Sample records for observed linear dependence

  1. First Observations of Laser-Driven Acceleration of Relativistic Electrons in a Semi-Infinite Vacuum Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plettner, T.; Byer, R.L.; Smith, T.I.

    2006-02-17

    We have observed acceleration of relativistic electrons in vacuum driven by a linearly polarized visible laser beam incident on a thin gold-coated reflective boundary. The observed energy modulation effect follows all the characteristics expected for linear acceleration caused by a longitudinal electric field. As predicted by the Lawson-Woodward theorem the laser driven modulation only appears in the presence of the boundary. It shows a linear dependence with the strength of the electric field of the laser beam and also it is critically dependent on the laser polarization. Finally, it appears to follow the expected angular dependence of the inverse transitionmore » radiation process. experiment as the Laser Electron Accelerator Project (LEAP).« less

  2. Length-dependent thermal transport in one-dimensional self-assembly of planar π-conjugated molecules

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Xiong, Yucheng; Zu, Fengshuo; Zhao, Yang; Wang, Xiaomeng; Fu, Qiang; Jie, Jiansheng; Yang, Juekuan; Xu, Dongyan

    2016-06-01

    This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport.This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09043a

  3. Neutron star dynamics under time-dependent external torques

    NASA Astrophysics Data System (ADS)

    Gügercinoǧlu, Erbil; Alpar, M. Ali

    2017-11-01

    The two-component model describes neutron star dynamics incorporating the response of the superfluid interior. Conventional solutions and applications involve constant external torques, as appropriate for radio pulsars on dynamical time-scales. We present the general solution of two-component dynamics under arbitrary time-dependent external torques, with internal torques that are linear in the rotation rates, or with the extremely non-linear internal torques due to vortex creep. The two-component model incorporating the response of linear or non-linear internal torques can now be applied not only to radio pulsars but also to magnetars and to neutron stars in binary systems, with strong observed variability and noise in the spin-down or spin-up rates. Our results allow the extraction of the time-dependent external torques from the observed spin-down (or spin-up) time series, \\dot{Ω }(t). Applications are discussed.

  4. Neutron star dynamics under time dependent external torques

    NASA Astrophysics Data System (ADS)

    Alpar, M. A.; Gügercinoğlu, E.

    2017-12-01

    The two component model of neutron star dynamics describing the behaviour of the observed crust coupled to the superfluid interior has so far been applied to radio pulsars for which the external torques are constant on dynamical timescales. We recently solved this problem under arbitrary time dependent external torques. Our solutions pertain to internal torques that are linear in the rotation rates, as well as to the extremely non-linear internal torques of the vortex creep model. Two-component models with linear or nonlinear internal torques can now be applied to magnetars and to neutron stars in binary systems, with strong variability and timing noise. Time dependent external torques can be obtained from the observed spin-down (or spin-up) time series, \\dot Ω ≤ft( t \\right).

  5. Modeling the stress dependence of Barkhausen phenomena for stress axis linear and noncollinear with applied magnetic field (abstract)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sablik, M.J.; Augustyniak, B.; Chmielewski, M.

    1996-04-01

    The almost linear dependence of the maximum Barkhausen noise signal amplitude on stress has made it a tool for nondestructive evaluation of residual stress. Recently, a model has been developed to account for the stress dependence of the Barkhausen noise signal. The model uses the development of Alessandro {ital et} {ital al}. who use coupled Langevin equations to derive an expression for the Barkhausen noise power spectrum. The model joins this expression to the magnetomechanical hysteresis model of Sablik {ital et} {ital al}., obtaining both a hysteretic and stress-dependent result for the magnetic-field-dependent Barkhausen noise envelope and obtaining specifically themore » almost linear stress dependence of the Barkhausen noise maximum experimentally. In this paper, we extend the model to derive the angular dependence observed by Kwun of the Barkhausen noise amplitude when stress axis is taken at different angles relative to magnetic field. We also apply the model to the experimental observation that in XC10 French steel, there is an apparent almost linear correlation with stress of hysteresis loss and of the integral of the Barkhausen noise signal over applied field {ital H}. Further, the two quantities, Barkhausen noise integral and hysteresis loss, are linearly correlated with each other. The model shows how that behavior is to be expected for the measured steel because of its sharply rising hysteresis curve. {copyright} {ital 1996 American Institute of Physics.}« less

  6. Numerical calculations of spectral turnover and synchrotron self-absorption in CSS and GPS radio sources

    NASA Astrophysics Data System (ADS)

    Jeyakumar, S.

    2016-06-01

    The dependence of the turnover frequency on the linear size is presented for a sample of Giga-hertz Peaked Spectrum and Compact Steep Spectrum radio sources derived from complete samples. The dependence of the luminosity of the emission at the peak frequency with the linear size and the peak frequency is also presented for the galaxies in the sample. The luminosity of the smaller sources evolve strongly with the linear size. Optical depth effects have been included to the 3D model for the radio source of Kaiser to study the spectral turnover. Using this model, the observed trend can be explained by synchrotron self-absorption. The observed trend in the peak-frequency-linear-size plane is not affected by the luminosity evolution of the sources.

  7. Fault detection for discrete-time LPV systems using interval observers

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hui; Yang, Guang-Hong

    2017-10-01

    This paper is concerned with the fault detection (FD) problem for discrete-time linear parameter-varying systems subject to bounded disturbances. A parameter-dependent FD interval observer is designed based on parameter-dependent Lyapunov and slack matrices. The design method is presented by translating the parameter-dependent linear matrix inequalities (LMIs) into finite ones. In contrast to the existing results based on parameter-independent and diagonal Lyapunov matrices, the derived disturbance attenuation, fault sensitivity and nonnegative conditions lead to less conservative LMI characterisations. Furthermore, without the need to design the residual evaluation functions and thresholds, the residual intervals generated by the interval observers are used directly for FD decision. Finally, simulation results are presented for showing the effectiveness and superiority of the proposed method.

  8. Non-Gaussian lineshapes and dynamics of time-resolved linear and nonlinear (correlation) spectra.

    PubMed

    Dinpajooh, Mohammadhasan; Matyushov, Dmitry V

    2014-07-17

    Signatures of nonlinear and non-Gaussian dynamics in time-resolved linear and nonlinear (correlation) 2D spectra are analyzed in a model considering a linear plus quadratic dependence of the spectroscopic transition frequency on a Gaussian nuclear coordinate of the thermal bath (quadratic coupling). This new model is contrasted to the commonly assumed linear dependence of the transition frequency on the medium nuclear coordinates (linear coupling). The linear coupling model predicts equality between the Stokes shift and equilibrium correlation functions of the transition frequency and time-independent spectral width. Both predictions are often violated, and we are asking here the question of whether a nonlinear solvent response and/or non-Gaussian dynamics are required to explain these observations. We find that correlation functions of spectroscopic observables calculated in the quadratic coupling model depend on the chromophore's electronic state and the spectral width gains time dependence, all in violation of the predictions of the linear coupling models. Lineshape functions of 2D spectra are derived assuming Ornstein-Uhlenbeck dynamics of the bath nuclear modes. The model predicts asymmetry of 2D correlation plots and bending of the center line. The latter is often used to extract two-point correlation functions from 2D spectra. The dynamics of the transition frequency are non-Gaussian. However, the effect of non-Gaussian dynamics is limited to the third-order (skewness) time correlation function, without affecting the time correlation functions of higher order. The theory is tested against molecular dynamics simulations of a model polar-polarizable chromophore dissolved in a force field water.

  9. Disorder-dominated linear magnetoresistance in topological insulator Bi2Se3 thin films

    NASA Astrophysics Data System (ADS)

    Wang, Wen Jie; Gao, Kuang Hong; Li, Qiu Lin; Li, Zhi-Qing

    2017-12-01

    The linear magnetoresistance (MR) effect is an interesting topic due to its potential applications. In topological insulator Bi2Se3, this effect has been reported to be dominated by the carrier mobility (μ) and hence has a classical origin. Here, we study the magnetotransport properties of Bi2Se3 thin films and observe the linear MR effect, which cannot be attributed to the quantum model. Unexpectedly, the linear MR does not show the linear dependence on μ, in conflict with the reported results. However, we find that the observed linear MR is dominated by the inverse disorder parameter 1 /kFl , where kF and l are the Fermi wave vector and the mean free path, respectively. This suggests that its origin is also classical and that no μ-dominated linear MR effect is observed which may be due to the very small μ values in our samples.

  10. Measures and models for angular correlation and angular-linear correlation. [correlation of random variables

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.; Wehrly, T.

    1976-01-01

    Population models for dependence between two angular measurements and for dependence between an angular and a linear observation are proposed. The method of canonical correlations first leads to new population and sample measures of dependence in this latter situation. An example relating wind direction to the level of a pollutant is given. Next, applied to pairs of angular measurements, the method yields previously proposed sample measures in some special cases and a new sample measure in general.

  11. Correlation dependence of the volumetric thermal expansion coefficient of metallic aluminum on its heat capacity

    NASA Astrophysics Data System (ADS)

    Bodryakov, V. Yu.; Bykov, A. A.

    2016-05-01

    The correlation between the volumetric thermal expansion coefficient β( T) and the heat capacity C( T) of aluminum is considered in detail. It is shown that a clear correlation is observed in a significantly wider temperature range, up to the melting temperature of the metal, along with the low-temperature range where it is linear. The significant deviation of dependence β( C) from the low-temperature linear behavior is observed up to the point where the heat capacity achieves the classical Dulong-Petit limit of 3 R ( R is the universal gas constant).

  12. Observation of linear and quadratic magnetic field-dependence of magneto-photocurrents in InAs/GaSb superlattice

    PubMed Central

    2014-01-01

    We experimentally studied the magneto-photocurrents generated by direct interband transition in InAs/GaSb type II superlattice. By varying the magnetic field direction, we observed that an in-plane magnetic field induces a photocurrent linearly proportional to the magnetic field; however, a magnetic field tilted to the sample plane induces a photocurrent presenting quadratic magnetic field dependence. The magneto-photocurrents in both conditions are insensitive to the polarization state of the incident light. Theoretical models involving excitation, relaxation and Hall effect are utilized to explain the experimental results. PMID:24936166

  13. Initial Polarimetric Analysis of the Vestoid Asteroid Family

    NASA Astrophysics Data System (ADS)

    Maleszewski, C.; McMillan, R. S.; Smith, P.

    2013-12-01

    Observations of polarized light scattered off of asteroid regolith have been used to compare the major asteroid taxonomic types. Members within a taxonomic type tend to have similar polarimetric phase curves (linear polarization vs. phase angle). The polarization also exhibits a wavelength dependence. For the S-complex, the polarization decreases linearly with increasing wavelength. This is different from the C-complex, which has the opposite dependence of polarization on wavelength. The slope of wavelength dependence also changes with phase angle for both complexes; at higher phase angles, the wavelength dependence is steeper. One of the less analyzed taxonomic types with regards to polarization is the V-type. Focus has been placed on the largest member of the V-types: Vesta. However, the Vestoids, which are thought to be collisional remnants of Vesta, have not been analyzed. Due to Vesta's differentiation, the Vestoids as a whole should contain members with significant differences in composition. This in turn should mean significant variations in the polarization observed from these bodies. In order to confirm such differences, we have begun a polarimetric survey of Vestoids. Over thirty observations of six different Vestoids were obtained using the SPOL spectropolarimeter (http://james.as.arizona.edu/~psmith/SPOL/ ) and Steward Observatory telescopes. The wavelength dependence of linear polarization was plotted with respect to the observed phase angle. The linear polarization trends in each of the synthesized B, V, and R bandpasses do not fit a single curve, contrary to that displayed by ensembles of asteroids in other taxonomic complexes. This suggests that these particular targets have dissimilar albedos. This is consistent with the range of albedos measured for the Vestoids through thermal models. However, there is no discernable trend for individual Vestoids with regards to wavelength dependence. Unlike the S- and C-complexes, our data show examples in which the polarization both increases and decreases with wavelength. When our Vestoid data are combined, the wavelength dependence becomes more negative (i.e. polarization tends to decrease with wavelength) as phase angle increases. This is similar to the trend observed in the S-complex, but the opposite trend when compared to the C-complex. The wavelength dependence of Vestoids suggests that this dependence is not strongly affected by albedo. The Vestoids are significantly smaller in size than the asteroids for which other measurements of the wavelength dependence have been analyzed. Possible grain size effects could be a cause of the dissimilar wavelength dependence between the Vestoids and other taxonomic complexes. However, further investigation is needed to explore this possibility.

  14. Evolution of the linear-polarization-angle-dependence of the radiation-induced magnetoresistance-oscillations with microwave power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Tianyu; Mani, R. G.; Wegscheider, W.

    2014-11-10

    We examine the role of the microwave power in the linear polarization angle dependence of the microwave radiation induced magnetoresistance oscillations observed in the high mobility GaAs/AlGaAs two dimensional electron system. The diagonal resistance R{sub xx} was measured at the fixed magnetic fields of the photo-excited oscillatory extrema of R{sub xx} as a function of both the microwave power, P, and the linear polarization angle, θ. Color contour plots of such measurements demonstrate the evolution of the lineshape of R{sub xx} versus θ with increasing microwave power. We report that the non-linear power dependence of the amplitude of the radiation-inducedmore » magnetoresistance oscillations distorts the cosine-square relation between R{sub xx} and θ at high power.« less

  15. Surface Spin Glass Ordering and Exchange Bias in Nanometric Sm0.09Ca0.91MnO3 Manganites

    NASA Astrophysics Data System (ADS)

    Giri, S. K.; Nath, T. K.

    2011-07-01

    We have thoroughly investigated the entire magnetic state of under doped ferromagnetic insulating manganite Sm0.09Ca0.91MnO3 through temperature dependent linear and non-linear ac magnetic susceptibility and magnetization measurements. This ferromagnetic insulating manganite is found to have frequency dependent ferromagnetic to paramagnetic transition temperature at around 108 K. Exchange- bias effect are observed in field -cooled magnetic hysteresis loops for this nanoparticle. We have attributed our observation to the formation of ferromagnetic cluster which are formed as a consequence of intrinsic phase separation below certain temperature in this under doped manganites. We have carried out electronic- and magneto-transport measurements to support these observed results.

  16. The non-linear power spectrum of the Lyman alpha forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo

    2015-12-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z∼ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate themore » comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula.« less

  17. Winds from Luminous Late-Type Stars: II. Broadband Frequency Distribution of Alfven Waves

    NASA Technical Reports Server (NTRS)

    Airapetian, V.; Carpenter, K. G.; Ofman, L.

    2010-01-01

    We present the numerical simulations of winds from evolved giant stars using a fully non-linear, time dependent 2.5-dimensional magnetohydrodynamic (MHD) code. This study extends our previous fully non-linear MHD wind simulations to include a broadband frequency spectrum of Alfven waves that drive winds from red giant stars. We calculated four Alfven wind models that cover the whole range of Alfven wave frequency spectrum to characterize the role of freely propagated and reflected Alfven waves in the gravitationally stratified atmosphere of a late-type giant star. Our simulations demonstrate that, unlike linear Alfven wave-driven wind models, a stellar wind model based on plasma acceleration due to broadband non-linear Alfven waves, can consistently reproduce the wide range of observed radial velocity profiles of the winds, their terminal velocities and the observed mass loss rates. Comparison of the calculated mass loss rates with the empirically determined mass loss rate for alpha Tau suggests an anisotropic and time-dependent nature of stellar winds from evolved giants.

  18. Observer-based H∞ resilient control for a class of switched LPV systems and its application

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Zhao, Jun

    2016-11-01

    This paper deals with the issue of observer-based H∞ resilient control for a class of switched linear parameter-varying (LPV) systems by utilising a multiple parameter-dependent Lyapunov functions method. First, attention is focused upon the design of a resilient observer, an observer-based resilient controller and a parameter and estimate state-dependent switching signal, which can stabilise and achieve the disturbance attenuation for the given systems. Then, a solvability condition of the H∞ resilient control problem is given in terms of matrix inequality for the switched LPV systems. This condition allows the H∞ resilient control problem for each individual subsystem to be unsolvable. The observer, controller, and switching signal are explicitly computed by solving linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed control scheme is illustrated by its application to a turbofan engine, which can hardly be handled by the existing approaches.

  19. The Dynamics of Entangled DNA Networks using Single-Molecule Methods

    NASA Astrophysics Data System (ADS)

    Chapman, Cole David

    Single molecule experiments were performed on DNA, a model polymer, and entangled DNA networks to explore diffusion within complex polymeric fluids and their linear and non-linear viscoelasticity. DNA molecules of varying length and topology were prepared using biological methods. An ensemble of individual molecules were then fluorescently labeled and tracked in blends of entangled linear and circular DNA to examine the dependence of diffusion on polymer length, topology, and blend ratio. Diffusion was revealed to possess a non-monotonic dependence on the blend ratio, which we believe to be due to a second-order effect where the threading of circular polymers by their linear counterparts greatly slows the mobility of the system. Similar methods were used to examine the diffusive and conformational behavior of DNA within highly crowded environments, comparable to that experienced within the cell. A previously unseen gamma distributed elongation of the DNA in the presence of crowders, proposed to be due to entropic effects and crowder mobility, was observed. Additionally, linear viscoelastic properties of entangled DNA networks were explored using active microrheology. Plateau moduli values verified for the first time the predicted independence from polymer length. However, a clear bead-size dependence was observed for bead radii less than ~3x the tube radius, a newly discovered limit, above which microrheology results are within the continuum limit and may access the bulk properties of the fluid. Furthermore, the viscoelastic properties of entangled DNA in the non-linear regime, where the driven beads actively deform the network, were also examined. By rapidly driving a bead through the network utilizing optical tweezers, then removing the trap and tracking the bead's subsequent motion we are able to model the system as an over-damped harmonic oscillator and find the elasticity to be dominated by stress-dependent entanglements.

  20. Linear and non-linear Modified Gravity forecasts with future surveys

    NASA Astrophysics Data System (ADS)

    Casas, Santiago; Kunz, Martin; Martinelli, Matteo; Pettorino, Valeria

    2017-12-01

    Modified Gravity theories generally affect the Poisson equation and the gravitational slip in an observable way, that can be parameterized by two generic functions (η and μ) of time and space. We bin their time dependence in redshift and present forecasts on each bin for future surveys like Euclid. We consider both Galaxy Clustering and Weak Lensing surveys, showing the impact of the non-linear regime, with two different semi-analytical approximations. In addition to these future observables, we use a prior covariance matrix derived from the Planck observations of the Cosmic Microwave Background. In this work we neglect the information from the cross correlation of these observables, and treat them as independent. Our results show that η and μ in different redshift bins are significantly correlated, but including non-linear scales reduces or even eliminates the correlation, breaking the degeneracy between Modified Gravity parameters and the overall amplitude of the matter power spectrum. We further apply a Zero-phase Component Analysis and identify which combinations of the Modified Gravity parameter amplitudes, in different redshift bins, are best constrained by future surveys. We extend the analysis to two particular parameterizations of μ and η and consider, in addition to Euclid, also SKA1, SKA2, DESI: we find in this case that future surveys will be able to constrain the current values of η and μ at the 2-5% level when using only linear scales (wavevector k < 0 . 15 h/Mpc), depending on the specific time parameterization; sensitivity improves to about 1% when non-linearities are included.

  1. Magnetotransport properties of MoP 2

    DOE PAGES

    Wang, Aifeng; Graf, D.; Stein, Aaron; ...

    2017-11-02

    We report magnetotransport and de Haas–van Alphen (dHvA) effect studies on MoP 2 single crystals, predicted to be a type- II Weyl semimetal with four pairs of robust Weyl points located below the Fermi level and long Fermi arcs. The temperature dependence of resistivity shows a peak before saturation, which does not move with magnetic field. Large nonsaturating magnetoresistance (MR) was observed, and the field dependence of MR exhibits a crossover from semiclassical weak-field B 2 dependence to the high-field linear-field dependence, indicating the presence of Dirac linear energy dispersion. In addition, a systematic violation of Kohler's rule was observed,more » consistent with multiband electronic transport. Strong spin-orbit coupling splitting has an effect on dHvA measurements whereas the angular-dependent dHvA orbit frequencies agree well with the calculated Fermi surface. The cyclotron effective mass ~1.6m e indicates the bands might be trivial, possibly since the Weyl points are located below the Fermi level.« less

  2. Challenges to the chiral magnetic wave using charge-dependent azimuthal anisotropies in pPb and PbPb collisions at $$ \\sqrt{\\smash[b]{s_{_{\\mathrm{NN}}}}} = $$ 5.02 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    2017-08-29

    Charge-dependent anisotropy Fourier coefficients (more » $$v_n$$) of particle azimuthal distributions are measured in pPb and PbPb collisions at $$ \\sqrt{\\smash[b]{s_{_{\\mathrm{NN}}}}} = $$ 5.02 TeV with the CMS detector at the LHC. The normalized difference in the second-order anisotropy coefficients ($$v_2$$) between positively and negatively charged particles is found to depend linearly on the observed event charge asymmetry with comparable slopes for both pPb and PbPb collisions over a wide range of charged particle multiplicity. In PbPb, the third-order anisotropy coefficient, $$v_3$$, shows a similar linear dependence with the same slope as seen for $$v_2$$. The observed similarities between the $$v_2$$ slopes for pPb and PbPb, as well as the similar slopes for $$v_2$$ and $$v_3$$ in PbPb, are compatible with expectations based on local charge conservation in the decay of clusters or resonances, and constitute a challenge to the hypothesis that the observed charge asymmetry dependence of $$v_2$$ in heavy ion collisions arises from a chiral magnetic wave.« less

  3. Systematic study of doping dependence on linear magnetoresistance in p-PbTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, J. M.; Chitta, V. A.; Oliveira, N. F.

    2014-10-20

    We report on a large linear magnetoresistance effect observed in doped p-PbTe films. While undoped p-PbTe reveals a sublinear magnetoresistance, p-PbTe films doped with BaF{sub 2} exhibit a transition to a nearly perfect linear magnetoresistance behaviour that is persistent up to 30 T. The linear magnetoresistance slope ΔR/ΔB is to a good approximation, independent of temperature. This is in agreement with the theory of Quantum Linear Magnetoresistance. We also performed magnetoresistance simulations using a classical model of linear magnetoresistance. We found that this model fails to explain the experimental data. A systematic study of the doping dependence reveals that the linearmore » magnetoresistance response has a maximum for small BaF{sub 2} doping levels and diminishes rapidly for increasing doping levels. Exploiting the huge impact of doping on the linear magnetoresistance signal could lead to new classes of devices with giant magnetoresistance behavior.« less

  4. Near-Simultaneous Spectroscopic and Broadband Polarimetric Observations of Be Stars

    NASA Technical Reports Server (NTRS)

    Ghosh, K.; Iyengar, K. V. K.; Ramsey, B. D.; Austin, R. A.

    1999-01-01

    Near simultaneous optical spectroscopic (on four nights) and broadband linear continuum (B, V, R, and I bands) polarimetric (on seven nights) observations of 29 Be stars were carried out during 1993 November-December. The program Be stars displayed wavelength dependence of intrinsic polarizations with no frequency dependence of polarimetric position angles. Some of the Be stars displayed long-term polarization variability. The Be and Be-shell stars could not be distinguished from one another solely on the basis of their polarization values. Full widths at half-maximum of the H.alpha profiles and the intrinsic linear continuum polarizations are closely correlated with the projected rotational velocities of the program stars. Photospheric-absorption-corrected equivalent widths of H.alpha profiles [W(alpha)] and the radii of H.alpha-emitting or -absorbing envelopes (R(sub e) or R(sub a)) are nonlinearly correlated with the intrinsic continuum polarizations of these stars. However, W(alpha) and R(sub e) are linearly correlated. With large uncertainties, there is a trend of spectral dependence of polarization. Detailed discussion of these results is presented in this paper.

  5. The vanishing limit of the square-well fluid: The adhesive hard-sphere model as a reference system

    NASA Astrophysics Data System (ADS)

    Largo, J.; Miller, M. A.; Sciortino, F.

    2008-04-01

    We report a simulation study of the gas-liquid critical point for the square-well potential, for values of well width δ as small as 0.005 times the particle diameter σ. For small δ, the reduced second virial coefficient at the critical point B2*c is found to depend linearly on δ. The observed weak linear dependence is not sufficient to produce any significant observable effect if the critical temperature Tc is estimated via a constant B2*c assumption, due to the highly nonlinear transformation between B2*c and Tc. This explains the previously observed validity of the law of corresponding states. The critical density ρc is also found to be constant when measured in units of the cube of the average distance between two bonded particles (1+0.5δ)σ. The possibility of describing the δ →0 dependence with precise functional forms provides improved accurate estimates of the critical parameters of the adhesive hard-sphere model.

  6. The vanishing limit of the square-well fluid: the adhesive hard-sphere model as a reference system.

    PubMed

    Largo, J; Miller, M A; Sciortino, F

    2008-04-07

    We report a simulation study of the gas-liquid critical point for the square-well potential, for values of well width delta as small as 0.005 times the particle diameter sigma. For small delta, the reduced second virial coefficient at the critical point B2*c is found to depend linearly on delta. The observed weak linear dependence is not sufficient to produce any significant observable effect if the critical temperature Tc is estimated via a constant B2*c assumption, due to the highly nonlinear transformation between B2*c and Tc. This explains the previously observed validity of the law of corresponding states. The critical density rho c is also found to be constant when measured in units of the cube of the average distance between two bonded particles (1+0.5 delta)sigma. The possibility of describing the delta-->0 dependence with precise functional forms provides improved accurate estimates of the critical parameters of the adhesive hard-sphere model.

  7. Determination and analysis of non-linear index profiles in electron-beam-deposited MgOAl2O3ZrO2 ternary composite thin-film optical coatings

    NASA Astrophysics Data System (ADS)

    Sahoo, N. K.; Thakur, S.; Senthilkumar, M.; Das, N. C.

    2005-02-01

    Thickness-dependent index non-linearity in thin films has been a thought provoking as well as intriguing topic in the field of optical coatings. The characterization and analysis of such inhomogeneous index profiles pose several degrees of challenges to thin-film researchers depending upon the availability of relevant experimental and process-monitoring-related information. In the present work, a variety of novel experimental non-linear index profiles have been observed in thin films of MgOAl2O3ZrO2 ternary composites in solid solution under various electron-beam deposition parameters. Analysis and derivation of these non-linear spectral index profiles have been carried out by an inverse-synthesis approach using a real-time optical monitoring signal and post-deposition transmittance and reflection spectra. Most of the non-linear index functions are observed to fit polynomial equations of order seven or eight very well. In this paper, the application of such a non-linear index function has also been demonstrated in designing electric-field-optimized high-damage-threshold multilayer coatings such as normal- and oblique-incidence edge filters and a broadband beam splitter for p-polarized light. Such designs can also advantageously maintain the microstructural stability of the multilayer structure due to the low stress factor of the non-linear ternary composite layers.

  8. Observer-dependent sign inversions of polarization singularities.

    PubMed

    Freund, Isaac

    2014-10-15

    We describe observer-dependent sign inversions of the topological charges of vector field polarization singularities: C points (points of circular polarization), L points (points of linear polarization), and two virtually unknown singularities we call γ(C) and α(L) points. In all cases, the sign of the charge seen by an observer can change as she changes the direction from which she views the singularity. Analytic formulas are given for all C and all L point sign inversions.

  9. Magnetotransport of proton-irradiated BaFe 2As 2 and BaFe 1.985Co 0.015As 2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseley, D. A.; Yates, K. A.; Peng, N.

    2015-02-17

    In this paper, we study the magnetotransport properties of the ferropnictide crystals BaFe 2As 2 and BaFe 1.985Co 0.015As 2. These materials exhibit a high field linear magnetoresistance that has been attributed to the quantum linear magnetoresistance model. In this model, the linear magnetoresistance is dependent on the concentration of scattering centers in the material. By using proton-beam irradiation to change the defect scattering density, we find that the dependence of the magnitude of the linear magnetoresistance on scattering quite clearly contravenes this prediction. Finally, a number of other scaling trends in the magnetoresistance and high field Hall data aremore » observed and discussed.« less

  10. Bayesian Approach to the Joint Inversion of Gravity and Magnetic Data, with Application to the Ismenius Area of Mars

    NASA Technical Reports Server (NTRS)

    Jewell, Jeffrey B.; Raymond, C.; Smrekar, S.; Millbury, C.

    2004-01-01

    This viewgraph presentation reviews a Bayesian approach to the inversion of gravity and magnetic data with specific application to the Ismenius Area of Mars. Many inverse problems encountered in geophysics and planetary science are well known to be non-unique (i.e. inversion of gravity the density structure of a body). In hopes of reducing the non-uniqueness of solutions, there has been interest in the joint analysis of data. An example is the joint inversion of gravity and magnetic data, with the assumption that the same physical anomalies generate both the observed magnetic and gravitational anomalies. In this talk, we formulate the joint analysis of different types of data in a Bayesian framework and apply the formalism to the inference of the density and remanent magnetization structure for a local region in the Ismenius area of Mars. The Bayesian approach allows prior information or constraints in the solutions to be incorporated in the inversion, with the "best" solutions those whose forward predictions most closely match the data while remaining consistent with assumed constraints. The application of this framework to the inversion of gravity and magnetic data on Mars reveals two typical challenges - the forward predictions of the data have a linear dependence on some of the quantities of interest, and non-linear dependence on others (termed the "linear" and "non-linear" variables, respectively). For observations with Gaussian noise, a Bayesian approach to inversion for "linear" variables reduces to a linear filtering problem, with an explicitly computable "error" matrix. However, for models whose forward predictions have non-linear dependencies, inference is no longer given by such a simple linear problem, and moreover, the uncertainty in the solution is no longer completely specified by a computable "error matrix". It is therefore important to develop methods for sampling from the full Bayesian posterior to provide a complete and statistically consistent picture of model uncertainty, and what has been learned from observations. We will discuss advanced numerical techniques, including Monte Carlo Markov

  11. How Robust Is Linear Regression with Dummy Variables?

    ERIC Educational Resources Information Center

    Blankmeyer, Eric

    2006-01-01

    Researchers in education and the social sciences make extensive use of linear regression models in which the dependent variable is continuous-valued while the explanatory variables are a combination of continuous-valued regressors and dummy variables. The dummies partition the sample into groups, some of which may contain only a few observations.…

  12. Vortex creep and the internal temperature of neutron stars - Linear and nonlinear response to a glitch

    NASA Technical Reports Server (NTRS)

    Alpar, M. A.; Cheng, K. S.; Pines, D.

    1989-01-01

    The dynamics of pinned superfluid in neutron stars is determined by the thermal 'creep' of vortices. Vortex creep can respond to changes in the rotation rate of the neutron star crust and provide the observed types of dynamical relaxation following pulsar glitches. It also gives rise to energy dissipation, which determines the thermal evolution of pulsars once the initial heat content has been radiated away. The different possible regimes of vortex creep are explored, and it is shown that the nature of the dynamical response of the pinned superfluid evolves with a pulsar's age. Younger pulsars display a linear regime, where the response is linear in the initial perturbation and is a simple exponential relaxation as a function of time. A nonliner response, with a characteristic nonlinear dependence on the initial perturbation, is responsible for energy dissipation and becomes the predominant mode of response as the pulsar ages. The transition from the linear to the nonlinear regime depends sensitively on the temperature of the neutron star interior. A preliminary review of existing postglitch observations is given within this general evolutionary framework.

  13. Theoretical investigation of dielectric corona pre-ionization TEA nitrogen laser based on transmission line method

    NASA Astrophysics Data System (ADS)

    Bahrampour, Alireza; Fallah, Robabeh; Ganjovi, Alireza A.; Bahrampour, Abolfazl

    2007-07-01

    This paper models the dielectric corona pre-ionization, capacitor transfer type of flat-plane transmission line traveling wave transverse excited atmospheric pressure nitrogen laser by a non-linear lumped RLC electric circuit. The flat-plane transmission line and the pre-ionizer dielectric are modeled by a lumped linear RLC and time-dependent non-linear RC circuit, respectively. The main discharge region is considered as a time-dependent non-linear RLC circuit where its resistance value is also depends on the radiated pre-ionization ultra violet (UV) intensity. The UV radiation is radiated by the resistance due to the surface plasma on the pre-ionizer dielectric. The theoretical predictions are in a very good agreement with the experimental observations. The electric circuit equations (including the ionization rate equations), the equations of laser levels population densities and propagation equation of laser intensities, are solved numerically. As a result, the effects of pre-ionizer dielectric parameters on the electrical behavior and output laser intensity are obtained.

  14. Deconstructing the Alcohol Harm Paradox: A Population Based Survey of Adults in England

    PubMed Central

    Beard, Emma; Brown, Jamie; West, Robert; Angus, Colin; Brennan, Alan; Holmes, John; Kaner, Eileen; Meier, Petra; Michie, Susan

    2016-01-01

    Background The Alcohol Harm Paradox refers to observations that lower socioeconomic status (SES) groups consume less alcohol but experience more alcohol-related problems. However, SES is a complex concept and its observed relationship to social problems often depends on how it is measured and the demographic groups studied. Thus this study assessed socioeconomic patterning of alcohol consumption and related harm using multiple measures of SES and examined moderation of this patterning by gender and age. Method Data were used from the Alcohol Toolkit Study between March and September 2015 on 31,878 adults (16+) living in England. Participants completed the AUDIT which includes alcohol consumption, harm and dependence modules. SES was measured via qualifications, employment, home and car ownership, income and social-grade, plus a composite of these measures. The composite score was coded such that higher scores reflected greater social-disadvantage. Results We observed the Alcohol Harm Paradox for the composite SES measure, with a linear negative relationship between SES and AUDIT-Consumption scores (β = -0.036, p<0.001) and a positive relationship between lower SES and AUDIT-Harm (β = 0.022, p<0.001) and AUDIT-Dependence (β = 0.024, p<0.001) scores. Individual measures of SES displayed different, and non-linear, relationships with AUDIT modules. For example, social-grade and income had a u-shaped relationship with AUDIT-Consumption scores while education had an inverse u-shaped relationship. Almost all measures displayed an exponential relationship with AUDIT-Dependence and AUDIT-Harm scores. We identified moderating effects from age and gender, with AUDIT-Dependence scores increasing more steeply with lower SES in men and both AUDIT-Harm and AUDIT-Dependence scores increasing more steeply with lower SES in younger age groups. Conclusion Different SES measures appear to influence whether the Alcohol Harm Paradox is observed as a linear trend across SES groups or a phenomenon associated particularly with the most disadvantaged. The paradox also appears more concentrated in men and younger age groups. PMID:27682619

  15. A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth

    PubMed Central

    Macklin, Paul

    2011-01-01

    In this paper, we present a ghost cell/level set method for the evolution of interfaces whose normal velocity depend upon the solutions of linear and nonlinear quasi-steady reaction-diffusion equations with curvature-dependent boundary conditions. Our technique includes a ghost cell method that accurately discretizes normal derivative jump boundary conditions without smearing jumps in the tangential derivative; a new iterative method for solving linear and nonlinear quasi-steady reaction-diffusion equations; an adaptive discretization to compute the curvature and normal vectors; and a new discrete approximation to the Heaviside function. We present numerical examples that demonstrate better than 1.5-order convergence for problems where traditional ghost cell methods either fail to converge or attain at best sub-linear accuracy. We apply our techniques to a model of tumor growth in complex, heterogeneous tissues that consists of a nonlinear nutrient equation and a pressure equation with geometry-dependent jump boundary conditions. We simulate the growth of glioblastoma (an aggressive brain tumor) into a large, 1 cm square of brain tissue that includes heterogeneous nutrient delivery and varied biomechanical characteristics (white matter, gray matter, cerebrospinal fluid, and bone), and we observe growth morphologies that are highly dependent upon the variations of the tissue characteristics—an effect observed in real tumor growth. PMID:21331304

  16. Spin fluctuation induced linear magnetoresistance in ultrathin superconducting FeSe films

    DOE PAGES

    Wang, Qingyan; Zhang, Wenhao; Chen, Weiwei; ...

    2017-07-21

    The discovery of high-temperature superconductivity in FeSe/STO has trigged great research interest to reveal a range of exotic physical phenomena in this novel material. Here we present a temperature dependent magnetotransport measurement for ultrathin FeSe/STO films with different thickness and protection layers. Remarkably, a surprising linear magnetoresistance (LMR) is observed around the superconducting transition temperatures but absent otherwise. The experimental LMR can be reproduced by magnetotransport calculations based on a model of magnetic field dependent disorder induced by spin fluctuation. Thus, the observed LMR in coexistence with superconductivity provides the first magnetotransport signature for spin fluctuation around the superconducting transitionmore » region in ultrathin FeSe/STO films.« less

  17. Monolayer phosphorene under time-dependent magnetic field

    NASA Astrophysics Data System (ADS)

    Nascimento, J. P. G.; Aguiar, V.; Guedes, I.

    2018-02-01

    We obtain the exact wave function of a monolayer phosphorene under a low-intensity time-dependent magnetic field using the dynamical invariant method. We calculate the quantum-mechanical energy expectation value and the transition probability for a constant and an oscillatory magnetic field. For the former we observe that the Landau level energy varies linearly with the quantum numbers n and m and the magnetic field intensity B0. No transition takes place. For the latter, we observe that the energy oscillates in time, increasing linearly with the Landau level n and m and nonlinearly with the magnetic field. The (k , l) →(n , m) transitions take place only for l = m. We investigate the (0,0) →(n , 0) and (1 , l) and (2 , l) probability transitions.

  18. On spurious detection of linear response and misuse of the fluctuation-dissipation theorem in finite time series

    NASA Astrophysics Data System (ADS)

    Gottwald, Georg A.; Wormell, J. P.; Wouters, Jeroen

    2016-09-01

    Using a sensitive statistical test we determine whether or not one can detect the breakdown of linear response given observations of deterministic dynamical systems. A goodness-of-fit statistics is developed for a linear statistical model of the observations, based on results for central limit theorems for deterministic dynamical systems, and used to detect linear response breakdown. We apply the method to discrete maps which do not obey linear response and show that the successful detection of breakdown depends on the length of the time series, the magnitude of the perturbation and on the choice of the observable. We find that in order to reliably reject the assumption of linear response for typical observables sufficiently large data sets are needed. Even for simple systems such as the logistic map, one needs of the order of 106 observations to reliably detect the breakdown with a confidence level of 95 %; if less observations are available one may be falsely led to conclude that linear response theory is valid. The amount of data required is larger the smaller the applied perturbation. For judiciously chosen observables the necessary amount of data can be drastically reduced, but requires detailed a priori knowledge about the invariant measure which is typically not available for complex dynamical systems. Furthermore we explore the use of the fluctuation-dissipation theorem (FDT) in cases with limited data length or coarse-graining of observations. The FDT, if applied naively to a system without linear response, is shown to be very sensitive to the details of the sampling method, resulting in erroneous predictions of the response.

  19. Linear and non-linear perturbations in dark energy models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escamilla-Rivera, Celia; Casarini, Luciano; Fabris, Júlio C.

    2016-11-01

    In this work we discuss observational aspects of three time-dependent parameterisations of the dark energy equation of state w ( z ). In order to determine the dynamics associated with these models, we calculate their background evolution and perturbations in a scalar field representation. After performing a complete treatment of linear perturbations, we also show that the non-linear contribution of the selected w ( z ) parameterisations to the matter power spectra is almost the same for all scales, with no significant difference from the predictions of the standard ΛCDM model.

  20. Fluorescence-based monitoring of tracer and substrate distribution in an UASB reactor.

    PubMed

    Lou, S J; Tartakovsky, B; Zeng, Y; Wu, P; Guiot, S R

    2006-11-01

    In this work, rhodamine-related fluorescence was measured on-line at four reactor heights in order to study hydrodynamics within an upflow anaerobic sludge bed reactor. A linear dependence of the dispersion coefficient (D) on the upflow velocity was observed, while the influence of the organic loading rate (OLR) was insignificant. Furthermore, the Bodenstein number of the reactor loaded with granulated sludge was found to be position-dependent with the largest values measured at the bottom of the sludge bed. This trend was not observed in the reactor without sludge. Chemical oxygen demand (COD) and volatile fatty acid (VFA) concentrations were measured at the same reactor heights as in rhodamine tests using conventional off-line analytical methods and on-line multiwavelength fluorometry. Significant spatial COD and VFA gradients were observed at organic loading rates above 6g COD l(R)(-1)d(-1) and linear upflow velocities below 0.8m h(-1).

  1. Low temperature IR spectroscopic study of torsional vibrations of taurine

    NASA Astrophysics Data System (ADS)

    Bajaj, Naini; Bhatt, Himal; Vishwakarma, S. R.; Thomas, Susy; Murli, C.; Deo, M. N.

    2018-04-01

    The hydrogen bonding network in amino acids can give information about the structural stability under varying thermodynamic conditions such as temperature and pressure. We have carried out low temperature IR spectroscopic studies on Taurine, an amino acid with various bio-chemical applications in physiology and synthesis, in order to observe the behaviour of torsional modes, i.e. τ(CSH) and τ(NH3), which are very sensitive to the hydrogen bonding interactions. It was observed that the CSH torsional mode showed splitting at low temperature of nearly 250 K and the bandwidth shows linear temperature dependence, which can be attributed to anharmonicity. Another torsional mode, τ(NH3) showed no splitting, but the bandwidth has non-linear temperature dependence. This can be due to orientational changes at low temperature. These observations are strong evidences for a hydrogen bond reorientation induced phase transition at 250 K.

  2. On optimal control of linear systems in the presence of multiplicative noise

    NASA Technical Reports Server (NTRS)

    Joshi, S. M.

    1976-01-01

    This correspondence considers the problem of optimal regulator design for discrete time linear systems subjected to white state-dependent and control-dependent noise in addition to additive white noise in the input and the observations. A pseudo-deterministic problem is first defined in which multiplicative and additive input disturbances are present, but noise-free measurements of the complete state vector are available. This problem is solved via discrete dynamic programming. Next is formulated the problem in which the number of measurements is less than that of the state variables and the measurements are contaminated with state-dependent noise. The inseparability of control and estimation is brought into focus, and an 'enforced separation' solution is obtained via heuristic reasoning in which the control gains are shown to be the same as those in the pseudo-deterministic problem. An optimal linear state estimator is given in order to implement the controller.

  3. Power and temperature dependent photoluminescence investigation of the linear polarization at normal and inverted interface transitions in InP/InAlAs and InGaAsP/InAlAs QW structures

    NASA Astrophysics Data System (ADS)

    Esmaielpour, Hamidreza; Whiteside, Vincent R.; Hirst, Louise C.; Forbes, David V.; Walters, Robert J.; Sellers, Ian R.

    We present an investigation of the interface effects for InGaAsP/InAlAs QW and InP/InAlAs QW structures capped with an InP layer. Continuous wave photoluminescence (PL) spectroscopy of these samples at 4 K shows features associated with the interfaces of an InAlAs layer grown on an InP layer (normal interface) and an InP layer grown on an InAlAs material (inverted interface). Power dependent PL of the InGaAsP QW indicates that there are two features related to the inverted interface, whereby the linear polarization of one increases and for the other decreases. In addition, a temperature dependent study of this sample shows that as the temperature increases: the linear polarization for both features decreases; at room temperature, there is negligible polarization effect. A power dependent PL study of the InP QW structure shows both normal and inverted interface transitions have opposing trends in linear polarization. Notably, the temperature dependent PL investigation displays a reduction of polarization degree for the inverted interface: as expected; while an increase of polarization for the normal interface was observed. In addition, power and temperature dependence of peak energy of the interface transitions for both samples will be presented.

  4. Micronucleus induction in Vicia faba roots. Part 1. Absence of dose-rate, fractionation, and oxygen effect at low doses of low LET radiations.

    PubMed

    Marshall, I; Bianchi, M

    1983-08-01

    Micronucleus indication in Vicia faba roots has been evaluated after irradiation with 60Co gamma-rays. The dependence of the damage on dose, dose rate, fractionation, and oxygen has been studied. The best fit to the experimental data in the dose region between 7 and 190 cGy is represented, for single-dose exposures, by a linear + quadratic relationship. In the low-dose region, between 7 and 20 cGy, where the linear dose dependence is dominant, no dose-rate, fractionation, or oxygen effect could be observed. These effects were, however, present in the high-dose region, where the quadratic dependence is dominant.

  5. Parameter selection with the Hotelling observer in linear iterative image reconstruction for breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Rose, Sean D.; Roth, Jacob; Zimmerman, Cole; Reiser, Ingrid; Sidky, Emil Y.; Pan, Xiaochuan

    2018-03-01

    In this work we investigate an efficient implementation of a region-of-interest (ROI) based Hotelling observer (HO) in the context of parameter optimization for detection of a rod signal at two orientations in linear iterative image reconstruction for DBT. Our preliminary results suggest that ROI-HO performance trends may be efficiently estimated by modeling only the 2D plane perpendicular to the detector and containing the X-ray source trajectory. In addition, the ROI-HO is seen to exhibit orientation dependent trends in detectability as a function of the regularization strength employed in reconstruction. To further investigate the ROI-HO performance in larger 3D system models, we present and validate an iterative methodology for calculating the ROI-HO. Lastly, we present a real data study investigating the correspondence between ROI-HO performance trends and signal conspicuity. Conspicuity of signals in real data reconstructions is seen to track well with trends in ROI-HO detectability. In particular, we observe orientation dependent conspicuity matching the orientation dependent detectability of the ROI-HO.

  6. The retrieval of the Asian dust depolarization ratio in Korea with the correction of the polarization-dependent transmission

    NASA Astrophysics Data System (ADS)

    Shin, Sungkyun; Müller, Detlef; Kim, Y. J.; Tatarov, Boyan; Shin, Dongho; Seifert, Patric; Noh, Young Min

    2013-01-01

    The linear particle depolarization ratios were retrieved from the observation with a multiwavelength Raman lidar at the Gwangju Institute of Science and Technology (GIST), Korea (35.11°N, 126.54°E). The measurements were carried out in spring (March to May) 2011. The transmission ratio measurements were performed to solve problems of the depolarization-dependent transmission at a receiver of the lidar and applied to correct the retrieved depolarization ratio of Asian dust at first time in Korea. The analyzed data from the GIST multiwavelength Raman lidar were classified into three categories according to the linear particle depolarization ratios, which are pure Asian dust on 21 March, the intermediate case which means Asian dust mixed with urban pollution on 13 May, and haze case on 10 April. The measured transmission ratios were applied to these cases respectively. We found that the transmission ratio is needed to be used to retrieve the accurate depolarization ratio of Asian dust and also would be useful to distinguish the mixed dust particles between intermediate case and haze. The particle depolarization ratios of pure Asian dust were approximately 0.25 at 532 nm and 0.14 at 532 nm for the intermediate case. The linear particle depolarization ratios of pure Asian dust observed with the GIST multiwavelength Raman lidar were compared to the linear particle depolarization ratios of Saharan dust observed in Morocco and Asian dust observed both in Japan and China.

  7. Magneto-electric transition in nickel-gallium arsenide-nickel multiferroic structure

    NASA Astrophysics Data System (ADS)

    Galichyan, T. A.; Filippov, D. A.; Laletin, V. M.; Firsova, T. O.; Poddubnaya, N. N.

    2018-04-01

    Experimental studies of the magnetoelectric effect are presented in structures manufactured by electrolytic deposition of nickel on a substrate of gallium arsenide. It is shown that the use of gold-germanium-nickel sublayer, when sprayed on a substrate, significantly improves the adhesion between electrolytically deposited nickel and substrate. Linear and nonlinear magnetoelectric effects on the alternating magnetic field are observed in these structures. Both effects have resonant character and the resonance frequency of the nonlinear effect is twice less than that of the linear effect. In weak fields, the value of the nonlinear magnetoelectric effect is in quadratic dependence on the alternating magnetic field and unlike the linear magnetoelectric effect, it does not depend on the bias field.

  8. Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets.

    PubMed

    Wang, Xiaolin; Du, Yi; Dou, Shixue; Zhang, Chao

    2012-06-29

    Topological insulators, a new class of condensed matter having bulk insulating states and gapless metallic surface states, have demonstrated fascinating quantum effects. However, the potential practical applications of the topological insulators are still under exploration worldwide. We demonstrate that nanosheets of a Bi(2)Te(3) topological insulator several quintuple layers thick display giant and linear magnetoresistance. The giant and linear magnetoresistance achieved is as high as over 600% at room temperature, with a trend towards further increase at higher temperatures, as well as being weakly temperature-dependent and linear with the field, without any sign of saturation at measured fields up to 13 T. Furthermore, we observed a magnetic field induced gap below 10 K. The observation of giant and linear magnetoresistance paves the way for 3D topological insulators to be useful for practical applications in magnetoelectronic sensors such as disk reading heads, mechatronics, and other multifunctional electromagnetic applications.

  9. A non-linear model of economic production processes

    NASA Astrophysics Data System (ADS)

    Ponzi, A.; Yasutomi, A.; Kaneko, K.

    2003-06-01

    We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.

  10. Heteroscedasticity as a Basis of Direction Dependence in Reversible Linear Regression Models.

    PubMed

    Wiedermann, Wolfgang; Artner, Richard; von Eye, Alexander

    2017-01-01

    Heteroscedasticity is a well-known issue in linear regression modeling. When heteroscedasticity is observed, researchers are advised to remedy possible model misspecification of the explanatory part of the model (e.g., considering alternative functional forms and/or omitted variables). The present contribution discusses another source of heteroscedasticity in observational data: Directional model misspecifications in the case of nonnormal variables. Directional misspecification refers to situations where alternative models are equally likely to explain the data-generating process (e.g., x → y versus y → x). It is shown that the homoscedasticity assumption is likely to be violated in models that erroneously treat true nonnormal predictors as response variables. Recently, Direction Dependence Analysis (DDA) has been proposed as a framework to empirically evaluate the direction of effects in linear models. The present study links the phenomenon of heteroscedasticity with DDA and describes visual diagnostics and nine homoscedasticity tests that can be used to make decisions concerning the direction of effects in linear models. Results of a Monte Carlo simulation that demonstrate the adequacy of the approach are presented. An empirical example is provided, and applicability of the methodology in cases of violated assumptions is discussed.

  11. Form features provide a cue to the angular velocity of rotating objects

    PubMed Central

    Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul

    2013-01-01

    As an object rotates, each location on the object moves with an instantaneous linear velocity dependent upon its distance from the center of rotation, while the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different sized objects, as changing the size of an object changes the linear velocity of each location on the object’s surface, while maintaining the object’s angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PMID:23750970

  12. Form features provide a cue to the angular velocity of rotating objects.

    PubMed

    Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul

    2014-02-01

    As an object rotates, each location on the object moves with an instantaneous linear velocity, dependent upon its distance from the center of rotation, whereas the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different-sized objects, as changing the size of an object changes the linear velocity of each location on the object's surface, while maintaining the object's angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high-contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  13. Synchronization of mobile chaotic oscillator networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Naoya, E-mail: fujiwara@csis.u-tokyo.ac.jp; Kurths, Jürgen; Díaz-Guilera, Albert

    We study synchronization of systems in which agents holding chaotic oscillators move in a two-dimensional plane and interact with nearby ones forming a time dependent network. Due to the uncertainty in observing other agents' states, we assume that the interaction contains a certain amount of noise that turns out to be relevant for chaotic dynamics. We find that a synchronization transition takes place by changing a control parameter. But this transition depends on the relative dynamic scale of motion and interaction. When the topology change is slow, we observe an intermittent switching between laminar and burst states close to themore » transition due to small noise. This novel type of synchronization transition and intermittency can happen even when complete synchronization is linearly stable in the absence of noise. We show that the linear stability of the synchronized state is not a sufficient condition for its stability due to strong fluctuations of the transverse Lyapunov exponent associated with a slow network topology change. Since this effect can be observed within the linearized dynamics, we can expect such an effect in the temporal networks with noisy chaotic oscillators, irrespective of the details of the oscillator dynamics. When the topology change is fast, a linearized approximation describes well the dynamics towards synchrony. These results imply that the fluctuations of the finite-time transverse Lyapunov exponent should also be taken into account to estimate synchronization of the mobile contact networks.« less

  14. [Ionization in liquids: Request for 1992--1993 funding and 1991--1992 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    Studies of the influence of solvent composition on electron mobility, {mu}{sub e}, which we reported for mixtures of neopentane (NP) and tetramethysilane (TMS) were extended to mixtures of TMS with isooctane (i-octane) or cyclohexane (c-hexane). Whereas our initial TMS /NP study focused on an electron transport regime in which {mu}{sub e} varied only from 67 cm{sup 2}/Vs in NP to 100 cm{sup 2}/Vs in TMS, the more recent studies extended to values of {mu}{sub e} of 7.5 and 0.22 cm{sup 2}/Vs in i-octane and c-hexane, respectively. Whereas a linear dependence of log {mu}{sub e} on solvent composition had been foundmore » in earlier studies of electron transport in mixtures, a negative deviation from this dependence was found in TMS/NP mixtures. In contrast, a positive deviation from linearity was observed in TMS/c-hexane mixtures. Despite the markedly different dependences of {mu}{sub e} on solvent composition for these mixtures, the observed dependences are consistent with the percolation model of electron transport that Schiller has developed.« less

  15. State and actuator fault estimation observer design integrated in a riderless bicycle stabilization system.

    PubMed

    Brizuela Mendoza, Jorge Aurelio; Astorga Zaragoza, Carlos Manuel; Zavala Río, Arturo; Pattalochi, Leo; Canales Abarca, Francisco

    2016-03-01

    This paper deals with an observer design for Linear Parameter Varying (LPV) systems with high-order time-varying parameter dependency. The proposed design, considered as the main contribution of this paper, corresponds to an observer for the estimation of the actuator fault and the system state, considering measurement noise at the system outputs. The observer gains are computed by considering the extension of linear systems theory to polynomial LPV systems, in such a way that the observer reaches the characteristics of LPV systems. As a result, the actuator fault estimation is ready to be used in a Fault Tolerant Control scheme, where the estimated state with reduced noise should be used to generate the control law. The effectiveness of the proposed methodology has been tested using a riderless bicycle model with dependency on the translational velocity v, where the control objective corresponds to the system stabilization towards the upright position despite the variation of v along the closed-loop system trajectories. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Linear Dichroism in Angle-Resolved Core-Level Photoemission Spectra Reflecting 4f Ground-State Symmetry of Strongly Correlated Cubic Pr Compounds

    NASA Astrophysics Data System (ADS)

    Hamamoto, Satoru; Fujioka, Shuhei; Kanai, Yuina; Yamagami, Kohei; Nakatani, Yasuhiro; Nakagawa, Koya; Fujiwara, Hidenori; Kiss, Takayuki; Higashiya, Atsushi; Yamasaki, Atsushi; Kadono, Toshiharu; Imada, Shin; Tanaka, Arata; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Matsumoto, Keisuke T.; Onimaru, Takahiro; Takabatake, Toshiro; Sekiyama, Akira

    2017-12-01

    We report experimentally observed linear dichroism in angle-resolved core-level photoemission spectra of PrIr2Zn20 and PrB6 with cubic symmetry. The different anisotropic 4f charge distributions between the compounds due to the crystalline-electric-field splitting are responsible for the difference in the linear dichroism, which has been verified by spectral simulations with the full multiplet theory for a single-site Pr3+ ion with cubic symmetry. The observed linear dichroism and polarization-dependent spectra in two different photoelectron directions for PrIr2Zn20 are reproduced by theoretical analysis for the Γ3 ground state, whereas those of the Pr 3d and 4d core levels indicate the Γ5 ground state for PrB6.

  17. Metric versus observable operator representation, higher spin models

    NASA Astrophysics Data System (ADS)

    Fring, Andreas; Frith, Thomas

    2018-02-01

    We elaborate further on the metric representation that is obtained by transferring the time-dependence from a Hermitian Hamiltonian to the metric operator in a related non-Hermitian system. We provide further insight into the procedure on how to employ the time-dependent Dyson relation and the quasi-Hermiticity relation to solve time-dependent Hermitian Hamiltonian systems. By solving both equations separately we argue here that it is in general easier to solve the former. We solve the mutually related time-dependent Schrödinger equation for a Hermitian and non-Hermitian spin 1/2, 1 and 3/2 model with time-independent and time-dependent metric, respectively. In all models the overdetermined coupled system of equations for the Dyson map can be decoupled algebraic manipulations and reduces to simple linear differential equations and an equation that can be converted into the non-linear Ermakov-Pinney equation.

  18. Quantum Theory from Observer's Mathematics Point of View

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khots, Dmitriy; Khots, Boris

    2010-05-04

    This work considers the linear (time-dependent) Schrodinger equation, quantum theory of two-slit interference, wave-particle duality for single photons, and the uncertainty principle in a setting of arithmetic, algebra, and topology provided by Observer's Mathematics, see [1]. Certain theoretical results and communications pertaining to these theorems are also provided.

  19. Constraining Solar Wind Heating Processes by Kinetic Properties of Heavy Ions

    NASA Astrophysics Data System (ADS)

    Tracy, Patrick J.; Kasper, Justin C.; Raines, Jim M.; Shearer, Paul; Gilbert, Jason A.; Zurbuchen, Thomas H.

    2016-06-01

    We analyze the heavy ion components (A >4 amu ) in collisionally young solar wind plasma and show that there is a clear, stable dependence of temperature on mass, probably reflecting the conditions in the solar corona. We consider both linear and power law forms for the dependence and find that a simple linear fit of the form Ti/Tp=(1.35 ±.02 )mi/mp describes the observations twice as well as the equivalent best fit power law of the form Ti/Tp=(mi/mp) 1.07 ±.01 . Most importantly we find that current model predictions based on turbulent transport and kinetic dissipation are in agreement with observed nonthermal heating in intermediate collisional age plasma for m /q <3.5 , but are not in quantitative or qualitative agreement with the lowest collisional age results. These dependencies provide new constraints on the physics of ion heating in multispecies plasmas, along with predictions to be tested by the upcoming Solar Probe Plus and Solar Orbiter missions to the near-Sun environment.

  20. Study of the observational compatibility of an inhomogeneous cosmology with linear expansion according to SNe Ia

    NASA Astrophysics Data System (ADS)

    Monjo, R.

    2017-11-01

    Most of current cosmological theories are built combining an isotropic and homogeneous manifold with a scale factor that depends on time. If one supposes a hyperconical universe with linear expansion, an inhomogeneous metric can be obtained by an appropriate transformation that preserves the proper time. This model locally tends to a flat Friedman-Robertson-Walker metric with linear expansion. The objective of this work is to analyze the observational compatibility of the inhomogeneous metric considered. For this purpose, the corresponding luminosity distance was obtained and was compared with the observations of 580 SNe Ia, taken from the Supernova Cosmology Project. The best fit of the hyperconical model obtains χ02=562 , the same value as the standard Λ CDM model. Finally, a possible relationship is found between both theories.

  1. [Optimal extraction of effective constituents from Aralia elata by central composite design and response surface methodology].

    PubMed

    Lv, Shao-Wa; Liu, Dong; Hu, Pan-Pan; Ye, Xu-Yan; Xiao, Hong-Bin; Kuang, Hai-Xue

    2010-03-01

    To optimize the process of extracting effective constituents from Aralia elata by response surface methodology. The independent variables were ethanol concentration, reflux time and solvent fold, the dependent variable was extraction rate of total saponins in Aralia elata. Linear or no-linear mathematic models were used to estimate the relationship between independent and dependent variables. Response surface methodology was used to optimize the process of extraction. The prediction was carried out through comparing the observed and predicted values. Regression coefficient of binomial fitting complex model was as high as 0.9617, the optimum conditions of extraction process were 70% ethanol, 2.5 hours for reflux, 20-fold solvent and 3 times for extraction. The bias between observed and predicted values was -2.41%. It shows the optimum model is highly predictive.

  2. Advanced statistics: linear regression, part II: multiple linear regression.

    PubMed

    Marill, Keith A

    2004-01-01

    The applications of simple linear regression in medical research are limited, because in most situations, there are multiple relevant predictor variables. Univariate statistical techniques such as simple linear regression use a single predictor variable, and they often may be mathematically correct but clinically misleading. Multiple linear regression is a mathematical technique used to model the relationship between multiple independent predictor variables and a single dependent outcome variable. It is used in medical research to model observational data, as well as in diagnostic and therapeutic studies in which the outcome is dependent on more than one factor. Although the technique generally is limited to data that can be expressed with a linear function, it benefits from a well-developed mathematical framework that yields unique solutions and exact confidence intervals for regression coefficients. Building on Part I of this series, this article acquaints the reader with some of the important concepts in multiple regression analysis. These include multicollinearity, interaction effects, and an expansion of the discussion of inference testing, leverage, and variable transformations to multivariate models. Examples from the first article in this series are expanded on using a primarily graphic, rather than mathematical, approach. The importance of the relationships among the predictor variables and the dependence of the multivariate model coefficients on the choice of these variables are stressed. Finally, concepts in regression model building are discussed.

  3. A Finite-Difference Time-Domain Model of Artificial Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Cannon, Patrick; Honary, Farideh; Borisov, Nikolay

    Experiments in the artificial modification of the ionosphere via a radio frequency pump wave have observed a wide range of non-linear phenomena near the reflection height of an O-mode wave. These effects exhibit a strong aspect-angle dependence thought to be associated with the process by which, for a narrow range of off-vertical launch angles, the O-mode pump wave can propagate beyond the standard reflection height at X=1 as a Z-mode wave and excite additional plasma activity. A numerical model based on Finite-Difference Time-Domain method has been developed to simulate the interaction of the pump wave with an ionospheric plasma and investigate different non-linear processes involved in modification experiments. The effects on wave propagation due to plasma inhomogeneity and anisotropy are introduced through coupling of the Lorentz equation of motion for electrons and ions to Maxwell’s wave equations in the FDTD formulation, leading to a model that is capable of exciting a variety of plasma waves including Langmuir and upper-hybrid waves. Additionally, discretized equations describing the time-dependent evolution of the plasma fluid temperature and density are included in the FDTD update scheme. This model is used to calculate the aspect angle dependence and angular size of the radio window for which Z-mode excitation occurs, and the results compared favourably with both theoretical predictions and experimental observations. The simulation results are found to reproduce the angular dependence on electron density and temperature enhancement observed experimentally. The model is used to investigate the effect of different initial plasma density conditions on the evolution of non-linear effects, and demonstrates that the inclusion of features such as small field-aligned density perturbations can have a significant influence on wave propagation and the magnitude of temperature and density enhancements.

  4. Characterization of commercial MOSFET detectors and their feasibility for in-vivo HDR brachytherapy.

    PubMed

    Phurailatpam, Reena; Upreti, Rituraj; Nojin Paul, Siji; Jamema, Swamidas V; Deshpande, Deepak D

    2016-01-01

    The present study was to investigate the use of MOSFET as an vivo dosimeter for the application of Ir-192 HDR brachytherapy treatments. MOSFET was characterized for dose linearity in the range of 50-1000 cGy, depth dose dependence from 2 to 7 cm, angular dependence. Signal fading was checked for two weeks. Dose linearity was found to be within 2% in the dose range (50-1000 cGy). The response varied within 8.07% for detector-source distance of 2-7 cm. The response of MOSFET with the epoxy side facing the source (0 degree) is the highest and the lowest response was observed at 90 and 270 degrees. Signal was stable during the study period. The detector showed high dose linearity and insignificant fading. But due to angular and depth dependence, care should be taken and corrections must be applied for clinical dosimetry. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  5. Linear magneto-resistance in Bi{sub 2}SeTe{sub 2} topological insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaladass, E. P., E-mail: edward@igcar.gov.in; Sharma, Shilpam; Devidas, T. R.

    2016-05-23

    Magnetic field and temperature dependent electronic transport measurements have been carried out on Bi{sub 2}SeTe{sub 2} topological insulator single crystals. The measurements reveal an insulating behavior and the carriers were found to be electrons (n-type) from Hall measurement. Magneto-resistance (MR) measurements in the field range (B) of 15 T to -15 T carried out at 4.2 K showed a cusp like weak anti-localization behavior for lower fields (-5 T 5 T. Upon increasing temperature, MR transforms to linear dependence of B at 40, 50 and 100 K. On further increasing temperatures (> 200 K), a parabolic MR is observed. Temperaturemore » dependent Hall data also showed a transition from a nonlinear to linear behavior upon increasing temperatures. Disorder induced changes in the electronic transport characteristics of bulk and surface electrons are believed to cause such changes in the magneto-transport behavior of this system.« less

  6. Thermal management of metallic surfaces: evaporation of sessile water droplets on polished and patterned stainless steel

    NASA Astrophysics Data System (ADS)

    Czerwiec, T.; Tsareva, S.; Andrieux, A.; Bortolini, G. A.; Bolzan, P. H.; Castanet, G.; Gradeck, M.; Marcos, G.

    2017-10-01

    This communication focus on the evaporation of sessile water droplets on different states of austenitic stainless steel surfaces: mirror polished, mirror polished and aged and patterned by sputtering. The evolution of the contact angle and of the droplet diameter is presented as a function of time at room temperature. For all the surface states, a constant diameter regime (CCR) is observed. An important aging effect on the contact angle is measured on polished surfaces due to atmospheric contamination. The experimental observations are compared to a quasi-static evaporation model assuming spherical caps. The evolution of the droplet volume as a function of time is almost linear with the evaporation time for all the observed surfaces. This is in accordance with the model prediction for the CCR mode for small initial contact angles. In our experiments, the evaporation time is found to be linearly dependent on the initial contact angle. This dependence is not correctly described by the evaporation model

  7. Hybrid Discrete-Continuous Markov Decision Processes

    NASA Technical Reports Server (NTRS)

    Feng, Zhengzhu; Dearden, Richard; Meuleau, Nicholas; Washington, Rich

    2003-01-01

    This paper proposes a Markov decision process (MDP) model that features both discrete and continuous state variables. We extend previous work by Boyan and Littman on the mono-dimensional time-dependent MDP to multiple dimensions. We present the principle of lazy discretization, and piecewise constant and linear approximations of the model. Having to deal with several continuous dimensions raises several new problems that require new solutions. In the (piecewise) linear case, we use techniques from partially- observable MDPs (POMDPS) to represent value functions as sets of linear functions attached to different partitions of the state space.

  8. Magnetostriction of some rare earth-aluminum Laves phase compounds

    NASA Technical Reports Server (NTRS)

    Pourarian, F.; Wallace, W. E.

    1979-01-01

    Measurements of the linear and volume magnetostriction of RAl2 cubic Laves compounds in which R is one of the rare earth elements Gd, Dy, Ho or Er, at temperatures between 4.2 K and the Curie temperature of each compound, are reported. Magnetic fields up to 2.5 Tesla were applied, and magnetostriction was measured using standard strain gage techniques. Saturation magnetostrictions of 17 x 10 to the -6th, -1420 x 10 to the -6th, 60 x 10 to the -6th and -920 x 10 to the -6th are determined at 4.2 K for GdAl2, DyAl2, HoAl2 and ErAl2, respectively. Large forced magnetostriction is observed in GdAl2 above the saturation field and the strain temperature dependence shows a decrease in magnitude below 40 K. A linear dependence of magnetostriction on magnetic field was observed for DyAl2 above 40 K, and the observed temperature dependence is interpreted in terms of the lowest order single-ion magnetoelastic theory. An observed decrease in the magnitude of the strain of HoAl2 below 15 K is associated with a change of the easy direction of magnetization, while in the case of ErAl2, magnetostriction is observed to occur normally up to the Curie temperature. Large volume magnetostriction is obtained for all the compounds with the exception of GdAl2.

  9. A study of birefringence in the interstellar medium in the direction of the Crab Nebula

    NASA Technical Reports Server (NTRS)

    Martin, P. G.; Angel, J. R. P.

    1974-01-01

    The interstellar medium may be regarded as a weak wave plate, the linear birefringence arising from the aligned grains which produce interstellar linear polarization. Using the Crab Nebula as a background source of linearly polarized light we have investigated this birefringence by measurements of circular polarization. The circular component is found to vary with the intrinsic linear polarization in a sinusoidal fashion characteristic of a wave plate with the orientation expected from independent measurements of the interstellar linear polarization in the same direction. Measurements of the wavelength dependence, together with the sense and magnitude of the circular polarization are interpreted as evidence for the dielectric nature of the interstellar grain materials. These observations provide a firm basis for a similar interpretation of the circular polarization of reddened stars. The observations of the stars can then be used to study the grain composition and the structure of the magnetic field in many directions in the Galaxy.

  10. Transition of recollision trajectories from linear to elliptical polarization

    DOE PAGES

    Li, Yingbin; Yu, Benhai; Tang, Qingbin; ...

    2016-03-15

    Using a classical ensemble method, we revisit the topic of recollision and nonsequential double ionization with elliptically polarized laser fields. We focus on how the recollision mechanism transitions from short trajectories with linear polarization to long trajectories with elliptical polarization. Furthermore, we propose how this transition can be observed by measuring the carrier-envelop-phase dependence of the correlated electron momentum spectra using currently available few-cycle laser pulses.

  11. Acoustic Wave Dispersion and Scattering in Complex Marine Sediment Structures

    DTIC Science & Technology

    2018-03-21

    Developed theory and methodology to distinguish between the two major classes of volume heterogeneities, discrete particles or a fluctuation...acoustics of muddy sediments has become of intense interest in the ONR community and very large and non -linear gradients have been observed in such...method was applied to measured reflection data in a muddy sediment area, where highly non -linear depth-dependent profiles were obtained – informed by the

  12. Are non-linearity effects of absorption important for MAX-DOAS observations?

    NASA Astrophysics Data System (ADS)

    Pukite, Janis; Wang, Yang; Wagner, Thomas

    2017-04-01

    For scattered light observations the absorption optical depth depends non-linearly on the trace gas concentrations if their absorption is strong. This is the case because the Beer-Lambert law is generally not applicable for scattered light measurements due to many (i.e. more than one) light paths contributing to the measurement. While in many cases a linear approximation can be made, for scenarios with strong absorption non-linear effects cannot always be neglected. This is especially the case for observation geometries with spatially extended and diffuse light paths, especially in satellite limb geometry but also for nadir measurements as well. Fortunately the effects of non-linear effects can be quantified by means of expanding the radiative transfer equation in a Taylor series with respect to the trace gas absorption coefficients. Herewith if necessary (1) the higher order absorption structures can be described as separate fit parameters in the DOAS fit and (2) the algorithm constraints of retrievals of VCDs and profiles can be improved by considering higher order sensitivity parameters. In this study we investigate the contribution of the higher order absorption structures for MAX-DOAS observation geometry for different atmospheric and ground properties (cloud and aerosol effects, trace gas amount, albedo) and geometry (different Sun and viewing angles).

  13. A diffusion-free and linear-energy-transfer-independent nanocomposite Fricke gel dosimeter

    NASA Astrophysics Data System (ADS)

    Maeyama, T.; Fukunishi, N.; Ishikawa, K. L.; Furuta, T.; Fukasaku, K.; Takagi, S.; Noda, S.; Himeno, R.; Fukuda, S.

    2014-03-01

    We report a new magnetic-resonance-imaging (MRI) based nanocomposite Fricke gel (NC-FG) dosimeter system, which is free from two main drawbacks of conventional Fricke gel dosimeters, namely, the diffusion of the radiation products and the linear-energy-transfer (LET) dependence of the radiation sensitivity when used for ion beams. The NC-FG dosimeter was prepared by incorporating 1% (w/w) clay nanoparticles into deaerated Fricke gel. We have dosimetrically characterized the NC-FG by using MRI measurements after irradiation with a monoenergetic 290 MeV/nucleon carbon beam. No diffusion of the radiation products was observed during nine days after the irradiation. Moreover, its response faithfully reproduced the depth-dose distribution measured by an ionization chamber, which indicates the absence of the LET dependence. Also, the NC-FG dosimeter exhibited a good linearity up to 800 Gy.

  14. Emission mechanisms in Al-rich AlGaN/AlN quantum wells assessed by excitation power dependent photoluminescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwata, Yoshiya; Banal, Ryan G.; Ichikawa, Shuhei

    2015-02-21

    The optical properties of Al-rich AlGaN/AlN quantum wells are assessed by excitation-power-dependent time-integrated (TI) and time-resolved (TR) photoluminescence (PL) measurements. Two excitation sources, an optical parametric oscillator and the 4th harmonics of a Ti:sapphire laser, realize a wide range of excited carrier densities between 10{sup 12} and 10{sup 21 }cm{sup −3}. The emission mechanisms change from an exciton to an electron-hole plasma as the excitation power increases. Accordingly, the PL decay time is drastically reduced, and the integrated PL intensities increase in the following order: linearly, super-linearly, linearly again, and sub-linearly. The observed results are well accounted for by rate equationsmore » that consider the saturation effect of non-radiative recombination processes. Using both TIPL and TRPL measurements allows the density of non-radiative recombination centers, the internal quantum efficiency, and the radiative recombination coefficient to be reliably extracted.« less

  15. Complete convergence of randomly weighted END sequences and its application.

    PubMed

    Li, Penghua; Li, Xiaoqin; Wu, Kehan

    2017-01-01

    We investigate the complete convergence of partial sums of randomly weighted extended negatively dependent (END) random variables. Some results of complete moment convergence, complete convergence and the strong law of large numbers for this dependent structure are obtained. As an application, we study the convergence of the state observers of linear-time-invariant systems. Our results extend the corresponding earlier ones.

  16. Post-seismic and interseismic fault creep I: model description

    NASA Astrophysics Data System (ADS)

    Hetland, E. A.; Simons, M.; Dunham, E. M.

    2010-04-01

    We present a model of localized, aseismic fault creep during the full interseismic period, including both transient and steady fault creep, in response to a sequence of imposed coseismic slip events and tectonic loading. We consider the behaviour of models with linear viscous, non-linear viscous, rate-dependent friction, and rate- and state-dependent friction fault rheologies. Both the transient post-seismic creep and the pattern of steady interseismic creep rates surrounding asperities depend on recent coseismic slip and fault rheologies. In these models, post-seismic fault creep is manifest as pulses of elevated creep rates that propagate from the coseismic slip, these pulses feature sharper fronts and are longer lived in models with rate-state friction compared to other models. With small characteristic slip distances in rate-state friction models, interseismic creep is similar to that in models with rate-dependent friction faults, except for the earliest periods of post-seismic creep. Our model can be used to constrain fault rheologies from geodetic observations in cases where the coseismic slip history is relatively well known. When only considering surface deformation over a short period of time, there are strong trade-offs between fault rheology and the details of the imposed coseismic slip. Geodetic observations over longer times following an earthquake will reduce these trade-offs, while simultaneous modelling of interseismic and post-seismic observations provide the strongest constraints on fault rheologies.

  17. Pearson correlation estimation for irregularly sampled time series

    NASA Astrophysics Data System (ADS)

    Rehfeld, K.; Marwan, N.; Heitzig, J.; Kurths, J.

    2012-04-01

    Many applications in the geosciences call for the joint and objective analysis of irregular time series. For automated processing, robust measures of linear and nonlinear association are needed. Up to now, the standard approach would have been to reconstruct the time series on a regular grid, using linear or spline interpolation. Interpolation, however, comes with systematic side-effects, as it increases the auto-correlation in the time series. We have searched for the best method to estimate Pearson correlation for irregular time series, i.e. the one with the lowest estimation bias and variance. We adapted a kernel-based approach, using Gaussian weights. Pearson correlation is calculated, in principle, as a mean over products of previously centralized observations. In the regularly sampled case, observations in both time series were observed at the same time and thus the allocation of measurement values into pairs of products is straightforward. In the irregularly sampled case, however, measurements were not necessarily observed at the same time. Now, the key idea of the kernel-based method is to calculate weighted means of products, with the weight depending on the time separation between the observations. If the lagged correlation function is desired, the weights depend on the absolute difference between observation time separation and the estimation lag. To assess the applicability of the approach we used extensive simulations to determine the extent of interpolation side-effects with increasing irregularity of time series. We compared different approaches, based on (linear) interpolation, the Lomb-Scargle Fourier Transform, the sinc kernel and the Gaussian kernel. We investigated the role of kernel bandwidth and signal-to-noise ratio in the simulations. We found that the Gaussian kernel approach offers significant advantages and low Root-Mean Square Errors for regular, slightly irregular and very irregular time series. We therefore conclude that it is a good (linear) similarity measure that is appropriate for irregular time series with skewed inter-sampling time distributions.

  18. Embedding of multidimensional time-dependent observations.

    PubMed

    Barnard, J P; Aldrich, C; Gerber, M

    2001-10-01

    A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of dynamic nonlinear processes. The Takens embedding theory is combined with independent component analysis to transform the embedding into a vector space of linearly independent vectors (phase variables). The method is successfully tested against prediction of the unembedded state vector in two case studies of simulated chaotic processes.

  19. Embedding of multidimensional time-dependent observations

    NASA Astrophysics Data System (ADS)

    Barnard, Jakobus P.; Aldrich, Chris; Gerber, Marius

    2001-10-01

    A method is proposed to reconstruct dynamic attractors by embedding of multivariate observations of dynamic nonlinear processes. The Takens embedding theory is combined with independent component analysis to transform the embedding into a vector space of linearly independent vectors (phase variables). The method is successfully tested against prediction of the unembedded state vector in two case studies of simulated chaotic processes.

  20. Relationships of Measurement Error and Prediction Error in Observed-Score Regression

    ERIC Educational Resources Information Center

    Moses, Tim

    2012-01-01

    The focus of this paper is assessing the impact of measurement errors on the prediction error of an observed-score regression. Measures are presented and described for decomposing the linear regression's prediction error variance into parts attributable to the true score variance and the error variances of the dependent variable and the predictor…

  1. Dependence of Polarization of the near-Earth Asteroids (1036) Ganymed and (5143) Heracles on Wavelength and Phase Angle

    NASA Astrophysics Data System (ADS)

    Maleszewski, C.; McMillan, R.; Smith, P.

    2012-12-01

    We are measuring the polarization of asteroids with the SPOL polarimeter of Steward Observatory. With monthly access to the instrument, we can obtain many observations throughout phase angle. This is in contrast to other recent work that had to rely on aggregate properties of targets of similar taxonomic type. Comparing individual objects to these aggregate results may reveal differences of regolith properties from object to object. Both the phase angle and spectral dependence of polarization are being measured. SPOL provides simultaneous coverage from 0.40-0.75 microns, equivalent to BVR filters. Three phase curves thus reveal differences of phase angle dependences with respect to wavelength. The spectral dependence of the linear polarization is determined according to a linear trend previously used to describe the dependence for Main Belt Asteroids (MBAs) in various taxonomic classes (Belskaya et al. 2009). The slopes of these linear trends vs. phase angle are also investigated as was also done in the Belskaya analysis for MBAs in the C-, M-, and S-types. Two initial objects of interest are the NEAs (1036) Ganymed and (5143) Heracles. The taxonomic types of Ganymed and Heracles are S-type and Q-type respectively (DeMeo et al. 2009). For Ganymed, twelve observations were made between 2011 September and 2012 March. These include observations below ten degrees phase angle, which are currently lacking in the polarimetric databases. The positive branch of Ganymed's polarization phase curve behaved similarly across SPOL's wavelength range. But for wavelengths associated with a typical B-filter, the negative branch is more shallow and narrow. The negative phase branch of Ganymed is smaller compared to the aggregate phase curve of S-types determined by Gil-Hutton and Cañada-Assandri (2011). The linear polarization decreases with increasing wavelength at all observed phase angles. As the phase angle increases, the slope of the wavelength dependence of polarization becomes steeper. This is similar to the behavior seen in S-type MBAs, except that the trend in phase angle is less pronounced in the MBAs. For Heracles, high phase angle observations were made in the first half of 2012. The slope of the positive branch of Heracles's phase angle curve is consistent with our Ganymed measurements. Slopes of Heracles' spectral dependence follow similar trends to our Ganymed results and the aggregate MBA data. However, the magnitudes of the Heracles slopes are lower. Because differences of spectra between these asteroid types are thought to be due to resurfacing, that process may affect the polarimetric spectral dependence as well. Further polarimetric studies of S-, Sq- and Q-type asteroids and spectroscopic surveys designed to classify additional Q-types are thus encouraged. This research is funded by the Brinson Foundation of Chicago, Illinois. Links to Cited Material: Belskaya et al. 2009: http://adsabs.harvard.edu/abs/2009Icar..199...97B DeMeo et al. 2009: http://adsabs.harvard.edu/abs/2009Icar..202..160D Gil-Hutton and Cañada-Assandri 2011: http://adsabs.harvard.edu/abs/2011A%26A...529A..86G

  2. Long Memory in STOCK Market Volatility: the International Evidence

    NASA Astrophysics Data System (ADS)

    Yang, Chunxia; Hu, Sen; Xia, Bingying; Wang, Rui

    2012-08-01

    It is still a hot topic to catch the auto-dependence behavior of volatility. Here, based on the measurement of average volatility, under different observation window size, we investigated the dependence of successive volatility of several main stock indices and their simulated GARCH(1, 1) model, there were obvious linear auto-dependence in the logarithm of volatility under a small observation window size and nonlinear auto-dependence under a big observation. After calculating the correlation and mutual information of the logarithm of volatility for Dow Jones Industrial Average during different periods, we find that some influential events can change the correlation structure and the volatilities of different periods have distinct influence on that of the remote future. Besides, GARCH model could produce similar behavior of dependence as real data and long memory property. But our analyses show that the auto-dependence of volatility in GARCH is different from that in real data, and the long memory is undervalued by GARCH.

  3. NOTE: Investigating the potential of polymer gel dosimetry for interventional radiology: first results

    NASA Astrophysics Data System (ADS)

    Antoniou, P. E.; Bousbouras, P.; Sandaltzopoulos, R.; Kaldoudi, E.

    2008-04-01

    Complex interventional radiology (IR) procedures contribute an increasing percentage of the overall medical radiation exposure of the population making accurate dosimetry a challenge. Magnetic resonance (MR) based polymer gel dosimetry has been widely employed in complex dosimetric problems in radiotherapy. The aim of this note is to investigate the feasibility of normoxic gel dosimetry in IR. Dose response, energy dependence and dose rate dependence were investigated in irradiation set-ups relevant to IR for a particular normoxic gel, based on methacrylic acid (MAA) as the monomer and including tetrakis-hydroxy-methyl-phosphonium chloride (THPC) as antioxidant. The gel presents a linear dose response beyond a 25 cGy threshold. No significant energy dependence was observed in the useful range of interventional radiology (80-110 kVp). A linear correlation between the gel response and dose rate was observed in the range of dose rates relevant to IR (5-8 cGy min-1). These results demonstrate a reduction of gel sensitivity at very low dose rate levels. A possible explanation of this effect is suggested.

  4. Exploring the Brighter-fatter Effect with the Hyper Suprime-Cam

    NASA Astrophysics Data System (ADS)

    Coulton, William R.; Armstrong, Robert; Smith, Kendrick M.; Lupton, Robert H.; Spergel, David N.

    2018-06-01

    The brighter-fatter effect has been postulated to arise due to the build up of a transverse electric field, produced as photocharges accumulate in the pixels’ potential wells. We investigate the brighter-fatter effect in the Hyper Suprime-Cam by examining flat fields and moments of stars. We observe deviations from the expected linear relation in the photon transfer curve (PTC), luminosity-dependent correlations between pixels in flat-field images, and a luminosity-dependent point-spread function (PSF) in stellar observations. Under the key assumptions of translation invariance and Maxwell’s equations in the quasi-static limit, we give a first-principles proof that the effect can be parameterized by a translationally invariant scalar kernel. We describe how this kernel can be estimated from flat fields and discuss how this kernel has been used to remove the brighter-fatter distortions in Hyper Suprime-Cam images. We find that our correction restores the expected linear relation in the PTCs and significantly reduces, but does not completely remove, the luminosity dependence of the PSF over a wide range of magnitudes.

  5. Rubber contact mechanics: adhesion, friction and leakage of seals.

    PubMed

    Tiwari, A; Dorogin, L; Tahir, M; Stöckelhuber, K W; Heinrich, G; Espallargas, N; Persson, B N J

    2017-12-13

    We study the adhesion, friction and leak rate of seals for four different elastomers: Acrylonitrile Butadiene Rubber (NBR), Ethylene Propylene Diene (EPDM), Polyepichlorohydrin (GECO) and Polydimethylsiloxane (PDMS). Adhesion between smooth clean glass balls and all the elastomers is studied both in the dry state and in water. In water, adhesion is observed for the NBR and PDMS elastomers, but not for the EPDM and GECO elastomers, which we attribute to the differences in surface energy and dewetting. The leakage of water is studied with rubber square-ring seals squeezed against sandblasted glass surfaces. Here we observe a strongly non-linear dependence of the leak rate on the water pressure ΔP for the elastomers exhibiting adhesion in water, while the leak rate depends nearly linearly on ΔP for the other elastomers. We attribute the non-linearity to some adhesion-related phenomena, such as dewetting or the (time-dependent) formation of gas bubbles, which blocks fluid flow channels. Finally, rubber friction is studied at low sliding speeds using smooth glass and sandblasted glass as substrates, both in the dry state and in water. The measured friction coefficients are compared to theory, and the origin of the frictional shear stress acting in the area of real contact is discussed. The NBR rubber, which exhibits the strongest adhesion both in the dry state and in water, also shows the highest friction both in the dry state and in water.

  6. Dimensional Reduction for the General Markov Model on Phylogenetic Trees.

    PubMed

    Sumner, Jeremy G

    2017-03-01

    We present a method of dimensional reduction for the general Markov model of sequence evolution on a phylogenetic tree. We show that taking certain linear combinations of the associated random variables (site pattern counts) reduces the dimensionality of the model from exponential in the number of extant taxa, to quadratic in the number of taxa, while retaining the ability to statistically identify phylogenetic divergence events. A key feature is the identification of an invariant subspace which depends only bilinearly on the model parameters, in contrast to the usual multi-linear dependence in the full space. We discuss potential applications including the computation of split (edge) weights on phylogenetic trees from observed sequence data.

  7. Growth and nonlinear response of driven water bells

    NASA Astrophysics Data System (ADS)

    Kolinski, John M.; Aharoni, Hillel; Fineberg, Jay; Sharon, Eran

    2017-04-01

    A water bell forms when a fluid jet impacts upon a target and separates into a two-dimensional sheet. Depending on the angle of separation from the target, the sheet can curve into a variety of different geometries. We show analytically that harmonic perturbations of water bells have linear wave solutions with geometry-dependent growth. We test the predictions of this model experimentally with a custom target system, and observe growth in agreement with the model below a critical forcing amplitude. Once the critical forcing amplitude is exceeded, a nonlinear transcritical bifurcation occurs; the response amplitude increases linearly with increasing forcing amplitude, albeit with a fundamentally different spatial form, and distinct nodes appear in the amplitude envelope.

  8. Estimating integrated variance in the presence of microstructure noise using linear regression

    NASA Astrophysics Data System (ADS)

    Holý, Vladimír

    2017-07-01

    Using financial high-frequency data for estimation of integrated variance of asset prices is beneficial but with increasing number of observations so-called microstructure noise occurs. This noise can significantly bias the realized variance estimator. We propose a method for estimation of the integrated variance robust to microstructure noise as well as for testing the presence of the noise. Our method utilizes linear regression in which realized variances estimated from different data subsamples act as dependent variable while the number of observations act as explanatory variable. We compare proposed estimator with other methods on simulated data for several microstructure noise structures.

  9. Is the time-dependent behaviour of the aortic valve intrinsically quasi-linear?

    NASA Astrophysics Data System (ADS)

    Anssari-Benam, Afshin

    2014-05-01

    The widely popular quasi-linear viscoelasticity (QLV) theory has been employed extensively in the literature for characterising the time-dependent behaviour of many biological tissues, including the aortic valve (AV). However, in contrast to other tissues, application of QLV to AV data has been met with varying success, with studies reporting discrepancies in the values of the associated quantified parameters for data collected from different timescales in experiments. Furthermore, some studies investigating the stress-relaxation phenomenon in valvular tissues have suggested discrete relaxation spectra, as an alternative to the continuous spectrum proposed by the QLV. These indications put forward a more fundamental question: Is the time-dependent behaviour of the aortic valve intrinsically quasi-linear? In other words, can the inherent characteristics of the tissue that govern its biomechanical behaviour facilitate a quasi-linear time-dependent behaviour? This paper attempts to address these questions by presenting a mathematical analysis to derive the expressions for the stress-relaxation G( t) and creep J( t) functions for the AV tissue within the QLV theory. The principal inherent characteristic of the tissue is incorporated into the QLV formulation in the form of the well-established gradual fibre recruitment model, and the corresponding expressions for G( t) and J( t) are derived. The outcomes indicate that the resulting stress-relaxation and creep functions do not appear to voluntarily follow the observed experimental trends reported in previous studies. These results highlight that the time-dependent behaviour of the AV may not be quasi-linear, and more suitable theoretical criteria and models may be required to explain the phenomenon based on tissue's microstructure, and for more accurate estimation of the associated material parameters. In general, these results may further be applicable to other planar soft tissues of the same class, i.e. with the same representation for fibre recruitment mechanism and discrete time-dependent spectra.

  10. Nanoscale Trapping and Squeeze-Out of Confined Alkane Monolayers.

    PubMed

    Gosvami, N N; O'Shea, S J

    2015-12-01

    We present combined force curve and conduction atomic force microscopy (AFM) data for the linear alkanes CnH2n+2 (n = 10, 12, 14, 16) confined between a gold-coated AFM tip and a graphite surface. Solvation layering is observed in the force curves for all liquids, and conduction AFM is used to study in detail the removal of the confined (mono)layer closest to the graphite surface. The squeeze-out behavior of the monolayer can be very different depending upon the temperature. Below the monolayer melting transition temperatures the molecules are in an ordered state on the graphite surface, and fast and complete removal of the confined molecules is observed. However, above the melting transition temperature the molecules are in a disordered state, and even at large applied pressure a few liquid molecules are trapped within the tip-sample contact zone. These findings are similar to a previous study for branched alkanes [ Gosvami Phys. Rev. Lett. 2008, 100, 076101 ], but the observation for the linear alkane homologue series demonstrates clearly the dependence of the squeeze-out and trapping on the state of the confined material.

  11. How to Test the SME with Space Missions?

    NASA Technical Reports Server (NTRS)

    Hees, A.; Lamine, B.; Le Poncin-Lafitte, C.; Wolf, P.

    2013-01-01

    In this communication, we focus on possibilities to constrain SME coefficients using Cassini and Messenger data. We present simulations of radio science observables within the framework of the SME, identify the linear combinations of SME coefficients the observations depend on and determine the sensitivity of these measurements to the SME coefficients. We show that these datasets are very powerful for constraining SME coefficients.

  12. Unambiguous discrimination between linearly dependent equidistant states with multiple copies

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hai; Ren, Gang

    2018-07-01

    Linearly independent quantum states can be unambiguously discriminated, but linearly dependent ones cannot. For linearly dependent quantum states, however, if C copies of the single states are available, then they may form linearly independent states, and can be unambiguously discriminated. We consider unambiguous discrimination among N = D + 1 linearly dependent states given that C copies are available and that the single copies span a D-dimensional space with equal inner products. The maximum unambiguous discrimination probability is derived for all C with equal a priori probabilities. For this classification of the linearly dependent equidistant states, our result shows that if C is even then adding a further copy fails to increase the maximum discrimination probability.

  13. Modeling of non-ideal hard permanent magnets with an affine-linear model, illustrated for a bar and a horseshoe magnet

    NASA Astrophysics Data System (ADS)

    Glane, Sebastian; Reich, Felix A.; Müller, Wolfgang H.

    2017-11-01

    This study is dedicated to continuum-scale material modeling of isotropic permanent magnets. An affine-linear extension to the commonly used ideal hard model for permanent magnets is proposed, motivated, and detailed. In order to demonstrate the differences between these models, bar and horseshoe magnets are considered. The structure of the boundary value problem for the magnetic field and related solution techniques are discussed. For the ideal model, closed-form analytical solutions were obtained for both geometries. Magnetic fields of the boundary value problems for both models and differently shaped magnets were computed numerically by using the boundary element method. The results show that the character of the magnetic field is strongly influenced by the model that is used. Furthermore, it can be observed that the shape of an affine-linear magnet influences the near-field significantly. Qualitative comparisons with experiments suggest that both the ideal and the affine-linear models are relevant in practice, depending on the magnetic material employed. Mathematically speaking, the ideal magnetic model is a special case of the affine-linear one. Therefore, in applications where knowledge of the near-field is important, the affine-linear model can yield more accurate results—depending on the magnetic material.

  14. Regression analysis of sparse asynchronous longitudinal data.

    PubMed

    Cao, Hongyuan; Zeng, Donglin; Fine, Jason P

    2015-09-01

    We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus.

  15. Linear response theory for annealing of radiation damage in semiconductor devices

    NASA Technical Reports Server (NTRS)

    Litovchenko, Vitaly

    1988-01-01

    A theoretical study of the radiation/annealing response of MOS ICs is described. Although many experiments have been performed in this field, no comprehensive theory dealing with radiation/annealing response has been proposed. Many attempts have been made to apply linear response theory, but no theoretical foundation has been presented. The linear response theory outlined here is capable of describing a broad area of radiation/annealing response phenomena in MOS ICs, in particular, both simultaneous irradiation and annealing, as well as short- and long-term annealing, including the case when annealing is nearing completion. For the first time, a simple procedure is devised to determine the response function from experimental radiation/annealing data. In addition, this procedure enables us to study the effect of variable temperature and dose rate, effects which are of interest in spaceflight. In the past, the shift in threshold potential due to radiation/annealing has usually been assumed to depend on one variable: the time lapse between an impulse dose and the time of observation. While such a suggestion of uniformity in time is certainly true for a broad range of radiation annealing phenomena, it may not hold for some ranges of the variables of interest (temperature, dose rate, etc.). A response function is projected which is dependent on two variables: the time of observation and the time of the impulse dose. This dependence on two variables allows us to extend the theory to the treatment of a variable dose rate. Finally, the linear theory is generalized to the case in which the response is nonlinear with impulse dose, but is proportional to some impulse function of dose. A method to determine both the impulse and response functions is presented.

  16. Chain-Length-Dependent Exciton Dynamics in Linear Oligothiophenes Probed Using Ensemble and Single-Molecule Spectroscopy.

    PubMed

    Kim, Tae-Woo; Kim, Woojae; Park, Kyu Hyung; Kim, Pyosang; Cho, Jae-Won; Shimizu, Hideyuki; Iyoda, Masahiko; Kim, Dongho

    2016-02-04

    Exciton dynamics in π-conjugated molecular systems is highly susceptible to conformational disorder. Using time-resolved and single-molecule spectroscopic techniques, the effect of chain length on the exciton dynamics in a series of linear oligothiophenes, for which the conformational disorder increased with increasing chain length, was investigated. As a result, extraordinary features of the exciton dynamics in longer-chain oligothiophene were revealed. Ultrafast fluorescence depolarization processes were observed due to exciton self-trapping in longer and bent chains. Increase in exciton delocalization during dynamic planarization processes was also observed in the linear oligothiophenes via time-resolved fluorescence spectra but was restricted in L-10T because of its considerable conformational disorder. Exciton delocalization was also unexpectedly observed in a bent chain using single-molecule fluorescence spectroscopy. Such delocalization modulates the fluorescence spectral shape by attenuating the 0-0 peak intensity. Collectively, these results provide significant insights into the exciton dynamics in conjugated polymers.

  17. Interfacial and topological effects on the glass transition in free-standing polystyrene films

    NASA Astrophysics Data System (ADS)

    Lyulin, Alexey V.; Balabaev, Nikolay K.; Baljon, Arlette R. C.; Mendoza, Gerardo; Frank, Curtis W.; Yoon, Do Y.

    2017-05-01

    United-atom molecular-dynamics computer simulations of atactic polystyrene (PS) were performed for the bulk and free-standing films of 2 nm-20 nm thickness, for both linear and cyclic polymers comprised of 80 monomers. Simulated volumetric glass-transition temperatures (Tg) show a strong dependence on the film thickness below 10 nm. The glass-transition temperature of linear PS is 13% lower than that of the bulk for 2.5 nm-thick films, as compared to less than 1% lower for 20 nm films. Our studies reveal that the fraction of the chain-end groups is larger in the interfacial layer with its outermost region approximately 1 nm below the surface than it is in the bulk. The enhanced population of the end groups is expected to result in a more mobile interfacial layer and the consequent dependence of Tg on the film thickness. In addition, the simulations show an enrichment of backbone aliphatic carbons and concomitant deficit of phenyl aromatic carbons in the interfacial film layer. This deficit would weaken the strong phenyl-phenyl aromatic (π -π ) interactions and, hence, lead to a lower film-averaged Tg in thin films, as compared to the bulk sample. To investigate the relative importance of the two possible mechanisms (increased chain ends at the surface or weakened π -π interactions in the interfacial region), the data for linear PS are compared with those for cyclic PS. For the cyclic PS, the reduction of the glass-transition temperature is also significant in thin films, albeit not as much as for linear PS. Moreover, the deficit of phenyl carbons in the film interface is comparable to that observed for linear PS. Therefore, chain-end effects alone cannot explain the observed pronounced Tg dependence on the thickness of thin PS films; the weakened phenyl-phenyl interactions in the interfacial region seems to be an important cause as well.

  18. Application of X-Ray Computer Tomography for Observing the Central Void Formations and the Fuel Pin Deformations of Irradiated FBR Fuel Assemblies

    NASA Astrophysics Data System (ADS)

    Katsuyama, Kozo; Nagamine, Tsuyoshi; Furuya, Hirotaka

    2010-10-01

    In order to observe the structural change in the interior of irradiated fuel assemblies, a non-destructive post-irradiation examination (PIE) technique using X-ray computer tomography (X-ray CT) was developed. This X-ray CT technique was applied to observe the central void formations and fuel pin deformations of fuel assemblies which had been irradiated at high linear heat rating. The central void sizes in all fuel pins were measured on five cross sections of the core fuel column as a parameter for evaluating fuel thermal performance. In addition, the fuel pin deformations were analyzed from X-ray CT images obtained along the axial direction of a fuel assembly at the same separation interval. A dependence of void size on the linear heat rating was seen in the fuel assembly irradiated at high linear heat rating. In addition, significant undulations of the fuel pin were observed along the axial direction, coinciding with the wrapping wire pitch in the core fuel column. Application of the developed technique should provide enhanced resolution of measurements and simplify fuel PIEs.

  19. Non-Linear Dependence of the Height of a Chain Fountain on Drop Height

    ERIC Educational Resources Information Center

    Andrew, Y.; Kearns, F.; Mustafa, T.; Salih, R.; Ioratim-Uba, A.; Udall, I.; Usama, M.

    2015-01-01

    If the end of a long chain, which is contained in an elevated beaker, is dropped over the edge of the beaker and falls, it is observed that as the speed of the chain increases the chain rises to form a loop well above the top of the beaker. The name "chain fountain" has been applied to this phenomenon. In this study the dependence of the…

  20. Microstructural dependence on relevant physical-mechanical properties on SiO2-Na2O-CaO-P2O5 biological glasses.

    PubMed

    Rajendran, V; Begum, A Nishara; Azooz, M A; el Batal, F H

    2002-11-01

    Bioactive glasses of the system SiO2-Na2O-CaO-P2O5 have been prepared by the normal melting and annealing technique. The elastic moduli, attenuation, Vickers hardness, fracture toughness and fracture surface energy have been obtained using the known method at room temperature. The temperature dependence of elastic moduli and attenuation measurements have been extended over a wide range of temperature from 150 to 500 K. The SiO2 content dependence of velocities, attenuation, elastic moduli, and other parameters show an interesting observation at 45 wt% of SiO2 by exhibiting an anomalous behaviour. A linear relation is developed for Tg, which explores the influence of Na2O on SiO2-Na2O-CaO-P2O5 bioactive glasses. The measured hardness, fracture toughness and fracture surface energy show a linear relation with Young's modulus. It is also interesting to note that the observed results are functions of polymerisation and the number of non-bridging oxygens (NBO) prevailing in the network with change in SiO2 content. The temperature dependence of velocities, attenuation and elastic moduli show the existence of softening in the glass network structure as temperature increases.

  1. A test of Lee's quasi-linear theory of ion acceleration by interplanetary traveling shocks

    NASA Technical Reports Server (NTRS)

    Kennel, C. F.; Coroniti, F. V.; Scarf, F. L.; Livesey, W. A.; Russell, C. T.; Smith, E. J.

    1986-01-01

    Lee's (1983) quasi-linear theory of ion acceleration is tested using ISEE-3 measurements of the November 12, 1978 quasi-parallel interplanetary shock. His theory accounts with varying degrees of precision for the energetic proton spatial profiles; the dependence of the spectral index of the power law proton velocity distribution upon the shock compression ratio; the power law dependence of the upstream proton scalelength upon energy; the absolute magnitude of the upstream proton scale length; the behavior of the energetic proton anisotropy upstream and downstream of the shock; the behavior of the alpha-particle proton ratio upstream; the equality of the spatial scale lengths at the shock of the upstream waves and of the protons that resonate with them; and the dependence of the integrated wave energy density upon the proton energy density at the shock. However, the trace magnetic field frequency spectra disagree with his theory in two ways. The part of the spectrum that can resonate with the observed protons via first-order cyclotron resonance is flat, whereas Lee's theory predicts an f exp - 7/4 frequency dependence for the November 12 shock. Higher frequency waves, which could not resonate with the observed upstream protons, increased in amplitude as the shock approached, suggesting that they too were generated by the shock.

  2. A phenomenological biological dose model for proton therapy based on linear energy transfer spectra.

    PubMed

    Rørvik, Eivind; Thörnqvist, Sara; Stokkevåg, Camilla H; Dahle, Tordis J; Fjaera, Lars Fredrik; Ytre-Hauge, Kristian S

    2017-06-01

    The relative biological effectiveness (RBE) of protons varies with the radiation quality, quantified by the linear energy transfer (LET). Most phenomenological models employ a linear dependency of the dose-averaged LET (LET d ) to calculate the biological dose. However, several experiments have indicated a possible non-linear trend. Our aim was to investigate if biological dose models including non-linear LET dependencies should be considered, by introducing a LET spectrum based dose model. The RBE-LET relationship was investigated by fitting of polynomials from 1st to 5th degree to a database of 85 data points from aerobic in vitro experiments. We included both unweighted and weighted regression, the latter taking into account experimental uncertainties. Statistical testing was performed to decide whether higher degree polynomials provided better fits to the data as compared to lower degrees. The newly developed models were compared to three published LET d based models for a simulated spread out Bragg peak (SOBP) scenario. The statistical analysis of the weighted regression analysis favored a non-linear RBE-LET relationship, with the quartic polynomial found to best represent the experimental data (P = 0.010). The results of the unweighted regression analysis were on the borderline of statistical significance for non-linear functions (P = 0.053), and with the current database a linear dependency could not be rejected. For the SOBP scenario, the weighted non-linear model estimated a similar mean RBE value (1.14) compared to the three established models (1.13-1.17). The unweighted model calculated a considerably higher RBE value (1.22). The analysis indicated that non-linear models could give a better representation of the RBE-LET relationship. However, this is not decisive, as inclusion of the experimental uncertainties in the regression analysis had a significant impact on the determination and ranking of the models. As differences between the models were observed for the SOBP scenario, both non-linear LET spectrum- and linear LET d based models should be further evaluated in clinically realistic scenarios. © 2017 American Association of Physicists in Medicine.

  3. A Linear Model of Phase-Dependent Power Correlations in Neuronal Oscillations

    PubMed Central

    Eriksson, David; Vicente, Raul; Schmidt, Kerstin

    2011-01-01

    Recently, it has been suggested that effective interactions between two neuronal populations are supported by the phase difference between the oscillations in these two populations, a hypothesis referred to as “communication through coherence” (CTC). Experimental work quantified effective interactions by means of the power correlations between the two populations, where power was calculated on the local field potential and/or multi-unit activity. Here, we present a linear model of interacting oscillators that accounts for the phase dependency of the power correlation between the two populations and that can be used as a reference for detecting non-linearities such as gain control. In the experimental analysis, trials were sorted according to the coupled phase difference of the oscillators while the putative interaction between oscillations was taking place. Taking advantage of the modeling, we further studied the dependency of the power correlation on the uncoupled phase difference, connection strength, and topology. Since the uncoupled phase difference, i.e., the phase relation before the effective interaction, is the causal variable in the CTC hypothesis we also describe how power correlations depend on that variable. For uni-directional connectivity we observe that the width of the uncoupled phase dependency is broader than for the coupled phase. Furthermore, the analytical results show that the characteristics of the phase dependency change when a bidirectional connection is assumed. The width of the phase dependency indicates which oscillation frequencies are optimal for a given connection delay distribution. We propose that a certain width enables a stimulus-contrast dependent extent of effective long-range lateral connections. PMID:21808618

  4. Modelling of Dictyostelium discoideum movement in a linear gradient of chemoattractant.

    PubMed

    Eidi, Zahra; Mohammad-Rafiee, Farshid; Khorrami, Mohammad; Gholami, Azam

    2017-11-15

    Chemotaxis is a ubiquitous biological phenomenon in which cells detect a spatial gradient of chemoattractant, and then move towards the source. Here we present a position-dependent advection-diffusion model that quantitatively describes the statistical features of the chemotactic motion of the social amoeba Dictyostelium discoideum in a linear gradient of cAMP (cyclic adenosine monophosphate). We fit the model to experimental trajectories that are recorded in a microfluidic setup with stationary cAMP gradients and extract the diffusion and drift coefficients in the gradient direction. Our analysis shows that for the majority of gradients, both coefficients decrease over time and become negative as the cells crawl up the gradient. The extracted model parameters also show that besides the expected drift in the direction of the chemoattractant gradient, we observe a nonlinear dependency of the corresponding variance on time, which can be explained by the model. Furthermore, the results of the model show that the non-linear term in the mean squared displacement of the cell trajectories can dominate the linear term on large time scales.

  5. Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Young-Gonzales, Amanda R.; Samanta, Subarna; Richert, Ranko

    2015-09-01

    For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility.

  6. Alteration in non-classicality of light on passing through a linear polarization beam splitter

    NASA Astrophysics Data System (ADS)

    Shukla, Namrata; Prakash, Ranjana

    2016-06-01

    We observe the polarization squeezing in the mixture of a two mode squeezed vacuum and a simple coherent light through a linear polarization beam splitter. Squeezed vacuum not being squeezed in polarization, generates polarization squeezed light when superposed with coherent light. All the three Stokes parameters of the light produced on the output port of polarization beam splitter are found to be squeezed and squeezing factor also depends upon the parameters of coherent light.

  7. A charged particle in a homogeneous magnetic field accelerated by a time-periodic Aharonov-Bohm flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalvoda, T.; Stovicek, P., E-mail: stovicek@kmlinux.fjfi.cvut.cz

    2011-10-15

    We consider a nonrelativistic quantum charged particle moving on a plane under the influence of a uniform magnetic field and driven by a periodically time-dependent Aharonov-Bohm flux. We observe an acceleration effect in the case when the Aharonov-Bohm flux depends on time as a sinusoidal function whose frequency is in resonance with the cyclotron frequency. In particular, the energy of the particle increases linearly for large times. An explicit formula for the acceleration rate is derived with the aid of the quantum averaging method, and then it is checked against a numerical solution and a very good agreement is found.more » - Highlights: > A nonrelativistic quantum charged particle on a plane. > A homogeneous magnetic field and a periodically time-dependent Aharonov-Bohm flux. > The quantum averaging method applied to a time-dependent system. > A resonance of the AB flux with the cyclotron frequency. > An acceleration with linearly increasing energy; a formula for the acceleration rate.« less

  8. Skewness in large-scale structure and non-Gaussian initial conditions

    NASA Technical Reports Server (NTRS)

    Fry, J. N.; Scherrer, Robert J.

    1994-01-01

    We compute the skewness of the galaxy distribution arising from the nonlinear evolution of arbitrary non-Gaussian intial conditions to second order in perturbation theory including the effects of nonlinear biasing. The result contains a term identical to that for a Gaussian initial distribution plus terms which depend on the skewness and kurtosis of the initial conditions. The results are model dependent; we present calculations for several toy models. At late times, the leading contribution from the initial skewness decays away relative to the other terms and becomes increasingly unimportant, but the contribution from initial kurtosis, previously overlooked, has the same time dependence as the Gaussian terms. Observations of a linear dependence of the normalized skewness on the rms density fluctuation therefore do not necessarily rule out initially non-Gaussian models. We also show that with non-Gaussian initial conditions the first correction to linear theory for the mean square density fluctuation is larger than for Gaussian models.

  9. A variational data assimilation system for the range dependent acoustic model using the representer method: Theoretical derivations.

    PubMed

    Ngodock, Hans; Carrier, Matthew; Fabre, Josette; Zingarelli, Robert; Souopgui, Innocent

    2017-07-01

    This study presents the theoretical framework for variational data assimilation of acoustic pressure observations into an acoustic propagation model, namely, the range dependent acoustic model (RAM). RAM uses the split-step Padé algorithm to solve the parabolic equation. The assimilation consists of minimizing a weighted least squares cost function that includes discrepancies between the model solution and the observations. The minimization process, which uses the principle of variations, requires the derivation of the tangent linear and adjoint models of the RAM. The mathematical derivations are presented here, and, for the sake of brevity, a companion study presents the numerical implementation and results from the assimilation simulated acoustic pressure observations.

  10. Concentration-dependent changes in apparent diffusion coefficients as indicator for colloidal stability of protein solutions.

    PubMed

    Bauer, Katharina Christin; Göbel, Mathias; Schwab, Marie-Luise; Schermeyer, Marie-Therese; Hubbuch, Jürgen

    2016-09-10

    The colloidal stability of a protein solution during downstream processing, formulation, and storage is a key issue for the biopharmaceutical production process. Thus, knowledge about colloidal solution characteristics, such as the tendency to form aggregates or high viscosity, at various processing conditions is of interest. This work correlates changes in the apparent diffusion coefficient as a parameter of protein interactions with observed protein aggregation and dynamic viscosity of the respective protein samples. For this purpose, the diffusion coefficient, the protein phase behavior, and the dynamic viscosity in various systems containing the model proteins α-lactalbumin, lysozyme, and glucose oxidase were studied. Each of these experiments revealed a wide range of variations in protein interactions depending on protein type, protein concentration, pH, and the NaCl concentration. All these variations showed to be mirrored by changes in the apparent diffusion coefficient in the respective samples. Whereas stable samples with relatively low viscosity showed an almost linear dependence, the deviation from the concentration-dependent linearity indicated both an increase in the sample viscosity and probability of protein aggregation. This deviation of the apparent diffusion coefficient from concentration-dependent linearity was independent of protein type and solution properties for this study. Thus, this single parameter shows the potential to act as a prognostic tool for colloidal stability of protein solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  12. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    DOE PAGES

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    2017-12-10

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. This is the first attempt to perform fully non-linear numerical simulations of anomalous hydrodynamics. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (vmore » $$±\\atop{2}$$) as a function of the net charge asymmetry A ±, we find that the linear dependence of Δv$$±\\atop{2}$$ ≡ v$$-\\atop{2}$$ - v$$+\\atop{2}$$ on the net charge asymmetry A ± cannot be regarded as a robust signal of anomalous transports, contrary to previous studies. We, however, find that the intercept Δv$$±\\atop{2}$$ (A ± = 0) is sensitive to anomalous transport effects.« less

  13. Time-dependent combinatory effects of active mechanical loading and passive topographical cues on cell orientation.

    PubMed

    Wang, Qian; Huang, Hanyang; Wei, Kang; Zhao, Yi

    2016-10-01

    Mechanical stretching and topographical cues are both effective mechanical stimulations for regulating cell morphology, orientation, and behaviors. The competition of these two mechanical stimulations remains largely underexplored. Previous studies have suggested that a small cyclic mechanical strain is not able to reorient cells that have been pre-aligned by relatively large linear microstructures, but can reorient those pre-aligned by small linear micro/nanostructures if the characteristic dimension of these structures is below a certain threshold. Likewise, for micro/nanostructures with a given characteristic dimension, the strain must exceed a certain magnitude to overrule the topographic cues. There are however no in-depth investigations of such "thresholds" due to the lack of close examination of dynamic cell orientation during and shortly after the mechanical loading. In this study, the time-dependent combinatory effects of active and passive mechanical stimulations on cell orientation are investigated by developing a micromechanical stimulator. The results show that the cells pre-aligned by linear micro/nanostructures can be altered by cyclic in-plane strain, regardless of the structure size. During the loading, the micro/nanostructures can resist the reorientation effects by cyclic in-plane strain while the resistive capability (measured by the mean orientation angle change and the reorientation speed) increases with the increasing characteristic dimension. The micro/nanostructures also can recover the cell orientation after the cessation of cyclic in-plane strain, while the recovering capability increases with the characteristic dimension. The previously observed thresholds are largely dependent on the observation time points. In order to accurately evaluate the combinatory effects of the two mechanical stimulations, observations during the active loading with a short time interval or endpoint observations shortly after the loading are preferred. This study provides a microengineering solution to investigate the time-dependent combinatory effects of the active and passive mechanical stimulations and is expected to enhance our understanding of cell responses to complex mechanical environments. Biotechnol. Bioeng. 2016;113: 2191-2201. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  14. Towards time-dependent current-density-functional theory in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Escartín, J. M.; Vincendon, M.; Romaniello, P.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.

    2015-02-01

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  15. Towards time-dependent current-density-functional theory in the non-linear regime.

    PubMed

    Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  16. Self-consistent description of a system of interacting phonons

    NASA Astrophysics Data System (ADS)

    Poluektov, Yu. M.

    2015-11-01

    A proposal for a method of self-consistent description of phonon systems. This method generalizes the Debye model to account for phonon-phonon interaction. The idea of "self-consistent" phonons is introduced; their speed depends on the temperature and is determined by solving a non-linear equation. The Debye energy is also a function of the temperature within the framework of the proposed approach. The thermodynamics of "self-consistent" phonon gas are built. It is shown that at low temperatures the cubic law temperature dependence of specific heat acquires an additional term that is proportional to the seventh power of the temperature. This seems to explain the reason why the cubic law for specific heat is observed only at relatively low temperatures. At high temperatures, the theory predicts a linear deviation with respect to temperature from the Dulong-Petit law, which is observed experimentally. A modification to the melting criteria is considered, to account for the phonon-phonon interaction.

  17. Chloride and salicylate influence prestin-dependent specific membrane capacitance: support for the area motor model.

    PubMed

    Santos-Sacchi, Joseph; Song, Lei

    2014-04-11

    The outer hair cell is electromotile, its membrane motor identified as the protein SLC26a5 (prestin). An area motor model, based on two-state Boltzmann statistics, was developed about two decades ago and derives from the observation that outer hair cell surface area is voltage-dependent. Indeed, aside from the nonlinear capacitance imparted by the voltage sensor charge movement of prestin, linear capacitance (Clin) also displays voltage dependence as motors move between expanded and compact states. Naturally, motor surface area changes alter membrane capacitance. Unit linear motor capacitance fluctuation (δCsa) is on the order of 140 zeptofarads. A recent three-state model of prestin provides an alternative view, suggesting that voltage-dependent linear capacitance changes are not real but only apparent because the two component Boltzmann functions shift their midpoint voltages (Vh) in opposite directions during treatment with salicylate, a known competitor of required chloride binding. We show here using manipulations of nonlinear capacitance with both salicylate and chloride that an enhanced area motor model, including augmented δCsa by salicylate, can accurately account for our novel findings. We also show that although the three-state model implicitly avoids measuring voltage-dependent motor capacitance, it registers δCsa effects as a byproduct of its assessment of Clin, which increases during salicylate treatment as motors are locked in the expanded state. The area motor model, in contrast, captures the characteristics of the voltage dependence of δCsa, leading to a better understanding of prestin.

  18. Azimuthal-angle dependence of L x-ray intensity following photoionization of Pb, Au, and W atoms by a linearly polarized photon

    NASA Astrophysics Data System (ADS)

    Namito, Y.; Ban, S.; Hirayama, H.

    2008-09-01

    We measured the L x-ray intensities of Pb, Au, and W for several different azimuthal angles and partially polarized photon beams by using high-purity low-energy Ge detectors. We utilized a monochromatized synchrotron beam as the source. It had an energy of 10.88 40keV , and its degree of linear polarization P ranged from 0.84 to 0.89. The scattering polar angle (θ) was 90°, and the azimuthal angle (ϕ1) was 0° or 90°, relative to the polarization direction. We obtained the x-ray intensity ratio R[=I(ϕ1=0°)/I(ϕ1=90°)] . We observed that the Ll intensities depended on the azimuthal scattering angle ϕ1 , i.e., R=0.92 0.94 , 0.91 0.94, and 0.90 0.93 for Pb, Au, and W, respectively. On the other hand, the dependence of Lα on the azimuthal scattering angle was not clear due to experimental uncertainty. The anisotropy of Lγ was not observed. These results agreed with the theoretical calculations based on Scofield’s theory.

  19. Pressure induced ageing of polymers

    NASA Technical Reports Server (NTRS)

    Emri, I.; Knauss, W. G.

    1988-01-01

    The nonlinearly viscoelastic response of an amorphous homopolymer is considered under aspects of time dependent free volume behavior. In contrast to linearly viscoelastic solids, this model couples shear and volume deformation through a shift function which influences the rate of molecular relaxation or creep. Sample computations produce all those qualitative features one observes normally in uniaxial tension including the rate dependent formation of a yield point as a consequence of the history of an imposed pressure.

  20. Ultraviolet interstellar linear polarization. I - Applicability of current dust grain models

    NASA Technical Reports Server (NTRS)

    Wolff, Michael J.; Clayton, Geoffrey C.; Meade, Marilyn R.

    1993-01-01

    UV spectropolarimetric observations yielding data on the wavelength-dependence of interstellar polarization along eight lines of sight facilitate the evaluation of dust grain models previously used to fit the extinction and polarization in the visible and IR. These models pertain to bare silicate/graphite grains, silicate cores with organic refractory mantles, silicate cores with amorphous carbon mantles, and composite grains. The eight lines-of-sight show three different interstellar polarization dependences.

  1. The adaptive observer. [liapunov synthesis, single-input single-output, and reduced observers

    NASA Technical Reports Server (NTRS)

    Carroll, R. L.

    1973-01-01

    The simple generation of state from available measurements, for use in systems for which the criteria defining the acceptable state behavior mandates a control that is dependent upon unavailable measurement is described as an adaptive means for determining the state of a linear time invariant differential system having unknown parameters. A single input output adaptive observer and the reduced adaptive observer is developed. The basic ideas for both the adaptive observer and the nonadaptive observer are examined. A survey of the Liapunov synthesis technique is taken, and the technique is applied to adaptive algorithm for the adaptive observer.

  2. Hobby-Eberly Telescope: commissioning experience and observing plans

    NASA Astrophysics Data System (ADS)

    Glaspey, John W.; Adams, M. T.; Booth, John A.; Cornell, Mark E.; Fowler, James R.; Krabbendam, Victor L.; Ramsey, Lawrence W.; Ray, Frank B.; Ricklefs, Randall L.; Spiesman, W. J.

    1998-07-01

    Experience in bringing into operation the 91-segment primary mirror alignment and control system, the focal plane tracker system, and other critical subsystems of the HET will be described. Particular attention is given to the tracker, which utilizes three linear and three rotational degrees of freedom to follow sidereal targets. Coarse time-dependent functions for each axis are downloaded to autonomous PMAC controllers that provide the precise motion drives to the two linear stages and the hexapod system. Experience gained in aligning the sperate mirrors and then maintaining image quality in a variable thermal environments will also be described. Because of the fixed elevation of the primary optical axis, only a limited amount of time is available for observing objects in the 12 degrees wide observing band. With a small core HET team working with McDonald Observatory staff, efficient, reliable, uncomplicated methodologies are required in all aspects of the observing operations.

  3. Unveiling Galaxy Bias via the Halo Model, KiDS and GAMA

    NASA Astrophysics Data System (ADS)

    Dvornik, Andrej; Hoekstra, Henk; Kuijken, Konrad; Schneider, Peter; Amon, Alexandra; Nakajima, Reiko; Viola, Massimo; Choi, Ami; Erben, Thomas; Farrow, Daniel J.; Heymans, Catherine; Hildebrandt, Hendrik; Sifón, Cristóbal; Wang, Lingyu

    2018-06-01

    We measure the projected galaxy clustering and galaxy-galaxy lensing signals using the Galaxy And Mass Assembly (GAMA) survey and Kilo-Degree Survey (KiDS) to study galaxy bias. We use the concept of non-linear and stochastic galaxy biasing in the framework of halo occupation statistics to constrain the parameters of the halo occupation statistics and to unveil the origin of galaxy biasing. The bias function Γgm(rp), where rp is the projected comoving separation, is evaluated using the analytical halo model from which the scale dependence of Γgm(rp), and the origin of the non-linearity and stochasticity in halo occupation models can be inferred. Our observations unveil the physical reason for the non-linearity and stochasticity, further explored using hydrodynamical simulations, with the stochasticity mostly originating from the non-Poissonian behaviour of satellite galaxies in the dark matter haloes and their spatial distribution, which does not follow the spatial distribution of dark matter in the halo. The observed non-linearity is mostly due to the presence of the central galaxies, as was noted from previous theoretical work on the same topic. We also see that overall, more massive galaxies reveal a stronger scale dependence, and out to a larger radius. Our results show that a wealth of information about galaxy bias is hidden in halo occupation models. These models should therefore be used to determine the influence of galaxy bias in cosmological studies.

  4. Fasting insulin levels and metabolic risk factors in type 2 diabetic patients at the first visit in Japan: a 10-year, nationwide, observational study (JDDM 28).

    PubMed

    Matsuba, Ikuro; Saito, Kazumi; Takai, Masahiko; Hirao, Koichi; Sone, Hirohito

    2012-09-01

    To investigate the relationship between fasting insulin levels and metabolic risk factors (MRFs) in type 2 diabetic patients at the first clinic/hospital visit in Japan over the years 2000 to 2009. In total, 4,798 drug-naive Japanese patients with type 2 diabetes were registered on their first clinic/hospital visits. Conventional clinical factors and fasting insulin levels were observed at baseline within the Japan Diabetes Clinical Data Management (JDDM) study between consecutive 2-year groups. Multiple linear regression analysis was performed using a model in which the dependent variable was fasting insulin values using various clinical explanatory variables. Fasting insulin levels were found to be decreasing from 2000 to 2009. Multiple linear regression analysis with the fasting insulin levels as the dependent variable showed that waist circumference (WC), BMI, mean blood pressure, triglycerides, and HDL cholesterol were significant, with WC and BMI as the main factors. ANCOVA after adjustment for age and fasting plasma glucose clearly shows the decreasing trend in fasting insulin levels and the increasing trend in BMI. During the 10-year observation period, the decreasing trend in fasting insulin was related to the slight increase in WC/BMI in type 2 diabetes. Low pancreatic β-cell reserve on top of a lifestyle background might be dependent on an increase in MRFs.

  5. Polarization and Thickness Dependent Absorption Properties of Black Phosphorus: New Saturable Absorber for Ultrafast Pulse Generation

    PubMed Central

    Li, Diao; Jussila, Henri; Karvonen, Lasse; Ye, Guojun; Lipsanen, Harri; Chen, Xianhui; Sun, Zhipei

    2015-01-01

    Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 μm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.). PMID:26514090

  6. Multi-Mode Estimation for Small Fixed Wing Unmanned Aerial Vehicle Localization Based on a Linear Matrix Inequality Approach

    PubMed Central

    Elzoghby, Mostafa; Li, Fu; Arafa, Ibrahim. I.; Arif, Usman

    2017-01-01

    Information fusion from multiple sensors ensures the accuracy and robustness of a navigation system, especially in the absence of global positioning system (GPS) data which gets degraded in many cases. A way to deal with multi-mode estimation for a small fixed wing unmanned aerial vehicle (UAV) localization framework is proposed, which depends on utilizing a Luenberger observer-based linear matrix inequality (LMI) approach. The proposed estimation technique relies on the interaction between multiple measurement modes and a continuous observer. The state estimation is performed in a switching environment between multiple active sensors to exploit the available information as much as possible, especially in GPS-denied environments. Luenberger observer-based projection is implemented as a continuous observer to optimize the estimation performance. The observer gain might be chosen by solving a Lyapunov equation by means of a LMI algorithm. Convergence is achieved by utilizing the linear matrix inequality (LMI), based on Lyapunov stability which keeps the dynamic estimation error bounded by selecting the observer gain matrix (L). Simulation results are presented for a small UAV fixed wing localization problem. The results obtained using the proposed approach are compared with a single mode Extended Kalman Filter (EKF). Simulation results are presented to demonstrate the viability of the proposed strategy. PMID:28420214

  7. Transport spectroscopy of low disorder silicon tunnel barriers with and without Sb implants

    DOE PAGES

    Shirkhorshidian, A.; Bishop, N. C.; Dominguez, J.; ...

    2015-04-30

    We present transport measurements of silicon MOS split gate structures with and without Sb implants. We observe classical point contact (PC) behavior that is free of any pronounced unintentional resonances at liquid He temperatures. The implanted device has resonances superposed on the PC transport indicative of transport through the Sb donors. We fit the differential conductance to a rectangular tunnel barrier model with a linear barrier height dependence on source–drain voltage and non-linear dependence on gate bias. Effects such as Fowler–Nordheim (FN) tunneling and image charge barrier lowering (ICBL) are considered. Barrier heights and widths are estimated for the entiremore » range of relevant biases. The barrier heights at the locations of some of the resonances for the implanted tunnel barrier are between 15–20 meV, which are consistent with transport through shallow partially hybridized Sb donors. The dependence of width and barrier height on gate voltage is found to be linear over a wide range of gate bias in the split gate geometry but deviates considerably when the barrier becomes large and is not described completely by standard 1D models such as FN or ICBL effects.« less

  8. Friction laws at the nanoscale.

    PubMed

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  9. Feedforward Inhibition Allows Input Summation to Vary in Recurrent Cortical Networks

    PubMed Central

    2018-01-01

    Abstract Brain computations depend on how neurons transform inputs to spike outputs. Here, to understand input-output transformations in cortical networks, we recorded spiking responses from visual cortex (V1) of awake mice of either sex while pairing sensory stimuli with optogenetic perturbation of excitatory and parvalbumin-positive inhibitory neurons. We found that V1 neurons’ average responses were primarily additive (linear). We used a recurrent cortical network model to determine whether these data, as well as past observations of nonlinearity, could be described by a common circuit architecture. Simulations showed that cortical input-output transformations can be changed from linear to sublinear with moderate (∼20%) strengthening of connections between inhibitory neurons, but this change away from linear scaling depends on the presence of feedforward inhibition. Simulating a variety of recurrent connection strengths showed that, compared with when input arrives only to excitatory neurons, networks produce a wider range of output spiking responses in the presence of feedforward inhibition. PMID:29682603

  10. A non-linear induced polarization effect on transient electromagnetic soundings

    NASA Astrophysics Data System (ADS)

    Hallbauer-Zadorozhnaya, Valeriya Yu.; Santarato, Giovanni; Abu Zeid, Nasser; Bignardi, Samuel

    2016-10-01

    In a TEM survey conducted for characterizing the subsurface for geothermal purposes, a strong induced polarization effect was recorded in all collected data. Surprisingly, anomalous decay curves were obtained in part of the sites, whose shape depended on the repetition frequency of the exciting square waveform, i.e. on current pulse length. The Cole-Cole model, besides being not directly related to physical parameters of rocks, was found inappropriate to model the observed distortion, due to induced polarization, because this model is linear, i.e. it cannot fit any dependence on current pulse. This phenomenon was investigated and explained as due to the presence of membrane polarization linked to constrictivity of (fresh) water-saturated pores. An algorithm for mathematical modeling of TEM data was then developed to fit this behavior. The case history is then discussed: 1D inversion, which accommodates non-linear effects, produced models that agree quite satisfactorily with resistivity and chargeability models obtained by an electrical resistivity tomography carried out for comparison.

  11. Above threshold spectral dependence of linewidth enhancement factor, optical duration and linear chirp of quantum dot lasers.

    PubMed

    Kim, Jimyung; Delfyett, Peter J

    2009-12-07

    The spectral dependence of the linewidth enhancement factor above threshold is experimentally observed from a quantum dot Fabry-Pérot semiconductor laser. The linewidth enhancement factor is found to be reduced when the quantum dot laser operates approximately 10 nm offset to either side of the gain peak. It becomes significantly reduced on the anti-Stokes side as compared to the Stokes side. It is also found that the temporal duration of the optical pulses generated from quantum dot mode-locked lasers is shorter when the laser operates away from the gain peak. In addition, less linear chirp is impressed on the pulse train generated from the anti-Stokes side whereas the pulses generated from the gain peak and Stokes side possess a large linear chirp. These experimental results imply that enhanced performance characteristics of quantum dot lasers can be achieved by operating on the anti-Stokes side, approximately 10 nm away from the gain peak.

  12. Symplectic evolution of Wigner functions in Markovian open systems.

    PubMed

    Brodier, O; Almeida, A M Ozorio de

    2004-01-01

    The Wigner function is known to evolve classically under the exclusive action of a quadratic Hamiltonian. If the system also interacts with the environment through Lindblad operators that are complex linear functions of position and momentum, then the general evolution is the convolution of a non-Hamiltonian classical propagation of the Wigner function with a phase space Gaussian that broadens in time. We analyze the consequences of this in the three generic cases of elliptic, hyperbolic, and parabolic Hamiltonians. The Wigner function always becomes positive in a definite time, which does not depend on the initial pure state. We observe the influence of classical dynamics and dissipation upon this threshold. We also derive an exact formula for the evolving linear entropy as the average of a narrowing Gaussian taken over a probability distribution that depends only on the initial state. This leads to a long time asymptotic formula for the growth of linear entropy. We finally discuss the possibility of recovering the initial state.

  13. Nonlinear Riccati equations as a unifying link between linear quantum mechanics and other fields of physics

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter

    2014-04-01

    Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.

  14. Geometry of the scalar sector

    DOE PAGES

    Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.

    2016-08-17

    The S-matrix of a quantum field theory is unchanged by field redefinitions, and so it only depends on geometric quantities such as the curvature of field space. Whether the Higgs multiplet transforms linearly or non-linearly under electroweak symmetry is a subtle question since one can make a coordinate change to convert a field that transforms linearly into one that transforms non-linearly. Renormalizability of the Standard Model (SM) does not depend on the choice of scalar fields or whether the scalar fields transform linearly or non-linearly under the gauge group, but only on the geometric requirement that the scalar field manifoldmore » M is flat. Standard Model Effective Field Theory (SMEFT) and Higgs Effective Field Theory (HEFT) have curved M, since they parametrize deviations from the flat SM case. We show that the HEFT Lagrangian can be written in SMEFT form if and only ifMhas a SU(2) L U(1) Y invariant fixed point. Experimental observables in HEFT depend on local geometric invariants of M such as sectional curvatures, which are of order 1/Λ 2 , where Λ is the EFT scale. We give explicit expressions for these quantities in terms of the structure constants for a general G → H symmetry breaking pattern. The one-loop radiative correction in HEFT is determined using a covariant expansion which preserves manifest invariance of M under coordinate redefinitions. The formula for the radiative correction is simple when written in terms of the curvature of M and the gauge curvature field strengths. We also extend the CCWZ formalism to non-compact groups, and generalize the HEFT curvature computation to the case of multiple singlet scalar fields.« less

  15. Linear and non-linear infrared response of one-dimensional vibrational Holstein polarons in the anti-adiabatic limit: Optical and acoustical phonon models

    NASA Astrophysics Data System (ADS)

    Falvo, Cyril

    2018-02-01

    The theory of linear and non-linear infrared response of vibrational Holstein polarons in one-dimensional lattices is presented in order to identify the spectral signatures of self-trapping phenomena. Using a canonical transformation, the optical response is computed from the small polaron point of view which is valid in the anti-adiabatic limit. Two types of phonon baths are considered: optical phonons and acoustical phonons, and simple expressions are derived for the infrared response. It is shown that for the case of optical phonons, the linear response can directly probe the polaron density of states. The model is used to interpret the experimental spectrum of crystalline acetanilide in the C=O range. For the case of acoustical phonons, it is shown that two bound states can be observed in the two-dimensional infrared spectrum at low temperature. At high temperature, analysis of the time-dependence of the two-dimensional infrared spectrum indicates that bath mediated correlations slow down spectral diffusion. The model is used to interpret the experimental linear-spectroscopy of model α-helix and β-sheet polypeptides. This work shows that the Davydov Hamiltonian cannot explain the observations in the NH stretching range.

  16. Linear Power Spectra in Cold+Hot Dark Matter Models: Analytical Approximations and Applications

    NASA Astrophysics Data System (ADS)

    Ma, Chung-Pei

    1996-11-01

    This paper presents simple analytic approximations to the linear power spectra, linear growth rates, and rms mass fluctuations for both components in a family of cold + hot dark matter (CDM + HDM) models that are of current cosmological interest. The formulas are valid for a wide range of wavenumbers, neutrino fractions, redshifts, and Hubble constants: k ≤ 1O h Mpc-1, 0.05 ≤ Ωv le; 0.3 0 ≤ z ≤ 15, and 0.5 ≤ h ≤ 0.8. A new, redshift-dependent shape parameter, Γv = a½Ωvh2, is introduced to simplify the multidimensional parameter space and to characterize the effect of massive neutrinos on the power spectrum. The physical origin of Γv lies in the neutrino free-streaming process, and the analytic approximations can be simplified to depend only on this variable and Ωv. Linear calculations with these power spectra as input are performed to compare the predictions of Ωv ≤ 0.3 models with observational constraints from the reconstructed linear power spectrum and cluster abundance. The usual assumption of an exact scale-invariant primordial power spectrum is relaxed to allow a spectral index of 0.8 ≤ n ≤ 1. It is found that a slight tilt of n = 0.9 (no tensor mode) or n = 0.95 (with tensor mode) in 0.t-0.2 CDM + HDM models gives a power spectrum similar to that of an open CDM model with a shape parameter Γ = 0.25, providing good agreement with the power spectrum reconstructed by Peacock & Dodds and the observed cluster abundance at low redshifts. Late galaxy formation at high redshifts, however, will be a more severe problem in tilted models.

  17. Correlating non-linear properties with spectral states of RXTE data: possible observational evidences for four different accretion modes around compact objects

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwashina; Dhang, Prasun; Mukhopadhyay, Banibrata; Ramadevi, M. C.; Bhattacharya, Debbijoy

    2018-05-01

    By analysing the time series of RXTE/PCA data, the non-linear variabilities of compact sources have been repeatedly established. Depending on the variation in temporal classes, compact sources exhibit different non-linear features. Sometimes they show low correlation/fractal dimension, but in other classes or intervals of time they exhibit stochastic nature. This could be because the accretion flow around a compact object is a non-linear general relativistic system involving magnetohydrodynamics. However, the more conventional way of addressing a compact source is the analysis of its spectral state. Therefore, the question arises: What is the connection of non-linearity to the underlying spectral properties of the flow when the non-linear properties are related to the associated transport mechanisms describing the geometry of the flow? This work is aimed at addressing this question. Based on the connection between observed spectral and non-linear (time series) properties of two X-ray binaries: GRS 1915+105 and Sco X-1, we attempt to diagnose the underlying accretion modes of the sources in terms of known accretion classes, namely, Keplerian disc, slim disc, advection dominated accretion flow and general advective accretion flow. We explore the possible transition of the sources from one accretion mode to others with time. We further argue that the accretion rate must play an important role in transition between these modes.

  18. Estimation of motion fields by non-linear registration for local lung motion analysis in 4D CT image data.

    PubMed

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Heiss, Anabell; Handels, Heinz

    2010-11-01

    Motivated by radiotherapy of lung cancer non- linear registration is applied to estimate 3D motion fields for local lung motion analysis in thoracic 4D CT images. Reliability of analysis results depends on the registration accuracy. Therefore, our study consists of two parts: optimization and evaluation of a non-linear registration scheme for motion field estimation, followed by a registration-based analysis of lung motion patterns. The study is based on 4D CT data of 17 patients. Different distance measures and force terms for thoracic CT registration are implemented and compared: sum of squared differences versus a force term related to Thirion's demons registration; masked versus unmasked force computation. The most accurate approach is applied to local lung motion analysis. Masked Thirion forces outperform the other force terms. The mean target registration error is 1.3 ± 0.2 mm, which is in the order of voxel size. Based on resulting motion fields and inter-patient normalization of inner lung coordinates and breathing depths a non-linear dependency between inner lung position and corresponding strength of motion is identified. The dependency is observed for all patients without or with only small tumors. Quantitative evaluation of the estimated motion fields indicates high spatial registration accuracy. It allows for reliable registration-based local lung motion analysis. The large amount of information encoded in the motion fields makes it possible to draw detailed conclusions, e.g., to identify the dependency of inner lung localization and motion. Our examinations illustrate the potential of registration-based motion analysis.

  19. Solvatochromic investigation of highly fluorescent 2-aminobithiophene derivatives.

    PubMed

    Bolduc, Andréanne; Dong, Yanmei; Guérin, Amélie; Skene, W G

    2012-05-21

    The solvatochromic and electrochemical properties of electronic push-pull 2-aminobithiophenes consisting of an aldehyde and nitro withdrawing groups were examined. With the use of an integrating sphere, the absolute quantum yields of the bithiophenes were measured. They were found to be highly fluorescent (Φfl > 70%), provided the nitro group was not located in the 4'-position. High fluorescence yields were observed regardless of solvent, except for alcohols, notably methanol and ethanol. Cryofluorescence was used to probe the bithiophene temperature dependent excited state deactivation modes. The singlet excited state deactivation mode other than fluorescence was found to be internal conversion involving rotation around the thiophene-thiophene bond. Deactivation by intersystem crossing to the triplet state occurred in ca. 40% only for the unsubstituted 2-aminobithiophene. In contrast, the fluorescence was quenched by photoinduced intramolecular electron transfer when the nitro group was located in the 4'-position of the bithiophene. Both the absorbance and fluorescence of the bithiophenes were found to be solvatochromic with more pronounced solvent dependent shifts being observed with the fluorescence. In fact, both the fluorescence and Stokes shifts were linearly dependent on the ET(30) solvent parameter. Deviations from the linear trend of the Stokes shift with ET(30) were observed in ethanol and methanol as a result of intermolecular hydrogen abstraction from the solvent and by the excited nitro group. The oxidation potential of the bithiophenes was also highly dependent on the type and number of the electron withdrawing substituents, with values ranging between 0.8 and 1.2 V vs. SCE.

  20. Maximum predictive power and the superposition principle

    NASA Technical Reports Server (NTRS)

    Summhammer, Johann

    1994-01-01

    In quantum physics the direct observables are probabilities of events. We ask how observed probabilities must be combined to achieve what we call maximum predictive power. According to this concept the accuracy of a prediction must only depend on the number of runs whose data serve as input for the prediction. We transform each probability to an associated variable whose uncertainty interval depends only on the amount of data and strictly decreases with it. We find that for a probability which is a function of two other probabilities maximum predictive power is achieved when linearly summing their associated variables and transforming back to a probability. This recovers the quantum mechanical superposition principle.

  1. Bistability in Josephson Junction array resonator

    NASA Astrophysics Data System (ADS)

    Muppalla, Phani Raja; Alexandre Blais Collaboration; Christian Kraglund Andersen Collaboration; Ioan Pop, Lukas Gruenhaupt Collaboration; Michel Devoret Collaboration; Oscar Garguilo, Gerhard Kirchmair Team

    ``We present an experimental analysis of the Kerr effect of extended plasma resonances in a 1000 Josephson junction (JJ) chain resonator inside a rectangular waveguide. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. We study the bistable behavior, using a pump probe scheme on two modes of the JJ array, exploiting the Cross-Kerr effect in our system. In order to understand the behavior of the bi-stability we perform continuous time measurements to observe the switching between the two metastable states. We observe a strong dependence of the switching rates on the photon number and the drive frequency.''

  2. Group delay variations of GPS transmitting and receiving antennas

    NASA Astrophysics Data System (ADS)

    Wanninger, Lambert; Sumaya, Hael; Beer, Susanne

    2017-09-01

    GPS code pseudorange measurements exhibit group delay variations at the transmitting and the receiving antenna. We calibrated C1 and P2 delay variations with respect to dual-frequency carrier phase observations and obtained nadir-dependent corrections for 32 satellites of the GPS constellation in early 2015 as well as elevation-dependent corrections for 13 receiving antenna models. The combined delay variations reach up to 1.0 m (3.3 ns) in the ionosphere-free linear combination for specific pairs of satellite and receiving antennas. Applying these corrections to the code measurements improves code/carrier single-frequency precise point positioning, ambiguity fixing based on the Melbourne-Wübbena linear combination, and determination of ionospheric total electron content. It also affects fractional cycle biases and differential code biases.

  3. Mutations induced in Tradescantia by small doses of X-rays and neutrons - Analysis of dose-response curves.

    NASA Technical Reports Server (NTRS)

    Sparrow, A. H.; Underbrink, A. G.; Rossi, H. H.

    1972-01-01

    Dose-response curves for pink somatic mutations in Tradescantia stamen hairs were analyzed after neutron and X-ray irradiation with doses ranging from a fraction of a rad to the region of saturation. The dose-effect relation for neutrons indicates a linear dependence from 0.01 to 8 rads; between 0.25 and 5 rads, a linear dependence is indicated for X-rays also. As a consequence the relative biological effectiveness reaches a constant value (about 50) at low doses. The observations are in good agreement with the predictions of the theory of dual radiation action and support its interpretation of the effects of radiation on higher organisms. The doubling dose of X-rays was found to be nearly 1 rad.

  4. Motor function in microgravity: movement in weightlessness

    NASA Technical Reports Server (NTRS)

    Lackner, J. R.; DiZio, P.

    1996-01-01

    Microgravity provides unique, though experimentally challenging, opportunities to study motor control. A traditional research focus has been the effects of linear acceleration on vestibular responses to angular acceleration. Evidence is accumulating that the high-frequency vestibulo-ocular reflex (VOR) is not affected by transitions from a 1 g linear force field to microgravity (<1 g); however, it appears that the three-dimensional organization of the VOR is dependent on gravitoinertial force levels. Some of the observed effects of microgravity on head and arm movement control appear to depend on the previously undetected inputs of cervical and brachial proprioception, which change almost immediately in response to alterations in background force levels. Recent studies of post-flight disturbances of posture and locomotion are revealing sensorimotor mechanisms that adjust over periods ranging from hours to weeks.

  5. Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.

    PubMed

    Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M

    2018-03-15

    Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Salman, E-mail: sksafi@comsats.edu.pk

    The dynamics of tripartite entanglement of fermionic system in noninertial frames through linear contraction criterion when one or two observers are accelerated is investigated. In one observer accelerated case the entanglement measurement is not invariant with respect to the partial realignment of different subsystems and for two observers accelerated case it is invariant. It is shown that the acceleration of the frame does not generate entanglement in any bipartite subsystems. Unlike the bipartite states, the genuine tripartite entanglement does not completely vanish in both one observer accelerated and two observers accelerated cases even in the limit of infinite acceleration. Themore » degradation of tripartite entanglement is fast when two observers are accelerated than when one observer is accelerated. It is shown that tripartite entanglement is a better resource for quantum information processing than the bipartite entanglement in noninertial frames. - Highlights: • Tripartite entanglement of fermionic system in noninertial frames is studied. • Linear contraction criterion for quantifying tripartite entanglement is used. • Acceleration does not produce any bipartite entanglement. • The invariance of entanglement quantifier depends on accelerated observers. • The tripartite entanglement degrades against the acceleration, it never vanishes.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Shiraj; Ganguly, Auroop R; Bandyopadhyay, Sharba

    Cross-spectrum analysis based on linear correlations in the time domain suggested a coupling between large river flows and the El Nino-Southern Oscillation (ENSO) cycle. A nonlinear measure based on mutual information (MI) reveals extrabasinal connections between ENSO and river flows in the tropics and subtropics, that are 20-70% higher than those suggested so far by linear correlations. The enhanced dependence observed for the Nile, Amazon, Congo, Paran{acute a}, and Ganges rivers, which affect large, densely populated regions of the world, has significant impacts on inter-annual river flow predictabilities and, hence, on water resources and agricultural planning.

  8. Regression analysis of sparse asynchronous longitudinal data

    PubMed Central

    Cao, Hongyuan; Zeng, Donglin; Fine, Jason P.

    2015-01-01

    Summary We consider estimation of regression models for sparse asynchronous longitudinal observations, where time-dependent responses and covariates are observed intermittently within subjects. Unlike with synchronous data, where the response and covariates are observed at the same time point, with asynchronous data, the observation times are mismatched. Simple kernel-weighted estimating equations are proposed for generalized linear models with either time invariant or time-dependent coefficients under smoothness assumptions for the covariate processes which are similar to those for synchronous data. For models with either time invariant or time-dependent coefficients, the estimators are consistent and asymptotically normal but converge at slower rates than those achieved with synchronous data. Simulation studies evidence that the methods perform well with realistic sample sizes and may be superior to a naive application of methods for synchronous data based on an ad hoc last value carried forward approach. The practical utility of the methods is illustrated on data from a study on human immunodeficiency virus. PMID:26568699

  9. Using nonlinear forecasting to learn the magnitude and phasing of time-varying sediment suspension in the surf zone

    USGS Publications Warehouse

    Jaffe, B.E.; Rubin, D.M.

    1996-01-01

    The time-dependent response of sediment suspension to flow velocity was explored by modeling field measurements collected in the surf zone during a large storm. Linear and nonlinear models were created and tested using flow velocity as input and suspended-sediment concentration as output. A sequence of past velocities (velocity history), as well as velocity from the same instant as the suspended-sediment concentration, was used as input; this velocity history length was allowed to vary. The models also allowed for a lag between input (instantaneous velocity or end of velocity sequence) and output (suspended-sediment concentration). Predictions of concentration from instantaneous velocity or instantaneous velocity raised to a power (up to 8) using linear models were poor (correlation coefficients between predicted and observed concentrations were less than 0.10). Allowing a lag between velocity and concentration improved linear models (correlation coefficient of 0.30), with optimum lag time increasing with elevation above the seabed (from 1.5 s at 13 cm to 8.5 s at 60 cm). These lags are largely due to the time for an observed flow event to effect the bed and mix sediment upward. Using a velocity history further improved linear models (correlation coefficient of 0.43). The best linear model used 12.5 s of velocity history (approximately one wave period) to predict concentration. Nonlinear models gave better predictions than linear models, and, as with linear models, nonlinear models using a velocity history performed better than models using only instantaneous velocity as input. Including a lag time between the velocity and concentration also improved the predictions. The best model (correlation coefficient of 0.58) used 3 s (approximately a quarter wave period) of the cross-shore velocity squared, starting at 4.5 s before the observed concentration, to predict concentration. Using a velocity history increases the performance of the models by specifying a more complete description of the dynamical forcing of the flow (including accelerations and wave phase and shape) responsible for sediment suspension. Incorporating such a velocity history and a lag time into the formulation of the forcing for time-dependent models for sediment suspension in the surf zone will greatly increase our ability to predict suspended-sediment transport.

  10. Phase-controllable spin wave generation in iron garnet by linearly polarized light pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshimine, Isao; Iida, Ryugo; Shimura, Tsutomu

    A phase-controlled spin wave was non-thermally generated in bismuth-doped rare-earth iron garnet by linearly polarized light pulses. We controlled the initial phase of the spin wave continuously within a range of 180° by changing the polarization azimuth of the excitation light. The azimuth dependences of the initial phase and amplitude of the spin wave were attributed to a combination of the inverse Cotton-Mouton effect and photoinduced magnetic anisotropy. Temporally and spatially resolved spin wave propagation was observed with a CCD camera, and the waveform was in good agreement with calculations. A nonlinear effect of the spin excitation was observed formore » excitation fluences higher than 100 mJ/cm{sup 2}.« less

  11. Air density dependence of the response of the PTW SourceCheck 4pi ionization chamber for 125I brachytherapy seeds.

    PubMed

    Torres Del Río, J; Tornero-López, A M; Guirado, D; Pérez-Calatayud, J; Lallena, A M

    2017-06-01

    To analyze the air density dependence of the response of the new SourceCheck 4pi ionization chamber, manufactured by PTW. The air density dependence of three different SourceCheck 4pi chambers was studied by measuring 125 I sources. Measurements were taken by varying the pressure from 746.6 to 986.6hPa in a pressure chamber. Three different HDR 1000 Plus ionization chambers were also analyzed under similar conditions. A linear and a potential-like function of the air density were fitted to experimental data and their achievement in describing them was analyzed. SourceCheck 4pi chamber response showed a residual dependence on the air density once the standard pressure and temperature factor was applied. The chamber response was overestimated when the air density was below that under normal atmospheric conditions. A similar dependence was found for the HDR 1000 Plus chambers analyzed. A linear function of the air density permitted a very good description of this residual dependence, better than with a potential function. No significant variability between the different specimens of the same chamber model studied was found. The effect of overestimation observed in the chamber responses once they are corrected for the standard pressure and temperature may represent a non-negligible ∼4% overestimation in high altitude cities as ours (700m AMSL). This overestimation behaves linearly with the air density in all cases analyzed. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Antown, Fadi; Dragičević, Davor; Froyland, Gary

    2018-03-01

    The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.

  13. Deformation of giant vesicles in AC electric fields —Dependence of the prolate-to-oblate transition frequency on vesicle radius

    NASA Astrophysics Data System (ADS)

    Antonova, K.; Vitkova, V.; Mitov, M. D.

    2010-02-01

    The electrodeformation of giant vesicles is studied as a function of their radii and the frequency of the applied AC field. At low frequency the shape is prolate, at sufficiently high frequency it is oblate and at some frequency, fc, the shape changes from prolate to oblate. A linear dependence of the prolate-to-oblate transition inverse frequency, 1/fc, on the vesicle radius is found. The nature of this phenomenon does not change with the variation of both the solution conductivity, σ, and the type of the fluid enclosed by the lipid membrane (water, sucrose or glucose aqueous solution). When σ increases, the value of fc increases while the slope of the line 1/fc(r) decreases. For vesicles in symmetrical conditions (the same conductivity of the inner and the outer solution) a linear dependence between σ and the critical frequency, fc, is obtained for conductivities up to σ=114 μS/cm. For vesicles with sizes below a certain minimum radius, depending on the solution conductivity, no shape transition could be observed.

  14. Viscosity-dependent diffusion of fluorescent particles using fluorescence correlation spectroscopy.

    PubMed

    Jung, Chanbae; Lee, Jaeran; Kang, Manil; Kim, Sok Won

    2014-11-01

    Fluorescent particles show the variety characteristics by the interaction with other particles and solvent. In order to investigate the relationship between the dynamic properties of fluorescent particles and solvent viscosity, particle diffusion in various solvents was evaluated using a fluorescence correlation spectroscopy. Upon analyzing the correlation functions of AF-647, Q-dot, and beads with different viscosity values, the diffusion time of all particles was observed to increase with increasing solvent viscosity, and the ratio of diffusion time to solvent viscosity, τ D /η, showed a linear dependence on particle size. The particle diffusion coefficients calculated from the diffusion time decreased with increasing solvent viscosity. Further, the hydrodynamic radii of AF-647, Q-dot, and beads were 0.98 ± 0.1 nm, 64.8 ± 3.23 nm, and 89.8 ± 4.91 nm, respectively, revealing a linear dependence on τ D /η, which suggests that the hydrodynamic radius of a particle strongly depends on both the physical size of the particle and solvent viscosity.

  15. Temperature dependence of superfluid density in YBa 2Cu 3O 7- δ and Y 0.7Ca 0.3Ba 2Cu 3O 7- δ thin films: A doping dependence study of the linear slope

    NASA Astrophysics Data System (ADS)

    Lai, L. S.; Juang, J. Y.; Wu, K. H.; Uen, T. M.; Gou, Y. S.

    2005-11-01

    By using a microstrip ring resonator to measure the temperature dependence of the in-plane magnetic penetration depth λ(T) in YBa2Cu3O7-δ (YBCO) and Y0.7Ca0.3Ba2Cu3O7-δ (Ca-YBCO) epitaxially grown thin films, the linear temperature dependence of the superfluid density ρs/m∗ ≡ 1/λ2(T) was observed from the under- to the overdoped regime at the temperatures below T/Tc ≈ 0.3 . For the underdoped regime of YBCO and Ca-YBCO thin films, the magnitude of the slope d(1/λ2(T))/dT is insensitive to doping, and it can be treated in the framework of projected d-density-wave model. Combining these slope values with the thermal conductivity measurements, the Fermi-liquid correction factor α2 from the Fermi-liquid model, suggested by Wen and Lee, was revealed here with various doping levels.

  16. Light-induced noncentrosymmetry in acceptor-donor-substituted azobenzene solutions

    NASA Astrophysics Data System (ADS)

    Zhao, Jiang; Si, Jinhai; Wang, Yougui; Ye, Peixian; Fu, Xingfa; Qiu, Ling; Shen, Yuquan

    1995-10-01

    Light-induced noncentrosymmetry was achieved experimentally in acceptor-donor-substituted azobenzene solutions and observed by phase-matched nondegenerate six-wave mixing. The microscopic origin of the induced noncentrosymmetry was found to be orientational hole burning, which was distinguished directly with net orientation of molecules by experimental observations. The decay time of the induced noncentrosymmetry depended on the rotational orientation time of the sample's molecule, which varied linearly with the viscosity of the solvent.

  17. A simple method for identifying parameter correlations in partially observed linear dynamic models.

    PubMed

    Li, Pu; Vu, Quoc Dong

    2015-12-14

    Parameter estimation represents one of the most significant challenges in systems biology. This is because biological models commonly contain a large number of parameters among which there may be functional interrelationships, thus leading to the problem of non-identifiability. Although identifiability analysis has been extensively studied by analytical as well as numerical approaches, systematic methods for remedying practically non-identifiable models have rarely been investigated. We propose a simple method for identifying pairwise correlations and higher order interrelationships of parameters in partially observed linear dynamic models. This is made by derivation of the output sensitivity matrix and analysis of the linear dependencies of its columns. Consequently, analytical relations between the identifiability of the model parameters and the initial conditions as well as the input functions can be achieved. In the case of structural non-identifiability, identifiable combinations can be obtained by solving the resulting homogenous linear equations. In the case of practical non-identifiability, experiment conditions (i.e. initial condition and constant control signals) can be provided which are necessary for remedying the non-identifiability and unique parameter estimation. It is noted that the approach does not consider noisy data. In this way, the practical non-identifiability issue, which is popular for linear biological models, can be remedied. Several linear compartment models including an insulin receptor dynamics model are taken to illustrate the application of the proposed approach. Both structural and practical identifiability of partially observed linear dynamic models can be clarified by the proposed method. The result of this method provides important information for experimental design to remedy the practical non-identifiability if applicable. The derivation of the method is straightforward and thus the algorithm can be easily implemented into a software packet.

  18. Linear optical response of carbon nanotubes under axial magnetic field

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Chegel, Raad; Behzad, Somayeh

    2010-04-01

    We considered single walled carbon naotubes (SWCNTs) as real three dimensional (3D) systems in a cylindrical coordinate. The optical matrix elements and linear susceptibility, χ(ω), in the tight binding approximation in terms of one-dimensional wave vector, kz and subband index, l are calculated. In an external axial magnetic field optical frequency dependence of linear susceptibility are investigated. We found that axial magnetic field has two effects on the imaginary part of the linear susceptibility spectrum, in agreement with experimental results. The first effect is broadening and the second, splitting. Also we found that for all metallic zigzag and armchair SWCNTs, the axial magnetic field leads to the creation of a peak with energy less than 1.5 eV, contrary to what is observed in the absence of a magnetic field.

  19. Single-shot measurement of ultrafast time-varying phase modulation induced by femtosecond laser pulses with arbitrary polarization

    NASA Astrophysics Data System (ADS)

    Hartinger, Klaus; Bartels, Randy A.

    2008-01-01

    We demonstrate a single-shot measurement of the transient phase modulation due to field free molecular alignment at the revival times of a rotational wave packet. The wave packet is excited by an arbitrarily polarized ultrashort laser pulse in CO2 at room temperature. With this technique the time dependence along the eigenpolarization directions of the linear susceptibility tensor, i.e., the time dependence of its principle components, can be directly observed with high sensitivity.

  20. A novel framework to simulating non-stationary, non-linear, non-Normal hydrological time series using Markov Switching Autoregressive Models

    NASA Astrophysics Data System (ADS)

    Birkel, C.; Paroli, R.; Spezia, L.; Tetzlaff, D.; Soulsby, C.

    2012-12-01

    In this paper we present a novel model framework using the class of Markov Switching Autoregressive Models (MSARMs) to examine catchments as complex stochastic systems that exhibit non-stationary, non-linear and non-Normal rainfall-runoff and solute dynamics. Hereby, MSARMs are pairs of stochastic processes, one observed and one unobserved, or hidden. We model the unobserved process as a finite state Markov chain and assume that the observed process, given the hidden Markov chain, is conditionally autoregressive, which means that the current observation depends on its recent past (system memory). The model is fully embedded in a Bayesian analysis based on Markov Chain Monte Carlo (MCMC) algorithms for model selection and uncertainty assessment. Hereby, the autoregressive order and the dimension of the hidden Markov chain state-space are essentially self-selected. The hidden states of the Markov chain represent unobserved levels of variability in the observed process that may result from complex interactions of hydroclimatic variability on the one hand and catchment characteristics affecting water and solute storage on the other. To deal with non-stationarity, additional meteorological and hydrological time series along with a periodic component can be included in the MSARMs as covariates. This extension allows identification of potential underlying drivers of temporal rainfall-runoff and solute dynamics. We applied the MSAR model framework to streamflow and conservative tracer (deuterium and oxygen-18) time series from an intensively monitored 2.3 km2 experimental catchment in eastern Scotland. Statistical time series analysis, in the form of MSARMs, suggested that the streamflow and isotope tracer time series are not controlled by simple linear rules. MSARMs showed that the dependence of current observations on past inputs observed by transport models often in form of the long-tailing of travel time and residence time distributions can be efficiently explained by non-stationarity either of the system input (climatic variability) and/or the complexity of catchment storage characteristics. The statistical model is also capable of reproducing short (event) and longer-term (inter-event) and wet and dry dynamical "hydrological states". These reflect the non-linear transport mechanisms of flow pathways induced by transient climatic and hydrological variables and modified by catchment characteristics. We conclude that MSARMs are a powerful tool to analyze the temporal dynamics of hydrological data, allowing for explicit integration of non-stationary, non-linear and non-Normal characteristics.

  1. Log-Linear Modeling of Agreement among Expert Exposure Assessors

    PubMed Central

    Hunt, Phillip R.; Friesen, Melissa C.; Sama, Susan; Ryan, Louise; Milton, Donald

    2015-01-01

    Background: Evaluation of expert assessment of exposure depends, in the absence of a validation measurement, upon measures of agreement among the expert raters. Agreement is typically measured using Cohen’s Kappa statistic, however, there are some well-known limitations to this approach. We demonstrate an alternate method that uses log-linear models designed to model agreement. These models contain parameters that distinguish between exact agreement (diagonals of agreement matrix) and non-exact associations (off-diagonals). In addition, they can incorporate covariates to examine whether agreement differs across strata. Methods: We applied these models to evaluate agreement among expert ratings of exposure to sensitizers (none, likely, high) in a study of occupational asthma. Results: Traditional analyses using weighted kappa suggested potential differences in agreement by blue/white collar jobs and office/non-office jobs, but not case/control status. However, the evaluation of the covariates and their interaction terms in log-linear models found no differences in agreement with these covariates and provided evidence that the differences observed using kappa were the result of marginal differences in the distribution of ratings rather than differences in agreement. Differences in agreement were predicted across the exposure scale, with the likely moderately exposed category more difficult for the experts to differentiate from the highly exposed category than from the unexposed category. Conclusions: The log-linear models provided valuable information about patterns of agreement and the structure of the data that were not revealed in analyses using kappa. The models’ lack of dependence on marginal distributions and the ease of evaluating covariates allow reliable detection of observational bias in exposure data. PMID:25748517

  2. Role of Rayleigh numbers on characteristics of double diffusive salt fingers

    NASA Astrophysics Data System (ADS)

    Rehman, F.; Singh, O. P.

    2018-05-01

    Double diffusion convection, driven by two constituents of the fluid with different molecular diffusivity, is widely applied in oceanography and large number of other fields like astrophysics, geology, chemistry and metallurgy. In case of ocean, heat (T) and salinity (S) are the two components with varying diffusivity, where heat diffuses hundred times faster than salt. Component (T) stabilizes the system whereas components (S) destabilizes the system with overall density remains stable and forms the rising and sinking fingers known as salt fingers. Recent observations suggest that salt finger characteristics such as growth rates, wavenumber, and fluxes are strongly depending on the Rayleigh numbers as major driving force. In this paper, we corroborate this observation with the help of experiments, numerical simulations and linear theory. An eigenvalue expression for growth rate is derived from the linearized governing equations with explicit dependence on Rayleigh numbers, density stability ratio, Prandtl number and diffusivity ratio. Expressions for fastest growing fingers are also derived as a function various non-dimensional parameter. The predicted results corroborate well with the data reported from the field measurements, experiments and numerical simulations.

  3. Phase diagrams of dune shape and orientation depending on sand availability

    PubMed Central

    Gao, Xin; Narteau, Clément; Rozier, Olivier; du Pont, Sylvain Courrech

    2015-01-01

    New evidence indicates that sand availability does not only control dune type but also the underlying dune growth mechanism and the subsequent dune orientation. Here we numerically investigate the development of bedforms in bidirectional wind regimes for two different conditions of sand availability: an erodible sand bed or a localized sand source on a non-erodible ground. These two conditions of sand availability are associated with two independent dune growth mechanisms and, for both of them, we present the complete phase diagrams of dune shape and orientation. On an erodible sand bed, linear dunes are observed over the entire parameter space. Then, the divergence angle and the transport ratio between the two winds control dune orientation and dynamics. For a localized sand source, different dune morphologies are observed depending on the wind regime. There are systematic transitions in dune shape from barchans to linear dunes extending away from the localized sand source, and vice-versa. These transitions are captured fairly by a new dimensionless parameter, which compares the ability of winds to build the dune topography in the two modes of dune orientation. PMID:26419614

  4. Modeling Linguistic Variables With Regression Models: Addressing Non-Gaussian Distributions, Non-independent Observations, and Non-linear Predictors With Random Effects and Generalized Additive Models for Location, Scale, and Shape

    PubMed Central

    Coupé, Christophe

    2018-01-01

    As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for ‘difficult’ variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS, we assess a range of candidate distributions, including the Sichel, Delaporte, Box-Cox Green and Cole, and Box-Cox t distributions. We find that the Box-Cox t distribution, with appropriate modeling of its parameters, best fits the conditional distribution of phonemic inventory size. We finally discuss the specificities of phoneme counts, weak effects, and how GAMLSS should be considered for other linguistic variables. PMID:29713298

  5. Modeling Linguistic Variables With Regression Models: Addressing Non-Gaussian Distributions, Non-independent Observations, and Non-linear Predictors With Random Effects and Generalized Additive Models for Location, Scale, and Shape.

    PubMed

    Coupé, Christophe

    2018-01-01

    As statistical approaches are getting increasingly used in linguistics, attention must be paid to the choice of methods and algorithms used. This is especially true since they require assumptions to be satisfied to provide valid results, and because scientific articles still often fall short of reporting whether such assumptions are met. Progress is being, however, made in various directions, one of them being the introduction of techniques able to model data that cannot be properly analyzed with simpler linear regression models. We report recent advances in statistical modeling in linguistics. We first describe linear mixed-effects regression models (LMM), which address grouping of observations, and generalized linear mixed-effects models (GLMM), which offer a family of distributions for the dependent variable. Generalized additive models (GAM) are then introduced, which allow modeling non-linear parametric or non-parametric relationships between the dependent variable and the predictors. We then highlight the possibilities offered by generalized additive models for location, scale, and shape (GAMLSS). We explain how they make it possible to go beyond common distributions, such as Gaussian or Poisson, and offer the appropriate inferential framework to account for 'difficult' variables such as count data with strong overdispersion. We also demonstrate how they offer interesting perspectives on data when not only the mean of the dependent variable is modeled, but also its variance, skewness, and kurtosis. As an illustration, the case of phonemic inventory size is analyzed throughout the article. For over 1,500 languages, we consider as predictors the number of speakers, the distance from Africa, an estimation of the intensity of language contact, and linguistic relationships. We discuss the use of random effects to account for genealogical relationships, the choice of appropriate distributions to model count data, and non-linear relationships. Relying on GAMLSS, we assess a range of candidate distributions, including the Sichel, Delaporte, Box-Cox Green and Cole, and Box-Cox t distributions. We find that the Box-Cox t distribution, with appropriate modeling of its parameters, best fits the conditional distribution of phonemic inventory size. We finally discuss the specificities of phoneme counts, weak effects, and how GAMLSS should be considered for other linguistic variables.

  6. `Un-Darkening' the Cosmos: New laws of physics for an expanding universe

    NASA Astrophysics Data System (ADS)

    George, William

    2017-11-01

    Dark matter is believed to exist because Newton's Laws are inconsistent with the visible matter in galaxies. Dark energy is necessary to explain the universe expansion. (also available from www.turbulence-online.com) suggested that the equations themselves might be in error because they implicitly assume that time is measured in linear increments. This presentation couples the possible non-linearity of time with an expanding universe. Maxwell's equations for an expanding universe with constant speed of light are shown to be invariant only if time itself is non-linear. Both linear and exponential expansion rates are considered. A linearly expanding universe corresponds to logarithmic time, while exponential expansion corresponds to exponentially varying time. Revised Newton's laws using either leads to different definitions of mass and kinetic energy, both of which appear time-dependent if expressed in linear time. And provide the possibility of explaining the astronomical observations without either dark matter or dark energy. We would have never noticed the differences on earth, since the leading term in both expansions is linear in δ /to where to is the current age.

  7. Hydrodynamic pumping of a quantum Fermi liquid in a semiconductor heterostructure

    NASA Astrophysics Data System (ADS)

    Heremans, J. J.; Kantha, D.; Chen, H.; Govorov, A. O.

    2003-03-01

    We present experimental results for a pumping mechanism observed in mesoscopic structures patterned on two-dimensional electron systems in GaAs/AlGaAs heterostructures. The experiments are performed at low temperatures, in the ballistic regime. The effect is observed as a voltage or current signal corresponding to carrier extraction from sub-micron sized apertures, when these apertures are swept by a beam of ballistic electrons. The carrier extraction, phenomenologically reminiscent of the Bernoulli pumping effect in classical fluids, has been observed in various geometries. We ascertained linearity between measured voltage and injected current in all experiments, thereby excluding rectification effects. The linear response, however, points to a fundamental difference from the Bernoulli effect in classical liquids, where the response is nonlinear and quadratic in terms of the velocity. The temperature dependence of the effect will also be presented. We thank M. Shayegan (Princeton University) for the heterostructure growth, and acknowledge support from NSF DMR-0094055.

  8. The Oxidation of AlN in Dry and Wet Oxygen

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth; Humphrey, Donald; Jacobson, Nathan; Yoshio, Tetsuo; Oda, Kohei

    1998-01-01

    The oxidation kinetics of AlN containing 3.5 wt% Y2O3 were studied by thermogravimetric analysis in dry oxygen and 10% H2O/balance oxygen at temperatures between 1000 and 1200 C for times between 48 and 100 h. The oxidation kinetics for AlN in dry oxygen were parabolic and of approximately the same magnitude and temperature dependence as other alumina forming materials. In this case, diffusion of oxygen and/or aluminum through the alumina scale is the rate limiting mechanism. The oxidation kinetics for AlN in wet oxygen were nearly linear and much more rapid than rates observed in dry oxygen. Numerous micropores were observed in the alumina formed on AIN in wet oxygen. These pores provide a fast path for oxygen transport. The linear kinetics observed in this case suggest that the interface reaction rate of AlN with wet oxygen is the oxidation rate limiting step.

  9. Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry.

    PubMed

    Haler, Jean R N; Far, Johann; Aqil, Abdelhafid; Claereboudt, Jan; Tomczyk, Nick; Giles, Kevin; Jérôme, Christine; De Pauw, Edwin

    2017-11-01

    Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,…). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. Graphical Abstract ᅟ.

  10. Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Haler, Jean R. N.; Far, Johann; Aqil, Abdelhafid; Claereboudt, Jan; Tomczyk, Nick; Giles, Kevin; Jérôme, Christine; De Pauw, Edwin

    2017-08-01

    Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,…). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. [Figure not available: see fulltext.

  11. Levitation effect: Distinguishing anomalous from linear regime of guests sorbed in zeolites through the decay of intermediate scattering function and wavevector dependence of self-diffusivity.

    PubMed

    Ghorai, Pradip Kr; Yashonath, S

    2005-03-10

    Previous work investigating the dependence of self-diffusivity, D, on the size of the guest diffusing within the porous solid such as zeolite has reported the existence of an anomalous maximum in the diffusion coefficient (J. Phys. Chem. 1994, 98, 6368). Two distinct regimes of dependence of D on sigma(gg), diameter of the guest were reported. D proportional to 1/sigma(gg)2, often referred to as linear regime (LR), is found when sigma(gg) is smaller than sigma(v), the diameter of the void. A maximum in D has been observed when sigma(gg) is comparable to sigma(v) and this regime is referred to as anomalous regime (AR). Here we report the intermediate scattering function for a particle from LR and AR in zeolite faujasite. A particle from LR exhibits a biexponential decay while a particle from AR exhibits a single-exponential decay at small k. Variation with k of the full width at half-maximum of the self-part of the dynamic structure factor is nonmonotonic for a particle in the linear regime. In contrast, this variation is monotonic for a particle in the anomalous regime. These results can be understood in terms of the existence of energetic barrier at the bottleneck, the 12-ring window, in the path of diffusion. They provide additional signatures for the linear regime and anomalous regimes and therefore for levitation effect (LE).

  12. A Geomorphologic Synthesis of Nonlinearity in Surface Runoff

    NASA Astrophysics Data System (ADS)

    Wang, C. T.; Gupta, Vijay K.; Waymire, Ed

    1981-06-01

    The geomorphic approach leading to a representation of an instantaneous unit hydrograph (iuh) which we developed earlier is generalized to incorporate nonlinear effects in the rainfall-runoff transformation. It is demonstrated that the nonlinearity in the transformation enters in part through the dependence of the mean holding time on the rainfall intensity. Under an assumed first approximation that this dependence is the sole source of nonlinearity an explicit quasi-linear representation results for the rainfall- runoff transformation. The kernel function of this transformation can be termed as the instantaneous response function (irf) in contradistinction to the notion of an iuh for the case of a linear rainfall-runoff transformation. The predictions from the quasi-linear theory agree very well with predictions from the kinematic wave approach for the one small basin that is analyzed. Also, for two large basins in Illinois having areas of about 1100 mi2 the predictions from the quasi-linear approach compare very well with the observed flows. A measure of nonlinearity, α naturally arises through the dependence of the mean holding time KB(i0) on the rainfall intensity i0via KB (i0) ˜ i0 -α. Computations of α for four basins show that α approaches ⅔ as basin size decreases and approaches zero as the basin size increases. A semilog plot of α versus the square root of the basin area gives a straight line. Confirmation of this relationship for other basins would be of basic importance in predicting flows from ungaged basins.

  13. Extended phase diagram of R NiC2 family: Linear scaling of the Peierls temperature

    NASA Astrophysics Data System (ADS)

    Roman, Marta; Strychalska-Nowak, Judyta; Klimczuk, Tomasz; Kolincio, Kamil K.

    2018-01-01

    Physical properties for the late-lanthanide-based R NiC2 (R =Dy , Ho, Er, and Tm) ternary compounds are reported. All the compounds show antiferromagnetic ground state with the Néel temperature ranging from 3.4 K for HoNiC2 to 8.5 K for ErNiC2. The results of the transport and galvanomagnetic properties confirm a charge density wave state at and above room temperature with transition temperatures TCDW=284 , 335, 366, and 394 K for DyNiC2, HoNiC2, ErNiC2, and TmNiC2, respectively. The Peierls temperature TCDW scales linearly with the unit cell volume. A similar linear dependence has been observed for the temperature of the lock-in transition T1 as well. Beyond the intersection point of the trend lines, the lock-in transition is no longer observed. In this Rapid Communication we demonstrate an extended phase diagram for the R NiC2 family.

  14. Current-driven non-linear magnetodynamics in exchange-biased spin valves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seinige, Heidi; Wang, Cheng; Tsoi, Maxim, E-mail: tsoi@physics.utexas.edu

    2015-05-07

    This work investigates the excitation of parametric resonance in exchange-biased spin valves (EBSVs). Using a mechanical point contact, high density dc and microwave currents were injected into the EBSV sample. Observing the reflected microwave power and the small rectification voltage that develops across the contact allows detecting the current-driven magnetodynamics not only in the bulk sample but originating exclusively from the small contact region. In addition to ferromagnetic resonance (FMR), parametric resonance at twice the natural FMR frequency was observed. In contrast to FMR, this non-linear resonance was excited only in the vicinity of the point contact where current densitiesmore » are high. Power-dependent measurements displayed a typical threshold-like behavior of parametric resonance and a broadening of the instability region with increasing power. Parametric resonance showed a linear shift as a function of applied dc bias which is consistent with the field-like spin-transfer torque induced by current on magnetic moments in EBSV.« less

  15. Study of optical nonlinearities in Se-Te-Bi thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Ambika; Yadav, Preeti; Kumari, Anshu

    2014-04-01

    The present work reports the nonlinear refractive index of Se85-xTe15Bix thin films calculated by Ticha and Tichy relation. The nonlinear refractive index of Chalcogenide amorphous semiconductor is well correlated with the linear refractive index and WDD parameters which in turn depend on the density and molar volume of the system. The density of the system is calculated theoretical as well as experimentally by using Archimedes principle. The linear refractive index and WDD parameters are calculated using single transmission spectra in the spectral range of 400-1500 nm. It is observed that linear as well as nonlinear refractive index increases with Bi content. The results are analyzed on the basis of increasing polarizability due to larger radii of Bi.

  16. Visual Detection Under Uncertainty Operates Via an Early Static, Not Late Dynamic, Non-Linearity

    PubMed Central

    Neri, Peter

    2010-01-01

    Signals in the environment are rarely specified exactly: our visual system may know what to look for (e.g., a specific face), but not its exact configuration (e.g., where in the room, or in what orientation). Uncertainty, and the ability to deal with it, is a fundamental aspect of visual processing. The MAX model is the current gold standard for describing how human vision handles uncertainty: of all possible configurations for the signal, the observer chooses the one corresponding to the template associated with the largest response. We propose an alternative model in which the MAX operation, which is a dynamic non-linearity (depends on multiple inputs from several stimulus locations) and happens after the input stimulus has been matched to the possible templates, is replaced by an early static non-linearity (depends only on one input corresponding to one stimulus location) which is applied before template matching. By exploiting an integrated set of analytical and experimental tools, we show that this model is able to account for a number of empirical observations otherwise unaccounted for by the MAX model, and is more robust with respect to the realistic limitations imposed by the available neural hardware. We then discuss how these results, currently restricted to a simple visual detection task, may extend to a wider range of problems in sensory processing. PMID:21212835

  17. Observing (non)linear lattice dynamics in graphite by ultrafast Kikuchi diffraction

    PubMed Central

    Liang, Wenxi; Vanacore, Giovanni M.; Zewail, Ahmed H.

    2014-01-01

    In materials, the nature of the strain–stress relationship, which is fundamental to their properties, is determined by both the linear and nonlinear elastic responses. Whereas the linear response can be measured by various techniques, the nonlinear behavior is nontrivial to probe and to reveal its nature. Here, we report the methodology of time-resolved Kikuchi diffraction for mapping the (non)linear elastic response of nanoscale graphite following an ultrafast, impulsive strain excitation. It is found that the longitudinal wave propagating along the c-axis exhibits echoes with a frequency of 9.1 GHz, which indicates the reflections of strain between the two surfaces of the material with a speed of ∼4 km/s. Because Kikuchi diffraction enables the probing of strain in the transverse direction, we also observed a higher-frequency mode at 75.5 GHz, which has a relatively long lifetime, on the order of milliseconds. The fluence dependence and the polarization properties of this nonlinear mode are entirely different from those of the linear, longitudinal mode, and here we suggest a localized breather motion in the a-b plane as the origin of the nonlinear shear dynamics. The approach presented in this contribution has the potential for a wide range of applications because most crystalline materials exhibit Kikuchi diffraction. PMID:24706785

  18. Quantification of high-power ultrasound induced damage on potato starch granules using light microscopy.

    PubMed

    Zuo, Yue Yue J; Hébraud, Pascal; Hemar, Yacine; Ashokkumar, Muthupandian

    2012-05-01

    A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Ecological drivers of guanaco recruitment: variable carrying capacity and density dependence.

    PubMed

    Marino, Andrea; Pascual, Miguel; Baldi, Ricardo

    2014-08-01

    Ungulates living in predator-free reserves offer the opportunity to study the influence of food limitation on population dynamics without the potentially confounding effects of top-down regulation or livestock competition. We assessed the influence of relative forage availability and population density on guanaco recruitment in two predator-free reserves in eastern Patagonia, with contrasting scenarios of population density. We also explored the relative contribution of the observed recruitment to population growth using a deterministic linear model to test the assumption that the studied populations were closed units. The observed densities increased twice as fast as our theoretical populations, indicating that marked immigration has taken place during the recovery phase experienced by both populations, thus we rejected the closed-population assumption. Regarding the factors driving variation in recruitment, in the low- to medium-density setting, we found a positive linear relationship between recruitment and surrogates of annual primary production, whereas no density dependence was detected. In contrast, in the high-density scenario, both annual primary production and population density showed marked effects, indicating a positive relationship between recruitment and per capita food availability above a food-limitation threshold. Our results support the idea that environmental carrying capacity fluctuates in response to climatic variation, and that these fluctuations have relevant consequences for herbivore dynamics, such as amplifying density dependence in drier years. We conclude that including the coupling between environmental variability in resources and density dependence is crucial to model ungulate population dynamics; to overlook temporal changes in carrying capacity may even mask density dependence as well as other important processes.

  20. Is there a chronic sleep stage-dependent linear and nonlinear cardiac autonomic impairment in obstructive sleep apnea?

    PubMed

    Trimer, R; Mendes, R G; Costa, F S M; Sampaio, L M M; Delfino, A; Arena, R; Aletti, F; Ferrario, M; Borghi-Silva, A

    2014-05-01

    Obstructive sleep apnea (OSA) is a respiratory disorder that has the potential to negatively impact heart rate variability (HRV) during the sleep cycle. However, it is uncertain whether there is a chronic sleep stage-dependent linear and nonlinear cardiac autonomic impairment in OSA. The aim of this study was to perform HRV analysis in apnea-free samples as well as during stage 2 and rapid eye movement (REM) sleep in mild and moderate OSA (MiOSA and MOSA, respectively) subjects as well as health controls (NonOSA). This study included 20 MiOSA (37 ± 14 years), 20 MOSA (39 ± 8 years), and 18 NonOSA (36 ± 8 years) subjects. Subjects underwent in-laboratory overnight polysomnography with electrocardiography recording. HRV indices were obtained by analyzing the R-R intervals (RRis) in 5-min apnea-free samples by the linear frequency domain [low frequency (LF), high frequency (HF) and LF/HF], Poincaré plot [standard deviation (SD1) and (SD2)], recurrence plot [mean line length (Lmean)], recurrence rate (REC), determinism (DET), and Shannon entropy (ShanEn). The MOSA group presented with higher LF, LF/HF, and DET indices compared to NonOSA as well as a lower parasympathetic index (HF), suggesting sympathetic hyperactivity in MOSA subjects. Interestingly, MiOSA subjects failed to show the expected linear HRV difference between sleep stages, as observed in NonOSA, which may represent an early onset of autonomic impairment at this stage of OSA. In OSA patients, there is a chronic sleep stage-dependent impairment of linear and nonlinear cardiac autonomic modulation. Interestingly, this impairment may be identifiable during the early stages of the disease.

  1. The limiting velocity effect in a magnetically held discharge with a moving wall

    NASA Astrophysics Data System (ADS)

    Drobyshevskii, E. M.; Zhukov, B. G.; Nazarov, E. V.; Rozov, S. I.; Sokolov, V. M.; Kurakin, R. O.

    1991-08-01

    Experiments are reported in which bodies with a mass of about 1 g were accelerated in nearly constant current regimes by using a discharge magnetically held against the channel wall, with maximum permissible accelerations of 3.5 x 10 exp 6 g and linear current densities of 60 kA/mm. A saturation of the velocity was observed at 4-6 mm/microsec. The velocity limit does not depend on the current intensity and duration or linear electrode inductance and is proportional to m exp -1/2; it is practically unaffected by the characteristics of body friction against the channel walls and by small deviations of the current pulse shape from its constant value. A simple empirical theory is proposed which provides an adequate description of the experimentally observed phenomena.

  2. State-Dependent Pseudo-Linear Filter for Spacecraft Attitude and Rate Estimation

    NASA Technical Reports Server (NTRS)

    Bar-Itzhack, Itzhack Y.; Harman, Richard R.

    2001-01-01

    This paper presents the development and performance of a special algorithm for estimating the attitude and angular rate of a spacecraft. The algorithm is a pseudo-linear Kalman filter, which is an ordinary linear Kalman filter that operates on a linear model whose matrices are current state estimate dependent. The nonlinear rotational dynamics equation of the spacecraft is presented in the state space as a state-dependent linear system. Two types of measurements are considered. One type is a measurement of the quaternion of rotation, which is obtained from a newly introduced star tracker based apparatus. The other type of measurement is that of vectors, which permits the use of a variety of vector measuring sensors like sun sensors and magnetometers. While quaternion measurements are related linearly to the state vector, vector measurements constitute a nonlinear function of the state vector. Therefore, in this paper, a state-dependent linear measurement equation is developed for the vector measurement case. The state-dependent pseudo linear filter is applied to simulated spacecraft rotations and adequate estimates of the spacecraft attitude and rate are obtained for the case of quaternion measurements as well as of vector measurements.

  3. How does the isomerization rate affect the photoisomerization-induced transport properties of a doped molecular glass-former?

    NASA Astrophysics Data System (ADS)

    Accary, J.-B.; Teboul, V.

    2013-07-01

    We investigate the effect of the isomerization rate f on the microscopic mechanisms at the origin of the massive mass transport found in glass-formers doped with isomerizing azobenzene molecules that result in surface relief gratings formation. To this end we simulate the isomerization of dispersed probe molecules embedded into a molecular host glass-former. The host diffusion coefficient first increases linearly with f and then saturates. The saturated value of the diffusion coefficient and of the viscosity does not depend on f but increases with temperature while the linear response for these transport coefficients depends only slightly on the temperature. We interpret this saturation as arising from the appearance of increasingly soft regions around the probes for high isomerization rates, a result in qualitative agreement with experiments. These two different physical behaviors, linear response and saturation, are reminiscent of the two different unexplained mass transport mechanisms observed for small or large light intensities (for small intensities the molecules move towards the dark regions while for large intensities they move towards the illuminated regions).

  4. A METHOD TO EXTRACT THE REDSHIFT DISTORTION {beta} PARAMETER IN CONFIGURATION SPACE FROM MINIMAL COSMOLOGICAL ASSUMPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tocchini-Valentini, Domenico; Barnard, Michael; Bennett, Charles L.

    2012-10-01

    We present a method to extract the redshift-space distortion {beta} parameter in configuration space with a minimal set of cosmological assumptions. We show that a novel combination of the observed monopole and quadrupole correlation functions can remove efficiently the impact of mild nonlinearities and redshift errors. The method offers a series of convenient properties: it does not depend on the theoretical linear correlation function, the mean galaxy density is irrelevant, only convolutions are used, and there is no explicit dependence on linear bias. Analyses based on dark matter N-body simulations and Fisher matrix demonstrate that errors of a few percentmore » on {beta} are possible with a full-sky, 1 (h {sup -1} Gpc){sup 3} survey centered at a redshift of unity and with negligible shot noise. We also find a baryonic feature in the normalized quadrupole in configuration space that should complicate the extraction of the growth parameter from the linear theory asymptote, but that does not have a major impact on our method.« less

  5. Pt/ZnO nanoarray nanogenerator as self-powered active gas sensor with linear ethanol sensing at room temperature.

    PubMed

    Zhao, Yayu; Lai, Xuan; Deng, Ping; Nie, Yuxin; Zhang, Yan; Xing, Lili; Xue, Xinyu

    2014-03-21

    A self-powered gas sensor that can actively detect ethanol at room temperature has been realized from a Pt/ZnO nanoarray nanogenerator. Pt nanoparticles are uniformly distributed on the whole surface of ZnO nanowires. The piezoelectric output of Pt/ZnO nanoarrays can act not only as a power source, but also as a response signal to ethanol at room temperature. Upon exposure to dry air and 1500 ppm ethanol at room temperature, the piezoelectric output of the device under the same compressive strain is 0.672 and 0.419 V, respectively. Moreover, a linear dependence of the sensitivity on the ethanol concentration is observed. Such a linear ethanol sensing at room temperature can be attributed to the atmosphere-dependent variety of the screen effect on the piezoelectric output of ZnO nanowires, the catalytic properties of Pt nanoparticles, and the Schottky barriers at Pt/ZnO interfaces. The present results can stimulate research in the direction of designing new material systems for self-powered room-temperature gas sensing.

  6. Strength of anisotropy in a granular material: Linear versus nonlinear contact model

    NASA Astrophysics Data System (ADS)

    La Ragione, Luigi; Gammariello, Marica; Recchia, Giuseppina

    2016-12-01

    In this paper, we deal with anisotropy in an idealized granular material made of a collection of frictional, elastic, contacting particles. We present a theoretical analysis for an aggregate of particles isotropically compressed and then sheared, in which two possible contacts laws between particles are considered: a linear contact law, where the contact stiffness is constant; and a nonlinear contact law, where the contact stiffness depends on the overlapping between particles. In the former case the anisotropy observed in the aggregate is associated with particle arrangement. In fact, although the aggregate is initially characterized by an isotropic network of contacts, during the loading, an anisotropic texture develops, which is measured by a fabric tensor. With a nonlinear contact law it is possible to develop anisotropy because contacting stiffnesses are different, depending on the orientation of the contact vectors with respect to the axis of the applied deformation. We find that before the peak load is reached, an aggregate made of particles with a linear contact law develops a much smaller anisotropy compared with that of an aggregate with a nonlinear law.

  7. Optical chirality in AgCl-Ag thin films through formation of laser-induced planar crossed-chain nanostructures

    NASA Astrophysics Data System (ADS)

    Nahal, Arashmid; Kashani, Somayeh

    2017-09-01

    Irradiation of AgCl-Ag thin films by a linearly polarized He-Ne laser beam results in the formation of self-organized periodic nanostructures. As a result of secondary irradiation of the initially exposed sample by the same linearly polarized He-Ne laser beam, but with different orientations of polarization, a complex crossed-chain nanostructure forms. We found that such a complex nanostructure has noticeable chirality and increased optical anisotropy, resulting in optical activity of the sample. Double exposure produces two gratings, crossing each other with angle α, which leads to the formation of crossed building blocks with chiroptical effects. It is established that the amount and the sign of the angle between the two laser-induced gratings (±α) determine the amount and the direction of rotation of the linearly polarized probe beam, respectively. We have also observed an induced anisotropy-dependent ellipticity for the probe light, which is passed through the sample. It is shown that the amount of ellipticity depends on the angle α.

  8. Effect of gravity opientation on the thermal performance of Stirling-type pulse tube cryocoolers

    NASA Technical Reports Server (NTRS)

    Ronald, Ross G., Jr.; Johnson, D. L.

    2003-01-01

    This paper extends the investigation of angular orientation effects to the refrigeration performance of high frequency (-40 Hz) Stirling-type pulse tube cryocoolers typical of those used in long-life space applications. Strong orientation effects on the performance of such cryocoolers have recently been observed during system-level testing of both linear and U-tube type pulse tubes. To quantify the angular dependency effects, data have been gathered on both U-tube and linear type pulse tubes of two different manufacturers as a function of orientation angle, cold-tip temperature, and compressor stroke.

  9. Study of the dependence of direct soft photon production on the jet characteristics in hadronic Z 0 decays

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; DELPHI Collaboration

    2010-06-01

    An analysis of the direct soft photon production rate as a function of the parent jet characteristics is presented, based on hadronic events collected by the DELPHI experiment at LEP1. The dependences of the photon rates on the jet kinematic characteristics (momentum, mass, etc.) and on the jet charged, neutral and total hadron multiplicities are reported. Up to a scale factor of about four, which characterizes the overall value of the soft photon excess, a similarity of the observed soft photon behavior to that of the inner hadronic bremsstrahlung predictions is found for the momentum, mass, and jet charged multiplicity dependences. However for the dependence of the soft photon rate on the jet neutral and total hadron multiplicities a prominent difference is found for the observed soft photon signal as compared to the expected bremsstrahlung from final state hadrons. The observed linear increase of the soft photon production rate with the jet total hadron multiplicity and its strong dependence on the jet neutral multiplicity suggest that the rate is proportional to the number of quark pairs produced in the fragmentation process, with the neutral pairs being more effectively radiating than the charged ones.

  10. Dependence of Raman Spectral Intensity on Crystal Size in Organic Nano Energetics.

    PubMed

    Patel, Rajen B; Stepanov, Victor; Qiu, Hongwei

    2016-08-01

    Raman spectra for various nitramine energetic compounds were investigated as a function of crystal size at the nanoscale regime. In the case of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20), there was a linear relationship between intensity of Raman spectra and crystal size. Notably, the Raman modes between 120 cm(-1) and 220 cm(-1) were especially affected, and at the smallest crystal size, were completely eliminated. The Raman spectral intensity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), like that of CL-20's, depended linearly on crystal size. The Raman spectral intensity of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), however, was not observably changed by crystal size. A non-nitramine explosive compound, 2,4,6-triamino-1,3,5- trinitrobenzene (TATB), was also investigated. Its spectral intensity was also found to correlate linearly with crystal size, although substantially less so than that of HMX and CL-20. To explain the observed trends, it is hypothesized that disordered molecular arrangement, originating from the crystal surface, may be responsible. In particular, it appears that the thickness of the disordered surface layer is dependent on molecular characteristics, including size and conformational flexibility. Furthermore, as the mean crystal size decreases, the volume fraction of disordered molecules within a specimen increases, consequently, weakening the Raman intensity. These results could have practical benefit for allowing the facile monitoring of crystal size during manufacturing. Finally, these findings could lead to deep insights into the general structure of the surface of crystals. © The Author(s) 2016.

  11. Frequency and field dependent dynamic properties of CoFe{sub 2−x}Al{sub x}O{sub 4} ferrite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuanr, Bijoy K.; Department of Physics, University of Colorado, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918; Mishra, S.R., E-mail: srmishra@memphis.edu

    2016-04-15

    Highlights: “CoFe{sub 2−x} Al{sub x}O{sub 4} ferrite nanoparticles: Static and dynamic properties” • Grain size reduction with Al{sup 3+} content. • Reduction in Ms, Hc, with increasing Al{sup 3+} content. • Increase in resonance frequency with applied field. • Decrease in resonance field with increase in Al{sup 3+} content. • Decrease in Gilbert parameter with increase in Al{sup 3+} content. - Abstract: Aluminum doped CoFe{sub 2−x}Al{sub x}O{sub 4} (0 ≤ x ≤ 0.9) nanoparticles were synthesized via auto-combustion. Formation of single phase cubic spinel structure was confirmed by X-ray diffraction (XRD) analysis. XRD analysis suggests a linear decrease in latticemore » cell parameters and grain size (90–55 nm) with the increase in Al{sup 3+} content. The saturation magnetization of samples decrease with increasing Al{sup 3+} content due to magnetic dilution effect. A concomitant linear reduction in coercivity was also observed mainly due to decrease in magnetic anisotropy. Frequency and field dependent dynamic properties of nanoparticles were studied by ferromagnetic resonance (FMR) technique. The resonance frequency increases linearly with magnetic field for all nanoparticles. Magnetic field dependent experimental absorption data (S{sub 21} vs. frequency) were compared with effective medium theory considering an effective demagnetization field and was observed to be in good agreement with each other. High Al{sup 3+} content reduces the Gilbert damping parameter thus making CoFe{sub 2−x}Al{sub x}O{sub 4} as an attractive material for high frequency applications.« less

  12. Using Example Generation to Explore Students' Understanding of the Concepts of Linear Dependence/Independence in Linear Algebra

    ERIC Educational Resources Information Center

    Aydin, Sinan

    2014-01-01

    Linear algebra is a basic mathematical subject taught in mathematics and science depar-tments of universities. The teaching and learning of this course has always been difficult. This study aims to contribute to the research in linear algebra education, focusing on linear dependence and independence concepts. This was done by introducing…

  13. Observation of non-linear biomass-capacitance correlations: reasons and implications for bioprocess control.

    PubMed

    Maskow, Thomas; Röllich, Anita; Fetzer, Ingo; Yao, Jun; Harms, Hauke

    2008-09-15

    Electrical capacitance has been discussed as a real time measure for living biomass concentration in technical bioreactors such as brewery (fermentation) tanks. Commonly, a linear correlation between biomass concentration and capacitance is assumed. While following the growth and subsequent lipid formation of the yeast Arxula adeninivorans we observed non-linearity between biomass concentration and capacitance. Capacitance deviation from linearity coincided with incipient lipid formation and depended on the intracellular lipid content. As the extent of deviation between capacitance and biomass concentration was proportional to the lipid concentration, it was considered as a quantitative measure of intracellular product formation. The correlation between shifts in dielectric relaxation (summarized as characteristic frequency of the Cole-Cole equation) and lipid content could not be explained by interfacial polarization on the lipid droplets alone. However, the parameters of the Cole-Cole equation were found to be a clear indicator for different phases of growth and lipid production. Integrating all results in a redundancy analysis (RDA), we were able to accurately describe the formation of cellular lipid inclusions. Our measurements are thus potentially valuable as components of future bioprocess control strategies targeting intracellular products such as proteins or biopolyesters.

  14. Defect-mediated phonon dynamics in TaS2 and WSe2

    PubMed Central

    Cremons, Daniel R.; Plemmons, Dayne A.; Flannigan, David J.

    2017-01-01

    We report correlative crystallographic and morphological studies of defect-dependent phonon dynamics in single flakes of 1T-TaS2 and 2H-WSe2 using selected-area diffraction and bright-field imaging in an ultrafast electron microscope. In both materials, we observe in-plane speed-of-sound acoustic-phonon wave trains, the dynamics of which (i.e., emergence, propagation, and interference) are strongly dependent upon discrete interfacial features (e.g., vacuum/crystal and crystal/crystal interfaces). In TaS2, we observe cross-propagating in-plane acoustic-phonon wave trains of differing frequencies that undergo coherent interference approximately 200 ps after initial emergence from distinct interfacial regions. With ultrafast bright-field imaging, the properties of the interfering wave trains are observed to correspond to the beat frequency of the individual oscillations, while intensity oscillations of Bragg spots generated from selected areas within the region of interest match well with the real-space dynamics. In WSe2, distinct acoustic-phonon dynamics are observed emanating and propagating away from structurally dissimilar morphological discontinuities (vacuum/crystal interface and crystal terrace), and results of ultrafast selected-area diffraction reveal thickness-dependent phonon frequencies. The overall observed dynamics are well-described using finite element analysis and time-dependent linear-elastic continuum mechanics. PMID:28503630

  15. Evidence for the Concerted Evolution between Short Linear Protein Motifs and Their Flanking Regions

    PubMed Central

    Chica, Claudia; Diella, Francesca; Gibson, Toby J.

    2009-01-01

    Background Linear motifs are short modules of protein sequences that play a crucial role in mediating and regulating many protein–protein interactions. The function of linear motifs strongly depends on the context, e.g. functional instances mainly occur inside flexible regions that are accessible for interaction. Sometimes linear motifs appear as isolated islands of conservation in multiple sequence alignments. However, they also occur in larger blocks of sequence conservation, suggesting an active role for the neighbouring amino acids. Results The evolution of regions flanking 116 functional linear motif instances was studied. The conservation of the amino acid sequence and order/disorder tendency of those regions was related to presence/absence of the instance. For the majority of the analysed instances, the pairs of sequences conserving the linear motif were also observed to maintain a similar local structural tendency and/or to have higher local sequence conservation when compared to pairs of sequences where one is missing the linear motif. Furthermore, those instances have a higher chance to co–evolve with the neighbouring residues in comparison to the distant ones. Those findings are supported by examples where the regulation of the linear motif–mediated interaction has been shown to depend on the modifications (e.g. phosphorylation) at neighbouring positions or is thought to benefit from the binding versatility of disordered regions. Conclusion The results suggest that flanking regions are relevant for linear motif–mediated interactions, both at the structural and sequence level. More interestingly, they indicate that the prediction of linear motif instances can be enriched with contextual information by performing a sequence analysis similar to the one presented here. This can facilitate the understanding of the role of these predicted instances in determining the protein function inside the broader context of the cellular network where they arise. PMID:19584925

  16. Effect Size Measure and Analysis of Single Subject Designs

    ERIC Educational Resources Information Center

    Society for Research on Educational Effectiveness, 2013

    2013-01-01

    One of the vexing problems in the analysis of SSD is in the assessment of the effect of intervention. Serial dependence notwithstanding, the linear model approach that has been advanced involves, in general, the fitting of regression lines (or curves) to the set of observations within each phase of the design and comparing the parameters of these…

  17. Reaction fronts of the autocatalytic hydrogenase reaction

    NASA Astrophysics Data System (ADS)

    Gyevi-Nagy, László; Lantos, Emese; Gehér-Herczegh, Tünde; Tóth, Ágota; Bagyinka, Csaba; Horváth, Dezső

    2018-04-01

    We have built a model to describe the hydrogenase catalyzed, autocatalytic, reversible hydrogen oxidation reaction where one of the enzyme forms is the autocatalyst. The model not only reproduces the experimentally observed front properties, but also explains the found hydrogen ion dependence. Furthermore, by linear stability analysis, two different front types are found in good agreement with the experiments.

  18. Multiple linear regression analysis

    NASA Technical Reports Server (NTRS)

    Edwards, T. R.

    1980-01-01

    Program rapidly selects best-suited set of coefficients. User supplies only vectors of independent and dependent data and specifies confidence level required. Program uses stepwise statistical procedure for relating minimal set of variables to set of observations; final regression contains only most statistically significant coefficients. Program is written in FORTRAN IV for batch execution and has been implemented on NOVA 1200.

  19. Aircraft type influence on contrail properties

    NASA Astrophysics Data System (ADS)

    Jeßberger, P.; Voigt, C.; Schumann, U.; Sölch, I.; Schlager, H.; Kaufmann, S.; Petzold, A.; Schäuble, D.; Gayet, J.-F.

    2013-05-01

    The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of type A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in-situ instruments on board the DLR research aircraft Falcon. Within the 2 min old contrails detected near ice saturation, we find similar effective diameters Deff (5.2-5.9 μm), but differences in particle number densities nice (162-235 cm-3) and in vertical contrail extensions (120-290 m), resulting in large differences in contrail optical depths τ (0.25-0.94). Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and in addition the Contrail and Cirrus Prediction model CoCiP to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. An aircraft dependence of climate relevant contrail properties persists during contrail lifetime, adding importance to aircraft dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with fuel flow rate as confirmed by observations. For higher saturation ratios approximations from theory suggest a non-linear increase in the form (RHI-1)2/3. Summarized our combined results could help to more accurately assess the climate impact from aviation using an aircraft dependent contrail parameterization.

  20. Aircraft type influence on contrail properties

    NASA Astrophysics Data System (ADS)

    Jeßberger, P.; Voigt, C.; Schumann, U.; Sölch, I.; Schlager, H.; Kaufmann, S.; Petzold, A.; Schäuble, D.; Gayet, J.-F.

    2013-12-01

    The investigation of the impact of aircraft parameters on contrail properties helps to better understand the climate impact from aviation. Yet, in observations, it is a challenge to separate aircraft and meteorological influences on contrail formation. During the CONCERT campaign in November 2008, contrails from 3 Airbus passenger aircraft of types A319-111, A340-311 and A380-841 were probed at cruise under similar meteorological conditions with in situ instruments on board DLR research aircraft Falcon. Within the 2 min-old contrails detected near ice saturation, we find similar effective diameters Deff (5.2-5.9 μm), but differences in particle number densities nice (162-235 cm-3) and in vertical contrail extensions (120-290 m), resulting in large differences in contrail optical depths τ at 550 nm (0.25-0.94). Hence larger aircraft produce optically thicker contrails. Based on the observations, we apply the EULAG-LCM model with explicit ice microphysics and, in addition, the Contrail and Cirrus Prediction (CoCiP) model to calculate the aircraft type impact on young contrails under identical meteorological conditions. The observed increase in τ for heavier aircraft is confirmed by the models, yet for generally smaller τ. CoCiP model results suggest that the aircraft dependence of climate-relevant contrail properties persists during contrail lifetime, adding importance to aircraft-dependent model initialization. We finally derive an analytical relationship between contrail, aircraft and meteorological parameters. Near ice saturation, contrail width × τ scales linearly with the fuel flow rate, as confirmed by observations. For higher relative humidity with respect to ice (RHI), the analytical relationship suggests a non-linear increase in the form (RHI-12/3. Summarized, our combined results could help to more accurately assess the climate impact from aviation using an aircraft-dependent contrail parameterization.

  1. Several localized waves induced by linear interference between a nonlinear plane wave and bright solitons

    NASA Astrophysics Data System (ADS)

    Qin, Yan-Hong; Zhao, Li-Chen; Yang, Zhan-Ying; Yang, Wen-Li

    2018-01-01

    We investigate linear interference effects between a nonlinear plane wave and bright solitons, which are admitted by a pair-transition coupled two-component Bose-Einstein condensate. We demonstrate that the interference effects can induce several localized waves possessing distinctive wave structures, mainly including anti-dark solitons, W-shaped solitons, multi-peak solitons, Kuznetsov-Ma like breathers, and multi-peak breathers. Specifically, the explicit conditions for them are clarified by a phase diagram based on the linear interference properties. Furthermore, the interactions between these localized waves are discussed. The detailed analysis indicates that the soliton-soliton interaction induced phase shift brings the collision between these localized waves which can be inelastic for solitons involving collision and can be elastic for breathers. These characters come from the fact that the profile of solitons depends on the relative phase between bright solitons and a plane wave, and the profile of breathers does not depend on the relative phase. These results would motivate more discussions on linear interference between other nonlinear waves. Specifically, the solitons or breathers obtained here are not related to modulational instability. The underlying reasons are discussed in detail. In addition, possibilities to observe these localized waves are discussed in a two species Bose-Einstein condensate.

  2. Mechanical confinement triggers glioma linear migration dependent on formin FHOD3

    PubMed Central

    Monzo, Pascale; Chong, Yuk Kien; Guetta-Terrier, Charlotte; Krishnasamy, Anitha; Sathe, Sharvari R.; Yim, Evelyn K. F.; Ng, Wai Hoe; Ang, Beng Ti; Tang, Carol; Ladoux, Benoit; Gauthier, Nils C.; Sheetz, Michael P.

    2016-01-01

    Glioblastomas are extremely aggressive brain tumors with highly invasive properties. Brain linear tracks such as blood vessel walls constitute their main invasive routes. Here we analyze rat C6 and patient-derived glioma cell motility in vitro using micropatterned linear tracks to mimic blood vessels. On laminin-coated tracks (3–10 μm), these cells used an efficient saltatory mode of migration similar to their in vivo migration. This saltatory migration was also observed on larger tracks (50–400 μm in width) at high cell densities. In these cases, the mechanical constraints imposed by neighboring cells triggered this efficient mode of migration, resulting in the formation of remarkable antiparallel streams of cells along the tracks. This motility involved microtubule-dependent polarization, contractile actin bundles and dynamic paxillin-containing adhesions in the leading process and in the tail. Glioma linear migration was dramatically reduced by inhibiting formins but, surprisingly, accelerated by inhibiting Arp2/3. Protein expression and phenotypic analysis indicated that the formin FHOD3 played a role in this motility but not mDia1 or mDia2. We propose that glioma migration under confinement on laminin relies on formins, including FHOD3, but not Arp2/3 and that the low level of adhesion allows rapid antiparallel migration. PMID:26912794

  3. On the zero-bias anomaly and Kondo physics in quantum point contacts near pinch-off.

    PubMed

    Xiang, S; Xiao, S; Fuji, K; Shibuya, K; Endo, T; Yumoto, N; Morimoto, T; Aoki, N; Bird, J P; Ochiai, Y

    2014-03-26

    We investigate the linear and non-linear conductance of quantum point contacts (QPCs), in the region near pinch-off where Kondo physics has previously been connected to the appearance of the 0.7 feature. In studies of seven different QPCs, fabricated in the same high-mobility GaAs/AlGaAs heterojunction, the linear conductance is widely found to show the presence of the 0.7 feature. The differential conductance, on the other hand, does not generally exhibit the zero-bias anomaly (ZBA) that has been proposed to indicate the Kondo effect. Indeed, even in the small subset of QPCs found to exhibit such an anomaly, the linear conductance does not always follow the universal temperature-dependent scaling behavior expected for the Kondo effect. Taken collectively, our observations demonstrate that, unlike the 0.7 feature, the ZBA is not a generic feature of low-temperature QPC conduction. We furthermore conclude that the mere observation of the ZBA alone is insufficient evidence for concluding that Kondo physics is active. While we do not rule out the possibility that the Kondo effect may occur in QPCs, our results appear to indicate that its observation requires a very strict set of conditions to be satisfied. This should be contrasted with the case of the 0.7 feature, which has been apparent since the earliest experimental investigations of QPC transport.

  4. The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots.

    PubMed

    Narayanaswamy, Arun; Feiner, L F; Meijerink, A; van der Zaag, P J

    2009-09-22

    Visual color changes between 300 and 510 K were observed in the photoluminescence (PL) of colloidal InP/ZnS core-shell nanocrystals. A subsequent study of PL spectra in the range 2-510 K and fitting the temperature dependent line shift and line width to theoretical models show that the dominant (dephasing) interaction is due to scattering by acoustic phonons of about 23 meV. Low temperature photoluminescence excitation measurements show that the excitonic band gap depends approximately inversely linearly on the quantum dot size d, which is distinctly weaker than the dependence predicted by current theories.

  5. Nonlinear aeroacoustic characterization of Helmholtz resonators with a local-linear neuro-fuzzy network model

    NASA Astrophysics Data System (ADS)

    Förner, K.; Polifke, W.

    2017-10-01

    The nonlinear acoustic behavior of Helmholtz resonators is characterized by a data-based reduced-order model, which is obtained by a combination of high-resolution CFD simulation and system identification. It is shown that even in the nonlinear regime, a linear model is capable of describing the reflection behavior at a particular amplitude with quantitative accuracy. This observation motivates to choose a local-linear model structure for this study, which consists of a network of parallel linear submodels. A so-called fuzzy-neuron layer distributes the input signal over the linear submodels, depending on the root mean square of the particle velocity at the resonator surface. The resulting model structure is referred to as an local-linear neuro-fuzzy network. System identification techniques are used to estimate the free parameters of this model from training data. The training data are generated by CFD simulations of the resonator, with persistent acoustic excitation over a wide range of frequencies and sound pressure levels. The estimated nonlinear, reduced-order models show good agreement with CFD and experimental data over a wide range of amplitudes for several test cases.

  6. Probabilistic quantum cloning of a subset of linearly dependent states

    NASA Astrophysics Data System (ADS)

    Rui, Pinshu; Zhang, Wen; Liao, Yanlin; Zhang, Ziyun

    2018-02-01

    It is well known that a quantum state, secretly chosen from a certain set, can be probabilistically cloned with positive cloning efficiencies if and only if all the states in the set are linearly independent. In this paper, we focus on probabilistic quantum cloning of a subset of linearly dependent states. We show that a linearly-independent subset of linearly-dependent quantum states {| Ψ 1⟩,| Ψ 2⟩,…,| Ψ n ⟩} can be probabilistically cloned if and only if any state in the subset cannot be expressed as a linear superposition of the other states in the set {| Ψ 1⟩,| Ψ 2⟩,…,| Ψ n ⟩}. The optimal cloning efficiencies are also investigated.

  7. Koopman decomposition of Burgers' equation: What can we learn?

    NASA Astrophysics Data System (ADS)

    Page, Jacob; Kerswell, Rich

    2017-11-01

    Burgers' equation is a well known 1D model of the Navier-Stokes equations and admits a selection of equilibria and travelling wave solutions. A series of Burgers' trajectories are examined with Dynamic Mode Decomposition (DMD) to probe the capability of the method to extract coherent structures from ``run-down'' simulations. The performance of the method depends critically on the choice of observable. We use the Cole-Hopf transformation to derive an observable which has linear, autonomous dynamics and for which the DMD modes overlap exactly with Koopman modes. This observable can accurately predict the flow evolution beyond the time window of the data used in the DMD, and in that sense outperforms other observables motivated by the nonlinearity in the governing equation. The linearizing observable also allows us to make informed decisions about often ambiguous choices in nonlinear problems, such as rank truncation and snapshot spacing. A number of rules of thumb for connecting DMD with the Koopman operator for nonlinear PDEs are distilled from the results. Related problems in low Reynolds number fluid turbulence are also discussed.

  8. Experimental observation and determination of the laser-induced frequency shift of hyperfine levels of ultracold polar molecules

    NASA Astrophysics Data System (ADS)

    Liu, Wenliang; Wang, Xiaofeng; Wu, Jizhou; Su, Xingliang; Wang, Shen; Sovkov, Vladimir B.; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2017-08-01

    We report on the experimental observation and quantitative determination of the laser-induced frequency shift (LIFS) of the ultracold polar molecules formed by photoassociation (PA). The experiments are performed by detecting a series of double PA spectra with a molecular hyperfine structure, which are induced by two PA lasers with a precise and adjustable frequency reference. We find that the LIFS of the molecular hyperfine levels shows a linear dependence on PA laser intensity.

  9. Dependences of Ratio of the Luminosity to Ionization on Velocity and Chemical Composition of Meteors

    NASA Technical Reports Server (NTRS)

    Narziev, M.

    2011-01-01

    On the bases of results simultaneous photographic and radio echo observations, the results complex radar and television observations of meteors and also results of laboratory modeling of processes of a luminescence and ionization, correlation between of luminous intensity Ip to linear electronic density q from of velocities and chemical structure are investigated. It is received that by increasing value of velocities of meteors and decrease of nuclear weight of substance of particles, lg Ip/q decreased more than one order.

  10. Control of electronic transport in graphene by electromagnetic dressing

    PubMed Central

    Kristinsson, K.; Kibis, O. V.; Morina, S.; Shelykh, I. A.

    2016-01-01

    We demonstrated theoretically that the renormalization of the electron energy spectrum near the Dirac point of graphene by a strong high-frequency electromagnetic field (dressing field) drastically depends on polarization of the field. Namely, linear polarization results in an anisotropic gapless energy spectrum, whereas circular polarization leads to an isotropic gapped one. As a consequence, the stationary (dc) electronic transport in graphene strongly depends on parameters of the dressing field: A circularly polarized field monotonically decreases the isotropic conductivity of graphene, whereas a linearly polarized one results in both giant anisotropy of conductivity (which can reach thousands of percents) and the oscillating behavior of the conductivity as a function of the field intensity. Since the predicted phenomena can be observed in a graphene layer irradiated by a monochromatic electromagnetic wave, the elaborated theory opens a substantially new way to control electronic properties of graphene with light. PMID:26838371

  11. Laser printed nano-gratings: orientation and period peculiarities

    NASA Astrophysics Data System (ADS)

    Stankevič, Valdemar; Račiukaitis, Gediminas; Bragheri, Francesca; Wang, Xuewen; Gamaly, Eugene G.; Osellame, Roberto; Juodkazis, Saulius

    2017-01-01

    Understanding of material behaviour at nanoscale under intense laser excitation is becoming critical for future application of nanotechnologies. Nanograting formation by linearly polarised ultra-short laser pulses has been studied systematically in fused silica for various pulse energies at 3D laser printing/writing conditions, typically used for the industrial fabrication of optical elements. The period of the nanogratings revealed a dependence on the orientation of the scanning direction. A tilt of the nanograting wave vector at a fixed laser polarisation was also observed. The mechanism responsible for this peculiar dependency of several features of the nanogratings on the writing direction is qualitatively explained by considering the heat transport flux in the presence of a linearly polarised electric field, rather than by temporal and spatial chirp of the laser beam. The confirmed vectorial nature of the light-matter interaction opens new control of material processing with nanoscale precision.

  12. Control of electronic transport in graphene by electromagnetic dressing.

    PubMed

    Kristinsson, K; Kibis, O V; Morina, S; Shelykh, I A

    2016-02-03

    We demonstrated theoretically that the renormalization of the electron energy spectrum near the Dirac point of graphene by a strong high-frequency electromagnetic field (dressing field) drastically depends on polarization of the field. Namely, linear polarization results in an anisotropic gapless energy spectrum, whereas circular polarization leads to an isotropic gapped one. As a consequence, the stationary (dc) electronic transport in graphene strongly depends on parameters of the dressing field: A circularly polarized field monotonically decreases the isotropic conductivity of graphene, whereas a linearly polarized one results in both giant anisotropy of conductivity (which can reach thousands of percents) and the oscillating behavior of the conductivity as a function of the field intensity. Since the predicted phenomena can be observed in a graphene layer irradiated by a monochromatic electromagnetic wave, the elaborated theory opens a substantially new way to control electronic properties of graphene with light.

  13. Extending Newton's Universal Theory of Gravity

    NASA Astrophysics Data System (ADS)

    Aisenberg, Sol

    2011-11-01

    This should remove the mystery of Dark Matter. Newton's universal theory of gravity only used the observations of the motion of planets in our solar system. Hubble later used observations of fixed stars in the universe, and showed that the fixed stars were actually galaxies with very large numbers of stars. Newton's universal law of gravity could not explain these new observations without the mystery of dark matter for the additional gravity. In science, when a theory is not able to explain new observations it is necessary to modify the theory or abandon the theory. Rubin observed flat (constant velocity) rotation curves for stars in spiral galaxies. Dark matter was proposed to provide the missing gravity. The equation balancing gravitational force and centripetal force is M*G=v*v*r and for the observed constant velocity v this requires M*G to be a linear function of distance r. If the linear dependence is instead assigned to G instead of M to give a new value for Gn as G+A*r, this will explain the observations in the cosmos and also in our solar system for small r. See ``The Misunderstood Universe'' for more details.

  14. Linear and nonlinear market correlations: Characterizing financial crises and portfolio optimization.

    PubMed

    Haluszczynski, Alexander; Laut, Ingo; Modest, Heike; Räth, Christoph

    2017-12-01

    Pearson correlation and mutual information-based complex networks of the day-to-day returns of U.S. S&P500 stocks between 1985 and 2015 have been constructed to investigate the mutual dependencies of the stocks and their nature. We show that both networks detect qualitative differences especially during (recent) turbulent market periods, thus indicating strongly fluctuating interconnections between the stocks of different companies in changing economic environments. A measure for the strength of nonlinear dependencies is derived using surrogate data and leads to interesting observations during periods of financial market crises. In contrast to the expectation that dependencies reduce mainly to linear correlations during crises, we show that (at least in the 2008 crisis) nonlinear effects are significantly increasing. It turns out that the concept of centrality within a network could potentially be used as some kind of an early warning indicator for abnormal market behavior as we demonstrate with the example of the 2008 subprime mortgage crisis. Finally, we apply a Markowitz mean variance portfolio optimization and integrate the measure of nonlinear dependencies to scale the investment exposure. This leads to significant outperformance as compared to a fully invested portfolio.

  15. Linear and nonlinear market correlations: Characterizing financial crises and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Haluszczynski, Alexander; Laut, Ingo; Modest, Heike; Räth, Christoph

    2017-12-01

    Pearson correlation and mutual information-based complex networks of the day-to-day returns of U.S. S&P500 stocks between 1985 and 2015 have been constructed to investigate the mutual dependencies of the stocks and their nature. We show that both networks detect qualitative differences especially during (recent) turbulent market periods, thus indicating strongly fluctuating interconnections between the stocks of different companies in changing economic environments. A measure for the strength of nonlinear dependencies is derived using surrogate data and leads to interesting observations during periods of financial market crises. In contrast to the expectation that dependencies reduce mainly to linear correlations during crises, we show that (at least in the 2008 crisis) nonlinear effects are significantly increasing. It turns out that the concept of centrality within a network could potentially be used as some kind of an early warning indicator for abnormal market behavior as we demonstrate with the example of the 2008 subprime mortgage crisis. Finally, we apply a Markowitz mean variance portfolio optimization and integrate the measure of nonlinear dependencies to scale the investment exposure. This leads to significant outperformance as compared to a fully invested portfolio.

  16. Particle simulation of ion heating in the ring current

    NASA Technical Reports Server (NTRS)

    Qian, S.; Hudson, M. K.; Roth, I.

    1990-01-01

    Heating of heavy ions has been observed in the equatorial magnetosphere in GEOS 1 and 2 and ATS 6 data due to ion cyclotron waves generated by anisotropic hot ring current ions. A one-dimensional hybrid-Darwin code has been developed to study ion heating in the ring current. Here, a strong instability and heating of thermal ions is investigated in a plasma with a los cone distribution of hot ions. The linear growth rate calculation and particle simulations are conducted for cases with different loss cones and relative ion densities. The linear instability of the waves, the quasi-linear heating of cold ions and dependence on the thermal H(+)/He(+) density ratio are analyzed, as well as nonlinear parallel heating of thermal ions. Effects of thermal oxygen and hot oxygen are also studied.

  17. Towards a universal master curve in magnetorheology

    NASA Astrophysics Data System (ADS)

    Ruiz-López, José Antonio; Hidalgo-Alvarez, Roque; de Vicente, Juan

    2017-05-01

    We demonstrate that inverse ferrofluids behave as model magnetorheological fluids. A universal master curve is proposed, using a reduced Mason number, under the frame of a structural viscosity model where the magnetic field strength dependence is solely contained in the Mason number and the particle concentration is solely contained in the critical Mason number (i.e. the yield stress). A linear dependence of the critical Mason number with the particle concentration is observed that is in good agreement with a mean (average) magnetization approximation, particle level dynamic simulations and micromechanical models available in the literature.

  18. Thermopower of CexR1-xB6 (R=La, Pr and Nd)

    NASA Astrophysics Data System (ADS)

    Kim, Moo‑Sung; Nakai, Yuki; Tou, Hideki; Sera, Masafumi; Iga, Fumitoshi; Takabatake, Toshiro; Kunii, Satoru

    2006-06-01

    The thermopower, S, of CexR1-xB6 (R=La, Pr, Nd) was investigated. S with a positive sign shows a typical behavior observed in the Ce Kondo system, an increase with decreasing temperature at high temperatures and a maximum at low temperatures. The S values of all the systems at high temperatures are roughly linearly dependent on the Ce concentration, indicating the conservation of the single-impurity character of the Kondo effect in a wide x range. However, the maximum value of S, Smax, and the temperature, Tmax, at which Smax is observed exhibit different x dependences between CexLa1-xB6 and CexR1-xB6 (R=Pr, Nd). In CexLa1-xB6, Tmax, which is ˜8 K in CeB6, decreases with decreasing x and converges to ˜1 K in a very dilute alloy and Smax shows an increase below x ˜ 0.1 after decreasing with decreasing x. In CexR1-xB6 (R=Pr, Nd), Tmax shows a weak x dependence but Smax shows a roughly linear decrease in x. These results are discussed from the standpoint of the chemical pressure effect and the Ce-Ce interaction. S in the long-range ordered phase shows very different behaviors between CexPr1-xB6 and CexNd1-xB6.

  19. Fasting Insulin Levels and Metabolic Risk Factors in Type 2 Diabetic Patients at the First Visit in Japan

    PubMed Central

    Matsuba, Ikuro; Saito, Kazumi; Takai, Masahiko; Hirao, Koichi; Sone, Hirohito

    2012-01-01

    OBJECTIVE To investigate the relationship between fasting insulin levels and metabolic risk factors (MRFs) in type 2 diabetic patients at the first clinic/hospital visit in Japan over the years 2000 to 2009. RESEARCH DESIGN AND METHODS In total, 4,798 drug-naive Japanese patients with type 2 diabetes were registered on their first clinic/hospital visits. Conventional clinical factors and fasting insulin levels were observed at baseline within the Japan Diabetes Clinical Data Management (JDDM) study between consecutive 2-year groups. Multiple linear regression analysis was performed using a model in which the dependent variable was fasting insulin values using various clinical explanatory variables. RESULTS Fasting insulin levels were found to be decreasing from 2000 to 2009. Multiple linear regression analysis with the fasting insulin levels as the dependent variable showed that waist circumference (WC), BMI, mean blood pressure, triglycerides, and HDL cholesterol were significant, with WC and BMI as the main factors. ANCOVA after adjustment for age and fasting plasma glucose clearly shows the decreasing trend in fasting insulin levels and the increasing trend in BMI. CONCLUSIONS During the 10-year observation period, the decreasing trend in fasting insulin was related to the slight increase in WC/BMI in type 2 diabetes. Low pancreatic β-cell reserve on top of a lifestyle background might be dependent on an increase in MRFs. PMID:22665215

  20. Rapidities of produced particles in 200-GeV/ c. pi. sup + /p/K sup + interactions on Au, Ag, and Mg

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brick, D.H.; Widgoff, M.; Beilliere, P.

    1990-02-01

    We have used the Fermilab 30-in. bubble chamber--hybrid spectrometer to study the rapidities of produced particles'' in the interactions of 200-GeV/{ital c} protons and {pi}{sup +} and {ital K}{sup +} mesons with nuclei of gold, silver, and magnesium. The average rapidity decreases linearly with the number of projectile collisions {nu}{sub {ital p}} (up to {nu}{sub {ital p}}=5) with no {ital A} dependence and little beam dependence. The ratio {ital R} of normalized rapidity distributions for hadron-nucleus to hadron-proton interactions shows a plateau in the central region, and becomes much larger in the target region. However, the increase is significantly lessmore » than has been reported in previous experiments. As a function of {nu}{sub {ital p}}, the ratio {ital R} rises linearly in the target region, more gently in the central region, and decreases slowly in the projectile region, in all cases with no {ital A} dependence. Some discrepancies with a previous experiment are observed in the central region. Long-range rapidity correlations are observed in hadron-nucleus events, but not in hadron-proton events. For the former, it is shown that the correlations exist only for those events with multiple projectile collisions, as expected in the multichain dual parton model.« less

  1. Determinants of fluidlike behavior and effective viscosity in cross-linked actin networks.

    PubMed

    Kim, Taeyoon; Gardel, Margaret L; Munro, Ed

    2014-02-04

    The actin cortex has a well-documented ability to rapidly remodel and flow while maintaining long-range connectivity, but how this is achieved remains poorly understood. Here, we use computer simulations to explore how stress relaxation in cross-linked actin networks subjected to extensional stress depends on the interplay between network architecture and turnover. We characterize a regime in which a network response is nonaffine and stress relaxation is governed by the continuous dissipation of elastic energy via cyclic formation, elongation, and turnover of tension-bearing elements. Within this regime, for a wide range of network parameters, we observe a constant deformation (creep) rate that is linearly proportional to the rate of filament turnover, leading to a constant effective viscosity that is inversely proportional to turnover rate. Significantly, we observe a biphasic dependence of the creep rate on applied stress: below a critical stress threshold, the creep rate increases linearly with applied stress; above that threshold, the creep rate becomes independent of applied stress. We show that this biphasic stress dependence can be understood in terms of the nonlinear force-extension behavior of individual force-transmitting network elements. These results have important implications for understanding the origins and control of viscous flows both in the cortex of living cells and in other polymer networks. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escartín, J. M.; CNRS, UMR5152, F-31062 Toulouse Cedex; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT.more » This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na{sub 2}. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.« less

  3. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. Part 1: The ODE connection and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1990-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  4. Threshold and Beyond: Modeling The Intensity Dependence of Auditory Responses

    PubMed Central

    2007-01-01

    In many studies of auditory-evoked responses to low-intensity sounds, the response amplitude appears to increase roughly linearly with the sound level in decibels (dB), corresponding to a logarithmic intensity dependence. But the auditory system is assumed to be linear in the low-intensity limit. The goal of this study was to resolve the seeming contradiction. Based on assumptions about the rate-intensity functions of single auditory-nerve fibers and the pattern of cochlear excitation caused by a tone, a model for the gross response of the population of auditory nerve fibers was developed. In accordance with signal detection theory, the model denies the existence of a threshold. This implies that regarding the detection of a significant stimulus-related effect, a reduction in sound intensity can always be compensated for by increasing the measurement time, at least in theory. The model suggests that the gross response is proportional to intensity when the latter is low (range I), and a linear function of sound level at higher intensities (range III). For intensities in between, it is concluded that noisy experimental data may provide seemingly irrefutable evidence of a linear dependence on sound pressure (range II). In view of the small response amplitudes that are to be expected for intensity range I, direct observation of the predicted proportionality with intensity will generally be a challenging task for an experimenter. Although the model was developed for the auditory nerve, the basic conclusions are probably valid for higher levels of the auditory system, too, and might help to improve models for loudness at threshold. PMID:18008105

  5. The application of dimensional analysis to the problem of solar wind-magnetosphere energy coupling

    NASA Technical Reports Server (NTRS)

    Bargatze, L. F.; Mcpherron, R. L.; Baker, D. N.; Hones, E. W., Jr.

    1984-01-01

    The constraints imposed by dimensional analysis are used to find how the solar wind-magnetosphere energy transfer rate depends upon interplanetary parameters. The analyses assume that only magnetohydrodynamic processes are important in controlling the rate of energy transfer. The study utilizes ISEE-3 solar wind observations, the AE index, and UT from three 10-day intervals during the International Magnetospheric Study. Simple linear regression and histogram techniques are used to find the value of the magnetohydrodynamic coupling exponent, alpha, which is consistent with observations of magnetospheric response. Once alpha is estimated, the form of the solar wind energy transfer rate is obtained by substitution into an equation of the interplanetary variables whose exponents depend upon alpha.

  6. Non-linear Frequency Shifts, Mode Couplings, and Decay Instability of Plasma Waves

    NASA Astrophysics Data System (ADS)

    Affolter, Mathew; Anderegg, F.; Driscoll, C. F.; Valentini, F.

    2015-11-01

    We present experiments and theory for non-linear plasma wave decay to longer wavelengths, in both the oscillatory coupling and exponential decay regimes. The experiments are conducted on non-neutral plasmas in cylindrical Penning-Malmberg traps, θ-symmetric standing plasma waves have near acoustic dispersion ω (kz) ~kz - αkz2 , discretized by kz =mz (π /Lp) . Large amplitude waves exhibit non-linear frequency shifts δf / f ~A2 and Fourier harmonic content, both of which are increased as the plasma dispersion is reduced. Non-linear coupling rates are measured between large amplitude mz = 2 waves and small amplitude mz = 1 waves, which have a small detuning Δω = 2ω1 -ω2 . At small excitation amplitudes, this detuning causes the mz = 1 mode amplitude to ``bounce'' at rate Δω , with amplitude excursions ΔA1 ~ δn2 /n0 consistent with cold fluid theory and Vlasov simulations. At larger excitation amplitudes, where the non-linear coupling exceeds the dispersion, phase-locked exponential growth of the mz = 1 mode is observed, in qualitative agreement with simple 3-wave instability theory. However, significant variations are observed experimentally, and N-wave theory gives stunningly divergent predictions that depend sensitively on the dispersion-moderated harmonic content. Measurements on higher temperature Langmuir waves and the unusual ``EAW'' (KEEN) waves are being conducted to investigate the effects of wave-particle kinetics on the non-linear coupling rates. Department of Energy Grants DE-SC0002451and DE-SC0008693.

  7. Investigation, development, and application of optimal output feedback theory. Volume 3: The relationship between dynamic compensators and observers and Kalman filters

    NASA Technical Reports Server (NTRS)

    Broussard, John R.

    1987-01-01

    Relationships between observers, Kalman Filters and dynamic compensators using feedforward control theory are investigated. In particular, the relationship, if any, between the dynamic compensator state and linear functions of a discrete plane state are investigated. It is shown that, in steady state, a dynamic compensator driven by the plant output can be expressed as the sum of two terms. The first term is a linear combination of the plant state. The second term depends on plant and measurement noise, and the plant control. Thus, the state of the dynamic compensator can be expressed as an estimator of the first term with additive error given by the second term. Conditions under which a dynamic compensator is a Kalman filter are presented, and reduced-order optimal estimaters are investigated.

  8. Observation of charge asymmetry dependence of pion elliptic flow and the possible chiral magnetic wave in heavy-ion collisions

    DOE PAGES

    Adamczyk, L.

    2015-06-26

    We present measurements of π⁻ and π⁺ elliptic flow, v₂, at midrapidity in Au+Au collisions at √s NN = 200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV, as a function of event-by-event charge asymmetry, A ch, based on data from the STAR experiment at RHIC. We find that π⁻ (π⁺) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at √s NN = 27 GeV and higher. At √s NN = 200 GeV, the slope of the difference of v₂ between π⁻ and π⁺ as a function of A ch exhibits a centrality dependence, which ismore » qualitatively similar to calculations that incorporate a chiral magnetic wave effect. In addition, similar centrality dependence is also observed at lower energies.« less

  9. Ultraviolet laser-induced lateral photovoltaic response in anisotropic black shale

    NASA Astrophysics Data System (ADS)

    Miao, Xinyang; Zhu, Jing; Zhao, Kun; Yue, Wenzheng

    2017-12-01

    The anisotropy of shale has significant impact on oil and gas exploration and engineering. In this paper, a-248 nm ultraviolet laser was employed to assess the anisotropic lateral photovoltaic (LPV) response of shale. Anisotropic angle-depending voltage signals were observed with different peak amplitudes ( V p) and decay times. We employed exponential models to explain the charge carrier transport in horizontal and vertical directions. Dependences of the laser-induced LPV on the laser spot position were observed. Owing to the Dember effect and the layered structure of shale, V p shows an approximately linear dependence with the laser-irradiated position for the 0° shale sample but nonlinearity for the 45° and 90° ones. The results demonstrate that the laser-induced voltage method is very sensitive to the structure of materials, and thus has a great potential in oil and gas reservoir characterization.

  10. Experimental Evidence on the Dependence of the Standard GPS Phase Scintillation Index on the Ionospheric Plasma Drift Around Noon Sector of the Polar Ionosphere

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhang, Q.-H.; Jayachandran, P. T.; Moen, J.; Xing, Z.-Y.; Chadwick, R.; Ma, Y.-Z.; Ruohoniemi, J. M.; Lester, M.

    2018-03-01

    First experimental proof of a clear and strong dependence of the standard phase scintillation index (σφ) derived using Global Positioning System measurements on the ionospheric plasma flow around the noon sector of polar ionosphere is presented. σφ shows a strong linear dependence on the plasma drift speed measured by the Super Dual Auroral Radar Network radars, whereas the amplitude scintillation index (S4) does not. This observed dependence can be explained as a consequence of Fresnel frequency dependence of the relative drift and the used constant cutoff frequency (0.1 Hz) to detrend the data for obtaining standard σφ. The lack of dependence of S4 on the drift speed possibly eliminates the plasma instability mechanism(s) involved as a cause of the dependence. These observations further confirm that the standard phase scintillation index is much more sensitive to plasma flow; therefore, utmost care must be taken when identifying phase scintillation (diffractive phase variations) from refractive (deterministic) phase variations, especially in the polar region where the ionospheric plasma drift is much larger than in equatorial and midlatitude regions.

  11. Spectromicroscopy study of interfacial Co/NiO(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Laan, Gerrit; Telling, Neil; Potenza, Alberto

    2010-09-26

    Photoemission electron microscopy (PEEM) with linearly polarized x-rays is used to determine the orientation of antiferromagnetic domains by monitoring the relative peak intensities at the 3d transition metal L{sub 2} absorption edge. In such an analysis the orientations of the x-ray polarization E and magnetization H with respect to the crystalline axes has to be taken into account. We address this problem by presenting a general expression of the angular dependence for both x-ray absorption spectroscopy and x-ray magnetic linear dichroism (XMLD) for arbitrary direction of E and H in the (001) cubic plane. In cubic symmetry the angular dependentmore » XMLD is a linear combination of two spectra with different photon energy dependence, which reduces to one spectrum when E or H is along a high-symmetry axis. The angular dependent XMLD can be separated into an isotropic term, which is symmetric along H, and an anisotropic term, which depends on the orientation of the crystal axes. The anisotropic term has maximal intensity when E and H have equal but opposite angles with respect to the [100] direction. The Ni{sup 2+} L{sub 2} edge has the peculiarity that the isotropic term vanishes, which means that the maximum in the XMLD intensity is observed not only for E {parallel} H {parallel} [100] but also for (E {parallel} [110], H {parallel} [110]). We apply the angular dependent theory to determine the spin orientation near the Co/NiO(100) interface. The PEEM images show that the ferromagnetic Co moments and antiferromagnetic NiO moments are aligned perpendicular to each other. By rotating the sample with respect to the linear x-ray polarization we furthermore find that the perpendicular coupling with the ferromagnetic Co layer at the interface causes a canting of the antiferromagnetic Ni moments. This shows that taking into account the angular dependence of the XMLD in the detailed analysis of PEEM images leads to an accurate retrieval of the spin axes of the antiferromagnetic domains.« less

  12. Temperature dependence of elastic and strength properties of T300/5208 graphite-epoxy

    NASA Technical Reports Server (NTRS)

    Milkovich, S. M.; Herakovich, C. T.

    1984-01-01

    Experimental results are presented for the elastic and strength properties of T300/5208 graphite-epoxy at room temperature, 116K (-250 F), and 394K (+250 F). Results are presented for unidirectional 0, 90, and 45 degree laminates, and + or - 30, + or - 45, and + or - 60 degree angle-ply laminates. The stress-strain behavior of the 0 and 90 degree laminates is essentially linear for all three temperatures and that the stress-strain behavior of all other laminates is linear at 116K. A second-order curve provides the best fit for the temperature is linear at 116K. A second-order curve provides the best fit for the temperature dependence of the elastic modulus of all laminates and for the principal shear modulus. Poisson's ratio appears to vary linearly with temperature. all moduli decrease with increasing temperature except for E (sub 1) which exhibits a small increase. The strength temperature dependence is also quadratic for all laminates except the 0 degree - laminate which exhibits linear temperature dependence. In many cases the temperature dependence of properties is nearly linear.

  13. Propagation of ultrashort laser pulses in water: linear absorption and onset of nonlinear spectral transformation.

    PubMed

    Sokolov, Alexei V; Naveira, Lucas M; Poudel, Milan P; Strohaber, James; Trendafilova, Cynthia S; Buck, William C; Wang, Jieyu; Strycker, Benjamin D; Wang, Chao; Schuessler, Hans; Kolomenskii, Alexandre; Kattawar, George W

    2010-01-20

    We study propagation of short laser pulses through water and use a spectral hole filling technique to essentially perform a sensitive balanced comparison of absorption coefficients for pulses of different duration. This study is motivated by an alleged violation of the Bouguer-Lambert-Beer law at low light intensities, where the pulse propagation is expected to be linear, and by a possible observation of femtosecond optical precursors in water. We find that at low intensities, absorption of laser light is determined solely by its spectrum and does not directly depend on the pulse duration, in agreement with our earlier work and in contradiction to some work of others. However, as the laser fluence is increased, interaction of light with water becomes nonlinear, causing energy exchange among the pulse's spectral components and resulting in peak-intensity dependent (and therefore pulse-duration dependent) transmission. For 30 fs pulses at 800 nm center wavelength, we determine the onset of nonlinear propagation effects to occur at a peak value of about 0.12 mJ/cm(2) of input laser energy fluence.

  14. Formation of organized nanostructures from unstable bilayers of thin metallic liquids

    NASA Astrophysics Data System (ADS)

    Khenner, Mikhail; Yadavali, Sagar; Kalyanaraman, Ramki

    2011-12-01

    Dewetting of pulsed-laser irradiated, thin (<20 nm), optically reflective metallic bilayers on an optically transparent substrate with a reflective support layer is studied within the lubrication equations model. A steady-state bilayer film thickness (h) dependent temperature profile is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Large thermocapillary forces are observed along the plane of the liquid-liquid and liquid-gas interfaces due to this h-dependent temperature, which, in turn, is strongly influenced by the h-dependent laser light reflection and absorption. Consequently the dewetting is a result of the competition between thermocapillary and intermolecular forces. A linear analysis of the dewetting length scales established that the non-isothermal calculations better predict the experimental results as compared to the isothermal case within the bounding Hamaker coefficients. Subsequently, a computational non-linear dynamics study of the dewetting pathway was performed for Ag/Co and Co/Ag bilayer systems to predict the morphology evolution. We found that the systems evolve towards formation of different morphologies, including core-shell, embedded, or stacked nanostructure morphologies.

  15. Analysis of the unusual wavelength dependence of the first hyperpolarizability of porphyrin derivatives

    NASA Astrophysics Data System (ADS)

    De Mey, K.; Clays, K.; Therien, Michael J.; Beratan, David N.; Asselberghs, Inge

    2010-08-01

    Successfully predicting the frequency dispersion of electronic hyperpolarizabilities is an unresolved challenge in materials science and electronic structure theory. It has been shown1 that the generalized Thomas-Kuhn sum rules combined with linear absorption data and measured hyperpolarizabilities at one or two frequencies, may be used to predict the entire frequency-dependent electronic hyperpolarizability spectrum. This treatment includes two- and threelevel contributions that arise from the lowest two or three excited state manifolds, enabling us to describe the unusual observed frequency dispersion of the dynamic hyperpolarizability in high oscillator strength M-PZn chromophores, where (porphinato)zinc(II) (PZn) and metal(II)polypyridyl (M) units are connected via an ethyne unit that aligns the high oscillator strength transition dipoles of these components in a head-to-tail arrangement. Importantly, this approach provides a quantitative scheme to use linear optical absorption spectra and very few individual hyperpolarizability values to predict the entire frequency-dependent nonlinear optical response. In addition we provide here experimental dynamic hyperpolarizability values determined by hyper-Rayleigh scattering that underscore the validity of our approach.

  16. On Association Coefficients for 2x2 Tables and Properties that Do Not Depend on the Marginal Distributions

    ERIC Educational Resources Information Center

    Warrens, Matthijs J.

    2008-01-01

    We discuss properties that association coefficients may have in general, e.g., zero value under statistical independence, and we examine coefficients for 2x2 tables with respect to these properties. Furthermore, we study a family of coefficients that are linear transformations of the observed proportion of agreement given the marginal…

  17. A Preclinical Population Pharmacokinetic Model for Anti‐CD20/CD3 T‐Cell‐Dependent Bispecific Antibodies

    PubMed Central

    Reyes, Arthur; Sun, Liping L.; Cheu, Melissa; Oldendorp, Amy; Ramanujan, Saroja; Stefanich, Eric G.

    2018-01-01

    Abstract CD20 is a cell‐surface receptor expressed by healthy and neoplastic B cells and is a well‐established target for biologics used to treat B‐cell malignancies. Pharmacokinetic (PK) and pharmacodynamic (PD) data for the anti‐CD20/CD3 T‐cell‐dependent bispecific antibody BTCT4465A were collected in transgenic mouse and nonhuman primate (NHP) studies. Pronounced nonlinearity in drug elimination was observed in the murine studies, and time‐varying, nonlinear PK was observed in NHPs, where three empirical drug elimination terms were identified using a mixed‐effects modeling approach: i) a constant nonsaturable linear clearance term (7 mL/day/kg); ii) a rapidly decaying time‐varying, linear clearance term (t½ = 1.6 h); and iii) a slowly decaying time‐varying, nonlinear clearance term (t½ = 4.8 days). The two time‐varying drug elimination terms approximately track with time scales of B‐cell depletion and T‐cell migration/expansion within the central blood compartment. The mixed‐effects NHP model was scaled to human and prospective clinical simulations were generated. PMID:29351372

  18. SU-E-T-526: On the Linearity, Stability and Beam Energy Dependence of CdSe Quantum Dots as Scintillating Probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delage, M-E; Centre Hospitalier Universityde Quebec, Quebec, QC; Lecavalier, M-E

    2014-06-01

    Purpose: Structure and energy transfer mechanisms confer colloidal quantum dots (cQDs) interesting properties, among them their potential as scintillators. CdSe multi-shell cQDs in powder were investigated under photons irradiation. The purpose of this work is to characterize signal to dose linearity, stability with time and to quantify the dependence of their light output with beam energy. Methods: The cQDs are placed at the extremity of a non-scintillating plastic collecting fiber, with the other extremity connected to an Apogee U2000C CCD camera. The CCD camera collects the fluorescence light from irradiated cQDs from which the delivered dose is extracted. This signalmore » is corrected for Cerenkov contamination at MV energies using the chromatic technique. The detector was irradiated with two devices: Xstrahl 200 orthovoltage unit for 120, 180 and 220 kVp and a Varian Clinac iX for 6 and 23 MV. Results: Linear output response with varying dose is observed for all beam energies with R2 factors > 0,999. Reproducibility measurements were performed at 120 kVp: the same set-up was irradiated at different time intervals (one week and three months). The results showed only a small relative decrease of light output of 3,2 % after a combine deposited dose of approximately 95 Gy. CdSe nanocrystals response has been studied as a function of beam energy. The output increases with decreasing energy from 120 kVp to 6 MV and increase again for 23 MV. This behavior could be explained in part by the cQDs high-Z composition. Conclusion: The fluorescence light output of CdSe cQDs was found to be linear as a function of dose. The results suggest stability of the scintillation output of cQDs over time. The specific composition of cQDs is the main cause of the observed energy dependence. We will further look into particle beam dependence of the cQDs. Bourse d'excellence aux etudes graduees du CRC (Centre de Recherche sur le Cancer, Universite Laval) Bourse d'excellence aux etudes graduees du CRC (Centre de Recherche sur le Cancer, Universite Laval)« less

  19. Seasonal and Interannual Variations of Ice Sheet Surface Elevation at the Summit of Greenland: Observed and Modeled

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Jun, Li; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observed seasonal and interannual variations in the surface elevation over the summit of the Greenland ice sheet are modeled using a new temperature-dependent formulation of firn-densification and observed accumulation variations. The observed elevation variations are derived from ERS (European Remote Sensing)-1 and ERS-2 radar altimeter data for the period between April 1992 and April 1999. A multivariate linear/sine function is fitted to an elevation time series constructed from elevation differences measured by radar altimetry at orbital crossovers. The amplitude of the seasonal elevation cycle is 0.25 m peak-to-peak, with a maximum in winter and a minimum in summer. Inter-annually, the elevation decreases to a minimum in 1995, followed by an increase to 1999, with an overall average increase of 4.2 cm a(exp -1) for 1992 to 1999. Our densification formulation uses an initial field-density profile, the AWS (automatic weather station) surface temperature record, and a temperature-dependent constitutive relation for the densification that is based on laboratory measurements of crystal growth rates. The rate constant and the activation energy commonly used in the Arrhenius-type constitutive relation for firn densification are also temperature dependent, giving a stronger temperature and seasonal amplitudes about 10 times greater than previous densification formulations. Summer temperatures are most important, because of the strong non-linear dependence on temperature. Much of firn densification and consequent surface lowering occurs within about three months of the summer season, followed by a surface build-up from snow accumulation until spring. Modeled interannual changes of the surface elevation, using the AWS measurements of surface temperature and accumulation and results of atmospheric modeling of precipitation variations, are in good agreement with the altimeter observations. In the model, the surface elevation decreases about 20 cm over the seven years due to more compaction driven by increasing summer temperatures. The minimum elevation in 1995 is driven mainly by a temporary accumulation decrease and secondarily by warmer temperatures. However, the overall elevation increase over the seven years is dominated by the accumulation increase in the later years.

  20. Modelling of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, M.; Schmidt, J.; Salo, H.

    2014-04-01

    Density wave theory, originally proposed to explain the spiral structure of galactic disks, has been applied to explain parts of the complex sub-structure in Saturn's rings, such as the wavetrains excited at the inner Lindblad resonances (ILR) of various satellites. The linear theory for the excitation and damping of density waves in Saturn's rings is fairly well developed (e.g. Goldreich & Tremaine [1979]; Shu [1984]). However, it fails to describe certain aspects of the observed waves. The non-applicability of the linear theory is already indicated by the "cusplike" shape of many of the observed wave profiles. This is a typical nonlinear feature which is also present in overstability wavetrains (Schmidt & Salo [2003]; Latter & Ogilvie [2010]). In particular, it turns out that the detailed damping mechanism, as well as the role of different nonlinear effects on the propagation of density waves remain intransparent. First attemps are being made to investigate the excitation and propagation of nonlinear density waves within a hydrodynamical formalism, which is also the natural formalism for describing linear density waves. A simple weakly nonlinear model, derived from a multiple-scale expansion of the hydrodynamic equations, is presented. This model describes the damping of "free" spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients, where the effects of the hydrodynamic nonlinearities are included. The model predicts that density waves are linearly unstable in a ring region where the conditions for viscous overstability are met, which translates to a steep dependence of the shear viscosity with respect to the disk's surface density. The possibility that this dependence could lead to a growth of density waves with increasing distance from the resonance, was already mentioned in Goldreich & Tremaine [1978]. Sufficiently far away from the ILR, the surface density perturbation caused by the wave, is predicted to saturate to a constant value due to the effects of nonlinear viscous damping. A qualitatively similar behaviour has also been predicted for the damping of nonlinear density waves, as described within a streamline formalism (Borderies, Goldreich & Tremaine [1985]). The damping lengths which follow from the weakly nonlinear model depend more or less strongly on a set of different input parameters, such as the viscosity and the surface density of the unperturbed ring state. Further, they depend on the wave's amplitude at resonance. For a real wave, which has been excited by an external satellite, this amplitude can be deduced from the magnitude of the satellite's forcing potential. Appart from that, hydrodynamical simulations are being developed to study the nonlinear damping of resonantly forced density waves.

  1. High sensitivity of positrons to oxygen vacancies and to copper-oxygen chain disorder in YBa2Cu3O(7-x)

    NASA Astrophysics Data System (ADS)

    von Stetten, E. C.; Berko, S.; Li, X. S.; Lee, R. R.; Brynestad, J.

    1988-05-01

    Temperature-dependent positron-electron momentum densities have been studied by two-dimensional angular correlation of annihilation radiation from 10 to 320 K in YBa2Cu3O(7-x) samples. The positron ground-state charge density, computed by the linearized augmented-plane-wave method, indicates that in YBa2Cu3O7 delocalized positrons sample preferentially the linear copper-oxygen chains. Positron localization due to disorder in these chains is invoked to explain the striking differences observed between superconducting (x = about 0.02) and nonsuperconducting (x = about 0.70) samples.

  2. Angular-momentum-assisted dissociation of CO in strong optical fields

    NASA Astrophysics Data System (ADS)

    Mullin, Amy; Ogden, Hannah; Murray, Matthew; Liu, Qingnan; Toro, Carlos

    2017-04-01

    Filaments are produced in CO gas by intense, chirped laser pulses. Visible emission from C2 is observed as a result of chemical reactions of highly excited CO. At laser intensities greater than 1014 W cm-2, the C2 emission shows a strong dependence on laser polarization. Oppositely chirped pulses of light with ω0 = 800 nm are recombined spatially and temporally to generate angularly accelerating electric fields (up to 30 THz) that either have an instantaneous linear polarization or act as a dynamic polarization grating that oscillates among linear and circular polarizations. The angularly accelerating linear polarization corresponds to an optical centrifuge that concurrently drives molecules into high rotational states (with J 50) and induces strong-field dissociation. Higher order excitation is observed for the time-varying laser polarization configuration that does not induce rotational excitation. The results indicate that the presence of rotational angular momentum lowers the threshold for CO dissociation in strong optical fields by coupling nuclear and electronic degrees of freedom. Support from NSF CHE-1058721 and the University of Maryland.

  3. Extended Kalman Doppler tracking and model determination for multi-sensor short-range radar

    NASA Astrophysics Data System (ADS)

    Mittermaier, Thomas J.; Siart, Uwe; Eibert, Thomas F.; Bonerz, Stefan

    2016-09-01

    A tracking solution for collision avoidance in industrial machine tools based on short-range millimeter-wave radar Doppler observations is presented. At the core of the tracking algorithm there is an Extended Kalman Filter (EKF) that provides dynamic estimation and localization in real-time. The underlying sensor platform consists of several homodyne continuous wave (CW) radar modules. Based on In-phase-Quadrature (IQ) processing and down-conversion, they provide only Doppler shift information about the observed target. Localization with Doppler shift estimates is a nonlinear problem that needs to be linearized before the linear KF can be applied. The accuracy of state estimation depends highly on the introduced linearization errors, the initialization and the models that represent the true physics as well as the stochastic properties. The important issue of filter consistency is addressed and an initialization procedure based on data fitting and maximum likelihood estimation is suggested. Models for both, measurement and process noise are developed. Tracking results from typical three-dimensional courses of movement at short distances in front of a multi-sensor radar platform are presented.

  4. Measures of GCM Performance as Functions of Model Parameters Affecting Clouds and Radiation

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Mu, Q.; Sen, M.; Stoffa, P.

    2002-05-01

    This abstract is one of three related presentations at this meeting dealing with several issues surrounding optimal parameter and uncertainty estimation of model predictions of climate. Uncertainty in model predictions of climate depends in part on the uncertainty produced by model approximations or parameterizations of unresolved physics. Evaluating these uncertainties is computationally expensive because one needs to evaluate how arbitrary choices for any given combination of model parameters affects model performance. Because the computational effort grows exponentially with the number of parameters being investigated, it is important to choose parameters carefully. Evaluating whether a parameter is worth investigating depends on two considerations: 1) does reasonable choices of parameter values produce a large range in model response relative to observational uncertainty? and 2) does the model response depend non-linearly on various combinations of model parameters? We have decided to narrow our attention to selecting parameters that affect clouds and radiation, as it is likely that these parameters will dominate uncertainties in model predictions of future climate. We present preliminary results of ~20 to 30 AMIPII style climate model integrations using NCAR's CCM3.10 that show model performance as functions of individual parameters controlling 1) critical relative humidity for cloud formation (RHMIN), and 2) boundary layer critical Richardson number (RICR). We also explore various definitions of model performance that include some or all observational data sources (surface air temperature and pressure, meridional and zonal winds, clouds, long and short-wave cloud forcings, etc...) and evaluate in a few select cases whether the model's response depends non-linearly on the parameter values we have selected.

  5. Multidimensional equilibria and their stability in copolymer-solvent mixtures

    NASA Astrophysics Data System (ADS)

    Glasner, Karl; Orizaga, Saulo

    2018-06-01

    This paper discusses localized equilibria which arise in copolymer-solvent mixtures. A free boundary problem associated with the sharp-interface limit of a density functional model is used to identify both lamellar and concentric domain patterns composed of a finite number of layers. Stability of these morphologies is studied through explicit linearization of the free boundary evolution. For the multilayered lamellar configuration, transverse instability is observed for sufficiently small dimensionless interfacial energies. Additionally, a crossover between small and large wavelength instabilities is observed depending on whether solvent-polymer or monomer-monomer interfacial energy is dominant. Concentric domain patterns resembling multilayered micelles and vesicles exhibit bifurcations wherein they only exist for sufficiently small dimensionless interfacial energies. The bifurcation of large radii vesicle solutions is studied analytically, and a crossover from a supercritical case with only one solution branch to a subcritical case with two is observed. Linearized stability of these configurations shows that azimuthal perturbation may lead to instabilities as interfacial energy is decreased.

  6. Rotational spectra in the ν2 vibrationally excited states of MgNC

    NASA Astrophysics Data System (ADS)

    Kagi, E.; Kawaguchi, K.; Takano, S.; Hirano, T.

    1996-01-01

    The pure rotational spectra of MgNC in the ν2 (bending) vibrationally excited states were observed in the 310-380 GHz region to study the linearity of the molecule. The observed 90 spectral lines were assigned to the transitions in the v2=1-5 states and analyzed to determine a set of molecular constants in each state. The bending vibrational frequency was estimated to be 86 cm-1 from the l-type doubling constant of the v2=1 state. The interval of the Φ and Π states in v2=3 was determined to be 29.2280(24) cm-1, giving the anharmonicity constant xll=3.8611(9) cm-1 with one standard deviation in parentheses, which indicates that the molecule has a linear form. However, somewhat peculiar properties were recognized in dependence of the observed l-type resonance and vibration-rotation constants on the v2 vibrational quantum number, suggesting an effect of anharmonicity.

  7. Path length dependent neutron diffraction peak shifts observed during residual strain measurements in U–8 wt% Mo castings

    DOE PAGES

    Steiner, M. A.; Bunn, J. R.; Einhorn, J. R.; ...

    2017-05-16

    This study reports an angular diffraction peak shift that scales linearly with the neutron beam path length traveled through a diffracting sample. This shift was observed in the context of mapping the residual stress state of a large U–8 wt% Mo casting, as well as during complementary measurements on a smaller casting of the same material. If uncorrected, this peak shift implies a non-physical level of residual stress. A hypothesis for the origin of this shift is presented, based upon non-ideal focusing of the neutron monochromator in combination with changes to the wavelength distribution reaching the detector due to factorsmore » such as attenuation. The magnitude of the shift is observed to vary linearly with the width of the diffraction peak reaching the detector. Consideration of this shift will be important for strain measurements requiring long path lengths through samples with significant attenuation. This effect can probably be reduced by selecting smaller voxel slit widths.« less

  8. Non-linear dual-phase-lag model for analyzing heat transfer phenomena in living tissues during thermal ablation.

    PubMed

    Kumar, P; Kumar, Dinesh; Rai, K N

    2016-08-01

    In this article, a non-linear dual-phase-lag (DPL) bio-heat transfer model based on temperature dependent metabolic heat generation rate is derived to analyze the heat transfer phenomena in living tissues during thermal ablation treatment. The numerical solution of the present non-linear problem has been done by finite element Runge-Kutta (4,5) method which combines the essence of Runge-Kutta (4,5) method together with finite difference scheme. Our study demonstrates that at the thermal ablation position temperature predicted by non-linear and linear DPL models show significant differences. A comparison has been made among non-linear DPL, thermal wave and Pennes model and it has been found that non-linear DPL and thermal wave bio-heat model show almost same nature whereas non-linear Pennes model shows significantly different temperature profile at the initial stage of thermal ablation treatment. The effect of Fourier number and Vernotte number (relaxation Fourier number) on temperature profile in presence and absence of externally applied heat source has been studied in detail and it has been observed that the presence of externally applied heat source term highly affects the efficiency of thermal treatment method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Origins of R2∗ and white matter

    PubMed Central

    Rudko, David A.; Klassen, L. Martyn; de Chickera, Sonali N.; Gati, Joseph S.; Dekaban, Gregory A.; Menon, Ravi S.

    2014-01-01

    Estimates of the apparent transverse relaxation rate () can be used to quantify important properties of biological tissue. Surprisingly, the mechanism of dependence on tissue orientation is not well understood. The primary goal of this paper was to characterize orientation dependence of in gray and white matter and relate it to independent measurements of two other susceptibility based parameters: the local Larmor frequency shift (fL) and quantitative volume magnetic susceptibility (Δχ). Through this comparative analysis we calculated scaling relations quantifying (reversible contribution to the transverse relaxation rate from local field inhomogeneities) in a voxel given measurements of the local Larmor frequency shift. is a measure of both perturber geometry and density and is related to tissue microstructure. Additionally, two methods (the Generalized Lorentzian model and iterative dipole inversion) for calculating Δχ were compared in gray and white matter. The value of Δχ derived from fitting the Generalized Lorentzian model was then connected to the observed orientation dependence using image-registered optical density measurements from histochemical staining. Our results demonstrate that the and fL of white and cortical gray matter are well described by a sinusoidal dependence on the orientation of the tissue and a linear dependence on the volume fraction of myelin in the tissue. In deep brain gray matter structures, where there is no obvious symmetry axis, and fL have no orientation dependence but retain a linear dependence on tissue iron concentration and hence Δχ. PMID:24374633

  10. H-mode pedestal stability and ELMs in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Mossessian, Dmitri

    2002-11-01

    For steady state H-mode operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity accumulation. The major relaxation mechanism seen on most of the existing tokamaks - large type I ELMs - drive high particle and energy fluxes that present a significant power load on the divertor plates. On Alcator C-Mod, however, type I ELMs are not observed. Instead, more benign mechanisms - EDA and small grassy ELMs - appear to drive enhanced particle transport at the edge of H-mode plasmas. Both have good energy confinement, no impurity accumulation, and are steady state. In EDA the edge relaxation mechanism is provided by a quasicoherent electromagnetic mode localized in the outer part of the pedestal. Non-linear gyrofluid and linear gyrokinetic simulations, as well as real geometry fluctuation modeling based on fluid equations show the presence of a coherent mode. Based on those results the observed mode is tentatively identified as resistive ballooning. At higher edge pressure gradient the mode is replaced by broadband fluctuations and small irregular ELMs are observed. Based on ideal MHD calculations that include effects of bootstrap current, these ELMs are identified as medium n coupled ideal peeling/ballooning modes. The stability threshold and modes structure of these modes are studied with recently developed linear MHD stability code ELITE and the results are compared with the observed dependence of the ELMs' character on pedestal parameters and plasma shape.

  11. Temperature dependence of spin-orbit torques in Cu-Au alloys

    NASA Astrophysics Data System (ADS)

    Wen, Yan; Wu, Jun; Li, Peng; Zhang, Qiang; Zhao, Yuelei; Manchon, Aurelien; Xiao, John Q.; Zhang, Xixiang

    2017-03-01

    We investigated current driven spin-orbit torques in C u40A u60/N i80F e20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.

  12. On non-autonomous dynamical systems

    NASA Astrophysics Data System (ADS)

    Anzaldo-Meneses, A.

    2015-04-01

    In usual realistic classical dynamical systems, the Hamiltonian depends explicitly on time. In this work, a class of classical systems with time dependent nonlinear Hamiltonians is analyzed. This type of problems allows to find invariants by a family of Veronese maps. The motivation to develop this method results from the observation that the Poisson-Lie algebra of monomials in the coordinates and momenta is clearly defined in terms of its brackets and leads naturally to an infinite linear set of differential equations, under certain circumstances. To perform explicit analytic and numerical calculations, two examples are presented to estimate the trajectories, the first given by a nonlinear problem and the second by a quadratic Hamiltonian with three time dependent parameters. In the nonlinear problem, the Veronese approach using jets is shown to be equivalent to a direct procedure using elliptic functions identities, and linear invariants are constructed. For the second example, linear and quadratic invariants as well as stability conditions are given. Explicit solutions are also obtained for stepwise constant forces. For the quadratic Hamiltonian, an appropriated set of coordinates relates the geometric setting to that of the three dimensional manifold of central conic sections. It is shown further that the quantum mechanical problem of scattering in a superlattice leads to mathematically equivalent equations for the wave function, if the classical time is replaced by the space coordinate along a superlattice. The mathematical method used to compute the trajectories for stepwise constant parameters can be applied to both problems. It is the standard method in quantum scattering calculations, as known for locally periodic systems including a space dependent effective mass.

  13. Crossover of Microscopic Dynamics in Metallic Supercooled Liquid Observed by NMR

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Li, Lilong

    2004-03-01

    Nuclear magnetic resonance (NMR) is used to characterize local atomic motions in the glassy and supercooled liquid states of the bulk metallic glass system Pd_43Ni_10Cu_27P_20. It is shown that NMR is very effective in detecting local motions such as vibrations in metallic systems. The temperature dependence of the Knight shift reveals that certain local atomic motion decreases rapidly below a crossover temperature T_c. Above Tc as well as below the glass transition temperature Tg the mean-squared amplitude of local motions is shown to depend linearly on the temperature. The observed rapid decrease below Tc cannot be explained by heterogeneity effects. It reveals that qualitative changes of microscopic properties in the supercooled liquid take place at temperatures significantly above T_g. The observed phenomenon can be explained in terms of a rapid disappearance of certain local motions below Tc as suggested by the mode-coupling theory.

  14. Experimental and numerical investigation of a phase-only control mechanism in the linear intensity regime.

    PubMed

    Brühl, Elisabeth; Buckup, Tiago; Motzkus, Marcus

    2018-06-07

    Mechanisms and optimal experimental conditions in coherent control still intensely stimulate debates. In this work, a phase-only control mechanism in an open quantum system is investigated experimentally and numerically. Several parameterizations for femtosecond pulse shaping (combination of chirp and multipulses) are exploited in transient absorption of a prototype organic molecule to control population and vibrational coherence in ground and excited states. Experimental results are further numerically simulated and corroborated with a four-level density-matrix model, which reveals a phase-only control mechanism based on the interaction between the tailored phase of the excitation pulse and the induced transient absorption. In spite of performing experiment and numerical simulations in the linear regime of excitation, the control effect amplitude depends non-linearly on the excitation energy and is explained as a pump-dump control mechanism. No evidence of single-photon control is observed with the model. Moreover, our results also show that the control effect on the population and vibrational coherence is highly dependent on the spectral detuning of the excitation spectrum. Contrary to the popular belief in coherent control experiments, spectrally resonant tailored excitation will lead to the control of the excited state only for very specific conditions.

  15. Absolute linearity measurements on a gold-black-coated deuterated L-alanine-doped triglycine sulfate pyroelectric detector.

    PubMed

    Theocharous, E

    2008-07-20

    The nonlinearity characteristics of a commercially available deuterated L-alanine-doped triglycine sulfate (DLATGS) pyroelectric detector were experimentally investigated at high levels of illumination using the National Physical Laboratory detector linearity characterization facility. The detector was shown to exhibit a superlinear response at high levels of illumination. Moreover, the linearity factor was shown to depend on the area of the spot on the detector active area being illuminated, i.e., the incident irradiance. Possible reasons for the observed behavior are proposed and discussed. The temperature coefficient of the response of the DLATGS pyroelectric detector was measured and found to be higher than +2.5% degrees C(-1). This large and positive temperature coefficient of response is the most likely cause of the superlinear behavior of the DLATGS pyroelectric detector.

  16. Sources of signal-dependent noise during isometric force production.

    PubMed

    Jones, Kelvin E; Hamilton, Antonia F; Wolpert, Daniel M

    2002-09-01

    It has been proposed that the invariant kinematics observed during goal-directed movements result from reducing the consequences of signal-dependent noise (SDN) on motor output. The purpose of this study was to investigate the presence of SDN during isometric force production and determine how central and peripheral components contribute to this feature of motor control. Peripheral and central components were distinguished experimentally by comparing voluntary contractions to those elicited by electrical stimulation of the extensor pollicis longus muscle. To determine other factors of motor-unit physiology that may contribute to SDN, a model was constructed and its output compared with the empirical data. SDN was evident in voluntary isometric contractions as a linear scaling of force variability (SD) with respect to the mean force level. However, during electrically stimulated contractions to the same force levels, the variability remained constant over the same range of mean forces. When the subjects were asked to combine voluntary with stimulation-induced contractions, the linear scaling relationship between the SD and mean force returned. The modeling results highlight that much of the basic physiological organization of the motor-unit pool, such as range of twitch amplitudes and range of recruitment thresholds, biases force output to exhibit linearly scaled SDN. This is in contrast to the square root scaling of variability with mean force present in any individual motor-unit of the pool. Orderly recruitment by twitch amplitude was a necessary condition for producing linearly scaled SDN. Surprisingly, the scaling of SDN was independent of the variability of motoneuron firing and therefore by inference, independent of presynaptic noise in the motor command. We conclude that the linear scaling of SDN during voluntary isometric contractions is a natural by-product of the organization of the motor-unit pool that does not depend on signal-dependent noise in the motor command. Synaptic noise in the motor command and common drive, which give rise to the variability and synchronization of motoneuron spiking, determine the magnitude of the force variability at a given level of mean force output.

  17. Further study on the solar activity variation of daytime NmF2

    NASA Astrophysics Data System (ADS)

    Chen, Yiding; Liu, Libo

    2010-12-01

    The ionosonde observations in the East Asia-Australia sector are collected to further investigate the solar activity variation of daytime (0800 ˜ 1600 LT) NmF2. The linear increase rate of NmF2 with F10.7 at lower solar activity levels is remarkably dependent on latitude, season, and local time. The rate is largest in equinoxes (with an equinoctial asymmetry) and higher in the morning (afternoon) in local winter (summer) at geomagnetic midlatitudes; particularly, the maximum rates in local winter are obviously larger than those in local summer at northern midlatitudes. In the equatorial ionization anomaly (EIA) crest regions, the rates in equinoxes and December (June) solstice are remarkably higher than those in June (December) solstice at the northern (southern) EIA crest, and the rate grows from the morning sector to the afternoon sector. The variation trend of NmF2 with F10.7 also shows latitudinal, seasonal, and local time dependences. The saturation effect dominates in all seasons in the EIA regions; at midlatitudes, NmF2 nearly increases linearly with F10.7 in local winter so that a linear fit is a good approximation for NmF2 modeling, while the saturation effect still dominates in other seasons. The saturation effect is more significant in the afternoon, and the strongest saturation effect appears at the EIA crest latitudes in equinox afternoon. Discussions indicate that the variations of neutral atmosphere and hmF2 are responsible for the seasonal and local time dependences of the linear increase rate of NmF2 with F10.7 at midlatitudes, and the seasonal variation of neutral atmosphere is the primary reason for the seasonal dependence of the variation trend of NmF2 with F10.7, while dynamics processes are the more important factors controlling the linear increase rate and the variation trend of NmF2 with F10.7 at low latitudes. Furthermore, dynamics processes are important for the saturation effect, and the fountain effect is related to the strongest saturation effect appearing at the EIA crests.

  18. Quasi-parallel whistler mode waves observed by THEMIS during near-earth dipolarizations

    NASA Astrophysics Data System (ADS)

    Le Contel, O.; Roux, A.; Jacquey, C.; Robert, P.; Berthomier, M.; Chust, T.; Grison, B.; Angelopoulos, V.; Sibeck, D.; Chaston, C. C.; Cully, C. M.; Ergun, B.; Glassmeier, K.-H.; Auster, U.; McFadden, J.; Carlson, C.; Larson, D.; Bonnell, J. W.; Mende, S.; Russell, C. T.; Donovan, E.; Mann, I.; Singer, H.

    2009-06-01

    We report on quasi-parallel whistler emissions detected by the near-earth satellites of the THEMIS mission before, during, and after local dipolarization. These emissions are associated with an electron temperature anisotropy α=T⊥e/T||e>1 consistent with the linear theory of whistler mode anisotropy instability. When the whistler mode emissions are observed the measured electron anisotropy varies inversely with β||e (the ratio of the electron parallel pressure to the magnetic pressure) as predicted by Gary and Wang (1996). Narrow band whistler emissions correspond to the small α existing before dipolarization whereas the broad band emissions correspond to large α observed during and after dipolarization. The energy in the whistler mode is leaving the current sheet and is propagating along the background magnetic field, towards the Earth. A simple time-independent description based on the Liouville's theorem indicates that the electron temperature anisotropy decreases with the distance along the magnetic field from the equator. Once this variation of α is taken into account, the linear theory predicts an equatorial origin for the whistler mode. The linear theory is also consistent with the observed bandwidth of wave emissions. Yet, the anisotropy required to be fully consistent with the observations is somewhat larger than the measured one. Although the discrepancy remains within the instrumental error bars, this could be due to time-dependent effects which have been neglected. The possible role of the whistler waves in the substorm process is discussed.

  19. High-order harmonic generation of CO and N2 molecules under linearly- and bi circularly-polarized laser pulses by TD-DFT

    NASA Astrophysics Data System (ADS)

    Koushki, A. M.; Sadighi-Bonabi, R.; Mohsen-Nia, M.; Irani, E.

    2018-07-01

    We present a method for high-order harmonics generation of N2 and CO molecules under two-color circularly polarized counter-rotating laser pulses at frequencies of and 2. Pulse envelope in this investigation is sin-squared and the intensity of each laser beam is with ten-optical cycle (o.c.). We show that an isolated pulse with a pulse duration shorter than 20 attosecond from the superposition of several harmonics can be generated. Both two-color linearly- and bicircularly-polarized laser pulses are considered. Our results have also been compared with the outcomes of the previous theoretical works as well as experiment observations. It is found that for CO molecule, the bicircularly-polarized laser pulses are superior and more efficient, and it can generate narrower attosecond pulses than the linearly-polarized pulses. While for N2 molecule, the two-color linearly-polarized pulses are more efficient, and it can generate narrower attosecond pulses than the bicircularly-polarized pulses. Furthermore, in order to demonstrate the origin of red- and blue-shifts in high-harmonic spectra, the effect of pulse duration on the high-order harmonics spectra is investigated. In addition, to obtain imaging on the temporal dependence of the electron densities, the time dependent electron localization function is used. Moreover, in order to study of the quantum trajectory of electrons, time-frequency analysis is utilized.

  20. Contact Dependence and Velocity Crossover in Friction between Microscopic Solid/Solid Contacts.

    PubMed

    McGraw, Joshua D; Niguès, Antoine; Chennevière, Alexis; Siria, Alessandro

    2017-10-11

    Friction at the nanoscale differs markedly from that between surfaces of macroscopic extent. Characteristically, the velocity dependence of friction between apparent solid/solid contacts can strongly deviate from the classically assumed velocity independence. Here, we show that a nondestructive friction between solid tips with radius on the scale of hundreds of nanometers and solid hydrophobic self-assembled monolayers has a strong velocity dependence. Specifically, using laterally oscillating quartz tuning forks, we observe a linear scaling in the velocity at the lowest accessed velocities, typically hundreds of micrometers per second, crossing over into a logarithmic velocity dependence. This crossover is consistent with a general multicontact friction model that includes thermally activated breaking of the contacts at subnanometric elongation. We find as well a strong dependence of the friction on the dimensions of the frictional probe.

  1. Continuing evaluation of bipolar linear devices for total dose bias dependency and ELDRS effects

    NASA Technical Reports Server (NTRS)

    McClure, Steven S.; Gorelick, Jerry L.; Yui, Candice; Rax, Bernard G.; Wiedeman, Michael D.

    2003-01-01

    We present results of continuing efforts to evaluate total dose bias dependency and ELDRS effects in bipolar linear microcircuits. Several devices were evaluated, each exhibiting moderate to significant bias and/or dose rate dependency.

  2. Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation

    NASA Astrophysics Data System (ADS)

    Mao, Jirong; Wang, Jiancheng

    2017-04-01

    Linear and circular polarizations of gamma-ray bursts (GRBs) have been detected recently. We adopt a simplified model to investigate GRB polarization characteristics in this paper. A compressed two-dimensional turbulent slab containing stochastic magnetic fields is considered, and jitter radiation can produce the linear polarization under this special magnetic field topology. Turbulent Faraday rotation measure (RM) of this slab makes strong wavelength-dependent depolarization. The jitter photons can also scatter with those magnetic clumps inside the turbulent slab, and a nonzero variance of the Stokes parameter V can be generated. Furthermore, the linearly and circularly polarized photons in the optical and radio bands may suffer heavy absorptions from the slab. Thus we consider the polarized jitter radiation transfer processes. Finally, we compare our model results with the optical detections of GRB 091018, GRB 121024A, and GRB 131030A. We suggest simultaneous observations of GRB multi-wavelength polarization in the future.

  3. Resistive wall modes in the EXTRAP T2R reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Brunsell, P. R.; Malmberg, J.-A.; Yadikin, D.; Cecconello, M.

    2003-10-01

    Resistive wall modes (RWM) in the reversed field pinch are studied and a detailed comparison of experimental growth rates and linear magnetohydrodynamic (MHD) theory is made. RWM growth rates are experimentally measured in the thin shell device EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43, 1 (2001)]. Linear MHD calculations of RWM growth rates are based on experimental equilibria. Experimental and linear MHD RWM growth rate dependency on the equilibrium profiles is investigated experimentally by varying the pinch parameter Θ=Bθ(a)/ in the range Θ=1.5-1.8. Quantitative agreement between experimental and linear MHD growth rates is seen. The dominating RWMs are the internal on-axis modes (having the same helicity as the central equilibrium field). At high Θ, external nonresonant modes are also observed. For internal modes experimental growth rates decrease with Θ while for external modes, growth rates increase with Θ. The effect of RWMs on the reversed-field pinch plasma performance is discussed.

  4. Linear Polarization, Circular Polarization, and Depolarization of Gamma-ray Bursts: A Simple Case of Jitter Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jirong; Wang, Jiancheng, E-mail: jirongmao@mail.ynao.ac.cn

    Linear and circular polarizations of gamma-ray bursts (GRBs) have been detected recently. We adopt a simplified model to investigate GRB polarization characteristics in this paper. A compressed two-dimensional turbulent slab containing stochastic magnetic fields is considered, and jitter radiation can produce the linear polarization under this special magnetic field topology. Turbulent Faraday rotation measure (RM) of this slab makes strong wavelength-dependent depolarization. The jitter photons can also scatter with those magnetic clumps inside the turbulent slab, and a nonzero variance of the Stokes parameter V can be generated. Furthermore, the linearly and circularly polarized photons in the optical and radiomore » bands may suffer heavy absorptions from the slab. Thus we consider the polarized jitter radiation transfer processes. Finally, we compare our model results with the optical detections of GRB 091018, GRB 121024A, and GRB 131030A. We suggest simultaneous observations of GRB multi-wavelength polarization in the future.« less

  5. Singularities of interference of three waves with different polarization states.

    PubMed

    Kurzynowski, Piotr; Woźniak, Władysław A; Zdunek, Marzena; Borwińska, Monika

    2012-11-19

    We presented the interference setup which can produce interesting two-dimensional patterns in polarization state of the resulting light wave emerging from the setup. The main element of our setup is the Wollaston prism which gives two plane, linearly polarized waves (eigenwaves of both Wollaston's wedges) with linearly changed phase difference between them (along the x-axis). The third wave coming from the second arm of proposed polarization interferometer is linearly or circularly polarized with linearly changed phase difference along the y-axis. The interference of three plane waves with different polarization states (LLL - linear-linear-linear or LLC - linear-linear-circular) and variable change difference produce two-dimensional light polarization and phase distributions with some characteristic points and lines which can be claimed to constitute singularities of different types. The aim of this article is to find all kind of these phase and polarization singularities as well as their classification. We postulated in our theoretical simulations and verified in our experiments different kinds of polarization singularities, depending on which polarization parameter was considered (the azimuth and ellipticity angles or the diagonal and phase angles). We also observed the phase singularities as well as the isolated zero intensity points which resulted from the polarization singularities when the proper analyzer was used at the end of the setup. The classification of all these singularities as well as their relationships were analyzed and described.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, W.; Jiang, Y.; Yang, J.

    A three-dimensional (3D) Dirac semimetal (DS) is an analogue of graphene, but with linear energy dispersion in all (three) momentum directions. 3D DSs have been a fertile playground in discovering novel quantum particles, for example Weyl fermions, in solid state systems. Many 3D DSs were theoretically predicted and experimentally confirmed. Here, we report here the results in exfoliated ZrTe 5 thin flakes from the studies of aberration-corrected scanning transmission electron microscopy and low temperature magneto-transport measurements. We observed several unique results. First, a π Berry phase was obtained from the Landau fan diagram of the Shubnikov-de Haas oscillations in themore » longitudinal conductivity σ xx. Second, the longitudinal resistivity ρ xx shows a linear magnetic field dependence in the quantum limit regime. Most surprisingly, quantum oscillations were also observed at fractional Landau level indices N = 5/3 and 7/5, demonstrating strong electron-electron interaction effects in ZrTe 5.« less

  7. Investigation of the W and Q 2 dependence of charged pion distributions in μ p scattering

    NASA Astrophysics Data System (ADS)

    Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Calen, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; D'Agostini, G.; Dahlgren, S.; Dengler, F.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Gayler, J.; Geddes, N.; Giubellino, P.; Grafström, P.; Grard, F.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Hoppe, C.; Jaffré, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Korbel, V.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Pönsgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schröder, T.; Schouten, M.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thénard, J. M.; Thompson, J. C.; de La Torre, A.; Toth, J.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1986-03-01

    The W and Q 2 dependence of the fragmentation functions and of the average multiplicity of charged pions is investigated, using data from the NA9 experiment at the CERN SPS on muon-proton scattering at 280 GeV. A significant increase of pion production with increasing W is observed at fixed Q 2, leading to a rise of the average charged pion multiplicity, linear in ln W 2, and of the pion fragmentation function in the central region, i.e. at small | x F |. This increase can be understood from the kinematic widening of the cms rapidity range proportional to ln W 2 and the observed W independent height of the rapidity distribution. At fixed W, a rise of the average charged pion multiplicity with Q 2 is observed. This rise appears to be weaker than that observed for all charged hadrons implying a stronger rise with Q 2 for kaons and protons.

  8. On the Nature of QPO Phase Lags in Black Hole Candidates

    NASA Technical Reports Server (NTRS)

    Shaposhnikov, Nikolai

    2012-01-01

    Observations of quasi-periodic oscillations (QPOs) in X-ray binaries hold a key to understanding many aspects of these enigmatic systems. Complex appearance of the Fourier phase lags related to QPOs is one of the most puzzling observational effects in accreting black holes. In this Letter we show that QPO properties, including phase lags, can be explained in a framework of a simple scenario, where the oscillating media provides a feedback on the emerging spectrum. We demonstrate that the QPO waveform is presented by the product of a perturbation and a time delayed response factors, where the response is energy dependent. The essential property of this effect is its non-linear and multiplicative nature. Our multiplicative reverberation model successfully describes the QPO components in energy dependent power spectra as well as the appearance of the phase lags between signal in different energy bands. We apply our model to QPOs observed by Rossi X-ray Timing Explorer in BH candidate XTE J1550-564. We briefly discuss the implications of the observed energy dependence of the QPO reverberation times and amplitudes to the nature of the power law spectral component and its variability.

  9. Multicolor optical polarimetry of reddened stars in the small Magellanic cloud

    NASA Technical Reports Server (NTRS)

    Magalhaes, Antonio M.; Coyne, G. V.; Piirola, Valero; Rodrigues, C. V.

    1989-01-01

    First results of an on-going program to determine the wavelength dependence of the interstellar optical polarization of reddened stars in the Small Magellanic Cloud (SMC) are presented. IUE observations of reddened stars in the SMC (Bouchet et al. 1985) generally show marked differences in the extinction law as compared to both the Galaxy and the Large Megallanic Cloud. The aim here is to determine the wavelength dependence of the optical linear polarization in the direction of several such stars in the SMC in order to further constrain the dust composition and size distribution in that galaxy.

  10. Characterization of binding of N'-nitrosonornicotine to protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, M.F.

    1986-01-01

    The NADPH-dependent activation of the carcinogenic nitrosamine, N'-nitrosonornicotine (NNN) to a reactive intermediate which binds covalently to protein was assessed using male Sprague-Dawley rat liver and lung microsomes. The NADPH-dependent covalent binding of (/sup 14/C)NNN to liver and lung microsomes was linear with time up to 90 and 45 min, respectively and was also linear with protein concentrations up to 3.0 and 2.0 mg/ml, respectively. The apparent K/sub m/ and V/sub max/ of the NADPH-dependent binding to liver microsomes were determined from the initial velocities. Addition of the thiols glutathione, cystein, N-acetylcysteine or 2-mercapthoethanol significantly decreased the non-NADPH-dependent binding tomore » liver microsomal protein, but did not affect the NADPH-dependent binding. Glutathione was required in order to observe any NADPH-dependent binding to lung microsomal protein. In lung microsomes, SKF-525A significantly decreased the NADPH-dependent binding by 79%. Replacement of an air atmosphere with N/sub 2/ or CO:O/sub 2/ (8:2) significantly decreased the NADPH-dependent binding of (/sup 14/C)NNN to liver microsomal protein by 40% or 27% respectively. Extensive covalent binding of (/sup 14/C)NNN to liver and muscle microsomal protein occurred in the absence of an NADPH-generating system, in the presence of 50% methanol and also to bovine serum albumin, indicating a nonenzymatic reaction. These data indicate that cytochrome P-450 is at least in part responsible for the metabolic activation of the carcinogen NNN, but also suggest additional mechanisms of activation.« less

  11. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. I - The dynamics of time discretization and its implications for algorithm development in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sweby, P. K.; Griffiths, D. F.

    1991-01-01

    Spurious stable as well as unstable steady state numerical solutions, spurious asymptotic numerical solutions of higher period, and even stable chaotic behavior can occur when finite difference methods are used to solve nonlinear differential equations (DE) numerically. The occurrence of spurious asymptotes is independent of whether the DE possesses a unique steady state or has additional periodic solutions and/or exhibits chaotic phenomena. The form of the nonlinear DEs and the type of numerical schemes are the determining factor. In addition, the occurrence of spurious steady states is not restricted to the time steps that are beyond the linearized stability limit of the scheme. In many instances, it can occur below the linearized stability limit. Therefore, it is essential for practitioners in computational sciences to be knowledgeable about the dynamical behavior of finite difference methods for nonlinear scalar DEs before the actual application of these methods to practical computations. It is also important to change the traditional way of thinking and practices when dealing with genuinely nonlinear problems. In the past, spurious asymptotes were observed in numerical computations but tended to be ignored because they all were assumed to lie beyond the linearized stability limits of the time step parameter delta t. As can be seen from the study, bifurcations to and from spurious asymptotic solutions and transitions to computational instability not only are highly scheme dependent and problem dependent, but also initial data and boundary condition dependent, and not limited to time steps that are beyond the linearized stability limit.

  12. Parametric Methods for Determining the Characteristics of Long-Term Metal Strength

    NASA Astrophysics Data System (ADS)

    Nikitin, V. I.; Rybnikov, A. I.

    2018-06-01

    A large number of parametric methods were proposed to calculate the characteristics of the long-term strength of metals. All of them are based on the fact that temperature and time are mutually compensating factors in the processes of metal degradation at high temperature under the action of a constant stress. The analysis of the well-known Larson-Miller, Dorn-Shcherby, Menson-Haferd, Graham-Wallace, and Trunin parametric equations is performed. The widely used Larson-Miller parameter was subjected to a detailed analysis. The application of this parameter to the calculation of ultimate long-term strength for steels and alloys is substantiated provided that the laws of exponential dependence on temperature and power dependence on strength for the heat resistance are observed. It is established that the coefficient C in the Larson- Miller equation is a characteristic of the heat resistance and is different for each material. Therefore, the use of a universal constant C = 20 in parametric calculations, as well as an a priori presetting of numerical C values for each individual group of materials, is unacceptable. It is shown in what manner it is possible to determine an exact value of coefficient C for any material of interest as well as to obtain coefficient C depending on stress in case such a dependence is manifested. At present, the calculation of long-term strength characteristics can be performed to a sufficient accuracy using Larson-Miller's parameter and its refinements described therein as well as on the condition that a linear law in logσ- P dependence is observed and calculations in the interpolation range is performed. The use of the presented recommendations makes it possible to obtain a linear parametric logσ- P dependence, which makes it possible to determine to a sufficient accuracy the values of ultimate long-term strength for different materials.

  13. From Experiment to Theory: What Can We Learn from Growth Curves?

    PubMed

    Kareva, Irina; Karev, Georgy

    2018-01-01

    Finding an appropriate functional form to describe population growth based on key properties of a described system allows making justified predictions about future population development. This information can be of vital importance in all areas of research, ranging from cell growth to global demography. Here, we use this connection between theory and observation to pose the following question: what can we infer about intrinsic properties of a population (i.e., degree of heterogeneity, or dependence on external resources) based on which growth function best fits its growth dynamics? We investigate several nonstandard classes of multi-phase growth curves that capture different stages of population growth; these models include hyperbolic-exponential, exponential-linear, exponential-linear-saturation growth patterns. The constructed models account explicitly for the process of natural selection within inhomogeneous populations. Based on the underlying hypotheses for each of the models, we identify whether the population that it best fits by a particular curve is more likely to be homogeneous or heterogeneous, grow in a density-dependent or frequency-dependent manner, and whether it depends on external resources during any or all stages of its development. We apply these predictions to cancer cell growth and demographic data obtained from the literature. Our theory, if confirmed, can provide an additional biomarker and a predictive tool to complement experimental research.

  14. The relationship between anisotropic magnetoresistance and topology of Fermi surface in Td-MoTe2 crystal

    NASA Astrophysics Data System (ADS)

    Lv, Yang-Yang; Li, Xiao; Pang, Bin; Cao, Lin; Lin, Dajun; Zhang, Bin-Bin; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Dong, Song-Tao; Zhang, Shan-Tao; Lu, Ming-Hui; Chen, Yan-Feng

    2017-07-01

    Layered transition-metal dichalcogenides have been recently attracted a lot of attention because of their unique physical properties, such as extremely large and anisotropic magnetoresistance (MR) in WTe2. In this work, we observed the abnormally anisotropic MR on Td-MoTe2 crystal that is strongly dependent on the temperature, as well as the orientations of both magnetic field B and electric field E with respect to crystallographic axes of Td-MoTe2. When E//a-axis and B//c-axis, MR is parabolically dependent on B and is as high as 520% under 9 T and 2 K conditions; the MR is quasi-linearly dependent on B when E//a-axis and B//b-axis (E//b-axis and B//c-axis), and the corresponding MR is only 130% (220%); MR is initially parabolically dependent on B, then linearly on B, and finally shows a saturate trend under E//B//a-axis (or E//B//b-axis) conditions, and the MR is about 16% (30%). These anisotropic MR behaviors can be qualitatively explained by the features of the Fermi surface of Td-MoTe2. This work may demonstrate the rich anisotropic physical behavior in layered transition-metal dichalcognides.

  15. Discontinuities in effective permeability due to fracture percolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, Jeffrey De'Haven; Karra, Satish; Carey, James William

    Motivated by a triaxial coreflood experiment with a sample of Utica shale where an abrupt jump in permeability was observed, possibly due to the creation of a percolating fracture network through the sample, we perform numerical simulations based on the experiment to characterize how the effective permeability of otherwise low-permeability porous media depends on fracture formation, connectivity, and the contrast between the fracture and matrix permeabilities. While a change in effective permeability due to fracture formation is expected, the dependence of its magnitude upon the contrast between the matrix permeability and fracture permeability and the fracture network structure is poorlymore » characterized. We use two different high-fidelity fracture network models to characterize how effective permeability changes as percolation occurs. The first is a dynamic two-dimensional fracture propagation model designed to mimic the laboratory settings of the experiment. The second is a static three-dimensional discrete fracture network (DFN) model, whose fracture and network statistics are based on the fractured sample of Utica shale. Once the network connects the inflow and outflow boundaries, the effective permeability increases non-linearly with network density. In most networks considered, a jump in the effective permeability was observed when the embedded fracture network percolated. We characterize how the magnitude of the jump, should it occur, depends on the contrast between the fracture and matrix permeabilities. For small contrasts between the matrix and fracture permeabilities the change is insignificant. However, for larger contrasts, there is a substantial jump whose magnitude depends non-linearly on the difference between matrix and fracture permeabilities. A power-law relationship between the size of the jump and the difference between the matrix and fracture permeabilities is observed. In conclusion, the presented results underscore the importance of fracture network topology on the upscaled properties of the porous medium in which it is embedded.« less

  16. Water uptake coefficients and deliquescence of NaCl nanoparticles at atmospheric relative humidities from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Bahadur, Ranjit; Russell, Lynn M.

    2008-09-01

    Deliquescence properties of sodium chloride are size dependent for particles smaller than 100 nm. Molecular dynamics (MD) simulations are used to determine deliquescence relative humidity (DRH) for particles in this size range by modeling idealized particles in contact with humid air. Constant humidity conditions are simulated by inclusion of a liquid reservoir of NaCl solution in contact with the vapor phase, which acts as a source of water molecules as uptake by the nanoparticle proceeds. DRH is bounded between the minimum humidity at which sustained water accumulation is observed at the particle surface and the maximum humidity at which water accumulation is not observed. Complete formation of a liquid layer is not observed due to computational limitations. The DRH determined increases with decreasing particle diameter, rising to between 91% and 93% for a 2.2 nm particle and between 81% and 85% for an 11 nm particle, higher than the 75% expected for particles larger than 100 nm. The simulated size dependence of DRH agrees well with predictions from bulk thermodynamic models and appears to converge with measurements for sizes larger than 10 nm. Complete deliquescence of nanoparticles in the 2-11 nm size range requires between 1 and 100 μs, exceeding the available computational resources for this study. Water uptake coefficients are near 0.1 with a negligible contribution from diffusion effects. Planar uptake coefficients decrease from 0.41 to 0.09 with increasing fractional water coverage from 0.002 to 1, showing a linear dependence on the logarithm of the coverage fraction with a slope of -0.08+/-0.01 (representing the effect of solvation). Particle uptake coefficients increase from 0.13 at 11 nm to 0.65 at 2.2 nm, showing a linear dependence on the logarithm of the edge fraction (which is a function of diameter) with a slope of 0.74+/-0.04 (representing larger edge effects in smaller particles).

  17. Discontinuities in effective permeability due to fracture percolation

    DOE PAGES

    Hyman, Jeffrey De'Haven; Karra, Satish; Carey, James William; ...

    2018-01-31

    Motivated by a triaxial coreflood experiment with a sample of Utica shale where an abrupt jump in permeability was observed, possibly due to the creation of a percolating fracture network through the sample, we perform numerical simulations based on the experiment to characterize how the effective permeability of otherwise low-permeability porous media depends on fracture formation, connectivity, and the contrast between the fracture and matrix permeabilities. While a change in effective permeability due to fracture formation is expected, the dependence of its magnitude upon the contrast between the matrix permeability and fracture permeability and the fracture network structure is poorlymore » characterized. We use two different high-fidelity fracture network models to characterize how effective permeability changes as percolation occurs. The first is a dynamic two-dimensional fracture propagation model designed to mimic the laboratory settings of the experiment. The second is a static three-dimensional discrete fracture network (DFN) model, whose fracture and network statistics are based on the fractured sample of Utica shale. Once the network connects the inflow and outflow boundaries, the effective permeability increases non-linearly with network density. In most networks considered, a jump in the effective permeability was observed when the embedded fracture network percolated. We characterize how the magnitude of the jump, should it occur, depends on the contrast between the fracture and matrix permeabilities. For small contrasts between the matrix and fracture permeabilities the change is insignificant. However, for larger contrasts, there is a substantial jump whose magnitude depends non-linearly on the difference between matrix and fracture permeabilities. A power-law relationship between the size of the jump and the difference between the matrix and fracture permeabilities is observed. In conclusion, the presented results underscore the importance of fracture network topology on the upscaled properties of the porous medium in which it is embedded.« less

  18. Dielectric analysis of depth dependent curing behavior of dental resin composites.

    PubMed

    Steinhaus, Johannes; Moeginger, Bernhard; Grossgarten, Mandy; Rosentritt, Martin; Hausnerova, Berenika

    2014-06-01

    The aim of this study is to investigate depth dependent changes of polymerization process and kinetics of visible light-curing (VLC) dental composites in real-time. The measured quantity - "ion viscosity" determined by dielectric analysis (DEA) - provides the depth dependent reaction rate which is correlated to the light intensity available in the corresponding depths derived from light transmission measurements. The ion viscosity curves of two composites (VOCO Arabesk Top and Grandio) were determined during irradiation of 40s with a light-curing unit (LCU) in specimen depths of 0.5/0.75/1.0/1.25/1.5/1.75 and 2.0mm using a dielectric cure analyzer (NETZSCH DEA 231 with Mini IDEX sensors). The thickness dependent light transmission was measured by irradiation composite specimens of various thicknesses on top of a radiometer setup. The shape of the ion viscosity curves depends strongly on the specimen thickness above the sensor. All curves exhibit a range of linear time dependency of the ion viscosity after a certain initiation time. The determined initiation times, the slopes of the linear part of the curves, and the ion viscosities at the end of the irradiation differ significantly with depth within the specimen. The slopes of the ion viscosity curves as well as the light intensity values decrease with depth and fit to the Lambert-Beer law. The corresponding attenuation coefficients are determined for Arabesk Top OA2 to 1.39mm(-1) and 1.48mm(-1), respectively, and for Grandio OA2 with 1.17 and 1.39mm(-1), respectively. For thicknesses exceeding 1.5mm a change in polymerization behavior is observed as the ion viscosity increases subsequent to the linear range indicating some kind of reaction acceleration. The two VLC composites and different specimen thicknesses discriminate significantly in their ion viscosity evolution allowing for a precise characterization of the curing process even with respect to the polymerization mechanism. Copyright © 2014. Published by Elsevier Ltd.

  19. Polarization-dependent plasmonic photocurrents in two-dimensional electron systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popov, V. V., E-mail: popov-slava@yahoo.co.uk; Saratov State University, Saratov 410012; Saratov Scientific Center of the Russian Academy of Sciences, Saratov 410028

    2016-06-27

    Plasmonic polarization dependent photocurrents in a homogeneous two-dimensional electron system are studied. Those effects are completely different from the photon drag and electronic photogalvanic effects as well as from the plasmonic ratchet effect in a density modulated two-dimensional electron system. Linear and helicity-dependent contributions to the photocurrent are found. The linear contribution can be interpreted as caused by the longitudinal and transverse plasmon drag effect. The helicity-dependent contribution originates from the non-linear electron convection and changes its sign with reversing the plasmonic field helicity. It is shown that the helicity-dependent component of the photocurrent can exceed the linear one bymore » several orders of magnitude in high-mobility two-dimensional electron systems. The results open possibilities for all-electronic detection of the radiation polarization states by exciting the plasmonic photocurrents in two-dimensional electron systems.« less

  20. Is There a Critical Distance for Fickian Transport? - a Statistical Approach to Sub-Fickian Transport Modelling in Porous Media

    NASA Astrophysics Data System (ADS)

    Most, S.; Nowak, W.; Bijeljic, B.

    2014-12-01

    Transport processes in porous media are frequently simulated as particle movement. This process can be formulated as a stochastic process of particle position increments. At the pore scale, the geometry and micro-heterogeneities prohibit the commonly made assumption of independent and normally distributed increments to represent dispersion. Many recent particle methods seek to loosen this assumption. Recent experimental data suggest that we have not yet reached the end of the need to generalize, because particle increments show statistical dependency beyond linear correlation and over many time steps. The goal of this work is to better understand the validity regions of commonly made assumptions. We are investigating after what transport distances can we observe: A statistical dependence between increments, that can be modelled as an order-k Markov process, boils down to order 1. This would be the Markovian distance for the process, where the validity of yet-unexplored non-Gaussian-but-Markovian random walks would start. A bivariate statistical dependence that simplifies to a multi-Gaussian dependence based on simple linear correlation (validity of correlated PTRW). Complete absence of statistical dependence (validity of classical PTRW/CTRW). The approach is to derive a statistical model for pore-scale transport from a powerful experimental data set via copula analysis. The model is formulated as a non-Gaussian, mutually dependent Markov process of higher order, which allows us to investigate the validity ranges of simpler models.

  1. One Hundred Ways to be Non-Fickian - A Rigorous Multi-Variate Statistical Analysis of Pore-Scale Transport

    NASA Astrophysics Data System (ADS)

    Most, Sebastian; Nowak, Wolfgang; Bijeljic, Branko

    2015-04-01

    Fickian transport in groundwater flow is the exception rather than the rule. Transport in porous media is frequently simulated via particle methods (i.e. particle tracking random walk (PTRW) or continuous time random walk (CTRW)). These methods formulate transport as a stochastic process of particle position increments. At the pore scale, geometry and micro-heterogeneities prohibit the commonly made assumption of independent and normally distributed increments to represent dispersion. Many recent particle methods seek to loosen this assumption. Hence, it is important to get a better understanding of the processes at pore scale. For our analysis we track the positions of 10.000 particles migrating through the pore space over time. The data we use come from micro CT scans of a homogeneous sandstone and encompass about 10 grain sizes. Based on those images we discretize the pore structure and simulate flow at the pore scale based on the Navier-Stokes equation. This flow field realistically describes flow inside the pore space and we do not need to add artificial dispersion during the transport simulation. Next, we use particle tracking random walk and simulate pore-scale transport. Finally, we use the obtained particle trajectories to do a multivariate statistical analysis of the particle motion at the pore scale. Our analysis is based on copulas. Every multivariate joint distribution is a combination of its univariate marginal distributions. The copula represents the dependence structure of those univariate marginals and is therefore useful to observe correlation and non-Gaussian interactions (i.e. non-Fickian transport). The first goal of this analysis is to better understand the validity regions of commonly made assumptions. We are investigating three different transport distances: 1) The distance where the statistical dependence between particle increments can be modelled as an order-one Markov process. This would be the Markovian distance for the process, where the validity of yet-unexplored non-Gaussian-but-Markovian random walks start. 2) The distance where bivariate statistical dependence simplifies to a multi-Gaussian dependence based on simple linear correlation (validity of correlated PTRW/CTRW). 3) The distance of complete statistical independence (validity of classical PTRW/CTRW). The second objective is to reveal characteristic dependencies influencing transport the most. Those dependencies can be very complex. Copulas are highly capable of representing linear dependence as well as non-linear dependence. With that tool we are able to detect persistent characteristics dominating transport even across different scales. The results derived from our experimental data set suggest that there are many more non-Fickian aspects of pore-scale transport than the univariate statistics of longitudinal displacements. Non-Fickianity can also be found in transverse displacements, and in the relations between increments at different time steps. Also, the found dependence is non-linear (i.e. beyond simple correlation) and persists over long distances. Thus, our results strongly support the further refinement of techniques like correlated PTRW or correlated CTRW towards non-linear statistical relations.

  2. Cross-conditional entropy and coherence analysis of pharmaco-EEG changes induced by alprazolam.

    PubMed

    Alonso, J F; Mañanas, M A; Romero, S; Rojas-Martínez, M; Riba, J

    2012-06-01

    Quantitative analysis of electroencephalographic signals (EEG) and their interpretation constitute a helpful tool in the assessment of the bioavailability of psychoactive drugs in the brain. Furthermore, psychotropic drug groups have typical signatures which relate biochemical mechanisms with specific EEG changes. To analyze the pharmacological effect of a dose of alprazolam on the connectivity of the brain during wakefulness by means of linear and nonlinear approaches. EEG signals were recorded after alprazolam administration in a placebo-controlled crossover clinical trial. Nonlinear couplings assessed by means of corrected cross-conditional entropy were compared to linear couplings measured with the classical magnitude squared coherence. Linear variables evidenced a statistically significant drug-induced decrease, whereas nonlinear variables showed significant increases. All changes were highly correlated to drug plasma concentrations. The spatial distribution of the observed connectivity changes clearly differed from a previous study: changes before and after the maximum drug effect were mainly observed over the anterior half of the scalp. Additionally, a new variable with very low computational cost was defined to evaluate nonlinear coupling. This is particularly interesting when all pairs of EEG channels are assessed as in this study. Results showed that alprazolam induced changes in terms of uncoupling between regions of the scalp, with opposite trends depending on the variables: decrease in linear ones and increase in nonlinear features. Maps provided consistent information about the way brain changed in terms of connectivity being definitely necessary to evaluate separately linear and nonlinear interactions.

  3. Population Dynamics and Temperature-Dependent Development of Chrysomphalus aonidum (L.) to Aid Sustainable Pest Management Decisions.

    PubMed

    Campolo, O; Malacrinò, A; Laudani, F; Maione, V; Zappalà, L; Palmeri, V

    2014-10-01

    The increasing worldwide trades progressively led to decreased impact of natural barriers on wild species movement. The exotic scale Chrysomphalus aonidum (L.) (Hemiptera: Diaspididae), recently reported on citrus in southern Italy, may represent a new threat to Mediterranean citriculture. We studied C. aonidum population dynamics under field conditions and documented its development under various temperatures. To enable describing temperature-dependent development through the use of linear and non-linear models, low temperature thresholds and thermal constants for each developmental stage were estimated. Chrysomphalus aonidum was able to perform four generations on green parts (leaves, sprouts) of citrus trees and three on fruits. In addition, an overall higher population density was observed on samples collected in the southern part of the tree canopy. Temperature had a significant effect on the developmental rate; female needed 625 degree days (DD) to complete its development, while male needed 833 DD. The low threshold temperatures, together with data from population dynamics, demonstrated that C. aonidum is able to overwinter as second instar and as an adult. The results obtained, validated by those collected in the field, revealed few differences between predicted and observed dates of first occurrence of each C. aonidum instar in citrus orchards. Data on C. aonidum phenology and the definition of the thermal parameters (lower and upper threshold temperatures, optimum temperature, and the thermal constant) by non-linear models could allow the estimation of the occurrence in the field of each life stage and would be helpful in developing effective integrated control strategies.

  4. Experimental characterization and modelling of non-linear coupling of the lower hybrid current drive power on Tore Supra

    NASA Astrophysics Data System (ADS)

    Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.; Colas, L.

    2013-01-01

    To achieve steady-state operation on future fusion devices, in particular on ITER, the coupling of the lower hybrid wave must be optimized on a wide range of edge conditions. However, under some specific conditions, deleterious effects on the lower hybrid current drive (LHCD) coupling are sometimes observed on Tore Supra. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the fully active multi-junction (FAM) and the new passive active multi-junction (PAM) antennas. A non-linear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient (RC) with the LHCD power is not predicted by the standard linear theory of the LH wave coupling. A theoretical model is suggested to describe the non-linear wave-plasma interaction induced by the ponderomotive effect and implemented in a new full wave LHCD code, PICCOLO-2D (ponderomotive effect in a coupling code of lower hybrid wave-2D). The code self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density. The simulation reproduces very well the occurrence of a non-linear behaviour in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modelling for the first time on the FAM and PAM antennas on Tore Supra.

  5. The Sensitivity of Arctic Ozone Loss to Polar Stratospheric Cloud Volume and Chlorine and Bromine Loading in a Chemistry and Transport Model

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Polansky, B. C.

    2006-01-01

    The sensitivity of Arctic ozone loss to polar stratospheric cloud volume (V(sub PSC)) and chlorine and bromine loading is explored using chemistry and transport models (CTMs). A simulation using multi-decadal output from a general circulation model (GCM) in the Goddard Space Flight Center (GSFC) CTM complements one recycling a single year s GCM output in the Global Modeling Initiative (GMI) CTM. Winter polar ozone loss in the GSFC CTM depends on equivalent effective stratospheric chlorine (EESC) and polar vortex characteristics (temperatures, descent, isolation, polar stratospheric cloud amount). Polar ozone loss in the GMI CTM depends only on changes in EESC as the dynamics repeat annually. The GSFC CTM simulation reproduces a linear relationship between ozone loss and Vpsc derived from observations for 1992 - 2003 which holds for EESC within approx.85% of its maximum (approx.1990 - 2020). The GMI simulation shows that ozone loss varies linearly with EESC for constant, high V(sub PSC).

  6. Variability of Solar UV Irradiance Related to Bright Magnetic Features Observed in Call K-Line: Relationship between Lyman alpha and K-line Report for UARS funding agency

    NASA Technical Reports Server (NTRS)

    Zirin, Harold; Cameron, Robert

    1999-01-01

    In this report we comment on the relationship between the Lyman alpha and Calcium K-line emission from the Sun. We firstly examine resolved Lyman alpha images (from TRACE) and resolved K-line images. We find that the Lyman alpha emission is consistent with a linear dependence on the K-line emission. As this is in conflict with the analysis of Johannesson et al.(1995, 1998) we proceed by comparing the disk integrated Lyman alpha flux as a function of ratio between the disk integrated Mg II core and wing fluxes (Johannesson et al (1998) having previously found a linear dependence between this index and the BBSO K-line index). We find that a reasonably good fit can be obtained, however note the discrepancies which lead Johannesson et al to consider the square root relationship. We suggest an alternative interpretation of the discrepancy.

  7. Linear stability analysis of particle-laden hypopycnal plumes

    NASA Astrophysics Data System (ADS)

    Farenzena, Bruno Avila; Silvestrini, Jorge Hugo

    2017-12-01

    Gravity-driven riverine outflows are responsible for carrying sediments to the coastal waters. The turbulent mixing in these flows is associated with shear and gravitational instabilities such as Kelvin-Helmholtz, Holmboe, and Rayleigh-Taylor. Results from temporal linear stability analysis of a two-layer stratified flow are presented, investigating the behavior of settling particles and mixing region thickness on the flow stability in the presence of ambient shear. The particles are considered suspended in the transport fluid, and its sedimentation is modeled with a constant valued settling velocity. Three scenarios, regarding the mixing region thickness, were identified: the poorly mixed environment, the strong mixed environment, and intermediate scenario. It was observed that Kelvin-Helmholtz and settling convection modes are the two fastest growing modes depending on the particles settling velocity and the total Richardson number. The second scenario presents a modified Rayleigh-Taylor instability, which is the dominant mode. The third case can have Kelvin-Helmholtz, settling convection, and modified Rayleigh-Taylor modes as the fastest growing mode depending on the combination of parameters.

  8. Surface Optical Rectification from Layered MoS2 Crystal by THz Time-Domain Surface Emission Spectroscopy.

    PubMed

    Huang, Yuanyuan; Zhu, Lipeng; Zhao, Qiyi; Guo, Yaohui; Ren, Zhaoyu; Bai, Jintao; Xu, Xinlong

    2017-02-08

    Surface optical rectification was observed from the layered semiconductor molybdenum disulfide (MoS 2 ) crystal via terahertz (THz) time-domain surface emission spectroscopy under linearly polarized femtosecond laser excitation. The radiated THz amplitude of MoS 2 has a linear dependence on ever-increasing pump fluence and thus quadratic with the pump electric field, which discriminates from the surface Dember field induced THz radiation in InAs and the transient photocurrent-induced THz generation in graphite. Theoretical analysis based on space symmetry of MoS 2 crystal suggests that the underlying mechanism of THz radiation is surface optical rectification under the reflection configuration. This is consistent with the experimental results according to the radiated THz amplitude dependences on azimuthal and incident polarization angles. We also demonstrated the damage threshold of MoS 2 due to microscopic bond breaking under the femtosecond laser irradiation, which can be monitored via THz time-domain emission spectroscopy and Raman spectroscopy.

  9. Correlation of proton irradiation induced threshold voltage shifts to deep level traps in AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Cardwell, D.; Sasikumar, A.; Kyle, E. C. H.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Speck, J. S.; Arehart, A. R.; Ringel, S. A.

    2016-04-01

    The impact of proton irradiation on the threshold voltage (VT) of AlGaN/GaN heterostructures is systematically investigated to enhance the understanding of a primary component of the degradation of irradiated high electron mobility transistors. The value of VT was found to increase monotonically as a function of 1.8 MeV proton fluence in a sub-linear manner reaching 0.63 V at a fluence of 1 × 1014 cm-2. Silvaco Atlas simulations of VT shifts caused by GaN buffer traps using experimentally measured introduction rates, and energy levels closely match the experimental results. Different buffer designs lead to different VT dependences on proton irradiation, confirming that deep, acceptor-like defects in the GaN buffer are primarily responsible for the observed VT shifts. The proton irradiation induced VT shifts are found to depend on the barrier thickness in a linear fashion; thus, scaling the barrier thickness could be an effective way to reduce such degradation.

  10. Pressure dependence of backbone chemical shifts in the model peptides Ac-Gly-Gly-Xxx-Ala-NH2.

    PubMed

    Erlach, Markus Beck; Koehler, Joerg; Crusca, Edson; Kremer, Werner; Munte, Claudia E; Kalbitzer, Hans Robert

    2016-06-01

    For a better understanding of nuclear magnetic resonance (NMR) detected pressure responses of folded as well as unstructured proteins the availability of data from well-defined model systems are indispensable. In this work we report the pressure dependence of chemical shifts of the backbone atoms (1)H(α), (13)C(α) and (13)C' in the protected tetrapeptides Ac-Gly-Gly-Xxx-Ala-NH2 (Xxx one of the 20 canonical amino acids). Contrary to expectation the chemical shifts of these nuclei have a nonlinear dependence on pressure in the range from 0.1 to 200 MPa. The polynomial pressure coefficients B 1 and B 2 are dependent on the type of amino acid studied. The coefficients of a given nucleus show significant linear correlations suggesting that the NMR observable pressure effects in the different amino acids have at least partly the same physical cause. In line with this observation the magnitude of the second order coefficients of nuclei being direct neighbors in the chemical structure are also weakly correlated.

  11. Linear Regression Quantile Mapping (RQM) - A new approach to bias correction with consistent quantile trends

    NASA Astrophysics Data System (ADS)

    Passow, Christian; Donner, Reik

    2017-04-01

    Quantile mapping (QM) is an established concept that allows to correct systematic biases in multiple quantiles of the distribution of a climatic observable. It shows remarkable results in correcting biases in historical simulations through observational data and outperforms simpler correction methods which relate only to the mean or variance. Since it has been shown that bias correction of future predictions or scenario runs with basic QM can result in misleading trends in the projection, adjusted, trend preserving, versions of QM were introduced in the form of detrended quantile mapping (DQM) and quantile delta mapping (QDM) (Cannon, 2015, 2016). Still, all previous versions and applications of QM based bias correction rely on the assumption of time-independent quantiles over the investigated period, which can be misleading in the context of a changing climate. Here, we propose a novel combination of linear quantile regression (QR) with the classical QM method to introduce a consistent, time-dependent and trend preserving approach of bias correction for historical and future projections. Since QR is a regression method, it is possible to estimate quantiles in the same resolution as the given data and include trends or other dependencies. We demonstrate the performance of the new method of linear regression quantile mapping (RQM) in correcting biases of temperature and precipitation products from historical runs (1959 - 2005) of the COSMO model in climate mode (CCLM) from the Euro-CORDEX ensemble relative to gridded E-OBS data of the same spatial and temporal resolution. A thorough comparison with established bias correction methods highlights the strengths and potential weaknesses of the new RQM approach. References: A.J. Cannon, S.R. Sorbie, T.Q. Murdock: Bias Correction of GCM Precipitation by Quantile Mapping - How Well Do Methods Preserve Changes in Quantiles and Extremes? Journal of Climate, 28, 6038, 2015 A.J. Cannon: Multivariate Bias Correction of Climate Model Outputs - Matching Marginal Distributions and Inter-variable Dependence Structure. Journal of Climate, 29, 7045, 2016

  12. Temperature dependent Raman investigation of multiwall carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Dilawar Sharma, Nita; Singh, Jasveer; Vijay, Aditi

    2018-04-01

    We report anomalous observations in our investigations of the temperature dependent Raman spectroscopic measurement of multiwall carbon nanotubes. The Micro-Raman spectra were recorded with the laser source having 514.5 nm wavelength and within the temperature range of 80-440 K. The major Raman bands, the G and D band, are observed at 1584 and 1348 cm-1, respectively, at ambient. The absence of the radial breathing mode confirms the multiwall nature of carbon nanotubes. It has been observed that with an increase in the temperature above 120 K, there is a shift in Raman bands towards the higher wave-number region. However, a drop in the G and D bands is observed from 80 to 120 K which was not observed for the second order band. Thereafter, all Raman modes exhibited mode hardening up to about 320 K followed by mild softening of the phonon modes. Linear temperature coefficients were found to have higher contribution to mode hardening as compared to higher order terms. Total anharmonicity estimation shows a predominant effect of the quasi-harmonic term as compared to the true anharmonic term.

  13. Comparison of Recent Modeled and Observed Trends in Total Column Ozone

    NASA Technical Reports Server (NTRS)

    Andersen, S. B.; Weatherhead, E. C.; Stevermer, A.; Austin, J.; Bruehl, C.; Fleming, E. L.; deGrandpre, J.; Grewe, V.; Isaksen, I.; Pitari, G.; hide

    2006-01-01

    We present a comparison of trends in total column ozone from 10 two-dimensional and 4 three-dimensional models and solar backscatter ultraviolet-2 (SBUV/2) satellite observations from the period 1979-2003. Trends for the past (1979-2000), the recent 7 years (1996-2003), and the future (2000-2050) are compared. We have analyzed the data using both simple linear trends and linear trends derived with a hockey stick method including a turnaround point in 1996. If the last 7 years, 1996-2003, are analyzed in isolation, the SBUV/2 observations show no increase in ozone, and most of the models predict continued depletion, although at a lesser rate. In sharp contrast to this, the recent data show positive trends for the Northern and the Southern Hemispheres if the hockey stick method with a turnaround point in 1996 is employed for the models and observations. The analysis shows that the observed positive trends in both hemispheres in the recent 7-year period are much larger than what is predicted by the models. The trends derived with the hockey stick method are very dependent on the values just before the turnaround point. The analysis of the recent data therefore depends greatly on these years being representative of the overall trend. Most models underestimate the past trends at middle and high latitudes. This is particularly pronounced in the Northern Hemisphere. Quantitatively, there is much disagreement among the models concerning future trends. However, the models agree that future trends are expected to be positive and less than half the magnitude of the past downward trends. Examination of the model projections shows that there is virtually no correlation between the past and future trends from the individual models.

  14. Comparison of recent modeled and observed trends in total column ozone

    NASA Astrophysics Data System (ADS)

    Andersen, S. B.; Weatherhead, E. C.; Stevermer, A.; Austin, J.; Brühl, C.; Fleming, E. L.; de Grandpré, J.; Grewe, V.; Isaksen, I.; Pitari, G.; Portmann, R. W.; Rognerud, B.; Rosenfield, J. E.; Smyshlyaev, S.; Nagashima, T.; Velders, G. J. M.; Weisenstein, D. K.; Xia, J.

    2006-01-01

    We present a comparison of trends in total column ozone from 10 two-dimensional and 4 three-dimensional models and solar backscatter ultraviolet-2 (SBUV/2) satellite observations from the period 1979-2003. Trends for the past (1979-2000), the recent 7 years (1996-2003), and the future (2000-2050) are compared. We have analyzed the data using both simple linear trends and linear trends derived with a hockey stick method including a turnaround point in 1996. If the last 7 years, 1996-2003, are analyzed in isolation, the SBUV/2 observations show no increase in ozone, and most of the models predict continued depletion, although at a lesser rate. In sharp contrast to this, the recent data show positive trends for the Northern and the Southern Hemispheres if the hockey stick method with a turnaround point in 1996 is employed for the models and observations. The analysis shows that the observed positive trends in both hemispheres in the recent 7-year period are much larger than what is predicted by the models. The trends derived with the hockey stick method are very dependent on the values just before the turnaround point. The analysis of the recent data therefore depends greatly on these years being representative of the overall trend. Most models underestimate the past trends at middle and high latitudes. This is particularly pronounced in the Northern Hemisphere. Quantitatively, there is much disagreement among the models concerning future trends. However, the models agree that future trends are expected to be positive and less than half the magnitude of the past downward trends. Examination of the model projections shows that there is virtually no correlation between the past and future trends from the individual models.

  15. Atypically small temperature-dependence of the direct band gap in the metastable semiconductor copper nitride Cu 3 N

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birkett, Max; Savory, Christopher N.; Fioretti, Angela N.

    The temperature-dependence of the direct band gap and thermal expansion in the metastable anti-ReO 3 semiconductor Cu 3N are investigated between 4.2 and 300 K by Fourier-transform infrared spectroscopy and x-ray diffraction. Complementary refractive index spectra are determined by spectroscopic ellipsometry at 300K. A direct gap of 1.68eV is associated with the absorption onset at 300K, which strengthens continuously and reaches a magnitude of 3.5 x 10 5cm -1 at 2.7eV, suggesting potential for photovoltaic applications. Notably, the direct gap redshifts by just 24meV between 4.2 and 300K, giving an atypically small band-gap temperature coefficient dE g/dT of -0.082meV/K. Additionally,more » the band structure, dielectric function, phonon dispersion, linear expansion, and heat capacity are calculated using density functional theory; remarkable similarities between the experimental and calculated refractive index spectra support the accuracy of these calculations, which indicate beneficially low hole effective masses and potential negative thermal expansion below 50K. To assess the lattice expansion contribution to the band-gap temperature-dependence, a quasiharmonic model fit to the observed lattice contraction finds a monotonically decreasing linear expansion (descending past 10 -6K -1 below 80K), while estimating the Debye temperature, lattice heat capacity, and Gruneisen parameter. Accounting for lattice and electron-phonon contributions to the observed band-gap evolution suggests average phonon energies that are qualitatively consistent with predicted maxima in the phonon density of states. Furthermore, as band-edge temperature-dependence has significant consequences for device performance, copper nitride should be well suited for applications that require a largely temperature-invariant band gap.« less

  16. Atypically small temperature-dependence of the direct band gap in the metastable semiconductor copper nitride Cu 3 N

    DOE PAGES

    Birkett, Max; Savory, Christopher N.; Fioretti, Angela N.; ...

    2017-03-06

    The temperature-dependence of the direct band gap and thermal expansion in the metastable anti-ReO 3 semiconductor Cu 3N are investigated between 4.2 and 300 K by Fourier-transform infrared spectroscopy and x-ray diffraction. Complementary refractive index spectra are determined by spectroscopic ellipsometry at 300K. A direct gap of 1.68eV is associated with the absorption onset at 300K, which strengthens continuously and reaches a magnitude of 3.5 x 10 5cm -1 at 2.7eV, suggesting potential for photovoltaic applications. Notably, the direct gap redshifts by just 24meV between 4.2 and 300K, giving an atypically small band-gap temperature coefficient dE g/dT of -0.082meV/K. Additionally,more » the band structure, dielectric function, phonon dispersion, linear expansion, and heat capacity are calculated using density functional theory; remarkable similarities between the experimental and calculated refractive index spectra support the accuracy of these calculations, which indicate beneficially low hole effective masses and potential negative thermal expansion below 50K. To assess the lattice expansion contribution to the band-gap temperature-dependence, a quasiharmonic model fit to the observed lattice contraction finds a monotonically decreasing linear expansion (descending past 10 -6K -1 below 80K), while estimating the Debye temperature, lattice heat capacity, and Gruneisen parameter. Accounting for lattice and electron-phonon contributions to the observed band-gap evolution suggests average phonon energies that are qualitatively consistent with predicted maxima in the phonon density of states. Furthermore, as band-edge temperature-dependence has significant consequences for device performance, copper nitride should be well suited for applications that require a largely temperature-invariant band gap.« less

  17. Using directed information for influence discovery in interconnected dynamical systems

    NASA Astrophysics Data System (ADS)

    Rao, Arvind; Hero, Alfred O.; States, David J.; Engel, James Douglas

    2008-08-01

    Structure discovery in non-linear dynamical systems is an important and challenging problem that arises in various applications such as computational neuroscience, econometrics, and biological network discovery. Each of these systems have multiple interacting variables and the key problem is the inference of the underlying structure of the systems (which variables are connected to which others) based on the output observations (such as multiple time trajectories of the variables). Since such applications demand the inference of directed relationships among variables in these non-linear systems, current methods that have a linear assumption on structure or yield undirected variable dependencies are insufficient. Hence, in this work, we present a methodology for structure discovery using an information-theoretic metric called directed time information (DTI). Using both synthetic dynamical systems as well as true biological datasets (kidney development and T-cell data), we demonstrate the utility of DTI in such problems.

  18. TWO-STAGE FRAGMENTATION FOR CLUSTER FORMATION: ANALYTICAL MODEL AND OBSERVATIONAL CONSIDERATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bailey, Nicole D.; Basu, Shantanu, E-mail: nwityk@uwo.ca, E-mail: basu@uwo.ca

    2012-12-10

    Linear analysis of the formation of protostellar cores in planar magnetic interstellar clouds shows that molecular clouds exhibit a preferred length scale for collapse that depends on the mass-to-flux ratio and neutral-ion collision time within the cloud. We extend this linear analysis to the context of clustered star formation. By combining the results of the linear analysis with a realistic ionization profile for the cloud, we find that a molecular cloud may evolve through two fragmentation events in the evolution toward the formation of stars. Our model suggests that the initial fragmentation into clumps occurs for a transcritical cloud onmore » parsec scales while the second fragmentation can occur for transcritical and supercritical cores on subparsec scales. Comparison of our results with several star-forming regions (Perseus, Taurus, Pipe Nebula) shows support for a two-stage fragmentation model.« less

  19. Predicting the dissolution kinetics of silicate glasses using machine learning

    NASA Astrophysics Data System (ADS)

    Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu

    2018-05-01

    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.

  20. A cooperation and competition based simple cell receptive field model and study of feed-forward linear and nonlinear contributions to orientation selectivity.

    PubMed

    Bhaumik, Basabi; Mathur, Mona

    2003-01-01

    We present a model for development of orientation selectivity in layer IV simple cells. Receptive field (RF) development in the model, is determined by diffusive cooperation and resource limited competition guided axonal growth and retraction in geniculocortical pathway. The simulated cortical RFs resemble experimental RFs. The receptive field model is incorporated in a three-layer visual pathway model consisting of retina, LGN and cortex. We have studied the effect of activity dependent synaptic scaling on orientation tuning of cortical cells. The mean value of hwhh (half width at half the height of maximum response) in simulated cortical cells is 58 degrees when we consider only the linear excitatory contribution from LGN. We observe a mean improvement of 22.8 degrees in tuning response due to the non-linear spiking mechanisms that include effects of threshold voltage and synaptic scaling factor.

  1. Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu

    2018-04-01

    In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.

  2. Geometric confinement influences cellular mechanical properties I -- adhesion area dependence.

    PubMed

    Su, Judith; Jiang, Xingyu; Welsch, Roy; Whitesides, George M; So, Peter T C

    2007-06-01

    Interactions between the cell and the extracellular matrix regulate a variety of cellular properties and functions, including cellular rheology. In the present study of cellular adhesion, area was controlled by confining NIH 3T3 fibroblast cells to circular micropatterned islands of defined size. The shear moduli of cells adhering to islands of well defined geometry, as measured by magnetic microrheometry, was found to have a significantly lower variance than those of cells allowed to spread on unpatterned surfaces. We observe that the area of cellular adhesion influences shear modulus. Rheological measurements further indicate that cellular shear modulus is a biphasic function of cellular adhesion area with stiffness decreasing to a minimum value for intermediate areas of adhesion, and then increasing for cells on larger patterns. We propose a simple hypothesis: that the area of adhesion affects cellular rheological properties by regulating the structure of the actin cytoskeleton. To test this hypothesis, we quantified the volume fraction of polymerized actin in the cytosol by staining with fluorescent phalloidin and imaging using quantitative 3D microscopy. The polymerized actin volume fraction exhibited a similar biphasic dependence on adhesion area. Within the limits of our simplifying hypothesis, our experimental results permit an evaluation of the ability of established, micromechanical models to predict the cellular shear modulus based on polymerized actin volume fraction. We investigated the "tensegrity", "cellular-solids", and "biopolymer physics" models that have, respectively, a linear, quadratic, and 5/2 dependence on polymerized actin volume fraction. All three models predict that a biphasic trend in polymerized actin volume fraction as a function of adhesion area will result in a biphasic behavior in shear modulus. Our data favors a higher-order dependence on polymerized actin volume fraction. Increasingly better experimental agreement is observed for the tensegrity, the cellular solids, and the biopolymer models respectively. Alternatively if we postulate the existence of a critical actin volume fraction below which the shear modulus vanishes, the experimental data can be equivalently described by a model with an almost linear dependence on polymerized actin volume fraction; this observation supports a tensegrity model with a critical actin volume fraction.

  3. Elevated temperature dependence of the anisotropic visible-to-ultraviolet dielectric function of monoclinic β-Ga2O3

    NASA Astrophysics Data System (ADS)

    Mock, A.; VanDerslice, J.; Korlacki, R.; Woollam, J. A.; Schubert, M.

    2018-01-01

    We report on the temperature dependence of the dielectric tensor elements of n-type conductive β-Ga2O3 from 22 °C to 550 °C in the spectral range of 1.5 eV-6.4 eV. We present the temperature dependence of the excitonic and band-to-band transition energy parameters using a previously described eigendielectric summation approach [A. Mock et al., Phys. Rev. B 96, 245205 (2017)]. We utilize a Bose-Einstein analysis of the temperature dependence of the observed transition energies and reveal electron coupling with average phonon temperature in excellent agreement with the average over all longitudinal phonon plasmon coupled modes reported previously [M. Schubert et al., Phys. Rev. B 93, 125209 (2016)]. We also report a linear temperature dependence of the wavelength independent Cauchy expansion coefficient for the anisotropic below-band-gap monoclinic dielectric tensor elements.

  4. Multiscale functions, scale dynamics, and applications to partial differential equations

    NASA Astrophysics Data System (ADS)

    Cresson, Jacky; Pierret, Frédéric

    2016-05-01

    Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.

  5. Effects of aging in catastrophe on the steady state and dynamics of a microtubule population

    NASA Astrophysics Data System (ADS)

    Jemseena, V.; Gopalakrishnan, Manoj

    2015-05-01

    Several independent observations have suggested that the catastrophe transition in microtubules is not a first-order process, as is usually assumed. Recent in vitro observations by Gardner et al. [M. K. Gardner et al., Cell 147, 1092 (2011), 10.1016/j.cell.2011.10.037] showed that microtubule catastrophe takes place via multiple steps and the frequency increases with the age of the filament. Here we investigate, via numerical simulations and mathematical calculations, some of the consequences of the age dependence of catastrophe on the dynamics of microtubules as a function of the aging rate, for two different models of aging: exponential growth, but saturating asymptotically, and purely linear growth. The boundary demarcating the steady-state and non-steady-state regimes in the dynamics is derived analytically in both cases. Numerical simulations, supported by analytical calculations in the linear model, show that aging leads to nonexponential length distributions in steady state. More importantly, oscillations ensue in microtubule length and velocity. The regularity of oscillations, as characterized by the negative dip in the autocorrelation function, is reduced by increasing the frequency of rescue events. Our study shows that the age dependence of catastrophe could function as an intrinsic mechanism to generate oscillatory dynamics in a microtubule population, distinct from hitherto identified ones.

  6. Decay of the zincate concentration gradient at an alkaline zinc cathode after charging

    NASA Technical Reports Server (NTRS)

    Kautz, H. E.; May, C. E.

    1979-01-01

    The transport of the zincate ion to the alkaline zinc cathode was studied by observing the decay of the zincate concentration gradient at a horizontal zinc cathode after charging. This decay was found to approximate first order kinetics as expected from a proposed boundary layer model. The concentrations were calculated from polarization voltages. The decay half life was shown to be a linear function of the thickness of porous zinc deposit on the cathode indicating a very rapid transport of zincate through porous zinc metal. The rapid transport is attributed to an electrochemical mechanism. From the linear dependence of the half life on the thickness the boundary layer thickness was found to be about 0.010 cm when the cathode was at the bottom of the cell. No significant dependence of the boundary layer thickness on the viscosity of electrolyte was observed. The data also indicated a relatively sharp transition between the diffusion and convection transport regions. When the cathode was at the top of the cell, the boundary layer thickness was found to be roughly 0.080 cm. The diffusion of zincate ion through asbestos submerged in alkaline electrolyte was shown to be comparable with that predicted from the bulk diffusion coefficient of the zincate ion in alkali.

  7. A Preclinical Population Pharmacokinetic Model for Anti-CD20/CD3 T-Cell-Dependent Bispecific Antibodies.

    PubMed

    Ferl, Gregory Z; Reyes, Arthur; Sun, Liping L; Cheu, Melissa; Oldendorp, Amy; Ramanujan, Saroja; Stefanich, Eric G

    2018-05-01

    CD20 is a cell-surface receptor expressed by healthy and neoplastic B cells and is a well-established target for biologics used to treat B-cell malignancies. Pharmacokinetic (PK) and pharmacodynamic (PD) data for the anti-CD20/CD3 T-cell-dependent bispecific antibody BTCT4465A were collected in transgenic mouse and nonhuman primate (NHP) studies. Pronounced nonlinearity in drug elimination was observed in the murine studies, and time-varying, nonlinear PK was observed in NHPs, where three empirical drug elimination terms were identified using a mixed-effects modeling approach: i) a constant nonsaturable linear clearance term (7 mL/day/kg); ii) a rapidly decaying time-varying, linear clearance term (t ½  = 1.6 h); and iii) a slowly decaying time-varying, nonlinear clearance term (t ½  = 4.8 days). The two time-varying drug elimination terms approximately track with time scales of B-cell depletion and T-cell migration/expansion within the central blood compartment. The mixed-effects NHP model was scaled to human and prospective clinical simulations were generated. © 2018 The Authors. Clinical and Translational Science published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  8. Organometallic exposure dependence on organic–inorganic hybrid material formation in polyethylene terephthalate and polyamide 6 polymer fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akyildiz, Halil I.; Jur, Jesse S., E-mail: jsjur@ncsu.edu

    2015-03-15

    The effect of exposure conditions and surface area on hybrid material formation during sequential vapor infiltrations of trimethylaluminum (TMA) into polyamide 6 (PA6) and polyethylene terephthalate (PET) fibers is investigated. Mass gain of the fabric samples after infiltration was examined to elucidate the reaction extent with increasing number of sequential TMA single exposures, defined as the times for a TMA dose and a hold period. An interdependent relationship between dosing time and holding time on the hybrid material formation is observed for TMA exposure PET, exhibited as a linear trend between the mass gain and total exposure (dose time ×more » hold time × number of sequential exposures). Deviation from this linear relationship is only observed under very long dose or hold times. In comparison, amount of hybrid material formed during sequential exposures to PA6 fibers is found to be highly dependent on amount of TMA dosed. Increasing the surface area of the fiber by altering its cross-sectional dimension is shown to have little on the reaction behavior but does allow for improved diffusion of the TMA into the fiber. This work allows for the projection of exposure parameters necessary for future high-throughput hybrid modifications to polymer materials.« less

  9. Effects of Lactobacillus acidophilus supplementation on growth performance, nutrient digestibility, fecal microbial and noxious gas emission in weaning pigs.

    PubMed

    Lan, Ruixia; Koo, Jinmo; Kim, Inho

    2017-03-01

    Antibiotics used as growth promoters in livestock have been banned in the European Union since 2006. Antibiotics alternatives have focused on probiotics, such as Lactobacillus acidophilus. The concentration of L. acidophilus is considered crucial for obtaining the desired effects. However, limited studies have been conducted to test the dose-dependent effects of L. acidophilus. Therefore, the present study aimed to test the dose-dependent effects of L. acidophilus on growth performance, nutrient digestibility, fecal microbial flora and fecal noxious gas emission in weaning pigs. Lactobacillus acidophilus supplementation increased (P < 0.05) average daily gain, average daily feed intake, apparent nutrient digestibility of dry matter, nitrogen and gross energy, and Lactobacillus counts compared to the basal diet treatment, and a linear effect (P < 0.05) was observed on those criteria. Escherichia coli counts and NH 3 emission were decreased (P < 0.05) by L. acidophilus supplementation, and a linear effect (P < 0.05) was observed on E. coli counts. These results suggest that L. acidophilus could be used as an antibiotic alternative by improving growth performance, nutrient digestibility and gut balance (i.e. increased Lactobacillus counts and decreased E. coli counts), and decreasing NH3 emission, of weaning pigs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trang Nghiêm, T. T.; Chapuis, Pierre-Olivier

    The wave property of phonons is employed to explore the thermal transport across a finite periodic array of nano-scatterers such as circular and triangular holes. As thermal phonons are generated in all directions, we study their transmission through a single array for both normal and oblique incidences, using a linear dispersionless time-dependent acoustic frame in a two-dimensional system. Roughness effects can be directly considered within the computations without relying on approximate analytical formulae. Analysis by spatio-temporal Fourier transform allows us to observe the diffraction effects and the conversion of polarization. Frequency-dependent energy transmission coefficients are computed for symmetric and asymmetricmore » objects that are both subject to reciprocity. We demonstrate that the phononic array acts as an efficient thermal barrier by applying the theory of thermal boundary (Kapitza) resistances to arrays of smooth scattering holes in silicon for an exemplifying periodicity of 10 nm in the 5–100 K temperature range. It is observed that the associated thermal conductance has the same temperature dependence as that without phononic filtering.« less

  11. Varying electronegativity of OH/O- groups depending on the nature and strength of H-bonding in phenol/phenolate involved in H-bond complexation.

    PubMed

    Krygowski, Tadeusz M; Szatyłowicz, Halina

    2006-06-08

    Application of the Domenicano et al. method of estimating group electronegativity from angular geometry of the ring in monosubstituted benzene derivatives allowed us to find how the electronegativity of OH/O(-) groups in H-bonded complexes of phenol and phenolate depends on the nature and strength of H-bond. For complexes in which the OH group is only proton donating in the H-bond, a linear dependence of the estimated electronegativity on O...O(N) interatomic distance was found for experimental (CSD base retrieved) data. The following rule is observed: the weaker the H-bond is, the more electronegative the OH group is. If apart from this kind of interaction the oxygen is proton accepting, then an increase of electronegativity is observed. Modeling (B3LYP/6-311+G) the variation of the strength of the H-bond by the fluoride anion approaching the OH leads to qualitatively the same picture as the scatter plots for experimental data.

  12. Response of semicircular canal dependent units in vestibular nuclei to rotation of a linear acceleration vector without angular acceleration

    PubMed Central

    Benson, A. J.; Guedry, F. E.; Jones, G. Melvill

    1970-01-01

    1. Recent experiments have shown that rotation of a linear acceleration vector round the head can generate involuntary ocular nystagmus in the absence of angular acceleration. The present experiments examine the suggestion that adequate stimulation of the semicircular canals may contribute to this response. 2. Decerebrate cats were located in a stereotaxic device on a platform, slung from four parallel cables, which could be driven smoothly round a circular orbit without inducing significant angular movement of the platform. This Parallel Swing Rotation (PSR) generated a centripetal acceleration of 4·4 m/sec2 which rotated round the head at 0·52 rev/sec. 3. The discharge frequency of specifically lateral canal-dependent neural units in the vestibular nuclei of cats was recorded during PSR to right and left, and in the absence of motion. The dynamic responses to purely angular motion were also examined on a servo-driven turntable. 4. Without exception all proven canal-dependent cells examined (twenty-nine cells in nine cats) were more active during PSR in the direction of endolymph circulation assessed to be excitatory to the unit, than during PSR in the opposite direction. 5. The observed changes in discharge frequency are assessed to have been of a magnitude appropriate for the generation of the involuntary oculomotor response induced by the same stimulus in the intact animal. 6. The findings suggest that a linear acceleration vector which rotates in the plane of the lateral semicircular canals can be an adequate stimulus to ampullary receptors, though an explanation which invokes the modulation of canal cells by a signal dependent upon the sequential activation of macular receptors cannot be positively excluded. PMID:5501270

  13. Statistical simulation of ensembles of precipitation fields for data assimilation applications

    NASA Astrophysics Data System (ADS)

    Haese, Barbara; Hörning, Sebastian; Chwala, Christian; Bárdossy, András; Schalge, Bernd; Kunstmann, Harald

    2017-04-01

    The simulation of the hydrological cycle by models is an indispensable tool for a variety of environmental challenges such as climate prediction, water resources management, or flood forecasting. One of the crucial variables within the hydrological system, and accordingly one of the main drivers for terrestrial hydrological processes, is precipitation. A correct reproduction of the spatio-temporal distribution of precipitation is crucial for the quality and performance of hydrological applications. In our approach we stochastically generate precipitation fields conditioned on various precipitation observations. Rain gauges provide high-quality information for a specific measurement point, but their spatial representativeness is often rare. Microwave links, e. g. from commercial cellular operators, on the other hand can be used to estimate line integrals of near-surface rainfall information. They provide a very dense observational system compared to rain gauges. A further prevalent source of precipitation information are weather radars, which provide rainfall pattern informations. In our approach we derive precipitation fields, which are conditioned on combinations of these different observation types. As method to generate precipitation fields we use the random mixing method. Following this method a precipitation field is received as a linear combination of unconditional spatial random fields, where the spatial dependence structure is described by copulas. The weights of the linear combination are chosen in the way that the observations and the spatial structure of precipitation are reproduced. One main advantage of the random mixing method is the opportunity to consider linear and non-linear constraints. For a demonstration of the method we use virtual observations generated from a virtual reality of the Neckar catchment. These virtual observations mimic advantages and disadvantages of real observations. This virtual data set allows us to evaluate simulated precipitation fields in a very detailed manner as well as to quantify uncertainties which are conveyed by measurement inaccuracies. In a further step we use real observations as a basis for the generation of precipitation fields. The resulting ensembles of precipitation fields are used for example for data assimilation applications or as input data for hydrological models.

  14. Pressure-induced amorphization of La{sub 1/3}TaO{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noked, O., E-mail: noked@bgu.ac.il; Physics Department, Ben-Gurion University, Beer Sheva 84105; Melchior, A.

    2013-06-15

    La{sub 1/3}TaO{sub 3}, an A-site cation deficient perovskite, has been studied under pressure by synchrotron X-ray powder diffraction and Raman spectroscopy. It undergoes irreversible pressure induced amorphization at P=18.5 GPa. An almost linear unit cell volume decrease vs. pressure is observed from ambient pressure up to the phase transition. The Raman spectroscopy also shows amorphization at the same pressure, with positive shifts of all modes as a function of pressure. The pressure dependence of the E{sub g} and A{sub 1g} Raman modes arising from the octahedral oxygen network is discussed. - Graphical abstract: La{sub 1/3}Tao{sub 3} exhibits linear pressure–volume relationmore » until irreversible pressure induced amorphization at 18.5 Gpa. - Highlights: • La{sub 1/3}TaO{sub 3} has been studied under pressure by synchrotron XRD and Raman spectroscopy. • La{sub 1/3}TaO{sub 3} undergoes irreversible pressure induced amorphization around 18.5 GPa. • The transition is manifested in both XRD and Raman measurements. • A linear P–V relation is observed from ambient pressure up to the phase transition.« less

  15. Radiative Enhancement of Linear and Third-Order Vibrational Excitations by an Array of Infrared Plasmonic Antennas.

    PubMed

    Gandman, Andrey; Mackin, Robert T; Cohn, Bar; Rubtsov, Igor V; Chuntonov, Lev

    2018-05-22

    Infrared gold antennas localize enhanced near fields close to the metal surface, when excited at the frequency of their plasmon resonance, and amplify vibrational signals from the nearby molecules. We study the dependence of the signal enhancement on the thickness of a polymer film containing vibrational chromophores, deposited on the antenna array, using linear (FTIR) and third-order femtosecond vibrational spectroscopy (transient absorption and 2DIR). Our results show that for a film thickness beyond only a few nanometers the near-field interaction is not sufficient to account for the magnitude of the observed signal, which nevertheless has a clear Fano line shape, suggesting a radiative origin of the molecule-plasmon interaction. The mutual radiative damping of plasmonic and molecular transitions leads to the spectroscopic signal of a molecular vibrational excitation to be enhanced by up to a factor of 50 in the case of linear spectroscopy and over 2000 in the case of third-order spectroscopy. A qualitative explanation for the observed effect is given by the extended coupled oscillators model, which takes into account both near-field and radiative interactions between the plasmonic and molecular transitions.

  16. Spin pumping damping and magnetic proximity effect in Pd and Pt spin-sink layers

    NASA Astrophysics Data System (ADS)

    Caminale, M.; Ghosh, A.; Auffret, S.; Ebels, U.; Ollefs, K.; Wilhelm, F.; Rogalev, A.; Bailey, W. E.

    2016-07-01

    We investigated the spin pumping damping contributed by paramagnetic layers (Pd, Pt) in both direct and indirect contact with ferromagnetic Ni81Fe19 films. We find a nearly linear dependence of the interface-related Gilbert damping enhancement Δ α on the heavy-metal spin-sink layer thicknesses tN in direct-contact Ni81Fe19 /(Pd, Pt) junctions, whereas an exponential dependence is observed when Ni81Fe19 and (Pd, Pt) are separated by 3 nm Cu. We attribute the quasilinear thickness dependence to the presence of induced moments in Pt, Pd near the interface with Ni81Fe19 , quantified using x-ray magnetic circular dichroism measurements. Our results show that the scattering of pure spin current is configuration-dependent in these systems and cannot be described by a single characteristic length.

  17. Coherent Excitation of Optical Phonons in GaAs by Broadband Terahertz Pulses

    PubMed Central

    Fu, Zhengping; Yamaguchi, Masashi

    2016-01-01

    Coherent excitation and control of lattice motion by electromagnetic radiation in optical frequency range has been reported through variety of indirect interaction mechanisms with phonon modes. However, coherent phonon excitation by direct interaction of electromagnetic radiation and nuclei has not been demonstrated experimentally in terahertz (THz) frequency range mainly due to the lack of THz emitters with broad bandwidth suitable for the purpose. We report the experimental observation of coherent phonon excitation and detection in GaAs using ultrafast THz-pump/optical-probe scheme. From the results of THz pump field dependence, pump/probe polarization dependence, and crystal orientation dependence, we attributed THz wave absorption and linear electro-optic effect to the excitation and detection mechanisms of coherent polar TO phonons. Furthermore, the carrier density dependence of the interaction of coherent phonons and free carriers is reported. PMID:27905563

  18. Use of electrothermal atomic absorption spectrometry for size profiling of gold and silver nanoparticles.

    PubMed

    Panyabut, Teerawat; Sirirat, Natnicha; Siripinyanond, Atitaya

    2018-02-13

    Electrothermal atomic absorption spectrometry (ETAAS) was applied to investigate the atomization behaviors of gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) in order to relate with particle size information. At various atomization temperatures from 1400 °C to 2200 °C, the time-dependent atomic absorption peak profiles of AuNPs and AgNPs with varying sizes from 5 nm to 100 nm were examined. With increasing particle size, the maximum absorbance was observed at the longer time. The time at maximum absorbance was found to linearly increase with increasing particle size, suggesting that ETAAS can be applied to provide the size information of nanoparticles. With the atomization temperature of 1600 °C, the mixtures of nanoparticles containing two particle sizes, i.e., 5 nm tannic stabilized AuNPs with 60, 80, 100 nm citrate stabilized AuNPs, were investigated and bimodal peaks were observed. The particle size dependent atomization behaviors of nanoparticles show potential application of ETAAS for providing size information of nanoparticles. The calibration plot between the time at maximum absorbance and the particle size was applied to estimate the particle size of in-house synthesized AuNPs and AgNPs and the results obtained were in good agreement with those from flow field-flow fractionation (FlFFF) and transmission electron microscopy (TEM) techniques. Furthermore, the linear relationship between the activation energy and the particle size was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Nicotine abstinence syndrome precipitated by central but not peripheral hexamethonium.

    PubMed

    Malin, D H; Lake, J R; Schopen, C K; Kirk, J W; Sailer, E E; Lawless, B A; Upchurch, T P; Shenoi, M; Rajan, N

    1997-11-01

    A rodent model of nicotine dependence has been developed based on continuous subcutaneous (s.c.) infusion of nicotine tartrate. Nicotine abstinence syndrome was precipitated by s.c. injection of the nicotinic antagonist mecamylamine, which freely crosses the blood-brain barrier. In contrast, the nicotinic antagonist hexamethonium crosses the blood-brain barrier very poorly. This study determined whether central or peripheral administration of hexamethonium could precipitate nicotine abstinence. In the first experiment, 26 nicotine-dependent rats were injected s.c. with 0.5, 5 or 10 mg/kg hexamethonium dichloride or saline alone and observed for 20 min. Few abstinence signs were observed in any group; there was no significant drug effect. In the second experiment, 18 rats were cannulated in the third ventricle and rendered nicotine dependent. One week later, rats were injected through the cannula with 12 or 18 ng hexamethonium or saline alone and observed for 20 min. Both dose groups differed significantly from the saline-injected group, and there was a significant positive linear trend of signs as a function of dose. The high dose had no significant effect in 14 nondependent rats. We conclude that hexamethonium is much more potent by the central route, and there is a major central nervous system component in nicotine dependence.

  20. Exploring the validity and limitations of the Mott-Gurney law for charge-carrier mobility determination of semiconducting thin-films.

    PubMed

    Röhr, Jason A; Moia, Davide; Haque, Saif A; Kirchartz, Thomas; Nelson, Jenny

    2018-03-14

    Using drift-diffusion simulations, we investigate the voltage dependence of the dark current in single carrier devices typically used to determine charge-carrier mobilities. For both low and high voltages, the current increases linearly with the applied voltage. Whereas the linear current at low voltages is mainly due to space charge in the middle of the device, the linear current at high voltage is caused by charge-carrier saturation due to a high degree of injection. As a consequence, the current density at these voltages does not follow the classical square law derived by Mott and Gurney, and we show that for trap-free devices, only for intermediate voltages, a space-charge-limited drift current can be observed with a slope that approaches a value of two. We show that, depending on the thickness of the semiconductor layer and the size of the injection barriers, the two linear current-voltage regimes can dominate the whole voltage range, and the intermediate Mott-Gurney regime can shrink or disappear. In this case, which will especially occur for thicknesses and injection barriers typical of single-carrier devices used to probe organic semiconductors, a meaningful analysis using the Mott-Gurney law will become unachievable, because a square-law fit can no longer be achieved, resulting in the mobility being substantially underestimated. General criteria for when to expect deviations from the Mott-Gurney law when used for analysis of intrinsic semiconductors are discussed.

  1. Exploring the validity and limitations of the Mott-Gurney law for charge-carrier mobility determination of semiconducting thin-films

    NASA Astrophysics Data System (ADS)

    Röhr, Jason A.; Moia, Davide; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-03-01

    Using drift-diffusion simulations, we investigate the voltage dependence of the dark current in single carrier devices typically used to determine charge-carrier mobilities. For both low and high voltages, the current increases linearly with the applied voltage. Whereas the linear current at low voltages is mainly due to space charge in the middle of the device, the linear current at high voltage is caused by charge-carrier saturation due to a high degree of injection. As a consequence, the current density at these voltages does not follow the classical square law derived by Mott and Gurney, and we show that for trap-free devices, only for intermediate voltages, a space-charge-limited drift current can be observed with a slope that approaches a value of two. We show that, depending on the thickness of the semiconductor layer and the size of the injection barriers, the two linear current-voltage regimes can dominate the whole voltage range, and the intermediate Mott-Gurney regime can shrink or disappear. In this case, which will especially occur for thicknesses and injection barriers typical of single-carrier devices used to probe organic semiconductors, a meaningful analysis using the Mott-Gurney law will become unachievable, because a square-law fit can no longer be achieved, resulting in the mobility being substantially underestimated. General criteria for when to expect deviations from the Mott-Gurney law when used for analysis of intrinsic semiconductors are discussed.

  2. Time-resolved imaging of the MALDI linear-TOF ion cloud: direct visualization and exploitation of ion optical phenomena using a position- and time-sensitive detector.

    PubMed

    Ellis, Shane R; Soltwisch, Jens; Heeren, Ron M A

    2014-05-01

    In this study, we describe the implementation of a position- and time-sensitive detection system (Timepix detector) to directly visualize the spatial distributions of the matrix-assisted laser desorption ionization ion cloud in a linear-time-of-flight (MALDI linear-ToF) as it is projected onto the detector surface. These time-resolved images allow direct visualization of m/z-dependent ion focusing effects that occur within the ion source of the instrument. The influence of key parameters, namely extraction voltage (E(V)), pulsed-ion extraction (PIE) delay, and even the matrix-dependent initial ion velocity was investigated and were found to alter the focusing properties of the ion-optical system. Under certain conditions where the spatial focal plane coincides with the detector plane, so-called x-y space focusing could be observed (i.e., the focusing of the ion cloud to a small, well-defined spot on the detector). Such conditions allow for the stigmatic ion imaging of intact proteins for the first time on a commercial linear ToF-MS system. In combination with the ion-optical magnification of the system (~100×), a spatial resolving power of 11–16 μm with a pixel size of 550 nm was recorded within a laser spot diameter of ~125 μm. This study demonstrates both the diagnostic and analytical advantages offered by the Timepix detector in ToF-MS.

  3. Low-temperature thermal transport in the Kondo insulator SmB6

    NASA Astrophysics Data System (ADS)

    Boulanger, Marie-Eve; Laliberté, F.; Badoux, S.; Doiron-Leyraud, N.; Taillefer, L.; Phelan, W. A.; Koopayeh, S. M.; McQueen, T. M.

    The striking observation of quantum oscillations in the Kondo insulator SmB6 suggests that there may be chargeless fermionic excitations at low temperature in the bulk of this material. One way to detect such putative excitations is through their ability to carry entropy, which a measurement of thermal transport should in principle detect as a non-zero residual linear term in the T = 0 limit, i.e. κ0 / T > 0 . Here we report low-temperature measurements of the thermal conductivity κ in SmB6, down to 50 mK, performed on various single crystals in magnetic fields up to 15 T. By extrapolating, we obtain κ0 / T at each field. We observe no residual linear term at any field, i.e. κ0 / T = 0 at all H, in agreement with a previous study. In other words, we do not detect mobile fermionic excitations. However, unlike in the prior study, we observe a large enhancement of κ (T) with increasing field. We discuss possible interpretations of this field dependence.

  4. Effects of intermolecular interactions on absorption intensities of the fundamental and the first, second, and third overtones of OH stretching vibrations of methanol and t-butanol‑d9 in n-hexane studied by visible/near-infrared/infrared spectroscopy.

    PubMed

    Morisawa, Yusuke; Suga, Arisa

    2018-05-15

    Visible (Vis), near-infrared (NIR) and IR spectra in the 15,600-2500cm -1 region were measured for methanol, methanol-d 3 , and t-butanol-d 9 in n-hexane to investigate effects of intermolecular interaction on absorption intensities of the fundamental and the first, second, and third overtones of their OH stretching vibrations. The relative area intensities of OH stretching bands of free and hydrogen-bonded species were plotted versus the vibrational quantum number using logarithm plots (V=1-4) for 0.5M methanol, 0.5M methanol‑d 3 , and 0.5M t-butanol-d 9 in n-hexane. In the logarithm plots the relative intensities of free species yield a linear dependence irrespective of the solutes while those of hydrogen-bonded species deviate significantly from the linearity. The observed results suggest that the modifications in dipole moment functions of the OH bond induced by the formation of the hydrogen bondings change transient dipole moment, leading to the deviations of the dependences of relative absorption intensities on the vibrational quantum number from the linearity. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Effects of intermolecular interactions on absorption intensities of the fundamental and the first, second, and third overtones of OH stretching vibrations of methanol and t-butanol‑d9 in n-hexane studied by visible/near-infrared/infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Morisawa, Yusuke; Suga, Arisa

    2018-05-01

    Visible (Vis), near-infrared (NIR) and IR spectra in the 15,600-2500 cm- 1 region were measured for methanol, methanol-d3, and t-butanol-d9 in n-hexane to investigate effects of intermolecular interaction on absorption intensities of the fundamental and the first, second, and third overtones of their OH stretching vibrations. The relative area intensities of OH stretching bands of free and hydrogen-bonded species were plotted versus the vibrational quantum number using logarithm plots (V = 1-4) for 0.5 M methanol, 0.5 M methanol‑d3, and 0.5 M t-butanol-d9 in n-hexane. In the logarithm plots the relative intensities of free species yield a linear dependence irrespective of the solutes while those of hydrogen-bonded species deviate significantly from the linearity. The observed results suggest that the modifications in dipole moment functions of the OH bond induced by the formation of the hydrogen bondings change transient dipole moment, leading to the deviations of the dependences of relative absorption intensities on the vibrational quantum number from the linearity.

  6. Past and present cosmic structure in the SDSS DR7 main sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasche, J.; Leclercq, F.; Wandelt, B.D., E-mail: jasche@iap.fr, E-mail: florent.leclercq@polytechnique.org, E-mail: wandelt@iap.fr

    2015-01-01

    We present a chrono-cosmography project, aiming at the inference of the four dimensional formation history of the observed large scale structure from its origin to the present epoch. To do so, we perform a full-scale Bayesian analysis of the northern galactic cap of the Sloan Digital Sky Survey (SDSS) Data Release 7 main galaxy sample, relying on a fully probabilistic, physical model of the non-linearly evolved density field. Besides inferring initial conditions from observations, our methodology naturally and accurately reconstructs non-linear features at the present epoch, such as walls and filaments, corresponding to high-order correlation functions generated by late-time structuremore » formation. Our inference framework self-consistently accounts for typical observational systematic and statistical uncertainties such as noise, survey geometry and selection effects. We further account for luminosity dependent galaxy biases and automatic noise calibration within a fully Bayesian approach. As a result, this analysis provides highly-detailed and accurate reconstructions of the present density field on scales larger than ∼ 3 Mpc/h, constrained by SDSS observations. This approach also leads to the first quantitative inference of plausible formation histories of the dynamic large scale structure underlying the observed galaxy distribution. The results described in this work constitute the first full Bayesian non-linear analysis of the cosmic large scale structure with the demonstrated capability of uncertainty quantification. Some of these results will be made publicly available along with this work. The level of detail of inferred results and the high degree of control on observational uncertainties pave the path towards high precision chrono-cosmography, the subject of simultaneously studying the dynamics and the morphology of the inhomogeneous Universe.« less

  7. Effects of a Multi-Ingredient Energy Supplement on Cognitive Performance and Cerebral-Cortical Activation.

    PubMed

    Daou, Marcos; Sassi, Julia Montagner; Miller, Matthew W; Gonzalez, Adam M

    2018-03-13

    This study assessed whether a multi-ingredient energy supplement (MIES) could enhance cerebral-cortical activation and cognitive performance during an attention-switching task. Cerebral-cortical activation was recorded in 24 young adults (12 males, 12 females; 22.8 ± 3.8 yrs) via electroencephalography (EEG) both at rest and during the attention-switching task before (pretest) and 30 min after (posttest) consumption of a single serving of a MIES (MIES-1), two servings of a MIES (MIES-2), or a placebo (PL) in a double-blinded, randomized crossover experimental design. EEG upper-alpha power was assessed at rest and during the task, wherein d' (Z[hit rate]-Z[false alarm rate]) and median reaction time (RT) for correct responses to targets on attention-hold and attention-switch trials were analyzed. For both d' and RT, the Session (MIES-1, MIES-2, PL) × Time (pretest, posttest) interaction approached statistical significance (p = .07, η 2 p = 0.106). Exploring these interactions with linear contrasts, a significant linear effect of supplement dose on the linear effect of time was observed (ps ≤.034), suggesting the pretest-to-posttest improvement in sensitivity to task target stimuli (d') and RT increased as a function of supplement dose. With respect to upper-alpha power, the Session × Time interaction was significant (p < .001, η 2 p = 0.422). Exploring this interaction with linear contrasts, a significant linear effect of supplement dose on the linear effect of time was observed (p < .001), suggesting pretest-to-posttest increases in cerebral-cortical activation were a function of supplement dose. In conclusion, our findings suggest that MIES can increase cerebral-cortical activation and RT during task performance while increasing sensitivity to target stimuli in a dose-dependent manner.

  8. OPR-PPR, a Computer Program for Assessing Data Importance to Model Predictions Using Linear Statistics

    USGS Publications Warehouse

    Tonkin, Matthew J.; Tiedeman, Claire; Ely, D. Matthew; Hill, Mary C.

    2007-01-01

    The OPR-PPR program calculates the Observation-Prediction (OPR) and Parameter-Prediction (PPR) statistics that can be used to evaluate the relative importance of various kinds of data to simulated predictions. The data considered fall into three categories: (1) existing observations, (2) potential observations, and (3) potential information about parameters. The first two are addressed by the OPR statistic; the third is addressed by the PPR statistic. The statistics are based on linear theory and measure the leverage of the data, which depends on the location, the type, and possibly the time of the data being considered. For example, in a ground-water system the type of data might be a head measurement at a particular location and time. As a measure of leverage, the statistics do not take into account the value of the measurement. As linear measures, the OPR and PPR statistics require minimal computational effort once sensitivities have been calculated. Sensitivities need to be calculated for only one set of parameter values; commonly these are the values estimated through model calibration. OPR-PPR can calculate the OPR and PPR statistics for any mathematical model that produces the necessary OPR-PPR input files. In this report, OPR-PPR capabilities are presented in the context of using the ground-water model MODFLOW-2000 and the universal inverse program UCODE_2005. The method used to calculate the OPR and PPR statistics is based on the linear equation for prediction standard deviation. Using sensitivities and other information, OPR-PPR calculates (a) the percent increase in the prediction standard deviation that results when one or more existing observations are omitted from the calibration data set; (b) the percent decrease in the prediction standard deviation that results when one or more potential observations are added to the calibration data set; or (c) the percent decrease in the prediction standard deviation that results when potential information on one or more parameters is added.

  9. What determines the direction of minimum variance of the magnetic field fluctuations in the solar wind?

    NASA Technical Reports Server (NTRS)

    Grappin, R.; Velli, M.

    1995-01-01

    The solar wind is not an isotropic medium; two symmetry axis are provided, first the radial direction (because the mean wind is radial) and second the spiral direction of the mean magnetic field, which depends on heliocentric distance. Observations show very different anisotropy directions, depending on the frequency waveband; while the large-scale velocity fluctuations are essentially radial, the smaller scale magnetic field fluctuations are mostly perpendicular to the mean field direction, which is not the expected linear (WkB) result. We attempt to explain how these properties are related, with the help of numerical simulations.

  10. Linearly polarized GHz magnetization dynamics of spin helix modes in the ferrimagnetic insulator Cu2OSeO3.

    PubMed

    Stasinopoulos, I; Weichselbaumer, S; Bauer, A; Waizner, J; Berger, H; Garst, M; Pfleiderer, C; Grundler, D

    2017-08-01

    Linear dichroism - the polarization dependent absorption of electromagnetic waves- is routinely exploited in applications as diverse as structure determination of DNA or polarization filters in optical technologies. Here filamentary absorbers with a large length-to-width ratio are a prerequisite. For magnetization dynamics in the few GHz frequency regime strictly linear dichroism was not observed for more than eight decades. Here, we show that the bulk chiral magnet Cu 2 OSeO 3 exhibits linearly polarized magnetization dynamics at an unexpectedly small frequency of about 2 GHz at zero magnetic field. Unlike optical filters that are assembled from filamentary absorbers, the magnet is shown to provide linear polarization as a bulk material for an extremely wide range of length-to-width ratios. In addition, the polarization plane of a given mode can be switched by 90° via a small variation in width. Our findings shed a new light on magnetization dynamics in that ferrimagnetic ordering combined with antisymmetric exchange interaction offers strictly linear polarization and cross-polarized modes for a broad spectrum of sample shapes at zero field. The discovery allows for novel design rules and optimization of microwave-to-magnon transduction in emerging microwave technologies.

  11. Acoustic wave propagation in a temporal evolving shear-layer for low-Mach number perturbations

    NASA Astrophysics Data System (ADS)

    Hau, Jan-Niklas; Müller, Björn

    2018-01-01

    We study wave packets with the small perturbation/gradient Mach number interacting with a smooth shear-layer in the linear regime of small amplitude perturbations. In particular, we investigate the temporal evolution of wave packets in shear-layers with locally curved regions of variable size using non-modal linear analysis and direct numerical simulations of the two-dimensional gas-dynamical equations. Depending on the wavenumber of the initially imposed wave packet, three different types of behavior are observed: (i) The wave packet passes through the shear-layer and constantly transfers energy back to the mean flow. (ii) It is turned around (or reflected) within the sheared region and extracts energy from the base flow. (iii) It is split into two oppositely propagating packages when reaching the upper boundary of the linearly sheared region. The conducted direct numerical simulations confirm that non-modal linear stability analysis is able to predict the wave packet dynamics, even in the presence of non-linearly sheared regions. In the light of existing studies in this area, we conclude that the sheared regions are responsible for the highly directed propagation of linearly generated acoustic waves when there is a dominating source, as it is the case for jet flows.

  12. Human ocular responses to translation of the observer and of the scene: dependence on viewing distance.

    PubMed

    Busettini, C; Miles, F A; Schwarz, U; Carl, J R

    1994-01-01

    Recent experiments on monkeys have indicated that the eye movements induced by brief translation of either the observer or the visual scene are a linear function of the inverse of the viewing distance. For the movements of the observer, the room was dark and responses were attributed to a translational vestibulo-ocular reflex (TVOR) that senses the motion through the otolith organs; for the movements of the scene, which elicit ocular following, the scene was projected and adjusted in size and speed so that the retinal stimulation was the same at all distances. The shared dependence on viewing distance was consistent with the hypothesis that the TVOR and ocular following are synergistic and share central pathways. The present experiments looked for such dependencies on viewing distance in human subjects. When briefly accelerated along the interaural axis in the dark, human subjects generated compensatory eye movements that were also a linear function of the inverse of the viewing distance to a previously fixated target. These responses, which were attributed to the TVOR, were somewhat weaker than those previously recorded from monkeys using similar methods. When human subjects faced a tangent screen onto which patterned images were projected, brief motion of those images evoked ocular following responses that showed statistically significant dependence on viewing distance only with low-speed stimuli (10 degrees/s). This dependence was at best weak and in the reverse direction of that seen with the TVOR, i.e., responses increased as viewing distance increased. We suggest that in generating an internal estimate of viewing distance subjects may have used a confounding cue in the ocular-following paradigm--the size of the projected scene--which was varied directly with the viewing distance in these experiments (in order to preserve the size of the retinal image). When movements of the subject were randomly interleaved with the movements of the scene--to encourage the expectation of ego-motion--the dependence of ocular following on viewing distance altered significantly: with higher speed stimuli (40 degrees/s) many responses (63%) now increased significantly as viewing distance decreased, though less vigorously than the TVOR. We suggest that the expectation of motion results in the subject placing greater weight on cues such as vergence and accommodation that provide veridical distance information in our experimental situation: cue selection is context specific.

  13. Reactive oxygen species-based measurement of the dependence of the Coulomb nanoradiator effect on proton energy and atomic Z value.

    PubMed

    Seo, Seung-Jun; Jeon, Jae-Kun; Han, Sung-Mi; Kim, Jong-Ki

    2017-11-01

    The Coulomb nanoradiator (CNR) effect produces the dose enhancement effects from high-Z nanoparticles under irradiation with a high-energy ion beam. To gain insight into the radiation dose and biological significance of the CNR effect, the enhancement of reactive oxygen species (ROS) production from iron oxide or gold NPs (IONs or AuNPs, respectively) in water was investigated using traversing proton beams. The dependence of nanoradiator-enhanced ROS production on the atomic Z value and proton energy was investigated. Two biologically important ROS species were measured using fluorescent probes specific to •OH or [Formula: see text] in a series of water phantoms containing either AuNPs or IONs under irradiation with a 45- or 100-MeV proton beam. The enhanced generation of hydroxyl radicals (•OH) and superoxide anions ([Formula: see text]) was determined to be caused by the dependence on the NP concentration and proton energy. The proton-induced Au or iron oxide nanoradiators exhibited different ROS enhancement rates depending on the proton energy, suggesting that the CNR radiation varied. The curve of the superoxide anion production from the Au-nanoradiator showed strong non-linearity, unlike the linear behavior observed for hydroxyl radical production and the X-ray photoelectric nanoradiator. In addition, the 45-MeV proton-induced Au nanoradiator exhibited an ROS enhancement ratio of 8.54/1.50 ([Formula: see text] / •OH), similar to that of the 100-KeV X-ray photoelectric Au nanoradiator (7.68/1.46). The ROS-based detection of the CNR effect revealed its dependence on the proton beam energy, dose and atomic Z value and provided insight into the low-linear energy transfer (LET) CNR radiation, suggesting that these factors may influence the therapeutic efficacy via chemical reactivities, transport behaviors, and intracellular oxidative stress.

  14. Does transport time help explain the high trauma mortality rates in rural areas? New and traditional predictors assessed by new and traditional statistical methods

    PubMed Central

    Røislien, Jo; Lossius, Hans Morten; Kristiansen, Thomas

    2015-01-01

    Background Trauma is a leading global cause of death. Trauma mortality rates are higher in rural areas, constituting a challenge for quality and equality in trauma care. The aim of the study was to explore population density and transport time to hospital care as possible predictors of geographical differences in mortality rates, and to what extent choice of statistical method might affect the analytical results and accompanying clinical conclusions. Methods Using data from the Norwegian Cause of Death registry, deaths from external causes 1998–2007 were analysed. Norway consists of 434 municipalities, and municipality population density and travel time to hospital care were entered as predictors of municipality mortality rates in univariate and multiple regression models of increasing model complexity. We fitted linear regression models with continuous and categorised predictors, as well as piecewise linear and generalised additive models (GAMs). Models were compared using Akaike's information criterion (AIC). Results Population density was an independent predictor of trauma mortality rates, while the contribution of transport time to hospital care was highly dependent on choice of statistical model. A multiple GAM or piecewise linear model was superior, and similar, in terms of AIC. However, while transport time was statistically significant in multiple models with piecewise linear or categorised predictors, it was not in GAM or standard linear regression. Conclusions Population density is an independent predictor of trauma mortality rates. The added explanatory value of transport time to hospital care is marginal and model-dependent, highlighting the importance of exploring several statistical models when studying complex associations in observational data. PMID:25972600

  15. Discovery of the linear region of Near Infrared Diffuse Reflectance spectra using the Kubelka-Munk theory

    NASA Astrophysics Data System (ADS)

    Dai, Shengyun; Pan, Xiaoning; Ma, Lijuan; Huang, Xingguo; Du, Chenzhao; Qiao, Yanjiang; Wu, Zhisheng

    2018-05-01

    Particle size is of great importance for the quantitative model of the NIR diffuse reflectance. In this paper, the effect of sample particle size on the measurement of harpagoside in Radix Scrophulariae powder by near infrared diffuse (NIR) reflectance spectroscopy was explored. High-performance liquid chromatography (HPLC) was employed as a reference method to construct the quantitative particle size model. Several spectral preprocessing methods were compared, and particle size models obtained by different preprocessing methods for establishing the partial least-squares (PLS) models of harpagoside. Data showed that the particle size distribution of 125-150 μm for Radix Scrophulariae exhibited the best prediction ability with R2pre=0.9513, RMSEP=0.1029 mg·g-1, and RPD = 4.78. For the hybrid granularity calibration model, the particle size distribution of 90-180 μm exhibited the best prediction ability with R2pre=0.8919, RMSEP=0.1632 mg·g-1, and RPD = 3.09. Furthermore, the Kubelka-Munk theory was used to relate the absorption coefficient k (concentration-dependent) and scatter coefficient s (particle size-dependent). The scatter coefficient s was calculated based on the Kubelka-Munk theory to study the changes of s after being mathematically preprocessed. A linear relationship was observed between k/s and absorption A within a certain range and the value for k/s was greater than 4. According to this relationship, the model was more accurately constructed with the particle size distribution of 90-180 μm when s was kept constant or in a small linear region. This region provided a good reference for the linear modeling of diffuse reflectance spectroscopy. To establish a diffuse reflectance NIR model, further accurate assessment should be obtained in advance for a precise linear model.

  16. Thermodynamic signatures for the existence of Dirac electrons in ZrTe 5

    DOE PAGES

    Nair, Nityan L.; Dumitrescu, Philipp T.; Channa, Sanyum; ...

    2017-09-12

    We combine transport, magnetization, and torque magnetometry measurements to investigate the electronic structure of ZrTe 5 and its evolution with temperature. At fields beyond the quantum limit, we observe a magnetization reversal from paramagnetic to diamagnetic response, which is characteristic of a Dirac semi-metal. We also observe a strong non-linearity in the magnetization that suggests the presence of additional low-lying carriers from other low-energy bands. Finally, we observe a striking sensitivity of the magnetic reversal to temperature that is not readily explained by simple band-structure models, but may be connected to a temperature dependent Lifshitz transition proposed to exist inmore » this material.« less

  17. Observations of micro-turbulence in the solar wind near the sun with interplanetary scintillation

    NASA Technical Reports Server (NTRS)

    Yamauchi, Y.; Misawa, H.; Kojima, M.; Mori, H.; Tanaka, T.; Takaba, H.; Kondo, T.; Tokumaru, M.; Manoharan, P. K.

    1995-01-01

    Velocity and density turbulence of solar wind were inferred from interplanetary scintillation (IPS) observations at 2.3 GHz and 8.5 GHz using a single-antenna. The observations were made during September and October in 1992 - 1994. They covered the distance range between 5 and 76 solar radii (Rs). We applied the spectrum fitting method to obtain a velocity, an axial ratio, an inner scale and a power-law spectrum index. We examined the difference of the turbulence properties near the Sun between low-speed solar wind and high-speed solar wind. Both of solar winds showed acceleration at the distance range of 10 - 30 Rs. The radial dependence of anisotropy and spectrum index did not have significant difference between low-speed and high-speed solar winds. Near the sun, the radial dependence of the inner scale showed the separation from the linear relation as reported by previous works. We found that the inner scale of high-speed solar wind is larger than that of low-speed wind.

  18. Size dependent tunnel diode effects in gold tipped CdSe nanodumbbells.

    PubMed

    Saraf, Deepashri; Kumar, Ashok; Kanhere, Dilip; Kshirsagar, Anjali

    2017-02-07

    We report simulation results for scanning tunneling spectroscopy of gold-tipped CdSe nanodumbbells of lengths ∼27 Å and ∼78 Å. Present results are based on Bardeen, Tersoff, and Hamann formalism that takes inputs from ab initio calculations. For the shorter nanodumbbell, the current-voltage curves reveal negative differential conductance, the characteristic of a tunnel diode. This behaviour is attributed to highly localized metal induced gap states that rapidly decay towards the center of the nanodumbbell leading to suppression in tunneling. In the longer nanodumbbell, these gap states are absent in the central region, as a consequence of which zero tunneling current is observed in that region. The overall current-voltage characteristics for this nanodumbbell are observed to be largely linear near the metal-semiconductor interface and become rectifying at the central region, the nature being similar to its parent nanorod. The cross-sectional heights of these nanodumbbells also show bias-dependence where we begin to observe giant Stark effect features in the semiconducting central region of the longer nanodumbbell.

  19. Decision-Making Under Risk, but Not Under Ambiguity, Predicts Pathological Gambling in Discrete Types of Abstinent Substance Users.

    PubMed

    Wilson, Michael J; Vassileva, Jasmin

    2018-01-01

    This study explored how different forms of reward-based decision-making are associated with pathological gambling (PG) among abstinent individuals with prior dependence on different classes of drugs. Participants had lifetime histories of either "pure" heroin dependence ( n = 64), "pure" amphetamine dependence ( n = 51), or polysubstance dependence ( n = 89), or had no history of substance dependence ( n = 133). Decision-making was assessed via two neurocognitive tasks: (1) the Iowa Gambling Task (IGT), a measure of decision-making under ambiguity (i.e., uncertain risk contingencies); and (2) the Cambridge Gambling task (CGT), a measure of decision-making under risk (i.e., explicit risk contingencies). The main effects of neurocognitive performance and drug class on PG (defined as ≥3 DSM-IV PG symptoms) as well as their interactional effects were assessed via multiple linear regression. Two CGT indices of decision-making under risk demonstrated positive main effects on PG. Interaction effects indicated that the effects of decision-making under risk on PG were largely consistent across participant groups. Notably, a linear relationship between greater CGT Risk-Taking and PG symptoms was not observed among amphetamine users, whereas IGT performance was selectively and positively associated with PG in polysubstance users. Overall, results indicate that reward-based decision-making under risk may represent a risk factor for PG across substance users, with some variations in these relationships influenced by specific class of substance of abuse.

  20. Transformation temperatures of martensite in beta phase nickel aluminide

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Hehemann, R. F.

    1972-01-01

    Resistivity and thermal arrest measurements determined that the compositional dependence of Ms (martensite state) temperatures for NiAl martensite was linear between 60 and 69 atomic percent nickel, with Ms = 124 Ni - 7410 K. Resistivity and surface relief experiments indicated the presence of thermoelastic martensite for selected alloys. Some aspects of the transformation were studied by hot stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.

  1. Ocean Surface Wave Optical Roughness: Analysis of Innovative Measurements

    DTIC Science & Technology

    2013-12-16

    relationship of MSS to wind speed, and at times has shown a reversal of the Cox-Munk linear relationship. Furthermore, we observe measurable changes in...1985]. The variable speed allocation method has the effect of aliasing (cb) to slower waves, thereby increasing the exponent –m. Our analysis based ...RaDyO) program. The primary research goals of the program are to (1) examine time -dependent oceanic radiance distribution in relation to dynamic

  2. Chemical Reactions in Turbulent Mixing Flows.

    DTIC Science & Technology

    1986-06-15

    length from Reynolds and Schmidt numbers at high Reynolds number, 2. the linear dependence of flame length on the stoichiometric mixture ratio, and, 3...processes are unsteady and the observed large scale flame length fluctuations are the best evidence of the individual cascade. A more detailed examination...Damk~hler number. When the same ideas are used in a model of fuel jets burning in air, it explains (Broadwell 1982): 1. the independence of flame

  3. Transformation temperatures of martensite in beta-phase nickel aluminide.

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.; Hehemann, R. F.

    1973-01-01

    Resistivity and thermal arrest measurements determined that the compositional dependence of M sub s temperatures for NiAl martensite was linear between 60 and 69 at. % Ni, with M sub s = (124 Ni - 7410)K. Resistivity and surface relief experiments for selected alloys indicated the presence of thermoelastic martensite. Some aspects of the transformation were studied by hot-stage microscopy and related to the behavior observed for alloys exhibiting the shape-memory effect.

  4. Mapping the zone of eye-height utility for seated and standing observers

    NASA Technical Reports Server (NTRS)

    Wraga, M.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)

    2000-01-01

    In a series of experiments, we delimited a region within the vertical axis of space in which eye height (EH) information is used maximally to scale object heights, referred to as the "zone of eye height utility" (Wraga, 1999b Journal of Experimental Psychology, Human Perception and Performance 25 518-530). To test the lower limit of the zone, linear perspective (on the floor) was varied via introduction of a false perspective (FP) gradient while all sources of EH information except linear perspective were held constant. For seated (experiment 1a) observers, the FP gradient produced overestimations of height for rectangular objects up to 0.15 EH tall. This value was taken to be just outside the lower limit of the zone. This finding was replicated in a virtual environment, for both seated (experiment 1b) and standing (experiment 2) observers. For the upper limit of the zone, EH information itself was manipulated by lowering observers' center of projection in a virtual scene. Lowering the effective EH of standing (experiment 3) and seated (experiment 4) observers produced corresponding overestimations of height for objects up to about 2.5 EH. This zone of approximately 0.20-2.5 EH suggests that the human visual system weights size information differentially, depending on its efficacy.

  5. Numerical approach of the quantum circuit theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, J.J.B., E-mail: jaedsonfisica@hotmail.com; Duarte-Filho, G.C.; Almeida, F.A.G.

    2017-03-15

    In this paper we develop a numerical method based on the quantum circuit theory to approach the coherent electronic transport in a network of quantum dots connected with arbitrary topology. The algorithm was employed in a circuit formed by quantum dots connected each other in a shape of a linear chain (associations in series), and of a ring (associations in series, and in parallel). For both systems we compute two current observables: conductance and shot noise power. We find an excellent agreement between our numerical results and the ones found in the literature. Moreover, we analyze the algorithm efficiency formore » a chain of quantum dots, where the mean processing time exhibits a linear dependence with the number of quantum dots in the array.« less

  6. Simulating the thermodynamics of charging in weak polyelectrolytes: the Debye-Hückel limit

    NASA Astrophysics Data System (ADS)

    Rathee, Vikramjit S.; Sikora, Benjamin J.; Sidky, Hythem; Whitmer, Jonathan K.

    2018-01-01

    The coil-globule transition in weak (annealed) polyelectrolytes involves a subtle balance of pH, charge strength, and solvation forces. In this work, we utilize a coarse-grained hybrid grand-canonical Monte Carlo and molecular dynamics approach to explore the swelling behavior of weak linear and star polyelectrolytes under different ionic screening conditions and pH. Importantly, we are able to quantify topology-dependent effects in charging which arise at the core of star polymers. Our results are suggestive of suppression of charging in star weak polyelectrolytes in comparison to linear weak polyelectrolytes. Furthermore, we characterize the coil-globule transition in linear and star weak polyelectrolyte through expanded ensemble density-of-states simulations which suggest a change from a first order to second order phase transition moving from linear to star polyelectrolytes. Lastly, we characterize the inhomogeneous charging across the weak star polyelectrolyte through observed shifts in {{Δ }}{{{pK}}}{{o}}, and compare with experimental work. We discuss these results in relation to surfaces functionalized by weak polyelectrolyte brushes and weak polyelectrolyte-based drug delivery applications.

  7. A statistical analysis of the daily streamflow hydrograph

    NASA Astrophysics Data System (ADS)

    Kavvas, M. L.; Delleur, J. W.

    1984-03-01

    In this study a periodic statistical analysis of daily streamflow data in Indiana, U.S.A., was performed to gain some new insight into the stochastic structure which describes the daily streamflow process. This analysis was performed by the periodic mean and covariance functions of the daily streamflows, by the time and peak discharge -dependent recession limb of the daily streamflow hydrograph, by the time and discharge exceedance level (DEL) -dependent probability distribution of the hydrograph peak interarrival time, and by the time-dependent probability distribution of the time to peak discharge. Some new statistical estimators were developed and used in this study. In general features, this study has shown that: (a) the persistence properties of daily flows depend on the storage state of the basin at the specified time origin of the flow process; (b) the daily streamflow process is time irreversible; (c) the probability distribution of the daily hydrograph peak interarrival time depends both on the occurrence time of the peak from which the inter-arrival time originates and on the discharge exceedance level; and (d) if the daily streamflow process is modeled as the release from a linear watershed storage, this release should depend on the state of the storage and on the time of the release as the persistence properties and the recession limb decay rates were observed to change with the state of the watershed storage and time. Therefore, a time-varying reservoir system needs to be considered if the daily streamflow process is to be modeled as the release from a linear watershed storage.

  8. On the linearity of tracer bias around voids

    NASA Astrophysics Data System (ADS)

    Pollina, Giorgia; Hamaus, Nico; Dolag, Klaus; Weller, Jochen; Baldi, Marco; Moscardini, Lauro

    2017-07-01

    The large-scale structure of the Universe can be observed only via luminous tracers of the dark matter. However, the clustering statistics of tracers are biased and depend on various properties, such as their host-halo mass and assembly history. On very large scales, this tracer bias results in a constant offset in the clustering amplitude, known as linear bias. Towards smaller non-linear scales, this is no longer the case and tracer bias becomes a complicated function of scale and time. We focus on tracer bias centred on cosmic voids, I.e. depressions of the density field that spatially dominate the Universe. We consider three types of tracers: galaxies, galaxy clusters and active galactic nuclei, extracted from the hydrodynamical simulation Magneticum Pathfinder. In contrast to common clustering statistics that focus on auto-correlations of tracers, we find that void-tracer cross-correlations are successfully described by a linear bias relation. The tracer-density profile of voids can thus be related to their matter-density profile by a single number. We show that it coincides with the linear tracer bias extracted from the large-scale auto-correlation function and expectations from theory, if sufficiently large voids are considered. For smaller voids we observe a shift towards higher values. This has important consequences on cosmological parameter inference, as the problem of unknown tracer bias is alleviated up to a constant number. The smallest scales in existing data sets become accessible to simpler models, providing numerous modes of the density field that have been disregarded so far, but may help to further reduce statistical errors in constraining cosmology.

  9. Hunting high and low: disentangling primordial and late-time non-Gaussianity with cosmic densities in spheres

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Pajer, E.; Pichon, C.; Nishimichi, T.; Codis, S.; Bernardeau, F.

    2018-03-01

    Non-Gaussianities of dynamical origin are disentangled from primordial ones using the formalism of large deviation statistics with spherical collapse dynamics. This is achieved by relying on accurate analytical predictions for the one-point probability distribution function and the two-point clustering of spherically averaged cosmic densities (sphere bias). Sphere bias extends the idea of halo bias to intermediate density environments and voids as underdense regions. In the presence of primordial non-Gaussianity, sphere bias displays a strong scale dependence relevant for both high- and low-density regions, which is predicted analytically. The statistics of densities in spheres are built to model primordial non-Gaussianity via an initial skewness with a scale dependence that depends on the bispectrum of the underlying model. The analytical formulas with the measured non-linear dark matter variance as input are successfully tested against numerical simulations. For local non-Gaussianity with a range from fNL = -100 to +100, they are found to agree within 2 per cent or better for densities ρ ∈ [0.5, 3] in spheres of radius 15 Mpc h-1 down to z = 0.35. The validity of the large deviation statistics formalism is thereby established for all observationally relevant local-type departures from perfectly Gaussian initial conditions. The corresponding estimators for the amplitude of the non-linear variance σ8 and primordial skewness fNL are validated using a fiducial joint maximum likelihood experiment. The influence of observational effects and the prospects for a future detection of primordial non-Gaussianity from joint one- and two-point densities-in-spheres statistics are discussed.

  10. The Fundamental Solution of the Linearized Navier Stokes Equations for Spinning Bodies in Three Spatial Dimensions Time Dependent Case

    NASA Astrophysics Data System (ADS)

    Thomann, Enrique A.; Guenther, Ronald B.

    2006-02-01

    Explicit formulae for the fundamental solution of the linearized time dependent Navier Stokes equations in three spatial dimensions are obtained. The linear equations considered in this paper include those used to model rigid bodies that are translating and rotating at a constant velocity. Estimates extending those obtained by Solonnikov in [23] for the fundamental solution of the time dependent Stokes equations, corresponding to zero translational and angular velocity, are established. Existence and uniqueness of solutions of these linearized problems is obtained for a class of functions that includes the classical Lebesgue spaces L p (R 3), 1 < p < ∞. Finally, the asymptotic behavior and semigroup properties of the fundamental solution are established.

  11. Large linear magnetoresistance in a new Dirac material BaMnBi2

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Yan; Yu, Qiao-He; Xia, Tian-Long

    2016-10-01

    Dirac semimetal is a class of materials that host Dirac fermions as emergent quasi-particles. Dirac cone-type band structure can bring interesting properties such as quantum linear magnetoresistance and large mobility in the materials. In this paper, we report the synthesis of high quality single crystals of BaMnBi2 and investigate the transport properties of the samples. BaMnBi2 is a metal with an antiferromagnetic transition at T N = 288 K. The temperature dependence of magnetization displays different behavior from CaMnBi2 and SrMnBi2, which suggests the possible different magnetic structure of BaMnBi2. The Hall data reveals electron-type carriers and a mobility μ(5 K) = 1500 cm2/V·s. Angle-dependent magnetoresistance reveals the quasi-two-dimensional (2D) Fermi surface in BaMnBi2. A crossover from semiclassical MR ˜ H 2 dependence in low field to MR ˜ H dependence in high field, which is attributed to the quantum limit of Dirac fermions, has been observed in magnetoresistance. Our results indicate the existence of Dirac fermions in BaMnBi2. Project supported by the National Natural Science Foundation of China (Grant No. 11574391), the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (Grant No. 14XNLQ07).

  12. Population response to climate change: linear vs. non-linear modeling approaches.

    PubMed

    Ellis, Alicia M; Post, Eric

    2004-03-31

    Research on the ecological consequences of global climate change has elicited a growing interest in the use of time series analysis to investigate population dynamics in a changing climate. Here, we compare linear and non-linear models describing the contribution of climate to the density fluctuations of the population of wolves on Isle Royale, Michigan from 1959 to 1999. The non-linear self excitatory threshold autoregressive (SETAR) model revealed that, due to differences in the strength and nature of density dependence, relatively small and large populations may be differentially affected by future changes in climate. Both linear and non-linear models predict a decrease in the population of wolves with predicted changes in climate. Because specific predictions differed between linear and non-linear models, our study highlights the importance of using non-linear methods that allow the detection of non-linearity in the strength and nature of density dependence. Failure to adopt a non-linear approach to modelling population response to climate change, either exclusively or in addition to linear approaches, may compromise efforts to quantify ecological consequences of future warming.

  13. Chiral hide-and-seek: retention of enantiomorphism in laser-induced nucleation of molten sodium chlorate.

    PubMed

    Ward, Martin R; Copeland, Gary W; Alexander, Andrew J

    2011-09-21

    We report the observation of non-photochemical laser-induced nucleation (NPLIN) of sodium chlorate from its melt using nanosecond pulses of light at 1064 nm. The fraction of samples that nucleate is shown to depend linearly on the peak power density of the laser pulses. Remarkably, we observe that most samples are nucleated by the laser back into the enantiomorph (dextrorotatory or levorotatory) of the solid prior to melting. We do not observe a significant dependence on polarization of the light, and we put forward symmetry arguments that rule out an optical Kerr effect mechanism. Our observations of retention of chirality can be explained by decomposition of small amounts of the sodium chlorate to form sodium chloride, which provide cavities for retention of clusters of sodium chlorate even 18 °C above the melting point. These clusters remain sub-critical on cooling, but can be activated by NPLIN via an isotropic polarizability mechanism. We have developed a heterogeneous model of NPLIN in cavities, which reproduces the experimental data using simple physical data available for sodium chlorate.

  14. Estimating normative limits of Heidelberg Retina Tomograph optic disc rim area with quantile regression.

    PubMed

    Artes, Paul H; Crabb, David P

    2010-01-01

    To investigate why the specificity of the Moorfields Regression Analysis (MRA) of the Heidelberg Retina Tomograph (HRT) varies with disc size, and to derive accurate normative limits for neuroretinal rim area to address this problem. Two datasets from healthy subjects (Manchester, UK, n = 88; Halifax, Nova Scotia, Canada, n = 75) were used to investigate the physiological relationship between the optic disc and neuroretinal rim area. Normative limits for rim area were derived by quantile regression (QR) and compared with those of the MRA (derived by linear regression). Logistic regression analyses were performed to quantify the association between disc size and positive classifications with the MRA, as well as with the QR-derived normative limits. In both datasets, the specificity of the MRA depended on optic disc size. The odds of observing a borderline or outside-normal-limits classification increased by approximately 10% for each 0.1 mm(2) increase in disc area (P < 0.1). The lower specificity of the MRA with large optic discs could be explained by the failure of linear regression to model the extremes of the rim area distribution (observations far from the mean). In comparison, the normative limits predicted by QR were larger for smaller discs (less specific, more sensitive), and smaller for larger discs, such that false-positive rates became independent of optic disc size. Normative limits derived by quantile regression appear to remove the size-dependence of specificity with the MRA. Because quantile regression does not rely on the restrictive assumptions of standard linear regression, it may be a more appropriate method for establishing normative limits in other clinical applications where the underlying distributions are nonnormal or have nonconstant variance.

  15. Anomalous-hydrodynamic analysis of charge-dependent elliptic flow in heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Hongo, Masaru; Hirono, Yuji; Hirano, Tetsufumi

    2017-12-01

    Anomalous hydrodynamics is a low-energy effective theory that captures effects of quantum anomalies. We develop a numerical code of ideal anomalous hydrodynamics and apply it to dynamics of heavy-ion collisions, where anomalous transports are expected to occur. We discuss implications of the simulations for possible experimental observations of anomalous transport effects. From analyses of the charge-dependent elliptic flow parameters (v2±) as a function of the net charge asymmetry A±, we find that the linear dependence of Δ v2± ≡ v2- - v2+ on the net charge asymmetry A± can come from a mechanism unrelated to anomalous transport effects. Instead, we find that a finite intercept Δ v2± (A± = 0) can come from anomalous effects.

  16. Temperature induced phonon behaviour in germanium selenide thin films probed by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Taube, A.; Łapińska, A.; Judek, J.; Wochtman, N.; Zdrojek, M.

    2016-08-01

    Here we report a detailed study of temperature-dependent phonon properties of exfoliated germanium selenide thin films (several tens of nanometers thick) probed by Raman spectroscopy in the 70-350 K temperature range. The temperature-dependent behavior of the positions and widths of the Raman modes was nonlinear. We concluded that the observed effects arise from anharmonic phonon-phonon interactions and are explained by the phenomenon of optical phonon decay into acoustic phonons. At temperatures above 200 K, the position of the Raman modes tended to be linearly dependent, and the first order temperature coefficients χ were  -0.0277, -0.0197 and  -0.031 cm-1 K-1 for B 3g , A g(1) and A g(2) modes, respectively.

  17. Observations on personnel dosimetry for radiotherapy personnel operating high-energy LINACs.

    PubMed

    Glasgow, G P; Eichling, J; Yoder, R C

    1986-06-01

    A series of measurements were conducted to determine the cause of a sudden increase in personnel radiation exposures. One objective of the measurements was to determine if the increases were related to changing from film dosimeters exchanged monthly to TLD-100 dosimeters exchanged quarterly. While small increases were observed in the dose equivalents of most employees, the dose equivalents of personnel operating medical electron linear accelerators with energies greater than 20 MV doubled coincidentally with the change in the personnel dosimeter program. The measurements indicated a small thermal neutron radiation component around the accelerators operated by these personnel. This component caused the doses measured with the TLD-100 dosimeters to be overstated. Therefore, the increase in these personnel dose equivalents was not due to changes in work habits or radiation environments. Either film or TLD-700 dosimeters would be suitable for personnel monitoring around high-energy linear accelerators. The final choice would depend on economics and personal preference.

  18. Omega from the anisotropy of the redshift correlation function

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1993-01-01

    Peculiar velocities distort the correlation function of galaxies observed in redshift space. In the large scale, linear regime, the distortion takes a characteristic quadrupole plus hexadecapole form, with the amplitude of the distortion depending on the cosmological density parameter omega. Preliminary measurements are reported here of the harmonics of the correlation function in the CfA, SSRS, and IRAS 2 Jansky redshift surveys. The observed behavior of the harmonics agrees qualitatively with the predictions of linear theory on large scales in every survey. However, real anisotropy in the galaxy distribution induces large fluctuations in samples which do not yet probe a sufficiently fair volume of the Universe. In the CfA 14.5 sample in particular, the Great Wall induces a large negative quadrupole, which taken at face value implies an unrealistically large omega 20. The IRAS 2 Jy survey, which covers a substantially larger volume than the optical surveys and is less affected by fingers-of-god, yields a more reliable and believable value, omega = 0.5 sup +.5 sub -.25.

  19. Quantum Oscillations at Integer and Fractional Landau Level Indices in Single-Crystalline ZrTe 5

    DOE PAGES

    Yu, W.; Jiang, Y.; Yang, J.; ...

    2016-10-14

    A three-dimensional (3D) Dirac semimetal (DS) is an analogue of graphene, but with linear energy dispersion in all (three) momentum directions. 3D DSs have been a fertile playground in discovering novel quantum particles, for example Weyl fermions, in solid state systems. Many 3D DSs were theoretically predicted and experimentally confirmed. Here, we report here the results in exfoliated ZrTe 5 thin flakes from the studies of aberration-corrected scanning transmission electron microscopy and low temperature magneto-transport measurements. We observed several unique results. First, a π Berry phase was obtained from the Landau fan diagram of the Shubnikov-de Haas oscillations in themore » longitudinal conductivity σ xx. Second, the longitudinal resistivity ρ xx shows a linear magnetic field dependence in the quantum limit regime. Most surprisingly, quantum oscillations were also observed at fractional Landau level indices N = 5/3 and 7/5, demonstrating strong electron-electron interaction effects in ZrTe 5.« less

  20. Toxicity of o,p′-DDE to medaka d-rR strain after a one-time embryonic exposure by in ovo nanoinjection: An early through juvenile life cycle assessment

    USGS Publications Warehouse

    Villalobos, Sergio A.; Papoulias, Diana M.; Pastva, Stephanie D.; Blankenship, Alan L.; Meadows, John C.; Tillitt, Donald E.; Giesy, John P.

    2003-01-01

    The toxicity of o,p′-DDE (1,1-dichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl) ethylene) was evaluated in embryos of medaka (Oryzias latipes) following a one time exposure via nanoinjection. Medaka eggs (early gastrula) were injected with 0.5 nl of triolein (vehicle control) or 0.5 nl of 4 graded doses (0.0005-0.5 ng/egg) of o,p′-DDE in triolein. Embryos were allowed to develop, and fry were reared. Embryonic survival was monitored daily during the first 10 d until hatching and thereafter, on a weekly basis until day 59, at which time the fish were monitored for sexual maturity until day 107. In general, o,p′-DDE caused a dose- and time-dependent mortality. No changes in mortality were observed between the last two time points (day 38 and 59, respectively), and hence a 59 day-LD50 of 346 ng o,p′-DDE/egg was derived from the linear dose-response relationship. Prior to late stage death, only isolated cases of cardiovascular lesions and spinal deformities were observed, but were not dose-dependent. The lowest observable adverse effect level (LOAEL), based on upper 95% CI for regression line=0.0018 mg/kg, and the LOAEL based on exposure doses=0.5 mg/kg. Likewise, the no observable adverse effect level (NOAEL) based on linear extrapolation to 100% survival=0.0000388 mg/kg, while the NOAEL based on exposure doses=0.05 mg/kg. The nanoinjection medaka model has potential in the study of hormonally active compounds in the environment.

  1. Effect of gravitational and inertial forces on vertical distribution of pulmonary blood flow

    NASA Technical Reports Server (NTRS)

    Chevalier, P. A.; Reed, J. H., Jr.; Vandenberg, R. A.; Wood, E. H.

    1978-01-01

    Vertical distribution of pulmonary blood flow (VDPBF) was studied, using radioactive microsphere emboli, in dogs without thoracotomy in the right decubitus position during exposure to lateral accelerations of 1, 2, 4, and 6 G. At all levels of force environment studied, an inverse linear relationship was observed between vertical height in the thorax and pulmonary blood flow (ml/min/ml lung tissue) with a decrease in flow to the most dependent region of the lung despite large increases in intravascular pressures at this site. Changes in blood flow were smallest at the mid-lung level, the hydrostatic 'balance point' for vascular and pleural pressures. These force environment-dependent changes in VDPBF are not readily explainable by the Starling resistor analog. Gravity-dependent regional differences in pleural and associated interstitial pressures, plus possible changes in vascular tone resulting from inadequate aeration of blood in the most dependent regions of the lung, probably also affect VDPBF.

  2. Dependence of Interfacial Dzyaloshinskii-Moriya Interaction on Layer Thicknesses in Ta /Co -Fe -B /TaOx Heterostructures from Brillouin Light Scattering

    NASA Astrophysics Data System (ADS)

    Chaurasiya, Avinash Kumar; Choudhury, Samiran; Sinha, Jaivardhan; Barman, Anjan

    2018-01-01

    The interfacial Dzyaloshinskii-Moriya interaction (IDMI) has recently drawn extensive research interest due to its fundamental role in stabilizing chiral spin textures in ultrathin ferromagnets, which are suitable candidates for future magnetic-memory devices. Here, we explore the ferromagnetic and heavy-metal layer-thickness dependence of IDMI in technologically important Ta /Co20Fe60B20/TaOx heterostructures by measuring nonreciprocity in spin-wave frequency using the Brillouin light-scattering technique. The observed value of the IDMI constant agrees with that obtained from a separate measurement of in-plane angular dependence of frequency nonreciprocity, which is also in good agreement with the theory predicted by Cortes-Ortuno and Landeros. Linear scaling behavior of IDMI with the inverse of Co-Fe-B thicknesses suggests that IDMI originates primarily from the interface in these heterostructures, whereas we observe a weak dependence of Ta thickness on the strength of IDMI. Importantly, the observed value of the IDMI constant is reasonably large by a factor of 3 compared to annealed Ta /Co -Fe -B /MgO heterostructures. We propose that the observation of large IDMI is likely due to the absence of boron diffusion towards the Ta /Co -Fe -B interface as the heterostructures are as deposited. Our detailed investigation opens up a route to designing thin-film heterostructures with the tailored IDMI constant for controlling Skyrmion-based magnetic-memory devices.

  3. Event terms in the response spectra prediction equation and their deviation due to stress drop variations

    NASA Astrophysics Data System (ADS)

    Kawase, H.; Nakano, K.

    2015-12-01

    We investigated the characteristics of strong ground motions separated from acceleration Fourier spectra and acceleration response spectra of 5% damping calculated from weak and moderate ground motions observed by K-NET, KiK-net, and the JMA Shindokei Network in Japan using the generalized spectral inversion method. The separation method used the outcrop motions at YMGH01 as reference where we extracted site responses due to shallow weathered layers. We include events with JMA magnitude equal to or larger than 4.5 observed from 1996 to 2011. We find that our frequency-dependent Q values are comparable to those of previous studies. From the corner frequencies of Fourier source spectra, we calculate Brune's stress parameters and found a clear magnitude dependence, in which smaller events tend to spread over a wider range while maintaining the same maximum value. We confirm that this is exactly the case for several mainshock-aftershock sequences. The average stress parameters for crustal earthquakes are much smaller than those of subduction zone, which can be explained by their depth dependence. We then compared the strong motion characteristics based on the acceleration response spectra and found that the separated characteristics of strong ground motions are different, especially in the lower frequency range less than 1Hz. These differences comes from the difference between Fourier spectra and response spectra found in the observed data; that is, predominant components in high frequency range of Fourier spectra contribute to increase the response in lower frequency range with small Fourier amplitude because strong high frequency component acts as an impulse to a Single-Degree-of-Freedom system. After the separation of the source terms for 5% damping response spectra we can obtain regression coefficients with respect to the magnitude, which lead to a new GMPE as shown in Fig.1 on the left. Although stress drops for inland earthquakes are 1/7 of the subduction-zone earthquakes, we can see linear regression works quite well. After this linear regression we correlate residuals as a function of Brune's stress parameters of corresponding events as shown in Fig.1 on the right for the case of 1Hz. We found quite good linear correlation, which makes aleatoric uncertainty 40 to 60 % smaller than the original.

  4. The development and validation of a numerical integration method for non-linear viscoelastic modeling

    PubMed Central

    Ramo, Nicole L.; Puttlitz, Christian M.

    2018-01-01

    Compelling evidence that many biological soft tissues display both strain- and time-dependent behavior has led to the development of fully non-linear viscoelastic modeling techniques to represent the tissue’s mechanical response under dynamic conditions. Since the current stress state of a viscoelastic material is dependent on all previous loading events, numerical analyses are complicated by the requirement of computing and storing the stress at each step throughout the load history. This requirement quickly becomes computationally expensive, and in some cases intractable, for finite element models. Therefore, we have developed a strain-dependent numerical integration approach for capturing non-linear viscoelasticity that enables calculation of the current stress from a strain-dependent history state variable stored from the preceding time step only, which improves both fitting efficiency and computational tractability. This methodology was validated based on its ability to recover non-linear viscoelastic coefficients from simulated stress-relaxation (six strain levels) and dynamic cyclic (three frequencies) experimental stress-strain data. The model successfully fit each data set with average errors in recovered coefficients of 0.3% for stress-relaxation fits and 0.1% for cyclic. The results support the use of the presented methodology to develop linear or non-linear viscoelastic models from stress-relaxation or cyclic experimental data of biological soft tissues. PMID:29293558

  5. Polarization dependent photo-induced bias stress effect in organic transistors.

    NASA Astrophysics Data System (ADS)

    Podzorov, Vitaly; Choi, Hyun Ho; Najafov, Hikmet; Saranin, Danila; Kharlamov, Nikolai A.; Kuznetzov, Denis V.; Didenko, Sergei I.; Cho, Kilwon; Briseno, Alejandro L.; Rutgers-Misis Collaboration; Ru-P Collaboration; Ru-Um Collaboration; Um-P Collaboration

    Photo-induced charge transfer between a semiconductor and a gate insulator that occurs in organic transistors operating under illumination leads to a shift of the onset gate voltage in these devices. Here we report an observation of a polarization dependent photo-induced bias-stress effect in two prototypical single-crystal organic field-effect transistors, based on rubrene and TPBIQ. We find that the rate of the effect is a periodic function of polarization angle of a linearly polarized photoexcitation, with a periodicity of π. The observed phenomenon provides an effective tool for addressing the relationship between molecular packing and parameter drift in organic transistors under illumination. The work was carried out with financial support from the Ministry of Education and Science of the Russian Federation in the framework of Increase Competitiveness Program of NUST «MISiS» (No. K3-2016-004), by gov. decree 16/03/2013, N 211.

  6. On the Correlation Between Biomass and the P-Band Polarisation Phase Difference, and Its Potential for Biomass and Tree Number Density Estimation

    NASA Astrophysics Data System (ADS)

    Soja, Maciej J.; Blomberg, Erik; Ulander, Lars M. H.

    2015-04-01

    In this paper, a significant correlation between the HH/VV phase difference (polarisation phase difference, PPD) and the above-ground biomass (AGB) is observed for incidence angles above 30° in airborne P-band SAR data acquired over two boreal test sites in Sweden. A geometric model is used to explain the dependence of the AGB on tree height, stem radius, and tree number density, whereas a cylinder-over-ground model is used to explain the dependence of the PPD on the same three forest parameters. The models show that forest anisotropy need to be accounted for at P-band in order to obtain a linear relationship between the PPD and the AGB. An approach to the estimation of tree number density is proposed, based on a comparison between the modelled and observed PPDs.

  7. Direct measurement of nonlinear dispersion relation for water surface waves

    NASA Astrophysics Data System (ADS)

    Magnus Arnesen Taklo, Tore; Trulsen, Karsten; Elias Krogstad, Harald; Gramstad, Odin; Nieto Borge, José Carlos; Jensen, Atle

    2013-04-01

    The linear dispersion relation for water surface waves is often taken for granted for the interpretation of wave measurements. High-resolution spatiotemporal measurements suitable for direct validation of the linear dispersion relation are on the other hand rarely available. While the imaging of the ocean surface with nautical radar does provide the desired spatiotemporal coverage, the interpretation of the radar images currently depends on the linear dispersion relation as a prerequisite, (Nieto Borge et al., 2004). Krogstad & Trulsen (2010) carried out numerical simulations with the nonlinear Schrödinger equation and its generalizations demonstrating that the nonlinear evolution of wave fields may render the linear dispersion relation inadequate for proper interpretation of observations, the reason being that the necessary domain of simultaneous coverage in space and time would allow significant nonlinear evolution. They found that components above the spectral peak can have larger phase and group velocities than anticipated by linear theory, and that the spectrum does not maintain a thin dispersion surface. We have run laboratory experiments and accurate numerical simulations designed to have sufficient resolution in space and time to deduce the dispersion relation directly. For a JONSWAP spectrum we find that the linear dispersion relation can be appropriate for the interpretation of spatiotemporal measurements. For a Gaussian spectrum with narrower bandwidth we find that the dynamic nonlinear evolution in space and time causes the directly measured dispersion relation to deviate from the linear dispersion surface in good agreement with our previous numerical predictions. This work has been supported by RCN grant 214556/F20. Krogstad, H. E. & Trulsen, K. (2010) Interpretations and observations of ocean wave spectra. Ocean Dynamics 60:973-991. Nieto Borge, J. C., Rodríguez, G., Hessner, K., Izquierdo, P. (2004) Inversion of marine radar images for surface wave analysis. J. Atmos. Ocean. Tech. 21:1291-1300.

  8. Quantification and parametrization of non-linearity effects by higher-order sensitivity terms in scattered light differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Puķīte, Jānis; Wagner, Thomas

    2016-05-01

    We address the application of differential optical absorption spectroscopy (DOAS) of scattered light observations in the presence of strong absorbers (in particular ozone), for which the absorption optical depth is a non-linear function of the trace gas concentration. This is the case because Beer-Lambert law generally does not hold for scattered light measurements due to many light paths contributing to the measurement. While in many cases linear approximation can be made, for scenarios with strong absorptions non-linear effects cannot always be neglected. This is especially the case for observation geometries, for which the light contributing to the measurement is crossing the atmosphere under spatially well-separated paths differing strongly in length and location, like in limb geometry. In these cases, often full retrieval algorithms are applied to address the non-linearities, requiring iterative forward modelling of absorption spectra involving time-consuming wavelength-by-wavelength radiative transfer modelling. In this study, we propose to describe the non-linear effects by additional sensitivity parameters that can be used e.g. to build up a lookup table. Together with widely used box air mass factors (effective light paths) describing the linear response to the increase in the trace gas amount, the higher-order sensitivity parameters eliminate the need for repeating the radiative transfer modelling when modifying the absorption scenario even in the presence of a strong absorption background. While the higher-order absorption structures can be described as separate fit parameters in the spectral analysis (so-called DOAS fit), in practice their quantitative evaluation requires good measurement quality (typically better than that available from current measurements). Therefore, we introduce an iterative retrieval algorithm correcting for the higher-order absorption structures not yet considered in the DOAS fit as well as the absorption dependence on temperature and scattering processes.

  9. A Non-linear Geodetic Data Inversion Using ABIC for Slip Distribution on a Fault With an Unknown dip Angle

    NASA Astrophysics Data System (ADS)

    Fukahata, Y.; Wright, T. J.

    2006-12-01

    We developed a method of geodetic data inversion for slip distribution on a fault with an unknown dip angle. When fault geometry is unknown, the problem of geodetic data inversion is non-linear. A common strategy for obtaining slip distribution is to first determine the fault geometry by minimizing the square misfit under the assumption of a uniform slip on a rectangular fault, and then apply the usual linear inversion technique to estimate a slip distribution on the determined fault. It is not guaranteed, however, that the fault determined under the assumption of a uniform slip gives the best fault geometry for a spatially variable slip distribution. In addition, in obtaining a uniform slip fault model, we have to simultaneously determine the values of the nine mutually dependent parameters, which is a highly non-linear, complicated process. Although the inverse problem is non-linear for cases with unknown fault geometries, the non-linearity of the problems is actually weak, when we can assume the fault surface to be flat. In particular, when a clear fault trace is observed on the EarthOs surface after an earthquake, we can precisely estimate the strike and the location of the fault. In this case only the dip angle has large ambiguity. In geodetic data inversion we usually need to introduce smoothness constraints in order to compromise reciprocal requirements for model resolution and estimation errors in a natural way. Strictly speaking, the inverse problem with smoothness constraints is also non-linear, even if the fault geometry is known. The non-linearity has been dissolved by introducing AkaikeOs Bayesian Information Criterion (ABIC), with which the optimal value of the relative weight of observed data to smoothness constraints is objectively determined. In this study, using ABIC in determining the optimal dip angle, we dissolved the non-linearity of the inverse problem. We applied the method to the InSAR data of the 1995 Dinar, Turkey earthquake and obtained a much shallower dip angle than before.

  10. Effects of the observed J2 variations on the Earth's precession and nutation

    NASA Astrophysics Data System (ADS)

    Ferrándiz, José M.; Baenas, Tomás; Belda, Santiago

    2016-04-01

    The Earth's oblateness parameter J2 is closely related to the dynamical ellipticity H, which factorizes the main components of the precession and the different nutation terms. In most theoretical approaches to the Earth's rotation, with IAU2000 nutation theory among them, H is assumed to be constant. The precession model IAU2006 supposes H to have a conventional linear variation, based on the J2 time series derived mainly from satellite laser ranging (SLR) data for decades, which gives rise to an additional quadratic term of the precession in longitude and some corrections of the nutation terms. The time evolution of J2 is, however, too complex to be well approximated by a simple linear model. The effect of more general models including periodic terms and closer to the observed time series, although still unable to reproduce a significant part of the signal, has been seldom investigated. In this work we address the problem of deriving the effect of the observed J2 variations without resorting to such simplified models. The Hamiltonian approach to the Earth rotation is extended to allow the McCullagh's term of the potential to depend on a time-varying oblateness. An analytical solution is derived by means of a suitable perturbation method in the case of the time series provided by the Center for Space Research (CSR) of the University of Texas, which results in non-negligible contributions to the precession-nutation angles. The presentation focuses on the main effects on the longitude of the equator; a noticeable non-linear trend is superimposed to the linear main precession term, along with some periodic and decadal variations.

  11. Performance evaluation of linear time-series ionospheric Total Electron Content model over low latitude Indian GPS stations

    NASA Astrophysics Data System (ADS)

    Dabbakuti, J. R. K. Kumar; Venkata Ratnam, D.

    2017-10-01

    Precise modeling of the ionospheric Total Electron Content (TEC) is a critical aspect of Positioning, Navigation, and Timing (PNT) services intended for the Global Navigation Satellite Systems (GNSS) applications as well as Earth Observation System (EOS), satellite communication, and space weather forecasting applications. In this paper, linear time series modeling has been carried out on ionospheric TEC at two different locations at Koneru Lakshmaiah University (KLU), Guntur (geographic 16.44° N, 80.62° E; geomagnetic 7.55° N) and Bangalore (geographic 12.97° N, 77.59° E; geomagnetic 4.53° N) at the northern low-latitude region, for the year 2013 in the 24th solar cycle. The impact of the solar and geomagnetic activity on periodic oscillations of TEC has been investigated. Results confirm that the correlation coefficient of the estimated TEC from the linear model TEC and the observed GPS-TEC is around 93%. Solar activity is the key component that influences ionospheric daily averaged TEC while periodic component reveals the seasonal dependency of TEC. Furthermore, it is observed that the influence of geomagnetic activity component on TEC is different at both the latitudes. The accuracy of the model has been assessed by comparing the International Reference Ionosphere (IRI) 2012 model TEC and TEC measurements. Moreover, the absence of winter anomaly is remarkable, as determined by the Root Mean Square Error (RMSE) between the linear model TEC and GPS-TEC. On the contrary, the IRI2012 model TEC evidently failed to predict the absence of winter anomaly in the Equatorial Ionization Anomaly (EIA) crest region. The outcome of this work will be useful for improving the ionospheric now-casting models under various geophysical conditions.

  12. Differential adaptation of the linear and nonlinear components of the horizontal vestibuloocular reflex in squirrel monkeys

    NASA Technical Reports Server (NTRS)

    Clendaniel, Richard A.; Lasker, David M.; Minor, Lloyd B.; Shelhamer, M. J. (Principal Investigator)

    2002-01-01

    Previous work in squirrel monkeys has demonstrated the presence of linear and nonlinear components to the horizontal vestibuloocular reflex (VOR) evoked by high-acceleration rotations. The nonlinear component is seen as a rise in gain with increasing velocity of rotation at frequencies more than 2 Hz (a velocity-dependent gain enhancement). We have shown that there are greater changes in the nonlinear than linear component of the response after spectacle-induced adaptation. The present study was conducted to determine if the two components of the response share a common adaptive process. The gain of the VOR, in the dark, to sinusoidal stimuli at 4 Hz (peak velocities: 20-150 degrees /s) and 10 Hz (peak velocities: 20 and 100 degrees /s) was measured pre- and postadaptation. Adaptation was induced over 4 h with x0.45 minimizing spectacles. Sum-of-sines stimuli were used to induce adaptation, and the parameters of the stimuli were adjusted to invoke only the linear or both linear and nonlinear components of the response. Preadaptation, there was a velocity-dependent gain enhancement at 4 and 10 Hz. In postadaptation with the paradigms that only recruited the linear component, there was a decrease in gain and a persistent velocity-dependent gain enhancement (indicating adaptation of only the linear component). After adaptation with the paradigm designed to recruit both the linear and nonlinear components, there was a decrease in gain and no velocity-dependent gain enhancement (indicating adaptation of both components). There were comparable changes in the response to steps of acceleration. We interpret these results to indicate that separate processes drive the adaptation of the linear and nonlinear components of the response.

  13. Geometric contribution leading to anomalous estimation of two-dimensional electron gas density in GaN based heterostructures

    NASA Astrophysics Data System (ADS)

    Upadhyay, Bhanu B.; Jha, Jaya; Takhar, Kuldeep; Ganguly, Swaroop; Saha, Dipankar

    2018-05-01

    We have observed that the estimation of two-dimensional electron gas density is dependent on the device geometry. The geometric contribution leads to the anomalous estimation of the GaN based heterostructure properties. The observed discrepancy is found to originate from the anomalous area dependent capacitance of GaN based Schottky diodes, which is an integral part of the high electron mobility transistors. The areal capacitance density is found to increase for smaller radii Schottky diodes, contrary to a constant as expected intuitively. The capacitance is found to follow a second order polynomial on the radius of all the bias voltages and frequencies considered here. In addition to the quadratic dependency corresponding to the areal component, the linear dependency indicates a peripheral component. It is further observed that the peripheral to areal contribution is inversely proportional to the radius confirming the periphery as the location of the additional capacitance. The peripheral component is found to be frequency dependent and tends to saturate to a lower value for measurements at a high frequency. In addition, the peripheral component is found to vanish when the surface is passivated by a combination of N2 and O2 plasma treatments. The cumulative surface state density per unit length of the perimeter of the Schottky diodes as obtained by the integrated response over the distance between the ohmic and Schottky contacts is found to be 2.75 × 1010 cm-1.

  14. Stalk-length-dependence of the contractility of Vorticella convallaria

    NASA Astrophysics Data System (ADS)

    Gul Chung, Eun; Ryu, Sangjin

    2017-12-01

    Vorticella convallaria is a sessile protozoan of which the spasmoneme contracts on a millisecond timescale. Because this contraction is induced and powered by the binding of calcium ions (Ca2+), the spasmoneme showcases Ca2+-powered cellular motility. Because the isometric tension of V. convallaria increases linearly with its stalk length, it is hypothesized that the contractility of V. convallaria during unhindered contraction depends on the stalk length. In this study, the contractile force and energetics of V. convallaria cells of different stalk lengths were evaluated using a fluid dynamic drag model which accounts for the unsteadiness and finite Reynolds number of the water flow caused by contracting V. convallaria and the wall effect of the no-slip substrate. It was found that the contraction displacement, peak contraction speed, peak contractile force, total mechanical work, and peak power depended on the stalk length. The observed stalk-length-dependencies were simulated using a damped spring model, and the model estimated that the average spring constant of the contracting stalk was 1.34 nN µm-1. These observed length-dependencies of Vorticella’s key contractility parameters reflect the biophysical mechanism of the spasmonemal contraction, and thus they should be considered in developing a theoretical model of the Vorticella spasmoneme.

  15. Trap densities and transport properties of pentacene metal-oxide-semiconductor transistors. I. Analytical modeling of time-dependent characteristics

    NASA Astrophysics Data System (ADS)

    Basile, A. F.; Cramer, T.; Kyndiah, A.; Biscarini, F.; Fraboni, B.

    2014-06-01

    Metal-oxide-semiconductor (MOS) transistors fabricated with pentacene thin films were characterized by temperature-dependent current-voltage (I-V) characteristics, time-dependent current measurements, and admittance spectroscopy. The channel mobility shows almost linear variation with temperature, suggesting that only shallow traps are present in the semiconductor and at the oxide/semiconductor interface. The admittance spectra feature a broad peak, which can be modeled as the sum of a continuous distribution of relaxation times. The activation energy of this peak is comparable to the polaron binding energy in pentacene. The absence of trap signals in the admittance spectra confirmed that both the semiconductor and the oxide/semiconductor interface have negligible density of deep traps, likely owing to the passivation of SiO2 before pentacene growth. Nevertheless, current instabilities were observed in time-dependent current measurements following the application of gate-voltage pulses. The corresponding activation energy matches the energy of a hole trap in SiO2. We show that hole trapping in the oxide can explain both the temperature and the time dependences of the current instabilities observed in pentacene MOS transistors. The combination of these experimental techniques allows us to derive a comprehensive model for charge transport in hybrid architectures where trapping processes occur at various time and length scales.

  16. Coronal temperatures of selected active cool stars as derived from low resolution Einstein observations

    NASA Technical Reports Server (NTRS)

    Vilhu, Osmi; Linsky, Jeffrey L.

    1990-01-01

    Mean coronal temperatures of some active G-K stars were derived from Rev1-processed Einstein-observatory's IPC-spectra. The combined X-ray and transition region emission line data are in rough agreement with static coronal loop models. Although the sample is too small to derive any statistically significant conclusions, it suggests that the mean coronal temperature depends linearly on the inverse Rossby-number, with saturation at short rotation periods.

  17. Optical and thermal-transport properties of an inhomogeneous d-wave superconductor.

    PubMed

    Atkinson, W A; Hirschfeld, P J

    2002-05-06

    We calculate transport properties of disordered 2D d-wave superconductors from solutions of the Bogoliubov-de Gennes equations, and show that weak localization effects give rise to a finite-frequency peak in the optical conductivity similar to that observed in experiments on disordered cuprates. At low energies, order parameter inhomogeneities induce linear and quadratic temperature dependencies in microwave and thermal conductivities respectively, and appear to drive the system towards a quasiparticle insulating phase.

  18. Magnetization-induced second-harmonic generation in electrochemically synthesized magnetic films of ternary metal Prussian blue analogs

    NASA Astrophysics Data System (ADS)

    Ikeda, Katsuyoshi; Ohkoshi, Shin-ichi; Hashimoto, Kazuhito

    2003-02-01

    We observed magnetic field effects on transmitted second-harmonic generation (SHG) in electrochemically synthesized (FexIICr1-xII)1.5[CrIII(CN)6]ṡ7.5H2O magnetic films. These films showed a variety of temperature dependences for SH intensities below magnetic phase transition temperatures (TC). The SH intensity for x=0.25 increased monotonically with decreasing temperature and that for x=0.13 exhibited a minimum value around the magnetic compensation temperature under a zero magnetic field. These temperature dependences resembled those of the absolute value of magnetization, indicating that the magnetic strain of the films is responsible for the increase in SH below TC. In addition, the polarization of SH light was rotated by an applied external magnetic field. The observed SH rotation angle of 1.3° was much larger than the Faraday rotation angle of 0.079° at 388 nm. This SH rotation can be understood by the mechanism of magnetization-induced SHG caused by interaction between the electric polarization along the out-of-plane of film and spontaneous magnetization. The magnetic linear term [χijkLmagn(1)] contributed particularly to the SH rotation. The value of the magnetic linear tensor component relative to the crystallographic tensor component [|χyyyXmagn(1)|/|χzyycr], which induced the SH rotation, was 0.023 at 50 K under 10 kOe.

  19. Surface tension and density of liquid In-Sn-Zn alloys

    NASA Astrophysics Data System (ADS)

    Pstruś, Janusz

    2013-01-01

    Using the dilatometric method, measurements of the density of liquid alloys of the ternary system In-Sn-Zn in four sections with a constant ratio Sn:In = 24:1, 3:1, 1:1, 1:3, for various Zn additions (5, 10, 14, 20, 3 5, 50 and 75 at.% Zn) were performed at the temperature ranges of 500-1150 K. Density decreases linearly for all compositions. The molar volume calculated from density data exhibits close to ideal dependence on composition. Measurements of the surface tension of liquid alloys have been conducted using the method of maximum pressure in the gas bubbles. There were observed linear dependences on temperature with a negative gradients dσ/dT. Generally, with two exceptions, there was observed the increase of surface tension with increasing content of zinc. Using the Butler's model, the surface tension isotherms were calculated for temperatures T = 673 and 1073 K. Calculations show that only for high temperatures and for low content of zinc (up to about 35 at.%), the modeling is in very good agreement with experiment. Using the mentioned model, the composition of the surface phase was defined at two temperatures T = 673 and 973 K. Regardless of the temperature and of the defined section, the composition of the bulk is very different in comparison with the composition of the surface.

  20. Thresholding of auditory cortical representation by background noise

    PubMed Central

    Liang, Feixue; Bai, Lin; Tao, Huizhong W.; Zhang, Li I.; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity. PMID:25426029

  1. A varying-coefficient method for analyzing longitudinal clinical trials data with nonignorable dropout

    PubMed Central

    Forster, Jeri E.; MaWhinney, Samantha; Ball, Erika L.; Fairclough, Diane

    2011-01-01

    Dropout is common in longitudinal clinical trials and when the probability of dropout depends on unobserved outcomes even after conditioning on available data, it is considered missing not at random and therefore nonignorable. To address this problem, mixture models can be used to account for the relationship between a longitudinal outcome and dropout. We propose a Natural Spline Varying-coefficient mixture model (NSV), which is a straightforward extension of the parametric Conditional Linear Model (CLM). We assume that the outcome follows a varying-coefficient model conditional on a continuous dropout distribution. Natural cubic B-splines are used to allow the regression coefficients to semiparametrically depend on dropout and inference is therefore more robust. Additionally, this method is computationally stable and relatively simple to implement. We conduct simulation studies to evaluate performance and compare methodologies in settings where the longitudinal trajectories are linear and dropout time is observed for all individuals. Performance is assessed under conditions where model assumptions are both met and violated. In addition, we compare the NSV to the CLM and a standard random-effects model using an HIV/AIDS clinical trial with probable nonignorable dropout. The simulation studies suggest that the NSV is an improvement over the CLM when dropout has a nonlinear dependence on the outcome. PMID:22101223

  2. Changes of Linearity in MF2 Index with R12 and Solar Activity Maximum

    NASA Astrophysics Data System (ADS)

    Villanueva, L.

    2013-05-01

    Critical frequency of F2 layer is related to the solar activity, and the sunspot number has been the standard index for ionospheric prediction programs. This layer, being considered the most important in HF radio communications due to its highest electron density, determines the maximum frequency coming back from ground base transmitter signals, and shows irregular variation in time and space. Nowadays the spatial variation, better understood due to the availability of TEC measurements, let Space Weather Centers have observations almost in real time. However, it is still the most difficult layer to predict in time. Short time variations are improved in IRI model, but long term predictions are only related to the well-known CCIR and URSI coefficients and Solar activity R12 predictions, (or ionospheric indexes in regional models). The concept of the "saturation" of the ionosphere is based on data observations around 3 solar cycles before 1970, (NBS, 1968). There is a linear relationship among MUF (0Km) and R12, for smooth Sunspot numbers R12 less than 100, but constant for higher R12, so, no rise of MUF is expected for R12 higher than 100. This recommendation has been used in most of the known Ionospheric prediction programs for HF Radio communication. In this work, observations of smoothed ionospheric index MF2 related to R12 are presented to find common features of the linear relationship, which is found to persist in different ranges of R12 depending on the specific maximum level of each solar cycle. In the analysis of individual solar cycles, the lapse of linearity is less than 100 for a low solar cycle and higher than 100 for a high solar cycle. To improve ionospheric predictions we can establish levels for solar cycle maximum sunspot numbers R12 around low 100, medium 150 and high 200 and specify the ranges of linearity of MUF(0Km) related to R12 which is not only 100 as assumed for all the solar cycles. For lower levels of solar cycle, discussions of present observations are presented.

  3. How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime.

    PubMed

    Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T

    2013-01-01

    Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in "intermediate" regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns.

  4. SU-F-T-68: Characterizes of Microdetectors in Electron Beam Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, I; Andersen, A; Akino, Y

    Purpose: Electron beam dosimetry requires high resolution data due to finite range that can be accomplished with small volume detectors. The small-field used in advance technologies in photon beam has created a market for microdetectors, however characteristics are significantly variable in photon beams and relatively unknown in electron beam that is investigated in this study. Methods: Among nearly 2 dozen microdetectors that have been investigated in small fields of photon beam, two popular detectors (microDiamond 60019 (PTW)) and W1 plastic scintillator detector (Standard Imaging)) that are tissue equivalent and have very small sensitive volume are selected. Electron beams from Varianmore » linear accelerators were used to investigate dose linearity dose rate dependence, energy dependence, depth dose and profiles in a reference condition in a water phantom. For W1 that has its own Supermax electrometer point by point measurements were performed. For microDiamond, a PTW-scanning tank was used for both scanning and point dose measurements. Results: W1 detector showed excellent dose linearity (r{sup 2} =1.0) from 5–500 MU either with variation of dose rate or beam energy. Similar findings were also observed for microdiamond with r{sup 2}=1.0. Percent variations in dose/MU for W1 and microDiamond were 0.2–1.1% and 0.4–1.2%, respectively among dose rate and beam energy. This variation was random for microDiamond, whereas it decreased with beam energy and dose rate for W1. The depth dose and profiles were within ±1 mm for both detectors. Both detectors did not show any energy dependence in electron beams. Conclusion: Both microDiamond and W1 detectors provided superior characteristics of beam parameters in electron beam including dose, dose rate linearity and energy independence. Both can be used in electron beam except W1 require point by point measurements and microdiamond requires 1500 MU for initial quenching.« less

  5. How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime

    PubMed Central

    Kriener, Birgit; Helias, Moritz; Rotter, Stefan; Diesmann, Markus; Einevoll, Gaute T.

    2014-01-01

    Pattern formation, i.e., the generation of an inhomogeneous spatial activity distribution in a dynamical system with translation invariant structure, is a well-studied phenomenon in neuronal network dynamics, specifically in neural field models. These are population models to describe the spatio-temporal dynamics of large groups of neurons in terms of macroscopic variables such as population firing rates. Though neural field models are often deduced from and equipped with biophysically meaningful properties, a direct mapping to simulations of individual spiking neuron populations is rarely considered. Neurons have a distinct identity defined by their action on their postsynaptic targets. In its simplest form they act either excitatorily or inhibitorily. When the distribution of neuron identities is assumed to be periodic, pattern formation can be observed, given the coupling strength is supracritical, i.e., larger than a critical weight. We find that this critical weight is strongly dependent on the characteristics of the neuronal input, i.e., depends on whether neurons are mean- or fluctuation driven, and different limits in linearizing the full non-linear system apply in order to assess stability. In particular, if neurons are mean-driven, the linearization has a very simple form and becomes independent of both the fixed point firing rate and the variance of the input current, while in the very strongly fluctuation-driven regime the fixed point rate, as well as the input mean and variance are important parameters in the determination of the critical weight. We demonstrate that interestingly even in “intermediate” regimes, when the system is technically fluctuation-driven, the simple linearization neglecting the variance of the input can yield the better prediction of the critical coupling strength. We moreover analyze the effects of structural randomness by rewiring individual synapses or redistributing weights, as well as coarse-graining on the formation of inhomogeneous activity patterns. PMID:24501591

  6. Effects of environment of the activated nonradiative decay of the /sup 3/A/sub 2/ state of Rh/sub 2/(TMB)/sub 4//sup 2 +/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milder, S.J.

    1985-10-09

    The effect of environment on the temperature dependence of the nonradiative decay of the /sup 3/A/sup 2/ state of Rh/sub 2/(TMB)/sub 4//sup 2 +/ (TMB = 2,5-dimethyl-2,5-diisocyanohexane) is studied. The temperature dependence of the observed nonradiative decay rate can be approximately fit to an Arrhenius-like expression: k/sub obsd/ = k/sub 0/ + Ae/sup -E/sub a//RT/. Arrhenius parameters are obtained in seven different environments, with the activation energies varying from 1970 to 3420 cm/sup -1/. A plot of 1n A vs. E/sub a/, known as a Barclay-Butler plot, is linear, with slope = 3.3 x 10/sup -3/ cm and y interceptmore » = 20.0. The linear Barclay-Butler plot suggests that the activated decay from the /sup 3/A/sub 2/ state of Rh/sub 2/(TMB)/sub 4//sup 2 +/ has the same mechanism, regardless of environment. Single-crystal, dilute-plastic, and dilute-crystal environments have been tested. 13 references, 4 figures.« less

  7. Al3+ ions dependent structural and magnetic properties of Co-Ni nano-alloys.

    PubMed

    Kadam, R H; Alone, Suresh T; Gaikwad, Anil S; Birajdar, A P; Shirsath, Sagar E

    2014-06-01

    Ferrite samples with a chemical formula Co0.5Ni0.5Al(x)Fe(2-x)O4 (where x = 0.0, 0.25, 0.5, 0.75 and 1.0) were synthesized by sol-gel auto-combustion method. The synthesized samples were annealed at 600 degrees C for 4 h. An analysis of X-ray diffraction (XRD) patterns reveals the formation of single phase cubic spinel structure. The lattice parameter decreased linearly with the increasing Al content x. Nano size of the powders were confirmed by the transmission electron micrographs (TEM). Particle size, bulk density decreased whereas specific surface area and porosity of the samples increased with the Al substitution. Cation distribution of constituent ions shows linear dependence of Al substitution. Based on the cation distribution obtained from XRD data, structural parameters such as lattice parameters, ionic radii of available sites and the oxygen parameter 'u' is calculated. Saturation magnetization (M(s)), magneton number (n(B)) and coercivity (H(c)) decreased with the Al substitution. Possible explanation for the observed structural and magnetic behavior with various Al content are discussed.

  8. Localization length and intraband scattering of excitons in linear aggregates

    NASA Astrophysics Data System (ADS)

    Lemaistre, J. P.

    1999-07-01

    A theoretical model to describe the intraband scattering of excitons in linear aggregates of finite size which exhibit strong intermolecular interactions is presented. From the calculation of the aggregate eigenstates, the localization length of excitons is evaluated for various configurations featuring physical situations like trapping, edge effects, inclusion of diagonal and/or orientational disorders. The intraband scattering is studied by considering the exciton-phonon stochastic coupling induced by the thermal bath. This coupling creates local dynamical fluctuations in the site energies which are characterized by their amplitude ( Δ) and their correlation time ( τc). Expressions of scattering rates are provided and used in a Pauli master equation to calculate the time dependence of the eigenstates populations after initial excitation of the quasi exciton-band. It is shown that the time evolution of the lowest state population as well as the Stokes shift strongly depend on τc. Comparison of the theoretical results to time-resolved experiments performed on triaryl pyrylium salts allows us to interpret the observed Stokes shift and to derive an average value of the exciton-phonon correlation time.

  9. Field emission characteristics of a small number of carbon fiber emitters

    NASA Astrophysics Data System (ADS)

    Tang, Wilkin W.; Shiffler, Donald A.; Harris, John R.; Jensen, Kevin L.; Golby, Ken; LaCour, Matthew; Knowles, Tim

    2016-09-01

    This paper reports an experiment that studies the emission characteristics of small number of field emitters. The experiment consists of nine carbon fibers in a square configuration. Experimental results show that the emission characteristics depend strongly on the separation between each emitter, providing evidence of the electric field screening effects. Our results indicate that as the separation between the emitters decreases, the emission current for a given voltage also decreases. The authors compare the experimental results to four carbon fiber emitters in a linear and square configurations as well as to two carbon fiber emitters in a paired array. Voltage-current traces show that the turn-on voltage is always larger for the nine carbon fiber emitters as compared to the two and four emitters in linear configurations, and approximately identical to the four emitters in a square configuration. The observations and analysis reported here, based on Fowler-Nordheim field emission theory, suggest the electric field screening effect depends critically on the number of emitters, the separation between them, and their overall geometric configuration.

  10. Submillimeter Remote Sensing of Planetary and Cometary Atmospheres and LRO/LCROSS Observations of the Moon

    NASA Technical Reports Server (NTRS)

    Chin, Gordon

    2011-01-01

    Submillimeter remote sensing of planetary and cometary atmospheres have been proposed for Venus and Mars while MIRO on Rosetta will observe the coma of Comet 67P/Churyumov - Cierasimenko in December 2015, UARS and AURA MLS have observed millimeter and submillimeter molecule emissions in the Earth's stratosphere for many decades, Observations of submillimeter wave molecular emissions provide a wealth of information not obtainable by alternative techniques. Submillimeter line emissions exhibit linear temperature dependence, insensitivity to aerosol scattering, extinction, and have separated transitions with well determined line-shapes. These observations have high sensitivities to trace chemical species and can; 1) Fully resolve the line profiles of molecules with high resolution, 2) Provide deterministic retrievals of species abundance, temperature, and pressure, and 3) Measure Doppler shifts of detected molecules for wind velocities.

  11. Analytical Interference in Serum Iron Determination Reveals Iron Versus Gadolinium Transmetallation With Linear Gadolinium-Based Contrast Agents

    PubMed Central

    Fretellier, Nathalie; Poteau, Nathalie; Factor, Cécile; Mayer, Jean-François; Medina, Christelle; Port, Marc; Idée, Jean-Marc; Corot, Claire

    2014-01-01

    Objectives The purposes of this study were to evaluate the risk for analytical interference with gadolinium-based contrast agents (GBCAs) for the colorimetric measurement of serum iron (Fe3+) and to investigate the mechanisms involved. Materials and Methods Rat serum was spiked with several concentrations of all molecular categories of GBCAs, ligands, or “free” soluble gadolinium (Gd3+). Serum iron concentration was determined by 2 different colorimetric methods at pH 4.0 (with a Vitros DT60 analyzer or a Cobas Integra 400 analyzer). Secondly, the cause of interference was investigated by (a) adding free soluble Gd3+ or Mn2+ to serum in the presence of gadobenic acid or gadodiamide and (b) electrospray ionization mass spectrometry. Results Spurious decrease in serum Fe3+ concentration was observed with all linear GBCAs (only with the Vitros DT60 technique occurring at pH 4.0) but not with macrocyclic GBCAs or with free soluble Gd3+. Spurious hyposideremia was also observed with the free ligands present in the pharmaceutical solutions of the linear GBCAs gadopentetic acid and gadodiamide (ie, diethylene triamine pentaacetic acid and calcium-diethylene triamine pentaacetic acid bismethylamide, respectively), suggesting the formation of Fe-ligand chelate. Gadobenic acid-induced interference was blocked in a concentration-dependent fashion by adding a free soluble Gd3+ salt. Conversely, Mn2+, which has a lower affinity than Gd3+ and Fe3+ for the ligand of gadobenic acid (ie, benzyloxypropionic diethylenetriamine tetraacetic acid), was less effective (interference was only partially blocked), suggesting an Fe3+ versus Gd3+ transmetallation phenomenon at pH 4.0. Similar results were observed with gadodiamide. Mass spectrometry detected the formation of Fe-ligand with all linear GBCAs tested in the presence of Fe3+ and the disappearance of Fe-ligand after the addition of free soluble Gd3+. No Fe-ligand chelate was found in the case of the macrocyclic GBCA gadoteric acid. Conclusions Macrocyclic GBCAs induced no interference with colorimetric methods for iron determination, whereas negative interference was observed with linear GBCAs using a Vitros DT60 analyzer. This interference of linear GBCAs seems to be caused by the excess of ligand and/or an Fe3+ versus Gd3+ transmetallation phenomenon. PMID:24943092

  12. Polarimetry of Solar System Objects: Observations vs. Models

    NASA Astrophysics Data System (ADS)

    Yanamandra-Fisher, P. A.

    2014-04-01

    The overarching goals for the remote sensing and robotic exploration of planetary systems are: (1) understanding the formation of planetary systems and their diversity; and (2) search for habitability. Since all objects have unique polarimetric signatures inclusion of spectrophotopolarimetry as a complementary approach to standard techniques of imaging and spectroscopy, provides insight into the scattering properties of the planetary media. Specifically, linear and circular polarimetric signatures of the object arise from different physical processes and their study proves essential to the characterization of the object. Linear polarization of reflected light by various solar system objects provides insight into the scattering characteristics of atmospheric aerosols and hazes? and surficial properties of atmosphereless bodies. Many optically active materials are anisotropic and so their scattering properties differ with the object's principal axes (such as dichroic or birefringent materials) and are crystalline in structure instead of amorphous, (eg., the presence of olivines and silicates in cometary dust and circumstellar disks? Titan, etc.). Ices (water and other species) are abundant in the system indicated in their near - infrared spectra. Gas giants form outside the frost line (where ices condense), and their satellites and ring systems exhibit signature of water ice? clathrates, nonices (Si, C, Fe) in their NIR spectra and spectral dependence of linear polarization. Additionally, spectral dependence of polarization is important to separate the macroscopic (bulk) properties of the scattering medium from the microscopic (particulate) properties of the scattering medium. Circular polarization, on the other hand, is indicative of magnetic fields and biologically active molecules, necessary for habitability. These applications suffer from lack of detailed observations, instrumentation, dedicated missions and numericalretrieval methods. With recent discoveries and results of main belt comets, asteroids with ring system, lunar studies, planned exploration of planetary satellites that may harbour sub-surface oceans, there is increasing need to include polarimetric (linear, circular and differential) as an integral observing mode of instruments and facilities. For laboratory measurements, there is a need to identify simulants that mimic the polarimetric behaviour of solar system small bodies and measure their polarimetric behavior as function of various physical process they are subject to and have undergone radiation changes of their surfaces. Therefore, inclusion of polarimetric remote sensing and development of spectropolarimeters for groundbased facilities and instruments on space missions is needed, with similar maturation of vector radiative transfer models and related laboratory measurements.

  13. X-ray Absorption Spectroscopy Combined with Time-Dependent Density Functional Theory Elucidates Differential Substitution Pathways of Au(I) and Au(III) with Zinc Fingers.

    PubMed

    Abbehausen, Camilla; de Paiva, Raphael Enoque Ferraz; Bjornsson, Ragnar; Gomes, Saulo Quintana; Du, Zhifeng; Corbi, Pedro Paulo; Lima, Frederico Alves; Farrell, Nicholas

    2018-01-02

    A combination of two elements' (Au, Zn) X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TD-DFT) allowed the elucidation of differential substitution pathways of Au(I) and Au(III) compounds reacting with biologically relevant zinc fingers (ZnFs). Gold L 3 -edge XAS probed the interaction of gold and the C-terminal Cys 2 HisCys finger of the HIV-1 nucleocapsid protein NCp7, and the Cys 2 His 2 human transcription factor Sp1. The use of model compounds helped assign oxidation states and the identity of the gold-bound ligands. The computational studies accurately reproduced the experimental XAS spectra and allowed the proposition of structural models for the interaction products at early time points. The direct electrophilic attack on the ZnF by the highly thiophilic Au(I) resulted in a linear P-Au-Cys coordination sphere after zinc ejection whereas for the Sp1, loss of PEt 3 results in linear Cys-Au-Cys or Cys-Au-His arrangements. Reactions with Au(III) compounds, on the other hand, showed multiple binding modes. Prompt reaction between [AuCl(dien)] 2+ and [Au(dien)(DMAP)] 3+ with Sp1 showed a partially reduced Au center and a final linear His-Au-His coordination. Differently, in the presence of NCp7, [AuCl(dien)] 2+ readily reduces to Au(I) and changes from square-planar to linear geometry with Cys-Au-His coordination, while [Au(dien)(DMAP)] 3+ initially maintains its Au(III) oxidation state and square-planar geometry and the same first coordination sphere. The latter is the first observation of a "noncovalent" interaction of a Au(III) complex with a zinc finger and confirms early hypotheses that stabilization of Au(III) occurs with N-donor ligands. Modification of the zinc coordination sphere, suggesting full or partial zinc ejection, is observed in all cases, and for [Au(dien)(DMAP)] 3+ this represents a novel mechanism for nucleocapsid inactivation. The combination of XAS and TD-DFT presents the first direct experimental observation that not only compound reactivity, but also ZnF core specificity, can be modulated on the basis of the coordination sphere of Au(III) compounds.

  14. Solar cycle in current reanalyses: (non)linear attribution study

    NASA Astrophysics Data System (ADS)

    Kuchar, A.; Sacha, P.; Miksovsky, J.; Pisoft, P.

    2014-12-01

    This study focusses on the variability of temperature, ozone and circulation characteristics in the stratosphere and lower mesosphere with regard to the influence of the 11 year solar cycle. It is based on attribution analysis using multiple nonlinear techniques (Support Vector Regression, Neural Networks) besides the traditional linear approach. The analysis was applied to several current reanalysis datasets for the 1979-2013 period, including MERRA, ERA-Interim and JRA-55, with the aim to compare how this type of data resolves especially the double-peaked solar response in temperature and ozone variables and the consequent changes induced by these anomalies. Equatorial temperature signals in the lower and upper stratosphere were found to be sufficiently robust and in qualitative agreement with previous observational studies. The analysis also pointed to the solar signal in the ozone datasets (i.e. MERRA and ERA-Interim) not being consistent with the observed double-peaked ozone anomaly extracted from satellite measurements. Consequently the results obtained by linear regression were confirmed by the nonlinear approach through all datasets, suggesting that linear regression is a relevant tool to sufficiently resolve the solar signal in the middle atmosphere. Furthermore, the seasonal dependence of the solar response was also discussed, mainly as a source of dynamical causalities in the wave propagation characteristics in the zonal wind and the induced meridional circulation in the winter hemispheres. The hypothetical mechanism of a weaker Brewer Dobson circulation was reviewed together with discussion of polar vortex stability.

  15. Investigating the detection of multi-homed devices independent of operating systems

    DTIC Science & Technology

    2017-09-01

    timestamp data was used to estimate clock skews using linear regression and linear optimization methods. Analysis revealed that detection depends on...the consistency of the estimated clock skew. Through vertical testing, it was also shown that clock skew consistency depends on the installed...optimization methods. Analysis revealed that detection depends on the consistency of the estimated clock skew. Through vertical testing, it was also

  16. Fast gain recovery rates with strong wavelength dependence in a non-linear SOA.

    PubMed

    Cleary, Ciaran S; Power, Mark J; Schneider, Simon; Webb, Roderick P; Manning, Robert J

    2010-12-06

    We report remarkably fast and strongly wavelength-dependent gain recovery in a single SOA without the aid of an offset filter. Full gain recovery times as short as 9 ps were observed in pump-probe measurements when pumping to the blue wavelength side of a continuous wave probe, in contrast to times of 25 to 30 ps when pumping to the red wavelength side. Experimental and numerical analysis indicate that the long effective length and high gain led to deep saturation of the second half of the SOA by the probe. The consequent absorption of blue-shifted pump pulses in this region resulted in device dynamics analogous to those of the Turbo-Switch.

  17. Cytochemical and Cytofluorometric Evidence for Guard Cell Photosystems 1

    PubMed Central

    Vaughn, Kevin C.; Outlaw, William H.

    1983-01-01

    Evidence for photosynthetic linear electron transport in guard cells was obtained with two sensitive methods of high spacial resolution. Light-dependent diaminobenzidine oxidation (an indicator of PSI) and DCMU-sensitive, light-dependent thiocarbamyl nitroblue tetrazolium reduction (an indicator of PSII) were observed in guard cell plastids of Hordeum vulgare L. cv Himalaya using electron microscopic cytochemical procedures. DCMU-sensitive Chl a fluorescence induction (an indicator of PSII) was detected in individual guard cell pairs of Vicia faba L. cv Longpod using an ultramicrofluorometer. At least for these species, we conclude these results are proof for the presence of PSII in guard cell chloroplasts, which until now has been somewhat controversial. Images Fig. 2 Fig. 1 PMID:16662840

  18. A numerical study of variable density flow and mixing in porous media

    NASA Astrophysics Data System (ADS)

    Fan, Yin; Kahawita, René

    1994-10-01

    A numerical study of a negatively buoyant plume intruding into a neutrally stratified porous medium has been undertaken using finite different methods. Of particular interest has been to ascertain whether the experimentally observed gravitational instabilities that form along the lower edge of the plume are reproduced in the numerical model. The model has been found to faithfully reproduce the mean flow as well as the gravitational instabilities in the intruding plume. A linear stability analysis has confirmed the fact that the negatively buoyant plume is in fact gravitationally unstable and that the stability depends on two parameters: a concentration Rayleigh number and a characteristic length scale which is dependent on the transverse dispersivity.

  19. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    DOE PAGES

    Bang, Woosuk; Albright, Brian James; Bradley, Paul Andrew; ...

    2016-07-12

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly withmore » temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. In conclusion, these simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.« less

  20. Experimental characterization and modeling of non-linear coupling of the LHCD power on Tore Supra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preynas, M.; Goniche, M.; Hillairet, J.

    2014-02-12

    To achieve steady state operation on future tokamaks, in particular on ITER, the unique capability of a LHCD system to efficiently drive off-axis non-inductive current is needed. In this context, it is of prime importance to study and master the coupling of LH wave to the core plasma at high power density (tens of MW/m{sup 2}). In some specific conditions, deleterious effects on the LHCD coupling are sometimes observed on Tore Supra. At high power the waves may modify the edge parameters that change the wave coupling properties in a non-linear manner. In this way, dedicated LHCD experiments have beenmore » performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the Fully Active Multijunction (FAM) and the new Passive Active Multijunction (PAM) antennas. A nonlinear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient with the LHCD power, leading occasionally to trips in the output power, is not predicted by the standard linear theory of the LH wave coupling. Therefore, it is important to investigate and understand the possible origin of such non-linear effects in order to avoid their possible deleterious consequences. The PICCOLO-2D code, which self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density, is used to simulate Tore Supra discharges. The simulation reproduces very well the occurrence of a non-linear behavior in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modeling for the first time on the FAM and PAM antennas on Tore Supra.« less

  1. Universal Linear Scaling of Permeability and Time for Heterogeneous Fracture Dissolution

    NASA Astrophysics Data System (ADS)

    Wang, L.; Cardenas, M. B.

    2017-12-01

    Fractures are dynamically changing over geological time scale due to mechanical deformation and chemical reactions. However, the latter mechanism remains poorly understood with respect to the expanding fracture, which leads to a positively coupled flow and reactive transport processes, i.e., as a fracture expands, so does its permeability (k) and thus flow and reactive transport processes. To unravel this coupling, we consider a self-enhancing process that leads to fracture expansion caused by acidic fluid, i.e., CO2-saturated brine dissolving calcite fracture. We rigorously derive a theory, for the first time, showing that fracture permeability increases linearly with time [Wang and Cardenas, 2017]. To validate this theory, we resort to the direct simulation that solves the Navier-Stokes and Advection-Diffusion equations with a moving mesh according to the dynamic dissolution process in two-dimensional (2D) fractures. We find that k slowly increases first until the dissolution front breakthrough the outbound when we observe a rapid k increase, i.e., the linear time-dependence of k occurs. The theory agrees well with numerical observations across a broad range of Peclet and Damkohler numbers through homogeneous and heterogeneous 2D fractures. Moreover, the theory of linear scaling relationship between k and time matches well with experimental observations of three-dimensional (3D) fractures' dissolution. To further attest to our theory's universality for 3D heterogeneous fractures across a broad range of roughness and correlation length of aperture field, we develop a depth-averaged model that simulates the process-based reactive transport. The simulation results show that, regardless of a wide variety of dissolution patterns such as the presence of dissolution fingers and preferential dissolution paths, the linear scaling relationship between k and time holds. Our theory sheds light on predicting permeability evolution in many geological settings when the self-enhancing process is relevant. References: Wang, L., and M. B. Cardenas (2017), Linear permeability evolution of expanding conduits due to feedback between flow and fast phase change, Geophys. Res. Lett., 44(9), 4116-4123, doi: 10.1002/2017gl073161.

  2. X-ray observations of the burst source MXB 1728 - 34

    NASA Technical Reports Server (NTRS)

    Basinska, E. M.; Lewin, W. H. G.; Sztajno, M.; Cominsky, L. R.; Marshall, F. J.

    1984-01-01

    Where sufficient information has been obtained, attention is given to the maximum burst flux, integrated burst flux, spectral hardness, rise time, etc., of 96 X-ray bursts observed from March 1976 to March 1979. The integrated burst flux and the burst frequency appear to be correlated; the longer the burst interval, the larger the integrated burst flux, as expected on the basis of simple thermonuclear flash models. The maximum burst flux and the integrated burst flux are strongly correlated; for low flux levels their dependence is approximately linear, while for increasing values of the integrated burst flux, the flux at burst maximum saturates and reaches a plateau.

  3. Active galactic nuclei as cosmological probes.

    NASA Astrophysics Data System (ADS)

    Lusso, Elisabeta; Risaliti, Guido

    2018-01-01

    I will present the latest results on our analysis of the non-linear X-ray to UV relation in a sample of optically selected quasars from the Sloan Digital Sky Survey, cross-matched with the most recent XMM-Newton and Chandra catalogues. I will show that this correlation is not only very tight, but can be potentially even tighter by including a further dependence on the emission line full-width half maximum. This result imply that the non-linear X-ray to optical-ultraviolet luminosity relation is the manifestation of an ubiquitous physical mechanism, whose details are still unknown, that regulates the energy transfer from the accretion disc to the X-ray emitting corona in quasars. I will discuss what the perspectives of AGN in the context of observational cosmology are. I will introduce a novel technique to test the cosmological model using quasars as “standard candles” by employing the non-linear X-ray to UV relation as an absolute distance indicator.

  4. Linearly polarized photoluminescence of anisotropically strained c-plane GaN layers on stripe-shaped cavity-engineered sapphire substrate

    NASA Astrophysics Data System (ADS)

    Kim, Jongmyeong; Moon, Daeyoung; Lee, Seungmin; Lee, Donghyun; Yang, Duyoung; Jang, Jeonghwan; Park, Yongjo; Yoon, Euijoon

    2018-05-01

    Anisotropic in-plane strain and resultant linearly polarized photoluminescence (PL) of c-plane GaN layers were realized by using a stripe-shaped cavity-engineered sapphire substrate (SCES). High resolution X-ray reciprocal space mapping measurements revealed that the GaN layers on the SCES were under significant anisotropic in-plane strain of -0.0140% and -0.1351% along the directions perpendicular and parallel to the stripe pattern, respectively. The anisotropic in-plane strain in the GaN layers was attributed to the anisotropic strain relaxation due to the anisotropic arrangement of cavity-incorporated membranes. Linearly polarized PL behavior such as the observed angle-dependent shift in PL peak position and intensity comparable with the calculated value based on k.p perturbation theory. It was found that the polarized PL behavior was attributed to the modification of valence band structures induced by anisotropic in-plane strain in the GaN layers on the SCES.

  5. Linear and Nonlinear Coupling of Electrostatic Drift and Acoustic Perturbations in a Nonuniform Bi-Ion Plasma with Non-Maxwellian Electrons

    NASA Astrophysics Data System (ADS)

    Ali, Gul-e.; Ahmad, Ali; Masood, W.; Mirza, Arshad M.

    2017-12-01

    Linear and nonlinear coupling of drift and ion acoustic waves are studied in a nonuniform magnetized plasma comprising of Oxygen and Hydrogen ions with nonthermal distribution of electrons. It has been observed that different ratios of ion number densities and kappa and Cairns distributed electrons significantly modify the linear dispersion characteristics of coupled drift-ion acoustic waves. In the nonlinear regime, KdV (for pure drift waves) and KP (for coupled drift-ion acoustic waves) like equations have been derived to study the nonlinear evolution of drift solitary waves in one and two dimensions. The dependence of drift solitary structures on different ratios of ion number densities and nonthermal distribution of electrons has also been explored in detail. It has been found that the ratio of the diamagnetic drift velocity to the velocity of the nonlinear structure determines the existence regimes for the drift solitary waves. The present investigation may be beneficial to understand the formation of solitons in the ionospheric F-region.

  6. Lead-lag relationships between stock and market risk within linear response theory

    NASA Astrophysics Data System (ADS)

    Borysov, Stanislav; Balatsky, Alexander

    2015-03-01

    We study historical correlations and lead-lag relationships between individual stock risks (standard deviation of daily stock returns) and market risk (standard deviation of daily returns of a market-representative portfolio) in the US stock market. We consider the cross-correlation functions averaged over stocks, using historical stock prices from the Standard & Poor's 500 index for 1994-2013. The observed historical dynamics suggests that the dependence between the risks was almost linear during the US stock market downturn of 2002 and after the US housing bubble in 2007, remaining at that level until 2013. Moreover, the averaged cross-correlation function often had an asymmetric shape with respect to zero lag in the periods of high correlation. We develop the analysis by the application of the linear response formalism to study underlying causal relations. The calculated response functions suggest the presence of characteristic regimes near financial crashes, when individual stock risks affect market risk and vice versa. This work was supported by VR 621-2012-2983.

  7. Tuning conductivity in boron nanowire by edge geometry

    NASA Astrophysics Data System (ADS)

    Bhuyan, Prabal Dev; Gupta, Sanjeev K.; Sonvane, Yogesh; Gajjar, P. N.

    2018-04-01

    In present study, we have investigated electronic and temperature dependent transport properties of carbyne like linear chain and ribbon like zigzag structures of Boron (B) nanowire. The linear chain structure showed higher electric and thermal conductivity, as it is sp-hybridized, than its counterpart ribbon (R) structure. However the conductivity of ribbon structure increases with increases in width due to edge geometry effect. The ribbon (3R) structure showed high electric and thermal conductivity of 8.0×1019 1/Ω m s and 0.59×1015 W/ m K respectively. Interestingly we have observed that B linear chain showed higher thermal conductivity of 0.23×1015 W/ m K than its ribbon R and 2R structure above 600K. Because of high Seebeck co-efficient of boron chain and ribbon (R) structures at low temperature, they could find applications in thermoelectric sensors. Our results show that tuning conductivity property of boron nanowire could be of great interest in research for future electric connector in nanodevices.

  8. An indirect approach to assess the pests on sorghum by remote sensing

    NASA Astrophysics Data System (ADS)

    Singh, D.; Sao, R.

    In today's world of advanced technology various techniques are being used to study ecological parameter and gathering data for agricultural benefits. The major aspects of remote sensing are timely estimates of agriculture crop yield, prediction of pest etc. The damage caused by the pest to crop is well known. Therefore, in this paper, an attempt has to be made to estimate the number of pests on sorghum by remote sensing technique. The studies were made on crop Sorghum (Meethi Sudan) that is a forage variety and the pest observed is a species of grasshopper. The beds of crop sorghum were specially prepared for pests as well as microwave scattering measurements. In first phase of study, dependence of number of pests on sorghum plant parameters (i.e., crop covered moist soil (SM), plant height (PH), leaf area index (LAI), percentage Biomass (BIO), Total chlorophyll (TC)) have been observed by the regression analyses and it was found that pests were more dependent on sorghum chlorophyll than other plant parameters, while climatic conditions were taken as constant. A linear relationship has been obtained between number of pests and TC with quite significant values of coefficient of determination (r^2=0.86). These crop parameters are easily assessable through microwave remote sensing so they can form the basis for prediction of pest remotely. In second phase of study, several observations were carried out for various growth stages of sorghum using bistatic scatterometer for both like polarizations (i.e., HH- and VV-) and different incidence angles at X-band (9.5 GHz). Linear, and multiple regression analysis were carried out to check dependence of scattering coefficient on these crop parameters and it was noticed that scattering coefficient was more dependent on sorghum TC than other plant parameters at X-band. A negative correlation has been obtained between TC and scattering coefficient with quite good values of r^2 (0.82). VV-pol gives better results than HH-pol and incidence angle should be more than 40 degree for both like pols for assessing the sorghum TC at X-band. The TC assessed by the microwave measurements was helpful to estimate the number of pests on sorghum. Combining both phase of study, number of pests was estimated and a quite good agreement (r^2=0.76) was found between observed and estimated pests.

  9. The Inversion of Ionospheric/plasmaspheric Electron Density From GPS Beacon Observations

    NASA Astrophysics Data System (ADS)

    Zou, Y. H.; Xu, J. S.; Ma, S. Y.

    It is a space-time 4-D tomography to reconstruct ionospheric/ plasmaspheric elec- tron density, Ne, from ground-based GPS beacon measurements. The mathematical foundation of such inversion is studied in this paper and some simulation results of reconstruction for GPS network observation are presented. Assuming reasonably a power law dependence of NE on time with an index number of 1-3 during one ob- servational time of GPS (60-90min.), 4-D inversion in consideration is reduced to a 3-D cone-beam tomography with incomplete projections. To see clearly the effects of the incompleteness on the quality of reconstruction for 3-D condition, we deduced theoretically the formulae of 3-D parallel-beam tomography. After establishing the mathematical basis, we adopt linear temporal dependence of NE and voxel elemental functions to perform simulation of NE reconstruction with the help of IRI90 model. Reasonable time-dependent 3-D images of ionosphere/ plasmasphere electron density distributions are obtained when taking proper layout of the GPS network and allowing variable resolutions in vertical.

  10. Anomalous center of mass shift: gravitational dipole moment.

    NASA Astrophysics Data System (ADS)

    Jeong, Eue Jin

    1997-02-01

    The anomalous, energy dependent shift of the center of mass of an idealized, perfectly rigid, uniformly rotating hemispherical shell which is caused by the relativistic mass increase effect is investigated in detail. It is shown that a classical object on impact which has the harmonic binding force between the adjacent constituent particles has the similar effect of the energy dependent, anomalous shift of the center of mass. From these observations, the general mode of the linear acceleration is suggested to be caused by the anomalous center of mass shift whether it's due to classical or relativistic origin. The effect of the energy dependent center of mass shift perpendicular to the plane of rotation of a rotating hemisphere appears as the non zero gravitational dipole moment in general relativity. Controlled experiment for the measurement of the gravitational dipole field and its possible links to the cylindrical type line formation of a worm hole in the extreme case are suggested. The jets from the black hole accretion disc and the observed anomalous red shift from far away galaxies are considered to be the consequences of the two different aspects of the dipole gravity.

  11. Unveiling the Dependence of Glass Transitions on Mixing Thermodynamics in Miscible Systems

    NASA Astrophysics Data System (ADS)

    Tu, Wenkang; Wang, Yunxi; Li, Xin; Zhang, Peng; Tian, Yongjun; Jin, Shaohua; Wang, Li-Min

    2015-02-01

    The dependence of the glass transition in mixtures on mixing thermodynamics is examined by focusing on enthalpy of mixing, ΔHmix with the change in sign (positive vs. negative) and magnitude (small vs. large). The effects of positive and negative ΔHmix are demonstrated based on two isomeric systems of o- vs. m- methoxymethylbenzene (MMB) and o- vs. m- dibromobenzene (DBB) with comparably small absolute ΔHmix. Two opposite composition dependences of the glass transition temperature, Tg, are observed with the MMB mixtures showing a distinct negative deviation from the ideal mixing rule and the DBB mixtures having a marginally positive deviation. The system of 1, 2- propanediamine (12PDA) vs. propylene glycol (PG) with large and negative ΔHmix is compared with the systems of small ΔHmix, and a considerably positive Tg shift is seen. Models involving the properties of pure components such as Tg, glass transition heat capacity increment, ΔCp, and density, ρ, do not interpret the observed Tg shifts in the systems. In contrast, a linear correlation is revealed between ΔHmix and maximum Tg shifts.

  12. Detecting dark matter with imploding pulsars in the galactic center.

    PubMed

    Bramante, Joseph; Linden, Tim

    2014-11-07

    The paucity of old millisecond pulsars observed at the galactic center of the Milky Way could be the result of dark matter accumulating in and destroying neutron stars. In regions of high dark matter density, dark matter clumped in a pulsar can exceed the Schwarzschild limit and collapse into a natal black hole which destroys the pulsar. We examine what dark matter models are consistent with this hypothesis and find regions of parameter space where dark matter accumulation can significantly degrade the neutron star population within the galactic center while remaining consistent with observations of old millisecond pulsars in globular clusters and near the solar position. We identify what dark matter couplings and masses might cause a young pulsar at the galactic center to unexpectedly extinguish. Finally, we find that pulsar collapse age scales inversely with the dark matter density and linearly with the dark matter velocity dispersion. This implies that maximum pulsar age is spatially dependent on position within the dark matter halo of the Milky Way. In turn, this pulsar age spatial dependence will be dark matter model dependent.

  13. Measurements of the nucleon structure function in the range 0.002 < x < 0.17 and 00.2 < Q2 < 8 GeV2 in deuterium, carbon and calcium

    NASA Astrophysics Data System (ADS)

    European Muon Collaboration; Arneodo, M.; Arvidson, A.; Aubert, J. J.; Badelek, B.; Beaufays, J.; Bee, C. P.; Benchouk, C.; Berghoff, G.; Bird, I. G.; Blum, D.; Böhm, E.; de Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S. C.; Brück, H.; Calén, H.; Chima, J. S.; Ciborowski, J.; Clifft, R.; Coignet, G.; Combley, F.; Coughlan, J.; d'Agostini, G.; Dahlgren, S.; Derado, I.; Dreyer, T.; Drees, J.; Düren, M.; Eckardt, V.; Edwards, A.; Edwards, M.; Ernst, T.; Eszes, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Foster, J.; Gabathuler, E.; Gajewski, J.; Gamet, R.; Geddes, N.; Grafström, P.; Gustafsson, L.; Haas, J.; Hagberg, E.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffre, M.; Jacholkowska, A.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kellner, G.; Krüger, A.; Krüger, J.; Kullander, S.; Landgraf, U.; Lanske, D.; Loken, J.; Long, K.; Maire, M.; Malecki, P.; Manz, A.; Maselli, S.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Nagy, E.; Nassalski, J.; Norton, P. R.; Oakham, F. G.; Osborne, A. M.; Pascaud, C.; Pawlik, B.; Payre, P.; Peroni, C.; Peschel, H.; Pessard, H.; Pettingale, J.; Pietrzyk, B.; Poensgen, B.; Pötsch, M.; Renton, P.; Ribarics, P.; Rith, K.; Rondio, E.; Sandacz, A.; Scheer, M.; Schlagböhmer, A.; Schiemann, H.; Schmitz, N.; Schneegans, M.; Scholz, M.; Schouten, M.; Schröder, T.; Schultze, K.; Sloan, T.; Stier, H. E.; Studt, M.; Taylor, G. N.; Thenard, J. M.; Thompson, J. C.; de la Torre, A.; Toth, J.; Urban, L.; Urban, L.; Wallucks, W.; Whalley, M.; Wheeler, S.; Williams, W. S. C.; Wimpenny, S. J.; Windmolders, R.; Wolf, G.

    1990-03-01

    Small angle scattering of 280 GeV positive muons by deuterium, carbon and calcium has been measured at scattering angles down to 2 mrad. The nucleon structure function F2 extracted from deuterium does not show a significant x dependence in the measured range of Q2 and its Q2 dependence is linear in logQ2. For calcium, a depletion of F2 is observed at low x by 30% as compared with the values at x = 0.1 where F2(Ca) and F2 (D) are not significantly different. This depletion is attributed to shadowing. The carbon structure function exhibits a similar, but less pronounced, x dependence. Such behaviour is observed to be independent of Q2. The data are consistent with those obtained from other charged lepton experiments both at similar and higher values of x and Q2 and considerably extend the range of the measurements down to the low values of x to be measured in forthcoming experiments at HERA.

  14. Influence of the resonant magnetic perturbations on transport in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Jakubowski, M. W.; Drewelow, P.; Masuzaki, S.; Tanaka, K.; Pedersen, T. S.; Akiyama, T.; Bozhenkov, S.; Dinklage, A.; Kobayashi, M.; Narushima, Y.; Sakakibara, S.; Suzuki, Y.; Wolf, R.; Yamada, H.; the LHD Experimental Group

    2013-11-01

    The purpose of this study is the investigation of the non-linear plasma response of transport due to stochastic effects. On the Large Helical Device, perturbation coils create a resonant magnetic perturbation (RMP) with the m/n = 1/1 and 2/1 Fourier components. Depending on the plasma conditions, the perturbation either enhances or heals the natural m/n = 1/1 magnetic island. For the case of an amplified island the enhanced heat and particle transport across the island causes a rather significant reduction in the confinement. For a healed island, there is a small decrease in beta with increasing perturbation current. These changes coincide with an increasing width of the open stochastic volume at the plasma edge near the x-point. Systematic experiments are performed, changing the amplitude of the perturbation linearly with IRMP in the range from 0 to 2.7 kA. Two scenarios are investigated: first, the discharge is ramped up with an external perturbation already superimposed on the main magnetic field. Second, the external perturbation is applied to the plasma already ignited (similar to experiments with RMPs in tokamaks). As will be shown, there is a clear difference in the size of the 1/1 island and the dependence of ne and Te on the perturbation when comparing these two scenarios. A hysteresis is observed up to a certain amplitude of the external perturbation. The particle transport and confinement are affected substantially in the discharges with a pre-existing magnetic perturbation. Interestingly, a global reduction in Te and ne is observed above a certain value of perturbation current in both cases. However, for the same island width, the plasma reacts differently to the applied perturbation depending on the direction of the ramp. For ramp-downs, we observe steeper electron density and temperature gradients, which leads to better plasma performance.

  15. Large linear magnetoresistance in topological crystalline insulator Pb{sub 0.6}Sn{sub 0.4}Te

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roychowdhury, Subhajit; Ghara, Somnath; Guin, Satya N.

    2016-01-15

    Classical magnetoresistance generally follows the quadratic dependence of the magnetic field at lower field and finally saturates when field is larger. Here, we report the large positive non-saturating linear magnetoresistance in topological crystalline insulator, Pb{sub 0.6}Sn{sub 0.4}Te, at different temperatures between 3 K and 300 K in magnetic field up to 9 T. Magnetoresistance value as high as ∼200% was achieved at 3 K at magnetic field of 9 T. Linear magnetoresistance observed in Pb{sub 0.6}Sn{sub 0.4}Te is mainly governed by the spatial fluctuation carrier mobility due to distortions in the current paths in inhomogeneous conductor. - Graphical abstract: Largemore » non-saturating linear magnetoresistance has been evidenced in topological crystalline insulator, Pb{sub 0.6}Sn{sub 0.4}Te, at different temperatures between 3 K and 300 K in magnetic field up to 9 T. - Highlights: • Large non-saturating linear magnetoresistance was achieved in the topological crystalline insulator, Pb{sub 0.6}Sn{sub 0.4}Te. • Highest magnetoresistance value as high as ~200% was achieved at 3 K at magnetic field of 9 T. • Linear magnetoresistance in Pb{sub 0.6}Sn{sub 0.4}Te is mainly governed by the spatial fluctuation of the carrier mobility.« less

  16. System/observer/controller identification toolbox

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Horta, Lucas G.; Phan, Minh

    1992-01-01

    System Identification is the process of constructing a mathematical model from input and output data for a system under testing, and characterizing the system uncertainties and measurement noises. The mathematical model structure can take various forms depending upon the intended use. The SYSTEM/OBSERVER/CONTROLLER IDENTIFICATION TOOLBOX (SOCIT) is a collection of functions, written in MATLAB language and expressed in M-files, that implements a variety of modern system identification techniques. For an open loop system, the central features of the SOCIT are functions for identification of a system model and its corresponding forward and backward observers directly from input and output data. The system and observers are represented by a discrete model. The identified model and observers may be used for controller design of linear systems as well as identification of modal parameters such as dampings, frequencies, and mode shapes. For a closed-loop system, an observer and its corresponding controller gain directly from input and output data.

  17. Fluid overpressures and strength of the sedimentary upper crust

    NASA Astrophysics Data System (ADS)

    Suppe, John

    2014-12-01

    The classic crustal strength-depth profile based on rock mechanics predicts a brittle strength σ1 -σ3 = κ(ρbar gz -Pf) that increases linearly with depth as a consequence of [1] the intrinsic brittle pressure dependence κ plus [2] an assumption of hydrostatic pore-fluid pressure, Pf = ρwgz. Many deep borehole stress data agree with a critical state of failure of this form. In contrast, fluid pressures greater than hydrostatic ρbar gz >Pf >ρw gz are normally observed in clastic continental margins and shale-rich mountain belts. Therefore we explore the predicted shapes of strength-depth profiles using data from overpressured regions, especially those dominated by the widespread disequilibrium-compaction mechanism, in which fluid pressures are hydrostatic above the fluid-retention depth zFRD and overpressured below, increasing parallel to the lithostatic gradient ρbar gz . Both brittle crustal strength and frictional fault strength below the zFRD must be constant with depth because effective stress (ρbar gz -Pf) is constant, in contrast with the classic linearly increasing profile. Borehole stress and fluid-pressure measurements in several overpressured deforming continental margins agree with this constant-strength prediction, with the same pressure-dependence κ as the overlying hydrostatic strata. The role of zFRD in critical-taper wedge mechanics and jointing is illustrated. The constant-strength approximation is more appropriate for overpressured crust than classic linearly increasing models.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedemeier, Heribert, E-mail: wiedeh@rpi.edu

    The observed linear (Na-, K-halides) and near-linear (Mg-, Sr-, Zn-, Cd-, and Hg-chalcogenides) dependences of Schottky constants on reciprocal interatomic distances yield the relation logK{sub S}=((s{sub s}1/T)+i{sub s})1/d{sub (A−B)}+(s{sub i}1/T)+i{sub i}, where K{sub S} is the product of metal and non-metal thermal equilibrium vacancy concentrations, and s{sub s}, i{sub s}, s{sub i} and i{sub i} are the group specific slope and intercept values obtained from an extended analysis of the above log K{sub S} versus 1/d{sub (A−B)} data. The previously reported linear dependences of log K{sub S} on the Born–Haber lattice energies [1] are the basis for combining the earliermore » results [1] with the Born–Mayer lattice energy equation to yield a new thermodynamic relationship, namely logK{sub S}=−(2.303nRT){sup −1}(c{sub (B−M)}/d{sub (A−B)}−I{sub e}), where c{sub (B−M)} is the product of the constants of the Born–Mayer equation and I{sub e} is the metal ionization energy of the above compounds. These results establish a correlation between point defect concentrations and basic thermodynamic, coulombic, and structural solid state properties for selected I–VII and II–VI semiconductor materials. - Graphical abstract: Display Omitted.« less

  19. Synchronous-digitization for Video Rate Polarization Modulated Beam Scanning Second Harmonic Generation Microscopy.

    PubMed

    Sullivan, Shane Z; DeWalt, Emma L; Schmitt, Paul D; Muir, Ryan M; Simpson, Garth J

    2015-03-09

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

  20. Synchronous-digitization for video rate polarization modulated beam scanning second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Sullivan, Shane Z.; DeWalt, Emma L.; Schmitt, Paul D.; Muir, Ryan D.; Simpson, Garth J.

    2015-03-01

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

  1. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe1.64Ga0.36O3 oxide

    NASA Astrophysics Data System (ADS)

    Bhowmik, R. N.; Vijayasri, G.

    2015-06-01

    We have studied current-voltage (I-V) characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP) 0.345(± 0.001) V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (˜500-700%), magnetoresistance (70-135 %) and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  2. Wave models for turbulent free shear flows

    NASA Technical Reports Server (NTRS)

    Liou, W. W.; Morris, P. J.

    1991-01-01

    New predictive closure models for turbulent free shear flows are presented. They are based on an instability wave description of the dominant large scale structures in these flows using a quasi-linear theory. Three model were developed to study the structural dynamics of turbulent motions of different scales in free shear flows. The local characteristics of the large scale motions are described using linear theory. Their amplitude is determined from an energy integral analysis. The models were applied to the study of an incompressible free mixing layer. In all cases, predictions are made for the development of the mean flow field. In the last model, predictions of the time dependent motion of the large scale structure of the mixing region are made. The predictions show good agreement with experimental observations.

  3. A Thermodynamic Theory Of Solid Viscoelasticity. Part 1: Linear Viscoelasticity.

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Leonov, Arkady I.

    2002-01-01

    The present series of three consecutive papers develops a general theory for linear and finite solid viscoelasticity. Because the most important object for nonlinear studies are rubber-like materials, the general approach is specified in a form convenient for solving problems important for many industries that involve rubber-like materials. General linear and nonlinear theories for non-isothermal deformations of viscoelastic solids are developed based on the quasi-linear approach of non-equilibrium thermodynamics. In this, the first paper of the series, we analyze non-isothermal linear viscoelasticity, which is applicable in a range of small strains not only to all synthetic polymers and bio-polymers but also to some non-polymeric materials. Although the linear case seems to be well developed, there still are some reasons to implement a thermodynamic derivation of constitutive equations for solid-like, non-isothermal, linear viscoelasticity. The most important is the thermodynamic modeling of thermo-rheological complexity , i.e. different temperature dependences of relaxation parameters in various parts of relaxation spectrum. A special structure of interaction matrices is established for different physical mechanisms contributed to the normal relaxation modes. This structure seems to be in accord with observations, and creates a simple mathematical framework for both continuum and molecular theories of the thermo-rheological complex relaxation phenomena. Finally, a unified approach is briefly discussed that, in principle, allows combining both the long time (discrete) and short time (continuous) descriptions of relaxation behaviors for polymers in the rubbery and glassy regions.

  4. Impulse-response functions and anthropogenic CO2

    NASA Technical Reports Server (NTRS)

    Tubiello, Francesco N.; Oppenheimer, Michael

    1995-01-01

    Non-linearities in the carbon cycle make the response to atmospheric CO2 perturbations dependent on emission history. We show that even when linear representations of the carbon cycle are used, the calculation of time scales characterizing the removal of excess CO2 depends on past emissions.

  5. Prediction and experimental observation of damage dependent damping in laminated composite beams

    NASA Technical Reports Server (NTRS)

    Allen, D. H.; Harris, C. E.; Highsmith, A. L.

    1987-01-01

    The equations of motion are developed for laminated composite beams with load-induced matrix cracking. The damage is accounted for by utilizing internal state variables. The net result of these variables on the field equations is the introduction of both enhanced damping, and degraded stiffness. Both quantities are history dependent and spatially variable, thus resulting in nonlinear equations of motion. It is explained briefly how these equations may be quasi-linearized for laminated polymeric composites under certain types of structural loading. The coupled heat conduction equation is developed, and it is shown that an enhanced Zener damping effect is produced by the introduction of microstructural damage. The resulting equations are utilized to demonstrate how damage dependent material properties may be obtained from dynamic experiments. Finaly, experimental results are compared to model predictions for several composite layups.

  6. Mod II engine performance

    NASA Technical Reports Server (NTRS)

    Richey, Albert E.; Huang, Shyan-Cherng

    1987-01-01

    The testing of a prototype of an automotive Stirling engine, the Mod II, is discussed. The Mod II is a one-piece cast block with a V-4 single-crankshaft configuration and an annular regenerator/cooler design. The initial testing of Mod II concentrated on the basic engine, with auxiliaries driven by power sources external to the engine. The performance of the engine was tested at 720 C set temperature and 820 C tube temperature. At 720 C, it is observed that the power deficiency is speed dependent and linear, with a weak pressure dependency, and at 820 C, the power deficiency is speed and pressure dependent. The effects of buoyancy and nozzle spray pattern on the heater temperature spread are investigated. The characterization of the oil pump and the operating cycle and temperature spread tests are proposed for further evaluation of the engine.

  7. Endpoint Model of Exclusive Processes

    NASA Astrophysics Data System (ADS)

    Dagaonkar, Sumeet; Jain, Pankaj; Ralston, John P.

    2018-07-01

    The endpoint model explains the scaling laws observed in exclusive hadronic reactions at large momentum transfer in all experimentally important regimes. The model, originally conceived by Feynman and others, assumes a single valence quark carries most of the hadron momentum. The quark wave function is directly related to the momentum transfer dependence of the reaction. After extracting the momentum dependence of the quark wave function from one process, it explains all the others. Endpoint quark-counting rules relate the number of quarks in a hadron to the power-law. A universal linear endpoint behavior explains the proton electromagnetic form factors F1 and F2, proton-proton scattering at fixed-angle, the t-dependence of proton-proton scattering at large s>> t, and Compton scattering at fixed t. The model appears to be the only comprehensive mechanism consistent with all experimental information.

  8. On the similarity of theories of anelastic and scattering attenuation

    USGS Publications Warehouse

    Wennerberg, Leif; Frankel, Arthur D.

    1989-01-01

    We point out basic parallels between theories of anelastic and scattering attenuation. We consider approximations to scattering effects presented by O'Doherty and Anstey (1971), Sato (1982), and Wu (1982). We use the linear theory of anelasticity. We note that the frequency dependence of Q can be related to a distribution of scales of physical properties of the medium. The frequency dependence of anelastic Q is related to the distribution of relaxation times in exactly the same manner as the frequency dependence of scattering Q is related to the distribution of scatterer sizes. Thus, the well-known difficulty of separating scattering from intrinsic attenuation is seen from this point of view as a consequence of the fact that certain observables can be interpreted by identical equations resulting from either of two credible physical theories describing fundamentally different processes. -from Authors

  9. Field-orientation dependence of low-energy quasiparticle excitations in the heavy-electron superconductor UBe(13).

    PubMed

    Shimizu, Yusei; Kittaka, Shunichiro; Sakakibara, Toshiro; Haga, Yoshinori; Yamamoto, Etsuji; Amitsuka, Hiroshi; Tsutsumi, Yasumasa; Machida, Kazushige

    2015-04-10

    Low-energy quasiparticle excitations in the superconducting (SC) state of UBe_{13} were studied by means of specific-heat (C) measurements in a rotating field. Quite unexpectedly, the magnetic-field dependence of C(H) is linear in H with no angular dependence at low fields in the SC state, implying that the gap is fully open over the Fermi surfaces, in stark contrast to previous expectations. In addition, a characteristic cubic anisotropy of C(H) was observed above 2 T with a maximum (minimum) for H∥[001] ([111]) within the (11[over ¯]0) plane, in the normal as well as in the SC states. This oscillation possibly originates from the anisotropic response of the heavy quasiparticle bands, and might be a key to understand the unusual properties of UBe_{13}.

  10. Elastic moduli of δ-Pu 239 reveal aging in real time

    DOE PAGES

    Maiorov, Boris; Betts, Jonathan B.; Söderlind, Per; ...

    2017-03-28

    We study the time evolution (aging) of the elastic moduli of an eight-year-old polycrystalline δ- Pu 2.0 at % Ga alloy (δ-Pu:Ga ) from 295K to nearly 500K in real time using Resonant Ultrasound Spectroscopy (RUS). After 8 years of aging at 295K, the bulk and shear moduli increase at a normalized rate of 0.2%/year and 0.6%/year respectively. As the temperature is raised, two time dependences are observed, an exponential one of about a week, followed by a linear one (constant rate). The linear rate is thermally activated with an activation energy of 0.33+0.06 eV. Above 420K a qualitative changemore » in the time evolution is observed; the bulk modulus decreases with time while the shear modulus continues to stiffen. No change is observed as the α-β transition temperature is crossed as would be expected if a decomposition of δ-Pu:Ga to α-Pu and Pu 3Ga occurred over the temperature range studied. Our results indicate that the main mechanism of aging is creation of defects that are partially annealed starting at T = 420 K.« less

  11. Crystal growth of magnetic dihydride GdxY1-xH2 for generation of spin current

    NASA Astrophysics Data System (ADS)

    Sakuraba, T.; Hirama, H.; Sakai, M.; Honda, Z.; Hayakawa, M.; Okoshi, T.; Kitajima, A.; Oshima, A.; Higuchi, K.; Hasegawa, S.

    2013-09-01

    Crystal growth of pure phases of GdxY1-xH2 (0≤x≤1) was successfully carried out by depositing GdxY1-x films and their hydrogenation, the growth results of which were investigated by X-ray diffraction measurements as well as temperature (T) dependence of magnetic susceptibility (χ). The fcc lattice constant in GdxY1-xH2 is found to be linearly increased with increasing x. Behavior characteristic to the para-to-antiferromagnetic transition are clearly observed in the χ-T curve for x=0.39, 0.47, 0.76, and 1.0 cases. The Néel temperature (TN) is found to be linearly decreased with decreasing x from x=1.0 (GdH2), and is predicted to show TN=0 K at x˜0.1 by extrapolating TN from large x region, implying the antiferromagnetic order disappears at x˜0.1. The quasi-zero Hall effect was observed for x=0, 0.19, 0.37, 0.39, and 0.47 cases, whereas a moderate Hall effect is observed for x=0.76 and 1.0 cases. The type of Hall effect is also discussed.

  12. Elastic moduli of δ-Pu 239 reveal aging in real time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiorov, Boris; Betts, Jonathan B.; Söderlind, Per

    We study the time evolution (aging) of the elastic moduli of an eight-year-old polycrystalline δ- Pu 2.0 at % Ga alloy (δ-Pu:Ga ) from 295K to nearly 500K in real time using Resonant Ultrasound Spectroscopy (RUS). After 8 years of aging at 295K, the bulk and shear moduli increase at a normalized rate of 0.2%/year and 0.6%/year respectively. As the temperature is raised, two time dependences are observed, an exponential one of about a week, followed by a linear one (constant rate). The linear rate is thermally activated with an activation energy of 0.33+0.06 eV. Above 420K a qualitative changemore » in the time evolution is observed; the bulk modulus decreases with time while the shear modulus continues to stiffen. No change is observed as the α-β transition temperature is crossed as would be expected if a decomposition of δ-Pu:Ga to α-Pu and Pu 3Ga occurred over the temperature range studied. Our results indicate that the main mechanism of aging is creation of defects that are partially annealed starting at T = 420 K.« less

  13. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    NASA Astrophysics Data System (ADS)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  14. Sensitivity of the s-process nucleosynthesis in AGB stars to the overshoot model

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Siess, L.

    2018-01-01

    Context. S-process elements are observed at the surface of low- and intermediate-mass stars. These observations can be explained empirically by the so-called partial mixing of protons scenario leading to the incomplete operation of the CN cycle and a significant primary production of the neutron source. This scenario has been successful in qualitatively explaining the s-process enrichment in AGB stars. Even so, it remains difficult to describe both physically and numerically the mixing mechanisms taking place at the time of the third dredged-up between the convective envelope and the underlying C-rich radiative layer Aims: We aim to present new calculations of the s-process nucleosynthesis in AGB stars testing two different numerical implementations of chemical transport. These are based on a diffusion equation which depends on the second derivative of the composition and on a numerical algorithm where the transport of species depends linearly on the chemical gradient. Methods: The s-process nucleosynthesis resulting from these different mixing schemes is calculated with our stellar evolution code STAREVOL which has been upgraded to include an extended s-process network of 411 nuclei. Our investigation focuses on a fiducial 2 M⊙, [Fe/H] = -0.5 model star, but also includes four additional stars of different masses and metallicities. Results: We show that for the same set of parameters, the linear mixing approach produces a much larger 13C-pocket and consequently a substantially higher surface s-process enrichment compared to the diffusive prescription. Within the diffusive model, a quite extreme choice of parameters is required to account for surface s-process enrichment of 1-2 dex. These extreme conditions can not, however, be excluded at this stage. Conclusions: Both the diffusive and linear prescriptions of the overshoot mixing are suited to describe the s-process nucleosynthesis in AGB stars provided the profile of the diffusion coefficient below the convective envelope is carefully chosen. Both schemes give rise to relatively similar distributions of s-process elements, but depending on the parameters adopted, some differences may be obtained. These differences are in the element distribution, and most of all in the level of surface enrichment.

  15. A Study on the Relationships among Surface Variables to Adjust the Height of Surface Temperature for Data Assimilation.

    NASA Astrophysics Data System (ADS)

    Kang, J. H.; Song, H. J.; Han, H. J.; Ha, J. H.

    2016-12-01

    The observation processing system, KPOP (KIAPS - Korea Institute of Atmospheric Prediction Systems - Package for Observation Processing) have developed to provide optimal observations to the data assimilation system for the KIAPS Integrated Model (KIM). Currently, the KPOP has capable of processing almost all of observations for the KMA (Korea Meteorological Administration) operational global data assimilation system. The height adjustment of SURFACE observations are essential for the quality control due to the difference in height between observation station and model topography. For the SURFACE observation, it is usual to adjust the height using lapse rate or hypsometric equation, which decides values mainly depending on the difference of height. We have a question of whether the height can be properly adjusted following to the linear or exponential relationship solely with regard to the difference of height, with disregard the atmospheric conditions. In this study, firstly we analyse the change of surface variables such as temperature (T2m), pressure (Psfc), humidity (RH2m and Q2m), and wind components (U and V) according to the height difference. Additionally, we look further into the relationships among surface variables . The difference of pressure shows a strong linear relationship with difference of height. But the difference of temperature according to the height shows a significant correlation with difference of relative humidity than with the height difference. A development of reliable model for the height-adjustment of surface temperature is being undertaken based on the preliminary results.

  16. X-ray Variability Characteristics of the Narrow line SEYFERT 1 MKN 766 I: Energy Dependent Timing Properties

    NASA Technical Reports Server (NTRS)

    Markowitz, A.; Turner, T. J.; Papadakis, I.; Arevalo, P.; Reeves, J. N.; Miller, L.

    2007-01-01

    We present the energy-dependent power spectral density (PSD) and cross-spectral properties of Mkn 766 obtained from a six-revolution XMM-Newton observation in 2005. The resulting PSDs, which have highest temporal frequency resolution for an AGN PSD to date, show breaks which increase in temporal frequency as photon energy increases; break frequencies differ by an average of approx.0.4 in the log between the softest and hardest bands. The consistency of the 2001 and 2005 observations variability properties, namely PSD shapes and the linear rms-flux relation, suggests the 2005 observation is simply a low-flux extension of the 2001 observation. The coherence function is measured to be approx.0.6-0.9 at temporal frequencies below the PSD break, and is lower for relatively larger energy band separation; coherence also drops significantly towards zero above the PSD break frequency. Temporal frequency-dependent soft-to-hard time lags are detected in this object for the first time: lags increase towards longer time scales and as energy separation increases. Cross-spectral properties are the thus consistent with previous measurements for Mkn 766 (Vaughan & Fabian 2003) and other accreting black hole systems. The results are discussed in the context of several variability models, including those based on inwardly-propagating viscosity variations in the accretion disk.

  17. Geometrical effects on the electron residence time in semiconductor nano-particles.

    PubMed

    Koochi, Hakimeh; Ebrahimi, Fatemeh

    2014-09-07

    We have used random walk (RW) numerical simulations to investigate the influence of the geometry on the statistics of the electron residence time τ(r) in a trap-limited diffusion process through semiconductor nano-particles. This is an important parameter in coarse-grained modeling of charge carrier transport in nano-structured semiconductor films. The traps have been distributed randomly on the surface (r(2) model) or through the whole particle (r(3) model) with a specified density. The trap energies have been taken from an exponential distribution and the traps release time is assumed to be a stochastic variable. We have carried out (RW) simulations to study the effect of coordination number, the spatial arrangement of the neighbors and the size of nano-particles on the statistics of τ(r). It has been observed that by increasing the coordination number n, the average value of electron residence time, τ̅(r) rapidly decreases to an asymptotic value. For a fixed coordination number n, the electron's mean residence time does not depend on the neighbors' spatial arrangement. In other words, τ̅(r) is a porosity-dependence, local parameter which generally varies remarkably from site to site, unless we are dealing with highly ordered structures. We have also examined the effect of nano-particle size d on the statistical behavior of τ̅(r). Our simulations indicate that for volume distribution of traps, τ̅(r) scales as d(2). For a surface distribution of traps τ(r) increases almost linearly with d. This leads to the prediction of a linear dependence of the diffusion coefficient D on the particle size d in ordered structures or random structures above the critical concentration which is in accordance with experimental observations.

  18. Parameter estimation of history-dependent leaky integrate-and-fire neurons using maximum-likelihood methods

    PubMed Central

    Dong, Yi; Mihalas, Stefan; Russell, Alexander; Etienne-Cummings, Ralph; Niebur, Ernst

    2012-01-01

    When a neuronal spike train is observed, what can we say about the properties of the neuron that generated it? A natural way to answer this question is to make an assumption about the type of neuron, select an appropriate model for this type, and then to choose the model parameters as those that are most likely to generate the observed spike train. This is the maximum likelihood method. If the neuron obeys simple integrate and fire dynamics, Paninski, Pillow, and Simoncelli (2004) showed that its negative log-likelihood function is convex and that its unique global minimum can thus be found by gradient descent techniques. The global minimum property requires independence of spike time intervals. Lack of history dependence is, however, an important constraint that is not fulfilled in many biological neurons which are known to generate a rich repertoire of spiking behaviors that are incompatible with history independence. Therefore, we expanded the integrate and fire model by including one additional variable, a variable threshold (Mihalas & Niebur, 2009) allowing for history-dependent firing patterns. This neuronal model produces a large number of spiking behaviors while still being linear. Linearity is important as it maintains the distribution of the random variables and still allows for maximum likelihood methods to be used. In this study we show that, although convexity of the negative log-likelihood is not guaranteed for this model, the minimum of the negative log-likelihood function yields a good estimate for the model parameters, in particular if the noise level is treated as a free parameter. Furthermore, we show that a nonlinear function minimization method (r-algorithm with space dilation) frequently reaches the global minimum. PMID:21851282

  19. On statistical inference in time series analysis of the evolution of road safety.

    PubMed

    Commandeur, Jacques J F; Bijleveld, Frits D; Bergel-Hayat, Ruth; Antoniou, Constantinos; Yannis, George; Papadimitriou, Eleonora

    2013-11-01

    Data collected for building a road safety observatory usually include observations made sequentially through time. Examples of such data, called time series data, include annual (or monthly) number of road traffic accidents, traffic fatalities or vehicle kilometers driven in a country, as well as the corresponding values of safety performance indicators (e.g., data on speeding, seat belt use, alcohol use, etc.). Some commonly used statistical techniques imply assumptions that are often violated by the special properties of time series data, namely serial dependency among disturbances associated with the observations. The first objective of this paper is to demonstrate the impact of such violations to the applicability of standard methods of statistical inference, which leads to an under or overestimation of the standard error and consequently may produce erroneous inferences. Moreover, having established the adverse consequences of ignoring serial dependency issues, the paper aims to describe rigorous statistical techniques used to overcome them. In particular, appropriate time series analysis techniques of varying complexity are employed to describe the development over time, relating the accident-occurrences to explanatory factors such as exposure measures or safety performance indicators, and forecasting the development into the near future. Traditional regression models (whether they are linear, generalized linear or nonlinear) are shown not to naturally capture the inherent dependencies in time series data. Dedicated time series analysis techniques, such as the ARMA-type and DRAG approaches are discussed next, followed by structural time series models, which are a subclass of state space methods. The paper concludes with general recommendations and practice guidelines for the use of time series models in road safety research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Exchange field and Hc dependence on the ferromagnetic material in exchange couples with CoO (abstract)

    NASA Astrophysics Data System (ADS)

    Takano, Kentaro; Berkowitz, A. E.

    1997-04-01

    As recording density increases, magnetoresistive (MR) sensors are becoming increasingly important in read heads. NixCo(1-x)O is receiving technological attention for biasing magnetoresistive sensors as a robust alternative to FeMn. The interfacial exchange coupling between a ferromagnetic (FM) layer and an antiferromagnetic (AFM) is observed as an exchange field and an enhanced coercive field of the FM layer. The AFM/FM coupling is sensitive to the interfacial structure and the AFM and FM magnetic parameters. In this work, we deposited various FM layers on similar 300 Å CoO base layers to study the dependence of the FM exchange integral parameter J on the exchange HE and coercive HC fields. CoO was selected as the AFM material because (i) its simple spin and crystal structures facilitate the structural characterization and modeling of its magnetic properties, and (ii) it's modest Néel temperature of 300 K facilitates the use of a superconducting quantum interference device for the magnetic measurements at temperatures ranging from 5 to 400 K. The 300 Å CoO films were reactively sputtered on silicon substrates and capped with various 300 Å FM films, Ni, Co, Fe, and permalloy (Ni81Fe19). The 300 Å CoO base layer films were polycrystalline with columnar grains. The CoO deposition conditions were reproduced to ensure similar structural and magnetic interfacial AF environments. The observed HE temperature dependence cannot be explained by current theoretical models. The temperature dependence of the exchange fields have the common features (i) a blocking temperature Tb=300 K, which corresponds to the bulk Néel temperature of CoO, (ii) a rise in the exchange field with decreasing temperature, (iii) an intermediate temperature region of constant HE (plateau value), and (iv) a second region of linearly increasing HE with decreasing temperatures down to 0 K. The plateau value of the HE decreased inversely with increasing FM magnetization as predicted by theory. The low-temperature increase of HE is more significant in the FM with higher exchange integral J values. The crossover temperature from the plateau to the low-temperature rise in HE appears to be dependent on FM's J value. The increase in the interfacial coupling strength could suggest the magnetic ordering of a secondary phase localized at the interfacial atoms. The temperature dependence of HC enhancement does not share the nonlinear temperature behavior of HE. For T<300 K, HC increases linearly with decreasing temperatures down to 10 K. Although the HC enhancement may have magnetoelastic contributions, the disappearance of the linear enhancement at 300 K, the Néel temperature of CoO, indicates that the dominant mechanism is the interfacial magnetic coupling.

  1. A Basic Research for the Development and Evaluation of Novel MEMS Digital Accelerometers

    DTIC Science & Technology

    2013-02-01

    that timing differences as measured by the circuit are linearly dependent on the measured capacitance changes. As such, the circuit’s readout is...error in the electronic measurement to refine the technique. An additional capability of the circuit is the ability to observe the impact of cold...low resistivity on (ɘ.01 Ω-cm) silicon on insulator wafers (SOI). The beams are fabricated in a 0.3 cm by 0.3 cm die which is then packaged and wire

  2. Synthesis, Structure, and Thermal Properties of Ca5Ga6O14

    NASA Astrophysics Data System (ADS)

    Tolkacheva, A. S.; Shkerin, S. N.; Kuzmin, A. V.; Plaksin, S. V.; Korzun, I. V.; Kochedykov, V. A.; Yaroslavtseva, T. V.; Vovkotrub, E. G.

    2018-07-01

    Calcium gallate Ca5Ga6O14 is synthesized by solid-phase means. Its melting point is 1325 ± 2°C. A phase transition of the second kind is observed in the temperature interval of 750-800°C. The temperature dependence of a thermal linear expansion coefficient within 200-900°C is given. Vibrational spectroscopy data confirm that Ca5Ga6O14 contains not only GaO4 tetrahedra but also GaO6 octahedra.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franson, J.D.

    We previously suggested that photon exchange interactions could be used to produce nonlinear effects at the two-photon level, and similar effects have been experimentally observed by Resch et al. (e-print quant-ph/0306198). Here we note that photon exchange interactions are not useful for quantum information processing because they require the presence of substantial photon loss. This dependence on loss is somewhat analogous to the postselection required in the linear optics approach to quantum computing suggested by Knill, Laflamme, and Milburn [Nature (London) 409, 46 (2001)].

  4. Electrically controllable photonic molecule laser.

    PubMed

    Fasching, G; Deutsch, Ch; Benz, A; Andrews, A M; Klang, P; Zobl, R; Schrenk, W; Strasser, G; Ragulis, P; Tamosiūnas, V; Unterrainer, K

    2009-10-26

    We have studied the coherent intercavity coupling of the evanescent fields of two microdisk terahertz quantum-cascade lasers. The electrically controllable optical coupling of the single-mode operating lasers has been observed for cavity spacings up to 30 mum. The strongest coupled photonic molecule with 2 mum intercavity spacing allows to conditionally switch the optical emission by the electrical modulation of only one microdisk. The lasing threshold characteristics demonstrate the linear dependence of the gain of a quantum-cascade laser on the applied electric field.

  5. Polarization rotation enhancement and scattering mechanisms in waveguide magnetophotonic crystals

    NASA Astrophysics Data System (ADS)

    Levy, Miguel; Li, Rong

    2006-09-01

    Intermodal coupling in photonic band gap optical channels in magnetic garnet films is found to leverage the nonreciprocal polarization rotation. Forward fundamental-mode to high-order mode backscattering yields the largest rotations. The underlying mechanism is traced to the dependence of the grating-coupling constant on the modal refractive index and profile of the propagating beam. Large changes in polarization near the band edges are observed in first and second orders. Extreme sensitivity to linear birefringence exists in second order.

  6. Parallel Unsteady Overset Mesh Methodology for a Multi-Solver Paradigm with Adaptive Cartesian Grids

    DTIC Science & Technology

    2008-08-21

    Engineer, U.S. Army Research Laboratory ., Matthew.W.Floros@nasa.gov, AIAA Member ‡Senior Research Scientist, Scaled Numerical Physics LLC., awissink...IV.E and IV.D). Good linear scalability was observed for all three cases up to 12 processors. Beyond that the scalability drops off depending on grid...Research Laboratory for the usage of SUGGAR module and Yikloon Lee at NAVAIR for the usage of the NAVAIR-IHC code. 13 of 22 American Institute of

  7. Algorithm Estimates Microwave Water-Vapor Delay

    NASA Technical Reports Server (NTRS)

    Robinson, Steven E.

    1989-01-01

    Accuracy equals or exceeds conventional linear algorithms. "Profile" algorithm improved algorithm using water-vapor-radiometer data to produce estimates of microwave delays caused by water vapor in troposphere. Does not require site-specific and weather-dependent empirical parameters other than standard meteorological data, latitude, and altitude for use in conjunction with published standard atmospheric data. Basic premise of profile algorithm, wet-path delay approximated closely by solution to simplified version of nonlinear delay problem and generated numerically from each radiometer observation and simultaneous meteorological data.

  8. Experimental Studies of Josephson Effect

    DTIC Science & Technology

    1990-09-06

    to test predictions that macroscopic variables, such as the flux through a SQUID loop, display quantum mechanical properties such as tunneling and...approximately Oo/L as flux quanta enter the loop. In the Josephson junctions used here are lead-alloy tunnel junc- linear region, for I, <<J, the rate...magnetometer. The junctions ln(F)-AU/kT+In(f/2z). (3) used were nominal I x I pm 2 Nb/AI2O3/Nb tunnel junc- As Fig. 3 shows, the observed dependence is in

  9. Ultralow-intensity magneto-optical and mechanical effects in metal nanocolloids.

    PubMed

    Moocarme, M; Domínguez-Juárez, J L; Vuong, L T

    2014-03-12

    Magneto-plasmonics is a designation generally associated with ferromagnetic-plasmonic materials because such optical responses from nonmagnetic materials alone are considered weak. Here, we show that there exists a switching transition between linear and nonlinear magneto-optical behaviors in noble-metal nanocolloids that is observable at ultralow illumination intensities and direct current magnetic fields. The response is attributed to polarization-dependent nonzero-time-averaged plasmonic loops, vortex power flows, and nanoparticle magnetization. This work identifies significant mechanical effects that subsequently exist via magnetic-dipole interactions.

  10. Soret motion in non-ionic binary molecular mixtures

    NASA Astrophysics Data System (ADS)

    Leroyer, Yves; Würger, Alois

    2011-08-01

    We study the Soret coefficient of binary molecular mixtures with dispersion forces. Relying on standard transport theory for liquids, we derive explicit expressions for the thermophoretic mobility and the Soret coefficient. Their sign depends on composition, the size ratio of the two species, and the ratio of Hamaker constants. Our results account for several features observed in experiment, such as a linear variation with the composition; they confirm the general rule that small molecules migrate to the warm, and large ones to the cold.

  11. On the assimilation set-up of ASCAT soil moisture data for improving streamflow catchment simulation

    NASA Astrophysics Data System (ADS)

    Loizu, Javier; Massari, Christian; Álvarez-Mozos, Jesús; Tarpanelli, Angelica; Brocca, Luca; Casalí, Javier

    2018-01-01

    Assimilation of remotely sensed surface soil moisture (SSM) data into hydrological catchment models has been identified as a means to improve streamflow simulations, but reported results vary markedly depending on the particular model, catchment and assimilation procedure used. In this study, the influence of key aspects, such as the type of model, re-scaling technique and SSM observation error considered, were evaluated. For this aim, Advanced SCATterometer ASCAT-SSM observations were assimilated through the ensemble Kalman filter into two hydrological models of different complexity (namely MISDc and TOPLATS) run on two Mediterranean catchments of similar size (750 km2). Three different re-scaling techniques were evaluated (linear re-scaling, variance matching and cumulative distribution function matching), and SSM observation error values ranging from 0.01% to 20% were considered. Four different efficiency measures were used for evaluating the results. Increases in Nash-Sutcliffe efficiency (0.03-0.15) and efficiency indices (10-45%) were obtained, especially when linear re-scaling and observation errors within 4-6% were considered. This study found out that there is a potential to improve streamflow prediction through data assimilation of remotely sensed SSM in catchments of different characteristics and with hydrological models of different conceptualizations schemes, but for that, a careful evaluation of the observation error and re-scaling technique set-up utilized is required.

  12. Electron localization in rod-shaped triicosahedral gold nanocluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Meng; Jin, Renxi; Sfeir, Matthew Y.

    Atomically precise gold nanocluster based on linear assembly of repeating icosahedrons (clusters of clusters) is a unique type of linear nanostructure, which exhibits strong near-infrared absorption as their free electrons are confined in a one-dimensional quantum box. There is little known about the carrier dynamics in these nanoclusters, which limit their energy-related applications. We reported the observation of exciton localization in triicosahedral Au37 nanoclusters (0.5 nm in diameter and 1.6 nm in length) by measuring femtosecond and nanosecond carrier dynamics. Upon photoexcitation to S1 electronic state, electrons in Au37 undergo ~100-ps localization from the two vertexes of three icosahedrons tomore » one vertex, forming a long-lived S1* state. Such phenomenon is not observed in Au25 (dimer) and Au13 (monomer) consisting of two and one icosahedrons, respectively. We have further observed temperature dependence on the localization process, which proves it is thermally driven. Two excited-state vibration modes with frequencies of 20 and 70 cm -1 observed in the kinetic traces are assigned to the axial and radial breathing modes, respectively. The electron localization is ascribed to the structural distortion of Au37 in the excited state induced by the strong coherent vibrations. The electron localization phenomenon we observed provides unique physical insight into one-dimensional gold nanoclusters and other nanostructures, which will advance their applications in solar-energy storage and conversion.« less

  13. Electron localization in rod-shaped triicosahedral gold nanocluster

    DOE PAGES

    Zhou, Meng; Jin, Renxi; Sfeir, Matthew Y.; ...

    2017-05-30

    Atomically precise gold nanocluster based on linear assembly of repeating icosahedrons (clusters of clusters) is a unique type of linear nanostructure, which exhibits strong near-infrared absorption as their free electrons are confined in a one-dimensional quantum box. There is little known about the carrier dynamics in these nanoclusters, which limit their energy-related applications. We reported the observation of exciton localization in triicosahedral Au37 nanoclusters (0.5 nm in diameter and 1.6 nm in length) by measuring femtosecond and nanosecond carrier dynamics. Upon photoexcitation to S1 electronic state, electrons in Au37 undergo ~100-ps localization from the two vertexes of three icosahedrons tomore » one vertex, forming a long-lived S1* state. Such phenomenon is not observed in Au25 (dimer) and Au13 (monomer) consisting of two and one icosahedrons, respectively. We have further observed temperature dependence on the localization process, which proves it is thermally driven. Two excited-state vibration modes with frequencies of 20 and 70 cm -1 observed in the kinetic traces are assigned to the axial and radial breathing modes, respectively. The electron localization is ascribed to the structural distortion of Au37 in the excited state induced by the strong coherent vibrations. The electron localization phenomenon we observed provides unique physical insight into one-dimensional gold nanoclusters and other nanostructures, which will advance their applications in solar-energy storage and conversion.« less

  14. Characterization of the a-Si EPID in the unity MR-linac for dosimetric applications.

    PubMed

    Torres-Xirau, I; Olaciregui-Ruiz, I; Baldvinsson, G; Mijnheer, B J; van der Heide, U A; Mans, A

    2018-01-09

    Electronic portal imaging devices (EPIDs) are frequently used in external beam radiation therapy for dose verification purposes. The aim of this study was to investigate the dose-response characteristics of the EPID in the Unity MR-linac (Elekta AB, Stockholm, Sweden) relevant for dosimetric applications under clinical conditions. EPID images and ionization chamber (IC) measurements were used to study the effects of the magnetic field, the scatter generated in the MR housing reaching the EPID, and inhomogeneous attenuation from the MR housing. Dose linearity and dose rate dependencies were also determined. The magnetic field strength at EPID level did not exceed 10 mT, and dose linearity and dose rate dependencies proved to be comparable to that on a conventional linac. Profiles of fields, delivered with and without the magnetic field, were indistinguishable. The EPID center had an offset of 5.6 cm in the longitudinal direction, compared to the beam central axis, meaning that large fields in this direction will partially fall outside the detector area and not be suitable for verification. Beam attenuation by the MRI scanner and the table is gantry angle dependent, presenting a minimum attenuation of 67% relative to the 90° measurement. Repeatability, observed over two months, was within 0.5% (1 SD). In order to use the EPID for dosimetric applications in the MR-linac, challenges related to the EPID position, scatter from the MR housing, and the inhomogeneous, gantry angle-dependent attenuation of the beam will need to be solved.

  15. Approach for Self-Calibrating CO2 Measurements with Linear Membrane-Based Gas Sensors

    PubMed Central

    Lazik, Detlef; Sood, Pramit

    2016-01-01

    Linear membrane-based gas sensors that can be advantageously applied for the measurement of a single gas component in large heterogeneous systems, e.g., for representative determination of CO2 in the subsurface, can be designed depending on the properties of the observation object. A resulting disadvantage is that the permeation-based sensor response depends on operating conditions, the individual site-adapted sensor geometry, the membrane material, and the target gas component. Therefore, calibration is needed, especially of the slope, which could change over several orders of magnitude. A calibration-free approach based on an internal gas standard is developed to overcome the multi-criterial slope dependency. This results in a normalization of sensor response and enables the sensor to assess the significance of measurement. The approach was proofed on the example of CO2 analysis in dry air with tubular PDMS membranes for various CO2 concentrations of an internal standard. Negligible temperature dependency was found within an 18 K range. The transformation behavior of the measurement signal and the influence of concentration variations of the internal standard on the measurement signal were shown. Offsets that were adjusted based on the stated theory for the given measurement conditions and material data from the literature were in agreement with the experimentally determined offsets. A measurement comparison with an NDIR reference sensor shows an unexpectedly low bias (<1%) of the non-calibrated sensor response, and comparable statistical uncertainty. PMID:27869656

  16. Characterization of the a-Si EPID in the unity MR-linac for dosimetric applications

    NASA Astrophysics Data System (ADS)

    Torres-Xirau, I.; Olaciregui-Ruiz, I.; Baldvinsson, G.; Mijnheer, B. J.; van der Heide, U. A.; Mans, A.

    2018-01-01

    Electronic portal imaging devices (EPIDs) are frequently used in external beam radiation therapy for dose verification purposes. The aim of this study was to investigate the dose-response characteristics of the EPID in the Unity MR-linac (Elekta AB, Stockholm, Sweden) relevant for dosimetric applications under clinical conditions. EPID images and ionization chamber (IC) measurements were used to study the effects of the magnetic field, the scatter generated in the MR housing reaching the EPID, and inhomogeneous attenuation from the MR housing. Dose linearity and dose rate dependencies were also determined. The magnetic field strength at EPID level did not exceed 10 mT, and dose linearity and dose rate dependencies proved to be comparable to that on a conventional linac. Profiles of fields, delivered with and without the magnetic field, were indistinguishable. The EPID center had an offset of 5.6 cm in the longitudinal direction, compared to the beam central axis, meaning that large fields in this direction will partially fall outside the detector area and not be suitable for verification. Beam attenuation by the MRI scanner and the table is gantry angle dependent, presenting a minimum attenuation of 67% relative to the 90° measurement. Repeatability, observed over two months, was within 0.5% (1 SD). In order to use the EPID for dosimetric applications in the MR-linac, challenges related to the EPID position, scatter from the MR housing, and the inhomogeneous, gantry angle-dependent attenuation of the beam will need to be solved.

  17. Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of wave formation and the dependence on the parameters of the model.

  18. Evaluation of linear array MOSFET detectors for in vivo dosimetry to measure rectal dose in HDR brachytherapy.

    PubMed

    Haughey, Aisling; Coalter, George; Mugabe, Koki

    2011-09-01

    The study aimed to assess the suitability of linear array metal oxide semiconductor field effect transistor detectors (MOSFETs) as in vivo dosimeters to measure rectal dose in high dose rate brachytherapy treatments. The MOSFET arrays were calibrated with an Ir192 source and phantom measurements were performed to check agreement with the treatment planning system. The angular dependence, linearity and constancy of the detectors were evaluated. For in vivo measurements two sites were investigated, transperineal needle implants for prostate cancer and Fletcher suites for cervical cancer. The MOSFETs were inserted into the patients' rectum in theatre inside a modified flatus tube. The patients were then CT scanned for treatment planning. Measured rectal doses during treatment were compared with point dose measurements predicted by the TPS. The MOSFETs were found to require individual calibration factors. The calibration was found to drift by approximately 1% ±0.8 per 500 mV accumulated and varies with distance from source due to energy dependence. In vivo results for prostate patients found only 33% of measured doses agreed with the TPS within ±10%. For cervix cases 42% of measured doses agreed with the TPS within ±10%, however of those not agreeing variations of up to 70% were observed. One of the most limiting factors in this study was found to be the inability to prevent the MOSFET moving internally between the time of CT and treatment. Due to the many uncertainties associated with MOSFETs including calibration drift, angular dependence and the inability to know their exact position at the time of treatment, we consider them to be unsuitable for in vivo dosimetry in rectum for HDR brachytherapy.

  19. Electrical transport and low-frequency noise in chemical vapor deposited single-layer MoS2 devices.

    PubMed

    Sharma, Deepak; Amani, Matin; Motayed, Abhishek; Shah, Pankaj B; Birdwell, A Glen; Najmaei, Sina; Ajayan, Pulickel M; Lou, Jun; Dubey, Madan; Li, Qiliang; Davydov, Albert V

    2014-04-18

    We have studied temperature-dependent (77-300 K) electrical characteristics and low-frequency noise (LFN) in chemical vapor deposited (CVD) single-layer molybdenum disulfide (MoS2) based back-gated field-effect transistors (FETs). Electrical characterization and LFN measurements were conducted on MoS2 FETs with Al2O3 top-surface passivation. We also studied the effect of top-surface passivation etching on the electrical characteristics of the device. Significant decrease in channel current and transconductance was observed in these devices after the Al2O3 passivation etching. For passivated devices, the two-terminal resistance variation with temperature showed a good fit to the activation energy model, whereas for the etched devices the trend indicated a hopping transport mechanism. A significant increase in the normalized drain current noise power spectral density (PSD) was observed after the etching of the top passivation layer. The observed channel current noise was explained using a standard unified model incorporating carrier number fluctuation and correlated surface mobility fluctuation mechanisms. Detailed analysis of the gate-referred noise voltage PSD indicated the presence of different trapping states in passivated devices when compared to the etched devices. Etched devices showed weak temperature dependence of the channel current noise, whereas passivated devices exhibited near-linear temperature dependence.

  20. Temperature dependence of positron annihilation parameters in Tl-Ba-Ca-Cu-O superconductors

    NASA Astrophysics Data System (ADS)

    Sundar, C. S.; Bharathi, A.; Ching, W. Y.; Jean, Y. C.; Hor, P. H.; Meng, R. L.; Huang, Z. J.; Chu, C. W.

    1990-08-01

    The results of positron lifetime and Doppler broadened line-shape parameter measurements as a function of temperature, across Tc, in the Tl-Ba-Ca-Cu-O superconductors are presented. The bulk lifetime in the normal state is found to decrease with the increase in the number of CuO2 layers. Different temperature dependencies of the annihilation parameters are observed in the various Tl systems containing different numbers of CuO2 layers. In the Tl2Ba2Ca2Cu3O10 system, an increase in lifetime is observed below Tc, whereas in Tl2Ba2CaCu2O8, a decrease in lifetime is seen below Tc. In the Tl2Ba2CuO6 system, the lifetime is observed to be temperature independent. The different temperature variations of positron annihilation parameters are discussed in the light of the positron density distribution, obtained with use of the results of the self-consistent orthogonalized linear combination of atomic orbitals band-structure calculations. It is argued that the different temperature dependencies of the annihilation parameters is related to the positron density distribution within the unit cell and arise due to local charge transfer in the vicinity of the CuO2 layer in the superconducting state.

  1. Rheology modification with ring polymers

    NASA Astrophysics Data System (ADS)

    Vlassopoulos, Dimitris

    It is now established that experimental unconcatenated ring polymers can be purified effectively by means of fractionation at the critical condition. For molecular weights well above the entanglement threshold, purified rings relax stress via power-law (with an exponent of about -0.4), sharply departing from their linear counterparts. Experimental results are in harmony with modeling predictions and simulations. Here, we present results from recent interdisciplinary efforts and discuss two challenges: (i) the nonlinear shear rheology of purified ring melts is also very different from that of unlinked chains. Whereas the latter exhibit features that can be explained, to a first approach, in the framework in the tube model, the former behave akin to unentangled chains with finite extensibility and exhibit much small deformation at steady state. (ii) blends of rings and linear polymers exhibit unique features in different regimes: The addition of minute amounts of linear chains drastically affects ring dynamics. This relates to ring purity and the ability of unlinked linear chains to thread rings. With the help of simulations, it is possible to rationalize the observed surprisingly slow viscoelastic relaxation, which is attributed to ring-linear and ring-ring penetrations. On the other hand, adding small amounts of rings to linear polymers of different molecular weights influences their linear and nonlinear rheology in an unprecedented way. The blend viscosity exceeds that of the slower component (linear) in this non-interacting mixture, and its dependencies on composition and molecular weight ratio are examined, whereas the role of molecular architecture is also addressed. Consequently, closing the ends of a linear chain can serve as a powerful means for molecular manipulation of its rheology. This presentation reflects collaborative efforts with S. Costanzo, Z-C. Yan, R. Pasquino, M. Kaliva, S. Kamble, Y. Jeong, P. Lutz, J. Allgaier, T. Chang, D. Talikis, V. Mavrantzas and M. Rubinstein.

  2. Convectively Generated Gravity Waves In The Tropical Stratosphere: Case Studies And Importance For The Circulation Of The Middle Atmosphere

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Chan, Kwoklong R.; Gary, Bruce; Singh, Hanwant B. (Technical Monitor)

    1995-01-01

    The advent of high altitude aircraft measurements in the stratosphere over tropical convective systems has made it possible to observe the mesoscale disturbances in the temperature field that these systems excite. Such measurements show that these disturbances have horizontal scales comparable to those of the underlying anvils (about 50-100 km) with peak to peak theta surface variations of about 300-400 meters. Moreover, correlative wind measurements from the tropical phase of the Stratosphere-Troposphere Exchange Project (STEP) clearly show that these disturbances are gravity waves. We present two case studies of anvil-scale gravity waves over convective systems. Using steady and time-dependent linear models of gravity wave propagation in the stratosphere, we show: (1) that the underlying convective systems are indeed the source of the observed phenomena; and (2) that their generating mechanism can be crudely represented as flow over a time-dependent mountain. We will then discuss the effects gravity waves of the observed amplitudes have on the circulation of the middle atmosphere, particularly the quasi-biennial, and semiannual oscillations.

  3. Coverage dependent molecular assembly of anthraquinone on Au(111)

    NASA Astrophysics Data System (ADS)

    DeLoach, Andrew S.; Conrad, Brad R.; Einstein, T. L.; Dougherty, Daniel B.

    2017-11-01

    A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.

  4. Coverage dependent molecular assembly of anthraquinone on Au(111).

    PubMed

    DeLoach, Andrew S; Conrad, Brad R; Einstein, T L; Dougherty, Daniel B

    2017-11-14

    A scanning tunneling microscopy study of anthraquinone (AQ) on the Au(111) surface shows that the molecules self-assemble into several structures depending on the local surface coverage. At high coverages, a close-packed saturated monolayer is observed, while at low coverages, mobile surface molecules coexist with stable chiral hexamer clusters. At intermediate coverages, a disordered 2D porous network interlinking close-packed islands is observed in contrast to the giant honeycomb networks observed for the same molecule on Cu(111). This difference verifies the predicted extreme sensitivity [J. Wyrick et al., Nano Lett. 11, 2944 (2011)] of the pore network to small changes in the surface electronic structure. Quantitative analysis of the 2D pore network reveals that the areas of the vacancy islands are distributed log-normally. Log-normal distributions are typically associated with the product of random variables (multiplicative noise), and we propose that the distribution of pore sizes for AQ on Au(111) originates from random linear rate constants for molecules to either desorb from the surface or detach from the region of a nucleated pore.

  5. Polarized Balmer line emission from supernova remnant shock waves efficiently accelerating cosmic rays

    NASA Astrophysics Data System (ADS)

    Shimoda, Jiro; Ohira, Yutaka; Yamazaki, Ryo; Laming, J. Martin; Katsuda, Satoru

    2018-01-01

    Linearly polarized Balmer line emissions from supernova remnant shocks are studied taking into account the energy loss of the shock owing to the production of non-thermal particles. The polarization degree depends on the downstream temperature and the velocity difference between upstream and downstream regions. The former is derived once the line width of the broad component of the H α emission is observed. Then, the observation of the polarization degree tells us the latter. At the same time, the estimated value of the velocity difference independently predicts adiabatic downstream temperature that is derived from Rankine Hugoniot relations for adiabatic shocks. If the actually observed downstream temperature is lower than the adiabatic temperature, there is a missing thermal energy which is consumed for particle acceleration. It is shown that a larger energy-loss rate leads to more highly polarized H α emission. Furthermore, we find that polarized intensity ratio of H β to H α also depends on the energy-loss rate and that it is independent of uncertain quantities such as electron temperature, the effect of Lyman line trapping and our line of sight.

  6. Linear Magnetochiral effect in Weyl Semimetals

    NASA Astrophysics Data System (ADS)

    Cortijo, Alberto

    We describe the presence of a linear magnetochiral effect in time reversal breaking Weyl semimetals. The magnetochiral effect consists in a simultaneous linear dependence of the magnetotransport coefficients with the magnetic field and a momentum vector. This simultaneous dependence is allowed by the Onsager reciprocity relations, being the separation vector between the Weyl nodes the vector that plays such role. This linear magnetochiral effect constitutes a new transport effect associated to the topological structures linked to time reversal breaking Weyl semimetals. European Union structural funds and the Comunidad de Madrid MAD2D-CM Program (S2013/MIT-3007) and MINECO (Spain) Grant No. FIS2015-73454-JIN.

  7. Polarization dependent color switching by extra-ordinary transmission in H-slit plasmonic metasurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, P.; Anantha Ramakrishna, S.; Patil, Raj

    2013-12-14

    An array of H-shaped subwavelength slits in a plasmonic film has a polarization dependent extra-ordinary transmission due to shape anisotropy. Non-overlapping extra-ordinary transmission bands for the orthogonal linear polarization states of the input light are used to demonstrate a polarization dependent color switch. The fabricated array of submicron sized H-slits on a gold film displayed two transmission bands for the linear x- and y-polarized light at visible (650–850 nm) and near-infra-red (1150–1450 nm) bands, respectively. The relative transmitted light in these two bands can be controlled by changing the linear polarization state of the input radiation from 0° to 90°.

  8. Imaging hydraulic fractures using temperature transients in the Belridge Diatomite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahin, G.T.; Johnston, R.M.

    1995-12-31

    Results of a temperature transient analysis of Shell`s Phase 1 and Phase 2 Diatomite Steamdrive Pilots are used to image hydraulic injection fracture lengths, angles, and heat injectivities into the low-permeability formation. The Phase 1 Pilot is a limited-interval injection test. In Phase 2, steam is injected into two 350 ft upper and lower zones through separate hydraulic fractures. Temperature response of both pilots is monitored with sixteen logging observation wells. A perturbation analysis of the non-linear pressure diffusion and heat transport equations indicates that at a permeability of about 0.1 md or less, heat transport in the Diatomite tendsmore » to be dominated by thermal diffusivity, and pressure diffusion is dominated by the ratio of thermal expansion to fluid compressibility. Under these conditions, the temperature observed at a logging observation well is governed by a dimensionless quantity that depends on the perpendicular distance between the observation well and the hydraulic fracture, divided by the square root of time. Using this dependence, a novel method is developed for imaging hydraulic fracture geometry and relative heat injectivity from the temperature history of the pilot.« less

  9. Observer synthesis for a class of Takagi-Sugeno descriptor system with unmeasurable premise variable. Application to fault diagnosis

    NASA Astrophysics Data System (ADS)

    López-Estrada, F. R.; Astorga-Zaragoza, C. M.; Theilliol, D.; Ponsart, J. C.; Valencia-Palomo, G.; Torres, L.

    2017-12-01

    This paper proposes a methodology to design a Takagi-Sugeno (TS) descriptor observer for a class of TS descriptor systems. Unlike the popular approach that considers measurable premise variables, this paper considers the premise variables depending on unmeasurable vectors, e.g. the system states. This consideration covers a large class of nonlinear systems and represents a real challenge for the observer synthesis. Sufficient conditions to guarantee robustness against the unmeasurable premise variables and asymptotic convergence of the TS descriptor observer are obtained based on the H∞ approach together with the Lyapunov method. As a result, the designing conditions are given in terms of linear matrix inequalities (LMIs). In addition, sensor fault detection and isolation are performed by means of a generalised observer bank. Two numerical experiments, an electrical circuit and a rolling disc system, are presented in order to illustrate the effectiveness of the proposed method.

  10. Tunnel magnetoresistance and linear conductance of double quantum dots strongly coupled to ferromagnetic leads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weymann, Ireneusz, E-mail: weymann@amu.edu.pl

    2015-05-07

    We analyze the spin-dependent linear-response transport properties of double quantum dots strongly coupled to external ferromagnetic leads. By using the numerical renormalization group method, we determine the dependence of the linear conductance and tunnel magnetoresistance on the degree of spin polarization of the leads and the position of the double dot levels. We focus on the transport regime where the system exhibits the SU(4) Kondo effect. It is shown that the presence of ferromagnets generally leads the suppression of the linear conductance due to the presence of an exchange field. Moreover, the exchange field gives rise to a transition frommore » the SU(4) to the orbital SU(2) Kondo effect. We also analyze the dependence of the tunnel magnetoresistance on the double dot levels' positions and show that it exhibits a very nontrivial behavior.« less

  11. Observations of the temperature dependent response of ozone to NOx reductions in the Sacramento, CA urban plume

    NASA Astrophysics Data System (ADS)

    Lafranchi, B. W.; Goldstein, A. H.; Cohen, R. C.

    2011-02-01

    Observations of NOx in the Sacramento, CA region show that mixing ratios decreased by 30% between 2001 and 2008. Here we use an observation-based method to quantify net ozone production rates in the outflow from the Sacramento metropolitan region and examine the O3 decrease resulting from reductions in NOx emissions. This observational method does not rely on assumptions about detailed chemistry of ozone production, rather it is an independent means to verify and test these assumptions. We use an instantaneous steady-state model as well as a detailed 1-D plume model to aid in interpretation of the ozone production inferred from observations. In agreement with the models, the observations show that early in the plume, the NOx dependence for Ox (Ox = O3 + NO2) production is strongly coupled with temperature, suggesting that temperature-dependent biogenic VOC emissions can drive Ox production between NOx-limited and NOx-suppressed regimes. As a result, NOx reductions were found to be most effective at higher temperatures over the 7 year period. We show that violations of the California 1-hour O3 standard (90 ppb) in the region have been decreasing linearly with decreases in NOx (at a given temperature) and predict that reductions of NOx concentrations (and presumably emissions) by an additional 30% (relative to 2007 levels) will eliminate violations of the state 1 h standard in the region. If current trends continue, a 30% decrease in NOx is expected by 2012, and an end to violations of the 1 h standard in the Sacramento region appears to be imminent.

  12. Linear and Non-linear Information Flows In Rainfall Field

    NASA Astrophysics Data System (ADS)

    Molini, A.; La Barbera, P.; Lanza, L. G.

    The rainfall process is the result of a complex framework of non-linear dynamical in- teractions between the different components of the atmosphere. It preserves the com- plexity and the intermittent features of the generating system in space and time as well as the strong dependence of these properties on the scale of observations. The understanding and quantification of how the non-linearity of the generating process comes to influence the single rain events constitute relevant research issues in the field of hydro-meteorology, especially in those applications where a timely and effective forecasting of heavy rain events is able to reduce the risk of failure. This work focuses on the characterization of the non-linear properties of the observed rain process and on the influence of these features on hydrological models. Among the goals of such a survey is the research of regular structures of the rainfall phenomenon and the study of the information flows within the rain field. The research focuses on three basic evo- lution directions for the system: in time, in space and between the different scales. In fact, the information flows that force the system to evolve represent in general a connection between the different locations in space, the different instants in time and, unless assuming the hypothesis of scale invariance is verified "a priori", the different characteristic scales. A first phase of the analysis is carried out by means of classic statistical methods, then a survey of the information flows within the field is devel- oped by means of techniques borrowed from the Information Theory, and finally an analysis of the rain signal in the time and frequency domains is performed, with par- ticular reference to its intermittent structure. The methods adopted in this last part of the work are both the classic techniques of statistical inference and a few procedures for the detection of non-linear and non-stationary features within the process starting from measured data.

  13. Impact of field strength and iron oxide nanoparticle concentration on the linearity and diagnostic accuracy of off-resonance imaging.

    PubMed

    Farrar, Christian T; Dai, Guangping; Novikov, Mikhail; Rosenzweig, Anthony; Weissleder, Ralph; Rosen, Bruce R; Sosnovik, David E

    2008-06-01

    Off-resonance imaging (ORI) techniques are being increasingly used to image iron oxide imaging agents such as monocrystalline iron oxide nanoparticles (MION). However, the diagnostic accuracy, linearity, and field dependence of ORI have not been fully characterized. In this study, the sensitivity, specificity, and linearity of ORI were thus examined as a function of both MION concentration and magnetic field strength (4.7 and 14 T). MION phantoms with and without an air interface as well as MION uptake in a mouse model of healing myocardial infarction were imaged. MION-induced resonance shifts were shown to increase linearly with MION concentration. In contrast, the ORI signal/sensitivity was highly non-linear, initially increasing with MION concentration until T2 became comparable to the TE and decreasing thereafter. The specificity of ORI to distinguish MION-induced resonance shifts from on-resonance water was found to decrease with increasing field because of the increased on-resonance water linewidths (15 Hz at 4.7 T versus 45 Hz at 14 T). Large resonance shifts ( approximately 300 Hz) were observed at air interfaces at 4.7 T, both in vitro and in vivo, and led to poor ORI specificity for MION concentrations less than 150 microg Fe/mL. The in vivo ORI sensitivity was sufficient to detect the accumulation of MION in macrophages infiltrating healing myocardial infarcts, but the specificity was limited by non-specific areas of positive contrast at the air/tissue interfaces of the thoracic wall and the descending aorta. Improved specificity and linearity can, however, be expected at lower fields where decreased on-resonance water linewidths, reduced air-induced resonance shifts, and longer T2 relaxation times are observed. The optimal performance of ORI will thus likely be seen at low fields, with moderate MION concentrations and with sequences containing very short TEs. Copyright (c) 2007 John Wiley & Sons, Ltd.

  14. Providing a Spatial Context for Crop Insurance in Ethiopia: Multiscale Comparisons of Vegetation Metrics in Tigray

    NASA Astrophysics Data System (ADS)

    Mann, B. F.; Small, C.

    2014-12-01

    Weather-based index insurance projects are rapidly expanding across the developing world. Many of these projects use satellite-based observations to detect extreme weather events, which inform and trigger payouts to smallholder farmers. While most index insurance programs use precipitation measurements to determine payouts, the use of remotely sensed observations of vegetation is currently being explored. In order to use vegetation indices as a basis for payouts, it is necessary to establish a consistent relationship between the vegetation index and the health and abundance of agriculture on the ground. The accuracy with which remotely sensed vegetation indices can detect changes in agriculture depends on both the spatial scale of the agriculture and the spatial resolution of the sensor. This study analyzes the relationship between meter and decameter scale vegetation fraction estimates derived from linear spectral mixture models with a more commonly used vegetation index (NDVI, EVI) at hectometer spatial scales. In addition, the analysis incorporates land cover/land use field observations collected in Tigray Ethiopia in July 2013. . It also tests the flexibility and utility of a standardized spectral mixture model in which land cover is represented as continuous fields of rock and soil substrate (S), vegetation (V) and dark surfaces (D; water, shadow). This analysis found strong linear relationships with vegetation metrics at 1.6-meter, 30-meter and 250-meter resolutions across spectrally diverse subsets of Tigray, Ethiopia and significantly correlated relationships using the Spearman's rho statistic. The observed linear scaling has positive implications for future use of moderate resolution vegetation indices in similar landscapes; especially index insurance projects that are scaling up across the developing world using remotely-sensed environmental information.

  15. Locally Dependent Linear Logistic Test Model with Person Covariates

    ERIC Educational Resources Information Center

    Ip, Edward H.; Smits, Dirk J. M.; De Boeck, Paul

    2009-01-01

    The article proposes a family of item-response models that allow the separate and independent specification of three orthogonal components: item attribute, person covariate, and local item dependence. Special interest lies in extending the linear logistic test model, which is commonly used to measure item attributes, to tests with embedded item…

  16. Unitary Response Regression Models

    ERIC Educational Resources Information Center

    Lipovetsky, S.

    2007-01-01

    The dependent variable in a regular linear regression is a numerical variable, and in a logistic regression it is a binary or categorical variable. In these models the dependent variable has varying values. However, there are problems yielding an identity output of a constant value which can also be modelled in a linear or logistic regression with…

  17. Hazard from far-field tsunami at Hilo: Earthquakes from the Ring of Fire

    NASA Astrophysics Data System (ADS)

    Arcas, D.; Weiss, R.; Titov, V.

    2007-12-01

    Historical data and modeling are used to study tsunami hazard at Hilo, Hawaii. Hilo has one of the best historical tsunami record in the US. Considering the tsunami observations from the early eighteen hundreds until today reveals that the number of observed events per decade depends on the awareness of tsunami events. The awareness appears to be a function of the observation techniques such as seismometers and communication devices, as well as direct measurements. Three time periods can be identified, in which the number of observed events increases from one event per decade in the first period to 7.7 in the second, to 9.4 events per decade in the third one. A total of 89 events from far-field sources have been encountered. In contrast only 11 events have been observed with sources in the near field. To remove this historical observation bias from the hazard estimate, we have complimented the historical analysis with a modeling study. We have carried out modeling of 1476 individual earthquakes along the subduction zones of the Pacific Ocean in four different magnitude levels (7.5, 8.2, 8.7 and 9.3). The maximum run up and maximum peak at the tide gauge is plotted for the different magnitude levels to reveal sensitive and source areas of tsunami waves for Hilo and a linear scaling of both parameters for small, but non-linear scaling for larger earthquakes

  18. Nature of size effects in compact models of field effect transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torkhov, N. A., E-mail: trkf@mail.ru; Scientific-Research Institute of Semiconductor Devices, Tomsk 634050; Tomsk State University of Control Systems and Radioelectronics, Tomsk 634050

    Investigations have shown that in the local approximation (for sizes L < 100 μm), AlGaN/GaN high electron mobility transistor (HEMT) structures satisfy to all properties of chaotic systems and can be described in the language of fractal geometry of fractional dimensions. For such objects, values of their electrophysical characteristics depend on the linear sizes of the examined regions, which explain the presence of the so-called size effects—dependences of the electrophysical and instrumental characteristics on the linear sizes of the active elements of semiconductor devices. In the present work, a relationship has been established for the linear model parameters of themore » equivalent circuit elements of internal transistors with fractal geometry of the heteroepitaxial structure manifested through a dependence of its relative electrophysical characteristics on the linear sizes of the examined surface areas. For the HEMTs, this implies dependences of their relative static (A/mm, mA/V/mm, Ω/mm, etc.) and microwave characteristics (W/mm) on the width d of the sink-source channel and on the number of sections n that leads to a nonlinear dependence of the retrieved parameter values of equivalent circuit elements of linear internal transistor models on n and d. Thus, it has been demonstrated that the size effects in semiconductors determined by the fractal geometry must be taken into account when investigating the properties of semiconductor objects on the levels less than the local approximation limit and designing and manufacturing field effect transistors. In general, the suggested approach allows a complex of problems to be solved on designing, optimizing, and retrieving the parameters of equivalent circuits of linear and nonlinear models of not only field effect transistors but also any arbitrary semiconductor devices with nonlinear instrumental characteristics.« less

  19. Sixth SIAM conference on applied linear algebra: Final program and abstracts. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    Linear algebra plays a central role in mathematics and applications. The analysis and solution of problems from an amazingly wide variety of disciplines depend on the theory and computational techniques of linear algebra. In turn, the diversity of disciplines depending on linear algebra also serves to focus and shape its development. Some problems have special properties (numerical, structural) that can be exploited. Some are simply so large that conventional approaches are impractical. New computer architectures motivate new algorithms, and fresh ways to look at old ones. The pervasive nature of linear algebra in analyzing and solving problems means that peoplemore » from a wide spectrum--universities, industrial and government laboratories, financial institutions, and many others--share an interest in current developments in linear algebra. This conference aims to bring them together for their mutual benefit. Abstracts of papers presented are included.« less

  20. A New approach for evaluate a sandy soil infiltration to calculate the permeability

    NASA Astrophysics Data System (ADS)

    Mechergui, M. Mohamed; Latifa Dhaouadi, Ms

    2016-04-01

    10 sites were chosen in the four ha field of Research Regional Center of Oasis Agriculture in Deguache (Tozeur). The soil is homogeneous to the depth of 120 cm; with a sandy texture (60% big sand, 20% small sand 13% silt and 7% clay); with a mean bulk density equal to 1.43g/cm3 and with field capacity and welting point equal respectively to 11.9 and 6 %. The time duration for each infiltration essay lasted between 352 and 554 minutes. The number of observation points for each infiltration curve varies between 31 and 40. The shape of the infiltration curves observed in all sites is in part similar to what observed in literature (high increase with time of cumulative infiltration for a short time and then a linear increase of this parameter to a time varying between 122 to 197 minutes depending on the site) and then something special a slowdown in the cumulative infiltration to the end of the essay. The (F(t) / t 1/2 versus t 1/2) plotted curves showed two distinguished parts: A linear relation to the time varying between 122 and 197 minutes confirming the validity of Philips model and a second part showed a slowdown in the slope to a time varying between 231 and 347 minutes depending on the site and then drop down to the end of the essay. This is may be due to the rearrangement of particles after a long time of infiltration which led to a decrease in hydraulic conductivity. To improve the calculation of the saturated hydraulic conductivity, we choose only the part that is validated by Philips model, the linear part. The number of omitted points in the cumulative infiltration varies between 11 and 22 points. By this method, the saturated hydraulic conductivity varies between 1 and 3.72 m/day with a mean equal to 2.35. However the previous technique used gave a mean value equal to 2.07. The new method is accurate and gives better results of K and sorbtivity.

  1. Excess entropy scaling for the segmental and global dynamics of polyethylene melts.

    PubMed

    Voyiatzis, Evangelos; Müller-Plathe, Florian; Böhm, Michael C

    2014-11-28

    The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains. We consider two segmental dynamical quantities, i.e. the bond and the torsional relaxation times, and two global ones, i.e. the chain diffusion coefficient and the viscosity. The excess entropy is approximated by either a series expansion of the entropy in terms of the pair correlation function or by an equation of state for polymers developed in the context of the self associating fluid theory. For the whole range of temperatures and chain lengths considered, the two estimates of the excess entropy are linearly correlated. The scaled bond and torsional relaxation times fall into a master curve irrespective of the chain length and the employed scaling scheme. Both quantities depend non-linearly on the excess entropy. For a fixed chain length, the reduced diffusion coefficient and viscosity scale linearly with the excess entropy. An empirical reduction to a chain length-independent master curve is accessible for both dynamic quantities. The Dzugutov scheme predicts an increased value of the scaled diffusion coefficient with increasing chain length which contrasts physical expectations. The origin of this trend can be traced back to the density dependence of the scaling factors. This finding has not been observed previously for Lennard-Jones chain systems (Macromolecules, 2013, 46, 8710-8723). Thus, it limits the applicability of the Dzugutov approach to polymers. In connection with diffusion coefficients and viscosities, the Rosenfeld scaling law appears to be of higher quality than the Dzugutov approach. An empirical excess entropy scaling is also proposed which leads to a chain length-independent correlation. It is expected to be valid for polymers in the Rouse regime.

  2. Kinetics of DSB rejoining and formation of simple chromosome exchange aberrations

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; Nikjoo, H.; O'Neill, P.; Goodhead, D. T.

    2000-01-01

    PURPOSE: To investigate the role of kinetics in the processing of DNA double strand breaks (DSB), and the formation of simple chromosome exchange aberrations following X-ray exposures to mammalian cells based on an enzymatic approach. METHODS: Using computer simulations based on a biochemical approach, rate-equations that describe the processing of DSB through the formation of a DNA-enzyme complex were formulated. A second model that allows for competition between two processing pathways was also formulated. The formation of simple exchange aberrations was modelled as misrepair during the recombination of single DSB with undamaged DNA. Non-linear coupled differential equations corresponding to biochemical pathways were solved numerically by fitting to experimental data. RESULTS: When mediated by a DSB repair enzyme complex, the processing of single DSB showed a complex behaviour that gives the appearance of fast and slow components of rejoining. This is due to the time-delay caused by the action time of enzymes in biomolecular reactions. It is shown that the kinetic- and dose-responses of simple chromosome exchange aberrations are well described by a recombination model of DSB interacting with undamaged DNA when aberration formation increases with linear dose-dependence. Competition between two or more recombination processes is shown to lead to the formation of simple exchange aberrations with a dose-dependence similar to that of a linear quadratic model. CONCLUSIONS: Using a minimal number of assumptions, the kinetics and dose response observed experimentally for DSB rejoining and the formation of simple chromosome exchange aberrations are shown to be consistent with kinetic models based on enzymatic reaction approaches. A non-linear dose response for simple exchange aberrations is possible in a model of recombination of DNA containing a DSB with undamaged DNA when two or more pathways compete for DSB repair.

  3. Polarization-dependent imaging contrast in abalone shells

    NASA Astrophysics Data System (ADS)

    Metzler, Rebecca A.; Zhou, Dong; Abrecht, Mike; Chiou, Jau-Wern; Guo, Jinghua; Ariosa, Daniel; Coppersmith, Susan N.; Gilbert, P. U. P. A.

    2008-02-01

    Many biominerals contain micro- or nanocrystalline mineral components, organized accurately into architectures that confer the material with improved mechanical performance at the macroscopic scale. We present here an effect which enables us to observe the relative orientation of individual crystals at the submicron scale. We call it polarization-dependent imaging contrast (PIC), as it is an imaging development of the well-known x-ray linear dichroism. Most importantly, PIC is obtained in situ, in biominerals. We present here PIC in the prismatic and nacreous layers of Haliotis rufescens (red abalone), confirm it in geologic calcite and aragonite, and corroborate the experimental data with theoretical simulated spectra. PIC reveals different and unexpected aspects of nacre architecture that have inspired theoretical models for nacre formation.

  4. History-dependent dissipative vortex dynamics in superconducting arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durkin, Malcolm; Mondragon-Shem, Ian; Eley, Serena Merteen

    In this study, we perform current (I)-voltage (V) measurements on low resistance superconductor-normal-superconductor arrays in finite magnetic fields, focusing on the dilute vortex population regime. We observe significant deviations from predicted behavior, notably the absence of a differential resistance peak near the vortex depinning current, and a broad linear I-V region with an extrapolated I intercept equal to the depinning current. Comparing these results to an overdamped molecular vortex model, we find that this behavior can be explained by the presence of a history-dependent dissipative force. Lastly, this approach has not been considered previously, to our knowledge, yet it ismore » crucial for obtaining a correct description of the vortex dynamics in superconducting arrays.« less

  5. History-dependent dissipative vortex dynamics in superconducting arrays

    DOE PAGES

    Durkin, Malcolm; Mondragon-Shem, Ian; Eley, Serena Merteen; ...

    2016-07-14

    In this study, we perform current (I)-voltage (V) measurements on low resistance superconductor-normal-superconductor arrays in finite magnetic fields, focusing on the dilute vortex population regime. We observe significant deviations from predicted behavior, notably the absence of a differential resistance peak near the vortex depinning current, and a broad linear I-V region with an extrapolated I intercept equal to the depinning current. Comparing these results to an overdamped molecular vortex model, we find that this behavior can be explained by the presence of a history-dependent dissipative force. Lastly, this approach has not been considered previously, to our knowledge, yet it ismore » crucial for obtaining a correct description of the vortex dynamics in superconducting arrays.« less

  6. Negative tunnel magnetoresistance and differential conductance in transport through double quantum dots

    NASA Astrophysics Data System (ADS)

    Trocha, Piotr; Weymann, Ireneusz; Barnaś, Józef

    2009-10-01

    Spin-dependent transport through two coupled single-level quantum dots weakly connected to ferromagnetic leads with collinear magnetizations is considered theoretically. Transport characteristics, including the current, linear and nonlinear conductances, and tunnel magnetoresistance are calculated using the real-time diagrammatic technique in the parallel, serial, and intermediate geometries. The effects due to virtual tunneling processes between the two dots via the leads, associated with off-diagonal coupling matrix elements, are also considered. Negative differential conductance and negative tunnel magnetoresistance have been found in the case of serial and intermediate geometries, while no such behavior has been observed for double quantum dots coupled in parallel. It is also shown that transport characteristics strongly depend on the magnitude of the off-diagonal coupling matrix elements.

  7. Exploitation of the UV Aerosol Index scattering angle dependence: Properties of Siberian smoke plumes

    NASA Astrophysics Data System (ADS)

    Penning de Vries, Marloes; Beirle, Steffen; Sihler, Holger; Wagner, Thomas

    2017-04-01

    The UV Aerosol Index (UVAI) is a simple measure of aerosols from satellite that is particularly sensitive to elevated layers of absorbing particles. It has been determined from a range of instruments including TOMS, GOME-2, and OMI, for almost four decades and will be continued in the upcoming Sentinel missions S5-precursor, S4, and S5. Despite its apparent simplicity, the interpretation of UVAI is not straightforward, as it depends on aerosol abundance, absorption, and altitude in a non-linear way. In addition, UVAI depends on the geometry of the measurement (viewing angle, solar zenith and relative azimuth angles), particularly if viewing angles exceed 45 degrees, as is the case for OMI and TROPOMI (on S5-precursor). The dependence on scattering angle complicates the interpretation and further processing (e.g., averaging) of UVAI. In certain favorable cases, however, independent information on aerosol altitude and absorption may become available. We present a detailed study of the scatter angle dependence using SCIATRAN radiative transfer calculations. The model results were compared to observations of an extensive Siberian smoke plume, of which parts reached 10-12 km altitude. Due to its large extent and the high latitude, OMI observed the complete plume in five consecutive orbits under a wide range of scattering angles. This allowed us to deduce aerosol characteristics (absorption and layer height) that were compared with collocated CALIOP lidar measurements.

  8. Transit-time and age distributions for nonlinear time-dependent compartmental systems.

    PubMed

    Metzler, Holger; Müller, Markus; Sierra, Carlos A

    2018-02-06

    Many processes in nature are modeled using compartmental systems (reservoir/pool/box systems). Usually, they are expressed as a set of first-order differential equations describing the transfer of matter across a network of compartments. The concepts of age of matter in compartments and the time required for particles to transit the system are important diagnostics of these models with applications to a wide range of scientific questions. Until now, explicit formulas for transit-time and age distributions of nonlinear time-dependent compartmental systems were not available. We compute densities for these types of systems under the assumption of well-mixed compartments. Assuming that a solution of the nonlinear system is available at least numerically, we show how to construct a linear time-dependent system with the same solution trajectory. We demonstrate how to exploit this solution to compute transit-time and age distributions in dependence on given start values and initial age distributions. Furthermore, we derive equations for the time evolution of quantiles and moments of the age distributions. Our results generalize available density formulas for the linear time-independent case and mean-age formulas for the linear time-dependent case. As an example, we apply our formulas to a nonlinear and a linear version of a simple global carbon cycle model driven by a time-dependent input signal which represents fossil fuel additions. We derive time-dependent age distributions for all compartments and calculate the time it takes to remove fossil carbon in a business-as-usual scenario.

  9. The Evaluation of the Earth's Dynamical Flattening Based on the IAU Precession-nutation and VLBI Observations

    NASA Astrophysics Data System (ADS)

    Capitaine, Nicole; Liu, Jia-Cheng

    2014-12-01

    The dynamical flattening H_{d} is a fundamental Earth's parameter and a crucial scale factor in constructing the precession-nutation models. Its value has generally been derived from astronomical observations of the luni-solar precession in longitude at epoch, or from geophysical determinations of the Earth's moment of inertia. It should be noted that the observed precession rates in longitude and obliquity result from several theoretical contributions, some of them, as well as the nutation amplitudes, being also dependent on H_{d}. This paper discusses the rigorous procedure to be used for deriving H_{d} from the best available astronomical observations. We use the IAU 2006/2000 precession-nutation and VLBI observations of the celestial pole offsets spanning about 32 years in order to calculate the observed position of the CIP (Celestial intermediate pole) in the GCRS (Geocentric celestial reference system). Then, the value of H_{d} is evaluated by a least squares method with a careful consideration of the various theoretical contributions to the precession rates and of the largest terms of nutation. We compare the results with an indirect fit of H_{d} to the estimated corrections to the linear term in precession and the 18.6-yr nutation. We discuss the limit of accuracy, given the characteristics of the available observations and the uncertainties in the models, as well as the parameters on which H_{d} is dependent.

  10. The Routine Fitting of Kinetic Data to Models

    PubMed Central

    Berman, Mones; Shahn, Ezra; Weiss, Marjory F.

    1962-01-01

    A mathematical formalism is presented for use with digital computers to permit the routine fitting of data to physical and mathematical models. Given a set of data, the mathematical equations describing a model, initial conditions for an experiment, and initial estimates for the values of model parameters, the computer program automatically proceeds to obtain a least squares fit of the data by an iterative adjustment of the values of the parameters. When the experimental measures are linear combinations of functions, the linear coefficients for a least squares fit may also be calculated. The values of both the parameters of the model and the coefficients for the sum of functions may be unknown independent variables, unknown dependent variables, or known constants. In the case of dependence, only linear dependencies are provided for in routine use. The computer program includes a number of subroutines, each one of which performs a special task. This permits flexibility in choosing various types of solutions and procedures. One subroutine, for example, handles linear differential equations, another, special non-linear functions, etc. The use of analytic or numerical solutions of equations is possible. PMID:13867975

  11. Anisotropies in the linear polarization of vacancy photoluminescence in diamond induced by crystal rotations and strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Braukmann, D.; Popov, V. P.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.

    2018-03-01

    We study the linear polarization properties of the photoluminescence of ensembles of neutral and negatively charged nitrogen vacancies and neutral vacancies in diamond crystals as a function of their symmetry and their response to strong external magnetic fields. The linear polarization degree, which exceeds 10% at room temperature, and rotation of the polarization plane of their zero-phonon lines significantly depend on the crystal rotation around specific axes demonstrating anisotropic angular evolutions. The sign of the polarization plane rotation is changed periodically through the crystal rotation, which indicates a switching between electron excited states of orthogonal linear polarizations. At external magnetic fields of up to 10 T, the angular dependencies of the linear polarization degree experience a remarkable phase shift. Moreover, the rotation of the linear polarization plane increases linearly with rising magnetic field at 6 K and room temperature, for the negatively charged nitrogen vacancies, which is attributed to magneto-optical Faraday rotation.

  12. Ion transport with charge-protected and non-charge-protected cations using the compensated Arrhenius formalism. Part 2. Relationship between ionic conductivity and diffusion.

    PubMed

    Petrowsky, Matt; Fleshman, Allison; Bopege, Dharshani N; Frech, Roger

    2012-08-09

    Temperature-dependent ionic conductivities and cation/anion self-diffusion coefficients are measured for four electrolyte families: TbaTf-linear primary alcohols, LiTf-linear primary alcohols, TbaTf-n-alkyl acetates, and LiTf-n-alkyl acetates. The Nernst-Einstein equation does not adequately describe the data. Instead, the compensated Arrhenius formalism is applied to both conductivity and diffusion data. General trends based on temperature and alkyl chain length are observed when conductivity is plotted against cation or anion diffusion coefficient, but there is no clear pattern to the data. However, plotting conductivity exponential prefactors against those for diffusion results in four distinct curves, one each for the alcohol and acetate families described above. Furthermore, the TbaTf-alcohol and TbaTf-acetate data are "in line" with each other. The conductivity prefactors for the LiTf-alcohol data are smaller than those for the TbaTf data. The LiTf-acetate data have the lowest conductivity prefactors. This trend in prefactors mirrors the observed trend in degree of ionic association for these electrolytes.

  13. Intensity dependence of focused ultrasound lesion position

    NASA Astrophysics Data System (ADS)

    Meaney, Paul M.; Cahill, Mark D.; ter Haar, Gail R.

    1998-04-01

    Knowledge of the spatial distribution of intensity loss from an ultrasonic beam is critical to predicting lesion formation in focused ultrasound surgery. To date most models have used linear propagation models to predict the intensity profiles needed to compute the temporally varying temperature distributions. These can be used to compute thermal dose contours that can in turn be used to predict the extent of thermal damage. However, these simulations fail to adequately describe the abnormal lesion formation behavior observed for in vitro experiments in cases where the transducer drive levels are varied over a wide range. For these experiments, the extent of thermal damage has been observed to move significantly closer to the transducer with increasing transducer drive levels than would be predicted using linear propagation models. The simulations described herein, utilize the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear propagation model with the parabolic approximation for highly focused ultrasound waves, to demonstrate that the positions of the peak intensity and the lesion do indeed move closer to the transducer. This illustrates that for accurate modeling of heating during FUS, nonlinear effects must be considered.

  14. The profile algorithm for microwave delay estimation from water vapor radiometer data

    NASA Technical Reports Server (NTRS)

    Robinson, Steven E.

    1988-01-01

    A new algorithm has been developed for the estimation of tropospheric microwave path delays from water vapor radiometer (WVR) data, which does not require site and weather dependent empirical parameters to produce accuracy better than 0.3 cm of delay. Instead of taking the conventional linear approach, the new algorithm first uses the observables with an emission model to determine an approximate form of the vertical water vapor distribution, which is then explicitly integrated to estimate wet path delays in a second step. The intrinsic accuracy of this algorithm, excluding uncertainties caused by the radiometers and the emission model, has been examined for two channel WVR data using path delays and corresponding simulated observables computed from archived radiosonde data. It is found that annual rms errors for a wide range of sites average 0.18 cm in the absence of clouds, 0.22 cm in cloudy weather, and 0.19 cm overall. In clear weather, the new algorithm's accuracy is comparable to the best that can be obtained from conventional linear algorithms, while in cloudy weather it offers a 35 percent improvement.

  15. A new algorithm for microwave delay estimation from water vapor radiometer data

    NASA Technical Reports Server (NTRS)

    Robinson, S. E.

    1986-01-01

    A new algorithm has been developed for the estimation of tropospheric microwave path delays from water vapor radiometer (WVR) data, which does not require site and weather dependent empirical parameters to produce high accuracy. Instead of taking the conventional linear approach, the new algorithm first uses the observables with an emission model to determine an approximate form of the vertical water vapor distribution which is then explicitly integrated to estimate wet path delays, in a second step. The intrinsic accuracy of this algorithm has been examined for two channel WVR data using path delays and stimulated observables computed from archived radiosonde data. It is found that annual RMS errors for a wide range of sites are in the range from 1.3 mm to 2.3 mm, in the absence of clouds. This is comparable to the best overall accuracy obtainable from conventional linear algorithms, which must be tailored to site and weather conditions using large radiosonde data bases. The new algorithm's accuracy and flexibility are indications that it may be a good candidate for almost all WVR data interpretation.

  16. Theoretical Model for Cellular Shapes Driven by Protrusive and Adhesive Forces

    PubMed Central

    Kabaso, Doron; Shlomovitz, Roie; Schloen, Kathrin; Stradal, Theresia; Gov, Nir S.

    2011-01-01

    The forces that arise from the actin cytoskeleton play a crucial role in determining the cell shape. These include protrusive forces due to actin polymerization and adhesion to the external matrix. We present here a theoretical model for the cellular shapes resulting from the feedback between the membrane shape and the forces acting on the membrane, mediated by curvature-sensitive membrane complexes of a convex shape. In previous theoretical studies we have investigated the regimes of linear instability where spontaneous formation of cellular protrusions is initiated. Here we calculate the evolution of a two dimensional cell contour beyond the linear regime and determine the final steady-state shapes arising within the model. We find that shapes driven by adhesion or by actin polymerization (lamellipodia) have very different morphologies, as observed in cells. Furthermore, we find that as the strength of the protrusive forces diminish, the system approaches a stabilization of a periodic pattern of protrusions. This result can provide an explanation for a number of puzzling experimental observations regarding cellular shape dependence on the properties of the extra-cellular matrix. PMID:21573201

  17. On the generation of sound by turbulent convection. I - A numerical experiment. [in solar interior

    NASA Technical Reports Server (NTRS)

    Bogdan, Thomas J.; Cattaneo, Fausto; Malagoli, Andrea

    1993-01-01

    Motivated by the problem of the origin of the solar p-modes, we study the generation of acoustic waves by turbulent convection. Our approach uses the results of high-resolution 3D simulations as the experimental basis for our investigation. The numerical experiment describes the evolution of a horizontally periodic layer of vigorously convecting fluid. The sound is measured by a procedure, based on a suitable linearization of the equations of compressible convection that allows the amplitude of the acoustic field to be determined. Through this procedure we identify unambiguously some 400 acoustic modes. The total energy of the acoustic field is found to be a fraction of a percent of the kinetic energy of the convection. The amplitudes of the observed modes depend weakly on (horizontal) wavenumber but strongly on frequency. The line widths of the observed modes typically exceed the natural linewidths of the modes as inferred from linear theory. This broadening appears to be related to the (stochastic) interaction between the modes and the underlying turbulence which causes abrupt, episodic events during which the phase coherence of the modes is lost.

  18. A finite difference solution for the propagation of sound in near sonic flows

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Lester, H. C.

    1983-01-01

    An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory.

  19. Optical filters for linearly polarized light using sculptured nematic thin flim of TiO2

    NASA Astrophysics Data System (ADS)

    Muhammad, Zahir; Wali, Faiz; Rehman, Zia ur

    2018-05-01

    A study of optical filters using sculptured nematic thin films is presented in this article. A central 90◦ twist-defect between two sculptured nematic thin films (SNTFs) sections transmit light of same polarization state and reflect other in the spectral Bragg regime. The SNTFs reflect light of both linearly polarized states in the Bragg regime if the amplitude of modulation of vapor incident angle is increased. A twist-defect in a tilt-modulated sculptured nematic thin films as a result produces bandpass or ultra-narrow bandpass filter depending upon the thickness of the SNTFs. However, both the bandpass or/and ultra-narrow bandpass filters can make polarization-insensitive Bragg mirrors by the appropriate modulation of the tilted 2D nanostructures of a given sculptured nematic thin films. Moreover, it is also observed that the sculptured nematic thin films are very tolerant of the structural defects if the amplitude of modulating vapor incident angle of the structural nano-materials is sufficiently large. Similarly, we observed the affect of incident angles on Bragg filters.

  20. Directional asymmetry of the nonlinear wave phenomena in a three-dimensional granular phononic crystal under gravity.

    PubMed

    Merkel, A; Tournat, V; Gusev, V

    2014-08-01

    We report the experimental observation of the gravity-induced asymmetry for the nonlinear transformation of acoustic waves in a noncohesive granular phononic crystal. Because of the gravity, the contact precompression increases with depth inducing space variations of not only the linear and nonlinear elastic moduli but also of the acoustic wave dissipation. We show experimentally and explain theoretically that, in contrast to symmetric propagation of linear waves, the amplitude of the nonlinearly self-demodulated wave depends on whether the propagation of the waves is in the direction of the gravity or in the opposite direction. Among the observed nonlinear processes, we report frequency mixing of the two transverse-rotational modes belonging to the optical band of vibrations and propagating with negative phase velocities, which results in the excitation of a longitudinal wave belonging to the acoustic band of vibrations and propagating with positive phase velocity. We show that the measurements of the gravity-induced asymmetry in the nonlinear acoustic phenomena can be used to compare the in-depth distributions of the contact nonlinearity and of acoustic absorption.

Top