was evident from the MDI magnetogram observations. No flare was observed to be associated with the onset of the oscillation. We also discuss possible implications of the oscillation as a diagnostic tool for the eruption mechanisms. We suggest that in the early phase of eruption a part of the filament lost its equilibrium first, while the remaining part was still in an equilibrium and oscillated.

  18. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator

    PubMed Central

    Liu, Minhao; Wang, Wudi; Richardella, Anthony R.; Kandala, Abhinav; Li, Jian; Yazdani, Ali; Samarth, Nitin; Ong, N. Phuan

    2016-01-01

    A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a quantized Hall resistance that equals the Chern number C = ±1 (in natural units), even in zero magnetic field. This quantum anomalous Hall effect was observed by Chang et al. With reversal of the magnetic field, the system is trapped in a metastable state because of magnetic anisotropy. We investigate how the system escapes the metastable state at low temperatures (10 to 200 mK). When the dissipation (measured by the longitudinal resistance) is ultralow, we find that the system escapes by making a few very rapid transitions, as detected by large jumps in the Hall and longitudinal resistances. Using the field at which the initial jump occurs to estimate the escape rate, we find that raising the temperature strongly suppresses the rate. From a detailed map of the resistance versus gate voltage and temperature, we show that dissipation strongly affects the escape rate. We compare the observations with dissipative quantum tunneling predictions. In the ultralow dissipation regime, two temperature scales (T1 ~ 70 mK and T2 ~ 145 mK) exist, between which jumps can be observed. The jumps display a spatial correlation that extends over a large fraction of the sample. PMID:27482539

  19. Large discrete jumps observed in the transition between Chern states in a ferromagnetic topological insulator.

    PubMed

    Liu, Minhao; Wang, Wudi; Richardella, Anthony R; Kandala, Abhinav; Li, Jian; Yazdani, Ali; Samarth, Nitin; Ong, N Phuan

    2016-07-01

    A striking prediction in topological insulators is the appearance of the quantized Hall resistance when the surface states are magnetized. The surface Dirac states become gapped everywhere on the surface, but chiral edge states remain on the edges. In an applied current, the edge states produce a quantized Hall resistance that equals the Chern number C = ±1 (in natural units), even in zero magnetic field. This quantum anomalous Hall effect was observed by Chang et al. With reversal of the magnetic field, the system is trapped in a metastable state because of magnetic anisotropy. We investigate how the system escapes the metastable state at low temperatures (10 to 200 mK). When the dissipation (measured by the longitudinal resistance) is ultralow, we find that the system escapes by making a few very rapid transitions, as detected by large jumps in the Hall and longitudinal resistances. Using the field at which the initial jump occurs to estimate the escape rate, we find that raising the temperature strongly suppresses the rate. From a detailed map of the resistance versus gate voltage and temperature, we show that dissipation strongly affects the escape rate. We compare the observations with dissipative quantum tunneling predictions. In the ultralow dissipation regime, two temperature scales (T 1 ~ 70 mK and T 2 ~ 145 mK) exist, between which jumps can be observed. The jumps display a spatial correlation that extends over a large fraction of the sample. PMID:27482539

  20. Large Deployable Reflector Technologies for Future European Telecom and Earth Observation Missions

    NASA Astrophysics Data System (ADS)

    Ihle, A.; Breunig, E.; Dadashvili, L.; Migliorelli, M.; Scialino, L.; van't Klosters, K.; Santiago-Prowald, J.

    2012-07-01

    This paper presents requirements, analysis and design results for European large deployable reflectors (LDR) for space applications. For telecommunications, the foreseeable use of large reflectors is associated to the continuous demand for improved performance of mobile services. On the other hand, several earth observation (EO) missions can be identified carrying either active or passive remote sensing instruments (or both), in which a large effective aperture is needed e.g. BIOMASS. From the European point of view there is a total dependence of USA industry as such LDRs are not available from European suppliers. The RESTEO study is part of a number of ESA led activities to facilitate European LDR development. This paper is focused on the structural-mechanical aspects of this study. We identify the general requirements for LDRs with special emphasis on launcher accommodation for EO mission. In the next step, optimal concepts for the LDR structure and the RF-Surface are reviewed. Regarding the RF surface, both, a knitted metal mesh and a shell membrane based on carbon fibre reinforced silicon (CFRS) are considered. In terms of the backing structure, the peripheral ring concept is identified as most promising and a large number of options for the deployment kinematics are discussed. Of those, pantographic kinematics and a conical peripheral ring are selected. A preliminary design for these two most promising LDR concepts is performed which includes static, modal and kinematic simulation and also techniques to generate the reflector nets.

  1. Direct Observation of Highly Ordered Dendrimer Soft Building Blocks over a Large Area.

    PubMed

    Kwon, Kiok; Ok, Jong Min; Kim, Yun Ho; Kim, Jong-Seon; Jung, Woo-Bin; Cho, Soo-Yeon; Jung, Hee-Tae

    2015-11-11

    Developing large-area, single domain of organic soft-building blocks such as block copolymers, colloids, and supramolecular materials is one of the most important issues in the materials science and nanotechnology. Owing to their small sizes, complex molecular architectures, and high mobility, supramolecular materials are not well-suited for building large area, single domain structures. In the described study, a single domain of supramolecular columnar dendrimers was created over large area. The columnar structures in these domains have smaller (4.5 nm) diameters, higher area densities (ca. 36 Tera-dots/in(2)) and larger domains (>0.1 × 0.1 mm(2)) than those of all existing BCP and colloidal assemblies. By simply annealing dendrimer thin films between two flat solid surfaces, single domains of hexagonal columnar structures are created over large macroscopic areas. Observations made in this effort should serve as the foundation for the design of new routes for bottom-up lithography based on supramolecular building blocks.

  2. Expanded Very Large Array Observations of the Barnard 5 Star-forming Core: Embedded Filaments Revealed

    NASA Astrophysics Data System (ADS)

    Pineda, Jaime E.; Goodman, Alyssa A.; Arce, Héctor G.; Caselli, Paola; Longmore, Steven; Corder, Stuartt

    2011-09-01

    We present ~6farcm5 × 8' Expanded Very Large Array (EVLA) mosaic observations of the NH3 (1,1) emission in the Barnard 5 region in Perseus, with an angular resolution of 6''. This map covers the coherent region, where the dense gas presents subsonic non-thermal motions (as seen from single dish observations with the Green Bank Telescope, GBT). The combined EVLA and GBT observations reveal, for the first time, a striking filamentary structure (20'' wide or 5000 AU at the distance of Perseus) in this low-mass star-forming region. The integrated intensity profile of this structure is consistent with models of an isothermal filament in hydrostatic equilibrium. The observed separation between the B5-IRS1 young stellar object (YSO), in the central region of the core, and the northern starless condensation matches the Jeans length of the dense gas. This suggests that the dense gas in the coherent region is fragmenting. The observed region displays a narrow velocity dispersion, where most of the gas shows evidence for subsonic turbulence and where little spatial variations are present. It is only close to the YSO where an increase in the velocity dispersion is found, but still displaying subsonic non-thermal motions.

  3. Expanded Very Large Array Nova Project Observations of the Classical NovaV1723 Aquilae

    NASA Technical Reports Server (NTRS)

    Krauss, Miriam I.; Chomiuk, Laura; Rupen, Michael; Roy, Nirupam; Mioduszewski, Amy J.; Sokoloski, J. L.; Nelson, Thomas; Mukai, Koji; Bode, M. F.; Eyres, S. P. S.; OBrien, T. J.

    2011-01-01

    We present radio light curves and spectra of the classical nova VI723 Aql obtained with the Expanded Very Large Array (EVLA). This is the first paper to showcase results from the EVLA Nova Project, which comprises a team of observers and theorists utilizing the greatly enhanced sensitivity and frequency coverage of EVLA radio observations, along with observations at other wavelengths, to reach a deeper understanding of the energetics, morphology, and temporal characteristics of nova explosions. Our observations of VI723 Aql span 1-37 GHz in frequency, and we report on data from 14 to 175 days following the time of the nova explosion. The broad frequency coverage and frequent monitoring show that the radio behavior of VI723 Aql does not follow the classic Hubble-flow model of homologous spherically expanding thermal ejecta. The spectra are always at least partially optically thin, and the flux rises on faster timescales than can be reproduced with linear expansion. Therefore, any description of the underlying physical processes must go beyond this simple picture. The unusual spectral properties and light curve evolution might be explained by multiple emitting regions or shocked material. Indeed, X-ray observations from Swift reveal that shocks are likely present.

  4. Rater Calibration when Observational Assessment Occurs at Large Scale: Degree of Calibration and Characteristics of Raters Associated with Calibration

    ERIC Educational Resources Information Center

    Cash, Anne H.; Hamre, Bridget K.; Pianta, Robert C.; Myers, Sonya S.

    2012-01-01

    Observational assessment is used to study program and teacher effectiveness across large numbers of classrooms, but training a workforce of raters that can assign reliable scores when observations are used in large-scale contexts can be challenging and expensive. Limited data are available to speak to the feasibility of training large numbers of…

  5. Observations of two peculiar emission objects in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Kafatos, M.; Michalitsianos, A. G.; Allen, D. A.; Stencel, R. E.

    1983-01-01

    Ultraviolet and visual wavelength spectra were obtained of two peculiar emission objects, Henize S63 and Sanduleak's star in the Large Magellanic Cloud. Previously not observed in the near- or far-ultraviolet, both objects exhibit strong permitted and semiforbidden line emissions. Estimates based on the absolute continuum flux of the hot companion star in Hen S63 indicate that it rivals the luminosity of the carbon star primary. The emission-line profile structure in both objects does not suggest Wolf-Rayet type emission. Carbon in Sanduleak's star (LMC anonymous) is conspicuously absent, while N V, semiforbidden N IV, and semiforbidden N III dominate the UV emission-line spectrum. Nitrogen is overabundant with respect to carbon and oxygen in both objects. The large overabundance of nitrogen in Sanduleak's star suggests evidence for CNO processes material similar to that seen in Nu Car.

  6. Large Binocular Telescope Observations of Europa Occulting Io's Volcanoes at 4.8 μm

    NASA Astrophysics Data System (ADS)

    Skrutskie, Michael F.; Conrad, Albert; Resnick, Aaron; Leisenring, Jarron; Hinz, Phil; de Pater, Imke; de Kleer, Katherine; Spencer, John; Skemer, Andrew; Woodward, Charles E.; Davies, Ashley Gerard; Defrére, Denis

    2015-11-01

    On 8 March 2015 Europa passed nearly centrally in front of Io. The Large Binocular Telescope observed this event in dual-aperture AO-corrected Fizeau interferometric imaging mode using the mid-infrared imager LMIRcam operating behind the Large Binocular Telescope Interferometer (LBTI) at a broadband wavelength of 4.8 μm (M-band). Occultation light curves generated from frames recorded every 123 milliseconds show that both Loki and Pele/Pillan were well resolved. Europa's center shifted by 2 kilometers relative to Io from frame-to-frame. The derived light curve for Loki is consistent with the double-lobed structure reported by Conrad et al. (2015) using direct interferometric imaging with LBTI.

  7. Observing trans-Planckian ripples in the primordial power spectrum with future large scale structure probes

    SciTech Connect

    Hamann, Jan; Hannestad, Steen; Sloth, Martin S; Wong, Yvonne Y Y E-mail: sth@phys.au.dk E-mail: ywong@mppmu.mpg.de

    2008-09-15

    We revisit the issue of ripples in the primordial power spectra caused by trans-Planckian physics, and the potential for their detection by future cosmological probes. We find that for reasonably large values of the first slow-roll parameter {epsilon} ({approx}>0.001), a positive detection of trans-Planckian ripples can be made even if the amplitude is as low as 10{sup -4}. Data from the Large Synoptic Survey Telescope (LSST) and the proposed future 21 cm survey with the Fast Fourier Transform Telescope (FFTT) will be particularly useful in this regard. If the scale of inflation is close to its present upper bound, a scale of new physics as high as {approx}0.2 M{sub P} could lead to observable signatures.

  8. Observations of sudden large scale upward displacements of the Martian ionosphere

    NASA Astrophysics Data System (ADS)

    Upadhayaya, Arun Kumar; Mahajan, K. K.; Gupta, Sumedha

    2016-07-01

    We have analyzed most of the 5600 electron density profiles measured by the MGS Radio Science Experiment and have observed that even when the well known parameters controlling ion production and loss seem to remain constant, the density (NmF1) and height (hmF1) of the primary ionospheric peak show large scale variations. We note that on some days, hmF1 suddenly moves up by more than 14 km between consecutive measurements (which are about two hours apart) and this upward displacement is seen at all altitudes. During these displacements, the peak density and ionospheric total electron content decrease while the slab thickness shows an increase. Further, there is some evidence of a seasonal component in the occurrence of these episodes. F1 layer is in photochemical equilibrium and is isobaric. Therefore, these upward displacements indicate that the Martian neutral atmosphere is subject to sudden and large scale surges.

  9. Large oxidation dependence observed in terahertz dielectric response for cytochrome c.

    PubMed

    Chen, J-Y; Knab, J R; Cerne, J; Markelz, A G

    2005-10-01

    Far infrared dielectric response is used to characterize the collective mode density of states for cytochrome c as a function of oxidation state and hydration using terahertz time domain spectroscopy. A strong absorbance and refractive index increase was observed with the oxidation. A simple phenomenological fitting using a continuous distribution of oscillators reproduces the frequency dependence of the complex dielectric response as well as demonstrates quantitative agreement with a uniform increase in either mode density or polarizability with oxidation in the 5-80 cm(-1) frequency range. Hydration dependence measurements find that a difference in the equilibrium water content for ferri and ferro cytochrome c is not sufficient to account for the large change in terahertz response. The large dielectric increase at terahertz frequencies with oxidation suggests either a significant global softening of the potential and/or a significant increase in polarizability with oxidation.

  10. Observation of quantum particles on a large space-time scale

    NASA Astrophysics Data System (ADS)

    Landau, L. J.

    1994-10-01

    A quantum particle observed on a sufficiently large space-time scale can be described by means of classical particle trajectories. The joint distribution for large-scale multiple-time position and momentum measurements on a nonrelativistic quantum particle moving freely in R v is given by straight-line trajectories with probabilities determined by the initial momentum-space wavefunction. For large-scale toroidal and rectangular regions the trajectories are geodesics. In a uniform gravitational field the trajectories are parabolas. A quantum counting process on free particles is also considered and shown to converge in the large-space-time limit to a classical counting process for particles with straight-line trajectories. If the quantum particle interacts weakly with its environment, the classical particle trajectories may undergo random jumps. In the random potential model considered here, the quantum particle evolves according to a reversible unitary one-parameter group describing elastic scattering off static randomly distributed impurities (a quantum Lorentz gas). In the large-space-time weak-coupling limit a classical stochastic process is obtained with probability one and describes a classical particle moving with constant speed in straight lines between random jumps in direction. The process depends only on the ensemble value of the covariance of the random field and not on the sample field. The probability density in phase space associated with the classical stochastic process satisfies the linear Boltzmann equation for the classical Lorentz gas, which, in the limit h→0, goes over to the linear Landau equation. Our study of the quantum Lorentz gas is based on a perturbative expansion and, as in other studies of this system, the series can be controlled only for small values of the rescaled time and for Gaussian random fields. The discussion of classical particle trajectories for nonrelativistic particles on a macroscopic spacetime scale applies also to

  11. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection.

    PubMed

    Eriksson, S; Wilder, F D; Ergun, R E; Schwartz, S J; Cassak, P A; Burch, J L; Chen, L-J; Torbert, R B; Phan, T D; Lavraud, B; Goodrich, K A; Holmes, J C; Stawarz, J E; Sturner, A P; Malaspina, D M; Usanova, M E; Trattner, K J; Strangeway, R J; Russell, C T; Pollock, C J; Giles, B L; Hesse, M; Lindqvist, P-A; Drake, J F; Shay, M A; Nakamura, R; Marklund, G T

    2016-07-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E_{∥}) that is larger than predicted by simulations. The high-speed (∼300  km/s) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E_{∥} is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure. PMID:27419573

  12. Observing growth and division of large numbers of individual bacteria by image analysis.

    PubMed

    Elfwing, A; LeMarc, Y; Baranyi, J; Ballagi, A

    2004-02-01

    We describe a method that enabled us to observe large numbers of individual bacterial cells during a long period of cell growth and proliferation. We designed a flow chamber in which the cells attached to a transparent solid surface. The flow chamber was mounted on a microscope equipped with a digital camera. The shear force of the flow removed the daughter cells, making it possible to monitor the consecutive divisions of a single cell. In this way, kinetic parameters and their distributions, as well as some physiological characteristics of the bacteria, could be analyzed based on more than 1,000 single-cell observations. The method which we developed enabled us to study the history effect on the distribution of the lag times of single cells. PMID:14766541

  13. Magnetospheric Multiscale Observations of the Electron Diffusion Region of Large Guide Field Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Cassak, P. A.; Burch, J. L.; Chen, L.-J.; Torbert, R. B.; Phan, T. D.; Lavraud, B.; Goodrich, K. A.; Holmes, J. C.; Stawarz, J. E.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Trattner, K. J.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Hesse, M.; Lindqvist, P.-A.; Drake, J. F.; Shay, M. A.; Nakamura, R.; Marklund, G. T.

    2016-07-01

    We report observations from the Magnetospheric Multiscale (MMS) satellites of a large guide field magnetic reconnection event. The observations suggest that two of the four MMS spacecraft sampled the electron diffusion region, whereas the other two spacecraft detected the exhaust jet from the event. The guide magnetic field amplitude is approximately 4 times that of the reconnecting field. The event is accompanied by a significant parallel electric field (E∥ ) that is larger than predicted by simulations. The high-speed (˜300 km /s ) crossing of the electron diffusion region limited the data set to one complete electron distribution inside of the electron diffusion region, which shows significant parallel heating. The data suggest that E∥ is balanced by a combination of electron inertia and a parallel gradient of the gyrotropic electron pressure.

  14. Fermi Large Area Telescope Observations of the Cosmic-Ray Induced

    SciTech Connect

    Abdo, A.

    2012-02-29

    We report on measurements of the cosmic-ray induced {gamma}-ray emission of Earth's atmosphere by the Large Area Telescope onboard the Fermi Gamma-ray Space Telescope. The LAT has observed the Earth during its commissioning phase and with a dedicated Earth-limb following observation in September 2008. These measurements yielded {approx} 6.4 x 10{sup 6} photons with energies > 100 MeV and {approx} 250 hours total livetime for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission - often referred to as Earth albedo gamma-ray emission - has a power-law shape up to 500 GeV with spectral index {Lambda} = 2.79 {+-} 0.06.

  15. Observation of high-spin bands with large moments of inertia in 124Xe

    NASA Astrophysics Data System (ADS)

    Nag, Somnath; Singh, A. K.; Hagemann, G. B.; Sletten, G.; Herskind, B.; Døssing, T.; Ragnarsson, I.; Hübel, H.; Bürger, A.; Chmel, S.; Wilson, A. N.; Rogers, J.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Kondev, F. G.; Lauritsen, T.; Zhu, S.; Korichi, A.; Stefanova, E. A.; Fallon, P.; Nyakó, B. M.; Timár, J.; Juhász, K.

    2016-09-01

    High-spin states in 124Xe have been populated using the 80Se(48Ca,4 n ) reaction at a beam energy of 207 MeV and high-multiplicity, γ -ray coincidence events were measured using the Gammasphere spectrometer. Six high-spin bands with large moments of inertia, similar to those observed in neighboring nuclei, have been observed. The experimental results are compared with calculations within the framework of the cranked Nilsson-Strutinsky model. It is suggested that the configurations of the bands involve excitations of protons across the Z =50 shell gap coupled to neutrons within the N =50 -82 shell or excited across the N =82 shell closure.

  16. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF SUPERNOVA REMNANTS INTERACTING WITH MOLECULAR CLOUDS

    SciTech Connect

    Castro, Daniel; Slane, Patrick

    2010-07-01

    We report the detection of {gamma}-ray emission coincident with four supernova remnants (SNRs) using data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. G349.7+0.2, CTB 37A, 3C 391, and G8.7-0.1 are SNRs known to be interacting with molecular clouds, as evidenced by observations of hydroxyl (OH) maser emission at 1720 MHz in their directions. SNR shocks are expected to be sites of cosmic-ray acceleration, and clouds of dense material can provide effective targets for production of {gamma}-rays from {pi}{sup 0} decay. The observations reveal unresolved sources in the direction of G349.7+0.2, CTB 37A, and 3C 391, and a possibly extended source coincident with G8.7-0.1, all with significance levels greater than 10{sigma}.

  17. Large Amplitude Whistlers in the Magnetosphere Observed with Wind-Waves

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.; Cattell, C. A.; Goetz, K.; Monson, S. J.; Wilson, L. B., III

    2011-01-01

    We describe the results of a statistical survey of Wind-Waves data motivated by the recent STEREO/Waves discovery of large-amplitude whistlers in the inner magnetosphere. Although Wind was primarily intended to monitor the solar wind, the spacecraft spent 47 h inside 5 R(sub E) and 431 h inside 10 R(sub E) during the 8 years (1994-2002) that it orbited the Earth. Five episodes were found when whistlers had amplitudes comparable to those of Cattell et al. (2008), i.e., electric fields of 100 m V/m or greater. The whistlers usually occurred near the plasmapause. The observations are generally consistent with the whistlers observed by STEREO. In contrast with STEREO, Wind-Waves had a search coil, so magnetic measurements are available, enabling determination of the wave vector without a model. Eleven whistler events with useable magnetic measurements were found. The wave vectors of these are distributed around the magnetic field direction with angles from 4 to 48deg. Approximations to observed electron distribution functions show a Kennel-Petschek instability which, however, does not seem to produce the observed whistlers. One Wind episode was sampled at 120,000 samples/s, and these events showed a signature that is interpreted as trapping of electrons in the electrostatic potential of an oblique whistler. Similar waveforms are found in the STEREO data. In addition to the whistler waves, large amplitude, short duration solitary waves (up to 100 mV/m), presumed to be electron holes, occur in these passes, primarily on plasma sheet field lines mapping to the auroral zone.

  18. BATSE Observations of the Large-Scale Isotropy of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Briggs, Michael S.; Paciesas, William S.; Pendleton, Geoffrey N.; Meegan, Charles A.; Fishman, Gerald J.; Horack, John M.; Brock, Martin N.; Kouveliotou, Chryssa; Hartmann, Dieter H.; Hakkila, Jon

    1996-01-01

    We use dipole and quadrupole statistics to test the large-scale isotropy of the first 1005 gamma-ray bursts observed by the Burst and Transient Source Experiment (BATSE). In addition to the entire sample of 1005 gamma-ray bursts, many subsets are examined. We use a variety of dipole and quadrupole statistics to search for Galactic and other predicted anisotropies and for anisotropies in a coordinate-system independent manner. We find the gamma-ray burst locations to be consistent with isotropy, e.g., for the total sample the observed Galactic dipole moment (cos theta) differs from the value predicted for isotropy by 0.9 sigma and the observed Galactic quadrupole moment (sin(exp 2) b - 1/3) by 0.3 sigma. We estimate for various models the anisotropies that could have been detected. If one-half of the locations were within 86 deg of the Galactic center, or within 28 deg of the Galactic plane, the ensuing dipole or quadrupole moment would have typically been detected at the 99% confidence level. We compare the observations with the dipole and quadrupole moments of various Galactic models. Several Galactic gamma-ray bursts models have moments within 2 sigma of the observations; most of the Galactic models proposed to date are no longer in acceptable agreement with the data. Although a spherical dark matter halo distribution could be consistent with the data, the required core radius is larger than the core radius of the dark matter halo used to explain the Galaxy's rotation curve. Gamma-ray bursts are much more isotropic than any observed Galactic population, strongly favoring but not requiring an origin at cosmological distances.

  19. The deterioration of Circular Mausoleum, Roman Necropolis of Carmona, Spain.

    PubMed

    Cañaveras, Juan C; Fernandez-Cortes, Angel; Elez, Javier; Cuezva, Soledad; Jurado, Valme; Miller, Ana Zelia; Rogerio-Candelera, Miguel A; Benavente, David; Hernandez-Marine, Mariona; Saiz-Jimenez, Cesareo; Sanchez-Moral, Sergio

    2015-06-15

    The Circular Mausoleum tomb in the Roman Necropolis of Carmona was carved on a calcarenite sequence in an ancient quarry located in the town of Carmona, Southern Spain. This rock-cut tomb, representative of Roman burial practices, currently suffers from serious deterioration. A detailed survey over several years permitted the identification of the main tomb's pathologies and damaging processes, which include loss of material (scaling, flaking, granular disintegration), surface modifications (efflorescences, crusts and deposits) and extensive biological colonization. The results obtained in this study indicated that anthropogenic changes were largely responsible and enhanced the main alteration mechanisms observed in the Circular Mausoleum. Based on the deterioration diagnosis, effective corrective actions were proposed. This study shows that any conservative intervention in the interior of the tomb should be preceded by accurate in situ measurements and laboratory analyses to ascribe the source of the deterioration damages and thus designing effective treatments. PMID:25747366

  20. THEMIS Observations of the Magnetopause Electron Diffusion Region: Large Amplitude Waves and Heated Electrons

    NASA Technical Reports Server (NTRS)

    Tang, Xiangwei; Cattell, Cynthia; Dombeck, John; Dai, Lei; Wilson, Lynn B. III; Breneman, Aaron; Hupack, Adam

    2013-01-01

    We present the first observations of large amplitude waves in a well-defined electron diffusion region based on the criteria described by Scudder et al at the subsolar magnetopause using data from one Time History of Events and Macroscale Interactions during Substorms (THEMIS) satellite. These waves identified as whistler mode waves, electrostatic solitary waves, lower hybrid waves, and electrostatic electron cyclotron waves, are observed in the same 12 s waveform capture and in association with signatures of active magnetic reconnection. The large amplitude waves in the electron diffusion region are coincident with abrupt increases in electron parallel temperature suggesting strong wave heating. The whistler mode waves, which are at the electron scale and which enable us to probe electron dynamics in the diffusion region were analyzed in detail. The energetic electrons (approx. 30 keV) within the electron diffusion region have anisotropic distributions with T(sub e(right angle))/T(sub e(parallel)) > 1 that may provide the free energy for the whistler mode waves. The energetic anisotropic electrons may be produced during the reconnection process. The whistler mode waves propagate away from the center of the "X-line" along magnetic field lines, suggesting that the electron diffusion region is a possible source region of the whistler mode waves.

  1. Low-altitude quasi-periodic echoes studied using a large database of Gadanki radar observations

    NASA Astrophysics Data System (ADS)

    Venkateswara Rao, N.; Patra, A. K.; Rao, S. V. B.

    2009-01-01

    In this paper we present studies on low-altitude quasiperiodic (LQP) echoes based on a large database of Gadanki radar observations. LQP echoes have been observed 33% of the time during daytime and 39% during nighttime. Their occurrence is found to be maximum in the summer (daytime, 58% nighttime, 57%), followed by the September equinox (daytime, 32% nighttime, 48%), the March equinox (daytime, 26% nighttime, 36%), and minimum in the winter (daytime, 25% nighttime, 26%). Height-time occurrence of LQP echoes shows two local time maxima: one in the morning (0700-1100 LT) and another in the evening (1900-0000 LT). The most significant results not reported earlier are the large occurrence rate of LQP echoes and the height-time occurrence maps showing a descending pattern with close resemblance to tidal wind behavior. The Doppler velocities are upward-northward (downward-southward) for positive- (negative-) sloped LQP echoes. Also, we find the Doppler spread as high as 200 m s-1 at times underlining the presence of strong plasma turbulence in the collision-dominated lower E region. These results are discussed in the light of the current understanding of the LQP echoes.

  2. High-resolution Very Large Array observations of 18 MIPSGAL bubbles

    NASA Astrophysics Data System (ADS)

    Ingallinera, A.; Trigilio, C.; Leto, P.; Umana, G.; Buemi, C.; Bufano, F.; Agliozzo, C.; Riggi, S.; Flagey, N.; Silva, K.; Cerrigone, L.; Cavallaro, F.

    2016-11-01

    We present radio observations of 18 MIPSGAL bubbles performed at 5 GHz (6 cm) with the Karl G. Jansky Very Large Array in configuration B and BnA. The observations were aimed at understanding what kind of information high-resolution and high-sensitivity radio maps can supply on the circum-stellar envelopes of different kinds of evolved stars and what their comparison with infrared images with similar resolution can tell us. We found that the 18 bubbles can be grouped into five categories according to their radio morphology. The three bubbles presenting a central point source in the radio images all correspond to luminous blue variable star candidates. 11 bubbles show an elliptical shape and the total lack of a central object in the radio, and are likely associated with planetary nebulae. Under this assumption, we derive their distance, their ionized mass and their distribution on the Galactic plane. We discuss the possibility that the MIPSGAL bubbles catalogue (428 objects) may contain a large fraction of all Galactic planetary nebulae located at a distance between 1.4 kpc and 6.9 kpc and lying in the MIPSGAL field of view. Among the remaining bubbles, we identify also an H II region and a proto-planetary nebula candidate.

  3. Confronting the relaxation mechanism for a large cosmological constant with observations

    SciTech Connect

    Basilakos, Spyros; Bauer, Florian; Solà, Joan E-mail: fbauerphysik@eml.cc

    2012-01-01

    In order to deal with a large cosmological constant a relaxation mechanism based on modified gravity has been proposed recently. By virtue of this mechanism the effect of the vacuum energy density of a given quantum field/string theory (no matter how big is its initial value in the early universe) can be neutralized dynamically, i.e. without fine tuning, and hence a Big Bang-like evolution of the cosmos becomes possible. Remarkably, a large class (F{sup n}{sub m}) of models of this kind, namely capable of dynamically adjusting the vacuum energy irrespective of its value and size, has been identified. In this paper, we carefully put them to the experimental test. By performing a joint likelihood analysis we confront these models with the most recent observational data on type Ia supernovae (SNIa), the Cosmic Microwave Background (CMB), the Baryonic Acoustic Oscillations (BAO) and the high redshift data on the expansion rate, so as to determine which ones are the most favored by observations. We compare the optimal relaxation models F{sup n}{sub m} found by this method with the standard or concordance ΛCDM model, and find that some of these models may appear as almost indistinguishable from it. Interestingly enough, this shows that it is possible to construct viable solutions to the tough cosmological fine tuning problem with models that display the same basic phenomenological features as the concordance model.

  4. High-resolution Very Large Array observations of 18 MIPSGAL bubbles

    NASA Astrophysics Data System (ADS)

    Ingallinera, A.; Trigilio, C.; Leto, P.; Umana, G.; Buemi, C.; Bufano, F.; Agliozzo, C.; Riggi, S.; Flagey, N.; Silva, K.; Cerrigone, L.; Cavallaro, F.

    2016-08-01

    We present radio observations of 18 MIPSGAL bubbles performed at 5 GHz (6 cm) with the Karl G. Jansky Very Large Array in configuration B and BnA. The observations were aimed at understanding what kind of information high-resolution and high-sensitivity radio maps can supply on the circumstellar envelopes of different kinds of evolved stars and what their comparison with infrared images with similar resolution can tell us. We found that the 18 bubbles can be grouped into five categories according to their radio morphology. The three bubbles presenting a central point source in the radio images all correspond to luminous blue variable star candidates. Eleven bubbles show an elliptical shape and the total lack of a central object in the radio, and are likely associated with planetary nebulae. Under this assumption we derive their distance, their ionized mass and their distribution on the Galactic plane. We discuss the possibility that the MIPSGAL bubbles catalogue (428 objects; Mizuno et al. 2010) may contain a large fraction of all Galactic planetary nebulae located at a distance between 1.4 kpc and 6.9 kpc and lying in the MIPSGAL field of view. Among the remaining bubbles we identify also a H II region and a proto-planetary nebula candidate.

  5. Confronting the relaxation mechanism for a large cosmological constant with observations

    NASA Astrophysics Data System (ADS)

    Basilakos, Spyros; Bauer, Florian; Solà, Joan

    2012-01-01

    In order to deal with a large cosmological constant a relaxation mechanism based on modified gravity has been proposed recently. By virtue of this mechanism the effect of the vacuum energy density of a given quantum field/string theory (no matter how big is its initial value in the early universe) can be neutralized dynamically, i.e. without fine tuning, and hence a Big Bang-like evolution of the cosmos becomes possible. Remarkably, a large class {Fnm} of models of this kind, namely capable of dynamically adjusting the vacuum energy irrespective of its value and size, has been identified. In this paper, we carefully put them to the experimental test. By performing a joint likelihood analysis we confront these models with the most recent observational data on type Ia supernovae (SNIa), the Cosmic Microwave Background (CMB), the Baryonic Acoustic Oscillations (BAO) and the high redshift data on the expansion rate, so as to determine which ones are the most favored by observations. We compare the optimal relaxation models Fnm found by this method with the standard or concordance ΛCDM model, and find that some of these models may appear as almost indistinguishable from it. Interestingly enough, this shows that it is possible to construct viable solutions to the tough cosmological fine tuning problem with models that display the same basic phenomenological features as the concordance model.

  6. Circular free-electron laser

    DOEpatents

    Brau, Charles A.; Kurnit, Norman A.; Cooper, Richard K.

    1984-01-01

    A high efficiency, free electron laser utilizing a circular relativistic electron beam accelerator and a circular whispering mode optical waveguide for guiding optical energy in a circular path in the circular relativistic electron beam accelerator such that the circular relativistic electron beam and the optical energy are spatially contiguous in a resonant condition for free electron laser operation. Both a betatron and synchrotron are disclosed for use in the present invention. A free electron laser wiggler is disposed around the circular relativistic electron beam accelerator for generating a periodic magnetic field to transform energy from the circular relativistic electron beam to optical energy.

  7. Very Large Rain Drops from 2D Video Disdrometers and Concomitant Polarimetric Radar Observations

    NASA Technical Reports Server (NTRS)

    Thurai, Merhala; Gatlin, Patrick; Bringi, V. N.; Carey, Lawrence

    2014-01-01

    Drop size distribution (DSD) measurements using ground-based disdrometers (point measurements) have often been used to derive equations to relate radar observations to the integral rainfall parameters (Atlas et al. 1999, Bringi et al., 2003, Kozu et al., 2006, Tokay and Short, 1996, Ajayi and Owolabi, 1987, Battan, 1973). Disdrometers such as JWD, MRR and several others have a major limitation in measuring drops with equi-volume diameters (D(sub eq)) larger than 5 mm because they often rely on the velocity-diameter relationship which plateaus beyond this diameter range (Atlas et al., 1973, Gunn & Kinzer, 1949). Other disdrometers such as Parsivel also lack accuracy beyond this diameter range. The 2D video disdrometer (2DVD: Schönhuber et al., 2008) on the other hand gives drop-shape contours and velocities for each individual drop/hydrometeor falling through its sensor area; this provides a unique opportunity to study the role of very-large drops on radar measurements in particular those with polarimetric radar capability where DSDs with a significant component of very large drops may require special consideration given that the differential reflectivity and other polarimetric radar parameters including attenuation-correction methods will be sensitive to the concentrations of these large drops. A recent study on the occurrence of large drops by Gatlin et al. (2014) has compiled a large and diverse set of measurements made with the 2D video disdrometers from many locations around the globe. Some of the largest drops found in this study were 9 mm D(sub eq) and larger, and in this paper, we report on three such events, with maximum D(sub eq's) of 9.0, 9.1 and 9.7 mm, which occurred in Colorado, Northern Alabama, and Oklahoma, respectively. Detailed examination of the 2DVD data - in terms of shapes and fall velocities - has confirmed that these are fully-melted hydrometeors, although for the last case in Oklahoma, a bigger and non-fully-melted hydrometeor was also

  8. New challenges for the maintenance strategies on large astronomical facilities at remote observing sites

    NASA Astrophysics Data System (ADS)

    Silber, Armin

    2012-09-01

    The Change from a reacting to a proactive maintenance concept represents for large Observatories at remote operational sites a new challenge, considering the increasing numbers of complex subsystems. Conventional operational maintenance models will not cover all the requirements, will lead to more down time and the operational cost cannot be reduced. For the successful astronomical observation with large telescope facilities new strategies have to be applied. In this contribution we will demonstrate on the example of the 78 Cryogenic Sub-systems of ALMA how a proactive maintenance strategy help to increase the efficiency, to reduce the operational cost and the required staff resources. With respect to the growing number of complex subsystems on future telescope facilities the operational staff needs proper diagnostic and monitoring tools to allow a precise prediction respectively synchronization of the service activities. This leads away from a pure scheduling of preventive maintenance and enables a longer availability of the subsystems as tendencies and performance are monitored and controlled. Having this strategy considered during the developing phase of future large astronomical facilities allows the optimization of the required Infrastructure, a proper definition of the LRU1 strategy and to which level maintenance can be cost efficient on site.

  9. Time-resolved backscattering of circularly and linearly polarized light in a turbid medium.

    PubMed

    Ni, Xiaohui; Alfano, R R

    2004-12-01

    Time-resolved backscattering profiles of circularly and linearly polarized light were measured from a turbid medium composed of small and large polystyrene sphere particles in water. It is shown that, based on the measurements of the time-resolved backscattered copolarized and cross-polarized components of the incident polarized light, either linearly or circularly polarized light can be used to effectively image an object that is deep inside a turbid medium composed of small particles, depending on the depolarization properties of the object itself. For large particles such as in tissue, fog, and clouds, the experimentally observed polarization memory effect on the backscattering temporal profiles suggests that a significant improvement in the image contrast can be achieved by use of circularly polarized light.

  10. Towards future circular colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  11. Extremely Large Diamagnetic Cavities Observed In The Dayside High-altitute Cusps

    NASA Astrophysics Data System (ADS)

    Chen, Jiasheng; Fritz, Theodore A.

    Some extremely large diamagnetic cavities have been observed in April, 1999 when the POLAR spacecraft was crossing through the dayside high-altitude cusp regions. These diamagnetic cavities were associated with strong magnetic field turbulence. Some of the diamagnetic cavities were independent of the IMF directions, which is unexpected by the current MHD models, suggesting that the diamagnetic cavities are different from the magnetospheric sash. The size of the cavities were found to be as large as 6 Re. Associated with these cavities are ions with energies from 40 keV up to 8 MeV that are more typical of the trapped ring current and radiation belt populations than the solar wind. The intensities of the energetic ions were observed to increase by as large as four orders of the magnitudes during the cavity crossings, indicating the dayside high-altitude cusp diamagnetic cavity is a key region for transferring the solar wind energy, mass, and momentum into the Earth's magnetosphere. The charge state distribution of these cusp cavity ions was indicative of their seed populations being a mixture of the ionospheric and the solar wind particles. By their geometry cusp mag- netic field lines are connected to all of the magnetopause boundary layers and these cavity charged particles will form an energetic particle layer on the magnetopause. These energetic particles in the cusp diamagnetic cavity together with the cusp's con- nectivity have significant global impacts on the geospace environment research and will be shedding light on the long-standing unsolved fundamental issue about the ori- gins of the energetic particles in the ring current and in upstream ion events.

  12. What controls drizzle initiation? Insights from a comparison of large-eddy simulations with observations

    NASA Astrophysics Data System (ADS)

    Witte, M.; Chuang, P. Y.; Wang, L. P.; Ayala, O.

    2014-12-01

    Drizzle occurs frequently in shallow, warm boundary layer clouds. For example, in stratocumulus it occurs approximately 1/3 of the time in full cloud cover conditions (Wood 2012). Drizzle affects moisture and energy budgets, and cloud albedo, morphology and lifetime. At the cloud scale, processes that control drizzle formation include turbulence production via radiative cooling and/or shear, entrainment, and surface moisture fluxes. At the micro-scale, collision-coalescence is the primary process relevant to warm drizzle formation. Differential gravitational sedimentation and turbulent air motions cause cloud droplets to collide, creating drops much larger than can be formed by condensation alone. Other factors, such as preferential concentration and entrainment mixing may also be relevant. The process is typically subdivided into three regimes: autoconversion (small drops self-collide), accretion (large drops collect small drops), and hydrometeor self-collection (large drops self-collide). Of these regimes, autoconversion is the rate-limiting step in existing analytical representations. This study (i) evaluates whether our best theoretical understanding of collision-coalescence in the autoconversion regime can replicate observations, with a broader goal of (ii) exploring which cloud-scale factors are most important for drizzle initiation. A state-of-the-art turbulent collisional growth model is applied to a bin microphysics scheme within a large-eddy simulation such that the full range of cloud drop growth mechanisms are represented (i.e. CCN activation, condensation, collision-coalescence, mixing, etc.) at realistic atmospheric conditions. We compare cloud drop spectra produced by the LES with observations to assess the quality and limits of our theoretical knowledge. The comparison will be performed over a range of observational cases that span a range of drizzle rates. These cases differ in their radiative cooling rates, shear, cloud-top temperature and

  13. Forthcoming Coronal Mass Ejection Observations with the Very Large Array (VLA)

    NASA Astrophysics Data System (ADS)

    Spangler, Steven R.; Kooi, Jason E.; Sink, Joseph R.

    2015-04-01

    It is widely recognized that measurement of Faraday rotation through a coronal mass ejection (CME) provides unique information on the internal plasma structure of the CME, particularly the form of the magnetic field. The Faraday rotation measure is proportional to the path integral through the CME of the electron density and the line-of-sight component of the magnetic field. In spite of this importance, there are relatively few measurements of Faraday rotation produced by a CME. The Very Large Array (VLA) of the National Radio Astronomy Observatory is an outstanding instrument for measurement of Faraday rotation, and its capabilities have been greatly improved by an upgrade over the past decade. In the case of VLA observations, the trans-coronal sources of radio waves are radio galaxies and quasars. A difficulty in measuring Faraday rotation of a CME is the unpredictability of the CME phenomenon. It is difficult to predict whether a given line of sight to a background source will be occulted by a CME on a given day. We have received approval to carry out ``triggered'' CME observations with the VLA in the summer of 2015. In these observations, we will rely on coronagraph detections of a CME to initiate VLA observations of select background sources. This observing mode will improve on one previously used, in which a decision to observe had to be made a day or more in advance. The goal of these observations will be to secure Faraday rotation measurements on one or more lines of sight that pass through critical parts of a CME. In this paper, we will describe our planned triggering scheme, the selection of background sources, choice of observing frequency and selection of lines of sight that can best determine the plasma structure of a CME. Our planning also depends on prior experience in measurement of coronal Faraday rotation, and Faraday rotation ``transients'' associated with CMEs. This work was supported at the University of Iowa by grant ATM09-56901 from the

  14. Sunyaev-Zel'dovich Observations Using Large-Format Millimeter Arrays

    NASA Astrophysics Data System (ADS)

    Czakon, Nicole G.

    Galaxy clusters are the largest gravitationally bound objects in the observable universe, and they are formed from the largest perturbations of the primordial matter power spectrum. During initial cluster collapse, matter is accelerated to supersonic velocities, and the baryonic component is heated as it passes through accretion shocks. This process stabilizes when the pressure of the bound matter prevents further gravitational collapse. Galaxy clusters are useful cosmological probes, because their formation progressively freezes out at the epoch when dark energy begins to dominate the expansion and energy density of the universe. A diverse set of observables, from radio through X-ray wavelengths, are sourced from galaxy clusters, and this is useful for self-calibration. The distributions of these observables trace a cluster's dark matter halo, which represents more than 80% of the cluster's gravitational potential. One such observable is the Sunyaev-Zel'dovich effect (SZE), which results when the ionized intercluster medium blueshifts the cosmic microwave background via Compton scattering. Great technical advances in the last several decades have made regular observation of the SZE possible. Resolved SZE science, such as is explored in this analysis, has benefitted from the construction of large-format camera arrays consisting of highly sensitive millimeter-wave detectors, such as Bolocam. Bolocam is a submillimeter camera, sensitive to 140 GHz and 268 GHz radiation, located at one of the best observing sites in the world: the Caltech Submillimeter Observatory on Mauna Kea in Hawaii. Bolocam fielded 144 of the original spider web NTD bolometers used in an entire generation of ground-based, balloon-borne, and satellite-borne millimeter wave instrumention. Over approximately six years, our group at Caltech has developed a mature galaxy cluster observational program with Bolocam. This thesis describes the construction of the instrument's full cluster catalog: BOXSZ

  15. Rapid formation of large aggregates during the spring bloom of Kerguelen Island: observations and model comparisons

    NASA Astrophysics Data System (ADS)

    Jouandet, M.-P.; Jackson, G. A.; Carlotti, F.; Picheral, M.; Stemmann, L.; Blain, S.

    2014-08-01

    While production of aggregates and their subsequent sinking is known to be one pathway for the downward movement of organic matter from the euphotic zone, the rapid transition from non-aggregated to aggregated particles has not been reported previously. We made one vertical profile of particle size distributions (PSD; sizes ranging from 0.052 to several millimeters in equivalent spherical diameter) at pre-bloom stage and seven vertical profiles 3 weeks later over a 48 h period at early bloom stage using the Underwater Vision Profiler during the Kerguelen Ocean and Plateau Compared Study cruise 2 (KEOPS2, October-November 2011). In these naturally iron-fertilized waters southeast of Kerguelen Island (Southern Ocean), the total particle numerical abundance increased by more than fourfold within this time period. A massive total volume increase associated with particle size distribution changes was observed over the 48 h survey, showing the rapid formation of large particles and their accumulation at the base of the mixed layer. The results of a one-dimensional particle dynamics model support coagulation as the mechanism responsible for the rapid aggregate formation and the development of the VT subsurface maxima. The comparison of VT profiles between early bloom stage and pre-bloom stage indicates an increase of particulate export below 200 m when bloom has developed. These results highlight the role of coagulation in forming large particles and triggering carbon export at the early stage of a naturally iron-fertilized bloom, while zooplankton grazing may dominate later in the season. The rapid changes observed illustrate the critical need to measure carbon export flux with high sampling temporal resolution. Our results are the first published in situ observations of the rapid accumulation of marine aggregates and their export and the general agreement of this rapid event with a model of phytoplankton growth and coagulation.

  16. Sky surface brightness at Mount Graham II. First JHKs science observations with the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Pedani, M.

    2014-04-01

    We studied the near-infrared sky-brightness at J, H and Ks-bands as derived from the data taken during the first year and a half of routine science operations of the Large Binocular Telescope (LBT). This is the first comprehensive study of the near-infrared night sky-brightness ever conducted at the Mount Graham International Observatory (MGIO), based on a large dataset comprising 4699 near-infrared images taken in 52 nights. We analyzed the dependency of the near-infrared night sky-brightness with the airmass, the season and the moon phase and distance. The average night sky-brightnesses (dispersion) in the J, H and Ks bands scaled to the zenith is 15.82 mag/arcsec2 (0.21), 14.29 mag/arcsec2 (0.26) and 13.42 mag/arcsec2 (0.32) respectively. Those values were derived for the first time at this observatory. At the J-band we found a tendency of the sky background to get darker by ˜0.35 mag at the end of the night with respect to the evening twilight. Also in the J-band we found that the sky background can be up to ˜0.11 mag brighter when observing at 10° distance from the full moon. A correlation was also found between the night sky-brightness in the Ks-band and the air temperature with a gradient of -0.06 mag per 1°C of temperature increase. If we compare the average sky brightness of the major observing sites we find that, at J-band, Mt. Graham is quite similar to the major sites but it quickly becomes the second darkest place at the H-band and definitely the darkest observing site at the Ks-band together with Mauna Kea.

  17. Compact waveguide circular polarizer

    DOEpatents

    Tantawi, Sami G.

    2016-08-16

    A multi-port waveguide is provided having a rectangular waveguide that includes a Y-shape structure with first top arm having a first rectangular waveguide port, a second top arm with second rectangular waveguide port, and a base arm with a third rectangular waveguide port for supporting a TE.sub.10 mode and a TE.sub.20 mode, where the end of the third rectangular waveguide port includes rounded edges that are parallel to a z-axis of the waveguide, a circular waveguide having a circular waveguide port for supporting a left hand and a right hand circular polarization TE.sub.11 mode and is coupled to a base arm broad wall, and a matching feature disposed on the base arm broad wall opposite of the circular waveguide for terminating the third rectangular waveguide port, where the first rectangular waveguide port, the second rectangular waveguide port and the circular waveguide port are capable of supporting 4-modes of operation.

  18. Very Large Telescope observations of Gomez's Hamburger: Insights into a young protoplanet candidate

    NASA Astrophysics Data System (ADS)

    Berné, O.; Fuente, A.; Pantin, E.; Bujarrabal, V.; Baruteau, C.; Pilleri, P.; Habart, E.; Ménard, F.; Cernicharo, J.; Tielens, A. G. G. M.; Joblin, C.

    2015-06-01

    Planets are thought to form in the gas and dust disks around young stars. In particular, it has been proposed that giant planets can form through the gravitational instability of massive extended disks around intermediate-mass stars. However, we still lack direct observations to constrain this mechanism. We have spatially resolved the 8.6 and 11.2 μm emission of a massive protoplanetary disk seen edge on around an A star, Gomez's Hamburger (GoHam), using VISIR at the Very Large Telescope. A compact region situated at a projected distance of 350 ± 50 AU south of the central star is found to have a reduced emission. This asymmetry is fully consistent with the presence of a cold density structure, or clump, identified in earlier CO observations, and we derive physical characteristics consistent with those observations: a mass of 0.8-11.4 Jupiter masses (for a dust-to-gas mass ratio of 0.01), a radius of about 102 astronomical units, and a local density of about 107 cm-3. Based on this evidence, we argue that this clump, which we call GoHam b, is a promising candidate for a young protoplanet formed by gravitational instability that might be representative of the precursors of massive planets observed around A stars, such as HR 8799 or Beta pictoris. More detailed studies at high angular resolution are needed to better constrain the physical properties of this object to confirm this proposal. Based on observations collected at the European Southern Observatory, Chile under program ID 385.C-0762A.Appendices are available in electronic form at http://www.aanda.org

  19. Observation of an electron sheath at a large, transiently biassed surface in the GEC cell

    NASA Astrophysics Data System (ADS)

    Barroy, P. R. J.; Goodyear, A.; Braithwaite, N. St. J.

    2001-10-01

    Sheath reversal has been investigated in front of a biassed surface embedded into the ground electrode of a capacitively coupled GEC cell. Radio frequency bursts (several tens of volts amplitude) were applied to the surface (20 mm diameter including guard ring) and fast, two dimensional observations made of the light emission using an intensified CCD camera synchronously gated within the succession of bursts. A guard ring, biassed to the same potential, ensures sheath planarity. The evolution of the optical emission has been followed during the dc biassing period. If the applied RF is large enough and the timescale short enough a perturbation of the plasma sheath is observed. At the onset of the RF burst periodic, sheath reversal is achieved as the potential of the surface exceeds that of the plasma. After several cycles of RF, the surface acquires enough negative charge to bias itself negatively, below plasma potential; sheath reversal then stops. The overall effect is accompanied by light emision from species excited by electrons accelerated towards the surface. Modelling of the phenomenon has been conducted to account for the observations.

  20. CIRCULAR RIBBON FLARES AND HOMOLOGOUS JETS

    SciTech Connect

    Wang Haimin; Liu Chang

    2012-12-01

    Solar flare emissions in the chromosphere often appear as elongated ribbons on both sides of the magnetic polarity inversion line (PIL), which has been regarded as evidence of a typical configuration of magnetic reconnection. However, flares having a circular ribbon have rarely been reported, although it is expected in the fan-spine magnetic topology involving reconnection at a three-dimensional (3D) coronal null point. We present five circular ribbon flares with associated surges, using high-resolution and high-cadence H{alpha} blue wing observations obtained from the recently digitized films of Big Bear Solar Observatory. In all the events, a central parasitic magnetic field is encompassed by the opposite polarity, forming a circular PIL traced by filament material. Consequently, a flare kernel at the center is surrounded by a circular flare ribbon. The four homologous jet-related flares on 1991 March 17 and 18 are of particular interest, as (1) the circular ribbons brighten sequentially, with cospatial surges, rather than simultaneously, (2) the central flare kernels show an intriguing 'round-trip' motion and become elongated, and (3) remote brightenings occur at a region with the same magnetic polarity as the central parasitic field and are co-temporal with a separate phase of flare emissions. In another flare on 1991 February 25, the circular flare emission and surge activity occur successively, and the event could be associated with magnetic flux cancellation across the circular PIL. We discuss the implications of these observations combining circular flare ribbons, homologous jets, and remote brightenings for understanding the dynamics of 3D magnetic restructuring.

  1. Investigation of natural gas plume dispersion using mobile observations and large eddy simulations

    NASA Astrophysics Data System (ADS)

    Caulton, Dana R.; Li, Qi; Golston, Levi; Pan, Da; Bou-Zeid, Elie; Fitts, Jeff; Lane, Haley; Lu, Jessica; Zondlo, Mark A.

    2016-04-01

    Recent work suggests the distribution of methane emissions from fracking operations is skewed with a small percentage of emitters contributing a large proportion of the total emissions. These sites are known as 'super-emitters.' The Marcellus shale, the most productive natural gas shale field in the United States, has received less intense focus for well-level emissions and is here used as a test site for targeted analysis between current standard trace-gas advection practices and possible improvements via advanced modeling techniques. The Marcellus shale is topographically complex, making traditional techniques difficult to implement and evaluate. For many ground based mobile studies, the inverse Gaussian plume method (IGM) is used to produce emission rates. This method is best applied to well-mixed plumes from strong point sources and may not currently be well-suited for use with disperse weak sources, short-time frame measurements or data collected in complex terrain. To assess the quality of IGM results and to improve source-strength estimations, a robust study that combines observational data with a hierarchy of models of increasing complexity will be presented. The field test sites were sampled with multiple passes using a mobile lab as well as a stationary tower. This mobile lab includes a Garmin GPS unit, Vaisala weather station (WTX520), LICOR 7700 CH4 open path sensor and LICOR 7500 CO2/H2O open path sensor. The sampling tower was constructed consisting of a Metek uSonic-3 Class A sonic anemometer, and an additional LICOR 7700 and 7500. Data were recorded for at least one hour at these sites. The modeling will focus on large eddy simulations (LES) of the wind and CH4 concentration fields for these test sites. The LES model used 2 m horizontal and 1 m vertical resolution and was integrated in time for 45 min for various test sites under stable, neutral and unstable conditions. It is here considered as the reference to which various IGM approaches can be

  2. Observation of the saturation of Langmuir waves driven by ponderomotive force in a large scale plasma

    SciTech Connect

    Kirkwood, R. K.; Moody, J. D.; MacGowan, B. J.; Glenzer, S. H.; Kruer, W. L.; Estabrook, K. G.; Wharton, K. B.; Williams, E. A.; Berger, R. L.

    1997-06-22

    We report the observation of amplification of a probe laser beam (I {le} 1 {times} 10{sup 14} W/cm{sup 2}) in a large scale ({approximately} 1 mm) plasma by interaction with a pumping laser beam (I = 2 {times} 10{sup 15} W/cm{sup 2}) and a stimulated Langmuir wave. When the plasma density is adjusted to allow the Langmuir wave dispersion to match the difference frequency and wave number of the two beams, amplification factors as high as {times} 2.5 result. Interpretation of this amplification as scattering of pump beam energy by the Langmuir wave that is produced by the ponderomotive force of the two beams, allows the dependence of Langmuir wave amplitude on ponderomotive force to be measured. It is found that the Langmuir wave amplitude saturates at a level that depends on ion wave damping, and is generally consistent with secondary ion wave instabilities limiting its growth. 20 refs., 4 figs.

  3. A secure and reliable monitor and control system for remote observing with the Large Millimeter Telescope

    NASA Astrophysics Data System (ADS)

    Wallace, Gary; Souccar, Kamal; Malin, Daniella

    2004-09-01

    Remote access to telescope monitor and control capabilities necessitates strict security mechanisms to protect the telescope and instruments from malicious or unauthorized use, and to prevent data from being stolen, altered, or corrupted. The Large Millimeter Telescope (LMT) monitor and control system (LMTMC) utilizes the Common Object Request Broker Architecture (CORBA) middleware technology to connect remote software components. The LMTMC provides reliable and secure remote observing by automatically generating SSLIOP enabled CORBA objects. TAO, the ACE open source Object Request Broker (ORB), now supports secure communications by implementing the Secure Socket Layer Inter-ORB Protocol (SSLIOP) as a pluggable protocol. This capability supplies the LMTMC with client and server authentication, data integrity, and encryption. Our system takes advantage of the hooks provided by TAO SSLIOP to implement X.509 certificate based authorization. This access control scheme includes multiple authorization levels to enable granular access control.

  4. Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations

    NASA Technical Reports Server (NTRS)

    Lonsdale, Carol J.; Hacking, Perry B.

    1989-01-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.

  5. Large Angular Jump Mechanism Observed for Hydrogen Bond Exchange in Aqueous Perchlorate Solution

    SciTech Connect

    Ji, Minbiao; Odelius3, Michael; Gaffney1, K.J.; /aff SLAC, PULSE

    2010-06-11

    The mechanism for hydrogen bond (H-bond) switching in solution has remained subject to debate despite extensive experimental and theoretical studies. We have applied polarization-selective multidimensional vibrational spectroscopy to investigate the H-bond exchange mechanism in aqueous NaClO{sub 4} solution. The results show that a water molecule shifts its donated H-bonds between water and perchlorate acceptors by means of large, prompt angular rotation. Using a jump-exchange kinetic model, we extract an average jump angle of 49 {+-} 4{sup o}, in qualitative agreement with the jump angle observed in molecular dynamics simulations of the same aqueous NaClO{sub 4} solution.

  6. Galaxy evolution and large-scale structure in the far-infrared. I - IRAS pointed observations

    NASA Astrophysics Data System (ADS)

    Lonsdale, Carol J.; Hacking, Perry B.

    1989-04-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution.

  7. Merged interaction regions and large-scale magnetic field fluctuations during 1991: Voyager 2 observations

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    1994-01-01

    This paper analyzes Voyager 2 observations of the magnetic field between 33.6 AU and 36.2 AU during 1991 when extraordinary events were observed on the Sun and in the heliosphere. The magnetic field strength signal B(t) has the unusual form of two large transient merged interaction regions (MIRs) on a fluctuating background. The two MIRs moved past the spacecraft in 32 days and 18 days, respectively. The mean field strength in each transient MIR was approx. equals 2.6 times the mean field during the remaining part of the year (0.11 nT). Each of the MIRs is related to a fast stream. The magnetic field is strong throughout each stream, suggesting that the strong fields are carried by the streams as well as produced by shock and stream compression. The fluctuations in B(t) during 1991 are not multifractal, and the MIRs cannot be approximated as multifractal clusters of intense magnetic fields. The distribution of the hour-averaged magnetic field strengths is approximately lognormal over 90% of its intermediate range, and it has an exponential tail for B greater than the average magnetic field strength. The elevation angles of B have a normal distribution with a standard deviation of 16 deg +/- 4 deg. The distributions of the azimuthal angles of B in the ranges 1 deg - 180 deg and 180 deg - 360 deg are approximately normal over a more limited range, and non-Gaussian tails associated with nearly radial magnetic fields; the standard deviations are approx. equal to 40 deg. Individual sectors are present throughout most of the interval, even in the MIRs, but there is no recurrent sector pattern. A model of the large-scale fluctuations in 1991 will have to include both determinaistic and statistical factors.

  8. Large-scale and Convective-scale Updraft Profiles from Satellite Observations

    NASA Astrophysics Data System (ADS)

    Masunaga, H.; Luo, Z. J.

    2015-12-01

    Among the crucial problems involved in the tropical energy budget are the thermodynamic effects of an ensemble of convective clouds on their environment and the large-scale influence imposed back on the convective-scale dynamics. Efforts to seek observational evidence for this problem, however, are challenged by limitations in the capability of measuring vertical motion across different horizontal scales. We have recently been exploring new analysis strategies in hopes to make this seemingly impossible possible, exploiting a suite of satellite instruments including the CloudSat and TRMM radars and Aqua AIRS. Since a complete vertical structure of in-cloud vertical velocity, wc, is unable to be reconstructed from satellite measurements alone, a single-column plume model is run with the environmental soundings from AIRS to obtain a set of synthetic wc profiles under a range of entrainment rates. The solutions are then narrowed down in a Bayesian manner so as to match the cloud-top vertical velocity and buoyancy estimates from A-Train infrared and radar measurements. The vertical profile of large-scale mean vertical motion, ω, is also evaluated from satellite observations in its own approach: ω as a function of pressure is determined so that it satisfies the horizontal divergence terms in the tropospheric water and thermal budget equations in which the remaining terms are constrained by satellite measurements. In this talk, the methodology is briefly outlined and the results are presented and discussed in light of outstanding issues in tropical dynamics. The wc and ω estimates above, although subject to intrinsic uncertainties yet to be verified, do not involve any closure assumption as required for cumulus parameterizations and would offer a useful test bed for climate models and reanalysis data as well as a unique opportunity to study the mechanism of tropical convection.

  9. Observing the Moon at Microwave Frequencies Using a Large-Diameter Deep Space Network Antenna

    NASA Astrophysics Data System (ADS)

    Morabito, David D.; Imbriale, William; Keihm, Stephen

    2008-03-01

    The Moon radiates energy at infrared and microwave wavelengths, in addition to reflecting sunlight at optical wavelengths. As a result, an antenna pointed at or near the Moon will result in an increase in system operating noise temperature, which needs to be accounted for in RF telecommunications, radio science or radiometric link calculations. The NASA Deep Space Network (DSN) may use its large-diameter antennas in future lunar robotic or human missions, and thus it is important to understand the nature of this temperature incre ase as a function of observing frequency, lunar phase, and angular position of the antenna beam on the lunar disk. This paper reports on a comprehensive lunar noise temperature measurement campaign and associated theoretical treatment for a 34-m diameter Deep Space Network antenna observing an extended source such as the Moon. A set of measurements over a wide range of lunar phase angles was acquired at DSS-13, a 34-m diameter beam waveguide antenna (BWG) located at Goldstone, California at 2.3 GHz (S-band), 8.4 GHz (X-band) and 32 GHz (Ka-band). For validation purposes, independent predictions of noise temperature increase were derived using a physical optics characterization of the 34-m diameter antenna gain patterns and Apollo model-based brightness temperature maps of the Moon as input. The model-based predictions of noise temperature increase were compared with the measurements at all three frequencies. In addition, a methodology is presented that relates noise temperature increase due to the Moon to disk-centered or disk-averaged brightness temperature of the Moon at the microwave frequencies of interest. Comparisons were made between the measurements and models in the domain of lunar disk-centered and disk-averaged brightness temperatures. It is anticipated that the measurements and associated theoretical development will be useful in developing telecommunications strategies for future high-rate Ka-band communications where large

  10. Large NAT particle formation by mother clouds: Analysis of SOLVE/THESEO-2000 observations

    NASA Astrophysics Data System (ADS)

    Fueglistaler, S.; Luo, B. P.; Buss, S.; Wernli, H.; Voigt, C.; Müller, M.; Neuber, R.; Hostetler, C. A.; Poole, L. R.; Flentje, H.; Fahey, D. W.; Northway, M. J.; Peter, Th.

    2002-06-01

    During the SOLVE/THESEO-2000 Arctic stratospheric campaign in the winter 1999/2000 widespread occurrences of very large HNO3-containing particles, probably composed of nitric acid trihydrate (NAT), were observed in situ by instruments on board the ER-2 stratospheric research aircraft. These large NAT particles were found with low number densities (n ~ 10-4 cm-3) in vast regions, in air generally supersaturated with respect to NAT. Within the same campaign other instruments have performed airborne and ground-based measurements of polar stratospheric clouds (PSCs), often showing the existence of type 1a and type 1a-enh clouds. Such PSCs often occur on the mesoscale with particle number densities n >~ 10-2cm-3 and are also most likely composed of NAT. We use forward trajectories for the path of NAT particles, which are advected by winds based on ECMWF analyses and sediment due to gravity, to show that high number density NAT PSCs (mother clouds) could give rise to low number density NAT particle populations several days downstream.

  11. The quasiperpendicular environment of large magnetic pulses in Earth's quasiparallel foreshock - ISEE 1 and 2 observations

    NASA Technical Reports Server (NTRS)

    Greenstadt, E. W.; Moses, S. L.; Coroniti, F. V.; Farris, M. H.; Russell, C. T.

    1993-01-01

    ULF waves in Earth's foreshock cause the instantaneous angle theta-B(n) between the upstream magnetic field and the shock normal to deviate from its average value. Close to the quasi-parallel (Q-parallel) shock, the transverse components of the waves become so large that the orientation of the field to the normal becomes quasi-perpendicular (Q-perpendicular) during applicable phases of each wave cycle. Large upstream pulses of B were observed completely enclosed in excursions of Theta-B(n) into the Q-perpendicular range. A recent numerical simulation included Theta-B(n) among the parameters examined in Q-parallel runs, and described a similar coincidence as intrinsic to a stage in development of the reformation process of such shocks. Thus, the natural environment of the Q-perpendicular section of Earth's bow shock seems to include an identifiable class of enlarged magnetic pulses for which local Q-perpendicular geometry is a necessary association.

  12. An interactive environment for the analysis of large Earth observation and model data sets

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.

    1994-01-01

    Envision is an interactive environment that provides researchers in the earth sciences convenient ways to manage, browse, and visualize large observed or model data sets. Its main features are support for the netCDF and HDF file formats, an easy to use X/Motif user interface, a client-server configuration, and portability to many UNIX workstations. The Envision package also provides new ways to view and change metadata in a set of data files. It permits a scientist to conveniently and efficiently manage large data sets consisting of many data files. It also provides links to popular visualization tools so that data can be quickly browsed. Envision is a public domain package, freely available to the scientific community. Envision software (binaries and source code) and documentation can be obtained from either of these servers: ftp://vista.atmos.uiuc.edu/pub/envision/ and ftp://csrp.tamu.edu/pub/envision/. Detailed descriptions of Envision capabilities and operations can be found in the User's Guide and Reference Manuals distributed with Envision software.

  13. Changes in the Molar Ellipticities of HEWL Observed by Circular Dichroism and Quantitated by Time Resolved Fluorescence Anisotropy Under Crystallizing Conditions

    NASA Technical Reports Server (NTRS)

    Sumida, John

    2002-01-01

    Fluid models for simple colloids predict that as the protein concentration is increased, crystallization should occur at some sufficiently high concentration regardless of the strength of attraction. However, empirical measurements do not fully support this assertion. Measurements of the second virial coefficient (B22) indicate that protein crystallization occurs only over a discrete range of solution parameters. Furthermore, observations of a strong correlation between protein solubility and B22, has led to an ongoing debate regarding the relationship between the two. Experimental work in our lab, using Hen Egg White Lysozyme (HEWL), previously revealed that the rotational anisotropy of the protein under crystallizing conditions changes systematically with pH, ionic strength and temperature. These observations are now supported by recent work revealing that small changes in the molar ellipticity also occur systematically with changes in ionic strength and temperature. This work demonstrates that under crystallization conditions, the protein native state is characterized by a conformational heterogeneity that may prove fundamental to the relationship between protein crystallization and protein solubility.

  14. Observations of energetic particles with STEREO: events with large longitudinal spread

    NASA Astrophysics Data System (ADS)

    Dresing, Nina; Droege, Wolfgang; Kartavykh, Yulia; Klassen, Andreas; Malandraki, Olga; Gomez-Herrero, Raul; Heber, Bernd

    The two STEREO spacecraft perform Earth-like orbits around the Sun with an increasing longitudinal separation to the Earth of ~22 degrees per year. A 360 degree view of the Sun was reached in February 2011, providing multi-point in-situ and remote-sensing observations of unprecedented quality. Together with close to Earth measurements, the STEREO spacecraft build an optimal platform to study solar energetic particles (SEPs) and its longitudinal variations with minimal radial gradient effects. While solar activity finally began to rise after the very deep minimum in 2010 to 2011, the STEREO spacecraft had reached a sufficient longitudinal separation to detect and investigate events with large longitudinal spreads. The mechanisms producing these unexpected wide particle spreads are subject to recent research. Comprehensive observations and modeling tools are put forth to disentangle source and transport processes. The efficiency of perpendicular diffusion in the interplanetary medium versus coronal transport, as well as the role of coronal shocks, EUV waves, and CMEs will be discussed.

  15. SEISMOLOGY OF A LARGE SOLAR CORONAL LOOP FROM EUVI/STEREO OBSERVATIONS OF ITS TRANSVERSE OSCILLATION

    SciTech Connect

    Verwichte, E.; Van Doorsselaere, T.; Foullon, C.; Nakariakov, V. M.; Aschwanden, M. J.

    2009-06-10

    The first analysis of a transverse loop oscillation observed by both Solar TErrestrial RElations Observatories (STEREO) spacecraft is presented, for an event on the 2007 June 27 as seen by the Extreme Ultraviolet Imager (EUVI). The three-dimensional loop geometry is determined using a three-dimensional reconstruction with a semicircular loop model, which allows for an accurate measurement of the loop length. The plane of wave polarization is found from comparison with a simulated loop model and shows that the oscillation is a fundamental horizontally polarized fast magnetoacoustic kink mode. The oscillation is characterized using an automated method and the results from both spacecraft are found to match closely. The oscillation period is 630 {+-} 30 s and the damping time is 1000 {+-} 300 s. Also, clear intensity variations associated with the transverse loop oscillations are reported for the first time. They are shown to be caused by the effect of line-of-sight integration. The Alfven speed and coronal magnetic field derived using coronal seismology are discussed. This study shows that EUVI/STEREO observations achieve an adequate accuracy for studying long-period, large-amplitude transverse loop oscillations.

  16. SDO/AIA OBSERVATIONS OF LARGE-AMPLITUDE LONGITUDINAL OSCILLATIONS IN A SOLAR FILAMENT

    SciTech Connect

    Li Ting; Zhang Jun E-mail: zjun@nao.cas.cn

    2012-11-20

    We present the first Solar Dynamics Observatory/Atmospheric Imaging Assembly observations of the large-amplitude longitudinal (LAL) oscillations in the south and north parts (SP and NP) of a solar filament on 2012 April 7. Both oscillations are triggered by flare activities close to the filament. The period varies with filamentary threads, ranging from 44 to 67 minutes. The oscillations of different threads are out of phase, and their velocity amplitudes vary from 30 to 60 km s{sup -1}, with a maximum displacement of about 25 Mm. The oscillations of the SP repeat for about four cycles without any significant damping and then a nearby C2.4 flare causes the transition from the LAL oscillations of the filament to its later eruption. The filament eruption is also associated with a coronal mass ejection and a B6.8 flare. However, the oscillations of the NP damp with time and die out at last. Our observations show that the activated part of the SP repeatedly shows a helical motion. This indicates that the magnetic structure of the filament is possibly modified during this process. We suggest that the restoring force is the coupling of the magnetic tension and gravity.

  17. Large-Field CO(J = 1→0) Observations of the Starburst Galaxy M 82

    NASA Astrophysics Data System (ADS)

    Salak, Dragan; Nakai, Naomasa; Miyamoto, Yusuke; Yamauchi, Aya; Tsuru, Takeshi G.

    2013-06-01

    We present large-field (15.7 × 16.9 arcmin2) CO(J = 1→0) observations of the starburst galaxy M 82, at an angular resolution of 22" with the NRO 45-m telescope. The CO emission was detected in the galactic disk, outflow (driven by the galactic wind) up to ˜2 kpc above the galactic plane in the halo, and in tidal streams. The kinematics of the outflow (including CO line splitting) suggests that it has the shape of a cylinder that is diverging outwards. The mass and kinetic energy of the molecular gas outflow are estimated to be (0.26-1.0) × 109 M⊙ and (1-4) × 1056 erg. A clump of CO gas was discovered 3.5 kpc above the galactic plane; it coincides with a dark lane previously found in X-ray observations, and a peak in H I emission. A comparison with H I, hot molecular hydrogen and dust suggests that the molecular gas shows signatures of warm and cool components in the outflow and tidal streams, respectively.

  18. Vertical Distributions of Sulfur Species Simulated by Large Scale Atmospheric Models in COSAM: Comparison with Observations

    SciTech Connect

    Lohmann, U.; Leaitch, W. R.; Barrie, Leonard A.; Law, K.; Yi, Y.; Bergmann, D.; Bridgeman, C.; Chin, M.; Christensen, J.; Easter, Richard C.; Feichter, J.; Jeuken, A.; Kjellstrom, E.; Koch, D.; Land, C.; Rasch, P.; Roelofs, G.-J.

    2001-11-01

    A comparison of large-scale models simulating atmospheric sulfate aerosols (COSAM) was conducted to increase our understanding of global distributions of sulfate aerosols and precursors. Earlier model comparisons focused on wet deposition measurements and sulfate aerosol concentrations in source regions at the surface. They found that different models simulated the observed sulfate surface concentrations mostly within a factor of two, but that the simulated column burdens and vertical profiles were very different amongst different models. In the COSAM exercise, one aspect is the comparison of sulfate aerosol and precursor gases above the surface. Vertical profiles of SO2, SO42-, oxidants and cloud properties were measured by aircraft during the North Atlantic Regional Experiment (NARE) experiment in August/September 1993 off the coast of Nova Scotia and during the Second Eulerian Model Evaluation Field Study (EMEFSII) in central Ontario in March/April 1990. While no single model stands out as being best or worst, the general tendency is that those models simulating the full oxidant chemistry tend to agree best with observations although differences in transport and treatment of clouds are important as well.

  19. Observations of large-scale fluid transport by laser-guided plankton aggregationsa)

    NASA Astrophysics Data System (ADS)

    Wilhelmus, Monica M.; Dabiri, John O.

    2014-10-01

    Diel vertical migration of plankton has been proposed to affect global ocean circulation to a degree comparable to winds and tides. This biomixing process has never been directly observed, however, due to the inability to predict its occurrence in situ or to reproduce it in a laboratory setting. Furthermore, it has been argued that the energy imparted to the ocean by plankton migrations occurs at the scale of individual organisms, which is too small to impact ocean mixing. We describe the development of a multi-laser guidance system that leverages the phototactic abilities of plankton to achieve controllable vertical migrations concurrently with laser velocimetry of the surrounding flow. Measurements in unstratified fluid show that the hydrodynamic interactions between neighboring swimmers establish an alternate energy transfer route from the small scales of individually migrating plankton to significantly larger scales. Observations of laser-induced vertical migrations of Artemia salina reveal the appearance of a downward jet, which triggers a Kelvin-Helmholtz instability that results in the generation of eddy-like structures with characteristic length scales much larger than the organisms. The measured energy spectrum is consistent with these findings and indicates energy input at large scales, despite the small individual size of the organisms. These results motivate the study of biomixing in the presence of stratification to assess the contribution of migrating zooplankton to local and global ocean dynamics. The laser control methodology developed here enables systematic study of the relevant processes.

  20. Solar Observations with the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Kobelski, A.; ALMA Solar Development Team

    2016-04-01

    The Atacama Large Millimeter/Submillimeter Array (ALMA) is a joint North American, European, and East Asian project that opens the mm-sub mm wavelength part of the electromagnetic spectrum for general astrophysical exploration, providing high-resolution imaging in frequency bands currently ranging from 84 GHz to 950 GHz (300 microns to 3 mm). It is located in the Atacama desert in northern Chile at an elevation of 5000 m. Despite being a general purpose instrument, provisions have been made to enable solar observations with ALMA. Radiation emitted at ALMA wavelengths originates mostly from the chromosphere, which plays an important role in the transport of matter and energy, and the in heating the outer layers of the solar atmosphere. Despite decades of research, the solar chromosphere remains a significant challenge: both to observe, owing to the complicated formation mechanisms of currently available diagnostics; and to understand, as a result of the complex nature of the structure and dynamics of the chromosphere. ALMA has the potential to change the scene substantially as it serves as a nearly linear thermometer at high spatial and temporal resolution, enabling us to study the complex interaction of magnetic fields and shock waves and yet-to-be-discovered dynamical processes. Moreover, ALMA will play an important role in the study of energetic emissions associated with solar flares at sub-THz frequencies.

  1. Deep view of the Large Magellanic Cloud with six years of Fermi-LAT observations

    NASA Astrophysics Data System (ADS)

    Ackermann, M.; Albert, A.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Bloom, E. D.; Bonino, R.; Brandt, T. J.; Bregeon, J.; Bruel, P.; Buehler, R.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Cecchi, C.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Desiante, R.; Digel, S. W.; Drell, P. S.; Favuzzi, C.; Ferrara, E. C.; Focke, W. B.; Franckowiak, A.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giordano, F.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Guillemot, L.; Guiriec, S.; Harding, A. K.; Hill, A. B.; Horan, D.; Jóhannesson, G.; Knödlseder, J.; Kuss, M.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lubrano, P.; Maldera, S.; Martin, P.; Mayer, M.; Mazziotta, M. N.; Michelson, P. F.; Mizuno, T.; Monzani, M. E.; Morselli, A.; Murgia, S.; Nuss, E.; Ohsugi, T.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Romani, R. W.; Sánchez-Conde, M.; Schulz, A.; Sgrò, C.; Siskind, E. J.; Smith, D. A.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Takahashi, H.; Thayer, J. B.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Troja, E.; Vianello, G.; Wood, M.; Zimmer, S.

    2016-02-01

    Context. The nearby Large Magellanic Cloud (LMC) provides a rare opportunity of a spatially resolved view of an external star-forming galaxy in γ-rays. The LMC was detected at 0.1-100 GeV as an extended source with CGRO/EGRET and using early observations with the Fermi-LAT. The emission was found to correlate with massive star-forming regions and to be particularly bright towards 30 Doradus. Aims: Studies of the origin and transport of cosmic rays (CRs) in the Milky Way are frequently hampered by line-of-sight confusion and poor distance determination. The LMC offers a complementary way to address these questions by revealing whether and how the γ-ray emission is connected to specific objects, populations of objects, and structures in the galaxy. Methods: We revisited the γ-ray emission from the LMC using about 73 months of Fermi-LAT P7REP data in the 0.2-100 GeV range. We developed a complete spatial and spectral model of the LMC emission, for which we tested several approaches: a simple geometrical description, template-fitting, and a physically driven model for CR-induced interstellar emission. Results: In addition to identifying PSR J0540-6919 through its pulsations, we find two hard sources positionally coincident with plerion N 157B and supernova remnant N 132D, which were also detected at TeV energies with H.E.S.S. We detect an additional soft source that is currently unidentified. Extended emission dominates the total flux from the LMC. It consists of an extended component of about the size of the galaxy and additional emission from three to four regions with degree-scale sizes. If it is interpreted as CRs interacting with interstellar gas, the large-scale emission implies a large-scale population of ~1-100 GeV CRs with a density of ~30% of the local Galactic value. On top of that, the three to four small-scale emission regions would correspond to enhancements of the CR density by factors 2 to 6 or higher, possibly more energetic and younger populations

  2. Geophysical characterization of two circular structures at Bajada del Diablo (Patagonia, Argentina): Indication of impact origin

    NASA Astrophysics Data System (ADS)

    Prezzi, Claudia B.; Orgeira, María Julia; Acevedo, Rogelio D.; Ponce, Juan Federico; Martinez, Oscar; Rabassa, Jorge O.; Corbella, Hugo; Vásquez, Carlos; González-Guillot, Mauricio; Subías, Ignacio

    2012-02-01

    An impact origin has been proposed for the circular structures found in Bajada del Diablo, Patagonia, Argentina. Taking into account its extension and the number of impact structures, Bajada del Diablo would be the largest meteoritic impact areas known on Earth, being an extremely interesting area for the research of impact events and processes. Moreover, the global distribution of known impact structures shows a surprising asymmetry. Particularly, South America has only seven described areas. It is evident that this situation is an artifact, highlighting the importance of intensifying the research in the least studied areas such as Argentina. Circular structures in Bajada del Diablo have been identified on two rock types: the Quiñelaf eruptive complex and Pampa Sastre Formation. In the first case, circular structures are placed in olivine basalts. On the other hand, Pampa Sastre Formation (late Pliocene/early Pleistocene) corresponds to conglomerate layers with basalt clasts boulder and block in size in a coarse sandy matrix. With the aim of further the investigation of the proposed impact origin for these circular structures, we carried out detailed topographic, magnetic and electromagnetic ground surveys in two circular structures ("8" and "A") found in Pampa Sastre conglomerates. Both circular structures are simple, bowl-shaped with rim diameters of 300 m and maximum depths of 10 m. They have been partially filled in by debris flows from the rims and wind-blown sands. Two preliminary magnetic profiles have also been carried out in circular structure "G" found in Quiñelaf basalts. The magnetic anomalies show a circular pattern with a slightly negative and relatively flat signal in the circular structures' bases. Furthermore in the circular structures' rims, high-amplitude, conspicuous and localized (short wavelength) anomalies are observed. Such large amplitude and short wavelength anomalies are not detected outside the circular structures. For all used

  3. Observations of large earthquakes in the Mexican subduction zone over 110 years

    NASA Astrophysics Data System (ADS)

    Hjörleifsdóttir, Vala; Krishna Singh, Shri; Martínez-Peláez, Liliana; Garza-Girón, Ricardo; Lund, Björn; Ji, Chen

    2016-04-01

    Fault slip during an earthquake is observed to be highly heterogeneous, with areas of large slip interspersed with areas of smaller or even no slip. The cause of the heterogeneity is debated. One hypothesis is that the frictional properties on the fault are heterogeneous. The parts of the rupture surface that have large slip during earthquakes are coupled more strongly, whereas the areas in between and around creep continuously or episodically. The continuously or episodically creeping areas can partly release strain energy through aseismic slip during the interseismic period, resulting in relatively lower prestress than on the coupled areas. This would lead to subsequent earthquakes having large slip in the same place, or persistent asperities. A second hypothesis is that in the absence of creeping sections, the prestress is governed mainly by the accumulative stress change associated with previous earthquakes. Assuming homogeneous frictional properties on the fault, a larger prestress results in larger slip, i.e. the next earthquake may have large slip where there was little or no slip in the previous earthquake, which translates to non-persistent asperities. The study of earthquake cycles are hampered by short time period for which high quality, broadband seismological and accelerographic records, needed for detailed studies of slip distributions, are available. The earthquake cycle in the Mexican subduction zone is relatively short, with about 30 years between large events in many places. We are therefore entering a period for which we have good records for two subsequent events occurring in the same segment of the subduction zone. In this study we compare seismograms recorded either at the Wiechert seismograph or on a modern broadband seismometer located in Uppsala, Sweden for subsequent earthquakes in the Mexican subduction zone rupturing the same patch. The Wiechert seismograph is unique in the sense that it recorded continuously for more than 80 years

  4. GOSAT-OCO-2 synergetic CO2 observations over calibration & validation sites and large emission sources

    NASA Astrophysics Data System (ADS)

    Kuze, A.; Shiomi, K.; Suto, H.; Kataoka, F.; Crisp, D.; Schwandner, F. M.; Bruegge, C. J.; Taylor, T.; Kawakami, S.

    2015-12-01

    GOSAT and OCO-2 have different observation strategies. TANSO-FTS onboard GOSAT has wide spectral coverage from SWIR to TIR and an agile pointing system at the expense of spatial context, while OCO-2 targets CO2with higher spatial resolution using imaging grating spectrometers. Since the early phase of the two projects, both teams have worked in calibration and validation to demonstrate the effectiveness of satellite greenhouse gases observation. In 2008, the pre-launch cross-calibration agreement between GOSAT and OCO radiometers was better than 2% when measuring the traceable GOSAT calibration sphere (Sakuma et. al, 2010). Since GOSAT's launch in 2009, annual joint vicarious calibration campaigns at the Railroad Valley (RRV) playa have estimated radiometric degradation factors with time at an uncertainty of 7%. (Kuze et al., 2014). After OCO-2 launch, two independent measurements can now be compared to distinguish common forward calculation errors such as molecule absorption line parameters, solar lines and light-path modification by aerosol scattering from instrument-specific errors. On 25 Mach 2015, both GOSAT and OCO-2 targeted RRV simultaneously. The measured radiance spectra at the top of the atmosphere agree within 5% for all common bands. On June 29 and July 1 during the 7th RRV campaign, coincidence observation of GOSAT, OCO-2, AJAX airplane, radiosonde, and FTS and radiometers on the ground, provided surface albedo, BRDF, temperature, humidity CO2 and CH4 density to demonstrate consistency between forward radiative transfer calculation and satellite measured data. Both GOSAT and OCO-2 have been regularly targeting the TCCON site at Lamont and large emission sources such as mega cities and oil fields and glint over the ocean. Retrieved parameters such as surface albedo, pressure, column averaged mole fraction and aerosol related parameters can be compared firstly where aerosol optical thickness is low and topography is flat, and then over aerosol

  5. Observations of a large flare in GX 1+4 with the Compton gamma ray observatory

    NASA Astrophysics Data System (ADS)

    Staubert, R.; Maisack, M.; Kendziorra, E.; Draxler, T.; Finger, M. H.; Fishman, G. J.; Strickman, M. S.; Starr, C. H.

    1995-05-01

    The pulsating X-ray binary GX 1+4 (4U 1728-24) was observed by Oriented Scintillation Spectrometer Experiment (OSSE) onboard the Compton Gamma Ray Observatory (CGRO) from 9 to 21 September 1993 as a target of oppurtunity after Burst and Transient Source Experiment (BATSE) had detected the onset of a large flare by the greatly increased pulsed flux at the period of approximately 2 min. The total flux in the 40-100 keV range as observed by the OSSE reached its maximum of 83 mCrab on 14/15 September, after which it fell sharply to about 31 mCrab within 2 days. The spectrum is well described by thermal type spectra. The characteristic temperature of the average OSSE spectrum for a thermal Bremsstrahlung model is kT = (35.5 +/- 0.5) keV. A single power law can be ruled out. There is evidence for a hardening of the spectrum with decreasing intensity at the end of the flare. The barycentric pulse period was (120.567 +/- 0.005) s on 5 September. The average spin-down rate as taken from the standard BATSE analysis was dP/dt = 0.0105 s/day, and constant over the time of the flare. A further target of oppurtunity (TOO) observation with the ROSAT Position Sensitive Proportional Counter (PSPC) on 18 September led to the first detection of the source with a reflecting X-ray telescope and to a signifcantly improved position: RA(2000) = 17h 32m 2.1s and DEC(2000) = -24 deg 44 min 44 sec. This position 3.5 sec from V2116 Oph, with a 90% error radius of 8 sec is the most accurate so far obtained with an X-ray instrument, thus confirming the identification with the suspected stellar counterpart.

  6. FIRST OBSERVATIONS OF A DOME-SHAPED LARGE-SCALE CORONAL EXTREME-ULTRAVIOLET WAVE

    SciTech Connect

    Veronig, A. M.; Muhr, N.; Kienreich, I. W.; Temmer, M.; Vrsnak, B.

    2010-06-10

    We present first observations of a dome-shaped large-scale extreme-ultraviolet coronal wave, recorded by the Extreme Ultraviolet Imager instrument on board STEREO-B on 2010 January 17. The main arguments that the observed structure is the wave dome (and not the coronal mass ejection, CME) are (1) the spherical form and sharpness of the dome's outer edge and the erupting CME loops observed inside the dome; (2) the low-coronal wave signatures above the limb perfectly connecting to the on-disk signatures of the wave; (3) the lateral extent of the expanding dome which is much larger than that of the coronal dimming; and (4) the associated high-frequency type II burst indicating shock formation low in the corona. The velocity of the upward expansion of the wave dome (v {approx} 650 km s{sup -1}) is larger than that of the lateral expansion of the wave (v {approx} 280 km s{sup -1}), indicating that the upward dome expansion is driven all the time, and thus depends on the CME speed, whereas in the lateral direction it is freely propagating after the CME lateral expansion stops. We also examine the evolution of the perturbation characteristics: first the perturbation profile steepens and the amplitude increases. Thereafter, the amplitude decreases with r {sup -2.5{+-}0.3}, the width broadens, and the integral below the perturbation remains constant. Our findings are consistent with the spherical expansion and decay of a weakly shocked fast-mode MHD wave.

  7. CLaMS-Ice: Large-scale cirrus cloud simulations in comparison with observations

    NASA Astrophysics Data System (ADS)

    Costa, Anja; Rolf, Christian; Grooß, Jens-Uwe; Spichtinger, Peter; Afchine, Armin; Spelten, Nicole; Dreiling, Volker; Zöger, Martin; Krämer, Martina

    2016-04-01

    Cirrus clouds are an element of uncertainty in the climate system and have received increasing attention since the last IPCC reports. The interactions of different freezing mechanisms, sedimentation rates, updraft velocity fluctuations and other factors that determine the formation and evolution of those clouds is still not fully understood. Thus, a reliable representation of cirrus clouds in models representing real atmospheric conditions is still a challenging task. At last year's EGU, Rolf et al. (2015) introduced the new large-scale microphysical cirrus cloud model CLaMS-Ice: based on trajectories calculated with CLaMS (McKenna et al., 2002 and Konopka et al. 2007), it simulates the development of cirrus clouds relying on the cirrus bulk model by Spichtinger and Gierens (2009). The qualitative agreement between CLaMS-Ice simulations and observations could be demonstrated at that time. Now we present a detailed quantitative comparison between standard ECMWF products, CLaMS-Ice simulations, and in-situ measurements obtained during the ML-Cirrus campaign 2014. We discuss the agreement of the parameters temperature (observational data: BAHAMAS), relative humidity (SHARC), cloud occurrence, cloud particle concentration, ice water content and cloud particle radii (all NIXE-CAPS). Due to the precise trajectories based on ECMWF wind and temperature fields, CLaMS-Ice represents the cirrus cloud vertical and horizontal coverage more accurately than the ECMWF ice water content (IWC) fields. We demonstrate how CLaMS-Ice can be used to evaluate different input settings (e.g. amount of ice nuclei, freezing thresholds, sedimentation settings) that lead to cirrus clouds with the microphysical properties observed during ML-Cirrus (2014).

  8. Comparison of subtropical stratocumulus cloud feedback mechanisms in large-eddy simulations and observations (Invited)

    NASA Astrophysics Data System (ADS)

    Bretherton, C. S.; Blossey, P. N.

    2013-12-01

    Large-eddy simulation (LES) has uncovered competing mechanisms affecting the albedo response of subtropical cloud-topped boundary layers to idealized forcing perturbations representing different facets of global warming. Two stratocumulus-reducing mechanisms involve moist thermodynamic effects of warming on cloud-driven turbulence, and a more emissive free troposphere stifling cloud-top radiative cooling. Two cloud-enhancing effects involve increased inversion stability and reduced mean subsidence. Other effects such as changes in wind speed or free-tropospheric relative humidity may also induce regionally important cloud changes. LES simulations based on the CGILS intercomparison are used to quantify these effects in coupled and decoupled stratocumulus layers. They predict that the net result is a reduction of stratocumulus albedo (positive low cloud feedback) in a greenhouse climate, due mainly to the thermodynamic mechanism. This mechanism is explained in terms of temperature dependence of the moist thermodynamics underlying entrainment liquid-flux (ELF) adjustment, a rapid equilibration between the entrainment rate, the cloud-layer structure, and the turbulence within this layer. The latter mechanism may apply to a broad range of subtropical boundary layer cloud types, including shallow cumulus as well as stratocumulus. The LES-predicted response of shortwave cloud radiative effect (SWCRE) in subtropical stratocumulus regimes to these mechanisms are compared with some recent observational and GCM studies. The fractional changes of SWCRE are found to be qualitatively comparable between the LES and observations. This suggests that idealized LES studies are a useful guide to boundary-layer cloud response mechanisms to climate change, and such studies can help bridge between observations and GCMs.

  9. Observations of a large flare in GX 1+4 with the Compton gamma ray observatory

    NASA Technical Reports Server (NTRS)

    Staubert, R.; Maisack, M.; Kendziorra, E.; Draxler, T.; Finger, M. H.; Fishman, G. J.; Strickman, M. S.; Starr, C. H.

    1995-01-01

    The pulsating X-ray binary GX 1+4 (4U 1728-24) was observed by Oriented Scintillation Spectrometer Experiment (OSSE) onboard the Compton Gamma Ray Observatory (CGRO) from 9 to 21 September 1993 as a target of oppurtunity after Burst and Transient Source Experiment (BATSE) had detected the onset of a large flare by the greatly increased pulsed flux at the period of approximately 2 min. The total flux in the 40-100 keV range as observed by the OSSE reached its maximum of 83 mCrab on 14/15 September, after which it fell sharply to about 31 mCrab within 2 days. The spectrum is well described by thermal type spectra. The characteristic temperature of the average OSSE spectrum for a thermal Bremsstrahlung model is kT = (35.5 +/- 0.5) keV. A single power law can be ruled out. There is evidence for a hardening of the spectrum with decreasing intensity at the end of the flare. The barycentric pulse period was (120.567 +/- 0.005) s on 5 September. The average spin-down rate as taken from the standard BATSE analysis was dP/dt = 0.0105 s/day, and constant over the time of the flare. A further target of oppurtunity (TOO) observation with the ROSAT Position Sensitive Proportional Counter (PSPC) on 18 September led to the first detection of the source with a reflecting X-ray telescope and to a signifcantly improved position: RA(2000) = 17h 32m 2.1s and DEC(2000) = -24 deg 44 min 44 sec. This position 3.5 sec from V2116 Oph, with a 90% error radius of 8 sec is the most accurate so far obtained with an X-ray instrument, thus confirming the identification with the suspected stellar counterpart.

  10. VERY LARGE ARRAY OH ZEEMAN OBSERVATIONS OF THE STAR-FORMING REGION S88B

    SciTech Connect

    Sarma, A. P.; Eftimova, M.; Brogan, C. L.; Bourke, T. L.; Troland, T. H.

    2013-04-10

    We present observations of the Zeeman effect in OH thermal absorption main lines at 1665 and 1667 MHz taken with the Very Large Array toward the star-forming region S88B. The OH absorption profiles toward this source are complicated, and contain several blended components toward a number of positions. Almost all of the OH absorbing gas is located in the eastern parts of S88B, toward the compact continuum source S88B-2 and the eastern parts of the extended continuum source S88B-1. The ratio of 1665/1667 MHz OH line intensities indicates the gas is likely highly clumped, in agreement with other molecular emission line observations in the literature. S88-B appears to present a similar geometry to the well-known star-forming region M17, in that there is an edge-on eastward progression from ionized to molecular gas. The detected magnetic fields appear to mirror this eastward transition; we detected line-of-sight magnetic fields ranging from 90 to 400 {mu}G, with the lowest values of the field to the southwest of the S88B-1 continuum peak, and the highest values to its northeast. We used the detected fields to assess the importance of the magnetic field in S88B by a number of methods; we calculated the ratio of thermal to magnetic pressures, we calculated the critical field necessary to completely support the cloud against self-gravity and compared it to the observed field, and we calculated the ratio of mass to magnetic flux in terms of the critical value of this parameter. All these methods indicated that the magnetic field in S88B is dynamically significant, and should provide an important source of support against gravity. Moreover, the magnetic energy density is in approximate equipartition with the turbulent energy density, again pointing to the importance of the magnetic field in this region.

  11. Wiimote Experiments: Circular Motion

    ERIC Educational Resources Information Center

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-01-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a…

  12. Wiimote Experiments: Circular Motion

    NASA Astrophysics Data System (ADS)

    Kouh, Minjoon; Holz, Danielle; Kawam, Alae; Lamont, Mary

    2013-03-01

    The advent of new sensor technologies can provide new ways of exploring fundamental physics. In this paper, we show how a Wiimote, which is a handheld remote controller for the Nintendo Wii video game system with an accelerometer, can be used to study the dynamics of circular motion with a very simple setup such as an old record player or a bicycle wheel.

  13. Copyright Basics. Circular 1.

    ERIC Educational Resources Information Center

    Library of Congress, Washington, DC. Copyright Office.

    This circular answers some of the questions that are frequently asked about copyright, a form of protection provided by the laws of the United States to authors of "original works of authorship" including library, dramatic musical, artistic, and certain other intellectual works. The Copyright Act of 1976 (title 17 of the United States Code), which…

  14. Physics at Future Circular Colliders

    NASA Astrophysics Data System (ADS)

    Kotwal, Ashutosh

    2016-03-01

    The Large Hadron Collider has been a grand success with the discovery of the Higgs boson, with bright prospects for additional discoveries since the recent increase in collider energy and the anticipated large datasets. Big open questions such as the nature of dark matter, the origin of the matter-antimatter asymmetry in the Universe, and the theoretical puzzle of the finely-tuned parameters in the Higgs sector, demand new physics principles that extend the established Standard Model paradigm. Future circular colliders in a substantially larger tunnel can house both a high luminosity electron-positron collider for precision measurements of Higgs and electroweak parameters, as well as a very high energy proton-proton collider which can directly manifest particles associated with these new physics principles. We discuss the physics goals of these future circular colliders, and the prospects for elucidating fundamental new laws of nature that will significantly extend our understanding of the Universe. Detailed studies of the discovery potential in specific benchmark models will be presented, with implications for detector design.

  15. A Summary of Large Raindrop Observations from GPM GV Field Campaigns

    NASA Technical Reports Server (NTRS)

    Gatlin, Patrick N.; Petersen, Walter; Tokay, Ali; Thurai, Merhala; Bringi, V. N.; Carey, Lawrence; Wingo, Matthew

    2013-01-01

    NASA's Global Precipitation Measurement Mission (GPM) has conducted as series of Ground Validation (GV) studies to assist algorithm development for the GPM core satellite. Characterizing the drop size distribution (DSD) for different types of precipitation systems is critical in order to accurately estimate precipitation across the majority of the planet. Thus far, GV efforts have sampled DSDs in a variety of precipitation systems from Finland to Oklahoma. This dataset consists of over 33 million raindrops sampled by GPM GV's two-dimensional video disdrometers (2DVD) and includes RSD observations from the LPVEx, MC3E, GCPEx, HyMEx and IFloodS campaigns as well as from GV sites in Huntsville, AL and Wallops Island, VA. This study focuses on the larger end of the raindrop size spectrum, which greatly influences radar reflectivity and has implications for moment estimation. Thus knowledge of the maximum diameter is critical to GPM algorithm development. There are over 24,000 raindrops exceeding 5 mm in diameter contained within this disdrometer dataset. The largest raindrops in the 2DVD dataset (>7-8 mm in diameter) are found within intense convective thunderstorms, and their origins are believed to be hailstones. In stratiform rainfall, large raindrops have also been found to fall from lower and thicker melting layers. The 2DVD dataset will be combined with that collected by dual-polarimetric radar and aircraft particle imaging probes to "follow" the vertical evolution of the DSD tail (i.e., retrace the large drops from the surface to their origins aloft).

  16. Small Earth Observing Satellites Flying with Large Satellites in the A-Train

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita C.; Loverro, Adam; Case, Warren F.; Queruel, Nadege; Marechal, Chistophe; Barroso, Therese

    2009-01-01

    This paper/poster presents a real-life example of the benefits of flying small satellites with other satellites, large or small, and vice versa. Typically, most small satellites fly payloads consisting of one or two instruments and fly in orbits that are independent from that of other satellites. The science data from these satellites are either used in isolation or correlated with instrument data from other satellites. Data correlation with other satellites is greatly improved when the measurements of the same point or air mass are taken at approximately the same time. Scientists worldwide are beginning to take advantage of the opportunities for improved data correlation, or coincidental science, offered by the international Earth Observing Constellation known as the A-Train (sometimes referred to as the Afternoon Constellation). Most of the A-Train satellites are small - the A-Train is anchored by two large NASA satellites (EOS-Aqua and EOS-Aura), but consists also of 5 small satellites (CloudSat, CALIPSO, PARASOL, OCO and Glory these last two will join in 2009). By flying in a constellation, each mission benefits from coincidental observations from instruments on the other satellites in the constellation. Essentially, from a data point of view, the A-Train can be envisioned as a single, virtual science platform with multiple instruments. Satellites in the A-Train fly at 705 km in sun-synchronous orbits. Their mean local times at the equator are within seconds to a few minutes of each other. This paper describes the challenges of operating an international constellation of independent satellites from the U.S. and Europe to maximize the coincidental science opportunities while at the same time minimizing the level of operational interactions required between team members. The A-Train mission teams have been able to demonstrate that flying as members of an international constellation does not take away the flexibility to accommodate new requirements. Specific

  17. CARIBIC DOAS observations of nitrous acid and formaldehyde in a large convective cloud

    NASA Astrophysics Data System (ADS)

    Heue, K.-P.; Riede, H.; Walter, D.; Brenninkmeijer, C. A. M.; Wagner, T.; Frieß, U.; Platt, U.; Zahn, A.; Stratmann, G.; Ziereis, H.

    2014-07-01

    The chemistry in large thunderstorm clouds is influenced by local lightning-NOx production and uplift of boundary layer air. Under these circumstances trace gases like nitrous acid (HONO) or formaldehyde (HCHO) are expected to be formed or to reach the tropopause region. However, up to now only few observations of HONO at this altitude have been reported. Here we report on a case study where enhancements in HONO, HCHO and nitrogen oxides (NOx) were observed by the CARIBIC flying laboratory (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container). The event took place in a convective system over the Caribbean Sea in August 2011. Inside the cloud the light path reaches up to 100 km. Therefore the DOAS instrument on CARIBIC was very sensitive to the tracers inside the cloud. Based on the enhanced slant column densities of HONO, HCHO and NO2, average mixing ratios of 37, 468 and 210 ppt, respectively, were calculated. These data represent averages for constant mixing ratios inside the cloud. However, a large dependency on the assumed profile is found; for HONO a mixing ratio of 160 ppt is retrieved if the total amount is assumed to be situated in the uppermost 2 km of the cloud. The NO in situ instrument measured peaks up to 5 ppb NO inside the cloud; the background in the cloud was about 1.3 ppb, and hence clearly above the average outside the cloud (≈ 150 ppt). The high variability and the fact that the enhancements were observed over a pristine marine area led to the conclusion that, in all likelihood, the high NO concentrations were caused by lighting. This assumption is supported by the number of flashes that the World Wide Lightning Location Network (WWLLN) counted in this area before and during the overpass. The chemical box model CAABA is used to estimate the NO and HCHO source strengths which are necessary to explain our measurements. For NO a source strength of 10 × 109 molec cm-2 s-1 km-1 is found, which

  18. Constraints on Lorentz Invariance Violation from Fermi -Large Area Telescope Observations of Gamma-Ray Bursts

    NASA Technical Reports Server (NTRS)

    Vasileiou, V.; Jacholkowska, A.; Piron, F.; Bolmont, J.; Courturier, C.; Granot, J.; Stecker, Floyd William; Cohen-Tanugi, J.; Longo, F.

    2013-01-01

    We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the "QG energy scale" (the energy scale that LIV-inducing QG effects become important, E(sub QG)) and the coefficients of the Standard Model Extension. For the subluminal case (where high energy photons propagate more slowly than lower energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% CL) are obtained from GRB 090510 and are E(sub QG,1) > 7.6 times the Planck energy (E(sub Pl)) and E(sub QG,2) > 1.3×10(exp 11) GeV for linear and quadratic leading order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S. by a factor of approx. 2. Our results disfavor any class of models requiring E(sub QG,1) < or approx. E(sub Pl)

  19. Observational and Model Studies of Large-Scale Mixing Processes in the Stratosphere

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.

    1997-01-01

    The following is the final technical report for grant NAGW-3442, 'Observational and Model Studies of Large-Scale Mixing Processes in the Stratosphere'. Research efforts in the first year concentrated on transport and mixing processes in the polar vortices. Three papers on mixing in the Antarctic were published. The first was a numerical modeling study of wavebreaking and mixing and their relationship to the period of observed stratospheric waves (Bowman). The second paper presented evidence from TOMS for wavebreaking in the Antarctic (Bowman and Mangus 1993). The third paper used Lagrangian trajectory calculations from analyzed winds to show that there is very little transport into the Antarctic polar vortex prior to the vortex breakdown (Bowman). Mixing is significantly greater at lower levels. This research helped to confirm theoretical arguments for vortex isolation and data from the Antarctic field experiments that were interpreted as indicating isolation. A Ph.D. student, Steve Dahlberg, used the trajectory approach to investigate mixing and transport in the Arctic. While the Arctic vortex is much more disturbed than the Antarctic, there still appears to be relatively little transport across the vortex boundary at 450 K prior to the vortex breakdown. The primary reason for the absence of an ozone hole in the Arctic is the earlier warming and breakdown of the vortex compared to the Antarctic, not replenishment of ozone by greater transport. Two papers describing these results have appeared (Dahlberg and Bowman; Dahlberg and Bowman). Steve Dahlberg completed his Ph.D. thesis (Dahlberg and Bowman) and is now teaching in the Physics Department at Concordia College. We also prepared an analysis of the QBO in SBUV ozone data (Hollandsworth et al.). A numerical study in collaboration with Dr. Ping Chen investigated mixing by barotropic instability, which is the probable origin of the 4-day wave in the upper stratosphere (Bowman and Chen). The important result from

  20. Satellite Observation of Large Scale Changes in Climate and Land Use in the Caspian Sea Basin

    NASA Astrophysics Data System (ADS)

    Saatchi, S.; Nouri, A.; Asefi, S.; Shiklomanov, A.; Entekhabi, D.; Mohammadi, S.; Hedjazi, B.

    2012-04-01

    The Caspian Sea Basin (catchments) area occupies the vast European and Asian territory between approx. 330-580 N latitude and 300-620 E longitude. In comparison with other world great natural lakes, the Caspian Sea ranks first in watershed area (3660,000 km2) and also in a total annual rivers runoff (340 km3/year - long-term average value). The Caspian is a closed basin with the largest landlocked water body in the world in its center. As a result, the water and biogeochemical cycles over the sea and surrounding lands are intimately linked. Any changes in the hydrologic regime over land and any major shifts in land use and land ecosystem health will directly impact the overall water and energy cycle of the basin, as well as the water quality and aquatic biology of the Sea. The basin being a closed system, it can also exhibit feedback processes that reinforce excursions from normal and lead to large impacts on the surrounding regions. In this paper, we present results of the analysis of climate and vegetation observations over the past 30 years over the Caspian Sea Basin to document the changes of climate, and land use, the regional vegetation response. We focus our analysis using data from AVHRR, MODIS, QSCAT, and TRMM. The results indicate that the region has gone through major changes in land use accompanied by anomalies of temperature and rainfall that in turn has suppressed the vegetation cover and phenology. The results are corroborated by data from socio-economic changes in the region and ground observation of climate and vegetation.

  1. Solar Observations with the Atacama Large Millimeter/submillimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    Bastian, Timothy S.

    2015-04-01

    The Atacama Large Millimeter/Submillimeter Array (ALMA) is a joint North American, European, and East Asian project that opens the mm-submm wavelength part of the electromagnetic spectrum for general astrophysical exploration, providing high-resolution imaging in frequency bands currently ranging from 84 GHz to 950 GHz (300 microns to 3 mm). Despite being a general purpose instrument, provisions have been made to enable solar observations with ALMA. Radiation emitted at ALMA wavelengths originates mostly from the chromosphere, which plays an important role in the transport of matter and energy, and the in heating the outer layers of the solar atmosphere. Despite decades of research, the solar chromosphere remains a significant challenge: both to observe, owing to the complicated formation mechanisms of currently available diagnostics; and to understand, as a result of the complex nature of the structure and dynamics of the chromosphere. ALMA has the potential to change the scene substantially as it serves as a nearly linear thermometer at high spatial and temporal resolution, enabling us to study the complex interaction of magnetic fields and shock waves and yet-to-be-discovered dynamical processes. Moreover, ALMA will play an important role in the study of energetic emissions associated with solar flares at sub-THz frequencies.In this paper we describe recent efforts to ensure that ALMA can be usefully exploited by the scientific community to address outstanding questions in solar physics. We summarize activities by the ALMA solar development team comprised of scientists from the East Asia, North America, and Europe. These activities include instrument testing, development of calibration and imaging strategies, software requirements development, and science simulations. Opportunities for the wider community to contribute to these efforts will be highlighted.

  2. Observing Recent Changes in the Large-Scale Arctic Energy Budget

    NASA Astrophysics Data System (ADS)

    Porter, D. F.; Serreze, M.; Cassano, J.

    2008-12-01

    Changes in the large-scale energy budget of the Arctic are examined using a variety of next-generation reanalysis and observational data. An effort is made to construct a best-guess of the current arctic energy budget using a variety of atmospheric data. For the period of 2000-2005, monthly means from the Clouds and the Earth's Radiant Energy System (CERES) data represents the current most-reliable top of atmosphere radiation budget. The remaining components of the energy budget system in the arctic polar cap (defined as 70 degrees North latitude circle), comprising of the vertically-integrated storage and horizontal transports of energy, and net heat transfers between the atmosphere and the subsurface column, are diagnosed using the Japanese 25-year Reanalysis Project (JRA-25) and the NCEP/NCAR Reanalysis (NRA). The as then record-setting minimum sea-ice extent during the 2005 melt season is used as a marker of recent changes occurring in the arctic climate system. However, changes in each reanalysis differs than the satellite observations. In one example, when compared to the 2000-2005 climatology, CERES shows a shift in the peak TOA radiation from July to June in 2005, a change that is absent in the reanalyses and directly attributable to the early and pronounced albedo reduction. An earlier peak in TOA radiation can strongly modulate the flux energy convergence from lower latitudes through circulation changes. Here, the energy budget framework provides a simplified view of the pathway through which changes of key component parings occur.

  3. The Potential of Time Series Based Earth Observation for the Monitoring of Large River Deltas

    NASA Astrophysics Data System (ADS)

    Kuenzer, C.; Leinenkugel, P.; Huth, J.; Ottinger, M.; Renaud, F.; Foufoula-Georgiou, E.; Vo Khac, T.; Trinh Thi, L.; Dech, S.; Koch, P.; Le Tissier, M.

    2015-12-01

    Although river deltas only contribute 5% to the overall land surface, nearly six hundred million people live in these complex social-ecological environments, which combine a variety of appealing locational advantages. In many countries deltas provide the major national contribution to agricultural and industrial production. At the same time these already very dynamic environments are exposed to a variety of threats, including the disturbance and replacement of valuable ecosystems, increasing water, soil, and air pollution, human induced land subsidence, sea level rise, as well upstream developments impacting water and sediment supplies. A constant monitoring of delta systems is thus of utmost relevance for understanding past and current land surface change and anticipating possible future developments. We present the potential of Earth Observation based analyses and derived novel information products that can play a key role in this context. Along with the current trend of opening up numerous satellite data archives go increasing capabilities to explore big data. Whereas in past decades remote sensing data were analysed based on the spectral-reflectance-defined 'finger print' of individual surfaces, we mainly exploit the 'temporal fingerprints' of our land surface in novel pathways of data analyses at differing spatial-, and temporally-dense scales. Following our results on an Earth Observation based characterization of large deltas globally, we present in depth results from the Mekong Delta in Vietnam, the Yellow River Delta in China, the Niger Delta in Nigeria, as well as additional deltas, focussing on the assessment of river delta flood and inundation dynamics, river delta coastline dynamics, delta morphology dynamics including the quantification of erosion and accretion processes, river delta land use change and trends, as well as the monitoring of compliance to environmental regulations.

  4. Multiwavelength observation of a large-scale flux rope eruption above a kinked small filament

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Cho, Kyung-Suk

    2014-12-01

    We analyzed multiwavelength observations of a western limb flare (C3.9) that occurred in AR NOAA 111465 on 30 April 2012. The high-resolution images recorded by SDO/AIA 304, 1600 Å and Hinode/SOT Hα show the activation of a small filament (rising speed ~40 km s-1) associated with a kink instability and the onset of a C-class flare near the southern leg of the filament. The first magnetic reconnection occurred at one of the footpoints of the filament and caused the breaking of its southern leg. The filament shows unwinding motion of the northern leg and apex in counterclockwise direction and failed to erupt. A flux-rope structure (visible only in hot channels, i.e., AIA 131 and 94 Å and Hinode/SXT) appeared along the neutral line during the second magnetic reconnection that occurred above the kinked filament. The formation of the RHESSI hard X-ray source (12-25 keV) above the kinked filament and the simultaneous appearance of the hot 131 Å loops associated with photospheric brightenings (AIA 1700 Å) indicates the particle acceleration along these loops from the top of the filament. In addition, extreme ultraviolet disturbances or waves observed above the filament in 171 Å also show a close association with magnetic reconnection. The flux rope rises slowly (~100 km s-1), which produces a very large twisted structure possibly through reconnection with the surrounding sheared magnetic fields within ~15-20 min, and showed an impulsive acceleration reaching a height of about 80-100 Mm. AIA 171 and SWAP 174 Å images reveal a cool compression front (or coronal mass ejection frontal loop) surrounding the hot flux rope structure. Movies associated with Figs. 2 and 7 are available in electronic form at http://www.aanda.org

  5. Large Magellanic Cloud self-lensing for OGLE-II microlensing observations

    NASA Astrophysics Data System (ADS)

    Calchi Novati, S.; Mancini, L.; Scarpetta, G.; Wyrzykowski, Ł.

    2009-12-01

    In the framework of microlensing searches towards the Large Magellanic Cloud (LMC), we discuss the results presented by the Optical Gravitational Lensing Experiment (OGLE) collaboration for their OGLE-II campaign (Wyrzykowski et al). We evaluate the optical depth, the duration and the expected rate of events for the different possible lens populations: both luminous, dominated by the LMC self-lensing, and `dark', the would be compact halo objects (massive compact halo objects) belonging to either the Galactic or the LMC halo. The OGLE-II observational results, two microlensing candidate events located in the LMC bar region with duration of 24.2 and 57.2 days, compare well with the expected signal from the luminous lens populations: nexp = 1.5, with typical duration, for LMC self-lensing, of about 50 days. Because of the small statistics at disposal, however, the conclusions that can be drawn as for the halo mass fraction, f, in the form of compact halo objects are not too severe. By means of a likelihood analysis we find an upper limit for f, at 95 per cent confidence level, of about 15 per cent in the mass range (10-2-10-1)Msolar and 26 per cent for 0.5Msolar.

  6. Galaxy evolution and large-scale structure in the far-infrared. I. IRAS pointed observations

    SciTech Connect

    Lonsdale, C.J.; Hacking, P.B.

    1989-04-01

    Redshifts for 66 galaxies were obtained from a sample of 93 60-micron sources detected serendipitously in 22 IRAS deep pointed observations, covering a total area of 18.4 sq deg. The flux density limit of this survey is 150 mJy, 4 times fainter than the IRAS Point Source Catalog (PSC). The luminosity function is similar in shape with those previously published for samples selected from the PSC, with a median redshift of 0.048 for the fainter sample, but shifted to higher space densities. There is evidence that some of the excess number counts in the deeper sample can be explained in terms of a large-scale density enhancement beyond the Pavo-Indus supercluster. In addition, the faintest counts in the new sample confirm the result of Hacking et al. (1989) that faint IRAS 60-micron source counts lie significantly in excess of an extrapolation of the PSC counts assuming no luminosity or density evolution. 81 refs.

  7. Observations of gamma-ray pulsars at the highest energies with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Saz Parkinson, Pablo

    2016-07-01

    One of the most exciting developments in pulsar astrophysics in recent years has been the detection, with ground-based instruments (VERITAS, MAGIC), of pulsed gamma-ray emission from the Crab at very high energies (VHE, E>100 GeV). The Large Area Telescope (LAT) on board the Fermi satellite has detected over 160 pulsars above 100 MeV. Twenty-eight of these have been shown to emit pulsations above 10 GeV and approximately a dozen show emission above 25 GeV. While most gamma-ray pulsars are well-fitted in the GeV range by a power law with an exponential cut-off at around a few GeV, some emission models predict emission at energies above 100 GeV, either through a power-law extrapolation of the low-energy spectrum, or via a new (e.g. Inverse Compton) component. We will present results of our search for high-energy emission from LAT-detected gamma-ray pulsars using the latest Pass 8 data and discuss the prospects of finding the next VHE pulsar, providing a good target (or targets) for follow-up observations with current and future ground-based observatories, like CTA.

  8. Observation of large photoacoustic signal phase changes during a diffusion process.

    PubMed

    Bajic, Stanley J; Jones, Roger W; McClelland, John F

    2005-11-01

    The phase of the photoacoustic signal is known to be a sensitive and accurate means to investigate, both qualitatively and quantitatively, static multilayer heterogeneous systems. According to theory, the maximum phase delay for a very weakly absorbing homogeneous sample should be within 45 degrees of a very strongly absorbing sample, while for heterogeneous samples the phase delay can be greater than 45 degrees. Here we report the observation of photoacoustic phase delays greater than 350 degrees by extending the use of step-scan phase modulation photoacoustic spectroscopy to study a non-repetitive dynamic system in situ, in real time. These large phase delays correspond to sampling several thermal diffusion lengths into the sample. The model system used in this study consisted of a hydrocarbon grease diffusing through a porous Teflon film. The progress of the diffusion was tracked by monitoring both the photoacoustic signal magnitude and the phase of the hydrocarbon grease after isolation from the Teflon film signal contributions at two different phase modulation frequencies.

  9. Search for Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT

    SciTech Connect

    Berenji, Bijan

    2012-09-19

    Large extra dimensions (LED) have been proposed to account for the apparent weakness of gravitation. These theories also indicate that the postulated massive Kaluza-Klein (KK) gravitons may be produced by nucleon-nucleon bremsstrahlung in the course of core collapse of supernovae. Hannestad and Raffelt have predicted energy spectra of gamma ray emission from the decay of KK gravitons trapped by the gravity of the remnant neutron stars (NS). These and other authors have used EGRET data on NS to obtain stringent limits on LED. Fermi-LAT is observing radio pulsar positions obtained from radio and x-ray catalogs. NS with certain characteristics are unlikely emitter of gamma rays, and emit in radio and perhaps x-rays. This talk will focus on the blind analysis we plan to perform, which has been developed using the 1st 2 months of all sky data and Monte Carlo simulations, to obtain limits on LED based on about 1 year of Fermi-LAT data. Preliminary limits from this analysis using these first 2 months of data will be also be discussed.

  10. WFPC2 observations of the double cluster NGC 1850 in the Large Magellanic Cloud

    NASA Technical Reports Server (NTRS)

    Gilmozzi, R.; Kinney, E. K.; Ewald, S. P.; Panagia, N.; Romaniello, M.

    1994-01-01

    Hubble Space Telescope-Wide Field/Planetary Camera-2 (HST-WFPC2) optical and ultraviolet imaging observations of the young double cluster NGC 1850 in the Large Magellanic Cloud (LMC) are presented. The main cluster, NGC 1850A, is a globular-like cluster and has an age of 50 +/- 10 Myr, while the subcluster, NGC 1850B, which is more loosely distributed, is very young at 4.3 +/- 0.9 Myr. Its young age is confirmed by the detection of a pre-main-sequence population of stars associated to it. The two clusters have considerably different IMF slopes, with the main cluster having a flat slope (f(m) proportional to m(exp -1.4 +/- 0.2)) and the young cluster a much steeper one (f(m) proportional to m(exp -2.6 +/- -0.1)). The LMC field star population displays a broad range of ages, from approximately 0.5 Gyr up to more than 4 Gyr.

  11. Geo-reCAPTCHA: Crowdsourcing large amounts of geographic information from earth observation data

    NASA Astrophysics Data System (ADS)

    Hillen, Florian; Höfle, Bernhard

    2015-08-01

    The reCAPTCHA concept provides a large amount of valuable information for various applications. First, it provides security, e.g., for a form on a website, by means of a test that only a human could solve. Second, the effort of the user for this test is used to generate additional information, e.g., digitization of books or identification of house numbers. In this work, we present a concept for adapting the reCAPTCHA idea to create user-generated geographic information from earth observation data, and the requirements during the conception and implementation are depicted in detail. Furthermore, the essential parts of a Geo-reCAPTCHA system are described, and afterwards transferred, to a prototype implementation. An empirical user study is conducted to investigate the Geo-reCAPTCHA approach, assessing time and quality of the resulting geographic information. Our results show that a Geo-reCAPTCHA can be solved by the users of our study on building digitization in a short amount of time (19.2 s on average) with an overall average accuracy of the digitizations of 82.2%. In conclusion, Geo-reCAPTCHA has the potential to be a reasonable alternative to the typical reCAPTCHA, and to become a new data-rich channel of crowdsourced geographic information.

  12. Observed and Aogcm Simulated Relationships Between us Wind Speeds and Large Scale Modes of Climate Variability

    NASA Astrophysics Data System (ADS)

    Schoof, J. T.; Pryor, S. C.; Barthelmie, R. J.

    2013-12-01

    Previous research has indicated that large-scale modes of climate variability, such as El Niño - Southern Oscillation (ENSO), the Arctic Oscillation (AO) and the Pacific-North American pattern (PNA), influence the inter-annual and intra-annual variability of near-surface and upper-level wind speeds over the United States. For example, we have shown that rawinsonde derived wind speeds indicate that 90th percentile of wind speeds at 700 hPa over the Pacific Northwest and Southwestern USA are significantly higher under the negative phase of the PNA, and the Central Plains experiences higher wind speeds at 850 hPa under positive phase Southern Oscillation index while the Northeast exhibits higher wind speeds at 850 hPa under positive phase NAO. Here, we extend this research by further investigating these relationships using both reanalysis products and output from coupled atmosphere-ocean general circulation models (AOGCMs) developed for the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). The research presented has two specific goals. First, we evaluate the AOGCM simulations in terms of their ability to represent the temporal and spatial representations of ENSO, the AO, and the PNA pattern relative to historical observations. The diagnostics used include calculation of the power spectra (and thus representation of the fundamental frequencies of variability) and Taylor diagrams (for comparative assessment of the spatial patterns and their intensities). Our initial results indicate that most AOGCMs produce modes that are qualitatively similar to those observed, but that differ slightly in terms of the spatial pattern, intensity of specific centers of action, and variance explained. Figure 1 illustrates an example of the analysis of the frequencies of variability of two climate modes for the NCEP-NCAR reanalysis (NNR) and a single AOGCM (BCC CSM1). The results show a high degree of similarity in the power spectra but for this AOGCM the variance of the PNA

  13. Felyx : A Free Open Software Solution for the Analysis of Large Earth Observation Datasets

    NASA Astrophysics Data System (ADS)

    Piolle, Jean-Francois; Shutler, Jamie; Poulter, David; Guidetti, Veronica; Donlon, Craig

    2014-05-01

    GHRSST project, by assembling large collections of earth observation data from various sources and agencies, has also raised the need for providing the user community with tools to inter-compare them, assess and monitor their quality. The ESA /Medspiration project, which implemented the first operating node of GHRSST system for Europe, also paved the way successfully towards such generic analytics tools by developing the High Resolution Diagnostic Dataset System (HR-DDS) and Satellite to In situ Multi-sensor Match-up Databases. Building on this heritage, ESA is now funding the development by IFREMER, PML and Pelamis of felyx, a web tool merging the two capabilities into a single software solution. It will consist in a free open software solution, written in python and javascript, whose aim is to provide Earth Observation data producers and users with an open-source, flexible and reusable tool to allow the quality and performance of data streams (satellite, in situ and model) to be easily monitored and studied. The primary concept of Felyx is to work as an extraction tool, subsetting source data over predefined target areas (which can be static or moving) : these data subsets, and associated metrics, can then be accessed by users or client applications either as raw files, automatic alerts and reports generated periodically, or through a flexible web interface enabling statistical analysis and visualization. Felyx presents itself as an open-source suite of tools, written in python and javascript, enabling : * subsetting large local or remote collections of Earth Observation data over predefined sites (geographical boxes) or moving targets (ship, buoy, hurricane), storing locally the extracted data (refered as miniProds). These miniProds constitute a much smaller representative subset of the original collection on which one can perform any kind of processing or assessment without having to cope with heavy volumes of data. * computing statistical metrics over these

  14. Large rivers in sedimentary basins: Morphology and form observed from satellite imagery

    NASA Astrophysics Data System (ADS)

    Weissmann, G. S.; Hartley, A. J.; Scuderi, L. A.; Nichols, G. J.; Davidson, S. K.

    2010-12-01

    Preservation of the deposits of big rivers, like any other river, can only occur where the river crosses an area of net aggradation in a sedimentary basin. Many of the world’s big rivers are systems that transfer sediment load from erosional realms to the sea, depositing fluvial successions only where there is accommodation on the coastal plain. However, many of the big rivers (e.g., Parana, Paraguay, Brahmaputra, Ganges, Indus, and Yukon Rivers) also cross continental sedimentary basins (e.g., sedimentary basins with minimal marine influence that lie inside continents) on their way to the oceans. We use satellite imagery to observe the large-scale morphology of big rivers in these continental sedimentary basins. As with other rivers, big rivers lose confinement of their valleys and form distributive fluvial systems (DFS) as they enter the continental sedimentary basins. Commonly, channel size decreases down-DFS, either through infiltration, bifurcation, or evaporation. Several active and/or old channels radiate outward from a DFS apex, and where the river is incised into its DFS, several paleochannel deposits are visible radiating outward from the DFS apex. Between and adjacent to channels, a significant amount of fine-grained sediment is deposited across the DFS surface, leaving high potential for preservation of floodplain deposits, even on large river DFS dominated by braided river systems. Commonly, the big rivers become the axial river in the sedimentary basin, continuing along strike of the basin. In this position, the river becomes confined between opposing DFS or between transverse DFS and the basin edge. In several examples, the river morphology changes upon reaching the sedimentary basin and across the DFS and this morphology may change once again at the toe of the DFS where the river takes the axial position in the basin. For example, the Brahamaputra River upstream from the sedimentary basin is a relatively narrow, single thread channel that is

  15. The circular velocity function of group galaxies

    SciTech Connect

    Abramson, Louis E.; Williams, Rik J.; Benson, Andrew J.; Kollmeier, Juna A.; Mulchaey, John S.

    2014-09-20

    A robust prediction of ΛCDM cosmology is the halo circular velocity function (CVF), a dynamical cousin of the halo mass function. The correspondence between theoretical and observed CVFs is uncertain, however: cluster galaxies are reported to exhibit a power-law CVF consistent with N-body simulations, but that of the field is distinctly Schechter-like, flattened compared to ΛCDM expectations at circular velocities v {sub c} ≲ 200 km s{sup –1}. Groups offer a powerful probe of the role environment plays in this discrepancy as they bridge the field and clusters. Here, we construct the CVF for a large, mass- and multiplicity-complete sample of group galaxies from the Sloan Digital Sky Survey. Using independent photometric v {sub c} estimators, we find no transition from field to ΛCDM-shaped CVF above v {sub c} = 50 km s{sup –1} as a function of group halo mass. All groups with 12.4 ≲ log M {sub halo}/M {sub ☉} ≲ 15.1 (Local Group analogs to rich clusters) display similar Schechter-like CVFs marginally suppressed at low v {sub c} compared to that of the field. Conversely, some agreement with N-body results emerges for samples saturated with late-type galaxies, with isolated late-types displaying a CVF similar in shape to ΛCDM predictions. We conclude that the flattening of the low-v {sub c} slope in groups is due to their depressed late-type fractions—environment affecting the CVF only to the extent that it correlates with this quantity—and that previous cluster analyses may suffer from interloper contamination. These results serve as useful benchmarks for cosmological simulations of galaxy formation.

  16. [Guizhou planned parenthood circular].

    PubMed

    1980-05-29

    The Guizhou Provincial CCP Committee and the provinical people's government recently issued a circular on launching mass inspection of planned parenthood work throughout the province in late June. The inspection will look at whether or not the masses have been mobilized to pay serious attention to planned parenthood work, whether or not such education has been launched, what kind of concrete measures have been adopted, and what kind of concrete experiences have been learned. It will also include the implementation of birth control measures, the resolute prohibition on having a 3rd child, and the promotion of having only 1 child/couple. The circular urged the departments at all levels to strengthen their leadership over planned parenthood work, deepen investigation and study, continuously study the new situation and solve the new problems.

  17. Switchable circular beam deflectors

    NASA Astrophysics Data System (ADS)

    Shang, Xiaobing; Joshi, Pankaj; Tan, Jin-Yi; De Smet, Jelle; Cuypers, Dieter; Baghdasaryan, Tigran; Vervaeke, Michael; Thienpont, Hugo; De Smet, Herbert

    2016-04-01

    In this work, we report two types of electrically tunable photonic devices with circularly symmetric polarization independent beam steering performance (beam condensing resp. beam broadening). The devices consist of circular micro grating structures combined with nematic liquid crystal (LC) layers with anti-parallel alignment. A single beam deflector converts a polarized and monochromatic green laser beam (λ =543.5 nm) into a diffraction pattern, with the peak intensity appearing at the third order when 0~{{V}\\text{pp}} is applied and at the zeroth order (no deflection) for voltages above 30~{{V}\\text{pp}} . Depending on the shape of the grating structure (non-inverted or inverted), the deflection is inwards or outwards. Both grating types can be made starting from the same diamond-tooled master mold. A polarized white light beam is symmetrically condensed resp. broadened over 2° in the off state and is passed through unchanged in the on state. By stacking two such devices with mutually orthogonal LC alignment layers, polarization independent switchable circular beam deflectors are realized with a high transmittance (>80%), and with the same beam steering performance as the polarization dependent single devices.

  18. XMM-Newton observation of SNR J0533-7202 in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Kavanagh, P. J.; Sasaki, M.; Whelan, E. T.; Maggi, P.; Haberl, F.; Bozzetto, L. M.; Filipović, M. D.; Crawford, E. J.

    2015-07-01

    Aims: We present an X-ray study of the supernova remnant SNR J0533-7202 in the Large Magellanic Cloud (LMC) and determine its physical characteristics based on its X-ray emission. Methods: We observed SNR J0533-7202 with XMM-Newton (background flare-filtered exposure times of 18 ks EPIC-pn and 31 ks EPIC-MOS1, EPIC-MOS2). We produced X-ray images of the supernova remnant, performed an X-ray spectral analysis, and compared the results to multi-wavelength studies. Results: The distribution of X-ray emission is highly non-uniform, with the south-west region much brighter than the north-east. The detected X-ray emission is correlated with the radio emission from the remnant. We determine that this morphology is most likely due to the supernova remnant expanding into a non-uniform ambient medium and not an absorption effect. We estimate the remnant size to be 53.9 (±3.4) × 43.6 (±3.4) pc, with the major axis rotated ~64° east of north. We find no spectral signatures of ejecta emission and infer that the X-ray plasma is dominated by swept up interstellar medium. Using the spectral fit results and the Sedov self-similar solution, we estimate the age of SNR J0533-7202 to be ~17-27 kyr, with an initial explosion energy of (0.09-0.83) × 1051 erg. We detected an X-ray source located near the centre of the remnant, namely XMMU J053348.2-720233. The source type could not be conclusively determined due to the lack of a multi-wavelength counterpart and low X-ray counts. We found that it is likely either a background active galactic nucleus or a low-mass X-ray binary in the LMC. Conclusions: We detected bright thermal X-ray emission from SNR J0533-7202 and determined that the remnant is in the Sedov phase of its evolution. The lack of ejecta emission prohibits us from typing the remnant with the X-ray data. Therefore, the likely Type Ia classification based on the local stellar population and star formation history reported in the literature cannot be improved upon. Based on

  19. Charged Particle Optics in Circular Higgs Factory

    SciTech Connect

    Cai, Yunhai

    2015-02-26

    Similar to a super B-factory, a circular Higgs factory will require strong focusing systems near the interaction points and a low-emittance lattice in arcs to achieve a factory luminosity. At electron beam energy of 120 GeV, beamstrahlung effects during the collision pose an additional challenge to the collider design. In particular, a large momentum acceptance at 2 percent level is necessary to retain an adequate beam lifetime. This turns out to be the most challenging aspect in the design of circular Higgs factory. In this paper, an example will be provided to illustrate the beam dynamics in circular Higgs factory, emphasizing on the chromatic optics. Basic optical modules and advanced analysis will be presented. Most important, we will show that 2% momentum aperture is achievable

  20. Gamma-Ray Observations of the Orion Molecular Clouds with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Antolini, E.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Brandt, T. J.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Ferrara, E. C.; Harding, A. K.; Troja, E.

    2012-01-01

    We report on the gamma-ray observations of giant molecular clouds Orion A and B with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. The gamma-ray emission in the energy band between approx 100 MeV and approx 100 GeV is predicted to trace the gas mass distribution in the clouds through nuclear interactions between the Galactic cosmic rays (CRs) and interstellar gas. The gamma-ray production cross-section for the nuclear interaction is known to approx 10% precision which makes the LAT a powerful tool to measure the gas mass column density distribution of molecular clouds for a known CR intensity. We present here such distributions for Orion A and B, and correlate them with those of the velocity-integrated CO intensity (W(sub CO)) at a 1 deg 1 deg pixel level. The correlation is found to be linear over a W(sub CO) range of approx 10-fold when divided in three regions, suggesting penetration of nuclear CRs to most of the cloud volumes. The W(sub CO)-to-mass conversion factor, X(sub CO), is found to be approx 2.3 10(exp 20) / sq cm (K km/s)(exp -1) for the high-longitude part of Orion A (l > 212 deg), approx 1.7 times higher than approx 1.3 10(exp 20) found for the rest of Orion A and B. We interpret the apparent high X(sub CO) in the high-longitude region of Orion A in the light of recent works proposing a nonlinear relation between H2 and CO densities in the diffuse molecular gas.W(sub CO) decreases faster than the H2 column density in the region making the gas "darker" to W(sub CO).

  1. EXPANDED VERY LARGE ARRAY OBSERVATIONS OF THE RADIO EVOLUTION OF SN 2011dh

    SciTech Connect

    Krauss, M. I.; Chomiuk, L.; Brunthaler, A.; Rupen, M.; Soderberg, A. M.; Zauderer, B. A.; Bietenholz, M. F.; Chevalier, R. A.; Fransson, C.

    2012-05-10

    We report on Expanded Very Large Array observations of the Type IIb supernova 2011dh, performed over the first 100 days of its evolution and spanning 1-40 GHz in frequency. The radio emission is well described by the self-similar propagation of a spherical shockwave, generated as the supernova ejecta interact with the local circumstellar environment. Modeling this emission with a standard synchrotron self-absorption (SSA) model gives an average expansion velocity of v Almost-Equal-To 0.1c, supporting the classification of the progenitor as a compact star (R{sub *} Almost-Equal-To 10{sup 11} cm). We find that the circumstellar density is consistent with a {rho}{proportional_to}r{sup -2} profile. We determine that the progenitor shed mass at a constant rate of Almost-Equal-To 3 Multiplication-Sign 10{sup -5} M{sub Sun} yr{sup -1}, assuming a wind velocity of 1000 km s{sup -1} (values appropriate for a Wolf-Rayet star), or Almost-Equal-To 7 Multiplication-Sign 10{sup -7} M{sub Sun} yr{sup -1} assuming 20 km s{sup -1} (appropriate for a yellow supergiant [YSG] star). Both values of the mass-loss rate assume a converted fraction of kinetic to magnetic energy density of {epsilon}{sub B} = 0.1. Although optical imaging shows the presence of a YSG, the rapid optical evolution and fast expansion argue that the progenitor is a more compact star-perhaps a companion to the YSG. Furthermore, the excellent agreement of the radio properties of SN 2011dh with the SSA model implies that any YSG companion is likely in a wide, non-interacting orbit.

  2. Fermi Large Area Telescope observations of the supernova remnant HESS J1731-347

    NASA Astrophysics Data System (ADS)

    Yang, Rui-zhi; Zhang, Xiao; Yuan, Qiang; Liu, Siming

    2014-07-01

    Context. HESS J1731-347 has been identified as one of the few TeV-bright shell-type supernova remnants (SNRs). These remnants are dominated by nonthermal emission, and the nature of TeV emission has been continuously debated for nearly a decade. Aims: We carry out the detailed modeling of the radio to γ-ray spectrum of HESS J1731-347 to constrain the magnetic field and energetic particles sources, which we compare with those of the other TeV-bright shell-type SNRs explored before. Methods: Four years of data from Fermi Large Area Telescope (LAT) observations for regions around this remnant are analyzed, leading to no detection correlated with the source discovered in the TeV band. The Markov chain Monte Carlo method is used to constrain parameters of one-zone models for the overall emission spectrum. Results: Based on the 99.9% upper limits of fluxes in the GeV range, one-zone hadronic models with an energetic proton spectral slope greater than 1.8 can be ruled out, which favors a leptonic origin for the γ-ray emission, making this remnant a sibling of the brightest TeV SNR RX J1713.7-3946, the Vela Junior SNR RX J0852.0-4622, and RCW 86. The best-fit leptonic model has an electron spectral slope of 1.8 and a magnetic field of ~30 μG, which is at least a factor of 2 higher than those of RX J1713.7-3946 and RX J0852.0-4622, posing a challenge to the distance estimate and/or the energy equipartition between energetic electrons and the magnetic field of this source. A measurement of the shock speed will address this challenge and has implications on the magnetic field evolution and electron acceleration driven by shocks of SNRs.

  3. Are large Trojan asteroids salty? An observational, theoretical, and experimental study

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Lucey, Paul; Glotch, Timothy

    2013-03-01

    With a total mass similar to the main asteroid belt, the jovian Trojan asteroids are a major feature in the Solar System. Based upon the thermal infrared spectra of the largest Trojans obtained with the Spitzer space telescope, Emery et al. (Emery, J.P., Cruikshank, D.P., van Cleve, J. [2006]. Icarus 182, 496) suggested that the surfaces of these Trojans may consist of fine-grained silicates suspended in a transparent matrix. To explore the transparent matrix hypothesis, we adopted a modified radiative transfer model to fit the Trojan spectra simultaneously both in the near and the thermal infrared regions. Our model shows that the Trojan spectra over a wide wavelength range can be consistently explained by fine grained silicates (1-5 wt.%) and highly absorbing material (e.g. carbon or iron, 2-10 wt.%) suspended in a transparent matrix. The matrix is consistent with a deposit of salt on the surfaces of the large Trojans. However, this consistency is not an actual detection of salt and other alternatives may still be possible. We suggest that early in the Solar System history, short-lived radionuclides heated ice-rich Trojans and caused melting, internal circulation of water and dissolution of soluble materials. Briny water volcanism were facilitated by internal volatiles and a possibly global sill of frozen brine was formed beneath the cold primitive crust. The frozen brine layer was likely to be evacuated by impact erosions and evaporation of the exposed brines eventually left a lag deposit of salt. Over the Solar System’s history, fine dust from comets or impacts contaminated and colored these salty surfaces of the Trojans to produce the spectral properties observed today.

  4. Circular structures in retroviral and cellular genomes.

    PubMed

    Albert, F G; Bronson, E C; Fitzgerald, D J; Anderson, J N

    1995-10-01

    A computer program for predicting DNA bending from nucleotide sequence was used to identify circular structures in retroviral and cellular genomes. An 830-base pair circular structure was located in a control region near the center of the genome of the human immunodeficiency virus type I (HIV-I). This unusual structure displayed relatively smooth planar bending throughout its length. The structure is conserved in diverse isolates of HIV-I, HIV-II, and simian immunodeficiency viruses, which implies that it is under selective constraints. A search of all sequences in the GenBank data base was carried out in order to identify similar circular structures in cellular DNA. The results revealed that the structures are associated with a wide range of sequences that undergo recombination, including most known examples of DNA inversion and subtelomeric translocation systems. Circular structures were also associated with replication and transposition systems where DNA looping has been implicated in the generation of large protein-DNA complexes. Experimental evidence for the structures was provided by studies which demonstrated that two sequences detected as circular by computer preferentially formed covalently closed circles during ligation reactions in vitro when compared to nonbent fragments, bent fragments with noncircular shapes, and total genomic DNA. In addition, a single T-->C substitution in one of these sequences rendered it less planar as seen by computer analysis and significantly reduced its rate of ligase-catalyzed cyclization. These results permit us to speculate that intrinsically circular structures facilitate DNA looping during formation of the large protein-DNA complexes that are involved in site- and region-specific recombination and in other genomic processes. PMID:7559522

  5. Circularly Polarized Persistent Room-Temperature Phosphorescence from Metal-Free Chiral Aromatics in Air.

    PubMed

    Hirata, Shuzo; Vacha, Martin

    2016-04-21

    Circularly polarized room-temperature phosphorescence (RTP) with persistent emission characteristics was observed from metal-free chiral binaphthyl structures. Enantiomers of the binaphthyl compounds doped into an amorphous hydroxylated steroid matrix produced blue fluorescence and yellow persistent RTP in air. The lifetime and quantum yield of the yellow persistent RTP were 0.67 s and 2.3%, respectively. The dissymmetry factors of circular dichroism (CD) in the first absorption band, circularly polarized fluorescence (CPF), and circularly polarized persistent RTP were |1.1 × 10(-3)|, |4.5 × 10(-4)|, and |2.3 × 10(-3)|, respectively. A comparison between the experimental data and calculations by time-dependent density functional theory for transient CD spectra confirmed that the binaphthyl conformations in the lowest singlet excited state (S1) and the lowest triplet state (T1) were different. The large difference in the dissymmetry factors for the CPF and the circularly polarized persistent RTP was likely caused by this conformational change between S1 and T1. PMID:27058743

  6. Circularly Polarized Persistent Room-Temperature Phosphorescence from Metal-Free Chiral Aromatics in Air.

    PubMed

    Hirata, Shuzo; Vacha, Martin

    2016-04-21

    Circularly polarized room-temperature phosphorescence (RTP) with persistent emission characteristics was observed from metal-free chiral binaphthyl structures. Enantiomers of the binaphthyl compounds doped into an amorphous hydroxylated steroid matrix produced blue fluorescence and yellow persistent RTP in air. The lifetime and quantum yield of the yellow persistent RTP were 0.67 s and 2.3%, respectively. The dissymmetry factors of circular dichroism (CD) in the first absorption band, circularly polarized fluorescence (CPF), and circularly polarized persistent RTP were |1.1 × 10(-3)|, |4.5 × 10(-4)|, and |2.3 × 10(-3)|, respectively. A comparison between the experimental data and calculations by time-dependent density functional theory for transient CD spectra confirmed that the binaphthyl conformations in the lowest singlet excited state (S1) and the lowest triplet state (T1) were different. The large difference in the dissymmetry factors for the CPF and the circularly polarized persistent RTP was likely caused by this conformational change between S1 and T1.

  7. Wind Turbine Wake Variability in a Large Wind Farm, Observed by Scanning Lidar

    NASA Astrophysics Data System (ADS)

    Lundquist, J. K.; Xiaoxia, G.; Aitken, M.; Quelet, P. T.; Rana, J.; Rhodes, M. E.; St Martin, C. M.; Tay, K.; Worsnop, R.; Irvin, S.; Rajewski, D. A.; Takle, E. S.

    2014-12-01

    Although wind turbine wake modeling is critical for accurate wind resource assessment, operational forecasting, and wind plant optimization, verification of such simulations is currently constrained by sparse datasets taken in limited atmospheric conditions, often of single turbines in isolation. To address this knowledge gap, our team deployed a WINDCUBE 200S scanning lidar in a 300-MW operating wind farm as part of the CWEX-13 field experiment. The lidar was deployed ~2000 m from a row of four turbines, such that wakes from multiple turbines could be sampled with horizontal scans. Twenty minutes of every hour were devoted to horizontal scans at ½ degree resolution at six different elevation angles. Twenty-five days of data were collected, with wind speeds at hub height ranging from quiescent to 14 m/s, and atmospheric stability varying from unstable to strongly stable. The example scan in Fig. 1a shows wakes from a row of four turbines propagating to the northwest. This extensive wake dataset is analyzed based on the quantitative approach of Aitken et al. (J. Atmos. Ocean. Technol. 2014), who developed an automated wake detection algorithm to characterize wind turbine wakes from scanning lidar data. We have extended the Aitken et al. (2014) method to consider multiple turbines in a single scan in order to classify the large numbers of wakes observed in the CWEX-13 dataset (Fig. 1b) during southerly flow conditions. The presentation will explore the variability of wake characteristics such as the velocity deficit and the wake width. These characteristics vary with atmospheric stability, atmospheric turbulence, and inflow wind speed. We find that the strongest and most persistent wakes occur at low to moderate wind speeds (region 2 of the turbine power curve) in stable conditions. We also present evidence that, in stable conditions with strong changes of wind direction with height, wakes propagate in different directions at different elevations above the surface

  8. Large scale IRAM 30 m CO-observations in the giant molecular cloud complex W43

    NASA Astrophysics Data System (ADS)

    Carlhoff, P.; Nguyen Luong, Q.; Schilke, P.; Motte, F.; Schneider, N.; Beuther, H.; Bontemps, S.; Heitsch, F.; Hill, T.; Kramer, C.; Ossenkopf, V.; Schuller, F.; Simon, R.; Wyrowski, F.

    2013-12-01

    We aim to fully describe the distribution and location of dense molecular clouds in the giant molecular cloud complex W43. It was previously identified as one of the most massive star-forming regions in our Galaxy. To trace the moderately dense molecular clouds in the W43 region, we initiated W43-HERO, a large program using the IRAM 30 m telescope, which covers a wide dynamic range of scales from 0.3 to 140 pc. We obtained on-the-fly-maps in 13CO (2-1) and C18O (2-1) with a high spectral resolution of 0.1 km s-1 and a spatial resolution of 12''. These maps cover an area of ~1.5 square degrees and include the two main clouds of W43 and the lower density gas surrounding them. A comparison to Galactic models and previous distance calculations confirms the location of W43 near the tangential point of the Scutum arm at approximately 6 kpc from the Sun. The resulting intensity cubes of the observed region are separated into subcubes, which are centered on single clouds and then analyzed in detail. The optical depth, excitation temperature, and H2 column density maps are derived out of the 13CO and C18O data. These results are then compared to those derived from Herschel dust maps. The mass of a typical cloud is several 104 M⊙ while the total mass in the dense molecular gas (>102 cm-3) in W43 is found to be ~1.9 × 106 M⊙. Probability distribution functions obtained from column density maps derived from molecular line data and Herschel imaging show a log-normal distribution for low column densities and a power-law tail for high densities. A flatter slope for the molecular line data probability distribution function may imply that those selectively show the gravitationally collapsing gas. Appendices are available in electronic form at http://www.aanda.orgThe final datacubes (13CO and C18O) for the entire survey are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/560/A24

  9. VERY LARGE ARRAY OBSERVATIONS OF THE INFRARED DARK CLOUD G19.30+0.07

    SciTech Connect

    Devine, K. E.; Churchwell, E.; Chandler, C. J.; Borg, K. J.; Brogan, C.; Indebetouw, R.; Shirley, Y.

    2011-05-20

    We present Very Large Array observations of ammonia (NH{sub 3}) (1,1), (2,2), and dicarbon sulfide (CCS) (2{sub 1}-1{sub 0}) emission toward the infrared dark cloud (IRDC) G19.30+0.07 at {approx}22 GHz. The NH{sub 3} emission closely follows the 8 {mu}m extinction. The NH{sub 3} (1,1) and (2,2) lines provide diagnostics of the temperature and density structure within the IRDC, with typical rotation temperatures of {approx}10-20 K and NH{sub 3} column densities of {approx}10{sup 15} cm{sup -2}. The estimated total mass of G19.30+0.07 is {approx}1130 M{sub sun}. The cloud comprises four compact NH{sub 3} clumps of mass {approx}30-160 M{sub sun}. Two coincide with 24 {mu}m emission, indicating heating by protostars, and show evidence of outflow in the NH{sub 3} emission. We report a water maser associated with a third clump; the fourth clump is apparently starless. A non-detection of 8.4 GHz emission suggests that the IRDC contains no bright H II regions and places a limit on the spectral type of an embedded zero-age main-sequence star to early-B or later. From the NH{sub 3} emission, we find that G19.30+0.07 is composed of three distinct velocity components or 'subclouds'. One velocity component contains the two 24 {mu}m sources and the starless clump, another contains the clump with the water maser, while the third velocity component is diffuse, with no significant high-density peaks. The spatial distribution of NH{sub 3} and CCS emission from G19.30+0.07 is highly anti-correlated, with the NH{sub 3} predominantly in the high-density clumps and the CCS tracing lower-density envelopes around those clumps. This spatial distribution is consistent with theories of evolution for chemically young low-mass cores, in which CCS has not yet been processed to other species and/or depleted in high-density regions.

  10. Tests on Stiffened Circular Cylinders

    NASA Technical Reports Server (NTRS)

    Holt, Marshall

    1941-01-01

    Compressive tests were made of two series of stiffened circular cylindrical shells under axial load. All the shells were 16 inches in diameter by 24 inches in length and were made of aluminum-alloy sheet curved to the proper radius and welded with one longitudinal weld. The ratios of diameter to thickness of shell wall in the two series of specimens were 258 and 572. Strains were measured with Huggenberger tensometers at a number of gage lines on the stiffeners and shell. The results of these tests indicate that a spacing of circumferential stiffeners equal to 0.67 times the radius is too great to strengthen the shell wall appreciably. The results are not inclusive enough to show the optimum in stiffeners. Plain cylinders without stiffeners developed ultimate strengths approximately half as great as the buckling strengths computed by the equation resulting from the classical theory and slightly greater than those computed by Donnell's large deflection theory.

  11. Direct observation of large quantum interference effect in anthraquinone solid-state junctions.

    PubMed

    Rabache, Vincent; Chaste, Julien; Petit, Philippe; Della Rocca, Maria Luisa; Martin, Pascal; Lacroix, Jean-Christophe; McCreery, Richard L; Lafarge, Philippe

    2013-07-17

    Quantum interference in cross-conjugated molecules embedded in solid-state devices was investigated by direct current-voltage and differential conductance transport measurements of anthraquinone (AQ)-based large area planar junctions. A thin film of AQ was grafted covalently on the junction base electrode by diazonium electroreduction, while the counter electrode was directly evaporated on top of the molecular layer. Our technique provides direct evidence of a large quantum interference effect in multiple CMOS compatible planar junctions. The quantum interference is manifested by a pronounced dip in the differential conductance close to zero voltage bias. The experimental signature is well developed at low temperature (4 K), showing a large amplitude dip with a minimum >2 orders of magnitude lower than the conductance at higher bias and is still clearly evident at room temperature. A temperature analysis of the conductance curves revealed that electron-phonon coupling is the principal decoherence mechanism causing large conductance oscillations at low temperature.

  12. Observing Dynamics in Large-Scale Birkeland Currents with the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE)

    NASA Astrophysics Data System (ADS)

    Anderson, B. J.; Korth, H.; Waters, C. L.; Barnes, R. J.; Olson, C.

    2015-12-01

    The Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) provides continuous global observations of the magnetic perturbations that predominantly reflect Birkeland currents. The data are acquired by avionics magnetometers of the Iridium satellites and allow measurements from 66 satellites in near-polar circular, low altitude orbits. The configuration of the Iridium satellite constellation determines the longitude sampling spacing of ~ 2 hours and the re-sampling cadence of the system which is 9 minutes. From 2008 to 2013 the AMPERE system was developed which included new flight software on the Iridium satellites to allow telemetry of higher rate data to the ground and the Science Data Center to derive Birkeland current perturbations from the data and invert these signals to derive the global distributions of the currents using data windows of ten minutes. There were many challenges in developing AMPERE including automating inter-calibration between satellites and the baseline determination and removals. The results of AMPERE provide stunning confirmation of many of the statistical estimates for the distribution of currents but more significantly open a new window to understand their instantaneous distribution and dynamics. Examples of new features of the currents and their dynamics revealed by AMPERE are presented. In addition, prospects for new data products and increased data quality anticipated from AMPERE-NEXT to be implemented on the Iridium-NEXT generation of satellites are discussed.

  13. Effects of Large-Scale Flows on Coronal Abundances: Multispecies Models and TRACE Observations

    NASA Astrophysics Data System (ADS)

    Lenz, D. D.

    2003-05-01

    Understanding coronal abundances is crucial for interpreting coronal observations and for understanding coronal physical processes and heating. Bulk flows and gravity, both unmistakably present in the corona, significantly affect abundances. We present multispecies simulations of long-lived coronal structures and compare model results with TRACE observations, focusing on abundance variations and flows.

  14. Integrated observations of processes and products of large scale cratering experiments

    NASA Astrophysics Data System (ADS)

    Graettinger, A. H.; Sonder, I.; Valentine, G.; Ross, P.; White, J. D.; Taddeucci, J.; Zimanowski, B.; Lube, G.; Kueppers, U.; Bowman, D. C.

    2013-12-01

    Detailed analysis of volcanic craters and ballistic deposits can provide insight into eruption dynamics and evolution. As fully exposed craters and associated unmodified deposits are rarely preserved, the dynamics involved can only be inferred. Large-scale blast experiments conducted at the University at Buffalo Geohazards Field Station produced deposits from single and multiple subsurface explosions at individual craters, along with a range of observational data, and provide a unique opportunity to link dynamics with geologic structures and deposits. Meter-scale craters were produced through repeated blasts using chemical explosives in 15 cm thick strata constructed of compacted aggregates (e.g. sands and gravels). Each experiment had 1-3 individual explosions with the same epicenter to form a single crater, with a total of 12 blasts and five craters. Three craters were produced through a series of shallow blasts (34-75 cm depth, six blasts) and two additional craters were produced by deeper blasts (75-100 cm, six blasts). The experiments successfully reproduced crater structures similar to those of maar volcanoes, which are the product of one or more subsurface explosions resulting from the interaction of magma with groundwater. Deep explosion tests successfully reproduced mixing and structures similar to maar-diatremes. The ballistics produced were collected in sample boxes up to 18 m from the blast center. The pits were later excavated and the vertical structures and deposits were described and sampled. Deposits can be described as bedded-diatreme (fallback/inter-crater deposits), unbedded diatreme (disturbed subsurface material), tephra ring (debris on the pre-blast surface) and distal extra-crater deposits. Granulometry and componentry were acquired for all samples. The diatreme structures and deposit componentry were interpreted using high-speed video recordings of the blasts. A comparison of ballistic source depth and collection location revealed the

  15. Radar Observation of Large Attenuation in Convective Storms: Implications for the Dropsize Distribution

    NASA Technical Reports Server (NTRS)

    Tian, Lin; Heymsfield, G. M.; Srivastava, R. C.

    2000-01-01

    Airborne meteorological radars typically operate at attenuating wavelengths. The path integrated attenuation (PIA) can be estimated using the surface reference technique (SRT). In this method, an initial value is determined for the radar cross section of the earth surface in a rain-free area in relatively close proximity to the rain cloud. During subsequent observations of precipitation any decrease 'in the observed surface cross section from the reference value s assumed to be a result of the two-way attenuation along the propagation path. In this paper we present selected instances of high PIA observed over land by an airborne radar. The observations were taken in Brazil and Florida during TRMM (Tropical Rainfall Measurement Mission) field campaigns. We compared these observations with collocated and nearly simultaneous ground-based radar observations by an S-band radar that is not subject to significant attenuation. In this preliminary evaluation, a systematic difference in the attenuation in the two storms is attributed to a difference in the raindrop size distributions; this is supported by observations of ZDR (differential reflectivity).

  16. Theoretical performance of solar coronagraphs using sharp-edged or apodized circular external occulters

    NASA Astrophysics Data System (ADS)

    Aime, C.

    2013-10-01

    Context. This study focuses on an instrument able to monitor the corona close to the solar limb. Aims: We study the performance of externally occulted solar coronagraphs. We compute the shape of the umbra and penumbra produced by the occulter at the entrance aperture of the telescope and compare levels of rejection obtained for a circular occulter with a sharp or smooth transmission at the edge. Methods: We show that the umbral pattern in an externally occulted coronagraph can be written as a convolution product between the occulter diffraction pattern and an image of the Sun. We then focus on the analysis to circular symmetric occulters. We first derive an analytical expression using two Lommel series for the Fresnel diffraction pattern produced by a sharp-edged circular occulter. Two different expressions are used for inside and outside the occulter's geometric shadow. We verify that a numerical approach that directly solves the Huygens-Fresnel integral gives the same result. This suggests that the numerical computation can be used for a circular occulter with any variable transmission. Results: With the objective of observing the solar corona a few minutes from limb, a sharp-edged circular occulter of a few meters cannot produce an umbra darker than 10-4 of the direct sunlight. The same occulter, having an apodization zone of a few percent of the diameter (3 cm for a 1.5 m occulter), darkers the umbra down to 10-8 of the direct sunlight for linear transmission and to 10-12 for Sonine or cosine bell transmissions. An investigation for an apodized occulter with manufacturing defaults is quickly performed. Conclusions: It has been possible to numerically demonstrate the large superiority of apodized circular occulters with respect to the sharp-edged ones. These occulters allow the theoretical observation of the very limb-close corona with not yet obtained contrast ratios.

  17. How historic simulation-observation discrepancy affects future warming projections in a very large model ensemble

    NASA Astrophysics Data System (ADS)

    Goodwin, Philip

    2016-10-01

    Projections of future climate made by model-ensembles have credibility because the historic simulations by these models are consistent with, or near-consistent with, historic observations. However, it is not known how small inconsistencies between the ranges of observed and simulated historic climate change affects the future projections made by a model ensemble. Here, the impact of historical simulation-observation inconsistencies on future warming projections is quantified in a 4-million member Monte Carlo ensemble from a new efficient Earth System Model (ESM). Of the 4-million ensemble members, a subset of 182,500 are consistent with historic ranges of warming, heat uptake and carbon uptake simulated by the Climate Model Intercomparison Project 5 (CMIP5) ensemble. This simulation-consistent subset projects similar future warming ranges to the CMIP5 ensemble for all four RCP scenarios, indicating the new ESM represents an efficient tool to explore parameter space for future warming projections based on historic performance. A second subset of 14,500 ensemble members are consistent with historic observations for warming, heat uptake and carbon uptake. This observation-consistent subset projects a narrower range for future warming, with the lower bounds of projected warming still similar to CMIP5, but the upper warming bounds reduced by 20-35 %. These findings suggest that part of the upper range of twenty-first century CMIP5 warming projections may reflect historical simulation-observation inconsistencies. However, the agreement of lower bounds for projected warming implies that the likelihood of warming exceeding dangerous levels over the twenty-first century is unaffected by small discrepancies between CMIP5 models and observations.

  18. Assessment of a regulatory model's performance relative to large spatial heterogeneity in observed ozone in Houston, Texas.

    PubMed

    Couzo, Evan; Olatosi, Adeola; Jeffries, Harvey E; Vizuete, William

    2012-06-01

    In Houston, some of the highest measured 8-hr ozone (O3) peaks are characterized by sudden increases in observed concentrations of at least 40 ppb in 1 hr or 60 ppb in 2 hr. Measurements show that these large hourly changes appear at only a few monitors and span a narrow geographic area, suggesting a spatially heterogeneous field of O3 concentrations. This study assessed whether a regulatory air quality model (AQM) can simulate this observed behavior. The AQM did not reproduce the magnitude or location of some of the highest observed hourly O3 changes, and it also failed to capture the limited spatial extent. On days with measured large hourly changes in O3 concentrations, the AQM predicted high O3 over large regions of Houston, resulting in overpredictions at several monitors. This analysis shows that the model can make high O3, but on these days the predicted spatial field suggests that the model had a different cause. Some observed large hourly changes in O3 concentrations have been linked to random releases of industrial volatile organic compounds (VOCs). In the AQM emission inventory, there are several emission events when an industrial point source increases VOC emissions in excess of 10,000 mol/hr. One instance increased predicted downwind O3 concentrations up to 25 ppb. These results show that the modeling system is responsive to a large VOC release, but the timing and location of the release, and meteorological conditions, are critical requirements. Attainment of the O3 standard requires the use of observational data and AQM predictions. If the large observed hourly changes are indicative of a separate cause of high O3, then the model may not include that cause, which might result in regulators enacting control strategies that could be ineffective.

  19. Bedside practice of blood transfusion in a large teaching hospital in Uganda: An observational study

    PubMed Central

    de Graaf, J. D.; Kajja, I.; Bimenya, G. S.; Postma, M. J.; Sibinga, C. Th.

    2009-01-01

    Background: Adverse transfusion reactions can cause morbidity and death to patients who receive a blood transfusion. Blood transfusion practice in Mulago Hospital, Kampala, Uganda is analyzed to see if and when these practices play a role in the morbidity and mortality of patients. Materials and Methods: An observational study on three wards of Mulago Hospital. Physicians, paramedics, nurses, medical students and nurse students were observed using two questionnaires. For comparison, a limited observational study was performed in the University Medical Centre Groningen (UMCG) in Groningen, The Netherlands. Results: In Mulago Hospital guidelines for blood transfusion practice were not easily available. Medical staff members work on individual professional levels. Students perform poorly due to inconsistency in their supervision. Documentation of blood transfusion in patient files is scarce. There is no immediate bedside observation, so transfusion reactions and obstructions in the blood transfusion flow are not observed. Conclusion: The poor blood transfusion practice is likely to play a role in the morbidity and mortality of patients who receive a blood transfusion. There is a need for a blood transfusion policy and current practical guidelines. PMID:20808647

  20. Global dynamic topography observations reveal limited influence of large-scale mantle flow

    NASA Astrophysics Data System (ADS)

    Hoggard, M. J.; White, N.; Al-Attar, D.

    2016-06-01

    Convective circulation of the Earth's mantle maintains some fraction of surface topography that varies with space and time. Most predictive models show that this dynamic topography has peak amplitudes of about +/-2 km, dominated by wavelengths of 104 km. Here, we test these models against our comprehensive observational database of 2,120 spot measurements of dynamic topography that were determined by analysing oceanic seismic surveys. These accurate measurements have typical peak amplitudes of +/-1 km and wavelengths of approximately 103 km, and are combined with limited continental constraints to generate a global spherical harmonic model, the robustness of which has been carefully tested and benchmarked. Our power spectral analysis reveals significant discrepancies between observed and predicted dynamic topography. At longer wavelengths (such as 104 km), observed dynamic topography has peak amplitudes of about +/-500 m. At shorter wavelengths (such as 103 km), significant dynamic topography is still observed. We show that these discrepancies can be explained if short-wavelength dynamic topography is generated by temperature-driven density anomalies within a sub-plate asthenospheric channel. Stratigraphic observations from adjacent continental margins show that these dynamic topographic signals evolve quickly with time. More rapid temporal and spatial changes in vertical displacement of the Earth's surface have direct consequences for fields as diverse as mantle flow, oceanic circulation and long-term climate change.

  1. Large Amplitude Whistler Waves and Electron Acceleration in the Earth's Radiation Belts: A Review of STEREO and Wind Observations

    NASA Technical Reports Server (NTRS)

    Cattell, Cynthia; Breneman, A.; Goetz, K.; Kellogg, P.; Kersten, K.; Wygant, J.; Wilson, L. B., III; Looper, Mark D.; Blake, J. Bernard; Roth, I.

    2012-01-01

    One of the critical problems for understanding the dynamics of Earth's radiation belts is determining the physical processes that energize and scatter relativistic electrons. We review measurements from the Wind/Waves and STEREO S/Waves waveform capture instruments of large amplitude whistler-mode waves. These observations have provided strong evidence that large amplitude (100s mV/m) whistler-mode waves are common during magnetically active periods. The large amplitude whistlers have characteristics that are different from typical chorus. They are usually nondispersive and obliquely propagating, with a large longitudinal electric field and significant parallel electric field. We will also review comparisons of STEREO and Wind wave observations with SAMPEX observations of electron microbursts. Simulations show that the waves can result in energization by many MeV and/or scattering by large angles during a single wave packet encounter due to coherent, nonlinear processes including trapping. The experimental observations combined with simulations suggest that quasilinear theoretical models of electron energization and scattering via small-amplitude waves, with timescales of hours to days, may be inadequate for understanding radiation belt dynamics.

  2. Observing light-by-light scattering at the Large Hadron Collider.

    PubMed

    d'Enterria, David; da Silveira, Gustavo G

    2013-08-23

    Elastic light-by-light scattering (γγ→γγ) is open to study at the Large Hadron Collider thanks to the large quasireal photon fluxes available in electromagnetic interactions of protons (p) and lead (Pb) ions. The γγ→γγ cross sections for diphoton masses m(γγ)>5 GeV amount to 12 fb, 26 pb, and 35 nb in p-p, p-Pb, and Pb-Pb collisions at nucleon-nucleon center-of-mass energies √(s(NN))=14, 8.8, and 5.5 TeV, respectively. Such a measurement has no substantial background in Pb-Pb collisions where one expects about 20 signal events per run, after typical detector acceptance and reconstruction efficiency selections.

  3. Retrograde diurnal motion of the instantaneous rotation axis observed by a large ring laser gyroscope

    NASA Astrophysics Data System (ADS)

    Tian, W.

    2016-07-01

    Ring laser gyroscope technique directly senses the Earth's instantaneous rotation pole (IRP), whose polar motion contains strong retrograde diurnal components induced by external torques due to the gravitational attraction of the Moon and Sun. The first direct measurement of this retrograde diurnal motion with three large ring lasers was reported by Schreiber et al. (J Geophys Res 109(B18):B06405, 2004). Since then many technical improvements led to a significant increase in precision and stability of ring laser gyroscopes; however, precise determination of amplitude and phase at main partial waves has not been given in the literature. In this paper, I will report on determination of the retrograde diurnal motion of the IRP at main partial waves (Oo_1, J_1, K_1, M_1, O_1, Q_1 ) by the ring laser "G", located in Wettzell, Germany, which is the most stable one amongst the currently running large ring laser gyroscopes.

  4. Testing of Large Diameter Fresnel Optics for Space Based Observations of Extensive Air Showers

    NASA Technical Reports Server (NTRS)

    Adams, James H.; Christl, Mark J.; Young, Roy M.

    2011-01-01

    The JEM-EUSO mission will detect extensive air showers produced by extreme energy cosmic rays. It operates from the ISS looking down on Earth's night time atmosphere to detect the nitrogen fluorescence and Cherenkov produce by the charged particles in the EAS. The JEM-EUSO science objectives require a large field of view, sensitivity to energies below 50 EeV, and must fit within available ISS resources. The JEM-EUSO optic module uses three large diameter, thin plastic lenses with Fresnel surfaces to meet the instrument requirements. A bread-board model of the optic has been manufactured and has undergone preliminary tests. We report the results of optical performance tests and evaluate the present capability to manufacture these optical elements.

  5. Observation and analysis of high-speed human motion with frequent occlusion in a large area

    NASA Astrophysics Data System (ADS)

    Wang, Yuru; Liu, Jiafeng; Liu, Guojun; Tang, Xianglong; Liu, Peng

    2009-12-01

    The use of computer vision technology in collecting and analyzing statistics during sports matches or training sessions is expected to provide valuable information for tactics improvement. However, the measurements published in the literature so far are either unreliably documented to be used in training planning due to their limitations or unsuitable for studying high-speed motion in large area with frequent occlusions. A sports annotation system is introduced in this paper for tracking high-speed non-rigid human motion over a large playing area with the aid of motion camera, taking short track speed skating competitions as an example. The proposed system is composed of two sub-systems: precise camera motion compensation and accurate motion acquisition. In the video registration step, a distinctive invariant point feature detector (probability density grads detector) and a global parallax based matching points filter are used, to provide reliable and robust matching across a large range of affine distortion and illumination change. In the motion acquisition step, a two regions' relationship constrained joint color model and Markov chain Monte Carlo based joint particle filter are emphasized, by dividing the human body into two relative key regions. Several field tests are performed to assess measurement errors, including comparison to popular algorithms. With the help of the system presented, the system obtains position data on a 30 m × 60 m large rink with root-mean-square error better than 0.3975 m, velocity and acceleration data with absolute error better than 1.2579 m s-1 and 0.1494 m s-2, respectively.

  6. Search for Electromagnetic Counterparts to LIGO-Virgo Candidates: Expanded Very Large Array Observations

    NASA Technical Reports Server (NTRS)

    Lazio, Joseph; Keating, Katie; Jenet, F. A.; Kassim, N. E.

    2011-01-01

    This paper summarizes a search for radio wavelength counterparts to candidate gravitational wave events. The identification of an electromagnetic counterpart could provide a more complete understanding of a gravitational wave event, including such characteristics as the location and the nature of the progenitor. We used the Expanded Very Large Array (EVLA) to search six galaxies which were identified as potential hosts for two candidate gravitational wave events. We summarize our procedures and discuss preliminary results.

  7. Observations and Implications of Large-amplitude Longitudinal Oscillations in a Solar Filament

    NASA Astrophysics Data System (ADS)

    Luna, M.; Knizhnik, K.; Muglach, K.; Karpen, J.; Gilbert, H.; Kucera, T. A.; Uritsky, V.

    2014-04-01

    On 2010 August 20, an energetic disturbance triggered large-amplitude longitudinal oscillations in a nearby filament. The triggering mechanism appears to be episodic jets connecting the energetic event with the filament threads. In the present work, we analyze this periodic motion in a large fraction of the filament to characterize the underlying physics of the oscillation as well as the filament properties. The results support our previous theoretical conclusions that the restoring force of large-amplitude longitudinal oscillations is solar gravity, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Based on our previous work, we used the fitted parameters to determine the magnitude and radius of curvature of the dipped magnetic field along the filament, as well as the mass accretion rate onto the filament threads. These derived properties are nearly uniform along the filament, indicating a remarkable degree of cohesiveness throughout the filament channel. Moreover, the estimated mass accretion rate implies that the footpoint heating responsible for the thread formation, according to the thermal nonequilibrium model, agrees with previous coronal heating estimates. We estimate the magnitude of the energy released in the nearby event by studying the dynamic response of the filament threads, and discuss the implications of our study for filament structure and heating.

  8. Observations and Implications of Large-Amplitude LongitudinalOscillations in a Solar Filament

    NASA Astrophysics Data System (ADS)

    Karpen, Judith T.; Luna, Manuel; Knizhnik, Kalman J.; Muglach, Karin; Gilbert, Holly; Kucera, Therese A.; Uritsky, Vadim

    2014-06-01

    On 20 August 2010 an energetic disturbance triggered large-amplitude longitudinal oscillations in a large fraction of a nearby filament. The triggering mechanism appears to be episodic jets connecting the energetic event with the filament threads. We analyzed this periodic motion to characterize the underlying physics of the oscillation as well as the filament properties. The results support our previous theoretical conclusions that the restoring force of large-amplitude longitudinal oscillations is solar gravity, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Based on our previous work, we used the fitted parameters to determine the magnitude and radius of curvature of the dipped magnetic field along the filament, as well as the mass accretion rate onto the filament threads. These derived properties are nearly uniform along the filament, indicating a remarkable degree of homogeneity throughout the filament channel. Moreover, the estimated mass accretion rate implies that the footpoint heating responsible for the thread formation, according to the thermal nonequilibrium model, agrees with previous coronal heating estimates. We also estimated the magnitude of the energy released in the nearby event by studying the dynamic response of the filament threads, and concluded that the initiating event is likely to be a microflare. We will present the results of this investigation and discuss their implications for filament structure and heating. This work was supported by NASA’s H-SR program.

  9. Constraining Large-Scale Solar Magnetic Field Models with Optical Coronal Observations

    NASA Astrophysics Data System (ADS)

    Uritsky, V. M.; Davila, J. M.; Jones, S. I.

    2015-12-01

    Scientific success of the Solar Probe Plus (SPP) and Solar Orbiter (SO) missions will depend to a large extent on the accuracy of the available coronal magnetic field models describing the connectivity of plasma disturbances in the inner heliosphere with their source regions. We argue that ground based and satellite coronagraph images can provide robust geometric constraints for the next generation of improved coronal magnetic field extrapolation models. In contrast to the previously proposed loop segmentation codes designed for detecting compact closed-field structures above solar active regions, we focus on the large-scale geometry of the open-field coronal regions located at significant radial distances from the solar surface. Details on the new feature detection algorithms will be presented. By applying the developed image processing methodology to high-resolution Mauna Loa Solar Observatory images, we perform an optimized 3D B-line tracing for a full Carrington rotation using the magnetic field extrapolation code presented in a companion talk by S.Jones at al. Tracing results are shown to be in a good qualitative agreement with the large-scalie configuration of the optical corona. Subsequent phases of the project and the related data products for SSP and SO missions as wwll as the supporting global heliospheric simulations will be discussed.

  10. Observations and implications of large-amplitude longitudinal oscillations in a solar filament

    SciTech Connect

    Luna, M.; Knizhnik, K.; Muglach, K.; Karpen, J.; Gilbert, H.; Kucera, T. A.; Uritsky, V.

    2014-04-10

    On 2010 August 20, an energetic disturbance triggered large-amplitude longitudinal oscillations in a nearby filament. The triggering mechanism appears to be episodic jets connecting the energetic event with the filament threads. In the present work, we analyze this periodic motion in a large fraction of the filament to characterize the underlying physics of the oscillation as well as the filament properties. The results support our previous theoretical conclusions that the restoring force of large-amplitude longitudinal oscillations is solar gravity, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Based on our previous work, we used the fitted parameters to determine the magnitude and radius of curvature of the dipped magnetic field along the filament, as well as the mass accretion rate onto the filament threads. These derived properties are nearly uniform along the filament, indicating a remarkable degree of cohesiveness throughout the filament channel. Moreover, the estimated mass accretion rate implies that the footpoint heating responsible for the thread formation, according to the thermal nonequilibrium model, agrees with previous coronal heating estimates. We estimate the magnitude of the energy released in the nearby event by studying the dynamic response of the filament threads, and discuss the implications of our study for filament structure and heating.

  11. Observations of residual ULF signals from the Parkfield magnetometer surrounding large Earthquakes

    NASA Astrophysics Data System (ADS)

    Bortnik, J.; Cutler, J. W.; Dunson, C.; Bleier, T.

    2005-12-01

    We use long-term (1999-2004) ULF data (<10 Hz) from a triaxial search-coil magnetometer located in Parkfield, California, to construct signal statistical quantities parametrized according to time of day, frequency range, coil orientation, season, and geomagnetic activity (Kp index). For each such parameter bin, we compute statistical quantities such as mean, variance, median and quartiles of the magnetic signal, and use these quantities as the baseline values from which signals are assumed to deviate. We then examine time periods surrounding those of large, nearby Earthquakes, and subtract the average and median signal values from the absolute signal values to obtain signal `residues'. Results show that this technique can be effective in reducing large background variations and thereby increasing the signal to noise ratio (SNR), allowing much lower amplitude signals of local origin to be detected. To further increase the SNR, we superpose a number of large earthquake periods and discuss the results in light of possible seismogenic ULF signal sources.

  12. Large XCH4 anomaly in summer 2013 over northeast Asia observed by GOSAT

    NASA Astrophysics Data System (ADS)

    Ishizawa, Misa; Uchino, Osamu; Morino, Isamu; Inoue, Makoto; Yoshida, Yukio; Mabuchi, Kazuo; Shirai, Tomoko; Tohjima, Yasunori; Maksyutov, Shamil; Ohyama, Hirofumi; Kawakami, Shuji; Takizawa, Atsushi; Belikov, Dmitry

    2016-07-01

    Extremely high levels of column-averaged dry-air mole fractions of atmospheric methane (XCH4) were detected in August and September 2013 over northeast Asia (˜ 20 ppb above the averaged summertime XCH4 over 2009-2012, after removing a long-term trend), as being retrieved from the Short-Wavelength InfraRed (SWIR) spectral data observed with the Thermal And Near-infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse Gases Observing Satellite (GOSAT). Similar enhancements of XCH4 were also observed by the ground-based measurements at two Total Carbon Column Observing Network (TCCON) sites in Japan. The analysis of surface CH4 concentrations observed at three monitoring sites around the Japan archipelago suggest that the extreme increase of XCH4 has occurred in a limited area. The model analysis was conducted to investigate this anomalously high XCH4 event, using an atmospheric transport model. The results indicate that the extreme increase of XCH4 is attributed to the anomalous atmospheric pressure pattern over East Asia during the summer of 2013, which effectively transported the CH4-rich air to Japan from the strong CH4 source areas in east China. The two Japanese TCCON sites, ˜ 1000 km east-west apart each other, coincidentally located along the substantially CH4-rich air flow from east China. This analysis demonstrates the capability of GOSAT to monitor an XCH4 event on a synoptic scale. We anticipate that the synoptic information of XCH4 from GOSAT data contributes to improve our understanding of regional carbon cycle and the regional flux estimation.

  13. Pioneer and Voyager observations of the solar wind at large heliocentric distances and latitudes

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.; Mihalov, J. D.; Barnes, A.; Lazarus, A. J.; Smith, E. J.

    1989-01-01

    Data obtained from the electrostatic analyzers aboard the Pioneer 10 and 11 spacecraft and from the Faraday cup aboard Voyager 2 were used to study spatial gradients in the distant solar wind. Prior to mid-1985, both spacecraft observed nearly identical solar wind structures. After day 150 of 1985, the velocity structure at Voyager 2 became flatter, and the Voyager 2 velocities were smaller than those observed by Pioneer 11. It is suggested that these changes in the solar wind at low latitudes may be related to a change which occurred in the coronal hole structure in early 1985.

  14. Circularly polarized conical patterns from circular microstrip antennas

    NASA Technical Reports Server (NTRS)

    Huang, J.

    1984-01-01

    A method is presented for generating circularly polarized conical patterns from circular microstrip antennas. These antennas are excited at higher order modes and require different feed arrangements for different mode excitations. It is determined that the peak direction of the conical pattern can be varied over a wide angular range. Modal expansion technique is employed to calculate the radiation patterns of these antennas.

  15. MIC-Large Scale Magnetically Inflated Cable Structures for Space Power, Propulsion, Communications and Observational Applications

    NASA Astrophysics Data System (ADS)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light

  16. Widespread noncoding circular RNAs in plants.

    PubMed

    Ye, Chu-Yu; Chen, Li; Liu, Chen; Zhu, Qian-Hao; Fan, Longjiang

    2015-10-01

    A large number of noncoding circular RNAs (circRNAs) with regulatory potency have been identified in animals, but little attention has been given to plant circRNAs. We performed genome-wide identification of circRNAs in Oryza sativa and Arabidopsis thaliana using publically available RNA-Seq data, analyzed and compared features of plant and animal circRNAs. circRNAs (12037 and 6012) were identified in Oryza sativa and Arabidopsis thaliana, respectively, with 56% (10/18) of the sampled rice exonic circRNAs validated experimentally. Parent genes of over 700 exonic circRNAs were orthologues between rice and Arabidopsis, suggesting conservation of circRNAs in plants. The introns flanking plant circRNAs were much longer than introns from linear genes, and possessed less repetitive elements and reverse complementary sequences than the flanking introns of animal circRNAs. Plant circRNAs showed diverse expression patterns, and 27 rice exonic circRNAs were found to be differentially expressed under phosphate-sufficient and -starvation conditions. A significantly positive correlation was observed for the expression profiles of some circRNAs and their parent genes. Our results demonstrated that circRNAs are widespread in plants, revealed the common and distinct features of circRNAs between plants and animals, and suggested that circRNAs could be a critical class of noncoding regulators in plants.

  17. Circularly polarized microstrip antennas

    NASA Technical Reports Server (NTRS)

    Lo, Y. T.; Engst, B.; Lee, R. Q. H.

    1985-01-01

    A simple microstrip antenna can be made to radiate EM waves of any polarization, in particular, the circular polarization (CP) without any phasing network and power divider. A simple and accurate theory for this family of antennas was developed. However, the CP bandwidth, (CPBW) the bandwidth in which the axial ratio (AR) is less than a certain specified value, is very small. Most of the experimental designs were made for a feed placed along the diagonal of the patch. It is shown that there are practically infinitely many possible designs with different feed location. The speculation that other designs might give a wider bandwidth is clarified and an effective method for broadening the bandwidth is shown.

  18. CIRCULAR CAVITY SLOT ANTENNA

    DOEpatents

    Kerley, P.L.

    1959-01-01

    A small-size antenna having a doughnut-shaped field pattern and which can act both as an antenna and a resonant circuit is described. The antenna is of the slotted type and comprises a resonant cavity with a center hole. A circular slot is provided in one wall of the cavity concentric with the hole and a radio frequency source is connected across the slot. The pattern and loading of the antenna are adjusted by varying the position and shape of a center element slidably disposed within the hole and projecting from the slotted side of the resonant cavity. The disclosed structure may also be used to propagate the oscillator signal down a transniission line by replacing the center element with one leg of the transmission line in a spaced relation from the walls of the cavity.

  19. The large-scale observational signatures of low-mass galaxies during reionization

    NASA Astrophysics Data System (ADS)

    Dixon, Keri L.; Iliev, Ilian T.; Mellema, Garrelt; Ahn, Kyungjin; Shapiro, Paul R.

    2016-03-01

    Observations of the epoch of reionization give us clues about the nature and evolution of the sources of ionizing photons, or early stars and galaxies. We present a new suite of structure formation and radiative transfer (RT) simulations from the PRACE4LOFAR project designed to investigate whether the mechanism of radiative feedback, or the suppression of star formation in ionized regions from UV radiation, can be inferred from these observations. Our source halo mass extends down to 108 M⊙, with sources in the mass range 108-109 M⊙ expected to be particularly susceptible to feedback from ionizing radiation, and we vary the aggressiveness and nature of this suppression. Not only do we have four distinct source models, we also include two box sizes (67 and 349 Mpc), each with two grid resolutions. This suite of simulations allows us to investigate the robustness of our results. All of our simulations are broadly consistent with the observed electron-scattering optical depth of the cosmic microwave background and the neutral fraction and photoionization rate of hydrogen at z ˜ 6. In particular, we investigate the redshifted 21-cm emission in anticipation of upcoming radio interferometer observations. We find that the overall shape of the 21-cm signal and various statistics are robust to the exact nature of source suppression, the box size, and the resolution. There are some promising model discriminators in the non-Gaussianity and small-scale power spectrum of the 21-cm signal.

  20. Study of the large-scale structure of the plasmasphere using extreme ultraviolet observations

    SciTech Connect

    Chakrabarti, S.

    1982-01-01

    Plasmaspheric ion distributions in the 500-30,000 km range have been indirectly measured by observing selected lines of solar Extreme Ultra Violet spectrum resonantly scattered by different ionic species. The observations were made with a broad-band photometer on the Apollo-Soyuz mission and an EUV spectrometer on board the STP78-1 satellite. A third experiment has been conducted recently from rocket-borne photometers. The data obtained from these experiments were compared against several theoretical models of ion distributions. The study shows that the ad-hoc models, which were sufficient to explain previous observations, were unable to explain the data obtained by the instruments which were more sensitive than the previous ones. A kinetic equilibrium model of ion distribution, which takes the effect of a non-homogeneous magnetic field into account, was found to explain the observations. The model uses a reference ionosphere and a thermal structure of the plasmasphere as the input parameters. The ion density at the reference ionosphere (500 km) used in this analysis was obtained from simultaneous measurements by a mass spectrometer on the Atmospheric Explorer satellite. Ion temperature at the reference altitude was obtained from near-simultaneous measurements by a retarding potential analyzer on the same satellite. This use of independent measurements to restrict the boundary values enhances the validity of the model.

  1. Circularly Polarized MHOHG with Bichromatic Circularly Polarized Laser Pulses

    NASA Astrophysics Data System (ADS)

    Bandrauk, Andre D.; Mauger, Francois; Uzer, Turgay

    2016-05-01

    Circularly polarized MHOHG-Molecular High Order Harmonic Generation is shown to occur efficiently with intense ultrashort bichromatic circularly polarized pulses due to frequent electron-parent -ion recollision with co-or counter-rotating incident circular pulses as predicted in 1995. We show in this context that molecules offer a very robust and efficient frameworkfor the production of circularly polarized harmonics for the generation of single circularly polarized ``attosecond'' pulses. The efficiency of such new MHOHG is shown to depend on the compatibility of the symmetry of the molecular medium with the net electric field generated by the combination of the laser pulses.Using a time-dependent symmetry analysis with concrete examples such as H 2 + vs H 3 + we show how all the features(harmonic order and ∧ polarization) of MHOHG can be explained and predicted.

  2. Placement of the dam for the no. 2 kambaratinskaya HPP by large-scale blasting: some observations

    SciTech Connect

    Shuifer, M. I.; Argal, E. S.

    2011-11-15

    Results of complex instrument observations of large-scale blasting during construction of the dam for the No. 2 Kambaratinskaya HPP on the Naryn River in the Republic of Kirgizia are analyzed. The purpose of these observations was: to determine the actual parameters of the seismic process, evaluate the effect of air and acoustic shock waves, and investigate the kinematics of the surface formed by the blast in its core region within the mass of fractured rocks.

  3. Circularization pathway of a bacterial group II intron.

    PubMed

    Monat, Caroline; Cousineau, Benoit

    2016-02-29

    Group II introns are large RNA enzymes that can excise as lariats, circles or in a linear form through branching, circularization or hydrolysis, respectively. Branching is by far the main and most studied splicing pathway while circularization was mostly overlooked. We previously showed that removal of the branch point A residue from Ll.LtrB, the group II intron from Lactococcus lactis, exclusively leads to circularization. However, the majority of the released intron circles harbored an additional C residue of unknown origin at the splice junction. Here, we exploited the Ll.LtrB-ΔA mutant to study the circularization pathway of bacterial group II introns in vivo. We demonstrated that the non-encoded C residue, present at the intron circle splice junction, corresponds to the first nt of exon 2. Intron circularization intermediates, harboring the first 2 or 3 nts of exon 2, were found to accumulate showing that branch point removal leads to 3' splice site misrecognition. Traces of properly ligated exons were also detected functionally confirming that a small proportion of Ll.LtrB-ΔA circularizes accurately. Overall, our data provide the first detailed molecular analysis of the group II intron circularization pathway and suggests that circularization is a conserved splicing pathway in bacteria.

  4. Circularization pathway of a bacterial group II intron

    PubMed Central

    Monat, Caroline; Cousineau, Benoit

    2016-01-01

    Group II introns are large RNA enzymes that can excise as lariats, circles or in a linear form through branching, circularization or hydrolysis, respectively. Branching is by far the main and most studied splicing pathway while circularization was mostly overlooked. We previously showed that removal of the branch point A residue from Ll.LtrB, the group II intron from Lactococcus lactis, exclusively leads to circularization. However, the majority of the released intron circles harbored an additional C residue of unknown origin at the splice junction. Here, we exploited the Ll.LtrB-ΔA mutant to study the circularization pathway of bacterial group II introns in vivo. We demonstrated that the non-encoded C residue, present at the intron circle splice junction, corresponds to the first nt of exon 2. Intron circularization intermediates, harboring the first 2 or 3 nts of exon 2, were found to accumulate showing that branch point removal leads to 3′ splice site misrecognition. Traces of properly ligated exons were also detected functionally confirming that a small proportion of Ll.LtrB-ΔA circularizes accurately. Overall, our data provide the first detailed molecular analysis of the group II intron circularization pathway and suggests that circularization is a conserved splicing pathway in bacteria. PMID:26673697

  5. Observations and Implications of Large-Amplitude Longitudinal Oscillations in a Solar Filament

    NASA Astrophysics Data System (ADS)

    Karpen, J. T.; Luna Bennasar, M.; Knizhnik, K. J.; Muglach, K.; Gilbert, H. R.; Kucera, T. A.; Uritsky, V. M.; Asfaw, T. T.

    2014-12-01

    On 20 August 2010 an energetic disturbance triggered large-amplitude longitudinal oscillations in a large fraction of a nearby filament. The triggering mechanism appears to be episodic jets connecting the energetic event with the filament threads. We analyzed this periodic motion to characterize the underlying physics of the oscillation as well as the filament properties. The results support our previous theoretical conclusions that the restoring force of large-amplitude longitudinal oscillations is solar gravity, and the damping mechanism is the ongoing accumulation of mass onto the oscillating threads. Based on our previous work, we used the fitted parameters to determine the magnitude and radius of curvature of the dipped magnetic field along the filament, as well as the mass accretion rate onto the filament threads. These derived properties are nearly uniform along the filament, indicating a remarkable degree of homogeneity throughout the filament channel. Moreover, the estimated mass accretion rate implies that the footpoint heating responsible for the thread formation, according to the thermal nonequilibrium model, agrees with previous coronal heating estimates. We also estimated the magnitude of the energy released in the nearby event by studying the dynamic response of the filament threads, and concluded that the initiating event is likely to be a microflare. Using a nonlinear force-free field extrapolation of the photospheric magnetogram to estimate the coronal magnetic structure, we determined the possible connectivity between the jet source and the oscillating prominence segments. We will present the results of this investigation and discuss their implications for filament structure and heating. This work was supported by NASA's H-SR program.

  6. Limits on Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; Scargle, J. D.; Troja, E.

    2012-01-01

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to should contribute to the flux from NSs. Considering 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.

  7. Tilt Angle and Footpoint Separation of Small and Large Bipolar Sunspot Regions Observed with HMI

    NASA Astrophysics Data System (ADS)

    McClintock, B. H.; Norton, A. A.

    2016-02-01

    We investigate bipolar sunspot regions and how tilt angle and footpoint separation vary during emergence and decay. The Helioseismic and Magnetic Imager on board the Solar Dynamic Observatory collects data at a higher cadence than historical records and allows for a detailed analysis of regions over their lifetimes. We sample the umbral tilt angle, footpoint separation, and umbral area of 235 bipolar sunspot regions in Helioseismic and Magnetic Imager—Debrecen Data with an hourly cadence. We use the time when the umbral area peaks as time zero to distinguish between the emergence and decay periods of each region and we limit our analysis of tilt and separation behavior over time to within ±96 hr of time zero. Tilt angle evolution is distinctly different for regions with small (≈30 MSH), midsize (≈50 MSH), and large (≈110 MSH) maximum umbral areas, with 45 and 90 MSH being useful divisions for separating the groups. At the peak umbral area, we determine median tilt angles for small (7.°6), midsize (5.°9), and large (9.°3) regions. Within ±48 hr of the time of peak umbral area, large regions steadily increase in tilt angle, midsize regions are nearly constant, and small regions show evidence of negative tilt during emergence. A period of growth in footpoint separation occurs over a 72-hr period for all of the regions from roughly 40 to 70 Mm. The smallest bipoles (<9 MSH) are outliers in that they do not obey Joy's law and have a much smaller footpoint separation. We confirm the Muñoz-Jaramillo et al. (2015) results that the sunspots appear to be two distinct populations.

  8. Limits on Large Extra Dimensions Based on Observations of Neutron Stars with the Fermi-LAT

    SciTech Connect

    Ajello, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G.A.; Cameron, R.A.; Caraveo, P.A.; Casandjian, J.M.; Cecchi, C.; Charles, E.; /more authors..

    2012-08-17

    We present limits for the compactification scale in the theory of Large Extra Dimensions (LED) proposed by Arkani-Hamed, Dimopoulos, and Dvali. We use 11 months of data from the Fermi Large Area Telescope (Fermi-LAT) to set gamma ray flux limits for 6 gamma-ray faint neutron stars (NS). To set limits on LED we use the model of Hannestad and Raffelt (HR) that calculates the Kaluza-Klein (KK) graviton production in supernova cores and the large fraction subsequently gravitationally bound around the resulting NS. The predicted decay of the bound KK gravitons to {gamma}{gamma} should contribute to the flux from NSs. Considering 2 to 7 extra dimensions of the same size in the context of the HR model, we use Monte Carlo techniques to calculate the expected differential flux of gamma-rays arising from these KK gravitons, including the effects of the age of the NS, graviton orbit, and absorption of gamma-rays in the magnetosphere of the NS. We compare our Monte Carlo-based differential flux to the experimental differential flux using maximum likelihood techniques to obtain our limits on LED. Our limits are more restrictive than past EGRET-based optimistic limits that do not include these important corrections. Additionally, our limits are more stringent than LHC based limits for 3 or fewer LED, and comparable for 4 LED. We conclude that if the effective Planck scale is around a TeV, then for 2 or 3 LED the compactification topology must be more complicated than a torus.

  9. Observable T{sub 7} Lepton Flavor Symmetry at the Large Hadron Collider

    SciTech Connect

    Cao Qinghong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi

    2011-04-01

    More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T{sub 7} and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.

  10. Observable T7 lepton flavor symmetry at the Large Hadron Collider.

    PubMed

    Cao, Qing-Hong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi

    2011-04-01

    More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T(7) and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.

  11. High Resolution WRF Modeling of the Western USA: Comparisons with Observations and large scale Gridded Data

    NASA Astrophysics Data System (ADS)

    Lebassi-Habtezion, B.; Diffenbaugh, N. S.

    2011-12-01

    Meso- and micro-scale atmospheric features are often not captured in GCMs due to the coarse model resolution. These features could be very important in modifying the regional- and local-scale climate. For example sea breezes, urbanization, irrigation, and mountain/valley circulations can modify the local climate and potentially upscale to larger scales. In this study we evaluate the mesoscale Weather Research and Forecast (WRF) Model against station observations, gridded observations, and reanalysis data over the western states of the USA. Simulations are compared for summer (JJA) 2010 at resolutions of 4, 25 and 50kms with each grid covering the entire Western USA. Observations of July surface temperature, relative humidity, and wind speed and direction are compared with model results at the three resolutions. Results showed that 4km WRF most closely matched point observations of the daytime 10m wind speeds and direction, while 50km WRF showed the largest biases. However, 4km WRF showed larger daytime surface temperature and humidity biases, while agreement with observed nighttime temperature and humidity was generally high for all resolutions. Comparisons of 4km WRF and 4km gridded PRISM data showed a warm bias in the Central Valley of California and the southern part of the Western USA domain. These biases were small in June and larger in July and August, and are associated with deficit of moisture from irrigation in the Central Valley and deficit of monsoon rainfall in the southern domain. Finally, comparisons between 4km WRF forced by global (NCEP) and regional (NARR) reanalysis was undertaken. Results showed warm biases in coastal California when 4km WRF was nested within the global reanalysis, and that these coastal biases did not occur 4km WRF was nested within the regional reanalysis. These results will be used in evaluations of the need for high resolution non-hydrostatic WRF and its performance against observations. It will also be used for quantifying

  12. Large-scale outflow in quasar LBQS J1206+1052: HST/COS observations

    NASA Astrophysics Data System (ADS)

    Chamberlain, Carter; Arav, Nahum

    2015-11-01

    Using two orbits of HST/COS archival observations, we measure the location and energetics of a quasar outflow from LBQS J1206+1052. From separate collisional excitation models of observed N III/N III* and S III/S III* troughs, we measure the electron number density n_e of the outflow. Both independent determinations are in full agreement and yield n_e =10^{3.0} cm^{-3}. Combining this value of n_e with photoionization simulations, we determine that the outflow is located 840 pc from the central source. The outflow has a velocity of 1400 km s-1, a mass flux of 9 M⊙ yr-1 and a kinetic luminosity of 1042.8 erg s-1. The distance finding is much larger than predicted from radiative acceleration models, but is consistent with recent empirical distance determinations.

  13. VLA observations of stellar planetary nebulae. [using Very Large Array at National Radio Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.; Balick, B.; Thompson, A. R.

    1979-01-01

    Coordinates, dimensions, 4885-MHz flux densities, and brightness temperatures of K3-2, NGC 6833, Ps 1, II 5117, Me 2-2, Hb 12, Vy 1-1, and M1-5 are reported. In two other cases, H3-29 and H3-75, confused extended structure was detected in which the nebula could not be identified with certainty. He 2-467, M1-2, and Peterson's H-alpha object in M15 were also included in the observations but not detected with an upper limit of less than 10 mJy. The observations are compared with some of the previous optical and radio data, such as log S(H-beta). Distances are computed from the present data with standard assumptions. Corresponding linear radii range below 0.1 pc, among the smallest in previous distributions of radius.

  14. Fermi large area telescope observations of blazar 3C 279 occultations by the sun

    SciTech Connect

    Barbiellini, G.; Bastieri, D.; Buson, S.; Bechtol, K.; Blandford, R. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Chiang, J.; Bellazzini, R.; Bregeon, J.; Bruel, P.; Caraveo, P. A.; Cavazzuti, E.; Ciprini, S.; Cecchi, C.; Chaves, R. C. G.; Cheung, C. C. E-mail: phdmitry@stanford.edu; and others

    2014-04-01

    Observations of occultations of bright γ-ray sources by the Sun may reveal predicted pair halos around blazars and/or new physics, such as, e.g., hypothetical light dark matter particles—axions. We use Fermi Gamma-Ray Space Telescope (Fermi) data to analyze four occultations of blazar 3C 279 by the Sun on October 8 each year from 2008 to 2011. A combined analysis of the observations of these occultations allows a point-like source at the position of 3C 279 to be detected with significance of ≈3σ, but does not reveal any significant excess over the flux expected from the quiescent Sun. The likelihood ratio test rules out complete transparency of the Sun to the blazar γ-ray emission at a 3σ confidence level.

  15. Observing two dark accelerators around the Galactic Centre with Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Hui, C. Y.; Yeung, P. K. H.; Ng, C. W.; Lin, L. C. C.; Tam, P. H. T.; Cheng, K. S.; Kong, A. K. H.; Chernyshov, D. O.; Dogiel, V. A.

    2016-04-01

    We report the results from a detailed γ-ray investigation in the field of two `dark accelerators', HESS J1745-303 and HESS J1741-302, with 6.9 yr of data obtained by the Fermi Large Area Telescope. For HESS J1745-303, we found that its MeV-GeV emission is mainly originated from the `Region A' of the TeV feature. Its γ-ray spectrum can be modelled with a single power law with a photon index of Γ ˜ 2.5 from few hundreds MeV-TeV. Moreover, an elongated feature, which extends from `Region A' towards north-west for ˜1.3°, is discovered for the first time. The orientation of this feature is similar to that of a large-scale atomic/molecular gas distribution. For HESS J1741-302, our analysis does not yield any MeV-GeV counterpart for this unidentified TeV source. On the other hand, we have detected a new point source, Fermi J1740.1-3013, serendipitously. Its spectrum is apparently curved which resembles that of a γ-ray pulsar. This makes it possibly associated with PSR B1737-20 or PSR J1739-3023.

  16. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing.

    PubMed

    Hilker, Thomas; Natsagdorj, Enkhjargal; Waring, Richard H; Lyapustin, Alexei; Wang, Yujie

    2014-02-01

    The Mongolian Steppe is one of the largest remaining grassland ecosystems. Recent studies have reported widespread decline of vegetation across the steppe and about 70% of this ecosystem is now considered degraded. Among the scientific community there has been an active debate about whether the observed degradation is related to climate, or over-grazing, or both. Here, we employ a new atmospheric correction and cloud screening algorithm (MAIAC) to investigate trends in satellite observed vegetation phenology. We relate these trends to changes in climate and domestic animal populations. A series of harmonic functions is fitted to Moderate Resolution Imaging Spectroradiometer (MODIS) observed phenological curves to quantify seasonal and inter-annual changes in vegetation. Our results show a widespread decline (of about 12% on average) in MODIS observed normalized difference vegetation index (NDVI) across the country but particularly in the transition zone between grassland and the Gobi desert, where recent decline was as much as 40% below the 2002 mean NDVI. While we found considerable regional differences in the causes of landscape degradation, about 80% of the decline in NDVI could be attributed to increase in livestock. Changes in precipitation were able to explain about 30% of degradation across the country as a whole but up to 50% in areas with denser vegetation cover (P < 0.05). Temperature changes, while significant, played only a minor role (r(2)  = 0.10, P < 0.05). Our results suggest that the cumulative effect of overgrazing is a primary contributor to the degradation of the Mongolian steppe and is at least partially responsible for desertification reported in previous studies. PMID:23966315

  17. Satellite Observed Widespread Decline in Mongolian Grasslands Largely Due to Overgrazing

    NASA Technical Reports Server (NTRS)

    Hilker, Thomas; Natsagdorj, Enkhjargal; Waring, Richard H.; Lyapustin, Alexei; Wang, Yujie

    2014-01-01

    The Mongolian Steppe is one of the largest remaining grassland ecosystems. Recent studies have reported widespread decline of vegetation across the steppe and about 70 percent of this ecosystem is now considered degraded. Among the scientific community there has been an active debate about whether the observed degradation is related to climate, or overgrazing, or both. Here, we employ a new atmospheric correction and cloud screening algorithm (MAIAC) to investigate trends in satellite observed vegetation phenology. We relate these trends to changes in climate and domestic animal populations. A series of harmonic functions is fitted to MODIS observed phenological curves to quantify seasonal and inter-annual changes in vegetation. Our results show a widespread decline (of about 12 percent on average) in MODIS observed NDVI across the country but particularly in the transition zone between grassland and the Gobi desert, where recent decline was as much as 40 percent below the 2002 mean NDVI. While we found considerable regional differences in the causes of landscape degradation, about 80 percent of the decline in NDVI could be attributed to increase in livestock. Changes in precipitation were able to explain about 30 percent of degradation across the country as a whole but up to 50 percent in areas with denser vegetation cover (p0.05). Temperature changes, while significant, played only a minor role (r20.10, p0.05). Our results suggest that the cumulative effect of overgrazing is a primary contributor to the degradation of the Mongolian steppe and is at least partially responsible for desertification reported in previous studies.

  18. Pan-Chromatic Observations of the Remarkable Nova Large Magellanic Cloud 2012

    NASA Astrophysics Data System (ADS)

    Schwarz, Greg J.; Shore, Steven N.; Page, Kim L.; Osborne, Julian P.; Beardmore, Andrew P.; Walter, Frederick M.; Bode, Michael F.; Drake, Jeremy J.; Ness, Jan-Uwe; Starrfield, Sumner; Van Rossum, Daniel R.; Woodward, Charles E.

    2015-03-01

    We present the results of an intensive multiwavelength campaign on nova LMC 2012. This nova evolved very rapidly in all observed wavelengths. The time to fall two magnitudes in the V band was only 2 days. In X-rays the super soft phase began 13 ± 5 days after discovery and ended around day 50 after discovery. During the super soft phase, the Swift/XRT and Chandra spectra were consistent with the underlying white dwarf (WD) being very hot, ˜1 MK, and luminous, ˜1038 erg s-1. The UV, optical, and near-IR photometry showed a periodic variation after the initial and rapid fading had ended. Timing analysis revealed a consistent 19.24 ± 0.03 hr period in all UV, optical, and near-IR bands with amplitudes of ˜0.3 mag which we associate with the orbital period of the central binary. No periods were detected in the corresponding X-ray data sets. A moderately high inclination system, i = 60 ± 10{\\circ{}}, was inferred from the early optical emission lines. The HST/STIS UV spectra were highly unusual with only the N v (1240 Å) line present and superposed on a blue continuum. The lack of emission lines and the observed UV and optical continua from four epochs can be fit with a low mass ejection event, ˜10-6 {{M}⊙ }, from a hot and massive WD near the Chandrasekhar limit. The WD, in turn, significantly illuminated its subgiant companion which provided the bulk of the observed UV/optical continuum emission at the later dates. The inferred extreme WD characteristics and low mass ejection event favor nova LMC 2012 being a recurrent nova of the U Sco subclass. Based on observations with the NASA/ESA Hubble Space Telescope obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Incorporated, under NASA contract NAS5-26555.

  19. Energetic delayed hadrons in large air showers observed at 5200m above sea level

    NASA Technical Reports Server (NTRS)

    Kaneko, T.; Hagiwara, K.; Yoshii, H.; Martinic, N.; Siles, L.; Miranda, P.; Kakimoto, F.; Tsuchimoto, I.; Inoue, N.; Suga, K.

    1985-01-01

    Energetic delayed hadrons in air showers with electron sizes in the range 10 to the 6th power to 10 to the 9th power were studied by observing the delayed bursts produced in the shield of nine square meter scintillation detectors in the Chacaltaya air-shower array. The frequency of such delayed burst is presented as a function of electron size, core distance and sec theta.

  20. Physical Conditions in Quasar Outflows: Very Large Telescope Observations of QSO 2359-1241

    NASA Astrophysics Data System (ADS)

    Korista, Kirk T.; Bautista, Manuel A.; Arav, Nahum; Moe, Maxwell; Costantini, Elisa; Benn, Chris

    2008-11-01

    We analyze the physical conditions of the outflow seen in QSO 2359-1241 (NVSS J235953-124148), based on high-resolution spectroscopic VLT observations. This object was previously studied using Keck HIRES data. The main improvement over the HIRES results is our ability to accurately determine the number density of the outflow. For the major absorption component, the populations from five different Fe II excited levels yield a gas density nH = 104.4 cm-3 with less than 20% scatter. We find that the Fe II absorption arises from a region with roughly constant conditions and temperature greater than 9000 K, before the ionization front where temperature and electron density drop. Further, we model the observed spectra and investigate the effects of varying gas metallicities and the spectral energy distribution of the incident ionizing radiation field. The accurately measured column densities allow us to determine the ionization parameter (log UH ≈ - 2.4) and total column density of the outflow [log NH(cm -2) ≈ 20.6]. Combined with the number density finding, these are stepping stones toward determining the mass flux and kinetic luminosity of the outflow, and therefore its importance to AGN feedback processes. Based on observations made with ESO Telescopes at the Paranal Observatories under program 078.B-0433(A).

  1. MESSENGER Orbital Observations of Large-Amplitude Kelvin-Helmholtz Waves at Mercury's Magnetopause

    NASA Technical Reports Server (NTRS)

    Sundberg, Torbjorn; Boardsen, Scott A.; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Zurbuchen, Thomas H.; Raines, Jim M.; Solomon, Sean C.

    2012-01-01

    We present a survey of Kelvi\\ n-Helmholtz (KH) waves at Mercury's magnetopause during MESSENGER's first Mercury year in orb it. The waves were identified on the basis of the well-established sawtooth wave signatures that are associated with non-linear KH vortices at the magnetopause. MESSENGER frequently observed such KH waves in the dayside region of the magnetosphere where the magnetosheath flow velocity is still sub -sonic, which implies that instability growth rates at Mercury's magnetopau are much larger than at Earth. We attribute these greater rates to the limited wave energy dissipation in Mercury's highly resistive regolith. The wave amplitude was often on the order of ' 00 nT or more, and the wave periods were - 10- 20 s. A clear dawn-dusk asymmetry is present in the data, in that all of the observed wave events occurred in the post-noon and dusk-side sectors of the magnetopause. This asymmetry is like ly related to finite Larmor-radius effects and is in agreement with results from particle-in-cell simulations of the instability. The waves were observed almost exclusively during periods when the north-south component of the magnetosheath magnetic field was northward, a pattern similar to that for most terrestrial KH wave events. Accompanying plasma measurements show that the waves were associated with the transport of magnetosheath plasma into the magnetosphere.

  2. Discovery of Circularly Polarized Radio Emission from SS 433.

    PubMed

    Fender; Rayner; Norris; Sault; Pooley

    2000-02-10

    We report the discovery of circularly polarized radio emission from the radio-jet X-ray binary SS 433 with the Australia Telescope Compact Array. The flux density spectrum of the circular polarization, clearly detected at four frequencies between 1 and 9 GHz, is of the form V~nu-0.9+/-0.1. Multiple components in the source and a lack of very high spatial resolution do not allow a unique determination of the origin of the circular polarization or of the spectrum of fractional polarization. However, we argue that the emission is likely to arise in the inner regions of the binary, possibly via propagation-induced conversion of linear to circular polarization, and the fractional circular polarization of these regions may be as high as 10%. Observations such as these have the potential to help us investigate the composition, whether pairs or baryonic, of the ejecta from X-ray binaries.

  3. Line-of-sight observations at 86 GHz with a very large and a small antenna

    NASA Technical Reports Server (NTRS)

    Vogel, W. J.; Davis, J. H.; Mayer, C. E.

    1984-01-01

    Amplitude variations over a 12.9 km terrestrial line-of-sight path were measured simultaneously on a 1400 lambda and a 29 lambda antenna at 86.16 GHz. Clear atmosphere data from two occasions with considerably different meteorological conditions are presented. Both sets have statistical and spectral parameters in good agreement with turbulence theory. Some of the data taken after a thunderstorm front passage show a slow gain reduction of the large antenna of up to 2 dB and an increase in variance to a level above that of the small antenna. The power spectral density of these data reveals that the excess fluctuation power is in the region of the spectrum which turbulence theory predicts to be flat. It shows an approximate 1/f dependence. It is attributed to refractive bending of up to 0.025 deg. Gain reductions due to turbulence or turbulence induced angle-of-arrival variations were estimated to be negligible.

  4. Three-dimensional computation for flow-induced vibrations of an upstream circular cylinder in two tandem circular cylinders

    NASA Astrophysics Data System (ADS)

    Kondo, Norio

    2014-07-01

    It is well known from a lot of experimental data that fluid forces acting on two tandem circular cylinders are quite different from those acting on a single circular cylinder. Therefore, we first present numerical results for fluid forces acting on two tandem circular cylinders, which are mounted at various spacings in a smooth flow, and second we present numerical results for flow-induced vibrations of the upstream circular cylinder in the tandem arrangement. The two circular cylinders are arranged at close spacing in a flow field. The upstream circular cylinder is elastically placed by damper-spring systems and moves in both the in-line and cross-flow directions. In such models, each circular cylinder is assumed as a rigid body. On the other hand, we do not introduce a turbulent model such as the Large Eddy Simulation (LES) or Reynolds Averaged Navier-Stokes (RANS) models into the numerical scheme to compute the fluid flow. Our numerical procedure to capture the flow-induced vibration phenomena of the upstream circular cylinder is treated as a fluid-structure interaction problem in which the ideas of weak coupling is taken into consideration.

  5. HERSCHEL OBSERVATIONS OF A NEWLY DISCOVERED UX Ori STAR IN THE LARGE MAGELLANIC CLOUD

    SciTech Connect

    Clayton, Geoffrey C.; Sargent, B.; Boyer, M. L.; Meixner, M.; Roman-Duval, J.; Sewilo, M. E-mail: duval@stsci.ed E-mail: meixner@stsci.ed E-mail: sargent@stsci.ed

    2010-10-20

    The LMC star, SSTISAGE1C J050756.44-703453.9, was first noticed during a survey of EROS-2 light curves for stars with large irregular brightness variations typical of the R Coronae Borealis (RCB) class. However, the visible spectrum showing emission lines including the Balmer and Paschen series as well as many Fe II lines is emphatically not that of an RCB star. This star has all of the characteristics of a typical UX Ori star. It has a spectral type of approximately A2 and has excited an H II region in its vicinity. However, if it is an LMC member, then it is very luminous for a Herbig Ae/Be star. It shows irregular drops in brightness of up to 2 mag, and displays the reddening and 'blueing' typical of this class of stars. Its spectrum, showing a combination of emission and absorption lines, is typical of a UX Ori star that is in a decline caused by obscuration from the circumstellar dust. SSTISAGE1C J050756.44-703453.9 has a strong IR excess and significant emission is present out to 500 {mu}m. Monte Carlo radiative transfer modeling of the spectral energy distribution requires that SSTISAGE1C J050756.44-703453.9 have both a dusty disk as well as a large extended diffuse envelope to fit both the mid- and far-IR dust emission. This star is a new member of the UX Ori subclass of the Herbig Ae/Be stars and only the second such star to be discovered in the LMC.

  6. Herschel Observations of a Newly Discovered UX Ori Star in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Clayton, Geoffrey

    2010-10-01

    The LMC star, SSTISAGE1C J050756.44--703453.9, was first noticed during a survey of EROS-2 lightcurves for stars with large irregular brightness variations typical of the R Coronae Borealis (RCB) class. However, the visible spectrum showing emission lines including the Balmer and Paschen series as well as many Fe II lines is emphatically not that of an RCB star. This star has all of the characteristics of a typical UX Ori star. It has a spectral type of approximately A2 and has excited an H II region in its vicinity. However, if it is an LMC member, then it is very luminous for a Herbig Ae/Be star. It shows irregular drops in brightness of up to 2 mag, and displays the reddening and ``blueing'' typical of this class of stars. Its spectrum, showing a combination of emission and absorption lines, is typical of a UX Ori star that is in a decline caused by obscuration from the circumstellar dust. SSTISAGE1C J050756.44--703453.9 has a strong IR excess and significant emission is present out to 500 . Monte Carlo radiative transfer modeling of the SED requires that SSTISAGE1C J050756.44--703453.9 has both a dusty disk as well as a large extended diffuse envelope to fit both the mid- and far-IR dust emission. This star is a new member of the UX Ori subclass of the Herbig Ae/Be stars and only the second such star to be discovered in the LMC.

  7. Pan-chromatic observations of the remarkable nova Large Magellanic Cloud 2012

    SciTech Connect

    Schwarz, Greg J.; Shore, Steven N.; Page, Kim L.; Osborne, Julian P.; Beardmore, Andrew P.; Walter, Frederick M.; Bode, Michael F.; Drake, Jeremy J.; Ness, Jan-Uwe; Starrfield, Sumner; Rossum, Daniel R. Van; Woodward, Charles E.

    2015-03-01

    We present the results of an intensive multiwavelength campaign on nova LMC 2012. This nova evolved very rapidly in all observed wavelengths. The time to fall two magnitudes in the V band was only 2 days. In X-rays the super soft phase began 13 ± 5 days after discovery and ended around day 50 after discovery. During the super soft phase, the Swift/XRT and Chandra spectra were consistent with the underlying white dwarf (WD) being very hot, ∼1 MK, and luminous, ∼10{sup 38} erg s{sup −1}. The UV, optical, and near-IR photometry showed a periodic variation after the initial and rapid fading had ended. Timing analysis revealed a consistent 19.24 ± 0.03 hr period in all UV, optical, and near-IR bands with amplitudes of ∼0.3 mag which we associate with the orbital period of the central binary. No periods were detected in the corresponding X-ray data sets. A moderately high inclination system, i = 60 ± 10{sup ∘}, was inferred from the early optical emission lines. The HST/STIS UV spectra were highly unusual with only the N v (1240 Å) line present and superposed on a blue continuum. The lack of emission lines and the observed UV and optical continua from four epochs can be fit with a low mass ejection event, ∼10{sup −6} M{sub ⊙}, from a hot and massive WD near the Chandrasekhar limit. The WD, in turn, significantly illuminated its subgiant companion which provided the bulk of the observed UV/optical continuum emission at the later dates. The inferred extreme WD characteristics and low mass ejection event favor nova LMC 2012 being a recurrent nova of the U Sco subclass.

  8. Implementation and management of a biomedical observation dictionary in a large healthcare information system

    PubMed Central

    Vandenbussche, Pierre-Yves; Cormont, Sylvie; André, Christophe; Daniel, Christel; Delahousse, Jean; Charlet, Jean; Lepage, Eric

    2013-01-01

    Objective This study shows the evolution of a biomedical observation dictionary within the Assistance Publique Hôpitaux Paris (AP-HP), the largest European university hospital group. The different steps are detailed as follows: the dictionary creation, the mapping to logical observation identifier names and codes (LOINC), the integration into a multiterminological management platform and, finally, the implementation in the health information system. Methods AP-HP decided to create a biomedical observation dictionary named AnaBio, to map it to LOINC and to maintain the mapping. A management platform based on methods used for knowledge engineering has been put in place. It aims at integrating AnaBio within the health information system and improving both the quality and stability of the dictionary. Results This new management platform is now active in AP-HP. The AnaBio dictionary is shared by 120 laboratories and currently includes 50 000 codes. The mapping implementation to LOINC reaches 40% of the AnaBio entries and uses 26% of LOINC records. The results of our work validate the choice made to develop a local dictionary aligned with LOINC. Discussion and Conclusions This work constitutes a first step towards a wider use of the platform. The next step will support the entire biomedical production chain, from the clinician prescription, through laboratory tests tracking in the laboratory information system to the communication of results and the use for decision support and biomedical research. In addition, the increase in the mapping implementation to LOINC ensures the interoperability allowing communication with other international health institutions. PMID:23635601

  9. Pioneer and voyager observations of the solar wind at large heliocentric distances and lattitudes

    SciTech Connect

    Gazis, P.R.; Mihalov, J.D.; Barnes, A.; Lazarus, A.J.; Smith, E.J.

    1989-03-01

    The Pioneer 10, 11, and Voyager 2 spacecraft are well suited for exploring spatial gradients in the distant solar wind. Between 1984 and 1986 Pioneer 11 and Voyager 2 were located at nearly the same heliocentric distance (approx. =20 AU) and longitude but were widely separated in latitude; Pioneer 11 was at a heliographic latitude of greater than or equal to15/sup 0/ while Voyager 2 was near the solar equator. Pioneer 10 was located near the solar equator but at a considerably greater heliocentric distance (approx. =40 AU). IMP observations at 1 AU provide an inner heliosphere baseline.

  10. Circular Vibration Planing of Inconel 718

    NASA Astrophysics Data System (ADS)

    Hettiarachchi, Nandita Kalyanakumara; Moriwaki, Toshimichi; Shibasaka, Toshiro; Nakamoto, Keiichi

    Circular vibration milling (CVM) is achieved by vibrating a milling cutter about the machine tool spindle axis in a circular path, in addition to its rotary motion. CVM has been proven capable of producing better surface finishes on difficult to cut materials. However, the CVM process is far slower than conventional milling process. In circular vibration planing (CVP) process, the cutting tool is clamped without rotation and fed at a speed comparable to the feed speed of conventional milling. By superimposing circular vibration motion, necessary cutting speed could be achieved keeping the feed speed at realistic values. Inconel 718 was machined by CVP and conventional milling at a similar feed rate. It was observed that CVP could reduce tool wear and hence produce better surface finishes than conventional milling. A geometric simulation showed a major difference between uncut chip shapes of the two processes. The difference of uncut chip shapes suggests that in CVP process, less rubbing occurs between tool flank face and work before the tool penetrates in to the work to form a chip. The reduced rubbing of the flank face is proposed as the reson for reduced tool wear in CVP when compared with conventional milling.

  11. Circular chemiresistors for microchemical sensors

    DOEpatents

    Ho, Clifford K.

    2007-03-13

    A circular chemiresistor for use in microchemical sensors. A pair of electrodes is fabricated on an electrically insulating substrate. The pattern of electrodes is arranged in a circle-filling geometry, such as a concentric, dual-track spiral design, or a circular interdigitated design. A drop of a chemically sensitive polymer (i.e., chemiresistive ink) is deposited on the insulating substrate on the electrodes, which spreads out into a thin, circular disk contacting the pair of electrodes. This circularly-shaped electrode geometry maximizes the contact area between the pair of electrodes and the polymer deposit, which provides a lower and more stable baseline resistance than with linear-trace designs. The circularly-shaped electrode pattern also serves to minimize batch-to-batch variations in the baseline resistance due to non-uniform distributions of conductive particles in the chemiresistive polymer film.

  12. X-ray observations of a large sample of cataclysmic variable stars using the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Cordova, F. A.; Mason, K. O.

    1984-01-01

    This paper presents the results of an X-ray survey of 31 known or suspected cataclysmic variables. Eighteen of these close binary systems are detected with inferred luminosities in the 0.1-4.0 keV band of between 10 to the 30th and 10 to the 32nd erg/sec. The majority have relatively hard X-ray spectra (kT greater than 2 keV) irrespective of luminosity state. Of seven dwarf novae observed during optical outbursts only U Gem exhibited enhanced ultrasoft X-ray emission (kT of about 10 eV) in addition to weak, hard X-ray emission. Variability of the X-ray flux is observed in many of these stars, on time-scales ranging from tens of seconds to hours. The contribution to the flux from extended X-ray emission is investigated for SU UMa and GK Per. Several possibilities for the origin of the hard X-rays are considered.

  13. An analysis of observed large air-sea temperature differences in tropical cyclones

    SciTech Connect

    Kepert, J.D.

    1994-12-31

    At high wind speeds over the sea, the lower part of the atmospheric boundary layer becomes filled with spray. In recent years, much attention has been devoted to the question of whether the evaporation from these droplets contributes significantly to the total sea-air evaporative flux under such conditions. Direct observations of turbulent fluxes of heat, moisture and momentum over the sea at moderately high wind speeds were taken during HEXOS Main Experiment (HEXMAX). (HEXOS is the Humidity Exchange Over the Sea program.) An analysis of these results shows that the neutral transfer coefficient is nearly constant with wind speed, up to about 18 m/s, albeit with considerable scatter about the mean. Here the author describes a preliminary investigation of the possible effects evaporation of sea spray could have on the vertical structure of the atmospheric boundary layer at high wind speeds. The remainder of the paper consists of a brief discussion of a radiosonde ascent launched from a ship during a tropical cyclone, a description of the turbulent closure model used to investigate the role of the various physical processes, followed by a discussion of the model results and their relationship to the observation.

  14. Solar wind structure at large heliocentric distances - An interpretation of Pioneer 10 observations

    NASA Technical Reports Server (NTRS)

    Hundhausen, A. J.; Gosling, J. T.

    1976-01-01

    Examination of hourly values of the solar wind speed observed by the Pioneer 10 spacecraft beyond a heliocentric distance of 4 AU reveals (1) a prevalent 'sawtoothlike' speed-time profile, most speed fluctuations displaying a rapid rise and a much slower decline, and (2) the nearly universal appearance of abrupt (on the 1-hour time resolution of these data) changes in the speed on the rising portions of the speed fluctuations. These previously unreported characteristics, as well as the rate of decay of stream amplitudes derived earlier by Collard and Wolfe, are in general agreement with the predictions of stream propagation models that neglect any conversion of kinetic energy to thermal energy outside of shock fronts. Thus the Pioneer 10 observations give the first confirmation of the general concept of solar wind stream evolution employed in these models, i.e., that solar wind speed inhomogeneities appear to steepen to form shock waves and that the 'wave amplitudes' decay slowly as the shock waves propagate outward from the sun.

  15. Wavenumber-resolved observations of ionospheric waves using the Very Large Array radiotelescope

    NASA Astrophysics Data System (ADS)

    Jacobson, Abram R.; Erickson, William C.

    1992-04-01

    Ionospheric waves were studied via their transient signatures in the line of sight total electron content (TEC) using the 1990 VLA observations. These observations confirmed that traveling ionospheric disturbances dominate at long periods of greater than 1000 s, their horizontal phase speeds are typically less than 0.2 km/s, and their azimuth distributions are quasi-isotropic. At short periods of greater than 300 s, the dominant waves are magnetic-eastward directed (MED) and have phase speeds in the range between 0.1-1 km/s. Data revealed that the MED disturbances are too fast to be F-region drifting irregularities but are too slow to be acoustic waves. The MED waves are found to cause very small rms TEC perturbations of less than or equal to 2 x 10 exp 13 per sq m and to be more active at night and are much more visible along South- rather than North-directed lines of sight.

  16. ESO Diffuse Interstellar Bands Large Exploration Survey (EDIBLES) - Merging Observations and Laboratory Data

    NASA Technical Reports Server (NTRS)

    Salama, Farid

    2016-01-01

    The Diffuse Interstellar Bands (DIBs) are a set of 500 absorption bands that are detected in the spectra of stars with interstellar clouds in the line of sight. DIBs are found from the NUV to the NIR in the spectra of reddened stars spanning different interstellar environments in our local, and in other galaxies. DIB carriers are a significant part of the interstellar chemical inventory. They are stable and ubiquitous in a broad variety of environments and play a unique role in interstellar physics/chemistry. It has long been realized that the solving of the DIB problem requires a strong synergy between astronomical observations, laboratory astrophysics, and astrophysical modeling of line-of-sights. PAHs are among the molecular species that have been proposed as DIB carriers. We will present an assessment of the PAH-DIB model in view of the progress and the advances that have been achieved over the past years through a series of studies involving astronomical observations of DIBs, laboratory simulation of interstellar analogs for neutrals and ionized PAHs, theoretical calculations of PAH spectra and the modelization of diffuse and translucent interstellar clouds. We will present a summary of what has been learned from these complementary studies, the constraints that can now be derived for the PAHs as DIB carriers in the context of the PAH-DIB model and how these constraints can be applied to the EDIBLES project. The spectra of several neutral and ionized PAHs isolated in the gas phase at low temperature have been measured in the laboratory under experimental conditions that mimic interstellar conditions and are compared with an extensive set of astronomical spectra of reddened, early type stars. The comparisons of astronomical and laboratory data provide upper limits for the abundances of specific neutral PAH molecules and ions along specific lines-of-sight. Something that is not attainable from infrared observations alone. We present the characteristics of the

  17. Recent Large Reduction in Sulfur Dioxide Emissions from Chinese Power Plants Observed by the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Li, Can; Zhang, Qiang; Krotkov, Nickolay A.; Streets, David G.; He, Kebin; Tsay, Si-Chee; Gleason, James F.

    2010-01-01

    The Ozone Monitoring Instrument (OMI) aboard NASA's Aura satellite observed substantial increases in total column SO2 and tropospheric column NO2 from 2005 to 2007, over several areas in northern China where large coal-fired power plants were built during this period. The OMI-observed SO2/NO2 ratio is consistent with the SO2/ NO2, emissions estimated from a bottom-up approach. In 2008 over the same areas, OMI detected little change in NO2, suggesting steady electricity output from the power plants. However, dramatic reductions of S0 2 emissions were observed by OMI at the same time. These reductions confirm the effectiveness of the flue-gas desulfurization (FGD) devices in reducing S02 emissions, which likely became operational between 2007 and 2008. This study further demonstrates that the satellite sensors can monitor and characterize anthropogenic emissions from large point sources.

  18. Occasional large emissions of nitrous oxide and methane observed in stormwater biofiltration systems.

    PubMed

    Grover, Samantha P P; Cohan, Amanda; Chan, Hon Sen; Livesley, Stephen J; Beringer, Jason; Daly, Edoardo

    2013-11-01

    Designed, green infrastructures are becoming a customary feature of the urban landscape. Sustainable technologies for stormwater management, and biofilters in particular, are increasingly used to reduce stormwater runoff volumes and peaks as well as improve the water quality of runoff discharged into urban water bodies. Although a lot of research has been devoted to these technologies, their effect in terms of greenhouse gas fluxes in urban areas has not been yet investigated. We present the first study aimed at quantifying greenhouse gas fluxes between the soil of stormwater biofilters and the atmosphere. N2O, CH4, and CO2 were measured periodically over a year in two operational vegetated biofiltration cells at Monash University in Melbourne, Australia. One cell had a saturated zone at the bottom, and compost and hardwood mulch added to the sandy loam filter media. The other cell had no saturated zone and was composed of sandy loam. Similar sedges were planted in both cells. The biofilter soil was a small N2O source and a sink for CH4 for most measurement events, with occasional large emissions of both N2O and CH4 under very wet conditions. Average N2O fluxes from the cell with the saturated zone were almost five-fold greater (65.6 μg N2O-N m(-2) h(-1)) than from the other cell (13.7 μg N2O-N m(-2) h(-1)), with peaks up to 1100 μg N2O-N m(-2) h(-1). These N2O fluxes are of similar magnitude to those measured in other urban soils, but with larger peak emissions. The CH4 sink strength of the cell with the saturated zone (-3.8 μg CH4-C m(-2) h(-1)) was lower than the other cell (-18.3 μg CH4-C m(-2) h(-1)). Both cells of the biofilter appeared to take up CH4 at similar rates to other urban lawn systems; however, the biofilter cells displayed occasional large CH4 emissions following inflow events, which were not seen in other urban systems. CO2 fluxes increased with soil temperature in both cells, and in the cell without the saturated zone CO2 fluxes decreased

  19. Occasional large emissions of nitrous oxide and methane observed in stormwater biofiltration systems.

    PubMed

    Grover, Samantha P P; Cohan, Amanda; Chan, Hon Sen; Livesley, Stephen J; Beringer, Jason; Daly, Edoardo

    2013-11-01

    Designed, green infrastructures are becoming a customary feature of the urban landscape. Sustainable technologies for stormwater management, and biofilters in particular, are increasingly used to reduce stormwater runoff volumes and peaks as well as improve the water quality of runoff discharged into urban water bodies. Although a lot of research has been devoted to these technologies, their effect in terms of greenhouse gas fluxes in urban areas has not been yet investigated. We present the first study aimed at quantifying greenhouse gas fluxes between the soil of stormwater biofilters and the atmosphere. N2O, CH4, and CO2 were measured periodically over a year in two operational vegetated biofiltration cells at Monash University in Melbourne, Australia. One cell had a saturated zone at the bottom, and compost and hardwood mulch added to the sandy loam filter media. The other cell had no saturated zone and was composed of sandy loam. Similar sedges were planted in both cells. The biofilter soil was a small N2O source and a sink for CH4 for most measurement events, with occasional large emissions of both N2O and CH4 under very wet conditions. Average N2O fluxes from the cell with the saturated zone were almost five-fold greater (65.6 μg N2O-N m(-2) h(-1)) than from the other cell (13.7 μg N2O-N m(-2) h(-1)), with peaks up to 1100 μg N2O-N m(-2) h(-1). These N2O fluxes are of similar magnitude to those measured in other urban soils, but with larger peak emissions. The CH4 sink strength of the cell with the saturated zone (-3.8 μg CH4-C m(-2) h(-1)) was lower than the other cell (-18.3 μg CH4-C m(-2) h(-1)). Both cells of the biofilter appeared to take up CH4 at similar rates to other urban lawn systems; however, the biofilter cells displayed occasional large CH4 emissions following inflow events, which were not seen in other urban systems. CO2 fluxes increased with soil temperature in both cells, and in the cell without the saturated zone CO2 fluxes decreased

  20. Melt production in large-scale impact events: Implications and observations at terrestrial craters

    NASA Technical Reports Server (NTRS)

    Grieve, Richard A. F.; Cintala, Mark J.

    1992-01-01

    The volume of impact melt relative to the volume of the transient cavity increases with the size of the impact event. Here, we use the impact of chondrite into granite at 15, 25, and 50 km s(sup -1) to model impact-melt volumes at terrestrial craters in crystalline targets and explore the implications for terrestrial craters. Figures are presented that illustrate the relationships between melt volume and final crater diameter D(sub R) for observed terrestrial craters in crystalline targets; also included are model curves for the three different impact velocities. One implication of the increase in melt volumes with increasing crater size is that the depth of melting will also increase. This requires that shock effects occurring at the base of the cavity in simple craters and in the uplifted peaks of central structures at complex craters record progressively higher pressures with increasing crater size, up to a maximum of partial melting (approx. 45 GPa). Higher pressures cannot be recorded in the parautochthonous rocks of the cavity floor as they will be represented by impact melt, which will not remain in place. We have estimated maximum recorded pressures from a review of the literature, using such observations as planar features in quartz and feldspar, diaplectic glasses of feldspar and quartz, and partial fusion and vesiculation, as calibrated with estimates of the pressures required for their formation. Erosion complicates the picture by removing the surficial (most highly shocked) rocks in uplifted structures, thereby reducing the maximum shock pressures observed. In addition, the range of pressures that can be recorded is limited. Nevertheless, the data define a trend to higher recorded pressures with crater diameter, which is consistent with the implications of the model. A second implication is that, as the limit of melting intersects the base of the cavity, central topographic peaks will be modified in appearance and ultimately will not occur. That is

  1. Keplerian integrals, elimination theory and identification of very short arcs in a large database of optical observations

    NASA Astrophysics Data System (ADS)

    Gronchi, G. F.; Baù, G.; Milani, A.

    2016-09-01

    Modern asteroid surveys produce an increasingly large number of observations, which are grouped into very short arcs (VSAs) each containing a few observations of the same object in one single night. To decide whether two VSAs collected in different nights correspond to the same observed object we can attempt to compute an orbit with the observations of both arcs: this is called the linkage problem. Since the number of linkages to be attempted is very large, we need efficient methods of orbit determination. Using the first integrals of Kepler's motion we can write algebraic equations for the linkage problem, which can be put in polynomial form. In Gronchi et al. (Celest Mech Dyn Astron 123(2):105-122, 2015) these equations are reduced to a polynomial equation of degree 9: the unknown is the topocentric distance of the observed body at the mean epoch of one VSA. Here we derive the same equations in a more concise way, and show that the degree 9 is optimal in a sense that will be specified in Sect. 3.3. We also introduce a procedure to join three VSAs: from the conservation of angular momentum we obtain a polynomial equation of degree 8 in the topocentric distance at the mean epoch of the second VSA. For both identification methods, with two and three VSAs, we discuss how to discard solutions. Finally, we present some numerical tests showing that the new methods give satisfactory results and can be used also when the time separation between the VSAs is large. The low polynomial degree of the new methods makes them well suited to deal with the very large number of asteroid observations collected by the modern surveys.

  2. 76 FR 62148 - Title VI; Proposed Circular, Environmental Justice; Proposed Circular

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-06

    ... Circular'' (76 FR 60593) and ``Environmental Justice; Proposed Circular'' (76 FR 60590). Corrections The... Federal Transit Administration Title VI; Proposed Circular, Environmental Justice; Proposed Circular... information sessions, as published in the September 29, 2011, Federal Register Notices titled ``Title...

  3. Melt production in large-scale impact events: Planetary observations and implications

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Grieve, Richard A. F.

    1992-01-01

    Differences in scaling relationships for crater formation and the generation of impact melt should lead to a variety of observable features and phenomena. These relationships infer that the volume of the transient cavity (and final crater) relative to the volume of impact melt (and the depth to which melting occurs) decreases as the effects of gravity and impact velocity increase. Since planetary gravity and impact velocity are variables in the calculation of cavity and impact-melt volumes, the implications of the model calculation will vary between planetary bodies. Details of the model calculations of impact-melt generation as a function of impact and target physical conditions were provided elsewhere, as were attempts to validate the model through ground-truth data on melt volumes, shock attenuation, and morphology from terrestrial impact craters.

  4. Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules

    PubMed Central

    Imai, Hiroshi; Shima, Tomohiro; Sutoh, Kazuo; Walker, Matthew L.; Knight, Peter J.; Kon, Takahide; Burgess, Stan A.

    2015-01-01

    Cytoplasmic dynein is a dimeric AAA+ motor protein that performs critical roles in eukaryotic cells by moving along microtubules using ATP. Here using cryo-electron microscopy we directly observe the structure of Dictyostelium discoideum dynein dimers on microtubules at near-physiological ATP concentrations. They display remarkable flexibility at a hinge close to the microtubule binding domain (the stalkhead) producing a wide range of head positions. About half the molecules have the two heads separated from one another, with both leading and trailing motors attached to the microtubule. The other half have the two heads and stalks closely superposed in a front-to-back arrangement of the AAA+ rings, suggesting specific contact between the heads. All stalks point towards the microtubule minus end. Mean stalk angles depend on the separation between their stalkheads, which allows estimation of inter-head tension. These findings provide a structural framework for understanding dynein's directionality and unusual stepping behaviour. PMID:26365535

  5. Direct observation shows superposition and large scale flexibility within cytoplasmic dynein motors moving along microtubules

    NASA Astrophysics Data System (ADS)

    Imai, Hiroshi; Shima, Tomohiro; Sutoh, Kazuo; Walker, Matthew L.; Knight, Peter J.; Kon, Takahide; Burgess, Stan A.

    2015-09-01

    Cytoplasmic dynein is a dimeric AAA+ motor protein that performs critical roles in eukaryotic cells by moving along microtubules using ATP. Here using cryo-electron microscopy we directly observe the structure of Dictyostelium discoideum dynein dimers on microtubules at near-physiological ATP concentrations. They display remarkable flexibility at a hinge close to the microtubule binding domain (the stalkhead) producing a wide range of head positions. About half the molecules have the two heads separated from one another, with both leading and trailing motors attached to the microtubule. The other half have the two heads and stalks closely superposed in a front-to-back arrangement of the AAA+ rings, suggesting specific contact between the heads. All stalks point towards the microtubule minus end. Mean stalk angles depend on the separation between their stalkheads, which allows estimation of inter-head tension. These findings provide a structural framework for understanding dynein's directionality and unusual stepping behaviour.

  6. Observations of Energetic High Magnetic Field Pulsars with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Parent, D.; Kerr, M.; DenHartog, P. R.; Baring, M. G.; DeCesar, M. E.; Espinoza, C. M.; Harding, A. K.; Romani, R. W.; Stappers, B. W.; Watters, K.; Weltevrde, P.; Abdo, A. A.; Craig, H. A.; Kramer, M.; Lyne, A. G.

    2011-01-01

    We report the detection of gamma-ray pulsations from the high-magnetic-field rotation-powered pulsar PSR J1119.6127 using data from the Fermi Large Area Telescope. The gamma-ray light curve of PSR J1119.6127 shows a single, wide peak offset from the radio peak by 0.43 +/- 0.02 in phase. Spectral analysis suggests a power law of index 1.0 +/- 0.3(+0.4 -0.2) with an energy cut-off at 0.8 +/- 0.2(+2.0 -0.5) GeV. The first uncertainty is statistical and the second is systematic. We discuss the emission models of PSR J1119.6127 and demonstrate that despite the object's high surface magnetic field--near that of magnetars -- the field strength and structure in the gamma-ray emitting zone are apparently similar to those of typical young pulsars. Additionally, we present upper limits on the gamma-ray pulsed emission for the magnetically active PSR J1846.0258 in the supernova remnant Kesteven 75 and two other energetic high-Beta pulsars, PSRs J1718.3718 and J1734.3333. We explore possible explanations for the non-detection of these three objects, including peculiarities in their emission geometry.

  7. Observations of four types of pulses in a fiber laser with large net-normal dispersion.

    PubMed

    Wang, Leiran; Liu, Xueming; Gong, Yongkang; Mao, Dong; Duan, Lina

    2011-04-11

    Four different types of pulses are experimentally obtained in one erbium-doped all-fiber laser with large net-normal dispersion. The proposed laser can deliver the rectangular-spectrum (RS), Gaussian-spectrum (GS), broadband-spectrum (BS), and noise-like pulses by appropriately adjusting the polarization states. These kinds of pulses have distinctly different characteristics. The RS pulses can easily be compressed to femtosecond level whereas the pulse energy is restricted by the trend of multi-pulse shaping with excessive pump. The GS and BS pulses always maintain the single-pulse operation with much higher pulse-energy and accumulate much more chirp. After launching the pulses into the photonic-crystal fiber, the supercontinuum can be generated with the bandwidth of >700 nm by the BS pulses and of ~400 nm by the GS pulses, whereas it can hardly be generated by the RS pulses. The physical mechanisms behind the continuum generation are qualitatively investigated relating to different operating regimes. This work could help to a deeper insight of the normal-dispersion pulses. PMID:21503070

  8. The Detection and Removal of Large-scale Detector Background Structures in NICMOS Observations

    NASA Astrophysics Data System (ADS)

    Hsiao, E. Y.; Suzuki, N.; Ripoche, P.; Aldering, G.; Faccioli, L.; Huang, X.; Perlmutter, S.; Spadafora, A. L.; Strovink, M.; Lidman, C.; Dawson, K. S.; Bergeron, L. E.; Deustua, S.; Fruchter, A. S.; Barbary, K.; Fakhouri, H. K.; Meyers, J.; Rubin, D.

    2010-07-01

    After applying the standard corrections for well-studied NICMOS anomalies, significant large-scale spatial background variation remains. We report on the detections of a sky-dependent fringe pattern in the F110W filter, and a time-dependent residual corner glow in the calibrated NICMOS deep science images. We also describe methods developed to further correct these anomalies. A model of the background structure is derived from the algebraic manipulation of stacked science images and consists of the following two components. The first component is constant, dominated by a residual glow as high as 20 DN at the corners and by residual flat and persistence structures at the center. The second component, which scales with sky level, displays a clear fringe pattern with 10% variation for F110W images. However this pattern is not detected for F160W images. Using these model components to correct for the anomalies significantly improves the cosmetic appearance of NICMOS images and reduces the magnitude scatter in the photometry of distant galaxies by 20%.

  9. Large amplitude wave packets observed in the ionosphere in association with transverse ion acceleration

    NASA Technical Reports Server (NTRS)

    Labelle, J.; Kintner, P. M.; Yau, A. W.; Whalen, B. A.

    1986-01-01

    Very short duration, large amplitude bursts of monochromatic waves ('spikelets') were detected by the electric field experiment on the sounding rocket MARIE, launched in February 1985 from Churchill, Manitoba. About 35 events were detected, with an average time scale of 5 ms and an average amplitude of 100-150 mV/m. Their frequency varied between 7 and 18 kHz, and there is some evidence that the frequency is a decreasing function of altitude. The bursts are not correlated with any events on the payload, and their occurrence is not related to the rocket's spin or coning. The events were confined to the altitude range 450-650 kilometers. This coincides exactly with the altitude range for which perpendicular (90 deg) ion conics were detected by the particle experiment on the same payload. The 'spikelets' were also correlated one-to-one with small (10-100 mV/m) double-layerlike or shocklike features of similar time scale in the dc electric field data.

  10. SOHO/EPHIN observation of a multiple large solar energetic particles event in November 1997

    NASA Astrophysics Data System (ADS)

    Gómez-Herrero, R.; Rodríguez-Frías, M. D.; del Peral, L.; Müller-Mellin, R.; Kunow, H.

    2002-04-01

    In November 1997, EPHIN (Electron, Proton, Helium INstrument) on board Solar and Heliospheric Observatory (SOHO ) detected solar energetic particles (SEP) from a multiple large event. Composition, temporal profiles and energy spectra of electrons, hydrogen and helium have been analyzed. The SEP events show, in general, gradual characteristics related to acceleration in the shocks driven the associated coronal mass ejections (CMEs). Composition features are very similar accounting that they are associated to the same active region and with similar physical conditions of the solar corona and solar wind. Temporal profile differences can be explained in terms of the different magnetic connection in both SEP events. During the November 6 SEP event the detection of some perturbations are produced by the passage of the shock and the halo CME associated with the November 4 event. Energetic characteristics of the SEP events denote differences between the November 6 SEP event, accelerated by a very fast shock, and the November 4 SEP event accelerated in a weaker shock. The compression ratio of the shock extracted from the SEP spectral index is correlated with the shock velocity reported and it demonstrates that protons and helium are accelerated by the same acceleration mechanism. SOHO is a project of international cooperation between ESA and NASA.

  11. Fermi Large Area Telescope Observations of the Cygnus Loop Supernova Remnant

    SciTech Connect

    Katagiri, H.; Tibaldo, L.; Ballet, J.; Giordano, F.; Grenier, I.A.; Porter, T.A.; Roth, M.; Tibolla, O.; Uchiyama, Y.; Yamazaki, R.; /Sagamihara, Aoyama Gakuin U.

    2011-11-08

    We present an analysis of the gamma-ray measurements by the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope in the region of the supernova remnant (SNR) Cygnus Loop (G74.0-8.5). We detect significant gamma-ray emission associated with the SNR in the energy band 0.2-100 GeV. The gamma-ray spectrum shows a break in the range 2-3 GeV. The gamma-ray luminosity is {approx} 1 x 10{sup 33} erg s{sup -1} between 1-100 GeV, much lower than those of other GeV-emitting SNRs. The morphology is best represented by a ring shape, with inner/outer radii 0{sup o}.7 {+-} 0{sup o}.1 and 1{sup o}.6 {+-} 0{sup o}.1. Given the association among X-ray rims, H{alpha} filaments and gamma-ray emission, we argue that gamma rays originate in interactions between particles accelerated in the SNR and interstellar gas or radiation fields adjacent to the shock regions. The decay of neutral pions produced in nucleon-nucleon interactions between accelerated hadrons and interstellar gas provides a reasonable explanation for the gamma-ray spectrum.

  12. The breakup of large tabular icebergs - direct observations and theoretical considerations

    NASA Astrophysics Data System (ADS)

    Wadhams, P.

    2013-12-01

    Peter Wadhams and Till Wagner Dept. of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge. We review the factors governing the stability, dynamics and decay of icebergs and describe areas where current models are inadequate. These include questions such as draft changes in capsizing icebergs; iceberg trajectory modelling; the melt rate of the ice underside and ways of reducing it; and wave-induced flexure and its role in the break-up of tabular icebergs. In July 2012 the authors worked on a very large (42 sq km) tabular iceberg in Baffin Bay, which had calved from the Petermann Glacier in NW Greenland. We measured incoming swell spectrum and the iceberg response; also the role of buoyancy forces due to erosion of a waterline wave cut and the creation of an underwater ram. The iceberg broke up while we were on it, allowing an instrumental measurement of the calving event. The experiments were included in the BBC-2 film 'Operation Iceberg' shown on Nov 1 2012 and repeated on Nov 18. We conclude that two processes interacted in the break-up event: increased bending stress due to buoyancy of underwater rams; and direct flexural strain due to incidence of ocean swell. Implications for icebergs in the open sea are estimated.

  13. VERY LARGE ARRAY OBSERVATIONS OF AMMONIA IN INFRARED-DARK CLOUDS. II. INTERNAL KINEMATICS

    SciTech Connect

    Ragan, Sarah E.; Bergin, Edwin A.; Heitsch, Fabian; Wilner, David

    2012-02-20

    Infrared-dark clouds (IRDCs) are believed to be the birthplaces of rich clusters and thus contain the earliest phases of high-mass star formation. We use the Green Bank Telescope and Very Large Array maps of ammonia (NH{sub 3}) in six IRDCs to measure their column density and temperature structure (Paper 1), and here, we investigate the kinematic structure and energy content. We find that IRDCs overall display organized velocity fields, with only localized disruptions due to embedded star formation. The local effects seen in NH{sub 3} emission are not high-velocity outflows but rather moderate (few km s{sup -1}) increases in the linewidth that exhibit maxima near or coincident with the mid-infrared emission tracing protostars. These linewidth enhancements could be the result of infall or (hidden in NH{sub 3} emission) outflow. Not only is the kinetic energy content insufficient to support the IRDCs against collapse, but also the spatial energy distribution is inconsistent with a scenario of turbulent cloud support. We conclude that the velocity signatures of the IRDCs in our sample are due to active collapse and fragmentation, in some cases augmented by local feedback from stars.

  14. Sleeping patterns of Afghan unaccompanied asylum-seeking adolescents: a large observational study.

    PubMed

    Bronstein, Israel; Montgomery, Paul

    2013-01-01

    Unaccompanied asylum-seeking children (UASC) have experienced multiple traumas and are a high-risk group for posttraumatic stress disorder (PTSD). The effects of trauma are known to be associated with sleep problems; indeed sleeping problems are core features of PTSD. However, there has been no systematic research examining the sleep of this high risk group of children. This study presents the first evidence on the sleeping patterns of Afghan UASC living in the UK. A total of 222 male Afghan children, aged 13-18, were interviewed using validated self-report questionnaires measuring sleeping patterns and PTSD. Overall, UASC patterns for bed time and rise time appear acculturated to the country of asylum. Mean UASC sleep onset latency scores were approximately 20 minutes greater compared with normative scores, which may be a reflection of UASC pre-migration and post-migration experiences. As expected, UASC who screened above the clinical cut-off for PTSD reported significantly greater sleep onset latency, increased nightmares, and less total sleep time compared to the non-PTSD group. The results may be of particular interest to clinicians given that, compared to screening for PTSD, screening for sleep problems may be a less culturally disputed form of initial assessment indicating distress in UASC. Similarly, the field of UASC and refugee child interventions is largely focused on trauma, yet sleep may provide a novel avenue for equally or more effective treatment. PMID:23457517

  15. Large scale landslide mud flow modeling, simulation, and comparison with observations

    NASA Astrophysics Data System (ADS)

    Liu, F.; Shao, X.; Zhang, B.

    2012-12-01

    Landslide is a catastrophic natural event. Modeling, simulation, and early warning of landslide event can protect the safety of lives and properties. Therefore, study of landslide bears important scientific and practical value. In this research, we constructed a high performance parallel fluid dynamics model to study large scale landslide transport and evolution process. This model solves shallow water equation derived from 3 dimensional Euler equations in Cartesian coordinate system. Based on bottom topography, initial condition, bottom friction, and mudflow viscosity coefficient, density and other parameters, this model predicts landslide transport process and deposition distribution. Using 3 dimension bottom topography data from an digital elevation model in Zhou Qu area, this model produces the onset, transport and deposition process happened during Zhou Qu landslide. It also calculates spatial and temporal distribution of the mud flow transportation route, deposition depth, and kinematic energy of the event. This model together with an early warning system can lead to significant improvement to construction planning in landslide susceptible area.; Zhou Qu topography from Digital Elevation Model ; Modeling result from PLM (parallel landslide model)

  16. Coordinated phenotype switching with large-scale chromosome flip-flop inversion observed in bacteria.

    PubMed

    Cui, Longzhu; Neoh, Hui-min; Iwamoto, Akira; Hiramatsu, Keiichi

    2012-06-19

    Genome inversions are ubiquitous in organisms ranging from prokaryotes to eukaryotes. Typical examples can be identified by comparing the genomes of two or more closely related organisms, where genome inversion footprints are clearly visible. Although the evolutionary implications of this phenomenon are huge, little is known about the function and biological meaning of this process. Here, we report our findings on a bacterium that generates a reversible, large-scale inversion of its chromosome (about half of its total genome) at high frequencies of up to once every four generations. This inversion switches on or off bacterial phenotypes, including colony morphology, antibiotic susceptibility, hemolytic activity, and expression of dozens of genes. Quantitative measurements and mathematical analyses indicate that this reversible switching is stochastic but self-organized so as to maintain two forms of stable cell populations (i.e., small colony variant, normal colony variant) as a bet-hedging strategy. Thus, this heritable and reversible genome fluctuation seems to govern the bacterial life cycle; it has a profound impact on the course and outcomes of bacterial infections.

  17. Ensemble learning of inverse probability weights for marginal structural modeling in large observational datasets.

    PubMed

    Gruber, Susan; Logan, Roger W; Jarrín, Inmaculada; Monge, Susana; Hernán, Miguel A

    2015-01-15

    Inverse probability weights used to fit marginal structural models are typically estimated using logistic regression. However, a data-adaptive procedure may be able to better exploit information available in measured covariates. By combining predictions from multiple algorithms, ensemble learning offers an alternative to logistic regression modeling to further reduce bias in estimated marginal structural model parameters. We describe the application of two ensemble learning approaches to estimating stabilized weights: super learning (SL), an ensemble machine learning approach that relies on V-fold cross validation, and an ensemble learner (EL) that creates a single partition of the data into training and validation sets. Longitudinal data from two multicenter cohort studies in Spain (CoRIS and CoRIS-MD) were analyzed to estimate the mortality hazard ratio for initiation versus no initiation of combined antiretroviral therapy among HIV positive subjects. Both ensemble approaches produced hazard ratio estimates further away from the null, and with tighter confidence intervals, than logistic regression modeling. Computation time for EL was less than half that of SL. We conclude that ensemble learning using a library of diverse candidate algorithms offers an alternative to parametric modeling of inverse probability weights when fitting marginal structural models. With large datasets, EL provides a rich search over the solution space in less time than SL with comparable results.

  18. Seismic observations of large-scale deformation at the bottom of fast-moving plates

    NASA Astrophysics Data System (ADS)

    Debayle, E.; Ricard, Y. R.

    2012-12-01

    We investigate the global SV-wave azimuthal anisotropy from a new dataset of around 375 000 fundamental and higher mode Rayleigh waveforms. Our azimuthal anisotropy model improves upon DKP2005 seismic model (Debayle et al., Nature 2005) through a larger dataset (expanded by a factor 3.8) and a new approach which allows us to better extract fundamental and higher mode information. Our results confirm that in average, azimuthal anisotropy is significant only in the uppermost 200-250 km of the upper mantle and weak below. A clear root square of age dependence of anisotropy is observed beneath oceanic plates. The anisotropy projected in the direction of plate motion is more or less proportional to the plate velocity. Plate-scale present-day deformation is remarkably well recorded beneath the fastest moving plates (Indo-Australian, Coco, Nazca, Philippine Sea and Pacific plates). Under these plates, the amplitude of anisotropy does not change much with the distance to the ridge, indicating that the lattice preferred orientation rotates and saturates quickly. Beneath slower plates, plate-motion parallel anisotropy is observed only locally, which suggests, not surprisingly that the convection flow is only partly controlled by the surface motion. Within the lithosphere itself, the anisotropy is weak and likely frozen in; rather aligned with the plate velocity at its age of formation which is recorded by the local age gradient, than with the present-day motion. Although for young ages, the difference between the velocity recorded by the isochrons and the present-day velocity is small, for ages larger than 80 ~myrs the anisotropy rotates with depth from the fossil direction in the lithosphere to the present-day direction in the asthenosphere. Under fast continents (mostly Australia and India), the present day velocity orients the anisotropy around 150-200 km depth.

  19. Seismic observations of large-scale deformation at the bottom of fast-moving plates

    NASA Astrophysics Data System (ADS)

    Debayle, Eric; Ricard, Yanick

    2013-08-01

    We present a new tomographic model of azimuthal anisotropy in the upper mantle, DR2012, and discuss in details the geodynamical causes of this anisotropy. Our model improves upon DKP2005 seismic model (Debayle et al., 2005) through a larger dataset (expanded by a factor ˜3.7) and a new approach which allows us to better extract fundamental and higher-mode information. Our results confirm that on average, azimuthal anisotropy is only significant in the uppermost 200-250 km of the upper mantle where it decreases regularly with depth. We do not see a significant difference in the amplitude of anisotropy beneath fast oceanic plates, slow oceanic plates or continents. The anisotropy projected onto the direction of present plate motion shows a very specific relation with the plate velocity; it peaks in the asthenosphere around 150 km depth, it is very weak for plate velocities smaller than 3 cm yr, increases significantly between 3 and 5 cm yr, and saturates for plate velocities larger than 5 cm yr. Plate-scale present-day deformation is remarkably well and uniformly recorded beneath the fastest-moving plates (India, Coco, Nazca, Australia, Philippine Sea and Pacific plates). Beneath slower plates, plate-motion parallel anisotropy is only observed locally, which suggests that the mantle flow below these plates is not controlled by the lithospheric motion (a minimum plate velocity of around 4 cm yr is necessary for a plate to organize the flow in its underlying asthenosphere). The correlation of oceanic anisotropy with the actual plate motion in the shallow lithosphere is very weak. A better correlation is obtained with the fossil accretion velocity recorded by the gradient of local seafloor age. The transition between frozen-in and active anisotropy occurs across the typical √{age} isotherm that defines the bottom of the thermal lithosphere around 1100 °C. Under fast continents (mostly under Australia and India), the present-day velocity orients also the anisotropy

  20. Seismic observations of large-scale deformation at the bottom of fast-moving plates

    NASA Astrophysics Data System (ADS)

    Debayle, Eric; Ricard, Yanick

    2014-05-01

    We present a new tomographic model of azimuthal anisotropy in the upper mantle and discuss in details the geodynamical causes of this anisotropy. Our model improves upon DKP2005 seismic model (Debayle et al., 2005) through a larger dataset (expanded by a factor ~ 4) and a new approach which allows us to better extract fundamental and higher mode information. Our results confirm that on average, azimuthal anisotropy is only significant in the uppermost 200-250 km of the upper mantle where it decreases regularly with depth. We do not see a significant difference in the amplitude of anisotropy beneath fast oceanic plates, slow oceanic plates or continents. The anisotropy projected onto the direction of present plate motion shows a very specific relation with the plate velocity; it peaks in the asthenosphere around 150 km depth, it is very weak for plate velocities smaller than 3 cm yr-1, increases significantly between 3 and 5 cm yr-1, and saturates for plate velocities larger than 5 cm yr-1. Plate-scale present-day deformation is remarkably well and uniformly recorded beneath the fastest moving plates (India, Coco, Nazca, Australia, Philippine Sea and Pacific plates). Beneath slower plates, plate-motion parallel anisotropy is only observed locally, which suggests that the mantle flow below these plates is not controlled by the lithospheric motion (a minimum plate velocity of around 4 cm yr-1 is necessary for a plate to organize the flow in its underlying asthenosphere). The correlation of oceanic anisotropy with the actual plate motion in the shallow lithosphere is very weak. A better correlation is obtained with the fossil accretion velocity recorded by the gradient of local seafloor age. The transition between frozen-in and active anisotropy occurs across the typical age- isotherm that defines the bottom of the thermal lithosphere around 1100 °C. Under fast continents (mostly under Australia and India), the present day velocity orients also the anisotropy in a

  1. THE FAINTEST RADIO SOURCE YET: EXPANDED VERY LARGE ARRAY OBSERVATIONS OF THE GRAVITATIONAL LENS SDSS J1004+4112

    SciTech Connect

    Jackson, N.

    2011-09-20

    We present new radio observations of the large-separation gravitationally lensed quasar SDSS J1004+4112, taken in a total of 6 hr of observations with the Expanded Very Large Array. The maps reach a thermal noise level of approximately 4 {mu}Jy. We detect four of the five lensed images at the 15-35 {mu}Jy level, representing a source of intrinsic flux density, after allowing for lensing magnification, of about 1 {mu}Jy, intrinsically probably the faintest radio source yet detected. This reinforces the utility of gravitational lensing in potentially allowing us to study nJy-level sources before the advent of the Square Kilometre Array. In an optical observation taken three months after the radio observation, image C is the brightest image, whereas the radio map shows flux density ratios consistent with previous optical observations. Future observations separated by a time delay will give the intrinsic flux ratios of the images in this source.

  2. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth.

    PubMed

    Charney, Noah D; Babst, Flurin; Poulter, Benjamin; Record, Sydne; Trouet, Valerie M; Frank, David; Enquist, Brian J; Evans, Margaret E K

    2016-09-01

    Predicting long-term trends in forest growth requires accurate characterisation of how the relationship between forest productivity and climatic stress varies across climatic regimes. Using a network of over two million tree-ring observations spanning North America and a space-for-time substitution methodology, we forecast climate impacts on future forest growth. We explored differing scenarios of increased water-use efficiency (WUE) due to CO2 -fertilisation, which we simulated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western, southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of warming on high-latitude forests, leaving no evidence for continued 'boreal greening'; and (3) it took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to handle regional differences in growth responses to climate change.

  3. Observed forest sensitivity to climate implies large changes in 21st century North American forest growth.

    PubMed

    Charney, Noah D; Babst, Flurin; Poulter, Benjamin; Record, Sydne; Trouet, Valerie M; Frank, David; Enquist, Brian J; Evans, Margaret E K

    2016-09-01

    Predicting long-term trends in forest growth requires accurate characterisation of how the relationship between forest productivity and climatic stress varies across climatic regimes. Using a network of over two million tree-ring observations spanning North America and a space-for-time substitution methodology, we forecast climate impacts on future forest growth. We explored differing scenarios of increased water-use efficiency (WUE) due to CO2 -fertilisation, which we simulated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western, southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of warming on high-latitude forests, leaving no evidence for continued 'boreal greening'; and (3) it took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to handle regional differences in growth responses to climate change. PMID:27434040

  4. Observation of the Mold-Filling Process of a Large Hydro-Turbine Guide Vane Casting

    NASA Astrophysics Data System (ADS)

    Kang, Jinwu; Long, Haimin; Li, Yongjie; You, Rui; Hao, Xiaokun; Nie, Gang; Wang, Tianjiao; Zhang, Chengchun

    2015-02-01

    The mold-filling process has a determining effect on the quality of castings, and it has always been a hot but difficult research topic. The authors developed a wireless monitoring system for the mold-filling process of castings based on a contact time method and an observation system based on heat-resistant high-speed cameras. By using these two systems, the filling process of a turbine guide vane casting with a stepped gating system was investigated. The filling profile of the casting was recorded, and the filling time of nine typical positions was acquired. These results show that at the beginning, the liquid steel flowed out from the top ingate, which was designed to be the last to fill. The numerical simulation of the filling of the guide vane was performed, and the outflow from the top ingate were predicted. Finally, the gating system of the casting was improved with enlarged sprue. The new design features bigger sprue to ingate ratio; therefore, it could avoid the overflow from the top ingate and realize stable filling.

  5. Large-Area Balloon-Borne Polarized Gamma Ray Observer (PoGO)

    SciTech Connect

    Andersson, V.; Chen, P.; Kamae, T.; Madejski, G.; Mizuno, T.; Ng, J.; Tajima, H.; Thurston, T.; Bogaert, G.; Fukazawa, Y.; Saito, Y.; Takahashi, T.; Barbier, L.; Bloser, P.; Harding, A.; Hunter, S.; Krizmanic, J.; Mitchell, J.; Streitmatter, R.; Fernholz, R.; Groth, E.; /NASA, Goddard /Princeton U. /Royal Inst. Tech., Kista /Stockholm U. /Tokyo Inst. Tech. /Yamagata U.

    2005-06-30

    We are developing a new balloon-borne instrument (PoGO), to measure polarization of soft gamma rays (30-200 keV) using asymmetry in azimuth angle distribution of Compton scattering. PoGO is designed to detect 10% polarization in 100mCrab sources in a 6-8 hour observation and bring a new dimension to studies on gamma ray emission/transportation mechanism in pulsars, AGNs, black hole binaries, and neutron star surface. The concept is an adaptation to polarization measurements of well-type phoswich counter consisting of a fast plastic scintillator (the detection part), a slow plastic scintillator (the active collimator) and a BGO scintillator (the bottom anti-counter). PoGO consists of close-packed array of 217 hexagonal well-type phoswich counters and has a narrow field-of-view ({approx} 5 deg{sup 2}) to reduce possible source confusion. A prototype instrument has been tested in the polarized soft gamma-ray beams at Advanced Photon Source (ANL) and at Photon Factory (KEK). On the results, the polarization dependence of EGS4 has been validated and that of Geant4 has been corrected.

  6. Observation of energetic electron confinement in a largely stochastic reversed-field pinch plasma

    NASA Astrophysics Data System (ADS)

    Clayton, D. J.; Chapman, B. E.; O'Connell, R.; Almagri, A. F.; Burke, D. R.; Forest, C. B.; Goetz, J. A.; Kaufman, M. C.; Bonomo, F.; Franz, P.; Gobbin, M.; Piovesan, P.

    2010-01-01

    Runaway electrons with energies >100 keV are observed with the appearance of an m =1 magnetic island in the core of otherwise stochastic Madison Symmetric Torus [Dexter et al., Fusion Technol. 19, 131 (1991)] reversed-field-pinch plasmas. The island is associated with the innermost resonant tearing mode, which is usually the largest in the m =1 spectrum. The island appears over a range of mode spectra, from those with a weakly dominant mode to those, referred to as quasi single helicity, with a strongly dominant mode. In a stochastic field, the rate of electron loss increases with electron parallel velocity. Hence, high-energy electrons imply a region of reduced stochasticity. The global energy confinement time is about the same as in plasmas without high-energy electrons or an island in the core. Hence, the region of reduced stochasticity must be localized. Within a numerical reconstruction of the magnetic field topology, high-energy electrons are substantially better confined inside the island, relative to the external region. Therefore, it is deduced that the island provides a region of reduced stochasticity and that the high-energy electrons are generated and well confined within this region.

  7. Nuclear spin circular dichroism

    SciTech Connect

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-04-07

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra.

  8. Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1

    SciTech Connect

    Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R.D.; Bloom, E.D.; Bonamente, E.; Borgland, A.W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G.A.; Cameron, R.A.; Caraveo, P.A.; /more authors..

    2012-09-14

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 {+-} 0.6 (stat) {+-} 1.2 (sys) GeV, and photon indices of 2.10 {+-} 0.06 (stat) {+-} 0.10 (sys) below the break and 2.70 {+-} 0.12 (stat) {+-} 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of p0s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.

  9. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE SUPERNOVA REMNANT G8.7-0.1

    SciTech Connect

    Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Cameron, R. A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Bastieri, D.; Buson, S.; Bonamente, E.; Brigida, M.; Bruel, P.; and others

    2012-01-01

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 {+-} 0.6 (stat) {+-} 1.2 (sys) GeV, and photon indices of 2.10 {+-} 0.06 (stat) {+-} 0.10 (sys) below the break and 2.70 {+-} 0.12 (stat) {+-} 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of {pi}{sup 0}s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.

  10. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF MARKARIAN 421: THE MISSING PIECE OF ITS SPECTRAL ENERGY DISTRIBUTION

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Buehler, R.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Brez, A.; Ballet, J.; Bastieri, D.; Bonamente, E.; Bouvier, A.; Brigida, M.; Bruel, P. E-mail: anita.reimer@uibk.ac.at E-mail: justin.finke@nrl.navy.mil

    2011-08-01

    We report on the {gamma}-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) {gamma}-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index {Gamma} = 1.78 {+-} 0.02 and average photon flux F(> 0.3 GeV) = (7.23 {+-} 0.16) x 10{sup -8} ph cm{sup -2} s{sup -1}. Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor {approx}3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in {gamma}-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.

  11. Fermi Large Area Telescope Observations of Markarian 421: The Missing Piece of its Spectral Energy Distribution

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Escande, L.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fuhrmann, L.; Fukazawa, Y.; Fukuyama, T.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Georganopoulos, M.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Max-Moerbeck, W.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pavlidou, V.; Pearson, T. J.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Readhead, A.; Reimer, A.; Reimer, O.; Reyes, L. C.; Richards, J. L.; Ritz, S.; Roth, M.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stawarz, Ł.; Stevenson, M.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wehrle, A. E.; Winer, B. L.; Wood, K. S.; Yang, Z.; Yatsu, Y.; Ylinen, T.; Zensus, J. A.; Ziegler, M.; Fermi LAT Collaboration; Aleksić, J.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Dazzi, F.; de Angelis, A.; De Cea del Pozo, E.; Delgado Mendez, C.; De Lotto, B.; De Maria, M.; De Sabata, F.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giavitto, G.; Godinovi, N.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Kranich, D.; Krause, J.; La Barbera, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; López, M.; Lorenz, E.; Majumdar, P.; Makariev, E.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, J.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, T.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Struebig, J. C.; Suric, T.; Takalo, L. O.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Vankov, H.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Villata, M.; Raiteri, C.; Aller, H. D.; Aller, M. F.; Chen, W. P.; Jordan, B.; Koptelova, E.; Kurtanidze, O. M.; Lähteenmäki, A.; McBreen, B.; Larionov, V. M.; Lin, C. S.; Nikolashvili, M. G.; Reinthal, R.; Angelakis, E.; Capalbi, M.; Carramiñana, A.

    2011-08-01

    We report on the γ-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) γ-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Γ = 1.78 ± 0.02 and average photon flux F(> 0.3 GeV) = (7.23 ± 0.16) × 10-8 ph cm-2 s-1. Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor ~3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in γ-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.

  12. Fermi Large Area Telescope Observations of the Supernova Remnant G8.7-0.1

    NASA Astrophysics Data System (ADS)

    Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Charles, E.; Chekhtman, A.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Dubois, R.; Favuzzi, C.; Fegan, S. J.; Ferrara, E. C.; Focke, W. B.; Frailis, M.; Fukazawa, Y.; Fukui, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Germani, S.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Harding, A. K.; Hayashi, K.; Hays, E.; Itoh, R.; Jóhannesson, G.; Johnson, A. S.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kubo, H.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Lionetto, A. M.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; Mehault, J.; Michelson, P. F.; Mizuno, T.; Moiseev, A. A.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohno, M.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Parent, D.; Pelassa, V.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Reimer, A.; Reimer, O.; Reposeur, T.; Roth, M.; Sadrozinski, H. F.-W.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tibolla, O.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Uchiyama, Y.; Uehara, T.; Usher, T. L.; Vandenbroucke, J.; Van Etten, A.; Vasileiou, V.; Vianello, G.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Yamamoto, H.; Yamazaki, R.; Yang, Z.; Yasuda, H.; Ziegler, M.; Zimmer, S.

    2012-01-01

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship between G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 ± 0.6 (stat) ± 1.2 (sys) GeV, and photon indices of 2.10 ± 0.06 (stat) ± 0.10 (sys) below the break and 2.70 ± 0.12 (stat) ± 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of π0s produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.

  13. Fermi Large Area Telescope Observations of the Supernova Remnant GS.7-0.1

    NASA Technical Reports Server (NTRS)

    Ajello, M.; Allafort, A.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Ferrara, E. C.; Harding, A. K.; Hays, E.; Moiseev, A. A.; Troja, E.

    2011-01-01

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. An investigation of the relationship among G8.7-0.l and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.l and a lesser part located outside the western boundary of G8.7-0.l. The region of the gamma-ray emission overlaps spatially-connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 +/- 0.6 (stat) +/- 1.2 (sys) GeV, and photon indices of 2.10 +/- 0.06 (stat) +/- 0.10 (sys) below the break and 2.70 +/- 0.12 (stat) +/- 0.l4 (sys) above the break. Given the spatial association among the gamma rays, the radio emission of G8.7-0.1, and the molecular clouds, the decay of 1IoS produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS J1804-216 and that the spectrum in the GeV band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV spectrum originates from the interaction of particles accelerated in G8.7-0.1 with molecular clouds, and we constrain the diffusion coefficient of the particles.

  14. Fermi Large Area Telescope Observations of the Supernova Remnant GS.7-0.1

    NASA Technical Reports Server (NTRS)

    Ferrara, E. C.; Hays, E.; Troja, E.; Moiseev, A. A.

    2012-01-01

    We present a detailed analysis of the GeV gamma-ray emission toward the supernova remnant (SNR) G8.7-0.1 with the Large Area Telescope (LAT) onboard the Fermi Gamma-ray Space Telescope. An investigation of the relationship among G8.7-0.1 and the TeV unidentified source HESS J1804-216 provides us with an important clue on diffusion process of cosmic rays if particle acceleration operates in the SNR. The GeV gamma-ray emission is extended with most of the emission in positional coincidence with the SNR G8.7-0.1 and a lesser part located outside the western boundary of G8.7-0.1. The region of the gamma-ray emission overlaps spatially-connected molecular clouds, implying a physical connection for the gamma-ray structure. The total gamma-ray spectrum measured with LAT from 200 MeV-100 GeV can be described by a broken power-law function with a break of 2.4 +/- 0.6 (stat) +/- 1.2 (sys) GeV, and photon indices of2.10 +/- 0.06 (stat) +/- 0.10 (sys) below the break and 2.70 +/- 0.12 (stat) +/- 0.14 (sys) above the break. Given the spatial association among the gamma rays, the radio emission ofG8.7-0.1, and the molecular clouds, the decay of pions produced by particles accelerated in the SNR and hitting the molecular clouds naturally explains the GeV gamma-ray spectrum. We also find that the GeV morphology is not well represented by the TeV emission from HESS Jl804-2l6 and that the spectrum in the Ge V band is not consistent with the extrapolation of the TeV gamma-ray spectrum. The spectral index of the TeV emission is consistent with the particle spectral index predicted by a theory that assumes energy-dependent diffusion of particles accelerated in an SNR. We discuss the possibility that the TeV-spectrum originates from the interaction of particles accelerated in G8.7-0.l with molecular clouds, and we constrain the diffusion coefficient of the particles.

  15. Do recent observations of very large electromagnetic dissociation cross sections signify a transition towards non-perturbative QED?

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    The very large electromagnetic dissociation (EMD) cross section recently observed by Hill, Wohn, Schwellenbach, and Smith do not agree with Weizsacker-Williams (WW) theory or any simple modification thereof. Calculations are presented for the reaction probabilities for this experiment and the entire single and double nucleon removal EMD data set. It is found that for those few reactions where theory and experiment disagree, the probabilities are exceptionally large. This indicates that WW theory is not valid for these reactions and that one must consider higher order corrections and perhaps even a non-perturbative approach to quantum electrodynamics (QED).

  16. The Energy Budget of GRBs Based on a Large Sample of Prompt and Afterglow Observations

    NASA Astrophysics Data System (ADS)

    Wygoda, N.; Guetta, D.; Mandich, M. A.; Waxman, E.

    2016-06-01

    We compare the isotropic equivalent 15-2000 keV γ-ray energy, E γ , emitted by a sample of 91 swift Gamma-Ray Bursts with known redshifts, with the isotropic equivalent fireball energy, E fb, as estimated within the fireball model framework from X-ray afterglow observations of these bursts. The uncertainty in E γ , which spans the range of ˜1051 to ˜1053.5 erg, is ≈25% on average, due mainly to the extrapolation from the BAT detector band to the 15-2000 keV band. The uncertainty in E fb is approximately a factor of 2, due mainly to the X-ray measurements’ scatter. We find E γ and E fb to be tightly correlated. The average(std) of {η }γ 11 {hr}\\equiv {{log}}10({E}γ /(3{\\varepsilon }{{e}}{E}{{fb}}11 {hr})) are -0.34(0.60), and the upper limit on the intrinsic spread of η γ is approximately 0.5 ({\\varepsilon }{{e}} is the fraction of energy carried by electrons and {E}{{fb}}x {hr} is inferred from the X-ray flux at x hours). {E}{{fb}}3 {hr} and {E}{{fb}}11 {hr} are similar, with an average(std) of {{log}}10({E}{{fb}}3 {hr}/{E}{{fb}}11 {hr}) of 0.04(0.28). The small variance of η γ implies that burst-to-burst variations in {\\varepsilon }{{e}} and in the efficiency of fireball energy conversion to γ-rays are small, and suggests that both are of order unity. The small variance of η γ and the similarity of {E}{{fb}}3 {hr} and {E}{{fb}}11 {hr} further imply that deviations from a simple fireball model description, if present, are small. This puts stringent constraints on models incorporating such modifications (due e.g., to radiative losses, energy injection, off-axis viewing).

  17. The Energy Budget of GRBs Based on a Large Sample of Prompt and Afterglow Observations

    NASA Astrophysics Data System (ADS)

    Wygoda, N.; Guetta, D.; Mandich, M. A.; Waxman, E.

    2016-06-01

    We compare the isotropic equivalent 15–2000 keV γ-ray energy, E γ , emitted by a sample of 91 swift Gamma-Ray Bursts with known redshifts, with the isotropic equivalent fireball energy, E fb, as estimated within the fireball model framework from X-ray afterglow observations of these bursts. The uncertainty in E γ , which spans the range of ˜1051 to ˜1053.5 erg, is ≈25% on average, due mainly to the extrapolation from the BAT detector band to the 15–2000 keV band. The uncertainty in E fb is approximately a factor of 2, due mainly to the X-ray measurements’ scatter. We find E γ and E fb to be tightly correlated. The average(std) of {η }γ 11 {hr}\\equiv {{log}}10({E}γ /(3{\\varepsilon }{{e}}{E}{{fb}}11 {hr})) are ‑0.34(0.60), and the upper limit on the intrinsic spread of η γ is approximately 0.5 ({\\varepsilon }{{e}} is the fraction of energy carried by electrons and {E}{{fb}}x {hr} is inferred from the X-ray flux at x hours). {E}{{fb}}3 {hr} and {E}{{fb}}11 {hr} are similar, with an average(std) of {{log}}10({E}{{fb}}3 {hr}/{E}{{fb}}11 {hr}) of 0.04(0.28). The small variance of η γ implies that burst-to-burst variations in {\\varepsilon }{{e}} and in the efficiency of fireball energy conversion to γ-rays are small, and suggests that both are of order unity. The small variance of η γ and the similarity of {E}{{fb}}3 {hr} and {E}{{fb}}11 {hr} further imply that deviations from a simple fireball model description, if present, are small. This puts stringent constraints on models incorporating such modifications (due e.g., to radiative losses, energy injection, off-axis viewing).

  18. Observations of large-amplitude internal wave of the second mode in Luzon Strait

    NASA Astrophysics Data System (ADS)

    Serebryany, A. N.; Liu, C.-T.

    2012-04-01

    Among the regions of the World Ocean where intense internal waves occur, the South China Sea is known as an area where the largest internal waves can be met. Comprehensive studies of internal waves, which were carried out there during the last decade, reveal the substantial effects of both the first and second modes. The place where the record amplitude waves are generated is Luzon Strait. In May, 2006, we performed the studies in Luzon Strait, aboard the "Ocean Researcher 1" vessel of the National Taiwan University. In those experiments, we could detect a passage of a solitary internal wave of the second mode in deep water, and to measure its parameters. The observations were carried out at a calm sea, after some days of the passage of a big typhoon Chanchu through the South China Sea. In the measurements, a 150-kHz acoustic Doppler current profiler, the EK 500 echo-sounder, radar that registered the pattern of the sea surface, and a neutral-buoyancy body with temperature and depth sensors were used. In addition, ambient underwater noises were measured by a hydrophone. On May 23, a solitary internal wave passed under the vessel, with a height of 50 m and apparent features of the second mode, was found. The undersurface 200-m water layer suffered from an elevation. At the same time, the deep water layers were depressed. The internal wave moved with an extraordinarily high speed of more than 3 m/s in the north-west direction. The passage of the internal wave was accompanied by a wide rip band that was detected by the vessel radar and the digital camera. The passage also caused the underwater noise. This work was supported by National Science Council of Taiwan in Taiwan-Russia two-side research projects (No. NSC96-2923-E-002-002-MYZ) and by Russian Foundation for Basic Research.

  19. SWIFT ULTRAVIOLET OBSERVATIONS OF SUPERNOVA 2014J IN M82: LARGE EXTINCTION FROM INTERSTELLAR DUST

    SciTech Connect

    Brown, Peter J.; Smitka, Michael T.; Wang, Lifan; Krisciunas, Kevin; Breeveld, Alice; Kuin, N. Paul; Page, Mat; De Pasquale, Massimiliano; Hartmann, Dieter H.; Milne, Peter A.; Siegel, Michael

    2015-05-20

    We present optical and ultraviolet (UV) photometry and spectra of the very nearby and highly reddened supernova (SN) 2014J in M82 obtained with the Swift Ultra-Violet/Optical Telescope (UVOT). Comparison of the UVOT grism spectra of SN 2014J with Hubble Space Telescope observations of SN2011fe or UVOT grism spectra of SN 2012fr are consistent with an extinction law with a low value of R{sub V} ∼1.4. The high reddening causes the detected photon distribution in the broadband UV filters to have a much longer effective wavelength than for an unreddened SN. The light curve evolution is consistent with this shift and does not show a flattening due to photons being scattered back into the line of sight (LOS). The light curve shapes and color evolution are inconsistent with a contribution scattered into the LOS by circumstellar dust. We conclude that most or all of the high reddening must come from interstellar dust. We show that even for a single dust composition, there is not a unique reddening law caused by circumstellar scattering. Rather, when considering scattering from a time-variable source, we confirm earlier studies that the reddening law is a function of the dust geometry, column density, and epoch. We also show how an assumed geometry of dust as a foreground sheet in mixed stellar/dust systems will lead to a higher inferred R{sub V}. Rather than assuming the dust around SNe is peculiar, SNe may be useful probes of the interstellar reddening laws in other galaxies.

  20. Estimating SO2 emissions from a large point source using 10 year OMI SO2 observations: Afsin Elbistan Power Plant

    NASA Astrophysics Data System (ADS)

    Kaynak Tezel, Burcak; Firatli, Ertug

    2016-04-01

    SO2 pollution has still been a problem for parts of Turkey, especially regions with large scale coal power plants. In this study, 10 year Ozone Monitoring Instrument (OMI) SO2 observations are used for estimating SO2 emissions from large point sources in Turkey. We aim to estimate SO2 emissions from coal power plants where no online monitoring is available and improve the emissions given in current emission inventories with these top-down estimates. High-resolution yearly averaged maps are created on a domain over large point sources by oversampling SO2 columns for each grid for the years 2005-2014. This method reduced the noise and resulted in a better signal from large point sources and it was used for coal power plants in U.S and India, previously. The SO2 signal over selected power plants are observed with this method, and the spatiotemporal changes of SO2 signal are analyzed. With the assumption that OMI SO2 observations are correlating with emissions, long-term OMI SO2 observation averages can be used to estimate emission levels of significant point sources. Two-dimensional Gaussian function is used for explaining the relationships between OMI SO2 observations and emissions. Afsin Elbistan Power Plant, which is the largest capacity coal power plant in Turkey, is investigated in detail as a case study. The satellite scans within 50 km of the power plant are selected and averaged over a 2 x 2 km2 gridded domain by smoothing method for 2005-2014. The yearly averages of OMI SO2 are calculated to investigate the magnitude and the impact area of the SO2 emissions of the power plant. A significant increase in OMI SO2 observations over Afsin Elbistan from 2005 to 2009 was observed (over 2 times) possibly due to the capacity increase from 1715 to 2795 MW in 2006. Comparison between the yearly gross electricity production of the plant and OMI SO2 observations indicated consistency until 2009, but OMI SO2 observations indicated a rapid increase while gross electricity

  1. Suppressed Magnetic Circular Dichroism and Valley-Selective Magnetoabsorption due to the Effective Mass Anisotropy in Bismuth.

    PubMed

    de Visser, Pieter J; Levallois, Julien; Tran, Michaël K; Poumirol, Jean-Marie; Nedoliuk, Ievgeniia O; Teyssier, Jérémie; Uher, Ctirad; van der Marel, Dirk; Kuzmenko, Alexey B

    2016-07-01

    We measure the far-infrared reflectivity and Kerr angle spectra on a high-quality crystal of pure semimetallic bismuth as a function of magnetic field, from which we extract the conductivity for left- and right-handed circular polarizations. The high spectral resolution allows us to separate the intraband Landau level transitions for electrons and holes. The hole transition exhibits 100% magnetic circular dichroism; it appears only for one polarization as expected for a circular cyclotron orbit. However, the dichroism for electron transitions is reduced to only 13±1%, which is quantitatively explained by the large effective mass anisotropy of the electron pockets of the Fermi surface. This observation is a signature of the mismatch between the metric experienced by the photons and the electrons. It allows for a contactless measurement of the effective mass anisotropy and provides a direction towards valley polarized magnetooptical pumping with elliptically polarized light. PMID:27419590

  2. Entropic derivation of F=ma for circular motion

    NASA Astrophysics Data System (ADS)

    Duncan, Michael; Singleton, Douglas; Myrzakulov, Ratbay

    2011-11-01

    We examine the entropic picture of Newton's second law for the case of circular motion. It is shown that one must make modifications to the derivation of F = ma due to a change in the effective Unruh temperature for circular motion. These modifications present a challenge to the entropic derivation of Newton's second law, but also open up the possibility to experimentally test and constrain this model for large centripetal accelerations. (Phys. Lett. B 703 (2011) 516-518)

  3. Entropic derivation of F = m a for circular motion

    NASA Astrophysics Data System (ADS)

    Duncan, Michael; Myrzakulov, Ratbay; Singleton, Douglas

    2011-09-01

    We examine the entropic picture of Newton's second law for the case of circular motion. It is shown that one must make modifications to the derivation of F = ma due to a change in the effective Unruh temperature for circular motion. These modifications present a challenge to the entropic derivation of Newton's second law, but also open up the possibility to experimentally test and constrain this model for large centripetal accelerations.

  4. Magnetospheric Multiscale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause

    NASA Astrophysics Data System (ADS)

    Ergun, R. E.; Holmes, J. C.; Goodrich, K. A.; Wilder, F. D.; Stawarz, J. E.; Eriksson, S.; Newman, D. L.; Schwartz, S. J.; Goldman, M. V.; Sturner, A. P.; Malaspina, D. M.; Usanova, M. E.; Torbert, R. B.; Argall, M.; Lindqvist, P.-A.; Khotyaintsev, Y.; Burch, J. L.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Dorelli, J. J. C.; Avanov, L.; Hesse, M.; Chen, L. J.; Lavraud, B.; Le Contel, O.; Retino, A.; Phan, T. D.; Eastwood, J. P.; Oieroset, M.; Drake, J.; Shay, M. A.; Cassak, P. A.; Nakamura, R.; Zhou, M.; Ashour-Abdalla, M.; André, M.

    2016-06-01

    We report observations from the Magnetospheric Multiscale satellites of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the Earth's magnetopause. The observed waves have parallel electric fields (E||) with amplitudes on the order of 100 mV/m and display nonlinear characteristics that suggest a possible net E||. These waves are observed within the ion diffusion region and adjacent to (within several electron skin depths) the electron diffusion region. They are in or near the magnetosphere side current layer. Simulation results support that the strong electrostatic linear and nonlinear wave activities appear to be driven by a two stream instability, which is a consequence of mixing cold (<10 eV) plasma in the magnetosphere with warm (~100 eV) plasma from the magnetosheath on a freshly reconnected magnetic field line. The frequent observation of these waves suggests that cold plasma is often present near the magnetopause.

  5. FERMI LARGE AREA TELESCOPE OBSERVATIONS OF THE SUPERNOVA REMNANT W28 (G6.4-0.1)

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Allafort, A.; Bechtol, K.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Baldini, L.; Bellazzini, R.; Bregeon, J.; Ballet, J.; Bastieri, D.; Bonamente, E.; Brandt, T. J.; Bruel, P. E-mail: ttanaka@slac.stanford.ed E-mail: katagiri@hep01.hepl.hiroshima-u.ac.j

    2010-07-20

    We present detailed analysis of two gamma-ray sources, 1FGL J1801.3-2322c and 1FGL J1800.5-2359c, that have been found toward the supernova remnant (SNR) W28 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. 1FGL J1801.3-2322c is found to be an extended source within the boundary of SNR W28, and to extensively overlap with the TeV gamma-ray source HESS J1801-233, which is associated with a dense molecular cloud interacting with the SNR. The gamma-ray spectrum measured with the LAT from 0.2 to 100 GeV can be described by a broken power-law function with a break at {approx}1 GeV and photon indices of 2.09 {+-} 0.08 (stat) {+-} 0.28 (sys) below the break and 2.74 {+-} 0.06 (stat) {+-} 0.09 (sys) above the break. Given the clear association between HESS J1801-233 and the shocked molecular cloud and a smoothly connected spectrum in the GeV-TeV band, we consider the origin of the gamma-ray emission in both GeV and TeV ranges to be the interaction between particles accelerated in the SNR and the molecular cloud. The decay of neutral pions produced in interactions between accelerated hadrons and dense molecular gas provides a reasonable explanation for the broadband gamma-ray spectrum. 1FGL J1800.5-2359c, located outside the southern boundary of SNR W28, cannot be resolved. An upper limit on the size of the gamma-ray emission was estimated to be {approx}16' using events above {approx}2 GeV under the assumption of a circular shape with uniform surface brightness. It appears to coincide with the TeV source HESS J1800-240B, which is considered to be associated with a dense molecular cloud that contains the ultra compact H II region W28A2 (G5.89-0.39). We found no significant gamma-ray emission in the LAT energy band at the positions of TeV sources HESS J1800-230A and HESS J1800-230C. The LAT data for HESS J1800-230A combined with the TeV data points indicate a spectral break between 10 GeV and 100 GeV.

  6. Z-DNA: vacuum ultraviolet circular dichroism.

    PubMed

    Sutherland, J C; Griffin, K P; Keck, P C; Takacs, P Z

    1981-08-01

    In concentrated salt or ethanolic solutions, the self-complementary copolymer poly(dG-dC).poly(dG-dC) forms a left-handed double-helical structure that has been termed "Z-DNA." The first evidence for this structure came from changes observed in the circular dichroism (CD) spectrum between 230 and 300 nm for low- and high-salt solutions (Pohl, F. M. & Jovin, T. M. (1972) J. Mol. Biol. 67, 675-696). In 3 M NaCl, the CD spectrum is approximately inverted compared to the B-form spectrum observed in low-salt solution. We measured the vacuum ultraviolet CD spectrum of poly(dG-dC).poly(dG-dC) down to 180 nm under conditions in which the 230- to 300-nm spectrum is inverted. Below 200 nm, where the B form exhibits the large positive peak at 187 nm that is characteristic of right-handed double-helical DNAs, the Z form exhibits a large negative peak at 194 nm and a positive band below 186 nm. Therefore, the Z-form vacuum ultraviolet CD spectrum resembles an inverted and red-shifted B-form spectrum. The magnitudes of the differences observed between the B and Z forms in the CD spectrum below 200 nm are about 10 times greater than those observed between 230 and 300 nm. The vacuum ultraviolet CD spectrum of poly(dG-dC).poly(dG-dC) in 3 M Cs2SO4 also is inverted compared to the B-form spectrum; however, between 230 and 300 nm, it is nonconservative with a negative maximum at 290 nm and a weak positive CD signal above 300 nm, presumably reflecting differential light scattering and indicating the existence of molecular aggregates. Our results suggest that the vacuum ultraviolet CD spectrum is sensitive to the handedness of double-helical DNA structures. The CD spectrum in this region should complement other spectroscopic methods in relating the structures of poly(dG-dC).poly(dG-dC) existing in solution to those determined in the solid state by x-ray crystallography.

  7. Circular RNAs in Eukaryotic Cells.

    PubMed

    Chen, Liang; Huang, Chuan; Wang, Xiaolin; Shan, Ge

    2015-10-01

    Circular RNAs (circRNAs) are now recognized as large species of transcripts in eukaryotic cells. From model organisms such as C. elegans, Drosophila, mice to human beings, thousands of circRNAs formed from back-splicing of exons have been identified. The known complexity of transcriptome has been greatly expanded upon the discovery of these RNAs. Studies about the biogenesis and physiological functions have yielded substantial knowledge for the circRNAs, and they are now more likely to be viewed as regulatory elements coded by the genome rather than unavoidable noise of gene expression. Certain human diseases may also relate to circRNAs. These circRNAs show diversifications in features such as sequence composition and cellular localization, and thus we propose that they may be divided into subtypes such as cytoplasmic circRNAs, nuclear circRNAs, and exon-intron circRNAs (EIciRNAs). Here we summarize and discuss knowns and unknowns for these RNAs, and we need to keep in mind that the whole field is still at the beginning of exciting explorations.

  8. Fermi large area telescope observations of the cosmic-ray induced {gamma}-ray emission of the Earth's atmosphere

    SciTech Connect

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Bechtol, K.; Berenji, B.; Bloom, E. D.; Borgland, A. W.; Bouvier, A.; Buehler, R.; Cameron, R. A.; Charles, E.; Chiang, J.; Claus, R.; Digel, S. W.; Couto e Silva, E. do; Drell, P. S.; Dubois, R.; Focke, W. B.; Funk, S.; Glanzman, T.

    2009-12-15

    We report on measurements of the cosmic-ray induced {gamma}-ray emission of Earth's atmosphere by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The Large Area Telescope has observed the Earth during its commissioning phase and with a dedicated Earth limb following observation in September 2008. These measurements yielded {approx}6.4x10{sup 6} photons with energies >100 MeV and {approx}250 hours total live time for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission--often referred to as Earth albedo gamma-ray emission--has a power-law shape up to 500 GeV with spectral index {gamma}=2.79{+-}0.06.

  9. Fermi large area telescope observations of the cosmic-ray induced γ-ray emission of the Earth's atmosphere

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Atwood, W. B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Baughman, B. M.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Burnett, T. H.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Casandjian, J. M.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; de Palma, F.; Digel, S. W.; Do Couto E Silva, E.; Drell, P. S.; Dubois, R.; Dumora, D.; Farnier, C.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gehrels, N.; Germani, S.; Giebels, B.; Giglietto, N.; Giordano, F.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Grondin, M.-H.; Grove, J. E.; Guillemot, L.; Guiriec, S.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, T. J.; Johnson, W. N.; Kamae, T.; Katagiri, H.; Kataoka, J.; Kawai, N.; Kerr, M.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lemoine-Goumard, M.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Makeev, A.; Mazziotta, M. N.; McEnery, J. E.; Meurer, C.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Paneque, D.; Panetta, J. H.; Parent, D.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Reimer, A.; Reimer, O.; Reposeur, T.; Rochester, L. S.; Rodriguez, A. Y.; Roth, M.; Sadrozinski, H. F.-W.; Sander, A.; Saz Parkinson, P. M.; Sgrò, C.; Share, G. H.; Siskind, E. J.; Smith, D. A.; Smith, P. D.; Spandre, G.; Spinelli, P.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Tanaka, T.; Thayer, J. B.; Thayer, J. G.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Uchiyama, Y.; Usher, T. L.; Vasileiou, V.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Winer, B. L.; Wood, K. S.; Ylinen, T.; Ziegler, M.

    2009-12-01

    We report on measurements of the cosmic-ray induced γ-ray emission of Earth’s atmosphere by the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The Large Area Telescope has observed the Earth during its commissioning phase and with a dedicated Earth limb following observation in September 2008. These measurements yielded ˜6.4×106 photons with energies >100MeV and ˜250 hours total live time for the highest quality data selection. This allows the study of the spatial and spectral distributions of these photons with unprecedented detail. The spectrum of the emission—often referred to as Earth albedo gamma-ray emission—has a power-law shape up to 500 GeV with spectral index Γ=2.79±0.06.

  10. Observations of a High-Latitude Stable Electron Auroral Emission at Approximately 16 MLT During a Large Substorm

    NASA Technical Reports Server (NTRS)

    Cattell, C.; Dombeck, J.; Preiwisch, A.; Thaller, S.; Vo, P.; Wilson, L. B., III; Wygant, J.; Mende, S. B.; Frey, H. U.; Ilie, R.; Lu, G.

    2011-01-01

    During an interval when the interplanetary magnetic field was large and primarily duskward and southward, a stable region of auroral emission was observed on 17 August 2001 by IMAGE at 16 magnetic local time, poleward of the main aurora, for 1 h, from before the onset of a large substorm through the recovery phase. In a region where ions showed the energy dispersion expected for the cusp, strong field \\aligned currents and Poynting flux were observed by Polar (at 1.8 RE in the Southern Hemisphere) as it transited field lines mapping to the auroral spot in the Northern Hemisphere. The data are consistent with the hypothesis that the long \\lasting electron auroral spot maps to the magnetopause region where reconnection was occurring. Under the assumption of conjugacy between the Northern and Southern hemispheres on these field lines, the Polar data suggest that the electrons on these field lines were accelerated by Alfven waves and/or a quasi \\static electric field, primarily at altitudes below a few RE since the in situ Poynting flux (mapped to 100 km) is comparable to the energy flux of the emission while the mapped in situ electron energy flux is much smaller. This event provides the first example of an emission due to electrons accelerated at low altitudes at the foot point of a region of quasi \\steady dayside reconnection. Cluster data in the magnetotail indicate that the Poynting flux from the reconnection region during this substorm is large enough to account for the observed nightside aurora.

  11. Observations and simulations of quasiperiodic ionospheric oscillations and large-scale traveling ionospheric disturbances during the December 2006 geomagnetic storm

    NASA Astrophysics Data System (ADS)

    Lei, Jiuhou; Burns, Alan G.; Tsugawa, Takuya; Wang, Wenbin; Solomon, Stanley C.; Wiltberger, Michael

    2008-06-01

    A numerical simulation was performed to investigate quasiperiodic ionospheric oscillations that were observed with periods of 4-5 h by the ionosonde network (Okinawa, Yamagawa, Kokubunji, and Wakkanai) in Japan during the 15 December 2006 magnetic storm. This simulation used the Coupled Magnetosphere Ionosphere Thermosphere (CMIT) 2.0 model. The CMIT model reproduced the main characteristics of the observed ionospheric oscillations, although it remains a challenging task to simulate the observations in a quantitative sense. Term analysis of the ion continuity equation demonstrated that the ionospheric oscillations in this event were mainly induced by the disturbed neutral winds, which were associated with the large scale thermospheric circulation and traveling atmospheric disturbances (TADs) during the storm. The TADs simulated from the model were then compared with those observed by the GPS Earth Observation Network (GEONET) in Japan to validate the simulation results. A prominent northward propagating large-scale traveling ionospheric disturbance (LSTID) during daytime, seen by the GEONET total electron content (TEC) data, was captured by the CMIT model. Two southward LSTIDs observed by GEONET GPS network were also reproduced by the CMIT model. However, the model gave faster phase speeds for the southward propagating LSTID occurred during 0620-0800 UT and the northward propagating LSTID; furthermore, the model missed the LSTID seen in the TEC perturbation data during 0140-0220 UT. Finally, both observations and simulations showed a strong hemispheric asymmetry for the TAD propagation that occurred during 0000-0400 UT, which may be associated with the hemispheric asymmetry of the change of Joule heating at high latitude.

  12. Diffuse Optical Intracluster Light as a Measure of Stellar Tidal Stripping: The Cluster CL0024+17 at z ~ 0.4 Observed at the Large Binocular Telescope

    NASA Astrophysics Data System (ADS)

    Giallongo, E.; Menci, N.; Grazian, A.; Gallozzi, S.; Castellano, M.; Fiore, F.; Fontana, A.; Pentericci, L.; Boutsia, K.; Paris, D.; Speziali, R.; Testa, V.

    2014-01-01

    We have evaluated the diffuse intracluster light (ICL) in the central core of the galaxy cluster CL0024+17 at z ~ 0.4 observed with the prime focus camera (Large Binocular Camera) at the Large Binocular Telescope. The measure required an accurate removal of the galaxies' light within ~200 kpc from the center. The residual background intensity has then been integrated in circular apertures to derive the average ICL intensity profile. The latter shows an approximate exponential decline as expected from theoretical cold dark matter models where the ICL is due to the integrated contribution of light from stars that are tidally stripped from the halo of their host galaxies due to encounters with other galaxies in the cluster cold dark matter (CDM) potential. The radial profile of the ICL over the galaxies intensity ratio (ICL fraction) is increasing with decreasing radius, but near the cluster center it starts to bend and then decreases where the overlap of the halos of the brightest cluster galaxies becomes dominant. Theoretical expectations in a simplified CDM scenario show that the ICL fraction profile can be estimated from the stripped over galaxy stellar mass ratio in the cluster. It is possible to show that the latter quantity is almost independent of the properties of the individual host galaxies but mainly depends on the average cluster properties. The predicted ICL fraction profile is thus very sensitive to the assumed CDM profile, total mass, and concentration parameter of the cluster. Adopting values very similar to those derived from the most recent lensing analysis in CL0024+17, we find a good agreement with the observed ICL fraction profile. The galaxy counts in the cluster core have then been compared with that derived from composite cluster samples in larger volumes, up to the clusters virial radius. The galaxy counts in the CL0024+17 core appear flatter and the amount of bending with respect to the average cluster galaxy counts imply a loss of total

  13. Scattering matrix of infrared radiation by ice finite circular cylinders.

    PubMed

    Xu, Lisheng; Ding, Jilie; Cheng, Andrew Y S

    2002-04-20

    Scattering matrix characteristics of polydisperse, randomly oriented, small ice crystals modeled by finite circular cylinders with various ratios of the length to diameter (L/D) ratio are calculated by use of the exact T-matrix approach, with emphasis on the thermal infrared spectral region that extends from the atmospheric short-wave IR window to the far-IR wavelengths to as large as 30 microm. The observed ice crystal size distribution and the well-known power-law distribution are considered. The results of the extensive calculations show that the characteristics of scattering matrix elements of small ice circular cylinders depend strongly on wavelengths and refractive indices, particle size distributions, and the L/D ratios. The applicability of the power-law distribution and particle shapes for light scattering calculations for small ice crystals is discussed. The effects of the effective variance of size distribution on light scattering characteristics are addressed. It seems from the behavior of scattering matrix elements of small ice crystals that the combination of 25 and 3.979 microm has some advantages and potential applications for remote sensing of cirrus and other ice clouds.

  14. NEAR-INFRARED CIRCULAR POLARIZATION IMAGES OF NGC 6334-V

    SciTech Connect

    Kwon, Jungmi; Tamura, Motohide; Hashimoto, Jun; Kusakabe, Nobuhiko; Kandori, Ryo; Lucas, Phil W.; Hough, James H.; Nakajima, Yasushi; Nagayama, Takahiro; Nagata, Tetsuya

    2013-03-01

    We present results from deep imaging linear and circular polarimetry of the massive star-forming region NGC 6334-V. These observations show high degrees of circular polarization (CP), as much as 22% in the K{sub s} band, in the infrared nebula associated with the outflow. The CP has an asymmetric positive/negative pattern and is very extended ({approx}80'' or 0.65 pc). Both the high CP and its extended size are larger than those seen in the Orion CP region. Three-dimensional Monte Carlo light-scattering models are used to show that the high CP may be produced by scattering from the infrared nebula followed by dichroic extinction by an optically thick foreground cloud containing aligned dust grains. Our results show not only the magnetic field orientation of around young stellar objects, but also the structure of circumstellar matter such as outflow regions and their parent molecular cloud along the line of sight. The detection of the large and extended CP in this source and the Orion nebula may imply the CP origin of the biological homochirality on Earth.

  15. Beam Rounders for Circular Colliders

    SciTech Connect

    A. Burov; S. Nagaitsev; Ya. Derbenev

    2001-07-01

    By means of linear optics, an arbitrary uncoupled beam can be locally transformed into a round (rotation-invariant) state and then back. This provides an efficient way to round beams in the interaction region of circular colliders.

  16. Biological Synthesis of Circular Polypeptides*

    PubMed Central

    Aboye, Teshome L.; Camarero, Julio A.

    2012-01-01

    Here, we review the use of different biochemical approaches for biological synthesis of circular or backbone-cyclized proteins and peptides. These methods allow the production of circular polypeptides either in vitro or in vivo using standard recombinant DNA expression techniques. Protein circularization can significantly impact protein engineering and research in protein folding. Basic polymer theory predicts that circularization should lead to a net thermodynamic stabilization of a folded protein by reducing the entropy associated with the unfolded state. Protein cyclization also provides a valuable tool for exploring the effects of topology on protein folding kinetics. Furthermore, the biological production of cyclic polypeptides makes possible the production of cyclic polypeptide libraries. The generation of such libraries, which was previously restricted to the domain of synthetic chemists, now offers biologists access to highly diverse and stable molecular libraries for probing protein structure and function. PMID:22707722

  17. Circularly-Polarized Microstrip Antenna

    NASA Technical Reports Server (NTRS)

    Stanton, P. H.

    1985-01-01

    Microstrip construction compact for mobile applications. Circularly polarized microstrip antenna made of concentric cylindrical layers of conductive and dielectric materials. Coaxial cable feedlines connected to horizontal and vertical subelements from inside. Vertical subelement acts as ground for horizontal subelement.

  18. Beam rounders for circular colliders

    SciTech Connect

    A. Burov and S. Nagaitsev

    2002-12-10

    By means of linear optics, an arbitrary uncoupled beam can be locally transformed into a round (rotation-invariant) state and then back. This provides an efficient way to round beams in the interaction region of circular colliders.

  19. Observations of large-amplitude, parallel, electrostatic waves associated with the Kelvin-Helmholtz instability by the magnetospheric multiscale mission

    NASA Astrophysics Data System (ADS)

    Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Newman, D. L.; Eriksson, S.; Stawarz, J. E.; Goldman, M. V.; Goodrich, K. A.; Gershman, D. J.; Malaspina, D. M.; Holmes, J. C.; Sturner, A. P.; Burch, J. L.; Torbert, R. B.; Lindqvist, P.-A.; Marklund, G. T.; Khotyaintsev, Y.; Strangeway, R. J.; Russell, C. T.; Pollock, C. J.; Giles, B. L.; Dorrelli, J. C.; Avanov, L. A.; Patterson, W. R.; Plaschke, F.; Magnes, W.

    2016-09-01

    On 8 September 2015, the four Magnetospheric Multiscale spacecraft encountered a Kelvin-Helmholtz unstable magnetopause near the dusk flank. The spacecraft observed periodic compressed current sheets, between which the plasma was turbulent. We present observations of large-amplitude (up to 100 mV/m) oscillations in the electric field. Because these oscillations are purely parallel to the background magnetic field, electrostatic, and below the ion plasma frequency, they are likely to be ion acoustic-like waves. These waves are observed in a turbulent plasma where multiple particle populations are intermittently mixed, including cold electrons with energies less than 10 eV. Stability analysis suggests a cold electron component is necessary for wave growth.

  20. Observation of the activity of selected Oort Cloud comets with perihelia at large distances from the Sun

    NASA Astrophysics Data System (ADS)

    Kulyk, Iryna; Rousselot, Philippe; Korsun, Pavlo

    2016-10-01

    Many comets exhibit considerable level of activity at large distances from the Sun, where sublimation of crystalline water ice cannot account for observable comae. Different patterns of physical activity already observed at large heliocentric distances may be related to the primordial differences in the composition of comet nuclei. Therefore, monitoring of physical activity in the wide range of heliocentric distances can potentially contribute to understanding of internal structure of comet-like bodies. We have observed ten long periodic comets with orbital perihelia lying beyond the "water ice sublimation zone" to quantify the level of physical activity in the wide range of heliocentric distances. Pre-perihelion observations were made when targets moved between 16.7 and 6.5 au from the Sun; post perihelion activity was monitored between 5.2 and 10.6 au. The bulk of the data were gathered with the 2-m Robotic Liverpool Telescope (Observatorio del Roque de Los Muchachos, La Palma, Spain). Some targets were observed with the 2-m RC Telescope located at Peak Terskol Observatory and the 6-m Telescope of the Special Astrophysical Observatory (Northern Caucasus, Russia). Since most of recently obtained spectra of distant active objects are continuum dominated, we use B, V, R images to estimate dust production rates, an upper limit on nucleus radii, and color indices of near nucleus region. The comets C/2005 L3 (McNaught) and C/2006 S3 (Boattini), which exhibit the considerable level of activity, have been repeatedly observed. This enables us to infer the heliocentric dependence of dust production rates, perihelion brightness asymmetries, and color variations over the comae caused possibly by small changes in dust particle properties.

  1. SWAP OBSERVATIONS OF THE LONG-TERM, LARGE-SCALE EVOLUTION OF THE EXTREME-ULTRAVIOLET SOLAR CORONA

    SciTech Connect

    Seaton, Daniel B.; De Groof, Anik; Berghmans, David; Nicula, Bogdan; Shearer, Paul

    2013-11-01

    The Sun Watcher with Active Pixels and Image Processing (SWAP) EUV solar telescope on board the Project for On-Board Autonomy 2 spacecraft has been regularly observing the solar corona in a bandpass near 17.4 nm since 2010 February. With a field of view of 54 × 54 arcmin, SWAP provides the widest-field images of the EUV corona available from the perspective of the Earth. By carefully processing and combining multiple SWAP images, it is possible to produce low-noise composites that reveal the structure of the EUV corona to relatively large heights. A particularly important step in this processing was to remove instrumental stray light from the images by determining and deconvolving SWAP's point-spread function from the observations. In this paper, we use the resulting images to conduct the first-ever study of the evolution of the large-scale structure of the corona observed in the EUV over a three year period that includes the complete rise phase of solar cycle 24. Of particular note is the persistence over many solar rotations of bright, diffuse features composed of open magnetic fields that overlie polar crown filaments and extend to large heights above the solar surface. These features appear to be related to coronal fans, which have previously been observed in white-light coronagraph images and, at low heights, in the EUV. We also discuss the evolution of the corona at different heights above the solar surface and the evolution of the corona over the course of the solar cycle by hemisphere.

  2. Reproducing cloud and boundary layer structure observed in MAGIC campaign using ship-following large-eddy simulations

    NASA Astrophysics Data System (ADS)

    McGibbon, J.; Bretherton, C. S.

    2015-12-01

    The 2012-2013 MAGIC shipborne deployment of the ARM mobile facility sampled a broad range of subtropical marine stratocumulus (Sc), cumulus (Cu), and transition regimes during cruises between Long Beach, CA, and Hololulu, HI. Ship-following large-eddy simulations (LES) of selected cruise legs of 4-5 days are compared with a broad suite of observations of cloud structure and radiative properties taken on the Horizon Spirit ship. This quantitative comparison across a realistic range of conditions assesses the suitability of LES for simulating the sensitivity of such cloud regimes to climate perturbations, and for guiding the development of cloud and boundary layer parameterizations in global climate and weather forecast models. The System for Atmospheric Modeling (SAM) LES is used with a small, doubly-periodic domain and variable vertical resolution, initialized using thermodynamic radiosonde profiles near the start of each cruise leg. Sea-surface temperatures are prescribed from observations, and ECMWF analyses are used to derive time-varying geostrophic wind, ship-relative large-scale advective forcing, and large-scale vertical velocity. ECMWF vertical velocities are adjusted to keep the temperature profile close to radiosonde profiles with a relaxation timescale of 1 day. The ship-measured accumulation-mode aerosol concentration is assumed throughout the boundary layer for nucleation of cloud droplets. The ship-following approach allows efficient comparison of model output with a broad suite of ship-based observations. The simulations cannot be expected to match the observations on timescales less than three hours because of cloud-scale and mesoscale sampling variability. Nevertheless, a preliminary sample of eleven 2D runs of different legs predicts daily mean cloud fraction and surface longwave radiation with negligible systematic bias and correlation coefficients of 0.33 and 0.53, respectively. Full-leg 3D simulations will also be evaluated and presented.

  3. Circular code motifs in genomes of eukaryotes.

    PubMed

    El Soufi, Karim; Michel, Christian J

    2016-11-01

    A set X of 20 trinucleotides was identified in genes of bacteria, eukaryotes, plasmids and viruses, which has in average the highest occurrence in reading frame compared to its two shifted frames (Michel, 2015; Arquès and Michel, 1996). This set X has an interesting mathematical property as X is a circular code (Arquès and Michel, 1996). Thus, the motifs from this circular code X, called X motifs, have the property to always retrieve, synchronize and maintain the reading frame in genes. In this paper, we develop several statistical analyzes of X motifs in 138 available complete genomes of eukaryotes in which genes as well as non-gene regions are examined. Large X motifs (with lengths of at least 15 consecutive trinucleotides of X and compositions of at least 10 different trinucleotides of X among 20) have the highest occurrence in genomes of eukaryotes compared to its 23 large bijective motifs, its two large permuted motifs and large random motifs. The largest X motifs identified in eukaryotic genomes are presented, e.g. an X motif in a non-gene region of the genome Solanum pennellii with a length of 155 trinucleotides (465 nucleotides) and an expectation E=10(-71). In the human genome, the largest X motif occurs in a non-gene region of the chromosome 13 with a length of 36 trinucleotides and an expectation E=10(-11). X motifs in non-gene regions of genomes could be evolutionary relics of primitive genes using the circular code for translation. However, the proportion of X motifs (with lengths of at least 10 consecutive trinucleotides of X and compositions of at least 5 different trinucleotides of X among 20) in genes/non-genes of the 138 complete eukaryotic genomes is about 8. Thus, the X motifs occur preferentially in genes, as expected from the previous works of 20 years.

  4. Large Slow Slip Events and the Nonvolcanic Tremor Observed in the Mexican Subduction Zone are not of the Same Origin

    NASA Astrophysics Data System (ADS)

    Kostoglodov, V.; Husker, A. L.; Shapiro, N. M.; Campillo, M.; Cotte, N.; Clayton, R. W.

    2009-12-01

    There is a growing scientific challenge to understand the origin of recently discovered Slow Slip Events (SSE) and Non-Volcanic Tremor (NVT). SSE and NVT observed now in different subduction zones may be a very important constituent in the seismic cycle of large subduction thrust earthquakes. Large number of observations shows that the SSE is usually associated with an increased NVT activity but it is not clear yet if the NVT and SSE represent the same seismotectonic phenomenon or those are independent expressions of a common origin. Large 2006 SSE in Central Mexico has occurred during the MASE seismic experiment which provided some essential constraints on the problem. We computed a catalog of all NVT recorded with the MASE for 2005-2007, and then using this catalog a space-time distribution of the total NVT radiated energy in 1-2Hz bandwidth was estimated. The energy distribution evidences that the NVT is located within or over the zone of the free slipping subhorizontal interplate contact (at ~ 40 km depth, between 160 and 260 km from the trench). Dislocation models that fit the total surface displacements during the 2006 SSE recorded by GPS stations along the MASE profile, require that almost the entire slow slip was realized on the transition zone of the plate interface, a segment about 70-80 km long located between the seismogenic coupled zone (30-85 km from the trench), and the freely slipping zone. Thus, the SSE and NVT are spatially separated. Four large distinct NVT bursts occurred within one year, during the 2006 SSE, meanwhile there were several comparably large NVT episodes during the “quiet” epochs when no one SSE was detected by GPS. The results of this study clearly show that the SSE and NVT observed in the Mexican subduction zone are the natural phenomena of different origin but the NVT activity is intensified by large SSE. Finally the total estimated seismic energy (assuming that the NVT spectrum is similar to the Brune model) of the NVT

  5. Merged interaction regions and large-scale fluctuations observed by the Voyager 2 in the distant heliosphere

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.; Ness, N. F.

    1995-01-01

    The merged interaction regions (MIRs) and large-scale fluctuations of the heliospheric magnetic field play a major role in the dynamics of the solar wind, the position and motion of the termination shock and heliopause, the triggering of radio emissions, and the modulation of cosmic rays. The structure of MIRs and large-scale fluctuations varies with distance from the sun and with solar activity. Here we compare Voyager 2 observations near the maximum of solar activity (1989 through 1991) with those during the declining phase of solar activity (1992 thorough 1994). Global MIRs with strong magnetic fields, preceded by a strong shock, were observed near solar maximum. During the declining phase of the solar cycle, the MIRs had significantly weaker magnetic fields. In both cases the pickup protons, identified by an analysis of pressure balanced structures, play a major role in the dynamical evolution of the MIRs beyond 30 AU. The large-scale magnetic field fluctuations have significantly greater amplitudes near solar maximum than during the declining phase of the solar cycle.

  6. Circular block matching based video stabilization

    NASA Astrophysics Data System (ADS)

    Xu, Lidong; Fu, Fangwen; Lin, Xinggang

    2005-07-01

    Video sequences captured by handheld digital camera need to be stabilized to eliminate the tiresome effects caused by camera"s undesirable shake or jiggle. The key issue of video stabilization is to estimate the global motion parameters between two successive frames. In this paper, a novel circular block matching algorithm is proposed to estimate the global motion parameters. This algorithm can deal with not only translational motion but even large rotational motion. For an appointed circular block in current frame, a four-dimensional rotation invariant feature vector is firstly extracted from it and used to judge if it is an effective block. Then the rotation invariant features based circular block matching process is performed to find the best matching blocks in reference frame for those effective blocks. With the matching results of any two effective blocks, a two-dimensional motion model is constructed to produce one group of frame motion parameters. A statistical method is proposed to calculate the estimated global motion parameters with all groups of global motion parameters. Finally, using the estimated motion parameters as the initial values, an iteration algorithm is introduced to obtain the refined global motion parameters. The experimental results show that the proposed algorithm is excellent in stabilizing frames with even burst global translational and rotational motions.

  7. First observations of poleward large-scale traveling ionospheric disturbances over the African sector during geomagnetic storm conditions

    NASA Astrophysics Data System (ADS)

    Habarulema, John Bosco; Katamzi, Zama Thobeka; Yizengaw, Endawoke

    2015-08-01

    This paper presents first observations of poleward traveling ionospheric disturbances (TIDs) during strong geomagnetic conditions over the African sector. By analyzing different data sets we have observed both positive and negative ionospheric responses during the storm period of 08-10 March 2012. Considering the African region as a whole, three longitudinal sectors were strategically selected to establish the entire regional response. On both sides of the geomagnetic equator, results show poleward shift in peak total electron content (TEC) enhancements/depletions at different times which are associated to large-scale TIDs. The observed phenomena are linked to the global ionospheric response and electrodynamics. The understanding has been established using data from International GNSS Service receiver network, radio occultation electron density profiles, derived E×B drift measurements from magnetometer observations and regional ground-based and satellite data. Contrary to other related studies, generated regional TEC perturbation maps were not enough to show obvious directions of the large-scale TIDs due to insufficient data over the northern hemispheric part of the African sector. There appears to be a switch between positive and negative storm phases during the same storm period especially in the Southern Hemisphere part of the African region where "enough" data were available. However, a detailed analysis revealed that the positive storm phase corresponded to the expansion of the equatorial ionization anomaly (EIA) toward some parts of midlatitude regions (and possibly with the contribution from low-latitude electrodynamics associated to equatorial electrojet), while the other part recorded a negative storm phase due to storm-induced changes from the auroral origin. We have observed a simultaneous occurrence of both poleward and equatorward propagating TIDs over the African sector during the same geomagnetic storm period. Our results show that short-lived large

  8. Large Scale Ionospheric Response During March 17, 2013 Geomagnetic Storm: Reanalysis Based on Multiple Satellites Observations and TIEGCM Simulations

    NASA Astrophysics Data System (ADS)

    Yue, X.; Wang, W.; Schreiner, W. S.; Kuo, Y. H.; Lei, J.; Liu, J.; Burns, A. G.; Zhang, Y.; Zhang, S.

    2015-12-01

    Based on slant total electron content (TEC) observations made by ~10 satellites and ~450 ground IGS GNSS stations, we constructed a 4-D ionospheric electron density reanalysis during the March 17, 2013 geomagnetic storm. Four main large-scale ionospheric disturbances are identified from reanalysis: (1) The positive storm during the initial phase; (2) The SED (storm enhanced density) structure in both northern and southern hemisphere; (3) The large positive storm in main phase; (4) The significant negative storm in middle and low latitude during recovery phase. We then run the NCAR-TIEGCM model with Heelis electric potential empirical model as polar input. The TIEGCM can reproduce 3 of 4 large-scale structures (except SED) very well. We then further analyzed the altitudinal variations of these large-scale disturbances and found several interesting things, such as the altitude variation of SED, the rotation of positive/negative storm phase with local time. Those structures could not be identified clearly by traditional used data sources, which either has no gloval coverage or no vertical resolution. The drivers such as neutral wind/density and electric field from TIEGCM simulations are also analyzed to self-consistantly explain the identified disturbance features.

  9. Observations of Comet P/2003 T12 = 2012 A3 (SOHO) at large phase angle in STEREO-B

    NASA Astrophysics Data System (ADS)

    Hui, M.-T.

    2013-12-01

    Comet P/2003 T12 = 2012 A3 (SOHO) was observed by the satellite STEREO-B during the period 2012 January 13-27. During its apparition, it ventured into the highest phase angle ever observed for a comet, and the forward-scattering enhancement in brightness was marked, as large as ˜8.5 mag. Therefore, it provided a precious opportunity to examine the compound Henyey-Greenstein (HG) comet-dust light-scattering model and it also offered valuable polarization data under an unprecedented observing geometry. Our analysis reveals that the compound HG model fits the observations very well until the phase angle exceeds ˜173°, where the brightness surge of the comet was obviously steeper than the prediction by the model. We have found that the reason for the greater steepness cannot be explained by contaminations from the proximal tail. Instead, the model of Mie spheres with radii greater than 1 μm, having a power-law distribution of power index ˜3, matches the observation very well, providing a best-fitting complex refractive index μ = 1.38 + i 0.006. The dust size was found to be consistent with the analysis of the comet's syndyne lines. The debiased polarization of the coma was ˜0 per cent in the phase angle range from 172.9° to 177.6°. . No convincing evidence of temporal variation of the polarization was detected.

  10. Observations of Comet P/2003 T12 = 2012 A3 (SOHO) at large phase angle in STEREO-B

    NASA Astrophysics Data System (ADS)

    Hui, Man-To

    2014-11-01

    Comet P/2003 T12 = 2012 A3 (SOHO) was observed by the satellite STEREO-B during the period 2012 January 13-27. During its apparition, it ventured into the highest phase angle ever observed for a comet, and the forward-scattering enhancement in brightness was marked, as large as ˜8.5 mag. Therefore, it provided a precious opportunity to examine the compound Henyey-Greenstein (HG) comet-dust light-scattering model and it also offered valuable polarization data under an unprecedented observing geometry. Our analysis reveals that the compound HG model fits the observations very well until the phase angle exceeds ˜173°, where the brightness surge of the comet was obviously steeper than the prediction by the model. We have found that the reason for the greater steepness cannot be explained by contaminations from the proximal tail. Instead, the model of Mie spheres with radii greater than 1 μm, having a power-law distribution of power index ˜3, matches the observation very well, providing a best-fitting complex refractive index μ = 1.38 + i 0.006. The dust size was found to be consistent with the analysis of the comet's syndyne lines. The debiased polarization of the coma was ˜0 per cent in the phase angle range from 172.9° to 177.6°. No convincing evidence of temporal variation of the polarization was detected.

  11. Towards a better understanding of shallow convection over land using ground-based observation and large-eddy simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Klein, S. A.

    2014-12-01

    It is very important and challenging for global climate models to represent a correct diurnal cycle of shallow cumuli over land. In this study, we build a new composite case for fair-weather shallow cumulus over land based on observational statistics. We aim to answer questions: 1) how well the can large-eddy simulation (LES) reproduce the observed cloud metrics? And 2) how well can the composite case represent the shallow cumuli regime compared with one "golden" day case study? These LES results, and the associated forcing and observations, will further serve as a benchmark test bed for the performance of the single column model version of large-scale models on simulating continental shallow cumulus. First, a case library of continental shallow cumulus clouds was established based on longterm observations at Southern Great Plains ARM site (Zhang and Klein 2010, 2013), which includes days of forced- and active-shallow cumulus clouds, and days of shallow convection that transits to deep convective precipitating events in late afternoon. Observational statistics was developed for each regime on cloud macrophysics, meteorological atmospheric and surface conditions. Particularly for active shallow cumulus clouds, in-cloud vertical velocity retrieval based on long-term radar measurements is used to derive cloud updraft and downdraft mass fluxes. Secondly, LES of the composite case is performed for active shallow cumulus clouds and it shows significantly less cloud fraction than observations. Sensitivity tests are then performed on grid resolution, domain size, microphysics scheme, surface fluxes and so on. LES is also done for each individual shallow cumulus day to investigate the possible non-linear effect due to the composite case. Thirdly, LES is used to study the effect of large-scale environmental controls, such as relative humidity and atmospheric stability, on the vertical extent of clouds, the transition between forced and active shallow cumulus and the

  12. Optical observations of comet Hale-Bopp (C/1995 O1) at large heliocentric distances before perihelion.

    PubMed

    Rauer, H; Arpigny, C; Boehnhardt, H; Colas, F; Crovisier, J; Jorda, L; Küppers, M; Manfroid, J; Rembor, K; Thomas, N

    1997-03-28

    The activity of comet Hale-Bopp (C/1995 O1) was monitored monthly by optical imaging and long-slit spectroscopy of its dust and gas distribution over heliocentric distances of 4.6 to 2.9 astronomical units. The observed band intensities of the NH2 radical and the H2O+ ion cannot be explained by existing models of fluorescence excitation, warranting a reexamination of the corresponding production rates, at least at large heliocentric distances. Comparing the production rate of the CN radical to its proposed parent, HCN, shows no evidence for the need of a major additional source for CN in Hale-Bopp at large heliocentric distances. The dust and CN production rates are consistent with a significant amount of sublimation occurring from icy dust grains surrounding Hale-Bopp.

  13. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials

    PubMed Central

    Li, Wei; Coppens, Zachary J.; Besteiro, Lucas V.; Wang, Wenyi; Govorov, Alexander O.; Valentine, Jason

    2015-01-01

    Circularly polarized light is utilized in various optical techniques and devices. However, using conventional optical systems to generate, analyse and detect circularly polarized light involves multiple optical elements, making it challenging to realize miniature and integrated devices. While a number of ultracompact optical elements for manipulating circularly polarized light have recently been demonstrated, the development of an efficient and highly selective circularly polarized light photodetector remains challenging. Here we report on an ultracompact circularly polarized light detector that combines large engineered chirality, realized using chiral plasmonic metamaterials, with hot electron injection. We demonstrate the detector's ability to distinguish between left and right hand circularly polarized light without the use of additional optical elements. Implementation of this photodetector could lead to enhanced security in fibre and free-space communication, as well as emission, imaging and sensing applications for circularly polarized light using a highly integrated photonic platform. PMID:26391292

  14. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials

    NASA Astrophysics Data System (ADS)

    Li, Wei; Coppens, Zachary J.; Besteiro, Lucas V.; Wang, Wenyi; Govorov, Alexander O.; Valentine, Jason

    2015-09-01

    Circularly polarized light is utilized in various optical techniques and devices. However, using conventional optical systems to generate, analyse and detect circularly polarized light involves multiple optical elements, making it challenging to realize miniature and integrated devices. While a number of ultracompact optical elements for manipulating circularly polarized light have recently been demonstrated, the development of an efficient and highly selective circularly polarized light photodetector remains challenging. Here we report on an ultracompact circularly polarized light detector that combines large engineered chirality, realized using chiral plasmonic metamaterials, with hot electron injection. We demonstrate the detector's ability to distinguish between left and right hand circularly polarized light without the use of additional optical elements. Implementation of this photodetector could lead to enhanced security in fibre and free-space communication, as well as emission, imaging and sensing applications for circularly polarized light using a highly integrated photonic platform.

  15. SIMULTANEOUS OBSERVATIONS OF A LARGE-SCALE WAVE EVENT IN THE SOLAR ATMOSPHERE: FROM PHOTOSPHERE TO CORONA

    SciTech Connect

    Shen, Yuandeng; Liu, Yu

    2012-06-20

    For the first time, we report a large-scale wave that was observed simultaneously in the photosphere, chromosphere, transition region, and low corona layers of the solar atmosphere. Using the high temporal and high spatial resolution observations taken by the Solar Magnetic Activity Research Telescope at Hida Observatory and the Atmospheric Imaging Assembly (AIA) on board Solar Dynamic Observatory, we find that the wave evolved synchronously at different heights of the solar atmosphere, and it propagated at a speed of 605 km s{sup -1} and showed a significant deceleration (-424 m s{sup -2}) in the extreme-ultraviolet (EUV) observations. During the initial stage, the wave speed in the EUV observations was 1000 km s{sup -1}, similar to those measured from the AIA 1700 A (967 km s{sup -1}) and 1600 A (893 km s{sup -1}) observations. The wave was reflected by a remote region with open fields, and a slower wave-like feature at a speed of 220 km s{sup -1} was also identified following the primary fast wave. In addition, a type-II radio burst was observed to be associated with the wave. We conclude that this wave should be a fast magnetosonic shock wave, which was first driven by the associated coronal mass ejection and then propagated freely in the corona. As the shock wave propagated, its legs swept the solar surface and thereby resulted in the wave signatures observed in the lower layers of the solar atmosphere. The slower wave-like structure following the primary wave was probably caused by the reconfiguration of the low coronal magnetic fields, as predicted in the field-line stretching model.

  16. Turbulent Statistics of Neutrally Stratified Flow Within and Above a Sparse Forest from Large-Eddy Simulation and Field Observations

    NASA Astrophysics Data System (ADS)

    Su, Hong-Bing; Shaw, Roger H.; Tha Paw, Kyaw; Moeng, Chin-Hoh; Sullivan, Peter P.

    Turbulent statistics of neutrally stratified shear-driven flow within and above a sparse forest canopy are presented from a large-eddy simulation (LES) and compared with those from observations within and above a deciduous forest with similar height and foliage density. First- and second-order moments from the LES agree with observations quite well. Third-order moments from the LES have the same sign and similar vertical patterns as those from the observations, but the LES yields smaller magnitudes of such higher-order moments. Turbulent spectra and cospectra from the LES agree well with observations above the forest. However, at the highest frequencies, the LES spectra have steeper slopes than observations. Quadrant and conditional analyses of the LES resolved-scale flow fields also agree with observations. For example, both LES and observation find that sweeps are more important than ejections for the transport of momentum within the forest, while inward and outward interaction contributions are both small, except near the forest floor. The intermittency of the transport of momentum and scalar increases with depth into the forest. Finally, ramp structures in the time series of a passive scalar at multiple levels within and above the forest show similar features to those measured from field towers. Two-dimensional (height-time cross-section) contours of the passive scalar and wind vectors show sweeps and ejections, and the characteristics of the static pressure perturbation near the ground resemble those deduced from field tower-based measurements. In spite of the limited grid resolution (2 m × 2 m × 2 m) and domain size (192 m × 192 m × 60 m) used in this LES, we demonstrate that the LES is capable of resolving the most important characteristics of the turbulent flow within and above a forest canopy.

  17. Circular polarization interferometry: circularly polarized modes of cholesteric liquid crystals.

    PubMed

    Sanchez-Castillo, A; Eslami, S; Giesselmann, F; Fischer, P

    2014-12-15

    We describe a novel polarization interferometer which permits the determination of the refractive indices for circularly-polarized light. It is based on a Jamin-Lebedeff interferometer, modified with waveplates, and permits us to experimentally determine the refractive indices nL and nR of the respectively left- and right-circularly polarized modes in a cholesteric liquid crystal. Whereas optical rotation measurements only determine the circular birefringence, i.e. the difference (nL - nR), the interferometer also permits the determination of their absolute values. We report refractive indices of a cholesteric liquid crystal in the region of selective (Bragg) reflection as a function of temperature. PMID:25607071

  18. Observations of large-scale plasma convection in the magnetosphere with respect to the geomagnetic activity level

    NASA Astrophysics Data System (ADS)

    Stepanov, A. E.; Khalipov, V. L.; Kotova, G. A.; Zabolotskii, M. S.; Golikov, I. A.

    2016-03-01

    The data of the ionospheric observations (the daily f plots) at the Yakutsk meridional chain of ionosondes (Yakutsk-Zhigansk-Batagai-Tixie Bay) with sharp decreases (breaks) in the critical frequency of the regular ionospheric F2 layer ( foF2) are considered. The data for 1968-1983 were analyzed, and the statistics of the foF2 break observations, which indicate that these breaks are mainly registered in equinoctial months and in afternoon and evening hours under moderately disturbed geomagnetic conditions, are presented. Calculations performed using the prognostic model of the high-latitude ionosphere indicate that the critical frequency break position coincides with the equatorial boundary of large-scale plasma convection in the dusk MLT sector.

  19. Observations of Large Scale Sidereal Anisotropy in 1 and 11 TeV cosmic rays from the MINOS experiment

    SciTech Connect

    de Jong, J.K.

    2012-01-01

    The MINOS Near and Far Detectors are two large, functionally-identical, steel-scintillating sampling calorimeters located at depths of 220 mwe and 2100 mwe respectively. The detectors observe the muon component of hadronic showers produced from cosmic ray interactions with nuclei in the earth's atmosphere. From the arrival direction of these muons, the anisotropy in arrival direction of the cosmic ray primaries can be determined. The MINOS Near and Far Detector have observed anisotropy on the order of 0.1% at 1 and 11 TeV respectively. The amplitude and phase of the first harmonic at 1 TeV are 8.2 {+-} 1.7(stat.) x 10{sup -4} and (8.9 {+-} 12.1(stat.)){sup o}, and at 11 TeV are 3.8 {+-} 0.5(stat.) x 10{sup -4} and (27.2 {+-} 7.2(stat.)){sup o}.

  20. Continuous-wave circular polarization terahertz imaging

    NASA Astrophysics Data System (ADS)

    Martin, Jillian P.; Joseph, Cecil S.; Giles, Robert H.

    2016-07-01

    Biomedical applications of terahertz (THz) radiation are appealing because THz radiation is nonionizing and has the demonstrated ability to detect intrinsic contrasts between cancerous and normal tissue. A linear polarization-sensitive detection technique for tumor margin delineation has already been demonstrated; however, utilization of a circular polarization-sensitive detection technique has yet to be explored at THz frequencies. A reflective, continuous-wave THz imaging system capable of illuminating a target sample at 584 GHz with either linearly or circularly polarized radiation, and capable of collecting both cross- and copolarized signals remitted from the target, is implemented. To demonstrate the system's utility, a fresh ex vivo human skin tissue specimen containing nonmelanoma skin cancer was imaged. Both polarization-sensitive detection techniques showed contrast between tumor and normal skin tissue, although some differences in images were observed between the two techniques. Our results indicate that further investigation is required to explain the contrast mechanism, as well as to quantify the specificity and sensitivity of the circular polarization-sensitive detection technique.

  1. Light-driven circular plasmon current in a silver nanoring.

    PubMed

    Zou, Shengli

    2008-09-15

    A circular plasmon current in a silver nanoring is demonstrated and investigated with electrodynamics theory. The circular current is driven by the incident plane electromagnetic wave. For a silver ring with a thickness of 50 nm and inner and outer diameters of 200 and 300 nm, the circular current can be obtained when the incident wavelength is at 650 nm, which is about twice the diameter of the ring. The circular current can be observed only when the incident wave and the polarization directions are both parallel to the ring plane. The resonance wavelength shifts to red with the expansion of the ring diameter and the drop in the ring thickness. The discovery holds promise for the design of artificial materials with negative refractive index in the visible wavelengths and might stimulate new ideas for the development of nanoelectronic devices.

  2. SPATIAL SEISMOLOGY OF A LARGE CORONAL LOOP ARCADE FROM TRACE AND EIT OBSERVATIONS OF ITS TRANSVERSE OSCILLATIONS

    SciTech Connect

    Verwichte, E.; Foullon, C.; Van Doorsselaere, T.

    2010-07-01

    We present a study of transverse loop oscillations in a large coronal loop arcade, using observations from the Transition Region And Coronal Explorer (TRACE) and Extreme-ultraviolet Imaging Telescope (EIT). For the first time we reveal the presence of long-period transverse oscillations with periods between 24 minutes and 3 hr. One loop bundle, 690 Mm long and with an oscillation period of 40 minutes, is analyzed in detail and its oscillation characteristics are determined in an automated manner. The oscillation quality factor is similar to what has been found earlier for oscillations in much shorter loops. This indicates that the damping mechanism of transverse loop oscillations is independent of loop length or period. The displacement profile along the whole length of the oscillating loop is determined for the first time and consistently between TRACE and EIT. By comparing the observed profile with models of the three-dimensional geometry of the equilibrium and perturbed loop, we test the effect of longitudinal structuring (spatial seismology) and find that the observations cannot unambiguously distinguish between structuring and non-planarity of the equilibrium loop. Associated intensity variations with a similar periodicity are explained in terms of variations in the line-of-sight column depth. Also, we report intensity oscillations at the loop footpoint, which are in anti-phase with respect to the intensity oscillations in the loop body. Lastly, this observation offers the first opportunity to use the transverse oscillations of the arcade to model the Alfven speed profile in the global corona.

  3. Large-scale traveling ionospheric disturbances observed using GPS receivers over high-latitude and equatorial regions

    NASA Astrophysics Data System (ADS)

    Idrus, Intan Izafina; Abdullah, Mardina; Hasbi, Alina Marie; Husin, Asnawi; Yatim, Baharuddin

    2013-09-01

    This paper presents the first results of large-scale traveling ionospheric disturbances (LSTIDs) observation during two moderate magnetic storm events on 28 May 2011 (SYM-H∼ -94 nT and Dst∼-80 nT) and 6 August 2011 (SYM-H∼-126 nT and Dst∼-113 nT) over the high-latitude region in Russia, Sweden, Norway, Iceland and Greenland and equatorial region in the Peninsular Malaysia using vertical total electron content (VTEC) from the Global Positioning System (GPS) observations measurement. The propagation of the LSTID signatures in the GPS TEC measurements over Peninsular Malaysia was also investigated using VTEC map. The LSTIDs were found to propagate both equatorward and poleward directions during these two events. The results showed that the LSTIDs propagated faster at high-latitude region with an average phase velocity of 1074.91 m/s than Peninsular Malaysia with an average phase velocity of 604.84 m/s. The LSTIDs at the high-latitude region have average periods of 150 min whereas the ones observed over Peninsular Malaysia have average periods of 115 min. The occurrences of these LSTIDs were also found to be the subsequent effects of substorm activities in the auroral region. To our knowledge, this is the first result of observation of LSTIDs over Peninsular Malaysia during the 24th solar cycle.

  4. Evaluation of a newly designed endoscope for observing inner wall of large arteries for the use of endovascular intervention.

    PubMed

    Tanaka, S; Suzuki, T; Ogawa, M; Motoi, K; Nogawa, M; Ohtake, H; Watanabe, G; Yamakoshi, K

    2011-01-01

    A prototype endoscope for observing inner wall of large arteries was specially designed and evaluated through in vitro and in vivo tests. The purpose of this endoscope is to visualize the inner wall of large arteries, e.g., an aorta, without blocking off the blood stream aiming for the use of an assistive technique for endovascular interventions such as stent-graft placement for aortic aneurysm. The technique newly introduced for this purpose was the use of intermittent high-pressure saline jet synchronized to heart beat (diastolic phase). In the previous studies using commercially available bronchoscopes, we confirmed the validity of the system utilizing this technique [1, 2]. Based on these findings, in this study, we have specially designed a new endoscope with two channels, one for saline discharge and the other for forceps, and evaluated its performance through in vitro and in vivo tests. From the results of in vitro tests using a mock circulation system, it was confirmed that the newly designed endoscope was capable of visualizing a target installed on an inner surface of the mock system. Also confirmed through in vivo tests using swine was that we could observe bifurcation in descending aorta, e.g., left renal artery, without stopping off the blood stream.

  5. The Role of Large-Coherent-Eddy Transport in the Atmospheric Surface Layer Based on CASES-99 Observations

    NASA Astrophysics Data System (ADS)

    Sun, Jielun; Lenschow, Donald H.; LeMone, Margaret A.; Mahrt, Larry

    2016-07-01

    The analysis of momentum and heat fluxes from the Cooperative Atmosphere-Surface Exchange Study 1999 (CASES-99) field experiment is extended throughout the diurnal cycle following the investigation of nighttime turbulence by Sun et al. (J Atmos Sci 69:338-351, 2012). Based on the observations, limitations of Monin-Obukhov similarity theory (MOST) are examined in detail. The analysis suggests that strong turbulent mixing is dominated by relatively large coherent eddies that are not related to local vertical gradients as assumed in MOST. The HOckey-Stick Transition (HOST) hypothesis is developed to explain the generation of observed large coherent eddies over a finite depth and the contribution of these eddies to vertical variations of turbulence intensity and atmospheric stratification throughout the diurnal cycle. The HOST hypothesis emphasizes the connection between dominant turbulent eddies and turbulence generation scales, and the coupling between the turbulence kinetic energy and the turbulence potential energy within the turbulence generation layer in determining turbulence intensity. For turbulence generation directly influenced by the surface, the HOST hypothesis recognizes the role of the surface both in the vertical variation of momentum and heat fluxes and its boundary effect on the size of the dominant turbulence eddies.

  6. Lupus I Observations from the 2010 Flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry

    NASA Astrophysics Data System (ADS)

    Matthews, Tristan G.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Chapin, Edward L.; Chapman, Nicholas L.; Devlin, Mark J.; Fissel, Laura M.; Fukui, Yasuo; Gandilo, Natalie N.; Gundersen, Joshua O.; Hargrave, Peter C.; Klein, Jeffrey; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Netterfield, Calvin B.; Novak, Giles; Nutter, David; Olmi, Luca; Pascale, Enzo; Poidevin, Frédérick; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan Diego; Tachihara, Kengo; Thomas, Nicholas E.; Truch, Matthew D. P.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  7. LUPUS I observations from the 2010 flight of the Balloon-borne large aperture submillimeter telescope for polarimetry

    SciTech Connect

    Matthews, Tristan G.; Chapman, Nicholas L.; Novak, Giles; Ade, Peter A. R.; Hargrave, Peter C.; Nutter, David; Angilè, Francesco E.; Devlin, Mark J.; Klein, Jeffrey; Benton, Steven J.; Fissel, Laura M.; Gandilo, Natalie N.; Netterfield, Calvin B.; Chapin, Edward L.; Fukui, Yasuo; Gundersen, Joshua O.; Korotkov, Andrei L.; Moncelsi, Lorenzo; Mroczkowski, Tony K.; Olmi, Luca; and others

    2014-04-01

    The Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol) was created by adding polarimetric capability to the BLAST experiment that was flown in 2003, 2005, and 2006. BLASTPol inherited BLAST's 1.8 m primary and its Herschel/SPIRE heritage focal plane that allows simultaneous observation at 250, 350, and 500 μm. We flew BLASTPol in 2010 and again in 2012. Both were long duration Antarctic flights. Here we present polarimetry of the nearby filamentary dark cloud Lupus I obtained during the 2010 flight. Despite limitations imposed by the effects of a damaged optical component, we were able to clearly detect submillimeter polarization on degree scales. We compare the resulting BLASTPol magnetic field map with a similar map made via optical polarimetry. (The optical data were published in 1998 by J. Rizzo and collaborators.) The two maps partially overlap and are reasonably consistent with one another. We compare these magnetic field maps to the orientations of filaments in Lupus I, and we find that the dominant filament in the cloud is approximately perpendicular to the large-scale field, while secondary filaments appear to run parallel to the magnetic fields in their vicinities. This is similar to what is observed in Serpens South via near-IR polarimetry, and consistent with what is seen in MHD simulations by F. Nakamura and Z. Li.

  8. Circular birefringence of banded spherulites.

    PubMed

    Cui, Xiaoyan; Shtukenberg, Alexander G; Freudenthal, John; Nichols, Shane; Kahr, Bart

    2014-04-01

    Crystal optical properties of banded spherulites of 21 different compounds--molecular crystals, polymers, and minerals--with helically twisted fibers were analyzed with Mueller matrix polarimetry. The well-established radial oscillations in linear birefringence of many polycrystalline ensembles is accompanied by oscillations in circular birefringence that cannot be explained by the natural optical activity of corresponding compounds, some of which are centrosymmetric in the crystalline state. The circular birefringence is shown to be a consequence of misoriented, overlapping anisotropic lamellae, a kind of optical activity associated with the mesoscale stereochemistry of the refracting components. Lamellae splay as a consequence of space constraints related to simultaneous twisting of anisometric lamellae. This mechanism is supported by quantitative simulations of circular birefringence arising from crystallite twisting and splaying under confinement. PMID:24625095

  9. ON THE 2012 OCTOBER 23 CIRCULAR RIBBON FLARE: EMISSION FEATURES AND MAGNETIC TOPOLOGY

    SciTech Connect

    Yang, Kai; Guo, Yang; Ding, M. D. E-mail: dmd@nju.edu.cn

    2015-06-20

    Circular ribbon flares are usually related to spine-fan type magnetic topology containing null points. In this paper, we investigate an X-class circular ribbon flare on 2012 October 23, using the multiwavelength data from the Solar Dynamics Observatory, Hinode, and RHESSI. In Ca ii H emission, the flare showed three ribbons with two highly elongated ones inside and outside a quasi-circular one, respectively. A hot channel was displayed in the extreme-ultraviolet emissions that infers the existence of a magnetic flux rope. Two hard X-ray (HXR) sources in the 12–25 keV energy band were located at the footpoints of this hot channel. Using a nonlinear force-free magnetic field extrapolation, we identify three topological structures: (1) a three-dimensional null point, (2) a flux rope below the fan of the null point, and (3) a large-scale quasi-separatrix layer (QSL) induced by the quadrupolar-like magnetic field of the active region. We find that the null point is embedded within the large-scale QSL. In our case, all three identified topological structures must be considered to explain all the emission features associated with the observed flare. Besides, the HXR sources are regarded as the consequence of the reconnection within or near the border of the flux rope.

  10. Improved large-scale hydrological modelling through the assimilation of streamflow and downscaled satellite soil moisture observations

    NASA Astrophysics Data System (ADS)

    López López, Patricia; Wanders, Niko; Schellekens, Jaap; Renzullo, Luigi J.; Sutanudjaja, Edwin H.; Bierkens, Marc F. P.

    2016-07-01

    The coarse spatial resolution of global hydrological models (typically >  0.25°) limits their ability to resolve key water balance processes for many river basins and thus compromises their suitability for water resources management, especially when compared to locally tuned river models. A possible solution to the problem may be to drive the coarse-resolution models with locally available high-spatial-resolution meteorological data as well as to assimilate ground-based and remotely sensed observations of key water cycle variables. While this would improve the resolution of the global model, the impact of prediction accuracy remains largely an open question. In this study, we investigate the impact of assimilating streamflow and satellite soil moisture observations on the accuracy of global hydrological model estimations, when driven by either coarse- or high-resolution meteorological observations in the Murrumbidgee River basin in Australia. To this end, a 0.08° resolution version of the PCR-GLOBWB global hydrological model is forced with downscaled global meteorological data (downscaled from 0.5° to 0.08° resolution) obtained from the WATCH Forcing Data methodology applied to ERA-Interim (WFDEI) and a local high-resolution, gauging-station-based gridded data set (0.05°). Downscaled satellite-derived soil moisture (downscaled from ˜  0.5° to 0.08° resolution) from the remote observation system AMSR-E and streamflow observations collected from 23 gauging stations are assimilated using an ensemble Kalman filter. Several scenarios are analysed to explore the added value of data assimilation considering both local and global meteorological data. Results show that the assimilation of soil moisture observations results in the largest improvement of the model estimates of streamflow. The joint assimilation of both streamflow and downscaled soil moisture observations leads to further improvement in streamflow simulations (20 % reduction in RMSE

  11. Satellite observations of energy-banded ions during large geomagnetic storms: Event studies, statistics, and comparisons to source models

    NASA Astrophysics Data System (ADS)

    Colpitts, C. A.; Cattell, C. A.; Kozyra, J. U.; Thomsen, M. F.; Lavraud, B.

    2016-07-01

    Energy-banded ions from tens to ten thousands of eV are observed in the low-latitude auroral and subauroral zones during every large (minimum Dst < -150 nT) geomagnetic storm encountered by the FAST satellite. The banded ions persist for many FAST orbits, lasting up to 12 h, in both the northern and southern hemispheres. The energy-banded ions often have more than six distinct bands, and the O+, He+, and H+ bands are often observed at the same energies. The bands are extensive in latitude (~50-75° on the dayside, often extending to 45°) and magnetic local time, covering all magnetic local time over the data set of storms. The distributions are peaked in the perpendicular direction at the altitudes of the FAST satellite (~350-4175 km), although in some cases the precipitating component dominates for the lowest energy bands. At the same time, for some of the events studied in detail, long-lasting intervals of field-aligned energy dispersed ions from ~100 eV to 40 keV are seen in Los Alamos National Laboratory geosynchronous observations, primarily on the dayside and after magnetosheath encounters (i.e., highly compressed magnetosphere). We present both case and statistical studies of the banded ions. These bands are a new phenomenon associated with all large storms, which are distinctly different from other banded populations, and are not readily interpreted using previous models for particle sources, transport, and loss. The energy-banded ions are an energetically important component of the inner magnetosphere during the most intense magnetic storms.

  12. Observational Requirements for Lyα Forest Tomographic Mapping of Large-scale Structure at z ~ 2

    NASA Astrophysics Data System (ADS)

    Lee, Khee-Gan; Hennawi, Joseph F.; White, Martin; Croft, Rupert A. C.; Ozbek, Melih

    2014-06-01

    The z >~ 2 Lyα forest traces the underlying dark matter distribution on large scales and, given sufficient sightlines, can be used to create three-dimensional (3D) maps of large-scale structures. We examine the observational requirements to construct such maps and estimate the signal-to-noise as a function of exposure time and sightline density. Sightline densities at z = 2.25 are n los ≈ [360, 1200, 3300] deg-2 at limiting magnitudes of g = [24.0, 24.5, 25.0], resulting in transverse sightline separations of langd rang ≈ [3.6, 1.9, 1.2] h -1 Mpc, which roughly sets the reconstruction scale. We simulate these reconstructions using mock spectra with realistic noise properties and find that spectra with S/N ≈ 4 per angstrom can be used to generate maps that clearly trace the underlying dark matter at overdensities of ρ/langρrang ~ 1. For the VLT/VIMOS spectrograph, exposure times t exp = [4, 6, 10] hr are sufficient for maps with spatial resolution epsilon3D = [5.0, 3.2, 2.3] h -1 Mpc. Assuming ~250 h -1 Mpc is probed along the line of sight, 1 deg2 of survey area would cover a comoving volume of ≈106 h -3 Mpc3 at langzrang ~ 2.3, enabling the efficient mapping of large volumes with 8-10 m telescopes. These maps could be used to study galaxy environments, the topology of large-scale structures at high z, and to detect proto-clusters.

  13. Direct observation of dopant atom diffusion in a bulk semiconductor crystal enhanced by a large size mismatch.

    PubMed

    Ishikawa, Ryo; Mishra, Rohan; Lupini, Andrew R; Findlay, Scott D; Taniguchi, Takashi; Pantelides, Sokrates T; Pennycook, Stephen J

    2014-10-10

    Diffusion is one of the fundamental processes that govern the structure, processing, and properties of materials and it plays a crucial role in determining device lifetimes. However, direct observations of diffusion processes have been elusive and limited only to the surfaces of materials. Here we use an aberration-corrected electron microscope to locally excite and directly image the diffusion of single Ce and Mn dopants inside bulk wurtzite-type AlN single crystals, identifying correlated vacancy-dopant and interstitial-dopant kick-out mechanisms. Using a 200 kV electron beam to supply energy, we observe a higher frequency of dopant jumps for the larger and heavier Ce atoms than the smaller Mn atoms. These observations confirm density-functional-theory-based predictions of a decrease in diffusion barrier for large substitutional atoms. The results show that combining depth sensitive microscopy with theoretical calculations represents a new methodology to investigate diffusion mechanisms, not restricted to surface phenomena, but within bulk materials.

  14. Early science with the Large Millimetre Telescope: Deep LMT/AzTEC millimetre observations of ɛ Eridani and its surroundings

    NASA Astrophysics Data System (ADS)

    Chavez-Dagostino, M.; Bertone, E.; Cruz-Saenz de Miera, F.; Marshall, J. P.; Wilson, G. W.; Sánchez-Argüelles, D.; Hughes, D. H.; Kennedy, G.; Vega, O.; De la Luz, V.; Dent, W. R. F.; Eiroa, C.; Gómez-Ruiz, A. I.; Greaves, J. S.; Lizano, S.; López-Valdivia, R.; Mamajek, E.; Montaña, A.; Olmedo, M.; Rodríguez-Montoya, I.; Schloerb, F. P.; Yun, Min S.; Zavala, J. A.; Zeballos, M.

    2016-11-01

    ɛ Eridani is a nearby, young Sun-like star that hosts a ring of cool debris analogous to the Solar system's Edgeworth-Kuiper belt. Early observations at (sub-)mm wavelengths gave tentative evidence of the presence of inhomogeneities in the ring, which have been ascribed to the effect of a putative low eccentricity planet, orbiting close to the ring. The existence of these structures has been recently challenged by high-resolution interferometric millimetre observations. Here, we present the deepest single-dish image of ɛ Eridani at millimetre wavelengths, obtained with the Large Millimetre Telescope Alfonso Serrano (LMT). The main goal of these LMT observations is to confirm (or refute) the presence of non-axisymmetric structure in the disc. The dusty ring is detected for the first time along its full projected elliptical shape. The radial extent of the ring is not spatially resolved and shows no evidence, to within the uncertainties, of dust density enhancements. Additional features of the 1.1 mm map are: (i) the presence of significant flux in the gap between the ring and the star, probably providing the first exo-solar evidence of Poynting-Robertson drag, (ii) an unambiguous detection of emission at the stellar position with a flux significantly above that expected from ɛ Eridani's photosphere, and (iii) the identification of numerous unresolved sources which could correspond to background dusty star-forming galaxies.

  15. Observation of large Zeeman splitting in GaGdN/AlGaN ferromagnetic semiconductor double quantum well superlattices

    NASA Astrophysics Data System (ADS)

    Zhou, YiKai; Almokhtar, Mohamed; Kubo, Hitoshi; Mori, Nobuya; Emura, Shuichi; Hasegawa, Shigehiko; Asahi, Hajime

    2012-07-01

    Symmetric GaGdN/AlGaN (Gd concentration: 2%) and GaN/AlGaN double quantum well superlattices (DQW-SLs) were grown by radio-frequency plasma-assisted molecular-beam epitaxy on GaN (0001) templates. Atomic steps were observed on all the sample surfaces by atomic force microscope. X-ray diffraction θ/2θ scan curves exhibited well-defined satellite structures. Room temperature ferromagnetism was confirmed for the GaGdN/AlGaN DQW-SL samples by using alternating gradient magnetometer. Strong photoluminescence was observed from both GaGdN and GaN QWs at higher energy side of GaN excitonic peak. Magneto-photoluminescence spectra for GaGdN/AlGaN DQW-SL samples showed a large magnetic field dependence of the excitonic energy by applying a magnetic field up to 7 T. The observed strong redshift of excitonic PL indicated an enhancement of Zeeman splitting of the free carrier energy levels in magnetic GaGdN/AlGaN DQW-SL. Enhanced g-factor was estimated to be about 60 for GaGdN/AlGaN DQW-SL sample with QW thickness of 1 nm.

  16. MIRO Observations of Millimeter-wave Emission from Large Dust Particles in the Coma of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Schloerb, F. Peter; Gulkis, Samuel; Biver, Nicolas; von Allmen, Paul; Beaudin, Gerard; Bockelee-Morvan, Dominique; Choukroun, Mathieu; Crovisier, Jacques; Davidsson, Bjorn; Encrenaz, Pierre; Encrenaz, Therese A.; Frerking, Margaret; Hartogh, Paul; Ip, Wing-Huen; Janssen, Michael A.; Jarchow, Christopher; Kareta, Teddy; Lellouch, Emmanuel; Leyrat, Cedric; Rezac, Ladislav; Spilker, Thomas R.

    2016-10-01

    exponents between -1.6 and -2.0 would require the large particles observed by MIRO to disappear on time scales of 20,000-80,000 seconds.

  17. Interaction effect of number of circular holes in a circular plate

    SciTech Connect

    Ukadgaonker, V.G.; Agnahotri, N.A.

    1996-12-01

    The problem of circular tubesheet with uniform tension at its circular boundary and nine holes in the circular pitch pattern at its center is solved using complex stress functions. The Schwarz Alternating Technique is used to find the interaction effect of the holes on each other and then the superposition method is used to obtain desired geometry of the nine holes. This superposition gives the stress free boundary at the central hole exactly satisfied. When these results are compared with those obtained by Ukadgaonker and Kale by Finite Element Method it is found that the theoretical solutions give higher stress concentration than FEM by about 20% for a large outer radius. When the outer radius is reduced the stress concentration factor increases considerably and the difference in the analytical and the FEM solution also increases to a large extent. The analytical solution found in the present paper is verified with the FEM and Photoelasticity solution obtained by Ukadgaonker and Kale (1996) earlier. This problem is further generalized for a rhombic pitch pattern, which can be reduced to particular cases such as square pitch pattern, triangular pitch pattern, diagonal pitch pattern by changing the angle of the rhombus. The stress concentration factor around the central hole varies very little for various ligament efficiencies which is given in percentage.

  18. Characterization and remote sensing of biological particles using circular polarization

    NASA Astrophysics Data System (ADS)

    Nagdimunov, Lev; Kolokolova, Ludmilla; Mackowski, Daniel

    2013-12-01

    Biological molecules are characterized by an intrinsic asymmetry known as homochirality. The result is optical activity of biological materials and circular polarization in the light scattered by microorganisms, cells of living organisms, as well as molecules (e.g. amino acids) of biological origin. Lab measurements (Sparks et al. (2009) [6,7]) have found that light scattered by certain biological systems, in particular photosynthetic organisms, is not only circular polarized but contains a characteristic spectral trend, showing a fast change and reversal of sign for circular polarization within absorption bands. Similar behavior can be expected for other biological and prebiological organics, especially amino acids. We begin our study by reproducing the laboratory measurements for photosynthetic organisms through modeling the biological material as aggregated structures and using the Multiple Sphere T-matrix (MSTM) code for light scattering calculations. We further study how the spectral effect described above depends on the porosity of the aggregates and the size and number of the constituent particles (monomers). We show that larger aggregates are characterized by larger values of circular polarization and discuss how light-scattering characteristics of individual monomers and electromagnetic interaction between them affect this result. We find that circular polarization typically peaks at medium (40-140°) scattering angles, and discuss recommendations for efficient remote observation of circular polarization from (pre)biological systems.

  19. Direct Observation of Very Large Zero-Field Splitting in a Tetrahedral Ni(II)Se4 Coordination Complex.

    PubMed

    Jiang, Shang-Da; Maganas, Dimitrios; Levesanos, Nikolaos; Ferentinos, Eleftherios; Haas, Sabrina; Thirunavukkuarasu, Komalavalli; Krzystek, J; Dressel, Martin; Bogani, Lapo; Neese, Frank; Kyritsis, Panayotis

    2015-10-14

    The high-spin (S = 1) tetrahedral Ni(II) complex [Ni{(i)Pr2P(Se)NP(Se)(i)Pr2}2] was investigated by magnetometry, spectroscopic, and quantum chemical methods. Angle-resolved magnetometry studies revealed the orientation of the magnetization principal axes. The very large zero-field splitting (zfs), D = 45.40(2) cm(-1), E = 1.91(2) cm(-1), of the complex was accurately determined by far-infrared magnetic spectroscopy, directly observing transitions between the spin sublevels of the triplet ground state. These are the largest zfs values ever determined--directly--for a high-spin Ni(II) complex. Ab initio calculations further probed the electronic structure of the system, elucidating the factors controlling the sign and magnitude of D. The latter is dominated by spin-orbit coupling contributions of the Ni ions, whereas the corresponding effects of the Se atoms are remarkably smaller.

  20. A large, precise set of polarization observables for deuteron-proton breakup at 130 MeV

    SciTech Connect

    Stephan, E.; Biegun, A.; Klos, B.; Micherdzinska, A.; Zipper, W.; Kistryn, St.; Bodek, K.; Ciepal, I.; Golak, J.; Skibinski, R.; Sworst, R.; Witala, H.; Zejma, J.; Kalantar-Nayestanaki, N.; Kis, M.; Mahjour-Shafiei, M.; Deltuva, A.; Fonseca, A. C.; Epelbaum, E.; Nogga, A.

    2008-04-29

    High precision vector A{sub x},A{sub y} and tensor A{sub xx},A{sub xy},A{sub yy} analyzing powers for the {sup 1}H(d-vector,pp)n breakup reaction were measured at 130 MeV beam energy with the detection system covering a large part of the phase space. Results are compared with rigorous theoretical calculations based on realistic nucleon-nucleon potentials, also with a so-called three-nucleon force included, as well as on chiral perturbation theory. Theoretical predictions generally describe the data quite well, but in some regions discrepancies have been observed, which indicate incompleteness of the present-day treatment of three nucleon dynamics.

  1. Heterogeneous Reactivity of Nitric Acid with Nascent Sea Spray Aerosol: Large Differences Observed between and within Individual Particles.

    PubMed

    Ault, Andrew P; Guasco, Timothy L; Baltrusaitis, Jonas; Ryder, Olivia S; Trueblood, Jonathan V; Collins, Douglas B; Ruppel, Matthew J; Cuadra-Rodriguez, Luis A; Prather, Kimberly A; Grassian, Vicki H

    2014-08-01

    Current climate and atmospheric chemistry models assume that all sea spray particles react as if they are pure NaCl. However, recent studies of sea spray aerosol particles have shown that distinct particle types exist (including sea salt, organic carbon, and biological particles) as well as mixtures of these and, within each particle type, there is a range of single-particle chemical compositions. Because of these differences, individual particles should display a range of reactivities with trace atmospheric gases. Herein, to address this, we study the composition of individual sea spray aerosol particles after heterogeneous reaction with nitric acid. As expected, a replacement reaction of chloride with nitrate is observed; however, there is a large range of reactivities spanning from no reaction to complete reaction between and within individual sea spray aerosol particles. These data clearly support the need for laboratory studies of individual, environmentally relevant particles to improve our fundamental understanding as to the properties that determine reactivity.

  2. A particle consistent with the Higgs boson observed with the ATLAS detector at the Large Hadron Collider.

    PubMed

    2012-12-21

    Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga-electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself.

  3. A large increase in U.S. methane emissions over the past decade inferred from satellite data and surface observations

    NASA Astrophysics Data System (ADS)

    Turner, A. J.; Jacob, D. J.; Benmergui, J.; Wofsy, S. C.; Maasakkers, J. D.; Butz, A.; Hasekamp, O.; Biraud, S. C.

    2016-03-01

    The global burden of atmospheric methane has been increasing over the past decade, but the causes are not well understood. National inventory estimates from the U.S. Environmental Protection Agency indicate no significant trend in U.S. anthropogenic methane emissions from 2002 to present. Here we use satellite retrievals and surface observations of atmospheric methane to suggest that U.S. methane emissions have increased by more than 30% over the 2002-2014 period. The trend is largest in the central part of the country, but we cannot readily attribute it to any specific source type. This large increase in U.S. methane emissions could account for 30-60% of the global growth of atmospheric methane seen in the past decade.

  4. In-situ observation of inhomogeneous degradation in large format Li-ion cells by neutron diffraction

    SciTech Connect

    Cai, Lu; An, Ke; Feng, Zhili; Liang, Chengdu; Harris, Stephen J.

    2013-08-01

    This work presents a non-destructive in-situ method for probing degradation mechanisms in large format, operating, commercial lithium-ion batteries by neutron diffraction. A fresh battery (15 Ah capacity) was shown to have a uniform (homogeneous) local state of charge (SOC) at 4.0 V (9 Ah SOC) and 4.2 V (15 Ah SOC), with 1.33 C and 2.67 C charging rates, respectively. This battery was then aggressively cycled until it retained only a 9 Ah capacity, 60% of its original value. Inhomogeneous deterioration in the battery was observed: near the edges, both the graphite anode and the spinel-based cathode showed a significant loss of capacity, while near the central area, both electrodes functioned properly. An SOC mapping measurement of the degraded battery in the fully charged state (4.2 V) indicated that the loss of local capacity of the anode and cathode is coupled.

  5. A dynamic measure of controllability and observability for the placement of actuators and sensors on large space structures

    NASA Technical Reports Server (NTRS)

    Vandervelde, W. E.; Carignan, C. R.

    1982-01-01

    The degree of controllability of a large space structure is found by a four step procedure: (1) finding the minimum control energy for driving the system from a given initial state to the origin in the prescribed time; (2) finding the region of initial state which can be driven to the origin with constrained control energy and time using optimal control strategy; (3) scaling the axes so that a unit displacement in every direction is equally important to control; and (4) finding the linear measurement of the weighted "volume" of the ellipsoid in the equicontrol space. For observability, the error covariance must be reduced toward zero using measurements optimally, and the criterion must be standardized by the magnitude of tolerable errors. The results obtained using these methods are applied to the vibration modes of a free-free beam.

  6. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques

    PubMed Central

    Mohammed, Muzaffer; Clement, Travis C.; Aslan, Kadir

    2014-01-01

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400–800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72–24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally. PMID:25568813

  7. The observation of large semi-major axis Centaurs: Testing for the signature of a planetary-mass solar companion

    NASA Astrophysics Data System (ADS)

    Gomes, Rodney S.; Soares, Jean S.; Brasser, Ramon

    2015-09-01

    Several objects whose perihelion lies between Jupiter and Neptune have large semi-major axes a > 100 au, two of them having semi-major axis above 1000 au. Since these objects' perihelia share the same region as the classical Centaurs, a coherent nomenclature for them could be large semi-major axis Centaurs (Laces). It has been argued that the classical Centaurs, with semi-major axes below 50 au, originate from the Scattered Disk. However, the Laces most likely originate from the Oort Cloud. We determine the brightest object in the Laces, classical Centaurs (with semi-major axis >20 au) and Scattered Disk populations using a procedure that introduces observational bias to a set of objects in orbits obtained from numerical simulations of the evolution of the Oort cloud and Scattered Disk in the framework of the Nice model. The application of the procedure consistently determines that the brightest distant Lace (semi-major axis above 500 au) is fainter than the brightest classical Centaur by about one magnitude, no matter what parameters were used for the procedure. However, reality shows a reversed situation: there is an excess of Laces with lower visual magnitudes. It is not clear why this is the case. We test whether a planetary-mass solar companion could produce an excess of bright Laces in comparison with classical Centaurs. We find that with the companion there is an excess of luminous Laces compared to when there is no companion. However, the companion model also produces many classical Centaurs with lower visual magnitudes than the observed ones. Thus we conclude that the companion does not solve this visual magnitude inconsistency, although the results are in general more coherent under the model with the companion than without.

  8. Circular RNA expands its territory.

    PubMed

    Bao, Chunyang; Lyu, Dongbin; Huang, Shenglin

    2016-03-01

    Circular RNAs (circRNAs) represent a novel class of widespread non-coding RNAs in eukaryotes. They are unusually stable RNA molecules with cell type-specific expression patterns, and are predominantly present in the cytoplasm. We recently demonstrated the existence of abundant circRNAs in exosomes and suggest a potential application of exosomal circRNAs for cancer detection. PMID:27308606

  9. Class IIc or Circular Bacteriocins

    NASA Astrophysics Data System (ADS)

    Martin-Visscher, Leah A.; van Belkum, Marco J.; Vederas, John C.

    The circular bacteriocins produced by Gram-positive bacteria represent a diverse class of antimicrobial peptides. These bacteriocins display enhanced stability compared to linear bacteriocins, which arises from their characteristic circular backbone. Currently, eight unique circular bacteriocins have been identified, and analysis of their gene clusters indicates that they likely utilize complex mechanisms for maturation and secretion, as well as for immunity. These bacteriocins target the cytoplasmic membrane of sensitive cells, leading to pore formation that results in loss of ions, dissipation of membrane potential, and ultimately, cell death. Structural studies suggest that despite variation in their sequences, most of these bacteriocins likely adopt a common three-dimensional architecture, consisting of four or five tightly packed helices encompassing a hydrophobic core. There are many mysteries surrounding the biosynthesis of these peptides, particularly in regard to the mechanism by which they are cyclized. Elucidation of such a mechanism may provide exciting new approaches to the bioengineering of new, stable, and antimicrobially active circular peptides.

  10. Facing the Challenges of Accessing, Managing, and Integrating Large Observational Datasets in Ecology: Enabling and Enriching the Use of NEON's Observational Data

    NASA Astrophysics Data System (ADS)

    Thibault, K. M.

    2013-12-01

    As the construction of NEON and its transition to operations progresses, more and more data will become available to the scientific community, both from NEON directly and from the concomitant growth of existing data repositories. Many of these datasets include ecological observations of a diversity of taxa in both aquatic and terrestrial environments. Although observational data have been collected and used throughout the history of organismal biology, the field has not yet fully developed a culture of data management, documentation, standardization, sharing and discoverability to facilitate the integration and synthesis of datasets. Moreover, the tools required to accomplish these goals, namely database design, implementation, and management, and automation and parallelization of analytical tasks through computational techniques, have not historically been included in biology curricula, at either the undergraduate or graduate levels. To ensure the success of data-generating projects like NEON in advancing organismal ecology and to increase transparency and reproducibility of scientific analyses, an acceleration of the cultural shift to open science practices, the development and adoption of data standards, such as the DarwinCore standard for taxonomic data, and increased training in computational approaches for biologists need to be realized. Here I highlight several initiatives that are intended to increase access to and discoverability of publicly available datasets and equip biologists and other scientists with the skills that are need to manage, integrate, and analyze data from multiple large-scale projects. The EcoData Retriever (ecodataretriever.org) is a tool that downloads publicly available datasets, re-formats the data into an efficient relational database structure, and then automatically imports the data tables onto a user's local drive into the database tool of the user's choice. The automation of these tasks results in nearly instantaneous execution

  11. Lunar Maria and circular basins-a review

    USGS Publications Warehouse

    Stuart-Alexander, D. E.; Howard, K.A.

    1970-01-01

    Lunar Orbiter data make it possible to examine the distribution and relations of maria and large circular basins over the entire Moon. The restricted distribution and age of the maria are in marked contrast to the apparently random distribution in time and place of the circular basins, some of which contain mare fillings. The circular basins are believed to be impact scars, and the maria to be volcanic fills which in each case are younger than the structures they fill. Twenty-nine circular basins 300 km wide or wider are recognized. They are placed in an age sequence because successive stages of degradation can be recognized from the fresh Orientale basin to the almost obliterated basin containing Mare Australe. The maria were emplaced during a short span of lunar history, although some light plains of the highlands may be older maria lightened through age. The present maria are topographically low, tend to be associated with large circular basins, and lie in a crude global belt of regional concentrations; 94% are on the hemisphere facing the Earth. Possible explanations offered for these patterns of mare distribution include impact-induced volcanism, volcanic extrusion to a hydrostatic level, isostatic compensation, lateral heterogeneity in the lunar interior, subcrustal convection, and volcanism due to disruption by Earth's gravity. ?? 1970.

  12. Large-amplitude electric fields in the inner magnetosphere: Van Allen Probes observations of subauroral polarization streams

    NASA Astrophysics Data System (ADS)

    Califf, S.; Li, X.; Wolf, R. A.; Zhao, H.; Jaynes, A. N.; Wilder, F. D.; Malaspina, D. M.; Redmon, R.

    2016-06-01

    The subauroral polarization stream (SAPS) is an important magnetosphere-ionosphere (MI) coupling phenomenon that impacts a range of particle populations in the inner magnetosphere. SAPS studies often emphasize ionospheric signatures of fast westward flows, but the equatorial magnetosphere is also affected through strong radial electric fields in the dusk sector. This study focuses on a period of steady southward interplanetary magnetic field (IMF) during the 29 June 2013 geomagnetic storm where the Van Allen Probes observe a region of intense electric fields near the plasmapause over multiple consecutive outbound duskside passes. We show that the large-amplitude electric fields near the equatorial plane are consistent with SAPS by investigating the relationship between plasma sheet ion and electron boundaries, associated field-aligned currents, and the spatial location of the electric fields. By incorporating high-inclination DMSP data we demonstrate the spatial and temporal variability of the SAPS region, and we suggest that discrete, earthward propagating injections are driving the observed strong electric fields at low L shells in the equatorial magnetosphere. We also show the relationship between SAPS and plasmasphere erosion, as well as a possible correlation with flux enhancements for 100s keV electrons.

  13. Dark Matter Constraints from Observations of 25 Milky Way Satellite Galaxies with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Albert, A.; Anderson, B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Bissaldi, E.; Bloom, E. D.; Bonamente, E.; Bouvier, A.; Brandt, T. J.; Hays, E.; Perkins, J. S.

    2013-01-01

    The dwarf spheroidal satellite galaxies of the Milky Way are some of the most dark-matter-dominated objects known. Due to their proximity, high dark matter content, and lack of astrophysical backgrounds, dwarf spheroidal galaxies are widely considered to be among the most promising targets for the indirect detection of dark matter via gamma rays. Here we report on gamma ray observations of 25 Milky Way dwarf spheroidal satellite galaxies based on 4 years of Fermi Large Area Telescope (LAT) data. None of the dwarf galaxies are significantly detected in gamma rays, and we present gamma ray flux upper limits between 500MeV and 500 GeV. We determine the dark matter content of 18 dwarf spheroidal galaxies from stellar kinematic data and combine LAT observations of 15 dwarf galaxies to constrain the dark matter annihilation cross section. We set some of the tightest constraints to date on the annihilation of dark matter particles with masses between 2 GeV and 10TeV into prototypical standard model channels. We find these results to be robust against systematic uncertainties in the LAT instrument performance, diffuse gamma ray background modeling, and assumed dark matter density profile.

  14. Routes towards the experimental observation of the large fluctuations due to chaos-assisted tunneling effects with cold atoms

    NASA Astrophysics Data System (ADS)

    Dubertrand, R.; Billy, J.; Guéry-Odelin, D.; Georgeot, B.; Lemarié, G.

    2016-10-01

    In the presence of a complex classical dynamics associated with a mixed phase space, a quantum wave function can tunnel between two stable islands through the chaotic sea, an effect that has no classical counterpart. This phenomenon, referred to as chaos-assisted tunneling, is characterized by large fluctuations of the tunneling rate when a parameter is varied. To date, the full extent of this effect as well as the associated statistical distribution have never been observed in a quantum system. Here, we analyze the possibility of characterizing these effects accurately in a cold-atom experiment. Using realistic values of the parameters of an experimental setup, we examine through analytical estimates and extensive numerical simulations a specific system that can be implemented with cold atoms, the atomic modulated pendulum. We assess the efficiency of three possible routes to observe in detail chaos-assisted tunneling properties. Our main conclusion is that due to the fragility of the symmetry between positive and negative momenta as a function of quasimomentum, it is very challenging to use tunneling between classical islands centered on fixed points with opposite momentum. We show that it is more promising to use islands symmetric in position space, and characterize the regime where it could be done. The proposed experiment could be realized with current state-of-the-art technology.

  15. The VELA-X-Pulsar Wind Nebula Revisited with Four Years of Fermi Large Area Telescope Observations

    NASA Technical Reports Server (NTRS)

    Grondin, M. -H.; Romani, R. W.; Lemoine-Goumard, M.; Guillemot, L.; Harding, Alice K.; Reposeur, T.

    2013-01-01

    The Vela supernova remnant (SNR) is the closest SNR to Earth containing an active pulsar, the Vela pulsar (PSR B0833-45). This pulsar is an archetype of the middle-aged pulsar class and powers a bright pulsar wind nebula (PWN), Vela-X, spanning a region of 2deg × 3deg south of the pulsar and observed in the radio, X-ray, and very high energy ?-ray domains. The detection of the Vela-X PWN by the Fermi Large Area Telescope (LAT) was reported in the first year of the mission. Subsequently, we have reinvestigated this complex region and performed a detailed morphological and spectral analysis of this source using 4 yr of Fermi-LAT observations. This study lowers the threshold for morphological analysis of the nebula from 0.8 GeV to 0.3 GeV, allowing for the inspection of distinct energy bands by the LAT for the first time. We describe the recent results obtained on this PWN and discuss the origin of the newly detected spatial features.

  16. THE VELA-X PULSAR WIND NEBULA REVISITED WITH FOUR YEARS OF FERMI LARGE AREA TELESCOPE OBSERVATIONS

    SciTech Connect

    Grondin, M.-H.; Romani, R. W.; Lemoine-Goumard, M.; Reposeur, T.; Harding, A. K.

    2013-09-10

    The Vela supernova remnant (SNR) is the closest SNR to Earth containing an active pulsar, the Vela pulsar (PSR B0833-45). This pulsar is an archetype of the middle-aged pulsar class and powers a bright pulsar wind nebula (PWN), Vela-X, spanning a region of 2 Degree-Sign Multiplication-Sign 3 Degree-Sign south of the pulsar and observed in the radio, X-ray, and very high energy {gamma}-ray domains. The detection of the Vela-X PWN by the Fermi Large Area Telescope (LAT) was reported in the first year of the mission. Subsequently, we have reinvestigated this complex region and performed a detailed morphological and spectral analysis of this source using 4 yr of Fermi-LAT observations. This study lowers the threshold for morphological analysis of the nebula from 0.8 GeV to 0.3 GeV, allowing for the inspection of distinct energy bands by the LAT for the first time. We describe the recent results obtained on this PWN and discuss the origin of the newly detected spatial features.

  17. Large Eddy Simulation Embedded in Mesoscale Modeling of Convective Boundary Layers observed at the ARM SGP Central Facility

    NASA Astrophysics Data System (ADS)

    Chun, J.; Kang, S. L.

    2015-12-01

    We assess the performance of large eddy simulation (LES) embedded in a multi-nested mesoscale modeling framework with respect to observations at the Central Facility (CF) site of the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP). Specifically for three different fair-weather days, evaluated are the temporal evolutions of temperature and water vapor in the afternoon convective boundary layer (CBL). From the two aspects of local surface and background atmospheric conditions, the causes of the deviations of LES results from observations are sought. In particular, we focus on the factors that critically influence on the surface and atmospheric conditions for LES through the multi-nested domains from grid spacing of 12 km down to 50 m. Also we identify the domain at the resolution of the so called "terra incognita", where the effective resolution or the spatial filter is comparable to the length scale of energy-containing turbulent eddies. The behavior of the "terra-incognita" domain and its influence on LES are investigated.

  18. A mass-flux cumulus parameterization scheme for large-scale models: description and test with observations

    NASA Astrophysics Data System (ADS)

    Wu, Tongwen

    2012-02-01

    A simple mass-flux cumulus parameterization scheme suitable for large-scale atmospheric models is presented. The scheme is based on a bulk-cloud approach and has the following properties: (1) Deep convection is launched at the level of maximum moist static energy above the top of the boundary layer. It is triggered if there is positive convective available potential energy (CAPE) and relative humidity of the air at the lifting level of convection cloud is greater than 75%; (2) Convective updrafts for mass, dry static energy, moisture, cloud liquid water and momentum are parameterized by a one-dimensional entrainment/detrainment bulk-cloud model. The lateral entrainment of the environmental air into the unstable ascending parcel before it rises to the lifting condensation level is considered. The entrainment/detrainment amount for the updraft cloud parcel is separately determined according to the increase/decrease of updraft parcel mass with altitude, and the mass change for the adiabatic ascent cloud parcel with altitude is derived from a total energy conservation equation of the whole adiabatic system in which involves the updraft cloud parcel and the environment; (3) The convective downdraft is assumed saturated and originated from the level of minimum environmental saturated equivalent potential temperature within the updraft cloud; (4) The mass flux at the base of convective cloud is determined by a closure scheme suggested by Zhang (J Geophys Res 107(D14), doi: 10.1029/2001JD001005 , 2002) in which the increase/decrease of CAPE due to changes of the thermodynamic states in the free troposphere resulting from convection approximately balances the decrease/increase resulting from large-scale processes. Evaluation of the proposed convection scheme is performed by using a single column model (SCM) forced by the Atmospheric Radiation Measurement Program

  19. Large vertical gradient of reactive nitrogen oxides in the boundary layer: Modeling analysis of DISCOVER-AQ 2011 observations

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhong; Wang, Yuhang; Chen, Gao; Smeltzer, Charles; Crawford, James; Olson, Jennifer; Szykman, James; Weinheimer, Andrew J.; Knapp, David J.; Montzka, Denise D.; Wisthaler, Armin; Mikoviny, Tomas; Fried, Alan; Diskin, Glenn

    2016-02-01

    An often used assumption in air pollution studies is a well-mixed boundary layer (BL), where pollutants are evenly distributed. Because of the difficulty in obtaining vertically resolved measurements, the validity of the assumption has not been thoroughly evaluated. In this study, we use more than 200 vertical profiles observed in the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) aircraft campaign in July 2011 to examine the vertical distributions of pollutants over the Washington-Baltimore area. While many long-lived species are well mixed in daytime, the observed average vertical profile of NOx shows a large negative gradient with increasing altitude in the BL. Our analysis suggests that the magnitude of the NOx gradient is highly sensitive to atmospheric stability. We investigate how parameterizations of the BL and land-surface processes impact vertical profiles in a 1-D chemical transport model, using three BL schemes (Asymmetric Convective Model version 2 (ACM2), Yonsei University (YSU), and Mellor-Yamada-Janjic (MYJ)) and two land-surface schemes (Noah and Rapid Update Cycle (RUC)). The model reasonably reproduces the median vertical profiles of NOx under different BL stability conditions within 30% of observations, classified based on potential temperature gradient and BL height. Comparisons with NOx observations for individual vertical profiles reveal that while YSU performs better in the turbulent and deep BL case, in general, ACM2 (RMSE = 2.0 ppbv) outperforms YSU (RMSE = 2.5 ppbv) and MYJ (RMSE = 2.2 ppbv). Results also indicate that the land-surface schemes in the Weather Research and Forecasting (WRF) model have a small impact on the NOx gradient. Using model simulations, we analyze the impact of BL NOx gradient on the calculation of the ozone production rate and satellite NO2 retrieval. We show that using surface measurements and the well-mixed BL assumption causes a

  20. Surface water waves interaction in a circular vessel with oscillating walls.

    NASA Astrophysics Data System (ADS)

    Denissenko, Petr; Hsieh, Din-Yu

    1998-11-01

    Surface water waves appeared in a circular elastic vessel (modelled after the Chinese antique "Dragon Wash") are studied experimentally. Interaction of different wave modes are investigated. For small amplitude of wall oscillations, only the axisymmetric capillary wave mode, which is hardly visible to naked eyes, exists. When the amplitude is increased, half-frequency circumferential wave appears. Further increase of amplitude leads to chaotic behavior of surface waves. For large amplitudes, water drops jumping from edge regions are observed. Then, excitation of different modes of low frequency axisymmetric gravity waves may be obtained. Conditions for appearance of these gravity waves are investigated. Optical methods were applied for water surface diagnostics.

  1. Dynamic scheduling and planning parallel observations on large Radio Telescope Arrays with the Square Kilometre Array in mind

    NASA Astrophysics Data System (ADS)

    Buchner, Johannes

    2011-12-01

    Scheduling, the task of producing a time table for resources and tasks, is well-known to be a difficult problem the more resources are involved (a NP-hard problem). This is about to become an issue in Radio astronomy as observatories consisting of hundreds to thousands of telescopes are planned and operated. The Square Kilometre Array (SKA), which Australia and New Zealand bid to host, is aiming for scales where current approaches -- in construction, operation but also scheduling -- are insufficent. Although manual scheduling is common today, the problem is becoming complicated by the demand for (1) independent sub-arrays doing simultaneous observations, which requires the scheduler to plan parallel observations and (2) dynamic re-scheduling on changed conditions. Both of these requirements apply to the SKA, especially in the construction phase. We review the scheduling approaches taken in the astronomy literature, as well as investigate techniques from human schedulers and today's observatories. The scheduling problem is specified in general for scientific observations and in particular on radio telescope arrays. Also taken into account is the fact that the observatory may be oversubscribed, requiring the scheduling problem to be integrated with a planning process. We solve this long-term scheduling problem using a time-based encoding that works in the very general case of observation scheduling. This research then compares algorithms from various approaches, including fast heuristics from CPU scheduling, Linear Integer Programming and Genetic algorithms, Branch-and-Bound enumeration schemes. Measures include not only goodness of the solution, but also scalability and re-scheduling capabilities. In conclusion, we have identified a fast and good scheduling approach that allows (re-)scheduling difficult and changing problems by combining heuristics with a Genetic algorithm using block-wise mutation operations. We are able to explain and eradicate two problems in the

  2. Magazines in Special Media. Reference Circular No. 81-3.

    ERIC Educational Resources Information Center

    Gibson, Merrillyn, Comp.

    This circular lists 384 magazines produced in media suitable for use by persons who are unable to read conventional print materials. The media included are braille, cassette, disc, large type, Moon type, and open-reel tape. The entry for each title gives frequency of publication, medium or media in which it is available, method or methods by which…

  3. Development of the Large-Scale Statistical Analysis System of Satellites Observations Data with Grid Datafarm Architecture

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Murata, K.; Kimura, E.; Honda, R.

    2006-12-01

    In the Solar-Terrestrial Physics (STP) field, the amount of satellite observation data has been increasing every year. It is necessary to solve the following three problems to achieve large-scale statistical analyses of plenty of data. (i) More CPU power and larger memory and disk size are required. However, total powers of personal computers are not enough to analyze such amount of data. Super-computers provide a high performance CPU and rich memory area, but they are usually separated from the Internet or connected only for the purpose of programming or data file transfer. (ii) Most of the observation data files are managed at distributed data sites over the Internet. Users have to know where the data files are located. (iii) Since no common data format in the STP field is available now, users have to prepare reading program for each data by themselves. To overcome the problems (i) and (ii), we constructed a parallel and distributed data analysis environment based on the Gfarm reference implementation of the Grid Datafarm architecture. The Gfarm shares both computational resources and perform parallel distributed processings. In addition, the Gfarm provides the Gfarm filesystem which can be as virtual directory tree among nodes. The Gfarm environment is composed of three parts; a metadata server to manage distributed files information, filesystem nodes to provide computational resources and a client to throw a job into metadata server and manages data processing schedulings. In the present study, both data files and data processes are parallelized on the Gfarm with 6 file system nodes: CPU clock frequency of each node is Pentium V 1GHz, 256MB memory and40GB disk. To evaluate performances of the present Gfarm system, we scanned plenty of data files, the size of which is about 300MB for each, in three processing methods: sequential processing in one node, sequential processing by each node and parallel processing by each node. As a result, in comparison between the

  4. A local shift-variant Fourier model and experimental validation of circular cone-beam computed tomography artifacts.

    PubMed

    Bartolac, Steven; Clackdoyle, Roll; Noo, Frederic; Siewerdsen, Jeff; Moseley, Douglas; Jaffray, David

    2009-02-01

    Large field of view cone-beam computed tomography (CBCT) is being achieved using circular source and detector trajectories. These circular trajectories are known to collect insufficient data for accurate image reconstruction. Although various descriptions of the missing information exist, the manifestation of this lack of data in reconstructed images is generally nonintuitive. One model predicts that the missing information corresponds to a shift-variant cone of missing frequency components. This description implies that artifacts depend on the imaging geometry, as well as the frequency content of the imaged object. In particular, objects with a large proportion of energy distributed over frequency bands that coincide with the missing cone will be most compromised. These predictions were experimentally verified by imaging small, localized objects (acrylic spheres, stacked disks) at varying positions in the object space and observing the frequency spectrums of the reconstructions. Measurements of the internal angle of the missing cone agreed well with theory, indicating a right circular cone for points on the rotation axis, and an oblique, circular cone elsewhere. In the former case, the largest internal angle with respect to the vertical axis corresponds to the (half) cone angle of the CBCT system (typically approximately 5 degrees - 7.5 degrees in IGRT). Object recovery was also found to be strongly dependent on the distribution of the object's frequency spectrum relative to the missing cone, as expected. The observed artifacts were also reproducible via removal of local frequency components, further supporting the theoretical model. Larger objects with differing internal structures (cellular polyurethane, solid acrylic) were also imaged and interpreted with respect to the previous results. Finally, small animal data obtained using a clinical CBCT scanner were observed for evidence of the missing cone. This study provides insight into the influence of incomplete

  5. Early science with the Large Millimeter Telescope: observations of extremely luminous high-z sources identified by Planck

    NASA Astrophysics Data System (ADS)

    Harrington, K. C.; Yun, Min S.; Cybulski, R.; Wilson, G. W.; Aretxaga, I.; Chavez, M.; De la Luz, V.; Erickson, N.; Ferrusca, D.; Gallup, A. D.; Hughes, D. H.; Montaña, A.; Narayanan, G.; Sánchez-Argüelles, D.; Schloerb, F. P.; Souccar, K.; Terlevich, E.; Terlevich, R.; Zeballos, M.; Zavala, J. A.

    2016-06-01

    We present 8.5 arcsec resolution 1.1-mm continuum imaging and CO spectroscopic redshift measurements of eight extremely bright submillimetre galaxies identified from the Planck and Herschel surveys, taken with the Large Millimeter Telescope's AzTEC and Redshift Search Receiver instruments. We compiled a candidate list of high-redshift galaxies by cross-correlating the Planck Surveyor mission's highest frequency channel (857 GHz, full width at half-maximum = 4.5 arcmin) with the archival Herschel Spectral and Photometric Imaging Receiver imaging data, and requiring the presence of a unique, single Herschel counterpart within the 150-arcsec search radius of the Planck source positions with 350-μm flux density larger than 100 mJy, excluding known blazars and foreground galaxies. All eight candidate objects observed are detected in 1.1 mm continuum by AzTEC bolometer camera, and at least one CO line is detected in all cases with a spectroscopic redshift between 1.3 < zCO < 3.3. Their infrared (IR) spectral energy distributions (SEDs) mapped using the Herschel and AzTEC photometry are consistent with cold dust emission with characteristic temperature between Td = 43 and 84 K. With apparent IR luminosity of up to LIR = 3 × 1014μ-1 L⊙, they are some of the most luminous galaxies ever found (with yet unknown gravitational magnification factor μ). The analysis of their SEDs suggests that star formation is powering the bulk of their extremely large IR luminosities. Derived molecular gas masses of M_{H_2}=(0.6-7.8)× 10^{11} M_{odot } (for μ ≈ 10) also make them some of the most gas-rich high-redshift galaxies ever detected.

  6. The imprint of f(R) gravity on weak gravitational lensing - I. Connection between observables and large-scale structure

    NASA Astrophysics Data System (ADS)

    Higuchi, Yuichi; Shirasaki, Masato

    2016-07-01

    We study the effect of f(R) gravity on the statistical properties of various large-scale structures which can be probed in weak gravitational lensing measurements. A set of ray-tracing simulations of gravitational lensing in f(R) gravity enables us to explore cosmological information on (i) stacking analyses of weak lensing observables and (ii) peak statistics in reconstructed lensing mass maps. For the f(R) model proposed by Hu & Sawicki, the measured lensing signals of dark matter haloes in the stacking analysis would show a ≲10 per cent difference between the standard Λcold dark matter and the f(R) model when the additional degree of freedom in f(R) model would be |fR0| ˜ 10-5. Among various large-scale structures to be studied in stacking analysis, troughs, i.e. underdensity regions in projected plane of foreground massive haloes, could be promising to constrain the model with |fR0| ˜ 10-5, while stacking analysis around voids is found to be difficult to improve the constraint of |fR0| even in future lensing surveys with a sky coverage of ˜1000 deg2. On the peak statistics, we confirm the correspondence between local maxima and dark matter haloes along the line of sight, regardless of the modification of gravity in our simulation. Thus, the number count of high significance local maxima would be useful to probe the mass function of dark matter haloes even in the f(R) model with |fR0| ≲ 10-5. We also find that including local minima in lensing mass maps would be helpful to improve the constant on f(R) gravity down to |fR0| = 10-5 in ongoing weak lensing surveys.

  7. Temporal trends in West Antarctic surface mass balance: do large scale modes of climate contribute to observed records?

    NASA Astrophysics Data System (ADS)

    Carpenter, M.; Rupper, S.; Williams, J.; Burgener, L. K.; Koenig, L.; Forster, R. R.; Koutnik, M. R.; Skinner, R.; Miege, C.; Brucker, L.

    2013-12-01

    . These trends represent a negative region-wide SMB trend that is likely connected to large scale modes of climate, possibly associated with tropical Pacific climate variability. All five of the modeled SMB datasets show anomalous accumulation during anomalous phases of SAM and ENSO, although not all of these anomalies are significant at the 95% confidence level. These simulated results are compared to composite analysis of the firn core data over the same region to assess the validity of the model results. Understanding how large scale modes of climate contribute to the trends observed from the firn core records will help reconstruct past and predict future changes in the central WAIS SMB.

  8. Large-scale atmospheric circulation and local particulate matter concentrations in Bavaria - from current observations to future projections

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Weitnauer, Claudia; Brosy, Caroline; Hald, Cornelius; Lochbihler, Kai; Siegmund, Stefan; Jacobeit, Jucundus

    2016-04-01

    Particulate matter with an aerodynamic diameter of 10 μm or less (PM10) may have distinct adverse effects on human health. Spatial and temporal variations in PM10 concentrations reflect local emission rates, but are as well influenced by the local and synoptic-scale atmospheric conditions. Against this background, it can be furthermore argued that potential future climate change and associated variations in large-scale atmospheric circulation and local meteorological parameters will probably provoke corresponding changes in future PM10 concentration levels. The DFG-funded research project „Particulate matter and climate change in Bavaria" aimed at establishing quantitative relationships between daily and monthly PM10 indices at different Bavarian urban stations and the corresponding large-scale atmospheric circulation as well as local meteorological conditions. To this end, several statistical downscaling approaches have been developed for the period 1980 to 2011. PM10 data from 19 stations from the air quality monitoring network (LÜB) of the Bavarian Environmental Agency (LfU) have been utilized as predictands. Large-scale atmospheric gridded data from the NCEP/NCAR reanalysis data base and local meteorological observational data provided by the German Meteorological Service (DWD) served as predictors. The downscaling approaches encompass the synoptic downscaling of daily PM10 concentrations and several multivariate statistical models for the estimation of daily and monthly PM10, i.e.monthly mean and number of days exceeding a certain PM10 concentration threshold. Both techniques utilize objective circulation type classifications, which have been optimized with respect to their synoptic skill for the target variable PM10. All downscaling approaches have been evaluated via cross validation using varying subintervals of the 1980-2011 period as calibration and validation periods respectively. The most suitable - in terms of model skill determined from cross

  9. Deep 3-GHz observations of the Lockman Hole North with the Very Large Array - I. Source extraction and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Vernstrom, T.; Scott, Douglas; Wall, J. V.; Condon, J. J.; Cotton, W. D.; Perley, R. A.

    2016-09-01

    This is the first of two papers describing the observations and cataloguing of deep 3-GHz observations of the Lockman Hole North using the Karl G. Jansky Very Large Array. The aim of this paper is to investigate, through the use of simulated images, the uncertainties and accuracy of source-finding routines, as well as to quantify systematic effects due to resolution, such as source confusion and source size. While these effects are not new, this work is intended as a particular case study that can be scaled and translated to other surveys. We use the simulations to derive uncertainties in the fitted parameters, as well as bias corrections for the actual catalogue (presented in Paper II). We compare two different source-finding routines, OBIT and AEGEAN, and two different effective resolutions, 8 and 2.75 arcsec. We find that the two routines perform comparably well, with OBIT being slightly better at de-blending sources, but slightly worse at fitting resolved sources. We show that 30-70 per cent of sources are missed or fit inaccurately once the source size becomes larger than the beam, possibly explaining source count errors in high-resolution surveys. We also investigate the effect of blending, finding that any sources with separations smaller than the beam size are fit as single sources. We show that the use of machine-learning techniques can correctly identify blended sources up to 90 per cent of the time, and prior-driven fitting can lead to a 70 per cent improvement in the number of de-blended sources.

  10. Gamma-Ray Observations of the Supernova Remnant RX J0852.0-4622 with the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Tanaka, T.; Allafort, A.; Ballet, J.; Funk, S.; Giordano, F.; Hewitt, J.; Lemoine-Goumard, M.; Tajima, H.; Tibolla, O.; Uchiyama, Y.

    2011-01-01

    We report on gamma-ray observations of the supernova remnant (SNR) RX J0852.04622 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. In the Fermi-LAT data, we find a spatially extended source at the location of the SNR. The extension is consistent with the SNR size seen in other wavelengths such as X-rays and TeV gamma rays, leading to the identification of the gamma-ray source with the SNR. The spectrum is well described as a power law with a photon index of = 1.85 0.06 (stat)+0.18 0.19 (sys), which smoothly connects to the H.E.S.S. spectrum in the TeV energy band. We discuss the gamma-ray emission mechanism based on multiwavelength data. The broadband data can be fit well by a model in which the gamma rays are of hadronic origin. We also consider a scenario with inverse Compton scattering of electrons as the emission mechanism of the gamma rays. Although the leptonic model predicts a harder spectrum in the Fermi-LAT energy range, the model can fit the data considering the statistical and systematic errors.

  11. Polarimetric Imaging of Large Cavity Structures in the Pre-transitional Protoplanetary Disk Around PDS 70: Observations of the Disk

    NASA Technical Reports Server (NTRS)

    Hashimoto, J.; Dong, R.; Kudo, T.; Honda, M.; Zhu, Z.; McClure, M. K.; Muto, T.; Wisniewski, J.; Abe, L.; Brandner, W.; Brandt, T.; Carson, J.; Egner, S.; Feldt, M.; Fukagawa, M.; Goto, M.; Grady, C. A.; Guyon, O.; Hayano, Y.; Hayashi, M.; Hayashi, S.; Henning, T.; Hodapp, K.; Ishii, M.; Iye, M.; Janson, M.; Kandori, R.; Knapp, G.; Kusakabe, N.; Kuzuhara, M.; Kwon, J.; Matsuo, T.; Mayama, S.; McElwain, M. W.; Serabyn, G.

    2012-01-01

    We present high resolution H-band polarized intensity (PI; FWHM = 0."1: 14 AU) and L'-band imaging data (FWHM = 0."11: 15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0."2) up to 210 AU (1."5). In both images, a giant inner gap is clearly resolved for the first time, and the radius of the gap is approx.70 AU. Our data show that the geometric center of the disk shifts by approx.6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of SED fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L'-band imaging data, we put an upper limit mass of companions at approx.30 to approx.50MJ within the gap. Taking account of the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap. Subject headings: planetary systems - protoplanetary disks - stars: individual (PDS 70) - stars: pre-main sequence - polarization

  12. CASE STUDY OF FOUR HOMOLOGOUS LARGE-SCALE CORONAL WAVES OBSERVED ON 2010 APRIL 28 AND 29

    SciTech Connect

    Kienreich, I. W.; Veronig, A. M.; Muhr, N.; Temmer, M.; Vrsnak, B.; Nitta, N.

    2011-02-01

    On 2010 April 28 and 29, the Solar TErrestrial Relations Observatory B/Extreme Ultraviolet Imager observed four homologous large-scale coronal waves, the so-called EIT-waves, within 8 hr. All waves emerged from the same source active region, were accompanied by weak flares and faint coronal mass ejections, and propagated into the same direction at constant velocities in the range of {approx}220-340 km s{sup -1}. The last of these four coronal wave events was the strongest and fastest, with a velocity of 337 {+-} 31 km s{sup -1} and a peak perturbation amplitude of {approx}1.24, corresponding to a magnetosonic Mach number of M{sub ms} {approx} 1.09. The magnetosonic Mach numbers and velocities of the four waves are distinctly correlated, suggestive of the nonlinear fast-mode magnetosonic wave nature of the events. We also found a correlation between the magnetic energy buildup times and the velocity and magnetosonic Mach number.

  13. Characteristics of fire-generated gas emission observed during a large peatland fire in 2009 at Kalimantan, Indonesia

    NASA Astrophysics Data System (ADS)

    Hamada, Yohei; Darung, Untung; Limin, Suwido H.; Hatano, Ryusuke

    2013-08-01

    To investigate the characteristics of gas emissions from a tropical peatland fire, ground-level measurement of fire-generated gases was conducted during a large fire event in Kalimantan, Indonesia in 2009. Concentrations of CO and CH4 showed positive linear correlations with that of CO2. The relationship between concentrations of N2O and CO2 were divided into two parts, suggesting the influence of additional N2O generation during sample storage. The CO2-normalized emission ratio was calculated for CO, CH4, and N2O. The molar ratio of these fire-generated gas emissions was summarized as CO2:CO:CH4:N2O = 1.00:0.382:0.0261:0.000156, whereas the emission ratio calculated on the global warming potential (GWP) basis was CO2:CH4:N2O = 1.00:0.237:0.0465. The GWP emission based on this ratio was 87.8-91.2% of a simple evaluation in which all carbon was assumed to be emitted as CO2. This is the first trial to evaluate the emission ratios of major greenhouse gases on the basis of ground-level observation during an actual tropical peatland fire.

  14. Observations of structuring in the downstream region of a large spherical model in a laboratory simulated solar wind plasma

    NASA Technical Reports Server (NTRS)

    Intriligator, D. S.; Steele, G. R.

    1982-01-01

    The effects of inserting a spherical conducting model, large in comparison with the Debye length, into a free streaming high-energy 1 kV) unmagnetized hydrogen plasma are investigated in order to measure energies and compositions directly relevant to solar wind and astrophysical plasma phenomena. Holding the incident plasma parameters constant, transverse profiles of the net Langmuir probe current are plotted at various locations downstream in the model wake and are divided into three regions (the shadow, transition, and boundary). Results attributable to the use of a high-energy plasma show that enhancements in the shadow exist at downstream locations where the Mach ratio is less than one, and turbulence exists in the transition region on the shadow edges and outside in the boundary region. In addition, a small current enhancement is found in the boundary and can be attributed to the plasma/model interaction. It is concluded that many similar features observed by spacecraft downstream from planetary bodies are relatively permanent and are due to the intrinsic nature of the interaction between the solar wind plasma and the obstacle.

  15. Inferred cosmic-ray spectrum from Fermi large area telescope γ-ray observations of Earth's limb.

    PubMed

    Ackermann, M; Ajello, M; Albert, A; Allafort, A; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Blandford, R D; Bloom, E D; Bonamente, E; Bottacini, E; Bouvier, A; Brandt, T J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cecchi, C; Charles, E; Chaves, R C G; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dalton, M; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Di Venere, L; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Grove, J E; Guiriec, S; Gustafsson, M; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hewitt, J W; Horan, D; Hou, X; Hughes, R E; Inoue, Y; Jackson, M S; Jogler, T; Jóhannesson, G; Johnson, A S; Kamae, T; Kawano, T; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohsugi, T; Okumura, A; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Ritz, S; Roth, M; Schaal, M; Schulz, A; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Takahashi, H; Takeuchi, Y; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Tronconi, V; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Werner, M; Winer, B L; Wood, K S; Wood, M; Yang, Z

    2014-04-18

    Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly discovered features may offer a clue to the origin of high-energy CRs. We use the Fermi Large Area Telescope observations of the γ-ray emission from Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range ∼90  GeV-6  TeV (derived from a photon energy range 15 GeV-1 TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index 2.68±0.04 and 2.61±0.08 above ∼200  GeV, respectively. PMID:24785023

  16. Gamma-Ray Observations of the Supernova Remnant RX J0852.0-4622 with the Fermi Large Area Telescope

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Allafort, A.; Ballet, J.; Funk, S.; Giordano, F.; Hewitt, J.; Lemoine-Goumard, M.; Tajima, H.; Tibolla, O.; Uchiyama, Y.

    2011-10-01

    We report on gamma-ray observations of the supernova remnant (SNR) RX J0852.0-4622 with the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope. In the Fermi-LAT data, we find a spatially extended source at the location of the SNR. The extension is consistent with the SNR size seen in other wavelengths such as X-rays and TeV gamma rays, leading to the identification of the gamma-ray source with the SNR. The spectrum is well described as a power law with a photon index of Γ = 1.85 ± 0.06 (stat)+0.18 - 0.19 (sys), which smoothly connects to the H.E.S.S. spectrum in the TeV energy band. We discuss the gamma-ray emission mechanism based on multiwavelength data. The broadband data can be fit well by a model in which the gamma rays are of hadronic origin. We also consider a scenario with inverse Compton scattering of electrons as the emission mechanism of the gamma rays. Although the leptonic model predicts a harder spectrum in the Fermi-LAT energy range, the model can fit the data considering the statistical and systematic errors.

  17. Hubble Space Telescope and Very Large Array Observations of the H2O Gigamaser Galaxy TXS 2226-184.

    PubMed

    Falcke; Wilson; Henkel; Brunthaler; Braatz

    2000-02-10

    We present Hubble Space Telescope/Wide-Field and Planetary Camera 2 images in Halpha + [N ii] lambdalambda6548, 6583 lines and continuum radiation and a VLA map at 8 GHz of the H2O gigamaser galaxy TXS 2226-184. This galaxy has the most luminous H2O maser emission known to date. Our red continuum images reveal a highly elongated galaxy with a dust lane crossing the nucleus. The surface brightness profile is best fitted by a bulge plus exponential disk model, favoring classification as a highly inclined spiral galaxy (i=70&j0;). The color map confirms that the dust lane is aligned with the galaxy major axis and is crossing the putative nucleus. The Halpha + [N ii] map exhibits a gaseous, jetlike structure perpendicular to the nuclear dust lane and the galaxy major axis. The radio map shows compact, steep spectrum emission that is elongated in the same direction as the Halpha + [N ii] emission. By analogy with Seyfert galaxies, we therefore suspect that this alignment reflects an interaction between the radio jet and the interstellar medium. The axes of the nuclear dust disk, the radio emission, and the optical line emission apparently define the axis of the active galactic nucleus. The observations suggest that in this galaxy the nuclear accretion disk, obscuring torus, and large-scale molecular gas layer are roughly coplanar. Our classification of the host galaxy strengthens the trend for megamasers to be found preferentially in highly inclined spiral galaxies.

  18. Inferred cosmic-ray spectrum from Fermi large area telescope γ-ray observations of Earth's limb.

    PubMed

    Ackermann, M; Ajello, M; Albert, A; Allafort, A; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Blandford, R D; Bloom, E D; Bonamente, E; Bottacini, E; Bouvier, A; Brandt, T J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cecchi, C; Charles, E; Chaves, R C G; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dalton, M; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Di Venere, L; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Grove, J E; Guiriec, S; Gustafsson, M; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hewitt, J W; Horan, D; Hou, X; Hughes, R E; Inoue, Y; Jackson, M S; Jogler, T; Jóhannesson, G; Johnson, A S; Kamae, T; Kawano, T; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohsugi, T; Okumura, A; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Ritz, S; Roth, M; Schaal, M; Schulz, A; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Takahashi, H; Takeuchi, Y; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Tronconi, V; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Werner, M; Winer, B L; Wood, K S; Wood, M; Yang, Z

    2014-04-18

    Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly discovered features may offer a clue to the origin of high-energy CRs. We use the Fermi Large Area Telescope observations of the γ-ray emission from Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range ∼90  GeV-6  TeV (derived from a photon energy range 15 GeV-1 TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index 2.68±0.04 and 2.61±0.08 above ∼200  GeV, respectively.

  19. Observation of an impurity hole in a plasma with an ion internal transport barrier in the Large Helical Device

    SciTech Connect

    Ida, K.; Yoshinuma, M.; Osakabe, M.; Nagaoka, K.; Yokoyama, M.; Funaba, H.; Suzuki, C.; Ido, T.; Shimizu, A.; Murakami, I.; Tamura, N.; Kasahara, H.; Takeiri, Y.; Ikeda, K.; Tsumori, K.; Kaneko, O.; Morita, S.; Goto, M.; Tanaka, K.; Narihara, K.

    2009-05-15

    Extremely hollow profiles of impurities (denoted as 'impurity hole') are observed in the plasma with a steep gradient of the ion temperature after the formation of an internal transport barrier (ITB) in the ion temperature transport in the Large Helical Device [A. Iiyoshi et al., Nucl. Fusion 39, 1245 (1999)]. The radial profile of carbon becomes hollow during the ITB phase and the central carbon density keeps dropping and reaches 0.1%-0.3% of plasma density at the end of the ion ITB phase. The diffusion coefficient and the convective velocity of impurities are evaluated from the time evolution of carbon profiles assuming the diffusion and the convection velocity are constant in time after the formation of the ITB. The transport analysis gives a low diffusion of 0.1-0.2 m{sup 2}/s and the outward convection velocity of {approx}1 m/s at half of the minor radius, which is in contrast to the tendency in tokamak plasmas for the impurity density to increase due to an inward convection and low diffusion in the ITB region. The outward convection is considered to be driven by turbulence because the sign of the convection velocity contradicts the neoclassical theory where a negative electric field and an inward convection are predicted.

  20. Polarimetric Imaging of Large Cavity Structures in the Pre-transitional Protoplanetary Disk around PDS 70: Observations of the Disk

    NASA Technical Reports Server (NTRS)

    Hashimoto, J.; Hayashi, M.; Iye, M.; Kandori, R.; Kusakabe,N.; Morino, J.-I.; Suto, H.; Suzuki, R.; Tamura, M.; Serabyn, G.; McElwain, M. W.; Dong, R.; Zhu, Z.; Brandt, T.; Janson, M.; Knapp G.; Turner, E. L.

    2012-01-01

    We present high resolution H-band polarized intensity (PI; FWHM = 0."1: 14 AU) and L'-band imaging data (FWHM = 0."11: 15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0."2) up to 210 AU (1."5). In both images, a giant inner gap is clearly resolvro for the first time, and the radius of the gap is approx 70 AU. Our data show that the geometric center of the disk shifts by approx 6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of SED fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L'-band imaging data, we put an upper limit mass of companions at approx 30 to approx 50M(sub J) within the gap. Taking account of the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap.

  1. Hubble Space Telescope and Very Large Array Observations of the H2O Gigamaser Galaxy TXS 2226-184.

    PubMed

    Falcke; Wilson; Henkel; Brunthaler; Braatz

    2000-02-10

    We present Hubble Space Telescope/Wide-Field and Planetary Camera 2 images in Halpha + [N ii] lambdalambda6548, 6583 lines and continuum radiation and a VLA map at 8 GHz of the H2O gigamaser galaxy TXS 2226-184. This galaxy has the most luminous H2O maser emission known to date. Our red continuum images reveal a highly elongated galaxy with a dust lane crossing the nucleus. The surface brightness profile is best fitted by a bulge plus exponential disk model, favoring classification as a highly inclined spiral galaxy (i=70&j0;). The color map confirms that the dust lane is aligned with the galaxy major axis and is crossing the putative nucleus. The Halpha + [N ii] map exhibits a gaseous, jetlike structure perpendicular to the nuclear dust lane and the galaxy major axis. The radio map shows compact, steep spectrum emission that is elongated in the same direction as the Halpha + [N ii] emission. By analogy with Seyfert galaxies, we therefore suspect that this alignment reflects an interaction between the radio jet and the interstellar medium. The axes of the nuclear dust disk, the radio emission, and the optical line emission apparently define the axis of the active galactic nucleus. The observations suggest that in this galaxy the nuclear accretion disk, obscuring torus, and large-scale molecular gas layer are roughly coplanar. Our classification of the host galaxy strengthens the trend for megamasers to be found preferentially in highly inclined spiral galaxies. PMID:10642194

  2. POLARIMETRIC IMAGING OF LARGE CAVITY STRUCTURES IN THE PRE-TRANSITIONAL PROTOPLANETARY DISK AROUND PDS 70: OBSERVATIONS OF THE DISK

    SciTech Connect

    Hashimoto, J.; Hayashi, M.; Dong, R.; Zhu, Z.; Brandt, T.; Kudo, T.; Egner, S.; Guyon, O.; Hayano, Y.; Honda, M.; McClure, M. K.; Muto, T.; Wisniewski, J.; Abe, L.; Brandner, W.; Carson, J.; Feldt, M.; Fukagawa, M.; Goto, M.; Grady, C. A.; and others

    2012-10-10

    We present high-resolution H-band polarized intensity (FWHM = 0.''1: 14 AU) and L'-band imaging data (FWHM = 0.''11: 15 AU) of the circumstellar disk around the weak-lined T Tauri star PDS 70 in Centaurus at a radial distance of 28 AU (0.''2) up to 210 AU (1.''5). In both images, a giant inner gap is clearly resolved for the first time, and the radius of the gap is {approx}70 AU. Our data show that the geometric center of the disk shifts by {approx}6 AU toward the minor axis. We confirm that the brown dwarf companion candidate to the north of PDS 70 is a background star based on its proper motion. As a result of spectral energy distribution fitting by Monte Carlo radiative transfer modeling, we infer the existence of an optically thick inner disk at a few AU. Combining our observations and modeling, we classify the disk of PDS 70 as a pre-transitional disk. Furthermore, based on the analysis of L'-band imaging data, we put an upper limit of {approx}30 to {approx}50 M{sub J} on the mass of companions within the gap. Taking into account the presence of the large and sharp gap, we suggest that the gap could be formed by dynamical interactions of sub-stellar companions or multiple unseen giant planets in the gap.

  3. Circular on planned parenthood, 1987.

    PubMed

    1987-01-01

    In 1987 fourteen units of the Government of Henan issued a Circular stating that: "Planned parenthood must be publicized deep into the grass roots and among the people, and importance must be attached to results." The Circular stresses: "In the propaganda drive, it is necessary to successfully grasp three key links: 1. It is necessary to disseminate intensively the important directive on population problems that is contained in the report of the 13th CPC National Congress and the seriousness of the population situation of our country and province so that the cadres and the masses can understand the relationship between population control and the achievement of the strategic target of the three big steps, understand the reason for carrying out planned parenthood, understand that the one-child policy is still advocated, and conscientiously carry out planned parenthood. 2. It is essential to succeed in propagating knowledge of contraception, sterilization, childbirth, and child care and in conducting ideological education for those who undergo operations and for their family members. 3. It is imperative to visit those who have undergone operations and to help them solve practically their difficulties in making a living." The Circular concludes by demanding that under the unified leadership of party committees and governments at all levels, the propaganda drive be carried out by relying on the efforts of all of society. In conjunction with their own work, departments, including the propaganda, education, public health, and cultural departments, must carry out propaganda and education for planned parenthood.

  4. On electrostatically actuated NEMS/MEMS circular plates

    NASA Astrophysics Data System (ADS)

    Caruntu, Dumitru I.; Alvarado, Iris

    2011-04-01

    This paper deals with electrostatically actuated micro and nano-electromechanical (MEMS/NEMS) circular plates. The system under investigation consists of two bodies, a deformable and conductive circular plate placed above a fixed, rigid and conductive ground plate. The deformable circular plate is electrostatically actuated by applying an AC voltage between the two plates. Nonlinear parametric resonance and pull-in occur at certain frequencies and relatively large AC voltage, respectively. Such phenomena are useful for applications such as sensors, actuators, switches, micro-pumps, micro-tweezers, chemical and mass sensing, and micro-mirrors. A mathematical model of clamped circular MEMS/NEMS electrostatically actuated plates has been developed. Since the model is in the micro- and nano-scale, surface forces, van der Waals and/or Casimir, acting on the plate are included. A perturbation method, the Method of Multiple Scales (MMS), is used for investigating the case of weakly nonlinear MEMS/NEMS circular plates. Two time scales, fast and slow, are considered in this work. The amplitude-frequency and phase-frequency response of the plate in the case of primary resonance are obtained and discussed.

  5. Chirped microlens arrays for diode laser circularization and beam expansion

    NASA Astrophysics Data System (ADS)

    Schreiber, Peter; Dannberg, Peter; Hoefer, Bernd; Beckert, Erik

    2005-08-01

    Single-mode diode lasers are well-established light sources for a huge number of applications but suffer from astigmatism, beam ellipticity and large manufacturing tolerances of beam parameters. To compensate for these shortcomings, various approaches like anamorphic prism pairs and cylindrical telescopes for circularization as well as variable beam expanders based on zoomed telescopes for precise adjustment of output beam parameters have been employed in the past. The presented new approach for both beam circularization and expansion is based on the use of microlens arrays with chirped focal length: Selection of lenslets of crossed cylindrical microlens arrays as part of an anamorphic telescope enables circularization, astigmatism correction and divergence tolerance compensation of diode lasers simultaneously. Another promising application of chirped spherical lens array telescopes is stepwise variable beam expansion for circular laser beams of fiber or solid-state lasers. In this article we describe design and manufacturing of beam shaping systems with chirped microlens arrays fabricated by polymer-on-glass replication of reflow lenses. A miniaturized diode laser module with beam circularization and astigmatism correction assembled on a structured ceramics motherboard and a modulated RGB laser-source for photofinishing applications equipped with both cylindrical and spherical chirped lens arrays demonstrate the feasibility of the proposed system design approach.

  6. Circularization of tidally disrupted stars around spinning supermassive black holes

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Stone, Nicholas; Loeb, Abraham

    2016-10-01

    We study the circularization of tidally disrupted stars on bound orbits around spinning supermassive black holes by performing 3D smoothed particle hydrodynamic simulations with post-Newtonian corrections. Our simulations reveal that debris circularization depends sensitively on the efficiency of radiative cooling. There are two stages in debris circularization if radiative cooling is inefficient: first, the stellar debris streams self-intersect due to relativistic apsidal precession; shocks at the intersection points thermalize orbital energy and the debris forms a geometrically thick, ring-like structure around the black hole. The ring rapidly spreads via viscous diffusion, leading to the formation of a geometrically thick accretion disc. In contrast, if radiative cooling is efficient, the stellar debris circularizes due to self-intersection shocks and forms a geometrically thin ring-like structure. In this case, the dissipated energy can be emitted during debris circularization as a precursor to the subsequent tidal disruption flare. The circularization time-scale is remarkably long in the radiatively efficient cooling case, and is also sensitive to black hole spin. Specifically, Lense-Thirring torques cause dynamically important nodal precession, which significantly delays debris circularization. On the other hand, nodal precession is too slow to produce observable signatures in the radiatively inefficient case. Since the stellar debris is optically thick and its photon diffusion time is likely longer than the time-scale of shock heating, our inefficient cooling scenario is more generally applicable in eccentric tidal disruption events (TDEs). However, in parabolic TDEs for MBH ≳ 2 × 106 M⊙, the spin-sensitive behaviour associated with efficient cooling may be realized.

  7. Probing circular polarization in stochastic gravitational wave background with pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Kato, Ryo; Soda, Jiro

    2016-03-01

    We study the detectability of circular polarization in a stochastic gravitational wave background from various sources such as supermassive black hole binaries, cosmic strings, and inflation in the early universe with pulsar timing arrays. We calculate generalized overlap reduction functions for the circularly polarized stochastic gravitational wave background. We find that the circular polarization cannot be detected for an isotropic background. However, there is a chance to observe the circular polarization for an anisotropic gravitational wave background. We also show how to separate polarized gravitational waves from unpolarized gravitational waves.

  8. Observations of large-amplitude cross-shore internal bores near the shelf break, Santa Monica Bay, CA.

    PubMed

    Noble, Marlene A; Xu, J P

    2003-01-01

    Two sets of moorings were deployed along a cross-shelf transect in central Santa Monica bay for four months in the winter of 1998-1999. Both sites had an array of instruments attached to tripods set on the seafloor to monitor currents over the entire water column, surface waves, near-bed temperature, water clarity and suspended sediment. A companion mooring had temperature sensors spaced approximately 10 m apart to measure temperature profiles between the surface and the seafloor. One array was deployed in 70 m of water at a site adjacent to the shelf break, just northwest of a major ocean outfall. The other was deployed on the mid shelf in 35 m of water approximately 6 km from the shelf break site. The subtidal currents in the region flowed parallel to the isobaths with fluctuating time scales around 10 days, a typical coastal-ocean pattern. However, during the falling phase of the barotropic spring tide, sets of large-amplitude, sheared cross-shore current pulses with a duration of 2-5 h were observed at the shelf break site. Currents in these pulses flowed exclusively offshore in a thin layer near the bed with amplitudes reaching 30-40 cm/s. Simultaneously, currents with amplitudes around 15-20 cm/s flowed exclusively onshore in the thicker layer between the offshore flow layer and the sea surface. The net offshore transport was about half the onshore transport. Near-surface isotherms were depressed 30-40 m. These pulses were likely internal bores generated by tidal currents. Bed stresses associated with these events exceeded 3 dynes/cm(2). These amplitudes are large enough to resuspend and transport not only fine-grained material, but also medium to coarse sands from the shelf toward the slope. Consequently, the seafloor over the shelf break was swept clear of fine sediments. The data suggest that the internal bores dissipate and are reduced in amplitude as they propagate across this relatively narrow shelf. There is evidence that they reach the 35 m site, but

  9. Observations of large-amplitude cross-shore internal bores near the shelf break, Santa Monica Bay, CA

    USGS Publications Warehouse

    Noble, M.A.; Xu, J. P.

    2003-01-01

    Two sets of moorings were deployed along a cross-shelf transect in central Santa Monica bay for four months in the winter of 1998-1999. Both sites had an array of instruments attached to tripods set on the seafloor to monitor currents over the entire water column, surface waves, near-bed temperature, water clarity and suspended sediment. A companion mooring had temperature sensors spaced approximately 10 m apart to measure temperature profiles between the surface and the seafloor. One array was deployed in 70 m of water at a site adjacent to the shelf break, just northwest of a major ocean outfall. The other was deployed on the mid shelf in 35 m of water approximately 6 km from the shelf break site. The subtidal currents in the region flowed parallel to the isobaths with fluctuating time scales around 10 days, a typical coastal-ocean pattern. However, during the falling phase of the barotropic spring tide, sets of large-amplitude, sheared cross-shore current pulses with a duration of 2-5 h were observed at the shelf break site. Currents in these pulses flowed exclusively offshore in a thin layer near the bed with amplitudes reaching 30-40 cm/s. Simultaneously, currents with amplitudes around 15-20 cm/s flowed exclusively onshore in the thicker layer between the offshore flow layer and the sea surface. The net offshore transport was about half the onshore transport. Near-surface isotherms were depressed 30-40 m. These pulses were likely internal bores generated by tidal currents. Bed stresses associated with these events exceeded 3 dynes/cm2. These amplitudes are large enough to resuspend and transport not only fine-grained material, b