Sample records for observed mass spectrum

  1. A NuSTAR Observation of the Reflection Spectrum of the Low-Mass X-Ray Binary 4U 1728-34

    NASA Technical Reports Server (NTRS)

    Sleator, Clio C.; Tomsick, John A.; King, Ashley L.; Miller, Jon M.; Boggs, Steven E.; Bachetti, Matteo; Barret, Didier; Chenevez, Jerome; Christensen, Finn E.; Craig, William W.; hide

    2016-01-01

    We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and described well by a blackbody with kT=1.5 keV and a cutoff power law with Lambda = 1.5, and a cutoff temperature of 25 keV. Residuals between 6 and 8 keV provide strong evidence of a broad Fe K(alpha) line. By modeling the spectrum with a relativistically blurred reflection model, we find an upper limit for the inner disk radius of R(sub in) < or = 2R(sub ISCO). Consequently, we find that R(sub NS) < or = 23 km, assuming M = 1.4 Stellar Mass and a = 0.15. We also find an upper limit on the magnetic field of B < or =2 x 10(exp 8) G.

  2. Hadron mass spectrum from lattice QCD.

    PubMed

    Majumder, Abhijit; Müller, Berndt

    2010-12-17

    Finite temperature lattice simulations of quantum chromodynamics (QCD) are sensitive to the hadronic mass spectrum for temperatures below the "critical" temperature T(c) ≈ 160 MeV. We show that a recent precision determination of the QCD trace anomaly shows evidence for the existence of a large number of hadron states beyond those known from experiment. The lattice results are well represented by an exponentially growing mass spectrum up to a temperature T=155 MeV. Using simple parametrizations of the hadron mass spectrum we show how one may estimate the total spectral weight in these yet undermined states.

  3. Dust density and mass distribution near comet Halley from Giotto observations

    NASA Technical Reports Server (NTRS)

    Mcdonnell, J. A. M.; Alexander, W. M.; Burton, W. M.; Bussoletti, E.; Clark, D. H.; Grard, J. L.; Gruen, E.; Hanner, M. S.; Sekanina, Z.; Hughes, D. W.

    1986-01-01

    The density and the mass spectrum of the dust near comet Halley have been measured by the Giotto space probe's dust impact detection system. The dust spectrum obtained at 291,000 km from the comet nucleus show depletion in small and intermediate masses; at about 600 km from the nucleus, however, the dust activity rises and the spectrum is dominated by larger masses. Most of the mass striking Giotto is noted to reside in the few large particles penetrating the dust shield. Momentum balances and energy considerations applied to an observed deceleration suggest that a large mass of the spacecraft was detached by an impact.

  4. Observational constraints on varying neutrino-mass cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Chao-Qiang; Lee, Chung-Chi; Myrzakulov, R.

    We consider generic models of quintessence and we investigate the influence of massive neutrino matter with field-dependent masses on the matter power spectrum. In case of minimally coupled neutrino matter, we examine the effect in tracker models with inverse power-law and double exponential potentials. We present detailed investigations for the scaling field with a steep exponential potential, non-minimally coupled to massive neutrino matter, and we derive constraints on field-dependent neutrino masses from the observational data.

  5. Spectroscopic Observations of the Mass Donor Star in SS 433

    NASA Astrophysics Data System (ADS)

    Hillwig, T. C.; Gies, D. R.

    2008-03-01

    The microquasar SS 433 is an interacting massive binary consisting of an evolved mass donor and a compact companion that ejects relativistic jets. The mass donor was previously identified through spectroscopic observations of absorption lines in the blue part of the spectrum that showed Doppler shifts associated with orbital motion and strength variations related to the orbital modulation of the star-to-disk flux ratio and to disk obscuration. However, subsequent observations revealed other absorption features that lacked these properties and that were probably formed in the disk gas outflow. We present follow-up observations of SS 433 at orbital and precession phases identical to those from several previous studies, with the goals of confirming the detection of the mass donor spectrum and providing more reliable masses for the two system components. We show that the absorption features present as well as those previously observed almost certainly belong to the mass donor star, and find revised masses of 12.3 ± 3.3 and 4.3 ± 0.8 M⊙ for the mass donor and compact object, respectively. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (US), the Science and Technology Facilities Council (UK), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and SECYT (Argentina).

  6. Measuring the Binary Black Hole Mass Spectrum with an Astrophysically Motivated Parameterization

    NASA Astrophysics Data System (ADS)

    Talbot, Colm; Thrane, Eric

    2018-04-01

    Gravitational-wave detections have revealed a previously unknown population of stellar mass black holes with masses above 20 M ⊙. These observations provide a new way to test models of stellar evolution for massive stars. By considering the astrophysical processes likely to determine the shape of the binary black hole mass spectrum, we construct a parameterized model to capture key spectral features that relate gravitational-wave data to theoretical stellar astrophysics. In particular, we model the signature of pulsational pair-instability supernovae, which are expected to cause all stars with initial mass 100 M ⊙ ≲ M ≲ 150 M ⊙ to form ∼40 M ⊙ black holes. This would cause a cutoff in the black hole mass spectrum along with an excess of black holes near 40 M ⊙. We carry out a simulated data study to illustrate some of the stellar physics that can be inferred using gravitational-wave measurements of binary black holes and demonstrate several such inferences that might be made in the near future. First, we measure the minimum and maximum stellar black hole mass. Second, we infer the presence of a peak due to pair-instability supernovae. Third, we measure the distribution of black hole mass ratios. Finally, we show how inadequate models of the black hole mass spectrum lead to biased estimates of the merger rate and the amplitude of the stochastic gravitational-wave background.

  7. Observational Appearance and Spectrum of Black-Hole Winds

    NASA Astrophysics Data System (ADS)

    Fukue, Jun; Iino, Eriko

    2010-12-01

    We examine the observational appearance of an optically thick, spherically symmetric, relativistic wind (a black-hole wind), focusing our attention on the emerging spectrum. In a relativistic flow, the apparent optical depth becomes small (large) in the downstream (upstream) direction due to the Lorentz-Fitzgerald contraction. As a result, the location of the apparent photosphere of the wind is remarkably modified, and there appears a relativistic limb-darkening (center-brightening) effect, where the comoving temperature distribution of the apparent photosphere is enhanced (reduced) at the center (in the limb). In addition, due to the usual Doppler boost, the observed temperature distribution is greatly changed. These relativistic effects modify the expected spectrum. When the wind speed is subrelativistic, the observed temperature distribution is almost uniform, and the spectra of the black-hole wind are blackbody-like. When the wind speed becomes relativistic, on the other hand, the observed temperature distribution, Tobs, exhibits a power-law nature of Tobs ∝ r-1, where r is the distance from the disk center, and the observed spectra Sν become a modified blackbody, which has a power-law part of Sν ∝ ν, where ν is the frequency. We briefly examine the effects of the spatial variation of the wind speed and the mass-loss rate.

  8. Observation of the Y (4140) structure in the J/ψϕ mass spectrum in B±→ J/ψϕK± decays

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; González, B. Álvarez; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bauer, G.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Brigliadori, L.; Brisuda, A.; Bromberg, C.; Brucken, E.; Buccianton, M.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Compostella, G.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; D'Ascenzo, N.; Datta, M.; de Barbaro, P.; de Cecco, S.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Devoto, F.; D'Errico, M.; di Canto, A.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, M.; Dorigo, T.; Ebina, K.; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H. C.; Farrington, S.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Funakoshi, Y.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; da Costa, J. Guimaraes; Gunay-Unalan, Z.; Haber, C.; Hahn, S. R.; Halkiadakis, E.; Hamaguchi, A.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R. F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Hewamanage, S.; Hidas, D.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R. E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kamon, T.; Karchin, P. E.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirby, M.; Klimenko, S.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, J. S.; Lee, S. W.; Leo, S.; Leone, S.; Lin, C.-J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N. S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martínez, M.; Martínez-Ballarín, R.; Mastrandrea, P.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M. N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Fernandez, P. Movilla; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Griso, S. Pagan; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A. A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Plager, C.; Pondrom, L.; Potamianos, K.; Poukhov, O.; Prokoshin, F.; Pronko, A.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rubbo, F.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sartori, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shreyber, I.; Simonenko, A.; Sinervo, P.; Sissakian, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Soha, A.; Somalwar, S.; Sorin, V.; Squillacioti, P.; Stancari, M.; Stanitzki, M.; Denis, R. St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thome, J.; Thompson, G. A.; Thomson, E.; Ttito-Guzmán, P.; Tkaczyk, S.; Tokar, S.; Tollefson, K.; Tomura, T.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tu, Y.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R. L.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Whitehouse, B.; Whiteson, D.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamaoka, J.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanetti, A.; Zeng, Y.; Zucchelli, S.

    2017-08-01

    The observation of the Y (4140) structure in B±→ J/ψϕK± decays produced in p¯p collisions at s = 1.96 TeV is reported with a statistical significance greater than 5 standard deviations. A fit to the J/ψϕ mass spectrum is performed assuming the presence of a Breit-Wigner resonance. The fit yields a signal of 19 ± 6(stat) ± 3(syst) resonance events, and resonance mass and width of 4143.4-3.0+2.9(stat) ± 0.6(syst)MeV/c2 and 15.3-6.1+10.4(stat) ± 2.5(syst)MeV/c2, respectively. The parameters of this resonance-like structure are consistent with values reported from an earlier CDF analysis.

  9. Observation of an Anomalous Line Shape of the η^{'}π^{+}π^{-} Mass Spectrum near the pp[over ¯] Mass Threshold in J/ψ→γη^{'}π^{+}π^{-}.

    PubMed

    Ablikim, M; Achasov, M N; Ahmed, S; Ai, X C; Albayrak, O; Albrecht, M; Ambrose, D J; Amoroso, A; An, F F; An, Q; Bai, J Z; Baldini Ferroli, R; Ban, Y; Bennett, D W; Bennett, J V; Berger, N; Bertani, M; Bettoni, D; Bian, J M; Bianchi, F; Boger, E; Boyko, I; Briere, R A; Cai, H; Cai, X; Cakir, O; Calcaterra, A; Cao, G F; Cetin, S A; Chang, J F; Chelkov, G; Chen, G; Chen, H S; Chen, H Y; Chen, J C; Chen, M L; Chen, S; Chen, S J; Chen, X; Chen, X R; Chen, Y B; Cheng, H P; Chu, X K; Cibinetto, G; Dai, H L; Dai, J P; Dbeyssi, A; Dedovich, D; Deng, Z Y; Denig, A; Denysenko, I; Destefanis, M; De Mori, F; Ding, Y; Dong, C; Dong, J; Dong, L Y; Dong, M Y; Dou, Z L; Du, S X; Duan, P F; Fan, J Z; Fang, J; Fang, S S; Fang, X; Fang, Y; Farinelli, R; Fava, L; Fedorov, O; Feldbauer, F; Felici, G; Feng, C Q; Fioravanti, E; Fritsch, M; Fu, C D; Gao, Q; Gao, X L; Gao, X Y; Gao, Y; Gao, Z; Garzia, I; Goetzen, K; Gong, L; Gong, W X; Gradl, W; Greco, M; Gu, M H; Gu, Y T; Guan, Y H; Guo, A Q; Guo, L B; Guo, R P; Guo, Y; Guo, Y P; Haddadi, Z; Hafner, A; Han, S; Hao, X Q; Harris, F A; He, K L; Heinsius, F H; Held, T; Heng, Y K; Holtmann, T; Hou, Z L; Hu, C; Hu, H M; Hu, J F; Hu, T; Hu, Y; Huang, G S; Huang, Y P; Huang, J S; Huang, X T; Huang, X Z; Huang, Y; Huang, Z L; Hussain, T; Ji, Q; Ji, Q P; Ji, X B; Ji, X L; Jiang, L W; Jiang, X S; Jiang, X Y; Jiao, J B; Jiao, Z; Jin, D P; Jin, S; Johansson, T; Julin, A; Kalantar-Nayestanaki, N; Kang, X L; Kang, X S; Kavatsyuk, M; Ke, B C; Kiese, P; Kliemt, R; Kloss, B; Kolcu, O B; Kopf, B; Kornicer, M; Kupsc, A; Kühn, W; Lange, J S; Lara, M; Larin, P; Leithoff, H; Leng, C; Li, C; Li, Cheng; Li, D M; Li, F; Li, F Y; Li, G; Li, H B; Li, H J; Li, J C; Li, Jin; Li, K; Li, K; Li, Lei; Li, P R; Li, Q Y; Li, T; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Li, Y B; Li, Z B; Liang, H; Liang, Y F; Liang, Y T; Liao, G R; Lin, D X; Liu, B; Liu, B J; Liu, C X; Liu, D; Liu, F H; Liu, Fang; Liu, Feng; Liu, H B; Liu, H H; Liu, H H; Liu, H M; Liu, J; Liu, J B; Liu, J P; Liu, J Y; Liu, K; Liu, K Y; Liu, L D; Liu, P L; Liu, Q; Liu, S B; Liu, X; Liu, Y B; Liu, Y Y; Liu, Z A; Liu, Zhiqing; Loehner, H; Lou, X C; Lu, H J; Lu, J G; Lu, Y; Lu, Y P; Luo, C L; Luo, M X; Luo, T; Luo, X L; Lyu, X R; Ma, F C; Ma, H L; Ma, L L; Ma, M M; Ma, Q M; Ma, T; Ma, X N; Ma, X Y; Ma, Y M; Maas, F E; Maggiora, M; Malik, Q A; Mao, Y J; Mao, Z P; Marcello, S; Messchendorp, J G; Mezzadri, G; Min, J; Min, T J; Mitchell, R E; Mo, X H; Mo, Y J; Morales Morales, C; Muchnoi, N Yu; Muramatsu, H; Musiol, P; Nefedov, Y; Nerling, F; Nikolaev, I B; Ning, Z; Nisar, S; Niu, S L; Niu, X Y; Olsen, S L; Ouyang, Q; Pacetti, S; Pan, Y; Patteri, P; Pelizaeus, M; Peng, H P; Peters, K; Pettersson, J; Ping, J L; Ping, R G; Poling, R; Prasad, V; Qi, H R; Qi, M; Qian, S; Qiao, C F; Qin, L Q; Qin, N; Qin, X S; Qin, Z H; Qiu, J F; Rashid, K H; Redmer, C F; Ripka, M; Rong, G; Rosner, Ch; Ruan, X D; Sarantsev, A; Savrié, M; Schnier, C; Schoenning, K; Schumann, S; Shan, W; Shao, M; Shen, C P; Shen, P X; Shen, X Y; Sheng, H Y; Shi, M; Song, W M; Song, X Y; Sosio, S; Spataro, S; Sun, G X; Sun, J F; Sun, S S; Sun, X H; Sun, Y J; Sun, Y Z; Sun, Z J; Sun, Z T; Tang, C J; Tang, X; Tapan, I; Thorndike, E H; Tiemens, M; Uman, I; Varner, G S; Wang, B; Wang, B L; Wang, D; Wang, D Y; Wang, K; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, S G; Wang, W; Wang, W P; Wang, X F; Wang, Y; Wang, Y D; Wang, Y F; Wang, Y Q; Wang, Z; Wang, Z G; Wang, Z H; Wang, Z Y; Wang, Z Y; Weber, T; Wei, D H; Wei, J B; Weidenkaff, P; Wen, S P; Wiedner, U; Wolke, M; Wu, L H; Wu, L J; Wu, Z; Xia, L; Xia, L G; Xia, Y; Xiao, D; Xiao, H; Xiao, Z J; Xie, Y G; Xiu, Q L; Xu, G F; Xu, J J; Xu, L; Xu, Q J; Xu, Q N; Xu, X P; Yan, L; Yan, W B; Yan, W C; Yan, Y H; Yang, H J; Yang, H X; Yang, L; Yang, Y X; Ye, M; Ye, M H; Yin, J H; Yu, B X; Yu, C X; Yu, J S; Yuan, C Z; Yuan, W L; Yuan, Y; Yuncu, A; Zafar, A A; Zallo, A; Zeng, Y; Zeng, Z; Zhang, B X; Zhang, B Y; Zhang, C; Zhang, C C; Zhang, D H; Zhang, H H; Zhang, H Y; Zhang, J; Zhang, J J; Zhang, J L; Zhang, J Q; Zhang, J W; Zhang, J Y; Zhang, J Z; Zhang, K; Zhang, L; Zhang, S Q; Zhang, X Y; Zhang, Y; Zhang, Y H; Zhang, Y N; Zhang, Y T; Zhang, Yu; Zhang, Z H; Zhang, Z P; Zhang, Z Y; Zhao, G; Zhao, J W; Zhao, J Y; Zhao, J Z; Zhao, Lei; Zhao, Ling; Zhao, M G; Zhao, Q; Zhao, Q W; Zhao, S J; Zhao, T C; Zhao, Y B; Zhao, Z G; Zhemchugov, A; Zheng, B; Zheng, J P; Zheng, W J; Zheng, Y H; Zhong, B; Zhou, L; Zhou, X; Zhou, X K; Zhou, X R; Zhou, X Y; Zhu, K; Zhu, K J; Zhu, S; Zhu, S H; Zhu, X L; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, J; Zotti, L; Zou, B S; Zou, J H

    2016-07-22

    Using 1.09×10^{9} J/ψ events collected by the BESIII experiment in 2012, we study the J/ψ→γη^{'}π^{+}π^{-} process and observe a significant abrupt change in the slope of the η^{'}π^{+}π^{-} invariant mass distribution at the proton-antiproton (pp[over ¯]) mass threshold. We use two models to characterize the η^{'}π^{+}π^{-} line shape around 1.85  GeV/c^{2}: one that explicitly incorporates the opening of a decay threshold in the mass spectrum (Flatté formula), and another that is the coherent sum of two resonant amplitudes. Both fits show almost equally good agreement with data, and suggest the existence of either a broad state around 1.85  GeV/c^{2} with strong couplings to the pp[over ¯] final states or a narrow state just below the pp[over ¯] mass threshold. Although we cannot distinguish between the fits, either one supports the existence of a pp[over ¯] moleculelike state or bound state with greater than 7σ significance.

  10. Absorption line profiles in a companion spectrum of a mass losing cool supergiant

    NASA Technical Reports Server (NTRS)

    Rodrigues, Liliya L.; Boehm-Vitense, Erika

    1990-01-01

    Cool star winds can best be observed in resonance absorption lines seen in the spectrum of a hot companion, due to the wind passing in front of the blue star. We calculated absorption line profiles that would be seen in the ultraviolet part of the blue companion spectrum. Line profiles are derived for different radial dependences of the cool star wind and for different orbital phases of the binary. Bowen and Wilson find theoretically that stellar pulsations drive mass loss. We therefore apply our calculations to the Cepheid binary S Muscae which has a B5V companion. We find an upper limit for the Cepheid mass loss of M less than or equal to 7 x 10(exp -10) solar mass per year provided that the stellar wind of the companion does not influence the Cepheid wind at large distances.

  11. Observation of a peaking structure in the $$J/\\psi \\phi$$ mass spectrum from $$B^{\\pm} \\to J/\\psi \\phi K^{\\pm}$$ decays

    DOE PAGES

    Chatrchyan, Serguei

    2014-05-22

    A peaking structure in the J/psi phi mass spectrum near threshold is observed in B(+/-) to J/psi phi K(+/-) decays, produced in pp collisions at sqrt(s) = 7 TeV collected with the CMS detector at the LHC. The data sample, selected on the basis of the dimuon decay mode of the J/psi, corresponds to an integrated luminosity of 5.2 inverse femtobarns. Fitting the structure to an S-wave relativistic Breit-Wigner lineshape above a three-body phase-space nonresonant component gives a signal statistical significance exceeding five standard deviations. The fitted mass and width values are m = 4148.0 +- 2.4 (stat.) +- 6.3more » (syst.) MeV and Gamma = 28 +15 -11 (stat.) +- 19 (syst.) MeV, respectively. Evidence for an additional peaking structure at higher J/psi phi mass is also reported.« less

  12. Observation of the Y (4140) structure in the J/ψΦ mass spectrum in B±→ J/ψΦK ± decays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aaltonen, T.; González, B. Álvarez; Amerio, S.

    Here, the observation of themore » $Y(4140)$ structure in $$B^\\pm\\rightarrow J/\\psi\\,\\phi K^\\pm$$ decays produced in $$\\bar{p} p $$ collisions at $$\\sqrt{s}=1.96~TeV$$ is reported with a statistical significance greater than 5 standard deviations. A fit to the $$J/\\psi\\,\\phi$$ mass spectrum is performed assuming the presence of a Breit-Wigner resonance. The fit yields a signal of $$19^{+6}_{-5}$$ resonance events, and resonance mass and width of $$4143.4^{+2.9}_{-3.0}(\\mathrm{stat})\\pm0.6(\\mathrm{syst}) ~MeVcc$$ and $$15.3^{+10.4}_{-6.1}(\\mathrm{stat})\\pm2.5(\\mathrm{syst})~MeVcc$$ respectively. The parameters of this resonance-like structure are consistent with values reported from an earlier CDF analysis.« less

  13. Observation of the Y (4140) structure in the J/ψΦ mass spectrum in B±→ J/ψΦK ± decays

    DOE PAGES

    Aaltonen, T.; González, B. Álvarez; Amerio, S.; ...

    2017-07-27

    Here, the observation of themore » $Y(4140)$ structure in $$B^\\pm\\rightarrow J/\\psi\\,\\phi K^\\pm$$ decays produced in $$\\bar{p} p $$ collisions at $$\\sqrt{s}=1.96~TeV$$ is reported with a statistical significance greater than 5 standard deviations. A fit to the $$J/\\psi\\,\\phi$$ mass spectrum is performed assuming the presence of a Breit-Wigner resonance. The fit yields a signal of $$19^{+6}_{-5}$$ resonance events, and resonance mass and width of $$4143.4^{+2.9}_{-3.0}(\\mathrm{stat})\\pm0.6(\\mathrm{syst}) ~MeVcc$$ and $$15.3^{+10.4}_{-6.1}(\\mathrm{stat})\\pm2.5(\\mathrm{syst})~MeVcc$$ respectively. The parameters of this resonance-like structure are consistent with values reported from an earlier CDF analysis.« less

  14. X-shooter observations of low-mass stars in the η Chamaeleontis association

    NASA Astrophysics Data System (ADS)

    Rugel, Michael; Fedele, Davide; Herczeg, Gregory

    2018-01-01

    The nearby η Chamaeleontis association is a collection of 4-10 Myr old stars with a disk fraction of 35-45%. In this study, the broad wavelength coverage of VLT/X-shooter is used to measure the stellar and mass accretion properties of 15 low-mass stars in the η Chamaeleontis association. For each star, the observed spectrum is fitted with a non-accreting stellar template and an accretion spectrum obtained from assuming a plane-parallel hydrogen slab. Five of the eight stars with an IR disk excess show excess UV emission, indicating ongoing accretion. The accretion rates measured here are similar to those obtained from previous measurements of excess UV emission, but tend to be higher than past measurements from Hα modeling. The mass accretion rates are consistent with those of other young star forming regions. This work is based on observations made with ESO Telescopes at the Paranal Observatory under program ID 084.C-1095.

  15. Elucidating the mass spectrum of the retronecine alkaloid using DFT calculations.

    PubMed

    Modesto-Costa, Lucas; Martinez, Sabrina T; Pinto, Angelo C; Vessecchi, Ricardo; Borges, Itamar

    2018-06-23

    Pyrrolizidine alkaloids are natural molecules playing important roles in different biochemical processes in nature and in humans. In this work, the electron ionization mass spectrum (EI-MS) of retronecine, an alkaloid molecule found in plants, is investigated computationally. Its mass spectrum can be characterized by three main fragment ions having the following m/z ratios: 111, 94 and 80. In order to rationalize the mass spectrum, minima and transition state geometries were computed using density functional theory (DFT). It was showed that the dissociation process includes an aromatization of the originally five-membered ring of retronecine converted into a six-membered ring compound. A fragmentation pathway mechanism involving dissociation activation barriers that are easily overcome by the initial ionization energy was found. From the computed quantum chemical geometric, atomic charges and energetic parameters, the abundance of each ion in the mass spectrum of retronecine was discussed. This article is protected by copyright. All rights reserved.

  16. Angular power spectrum of galaxies in the 2MASS Redshift Survey

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Benoit-Lévy, Aurélien; Komatsu, Eiichiro

    2018-02-01

    We present the measurement and interpretation of the angular power spectrum of nearby galaxies in the 2MASS Redshift Survey catalogue with spectroscopic redshifts up to z ≈ 0.1. We detect the angular power spectrum up to a multipole of ℓ ≈ 1000. We find that the measured power spectrum is dominated by galaxies living inside nearby galaxy clusters and groups. We use the halo occupation distribution (HOD) formalism to model the power spectrum, obtaining a fit with reasonable parameters. These HOD parameters are in agreement with the 2MASS galaxy distribution we measure towards the known nearby galaxy clusters, confirming validity of our analysis.

  17. Black Holes across the Mass Spectrum-from Stellar Mass BH to ULXs and AGN

    NASA Technical Reports Server (NTRS)

    Mushotzky, Richard

    2006-01-01

    I will discuss the observational characteristics of black holes and how they compare across the 10^8 range in mass and as a function of luminosity and apparent Eddington ratio. I will concentrate on the broad band spectrum, the timing signatures and the energy budget of these objects. In particular I will stress the similarities and differences in the x-ray spectra and power density spectra of AGN, ultraluminous x-ray sources and galactic black holes as a function of 'state'. I will also discuss the nature of the Fe K line and other diagnostics of the regions near the event horizon.

  18. The Large Local Hole in the Galaxy Distribution: The 2MASS Galaxy Angular Power Spectrum

    NASA Astrophysics Data System (ADS)

    Frith, W. J.; Outram, P. J.; Shanks, T.

    2005-06-01

    We present new evidence for a large deficiency in the local galaxy distribution situated in the ˜4000 deg2 APM survey area. We use models guided by the 2dF Galaxy Redshift Survey (2dFGRS) n(z) as a probe of the underlying large-scale structure. We first check the usefulness of this technique by comparing the 2dFGRS n(z) model prediction with the K-band and B-band number counts extracted from the 2MASS and 2dFGRS parent catalogues over the 2dFGRS Northern and Southern declination strips, before turning to a comparison with the APM counts. We find that the APM counts in both the B and K-bands indicate a deficiency in the local galaxy distribution of ˜30% to z ≈ 0.1 over the entire APM survey area. We examine the implied significance of such a large local hole, considering several possible forms for the real-space correlation function. We find that such a deficiency in the APM survey area indicates an excess of power at large scales over what is expected from the correlation function observed in 2dFGRS correlation function or predicted from ΛCDM Hubble Volume mock catalogues. In order to check further the clustering at large scales in the 2MASS data, we have calculated the angular power spectrum for 2MASS galaxies. Although in the linear regime (l<30), ΛCDM models can give a good fit to the 2MASS angular power spectrum, over a wider range (l<100) the power spectrum from Hubble Volume mock catalogues suggests that scale-dependent bias may be needed for ΛCDM to fit. However, the modest increase in large-scale power observed in the 2MASS angular power spectrum is still not enough to explain the local hole. If the APM survey area really is 25% deficient in galaxies out to z≈0.1, explanations for the disagreement with observed galaxy clustering statistics include the possibilities that the galaxy clustering is non-Gaussian on large scales or that the 2MASS volume is still too small to represent a `fair sample' of the Universe. Extending the 2dFGRS redshift survey

  19. An Examination of the Reliability of a New Observation Measure for Autism Spectrum Disorders: The Autism Spectrum Disorder Observation for Children

    ERIC Educational Resources Information Center

    Neal, Daniene; Matson, Johnny L.; Belva, Brian C.

    2013-01-01

    The "autism spectrum disorder observation for children" ("ASD-OC") is a newly created 54-item observation measure for autism spectrum disorders (ASD). Due to the fact that many of the ASD observation measures currently available do not have established psychometric properties and require extensive time and training to administer, the "ASD-OC"…

  20. KASCADE-Grande observation of features in the cosmic ray spectrum between knee and ankle

    NASA Astrophysics Data System (ADS)

    Haungs, A.; Apel, W. D.; Arteaga-Velazquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schroder, F.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2013-02-01

    The detection of high-energy cosmic rays above a few hundred TeV is realized by the observation of extensive air-showers. By using the multi-detector setup of KASCADE-Grande, and here in particular the detectors of the large Grande array, the energy spectrum and the elemental composition of high-energy cosmic rays in the energy range from 10 PeV to 1 EeV are investigated. The estimation of energy and mass of the high-energy primary particles is based on the combined analysis of the total number of charged particles and the total number of muons measured by the detector arrays of Grande and KASCADE, respectively. The latest analysis results have shown that in the all-particle spectrum two features are present: a hardening of the spectrum at energies around 20 PeV and a steepening, i.e. a knee-like structure, at 80-90 PeV. The latter one was found to be due to a decrease of flux of the heavy mass component.

  1. The application of an optical Fourier spectrum analyzer on detecting defects in mass-produced satellite photographs

    NASA Technical Reports Server (NTRS)

    Athale, R.; Lee, S. H.

    1976-01-01

    Various defects in mass-produced pictures transmitted to earth from a satellite are investigated. It is found that the following defects are readily detectable via Fourier spectrum analysis: (1) bit slip, (2) breakup causing loss of image, and (3) disabled track at the top of the imagery. The scratches made on the film during mass production, which are difficult to detect by visual observation, also show themselves readily in Fourier spectrum analysis. A relation is established between the number of scratches, their width and depth and the intensity of their Fourier spectra. Other defects that are found to be equally suitable for Fourier spectrum analysis or visual (image analysis) detection are synchronous loss without blurring of image, and density variation in gray scale. However, the Fourier spectrum analysis is found to be unsuitable for detection of such defects as pin holes, annotation error, synchronous loss with blurring of images, and missing image in the beginning of the work order. The design of an automated, real time system, which will reject defective films, is treated.

  2. Kneelike Structure in the Spectrum of the Heavy Component of Cosmic Rays Observed with KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2011-10-01

    We report the observation of a steepening in the cosmic ray energy spectrum of heavy primary particles at about 8×1016eV. This structure is also seen in the all-particle energy spectrum, but is less significant. Whereas the “knee” of the cosmic ray spectrum at 3-5×1015eV was assigned to light primary masses by the KASCADE experiment, the new structure found by the KASCADE-Grande experiment is caused by heavy primaries. The result is obtained by independent measurements of the charged particle and muon components of the secondary particles of extensive air showers in the primary energy range of 1016 to 1018eV. The data are analyzed on a single-event basis taking into account also the correlation of the two observables.

  3. Bone Mass in Boys with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Calarge, Chadi A.; Schlechte, Janet A.

    2017-01-01

    To examine bone mass in children and adolescents with autism spectrum disorders (ASD). Risperidone-treated 5 to 17 year-old males underwent anthropometric and bone measurements, using dual-energy X-ray absorptiometry and peripheral quantitative computed tomography. Multivariable linear regression analysis models examined whether skeletal outcomes…

  4. Chandra Observation of Polaris: Census of Low-Mass Companions

    NASA Astrophysics Data System (ADS)

    Evans, Nancy Remage; Wolk, Scott; Guinan, Edward; Engle, Scott; Schlegel, Eric; Mason, Brian; Karovska, Margarita; Spitzbart, Bradley

    2009-09-01

    We have observed Polaris = HD 8890 with Chandra ACIS-I for 10 ksec and found an X-ray source at the location of the Cepheid Polaris A = Aa + Ab with log L_X = 28.89 ergs s^{-1} and a kT = 0.6 keV. Either the F7 Ib supergiant or the F6 V spectroscopic companion could produce a spectrum this soft. Polaris B is not an X-ray source, which is consistent with its early F spectral type. However, this shows that it does not itself have a lower mass companion. Two resolved low mass stars ``C and D" are not physical companions based on the lack of X-rays (indicating an older age than the Cepheid) and inconsistent motion. In addition, a possible more distant companion is identified, and also less plausible one. Thus, this observation provides a complete census of companions down to masses as small as an order of magnitude less than the Cepheid and nearly 15 mag fainter within the surrounding 0.1 pc.Funding for this work was provided by Chandra grant GO6-7011A Chandra X-ray Center NASA Contract NAS8-39073

  5. Chandra Observation of Polaris: Census of Low-mass Companions

    NASA Astrophysics Data System (ADS)

    Evans, Nancy Remage; Guinan, Edward; Engle, Scott; Wolk, Scott J.; Schlegel, Eric; Mason, Brian D.; Karovska, Margarita; Spitzbart, Bradley

    2010-05-01

    We have observed Cepheid Polaris (α UMi A: F7 Ib [Aa] + F6 V [Ab]) with Chandra ACIS-I for 10 ks. An X-ray source was found at the location of Polaris with log LX = 28.89 erg s-1 (0.3-8 keV) and kT = 0.6 keV. A spectrum this soft could come from either the supergiant or the dwarf, as shown by comparable coronal stars. Two resolved low-mass visual companions, "C" and "D," are not physical members of the system based on the lack of X-rays (indicating an age older than the Cepheid) and inconsistent proper motions. Polaris B is not an X-ray source, consistent with its early F spectral type, and probably does not have a lower mass companion itself. A possible more distant member is identified, and an additional less plausible one. This provides a complete census of companions out to 0.1 pc covering a mass ratio range of an order of magnitude and a ΔV of nearly 15 mag. Based on observations made with the NASA Chandra Satellite.

  6. Stellar mass spectrum within massive collapsing clumps. I. Influence of the initial conditions

    NASA Astrophysics Data System (ADS)

    Lee, Yueh-Ning; Hennebelle, Patrick

    2018-04-01

    Context. Stars constitute the building blocks of our Universe, and their formation is an astrophysical problem of great importance. Aim. We aim to understand the fragmentation of massive molecular star-forming clumps and the effect of initial conditions, namely the density and the level of turbulence, on the resulting distribution of stars. For this purpose, we conduct numerical experiments in which we systematically vary the initial density over four orders of magnitude and the turbulent velocity over a factor ten. In a companion paper, we investigate the dependence of this distribution on the gas thermodynamics. Methods: We performed a series of hydrodynamical numerical simulations using adaptive mesh refinement, with special attention to numerical convergence. We also adapted an existing analytical model to the case of collapsing clouds by employing a density probability distribution function (PDF) ∝ρ-1.5 instead of a lognormal distribution. Results: Simulations and analytical model both show two support regimes, a thermally dominated regime and a turbulence-dominated regime. For the first regime, we infer that dN/d logM ∝ M0, while for the second regime, we obtain dN/d logM ∝ M-3/4. This is valid up to about ten times the mass of the first Larson core, as explained in the companion paper, leading to a peak of the mass spectrum at 0.2 M⊙. From this point, the mass spectrum decreases with decreasing mass except for the most diffuse clouds, where disk fragmentation leads to the formation of objects down to the mass of the first Larson core, that is, to a few 10-2 M⊙. Conclusions: Although the mass spectra we obtain for the most compact clouds qualitatively resemble the observed initial mass function, the distribution exponent is shallower than the expected Salpeter exponent of - 1.35. Nonetheless, we observe a possible transition toward a slightly steeper value that is broadly compatible with the Salpeter exponent for masses above a few solar masses

  7. High-resolution observations of low-luminosity gigahertz-peaked spectrum and compact steep-spectrum sources

    NASA Astrophysics Data System (ADS)

    Collier, J. D.; Tingay, S. J.; Callingham, J. R.; Norris, R. P.; Filipović, M. D.; Galvin, T. J.; Huynh, M. T.; Intema, H. T.; Marvil, J.; O'Brien, A. N.; Roper, Q.; Sirothia, S.; Tothill, N. F. H.; Bell, M. E.; For, B.-Q.; Gaensler, B. M.; Hancock, P. J.; Hindson, L.; Hurley-Walker, N.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; Morgan, J.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.; Heywood, I.; Popping, A.

    2018-06-01

    We present very long baseline interferometry observations of a faint and low-luminosity (L1.4 GHz < 1027 W Hz-1) gigahertz-peaked spectrum (GPS) and compact steep-spectrum (CSS) sample. We select eight sources from deep radio observations that have radio spectra characteristic of a GPS or CSS source and an angular size of θ ≲ 2 arcsec, and detect six of them with the Australian Long Baseline Array. We determine their linear sizes, and model their radio spectra using synchrotron self-absorption (SSA) and free-free absorption (FFA) models. We derive statistical model ages, based on a fitted scaling relation, and spectral ages, based on the radio spectrum, which are generally consistent with the hypothesis that GPS and CSS sources are young and evolving. We resolve the morphology of one CSS source with a radio luminosity of 10^{25} W Hz^{-1}, and find what appear to be two hotspots spanning 1.7 kpc. We find that our sources follow the turnover-linear size relation, and that both homogeneous SSA and an inhomogeneous FFA model can account for the spectra with observable turnovers. All but one of the FFA models do not require a spectral break to account for the radio spectrum, while all but one of the alternative SSA and power-law models do require a spectral break to account for the radio spectrum. We conclude that our low-luminosity sample is similar to brighter samples in terms of their spectral shape, turnover frequencies, linear sizes, and ages, but cannot test for a difference in morphology.

  8. INFRARED SPECTRUM OF POTASSIUM-CATIONIZED TRIETHYLPHOSPHATE GENERATED USING TANDEM MASS SPECTROMETRY AND INFRARED MULTIPLE PHOTON DISSOCIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gary S. Groenewold; Christopher M. Leavitt; Ryan P. Dain

    2009-09-01

    Tandem mass spectrometry and wavelength selective infrared photodissociation was used to generate an infrared spectrum of gas-phase triethylphosphate cationized by attachment of K+. Prominent absorptions were observed in the region of 900 to 1300 cm-1 that are characteristic of phosphate P=O and P-O-R stretches. The relative positions and intensities of the IR absorptions were reproduced well by density functional theory (DFT) calculations performed using the B3LYP functional and the 6-31+g(d), 6-311+g(d,p) and 6-311++G(3df,2pd) basis sets. Because of good correspondence between experiment and theory for the cation, DFT was then used to generate a theoretical spectrum for neutral triethylphosphate, which inmore » turn accurately reproduces the IR spectrum of the neat liquid when solvent effects are included in the calculations.« less

  9. Parametric spectro-temporal analyzer (PASTA) for real-time optical spectrum observation

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Xu, Jianbing; Chui, P. C.; Wong, Kenneth K. Y.

    2013-06-01

    Real-time optical spectrum analysis is an essential tool in observing ultrafast phenomena, such as the dynamic monitoring of spectrum evolution. However, conventional method such as optical spectrum analyzers disperse the spectrum in space and allocate it in time sequence by mechanical rotation of a grating, so are incapable of operating at high speed. A more recent method all-optically stretches the spectrum in time domain, but is limited by the allowable input condition. In view of these constraints, here we present a real-time spectrum analyzer called parametric spectro-temporal analyzer (PASTA), which is based on the time-lens focusing mechanism. It achieves a frame rate as high as 100 MHz and accommodates various input conditions. As a proof of concept and also for the first time, we verify its applications in observing the dynamic spectrum of a Fourier domain mode-locked laser, and the spectrum evolution of a laser cavity during its stabilizing process.

  10. Electrospray ionization time-of-flight mass spectrum analysis method of polyaluminum chloride flocculants.

    PubMed

    Feng, Chenghong; Bi, Zhe; Tang, Hongxiao

    2015-01-06

    Electrospray mass spectrometry has been reported as a novel technique for Al species identification, but to date, the working mechanism is not clear and no unanimous method exists for spectrum analysis of traditional Al salt flocculants, let alone for analysis of polyaluminum chloride (PAC) flocculants. Therefore, this paper introduces a novel theoretical calculation method to identify Al species from a mass spectrum, based on deducing changes in m/z (mass-to-charge ratio) and molecular formulas of oligomers in five typical PAC flocculants. The use of reference chemical species was specially proposed in the method to guarantee the uniqueness of the assigned species. The charge and mass reduction of the Al cluster was found to proceed by hydrolysis, gasification, and change of hydroxyl on the oxy bridge. The novel method was validated both qualitatively and quantitatively by comparing the results to those obtained with the (27)Al NMR spectrometry.

  11. TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannsen, Tim; Psaltis, Dimitrios, E-mail: timj@physics.arizona.ed, E-mail: dpsaltis@email.arizona.ed

    2010-07-20

    According to the no-hair theorem, all astrophysical black holes are fully described by their masses and spins. This theorem can be tested observationally by measuring (at least) three different multipole moments of the spacetimes of black holes. In this paper, we analyze images of black holes within a framework that allows us to calculate observables in the electromagnetic spectrum as a function of the mass, spin, and, independently, the quadrupole moment of a black hole. We show that a deviation of the quadrupole moment from the expected Kerr value leads to images of black holes that are either prolate ormore » oblate depending on the sign and magnitude of the deviation. In addition, there is a ring-like structure around the black hole shadow with a diameter of {approx}10 black hole masses that is substantially brighter than the image of the underlying accretion flow and that is independent of the astrophysical details of accretion flow models. We show that the shape of this ring depends directly on the mass, spin, and quadrupole moment of the black hole and can be used for an independent measurement of all three parameters. In particular, we demonstrate that this ring is highly circular for a Kerr black hole with a spin a {approx}< 0.9 M, independent of the observer's inclination, but becomes elliptical and asymmetric if the no-hair theorem is violated. Near-future very long baseline interferometric observations of Sgr A* will image this ring and may allow for an observational test of the no-hair theorem.« less

  12. The Relationship between C_60 Mass Spectrum Intensity and C2 Vibrational Temperature in Microwave Helium Plasmas

    NASA Astrophysics Data System (ADS)

    Ueda, Kengo; Kuwahara, Kiyoshi; Fujiyama, Hiroshi

    1998-10-01

    The soot containing C_60 and C_70 was synthesized in helium plasmas generated in a quartz tube by microwave discharge. We used reticulated vitreous carbon (RVC) that was heated by electric field of TE_10 mode microwave and the plasma. During soot deposition, optical emission of plasmas was observed with a monochromator. The soot deposited on the quartz tube was analyzed by the laser desorption time-of-flight mass-spectroscopy (LD-TOF-MS). Up to the present, the most intense C_60 mass spectrum intensity was obtained for the condition of absorbed microwave power 200W and pressure 100Torr, where C2 vibrational temperature was about 5500K.

  13. Three-Item Direct Observation Screen (TIDOS) for Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Oner, Pinar; Oner, Ozgur; Munir, Kerim

    2014-01-01

    We compared ratings on the Three-Item Direct Observation Screen test for autism spectrum disorders completed by pediatric residents with the Social Communication Questionnaire parent reports as an augmentative tool for improving autism spectrum disorder screening performance. We examined three groups of children (18-60 months) comparable in age…

  14. Electrospray Ionization with High-Resolution Mass Spectrometry as a Tool for Lignomics: Lignin Mass Spectrum Deconvolution

    NASA Astrophysics Data System (ADS)

    Andrianova, Anastasia A.; DiProspero, Thomas; Geib, Clayton; Smoliakova, Irina P.; Kozliak, Evguenii I.; Kubátová, Alena

    2018-05-01

    The capability to characterize lignin, lignocellulose, and their degradation products is essential for the development of new renewable feedstocks. Electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR TOF-MS) method was developed expanding the lignomics toolkit while targeting the simultaneous detection of low and high molecular weight (MW) lignin species. The effect of a broad range of electrolytes and various ionization conditions on ion formation and ionization effectiveness was studied using a suite of mono-, di-, and triarene lignin model compounds as well as kraft alkali lignin. Contrary to the previous studies, the positive ionization mode was found to be more effective for methoxy-substituted arenes and polyphenols, i.e., species of a broadly varied MW structurally similar to the native lignin. For the first time, we report an effective formation of multiply charged species of lignin with the subsequent mass spectrum deconvolution in the presence of 100 mmol L-1 formic acid in the positive ESI mode. The developed method enabled the detection of lignin species with an MW between 150 and 9000 Da or higher, depending on the mass analyzer. The obtained M n and M w values of 1500 and 2500 Da, respectively, were in good agreement with those determined by gel permeation chromatography. Furthermore, the deconvoluted ESI mass spectrum was similar to that obtained with matrix-assisted laser desorption/ionization (MALDI)-HR TOF-MS, yet featuring a higher signal-to-noise ratio. The formation of multiply charged species was confirmed with ion mobility ESI-HR Q-TOF-MS. [Figure not available: see fulltext.

  15. Electrospray Ionization with High-Resolution Mass Spectrometry as a Tool for Lignomics: Lignin Mass Spectrum Deconvolution

    NASA Astrophysics Data System (ADS)

    Andrianova, Anastasia A.; DiProspero, Thomas; Geib, Clayton; Smoliakova, Irina P.; Kozliak, Evguenii I.; Kubátová, Alena

    2018-03-01

    The capability to characterize lignin, lignocellulose, and their degradation products is essential for the development of new renewable feedstocks. Electrospray ionization high-resolution time-of-flight mass spectrometry (ESI-HR TOF-MS) method was developed expanding the lignomics toolkit while targeting the simultaneous detection of low and high molecular weight (MW) lignin species. The effect of a broad range of electrolytes and various ionization conditions on ion formation and ionization effectiveness was studied using a suite of mono-, di-, and triarene lignin model compounds as well as kraft alkali lignin. Contrary to the previous studies, the positive ionization mode was found to be more effective for methoxy-substituted arenes and polyphenols, i.e., species of a broadly varied MW structurally similar to the native lignin. For the first time, we report an effective formation of multiply charged species of lignin with the subsequent mass spectrum deconvolution in the presence of 100 mmol L-1 formic acid in the positive ESI mode. The developed method enabled the detection of lignin species with an MW between 150 and 9000 Da or higher, depending on the mass analyzer. The obtained M n and M w values of 1500 and 2500 Da, respectively, were in good agreement with those determined by gel permeation chromatography. Furthermore, the deconvoluted ESI mass spectrum was similar to that obtained with matrix-assisted laser desorption/ionization (MALDI)-HR TOF-MS, yet featuring a higher signal-to-noise ratio. The formation of multiply charged species was confirmed with ion mobility ESI-HR Q-TOF-MS. [Figure not available: see fulltext.

  16. Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at s = 8 TeV

    DOE PAGES

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; ...

    2017-01-12

    A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions atmore » $$\\sqrt{s}$$=8 TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5 fb $-$1, recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. Lastly, the most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.« less

  17. Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at s = 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.

    A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions atmore » $$\\sqrt{s}$$=8 TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5 fb $-$1, recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. Lastly, the most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.« less

  18. Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at √{s }=8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Poyraz, D.; Salva, S.; Schöfbeck, R.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; De Visscher, S.; Delaere, C.; Delcourt, M.; Forthomme, L.; Francois, B.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Nuttens, C.; Piotrzkowski, K.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Zhao, J.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Ruiz Alvarez, J. D.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Awad, A.; Elgammal, S.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sabes, D.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schomakers, C.; Schulte, J. F.; Schulz, J.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Lelek, A.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Van Onsem, G. P.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Fink, S.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Filipovic, N.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Bahinipati, S.; Choudhury, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, R.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Rane, A.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Chiorboli, M.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; De Nardo, G.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; La Licata, C.; Schizzi, A.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Kim, H.; Brochero Cifuentes, J. A.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Seo, S. H.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Bunin, P.; Golutvin, I.; Gorbounov, N.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Chtchipounov, L.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Murzin, V.; Oreshkin, V.; Sulimov, V.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Chistov, R.; Danilov, M.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Rusakov, S. V.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Sanchez Cruz, S.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Fartoukh, S.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Girone, M.; Glege, F.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Knünz, V.; Kortelainen, M. J.; Kousouris, K.; Krammer, M.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Sauvan, J. B.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Wardle, N.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Tsai, J. f.; Tzeng, Y. M.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Sunar Cerci, D.; Tali, B.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; Lane, R.; Laner, C.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Nash, J.; Nikitenko, A.; Pela, J.; Penning, B.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Spencer, E.; Syarif, R.; Breedon, R.; Breto, G.; Burns, D.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Gerosa, R.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mccoll, N.; Mullin, S. D.; Ovcharova, A.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bendavid, J.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Sun, W.; Tan, S. M.; Tao, Z.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Cremonesi, M.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Shchutska, L.; Sperka, D.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Diamond, B.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Santra, A.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Bruner, C.; Castle, J.; Kenny, R. P.; Kropivnitskaya, A.; Majumder, D.; Malek, M.; Mcbrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Krajczar, K.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Rupprecht, N.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Huang, T.; Juska, E.; Kamon, T.; Krutelyov, V.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.; CMS Collaboration

    2017-01-01

    A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions at √{s }=8 TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5 fb-1 , recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. The most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.

  19. FORS2 observes a multi-epoch transmission spectrum of the hot Saturn-mass exoplanet WASP-49b

    NASA Astrophysics Data System (ADS)

    Lendl, M.; Delrez, L.; Gillon, M.; Madhusudhan, N.; Jehin, E.; Queloz, D.; Anderson, D. R.; Demory, B.-O.; Hellier, C.

    2016-03-01

    Context. Transmission spectroscopy has proven to be a useful tool for the study of exoplanet atmospheres, because the absorption and scattering signatures of the atmosphere manifest themselves as variations in the planetary transit depth. Several planets have been studied with this technique, leading to the detection of a small number of elements and molecules (Na, K, H2O), but also revealing that many planets show flat transmission spectra consistent with the presence of opaque high-altitude clouds. Aims: We apply this technique to the MP = 0.40MJ, Rp = 1.20RJ, P = 2.78 d planet WASP-49b, aiming to characterize its transmission spectrum between 0.73 and 1 ¯m and search for the features of K and H2O. Owing to its density and temperature, the planet is predicted to possess an extended atmosphere and is thus a good target for transmission spectroscopy. Methods: Three transits of WASP-49b have been observed with the FORS2 instrument installed at the VLT/UT1 telescope at the ESO Paranal site. We used FORS2 in MXU mode with grism GRIS_600z, producing simultaneous multiwavelength transit light curves throughout the I' and z' bands. We combined these data with independent broadband photometry from the Euler and TRAPPIST telescopes to obtain a good measurement of the transit shape. Strong correlated noise structures are present in the FORS2 light curves, which are due to rotating flat-field structures that are introduced by inhomogeneities of the linear atmospheric dispersion corrector's transparency. We accounted for these structures by constructing common noise models from the residuals of light curves bearing the same noise structures and used them together with simple parametric models to infer the transmission spectrum. Results: We present three independent transmission spectra of WASP-49b between 0.73 and 1.02 ¯m, as well as a transmission spectrum between 0.65 and 1.02 ¯m from the combined analysis of FORS2 and broadband data. The results obtained from the three

  20. Observational constraints on the primordial curvature power spectrum

    NASA Astrophysics Data System (ADS)

    Emami, Razieh; Smoot, George F.

    2018-01-01

    CMB temperature fluctuation observations provide a precise measurement of the primordial power spectrum on large scales, corresponding to wavenumbers 10‑3 Mpc‑1 lesssim k lesssim 0.1 Mpc‑1, [1-7, 11]. Luminous red galaxies and galaxy clusters probe the matter power spectrum on overlapping scales (0.02 Mpc‑1 lesssim k lesssim 0.7 Mpc‑1 [10, 12-20]), while the Lyman-alpha forest reaches slightly smaller scales (0.3 Mpc‑1 lesssim k lesssim 3 Mpc‑1 [22]). These observations indicate that the primordial power spectrum is nearly scale-invariant with an amplitude close to 2 × 10‑9, [5, 23-28]. These observations strongly support Inflation and motivate us to obtain observations and constraints reaching to smaller scales on the primordial curvature power spectrum and by implication on Inflation. We are able to obtain limits to much higher values of k lesssim 105 Mpc‑1 and with less sensitivity even higher k lesssim 1019‑ 1023 Mpc‑1 using limits from CMB spectral distortions and other limits on ultracompact minihalo objects (UCMHs) and Primordial Black Holes (PBHs). PBHs are one of the known candidates for the Dark Matter (DM). Due to their very early formation, they could give us valuable information about the primordial curvature perturbations. These are complementary to other cosmological bounds on the amplitude of the primordial fluctuations. In this paper, we revisit and collect all the published constraints on both PBHs and UCMHs. We show that unless one uses the CMB spectral distortion, PBHs give us a very relaxed bounds on the primordial curvature perturbations. UCMHs, on the other hand, are very informative over a reasonable k range (3 lesssim k lesssim 106 Mpc‑1) and lead to significant upper-bounds on the curvature spectrum. We review the conditions under which the tighter constraints on the UCMHs could imply extremely strong bounds on the fraction of DM that could be PBHs in reasonable models. Failure to satisfy these conditions would

  1. Simulation, Theory, and Observations of the Spectrum of the Rayleigh-Taylor Instability due to Laser Imprint of Planar Targets

    NASA Astrophysics Data System (ADS)

    Keskinen, M. J.; Karasik, Max; Bates, J. W.; Schmitt, A. J.

    2006-10-01

    A limitation on the efficiency of high gain direct drive inertial confinement fusion is the extent of pellet disruption caused by the Rayleigh-Taylor (RT) instability. The RT instability can be seeded by pellet surface irregularities and/or laser imprint nonuniformities. It is important to characterize the evolution of the RT instability, e.g., the k-spectrum of areal mass. In this paper we study the time-dependent evolution of the spectrum of the Rayleigh-Taylor instability due to laser imprint in planar targets. This is achieved using the NRL FAST hydrodynamic simulation code together with analytical models. It is found that the optically smoothed laser imprint-driven RT spectrum develops into an inverse power law in k-space after several linear growth times. FAST simulation code results are compared with recent NRL Nike KrF laser experimental data. An analytical model, which is a function of Froude and Atwood numbers, is derived for the RT spectrum and favorably compared with both FAST simulation and Nike observations.

  2. Tandem Mass Spectrum Sequencing: An Alternative to Database Search Engines in Shotgun Proteomics.

    PubMed

    Muth, Thilo; Rapp, Erdmann; Berven, Frode S; Barsnes, Harald; Vaudel, Marc

    2016-01-01

    Protein identification via database searches has become the gold standard in mass spectrometry based shotgun proteomics. However, as the quality of tandem mass spectra improves, direct mass spectrum sequencing gains interest as a database-independent alternative. In this chapter, the general principle of this so-called de novo sequencing is introduced along with pitfalls and challenges of the technique. The main tools available are presented with a focus on user friendly open source software which can be directly applied in everyday proteomic workflows.

  3. The mass spectrum of the first stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susa, Hajime; Tominaga, Nozomu; Hasegawa, Kenji, E-mail: susa@konan-u.ac.jp

    2014-09-01

    We perform cosmological hydrodynamics simulations with non-equilibrium primordial chemistry to obtain 59 minihalos that host first stars. The obtained minihalos are used as the initial conditions of local three-dimensional radiation hydrodynamics simulations to investigate the formation of the first stars. We find that two-thirds of the minihalos host multiple stars, while the other third has single stars. The mass of the stars found in our simulations are in the range of 1 M {sub ☉} ≲ M ≲ 300 M {sub ☉}, peaking at several× 10 M {sub ☉}. Most of the very massive stars of ≳ 140 M {submore » ☉} are born as single stars, although not all of the single stars are very massive. We also find a few stars of ≲ 1 M {sub ☉} that are kicked by the gravitational three body interactions to the position distant from the center of mass. The frequency that a star forming minihalo contains a binary system is ∼50%. We also investigate the abundance pattern of the stellar remnants by summing up the contributions from the first stars in the simulations. Consequently, the pattern is compatible with that of the low metallicity damped Lyα systems or the extremely metal-poor (EMP) stars, if the mass spectrum obtained in our experiment is shifted to the low mass side by 0.2 dex. If we consider the case that an EMP star is born in the remnant of the individual minihalo without mixing with others, the chemical signature of the pair instability supernova is more prominent, because most of them are born as single stars.« less

  4. [The Effect of Observation Geometry on Polarized Skylight Spectrum].

    PubMed

    Zhang, Ren-bin; Wang, Ling-mei; Gao, Jun; Wang, Chi

    2015-03-01

    Study on polarized skylight spectral characters while observation geometry changing in different solar zenith angles (SZA), viewing zenith angles (VZA) or relative azimuth angles (RAA). Simulation calculation of cloudless daylight polarimetric spectrum is realized based on the solver, vector discrete ordinate method, of radiative transfer equation. In the Sun's principal and perpendicular plane, the spectral irradiance data, varying at wavelengths in the range between 0.4 and 3 μm, are calculated to extend the atmospheric polarization spectral information under the conditions: the MODTRAN solar reference spectrur is the only illuminant source; the main influencing factors of polarized radiative transfer include underlying surface albedo, aerosol layers and components, and the absorption of trace gases. Simulation analysis results: (1) While the relative azimuth angle is zero, the magnitude of spectrum U/I is lower than 10(-7) and V/I is negligible, the degree of polarization and the spectrum Q/I are shaped like the letter V or mirror-writing U. (2) In twilight, when the Sun is not in FOV of the detector, the polarization of the daytime sky has two maximum near 0.51 and 2.75 μm, and a minimum near 1.5 μm. For arbitrary observation geometry, the spectral signal of V/I may be ignored. According to observation geometry, choosing different spectral bands or polarized signal will be propitious to targets detection.

  5. Disk Masses around Solar-mass Stars are Underestimated by CO Observations

    NASA Astrophysics Data System (ADS)

    Yu, Mo; Evans, Neal J., II; Dodson-Robinson, Sarah E.; Willacy, Karen; Turner, Neal J.

    2017-05-01

    Gas in protostellar disks provides the raw material for giant planet formation and controls the dynamics of the planetesimal-building dust grains. Accurate gas mass measurements help map the observed properties of planet-forming disks onto the formation environments of known exoplanets. Rare isotopologues of carbon monoxide (CO) have been used as gas mass tracers for disks in the Lupus star-forming region, with an assumed interstellar CO/H2 abundance ratio. Unfortunately, observations of T-Tauri disks show that CO abundance is not interstellar, a finding reproduced by models that show CO abundance decreasing both with distance from the star and as a function of time. Here, we present radiative transfer simulations that assess the accuracy of CO-based disk mass measurements. We find that the combination of CO chemical depletion in the outer disk and optically thick emission from the inner disk leads observers to underestimate gas mass by more than an order of magnitude if they use the standard assumptions of interstellar CO/H2 ratio and optically thin emission. Furthermore, CO abundance changes on million-year timescales, introducing an age/mass degeneracy into observations. To reach a factor of a few accuracy for CO-based disk mass measurements, we suggest that observers and modelers adopt the following strategies: (1) select low-J transitions; (2) observe multiple CO isotopologues and use either intensity ratios or normalized line profiles to diagnose CO chemical depletion; and (3) use spatially resolved observations to measure the CO-abundance distribution.

  6. Polychromatic sparse image reconstruction and mass attenuation spectrum estimation via B-spline basis function expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Renliang, E-mail: Venliang@iastate.edu, E-mail: ald@iastate.edu; Dogandžić, Aleksandar, E-mail: Venliang@iastate.edu, E-mail: ald@iastate.edu

    2015-03-31

    We develop a sparse image reconstruction method for polychromatic computed tomography (CT) measurements under the blind scenario where the material of the inspected object and the incident energy spectrum are unknown. To obtain a parsimonious measurement model parameterization, we first rewrite the measurement equation using our mass-attenuation parameterization, which has the Laplace integral form. The unknown mass-attenuation spectrum is expanded into basis functions using a B-spline basis of order one. We develop a block coordinate-descent algorithm for constrained minimization of a penalized negative log-likelihood function, where constraints and penalty terms ensure nonnegativity of the spline coefficients and sparsity of themore » density map image in the wavelet domain. This algorithm alternates between a Nesterov’s proximal-gradient step for estimating the density map image and an active-set step for estimating the incident spectrum parameters. Numerical simulations demonstrate the performance of the proposed scheme.« less

  7. Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at sqrt[s]=8  TeV.

    PubMed

    Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Asilar, E; Bergauer, T; Brandstetter, J; Brondolin, E; Dragicevic, M; Erö, J; Flechl, M; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; König, A; Krätschmer, I; Liko, D; Matsushita, T; Mikulec, I; Rabady, D; Rad, N; Rahbaran, B; Rohringer, H; Schieck, J; Strauss, J; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Lauwers, J; Luyckx, S; Van De Klundert, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Abu Zeid, S; Blekman, F; D'Hondt, J; Daci, N; De Bruyn, I; Deroover, K; Heracleous, N; Lowette, S; Moortgat, S; Moreels, L; Olbrechts, A; Python, Q; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Parijs, I; Brun, H; Caillol, C; Clerbaux, B; De Lentdecker, G; Delannoy, H; Fasanella, G; Favart, L; Goldouzian, R; Grebenyuk, A; Karapostoli, G; Lenzi, T; Léonard, A; Maerschalk, T; Marinov, A; Randle-Conde, A; Seva, T; Vander Velde, C; Vanlaer, P; Yonamine, R; Zenoni, F; Zhang, F; Cimmino, A; Dobur, D; Fagot, A; Garcia, G; Gul, M; Mccartin, J; Poyraz, D; Salva, S; Schöfbeck, R; Tytgat, M; Van Driessche, W; Yazgan, E; Zaganidis, N; Beluffi, C; Bondu, O; Brochet, S; Bruno, G; Caudron, A; Ceard, L; De Visscher, S; Delaere, C; Delcourt, M; Forthomme, L; Francois, B; Giammanco, A; Jafari, A; Jez, P; Komm, M; Lemaitre, V; Magitteri, A; Mertens, A; Musich, M; Nuttens, C; Piotrzkowski, K; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Wertz, S; Beliy, N; Aldá Júnior, W L; Alves, F L; Alves, G A; Brito, L; Correa Martins Junior, M; Hensel, C; Moraes, A; Pol, M E; Rebello Teles, P; Belchior Batista Das Chagas, E; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; Da Silveira, G G; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Huertas Guativa, L M; Malbouisson, H; Matos Figueiredo, D; Mora Herrera, C; Mundim, L; Nogima, H; Prado Da Silva, W L; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Ahuja, S; Bernardes, C A; Dogra, S; Fernandez Perez Tomei, T R; Gregores, E M; Mercadante, P G; Moon, C S; Novaes, S F; Padula, Sandra S; Romero Abad, D; Ruiz Vargas, J C; Aleksandrov, A; Hadjiiska, R; Iaydjiev, P; Rodozov, M; Stoykova, S; Sultanov, G; Vutova, M; Dimitrov, A; Glushkov, I; Litov, L; Pavlov, B; Petkov, P; Fang, W; Ahmad, M; Bian, J G; Chen, G M; Chen, H S; Chen, M; Chen, Y; Cheng, T; Du, R; Jiang, C H; Leggat, D; Liu, Z; Romeo, F; Shaheen, S M; Spiezia, A; Tao, J; Wang, C; Wang, Z; Zhang, H; Zhao, J; Asawatangtrakuldee, C; Ban, Y; Li, Q; Liu, S; Mao, Y; Qian, S J; Wang, D; Xu, Z; Avila, C; Cabrera, A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Ruiz Alvarez, J D; Sanabria, J C; Godinovic, N; Lelas, D; Puljak, I; Ribeiro Cipriano, P M; Antunovic, Z; Kovac, M; Brigljevic, V; Ferencek, D; Kadija, K; Luetic, J; Micanovic, S; Sudic, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Rykaczewski, H; Finger, M; Finger, M; Carrera Jarrin, E; Awad, A; Elgammal, S; Mohamed, A; Salama, E; Calpas, B; Kadastik, M; Murumaa, M; Perrini, L; Raidal, M; Tiko, A; Veelken, C; Eerola, P; Pekkanen, J; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Peltola, T; Tuominiemi, J; Tuovinen, E; Wendland, L; Talvitie, J; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Favaro, C; Ferri, F; Ganjour, S; Ghosh, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Machet, M; Malcles, J; Rander, J; Rosowsky, A; Titov, M; Zghiche, A; Abdulsalam, A; Antropov, I; Baffioni, S; Beaudette, F; Busson, P; Cadamuro, L; Chapon, E; Charlot, C; Davignon, O; Granier de Cassagnac, R; Jo, M; Lisniak, S; Miné, P; Naranjo, I N; Nguyen, M; Ochando, C; Ortona, G; Paganini, P; Pigard, P; Regnard, S; Salerno, R; Sirois, Y; Strebler, T; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Aubin, A; Bloch, D; Brom, J-M; Buttignol, M; Chabert, E C; Chanon, N; Collard, C; Conte, E; Coubez, X; Fontaine, J-C; Gelé, D; Goerlach, U; Le Bihan, A-C; Merlin, J A; Skovpen, K; Van Hove, P; Gadrat, S; Beauceron, S; Bernet, C; Boudoul, G; Bouvier, E; Carrillo Montoya, C A; Chierici, R; Contardo, D; Courbon, B; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Grenier, G; Ille, B; Lagarde, F; Laktineh, I B; Lethuillier, M; Mirabito, L; Pequegnot, A L; Perries, S; Popov, A; Sabes, D; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Toriashvili, T; Tsamalaidze, Z; Autermann, C; Beranek, S; Feld, L; Heister, A; Kiesel, M K; Klein, K; Lipinski, M; Ostapchuk, A; Preuten, M; Raupach, F; Schael, S; Schomakers, C; Schulte, J F; Schulz, J; Verlage, T; Weber, H; Zhukov, V; Ata, M; Brodski, M; Dietz-Laursonn, E; Duchardt, D; Endres, M; Erdmann, M; Erdweg, S; Esch, T; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Knutzen, S; Merschmeyer, M; Meyer, A; Millet, P; Mukherjee, S; Olschewski, M; Padeken, K; Papacz, P; Pook, T; Radziej, M; Reithler, H; Rieger, M; Scheuch, F; Sonnenschein, L; Teyssier, D; Thüer, S; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Hoehle, F; Kargoll, B; Kress, T; Künsken, A; Lingemann, J; Nehrkorn, A; Nowack, A; Nugent, I M; Pistone, C; Pooth, O; Stahl, A; Aldaya Martin, M; Asin, I; Beernaert, K; Behnke, O; Behrens, U; Bin Anuar, A A; Borras, K; Campbell, A; Connor, P; Contreras-Campana, C; Costanza, F; Diez Pardos, C; Dolinska, G; Eckerlin, G; Eckstein, D; Eichhorn, T; Gallo, E; Garay Garcia, J; Geiser, A; Gizhko, A; Grados Luyando, J M; Gunnellini, P; Harb, A; Hauk, J; Hempel, M; Jung, H; Kalogeropoulos, A; Karacheban, O; Kasemann, M; Kieseler, J; Kleinwort, C; Korol, I; Lange, W; Lelek, A; Leonard, J; Lipka, K; Lobanov, A; Lohmann, W; Mankel, R; Melzer-Pellmann, I-A; Meyer, A B; Mittag, G; Mnich, J; Mussgiller, A; Ntomari, E; Pitzl, D; Placakyte, R; Raspereza, A; Roland, B; Sahin, M Ö; Saxena, P; Schoerner-Sadenius, T; Seitz, C; Spannagel, S; Stefaniuk, N; Trippkewitz, K D; Van Onsem, G P; Walsh, R; Wissing, C; Blobel, V; Centis Vignali, M; Draeger, A R; Dreyer, T; Erfle, J; Garutti, E; Goebel, K; Gonzalez, D; Görner, M; Haller, J; Hoffmann, M; Höing, R S; Junkes, A; Klanner, R; Kogler, R; Kovalchuk, N; Lapsien, T; Lenz, T; Marchesini, I; Marconi, D; Meyer, M; Niedziela, M; Nowatschin, D; Ott, J; Pantaleo, F; Peiffer, T; Perieanu, A; Pietsch, N; Poehlsen, J; Sander, C; Scharf, C; Schleper, P; Schlieckau, E; Schmidt, A; Schumann, S; Schwandt, J; Stadie, H; Steinbrück, G; Stober, F M; Stöver, M; Tholen, H; Troendle, D; Usai, E; Vanelderen, L; Vanhoefer, A; Vormwald, B; Barth, C; Baus, C; Berger, J; Butz, E; Chwalek, T; Colombo, F; De Boer, W; Dierlamm, A; Fink, S; Friese, R; Giffels, M; Gilbert, A; Haitz, D; Hartmann, F; Heindl, S M; Husemann, U; Katkov, I; Kornmayer, A; Lobelle Pardo, P; Maier, B; Mildner, H; Mozer, M U; Müller, T; Müller, Th; Plagge, M; Quast, G; Rabbertz, K; Röcker, S; Roscher, F; Schröder, M; Sieber, G; Simonis, H J; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weber, M; Weiler, T; Williamson, S; Wöhrmann, C; Wolf, R; Anagnostou, G; Daskalakis, G; Geralis, T; Giakoumopoulou, V A; Kyriakis, A; Loukas, D; Topsis-Giotis, I; Agapitos, A; Kesisoglou, S; Panagiotou, A; Saoulidou, N; Tziaferi, E; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Loukas, N; Manthos, N; Papadopoulos, I; Paradas, E; Filipovic, N; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Karancsi, J; Molnar, J; Szillasi, Z; Bartók, M; Makovec, A; Raics, P; Trocsanyi, Z L; Ujvari, B; Bahinipati, S; Choudhury, S; Mal, P; Mandal, K; Nayak, A; Sahoo, D K; Sahoo, N; Swain, S K; Bansal, S; Beri, S B; Bhatnagar, V; Chawla, R; Gupta, R; Bhawandeep, U; Kalsi, A K; Kaur, A; Kaur, M; Kumar, R; Mehta, A; Mittal, M; Singh, J B; Walia, G; Kumar, Ashok; Bhardwaj, A; Choudhary, B C; Garg, R B; Keshri, S; Kumar, A; Malhotra, S; Naimuddin, M; Nishu, N; Ranjan, K; Sharma, R; Sharma, V; Bhattacharya, R; Bhattacharya, S; Chatterjee, K; Dey, S; Dutt, S; Dutta, S; Ghosh, S; Majumdar, N; Modak, A; Mondal, K; Mukhopadhyay, S; Nandan, S; Purohit, A; Roy, A; Roy, D; Roy Chowdhury, S; Sarkar, S; Sharan, M; Thakur, S; Behera, P K; Chudasama, R; Dutta, D; Jha, V; Kumar, V; Mohanty, A K; Netrakanti, P K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Banerjee, S; Bhowmik, S; Chatterjee, R M; Dewanjee, R K; Dugad, S; Ganguly, S; Guchait, M; Gurtu, A; Jain, Sa; Kole, G; Kumar, S; Mahakud, B; Maity, M; Majumder, G; Mazumdar, K; Mitra, S; Mohanty, G B; Parida, B; Sarkar, T; Sur, N; Sutar, B; Wickramage, N; Chauhan, S; Dube, S; Kapoor, A; Kothekar, K; Rane, A; Sharma, S; Bakhshiansohi, H; Behnamian, H; Chenarani, S; Eskandari Tadavani, E; Etesami, S M; Fahim, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Rezaei Hosseinabadi, F; Safarzadeh, B; Zeinali, M; Felcini, M; Grunewald, M; Abbrescia, M; Calabria, C; Caputo, C; Colaleo, A; Creanza, D; Cristella, L; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Miniello, G; My, S; Nuzzo, S; Pompili, A; Pugliese, G; Radogna, R; Ranieri, A; Selvaggi, G; Silvestris, L; Venditti, R; Abbiendi, G; Battilana, C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Chhibra, S S; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Albergo, S; Chiorboli, M; Costa, S; Di Mattia, A; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Viliani, L; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Primavera, F; Calvelli, V; Ferro, F; Lo Vetere, M; Monge, M R; Robutti, E; Tosi, S; Brianza, L; Brivio, F; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Malvezzi, S; Manzoni, R A; Marzocchi, B; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Pigazzini, S; Ragazzi, S; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; De Nardo, G; Di Guida, S; Esposito, M; Fabozzi, F; Iorio, A O M; Lanza, G; Lista, L; Meola, S; Merola, M; Paolucci, P; Sciacca, C; Thyssen, F; Azzi, P; Bacchetta, N; Benato, L; Bisello, D; Boletti, A; Carlin, R; Carvalho Antunes De Oliveira, A; Checchia, P; Dall'Osso, M; De Castro Manzano, P; Dorigo, T; Dosselli, U; Gasparini, F; Gasparini, U; Gozzelino, A; Lacaprara, S; Margoni, M; Meneguzzo, A T; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Zanetti, M; Zotto, P; Zucchetta, A; Zumerle, G; Braghieri, A; Magnani, A; Montagna, P; Ratti, S P; Re, V; Riccardi, C; Salvini, P; Vai, I; Vitulo, P; Alunni Solestizi, L; Bilei, G M; Ciangottini, D; Fanò, L; Lariccia, P; Leonardi, R; Mantovani, G; Menichelli, M; Saha, A; Santocchia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Castaldi, R; Ciocci, M A; Dell'Orso, R; Donato, S; Fedi, G; Giassi, A; Grippo, M T; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Rizzi, A; Savoy-Navarro, A; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Cipriani, M; D'imperio, G; Del Re, D; Diemoz, M; Gelli, S; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Organtini, G; Paramatti, R; Preiato, F; Rahatlou, S; Rovelli, C; Santanastasio, F; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bartosik, N; Bellan, R; Biino, C; Cartiglia, N; Costa, M; Covarelli, R; Degano, A; Demaria, N; Finco, L; Kiani, B; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Monteil, E; Obertino, M M; Pacher, L; Pastrone, N; Pelliccioni, M; Pinna Angioni, G L; Ravera, F; Romero, A; Ruspa, M; Sacchi, R; Sola, V; Solano, A; Staiano, A; Traczyk, P; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; La Licata, C; Schizzi, A; Zanetti, A; Kim, D H; Kim, G N; Kim, M S; Lee, S; Lee, S W; Oh, Y D; Sekmen, S; Son, D C; Yang, Y C; Kim, H; Brochero Cifuentes, J A; Kim, T J; Cho, S; Choi, S; Go, Y; Gyun, D; Ha, S; Hong, B; Jo, Y; Kim, Y; Lee, B; Lee, K; Lee, K S; Lee, S; Lim, J; Park, S K; Roh, Y; Almond, J; Kim, J; Seo, S H; Yang, U K; Yoo, H D; Yu, G B; Choi, M; Kim, H; Kim, H; Kim, J H; Lee, J S H; Park, I C; Ryu, G; Ryu, M S; Choi, Y; Goh, J; Kim, D; Kwon, E; Lee, J; Yu, I; Dudenas, V; Juodagalvis, A; Vaitkus, J; Ahmed, I; Ibrahim, Z A; Komaragiri, J R; Md Ali, M A B; Mohamad Idris, F; Wan Abdullah, W A T; Yusli, M N; Zolkapli, Z; Casimiro Linares, E; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-De La Cruz, I; Hernandez-Almada, A; Lopez-Fernandez, R; Mejia Guisao, J; Sanchez-Hernandez, A; Carrillo Moreno, S; Vazquez Valencia, F; Pedraza, I; Salazar Ibarguen, H A; Uribe Estrada, C; Morelos Pineda, A; Krofcheck, D; Butler, P H; Ahmad, A; Ahmad, M; Hassan, Q; Hoorani, H R; Khan, W A; Khurshid, T; Shoaib, M; Waqas, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Zalewski, P; Bunkowski, K; Byszuk, A; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Olszewski, M; Walczak, M; Bargassa, P; Beirão Da Cruz E Silva, C; Di Francesco, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Hollar, J; Leonardo, N; Lloret Iglesias, L; Nemallapudi, M V; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Toldaiev, O; Vadruccio, D; Varela, J; Vischia, P; Bunin, P; Golutvin, I; Gorbounov, N; Gorbunov, I; Kamenev, A; Karjavin, V; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Savina, M; Shmatov, S; Shulha, S; Skatchkov, N; Smirnov, V; Voytishin, N; Zarubin, A; Chtchipounov, L; Golovtsov, V; Ivanov, Y; Kim, V; Kuznetsova, E; Murzin, V; Oreshkin, V; Sulimov, V; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Karneyeu, A; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Pozdnyakov, I; Safronov, G; Spiridonov, A; Toms, M; Vlasov, E; Zhokin, A; Chistov, R; Danilov, M; Rusinov, V; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Rusakov, S V; Terkulov, A; Baskakov, A; Belyaev, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Miagkov, I; Obraztsov, S; Petrushanko, S; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Elumakhov, D; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Cirkovic, P; Devetak, D; Milosevic, J; Rekovic, V; Alcaraz Maestre, J; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Escalante Del Valle, A; Fernandez Bedoya, C; Fernández Ramos, J P; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Navarro De Martino, E; Pérez-Calero Yzquierdo, A; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; de Trocóniz, J F; Missiroli, M; Moran, D; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Palencia Cortezon, E; Sanchez Cruz, S; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Castiñeiras De Saa, J R; Curras, E; Fernandez, M; Garcia-Ferrero, J; Gomez, G; Lopez Virto, A; Marco, J; Martinez Rivero, C; Matorras, F; Piedra Gomez, J; Rodrigo, T; Ruiz-Jimeno, A; Scodellaro, L; Trevisani, N; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Bloch, P; Bocci, A; Bonato, A; Botta, C; Camporesi, T; Castello, R; Cepeda, M; Cerminara, G; D'Alfonso, M; d'Enterria, D; Dabrowski, A; Daponte, V; David, A; De Gruttola, M; De Guio, F; De Roeck, A; Di Marco, E; Dobson, M; Dordevic, M; Dorney, B; du Pree, T; Duggan, D; Dünser, M; Dupont, N; Elliott-Peisert, A; Fartoukh, S; Franzoni, G; Fulcher, J; Funk, W; Gigi, D; Gill, K; Girone, M; Glege, F; Gundacker, S; Guthoff, M; Hammer, J; Harris, P; Hegeman, J; Innocente, V; Janot, P; Kirschenmann, H; Knünz, V; Kortelainen, M J; Kousouris, K; Krammer, M; Lecoq, P; Lourenço, C; Lucchini, M T; Magini, N; Malgeri, L; Mannelli, M; Martelli, A; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Morovic, S; Mulders, M; Neugebauer, H; Orfanelli, S; Orsini, L; Pape, L; Perez, E; Peruzzi, M; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Racz, A; Reis, T; Rolandi, G; Rovere, M; Ruan, M; Sakulin, H; Sauvan, J B; Schäfer, C; Schwick, C; Seidel, M; Sharma, A; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stoye, M; Takahashi, Y; Treille, D; Triossi, A; Tsirou, A; Veckalns, V; Veres, G I; Wardle, N; Zagozdzinska, A; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Horisberger, R; Ingram, Q; Kaestli, H C; Kotlinski, D; Langenegger, U; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Casal, B; Dissertori, G; Dittmar, M; Donegà, M; Eller, P; Grab, C; Heidegger, C; Hits, D; Hoss, J; Kasieczka, G; Lecomte, P; Lustermann, W; Mangano, B; Marionneau, M; Martinez Ruiz Del Arbol, P; Masciovecchio, M; Meinhard, M T; Meister, D; Micheli, F; Musella, P; Nessi-Tedaldi, F; Pandolfi, F; Pata, J; Pauss, F; Perrin, G; Perrozzi, L; Quittnat, M; Rossini, M; Schönenberger, M; Starodumov, A; Takahashi, M; Tavolaro, V R; Theofilatos, K; Wallny, R; Aarrestad, T K; Amsler, C; Caminada, L; Canelli, M F; Chiochia, V; De Cosa, A; Galloni, C; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Ngadiuba, J; Pinna, D; Rauco, G; Robmann, P; Salerno, D; Yang, Y; Chen, K H; Doan, T H; Jain, Sh; Khurana, R; Konyushikhin, M; Kuo, C M; Lin, W; Lu, Y J; Pozdnyakov, A; Yu, S S; Kumar, Arun; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Fiori, F; Hou, W-S; Hsiung, Y; Liu, Y F; Lu, R-S; Miñano Moya, M; Paganis, E; Tsai, J F; Tzeng, Y M; Asavapibhop, B; Singh, G; Srimanobhas, N; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Damarseckin, S; Demiroglu, Z S; Dozen, C; Dumanoglu, I; Girgis, S; Gokbulut, G; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Sunar Cerci, D; Tali, B; Zorbilmez, C; Bilin, B; Bilmis, S; Isildak, B; Karapinar, G; Yalvac, M; Zeyrek, M; Gülmez, E; Kaya, M; Kaya, O; Yetkin, E A; Yetkin, T; Cakir, A; Cankocak, K; Sen, S; Vardarlı, F I; Grynyov, B; Levchuk, L; Sorokin, P; Aggleton, R; Ball, F; Beck, L; Brooke, J J; Burns, D; Clement, E; Cussans, D; Flacher, H; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Sakuma, T; Seif El Nasr-Storey, S; Senkin, S; Smith, D; Smith, V J; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Calligaris, L; Cieri, D; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Williams, T; Baber, M; Bainbridge, R; Buchmuller, O; Bundock, A; Burton, D; Casasso, S; Citron, M; Colling, D; Corpe, L; Dauncey, P; Davies, G; De Wit, A; Della Negra, M; Dunne, P; Elwood, A; Futyan, D; Haddad, Y; Hall, G; Iles, G; Lane, R; Laner, C; Lucas, R; Lyons, L; Magnan, A-M; Malik, S; Mastrolorenzo, L; Nash, J; Nikitenko, A; Pela, J; Penning, B; Pesaresi, M; Raymond, D M; Richards, A; Rose, A; Seez, C; Tapper, A; Uchida, K; Vazquez Acosta, M; Virdee, T; Zenz, S C; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Borzou, A; Call, K; Dittmann, J; Hatakeyama, K; Liu, H; Pastika, N; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Arcaro, D; Avetisyan, A; Bose, T; Gastler, D; Rankin, D; Richardson, C; Rohlf, J; Sulak, L; Zou, D; Benelli, G; Berry, E; Cutts, D; Ferapontov, A; Garabedian, A; Hakala, J; Heintz, U; Jesus, O; Laird, E; Landsberg, G; Mao, Z; Narain, M; Piperov, S; Sagir, S; Spencer, E; Syarif, R; Breedon, R; Breto, G; Burns, D; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Flores, C; Funk, G; Gardner, M; Ko, W; Lander, R; Mclean, C; Mulhearn, M; Pellett, D; Pilot, J; Ricci-Tam, F; Shalhout, S; Smith, J; Squires, M; Stolp, D; Tripathi, M; Wilbur, S; Yohay, R; Cousins, R; Everaerts, P; Florent, A; Hauser, J; Ignatenko, M; Saltzberg, D; Takasugi, E; Valuev, V; Weber, M; Burt, K; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Jandir, P; Kennedy, E; Lacroix, F; Long, O R; Malberti, M; Olmedo Negrete, M; Paneva, M I; Shrinivas, A; Wei, H; Wimpenny, S; Yates, B R; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Derdzinski, M; Gerosa, R; Holzner, A; Kelley, R; Klein, D; Letts, J; Macneill, I; Olivito, D; Padhi, S; Pieri, M; Sani, M; Sharma, V; Simon, S; Tadel, M; Vartak, A; Wasserbaech, S; Welke, C; Wood, J; Würthwein, F; Yagil, A; Zevi Della Porta, G; Bhandari, R; Bradmiller-Feld, J; Campagnari, C; Dishaw, A; Dutta, V; Flowers, K; Franco Sevilla, M; Geffert, P; George, C; Golf, F; Gouskos, L; Gran, J; Heller, R; Incandela, J; Mccoll, N; Mullin, S D; Ovcharova, A; Richman, J; Stuart, D; Suarez, I; West, C; Yoo, J; Anderson, D; Apresyan, A; Bendavid, J; Bornheim, A; Bunn, J; Chen, Y; Duarte, J; Mott, A; Newman, H B; Pena, C; Spiropulu, M; Vlimant, J R; Xie, S; Zhu, R Y; Andrews, M B; Azzolini, V; Calamba, A; Carlson, B; Ferguson, T; Paulini, M; Russ, J; Sun, M; Vogel, H; Vorobiev, I; Cumalat, J P; Ford, W T; Jensen, F; Johnson, A; Krohn, M; Mulholland, T; Stenson, K; Wagner, S R; Alexander, J; Chatterjee, A; Chaves, J; Chu, J; Dittmer, S; Eggert, N; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Rinkevicius, A; Ryd, A; Skinnari, L; Sun, W; Tan, S M; Tao, Z; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Apollinari, G; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bolla, G; Burkett, K; Butler, J N; Cheung, H W K; Chlebana, F; Cihangir, S; Cremonesi, M; Elvira, V D; Fisk, I; Freeman, J; Gottschalk, E; Gray, L; Green, D; Grünendahl, S; Gutsche, O; Hare, D; Harris, R M; Hasegawa, S; Hirschauer, J; Hu, Z; Jayatilaka, B; Jindariani, S; Johnson, M; Joshi, U; Klima, B; Kreis, B; Lammel, S; Linacre, J; Lincoln, D; Lipton, R; Liu, T; Lopes De Sá, R; Lykken, J; Maeshima, K; Marraffino, J M; Maruyama, S; Mason, D; McBride, P; Merkel, P; Mrenna, S; Nahn, S; Newman-Holmes, C; O'Dell, V; Pedro, K; Prokofyev, O; Rakness, G; Ristori, L; Sexton-Kennedy, E; Soha, A; Spalding, W J; Spiegel, L; Stoynev, S; Strobbe, N; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vernieri, C; Verzocchi, M; Vidal, R; Wang, M; Weber, H A; Whitbeck, A; Acosta, D; Avery, P; Bortignon, P; Bourilkov, D; Brinkerhoff, A; Carnes, A; Carver, M; Curry, D; Das, S; Field, R D; Furic, I K; Konigsberg, J; Korytov, A; Ma, P; Matchev, K; Mei, H; Milenovic, P; Mitselmakher, G; Rank, D; Shchutska, L; Sperka, D; Thomas, L; Wang, J; Wang, S; Yelton, J; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Ackert, A; Adams, J R; Adams, T; Askew, A; Bein, S; Diamond, B; Hagopian, S; Hagopian, V; Johnson, K F; Khatiwada, A; Prosper, H; Santra, A; Weinberg, M; Baarmand, M M; Bhopatkar, V; Colafranceschi, S; Hohlmann, M; Kalakhety, H; Noonan, D; Roy, T; Yumiceva, F; Adams, M R; Apanasevich, L; Berry, D; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Kurt, P; O'Brien, C; Sandoval Gonzalez, I D; Turner, P; Varelas, N; Wu, Z; Zakaria, M; Zhang, J; Bilki, B; Clarida, W; Dilsiz, K; Durgut, S; Gandrajula, R P; Haytmyradov, M; Khristenko, V; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Penzo, A; Snyder, C; Tiras, E; Wetzel, J; Yi, K; Anderson, I; Blumenfeld, B; Cocoros, A; Eminizer, N; Fehling, D; Feng, L; Gritsan, A V; Maksimovic, P; Osherson, M; Roskes, J; Sarica, U; Swartz, M; Xiao, M; Xin, Y; You, C; Al-Bataineh, A; Baringer, P; Bean, A; Bruner, C; Castle, J; Kenny, R P; Kropivnitskaya, A; Majumder, D; Malek, M; Mcbrayer, W; Murray, M; Sanders, S; Stringer, R; Wang, Q; Ivanov, A; Kaadze, K; Khalil, S; Makouski, M; Maravin, Y; Mohammadi, A; Saini, L K; Skhirtladze, N; Toda, S; Lange, D; Rebassoo, F; Wright, D; Anelli, C; Baden, A; Baron, O; Belloni, A; Calvert, B; Eno, S C; Ferraioli, C; Gomez, J A; Hadley, N J; Jabeen, S; Kellogg, R G; Kolberg, T; Kunkle, J; Lu, Y; Mignerey, A C; Shin, Y H; Skuja, A; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Baty, A; Bi, R; Bierwagen, K; Brandt, S; Busza, W; Cali, I A; Demiragli, Z; Di Matteo, L; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Hsu, D; Iiyama, Y; Innocenti, G M; Klute, M; Kovalskyi, D; Krajczar, K; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Marini, A C; Mcginn, C; Mironov, C; Narayanan, S; Niu, X; Paus, C; Roland, C; Roland, G; Salfeld-Nebgen, J; Stephans, G S F; Sumorok, K; Tatar, K; Varma, M; Velicanu, D; Veverka, J; Wang, J; Wang, T W; Wyslouch, B; Yang, M; Zhukova, V; Benvenuti, A C; Dahmes, B; Evans, A; Finkel, A; Gude, A; Hansen, P; Kalafut, S; Kao, S C; Klapoetke, K; Kubota, Y; Lesko, Z; Mans, J; Nourbakhsh, S; Ruckstuhl, N; Rusack, R; Tambe, N; Turkewitz, J; Acosta, J G; Oliveros, S; Avdeeva, E; Bartek, R; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Fangmeier, C; Gonzalez Suarez, R; Kamalieddin, R; Knowlton, D; Kravchenko, I; Meier, F; Monroy, J; Siado, J E; Snow, G R; Stieger, B; Alyari, M; Dolen, J; George, J; Godshalk, A; Harrington, C; Iashvili, I; Kaisen, J; Kharchilava, A; Kumar, A; Parker, A; Rappoccio, S; Roozbahani, B; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Hortiangtham, A; Massironi, A; Morse, D M; Nash, D; Orimoto, T; Teixeira De Lima, R; Trocino, D; Wang, R-J; Wood, D; Bhattacharya, S; Hahn, K A; Kubik, A; Low, J F; Mucia, N; Odell, N; Pollack, B; Schmitt, M H; Sung, K; Trovato, M; Velasco, M; Dev, N; Hildreth, M; Hurtado Anampa, K; Jessop, C; Karmgard, D J; Kellams, N; Lannon, K; Marinelli, N; Meng, F; Mueller, C; Musienko, Y; Planer, M; Reinsvold, A; Ruchti, R; Rupprecht, N; Smith, G; Taroni, S; Valls, N; Wayne, M; Wolf, M; Woodard, A; Alimena, J; Antonelli, L; Brinson, J; Bylsma, B; Durkin, L S; Flowers, S; Francis, B; Hart, A; Hill, C; Hughes, R; Ji, W; Liu, B; Luo, W; Puigh, D; Rodenburg, M; Winer, B L; Wulsin, H W; Driga, O; Elmer, P; Hardenbrook, J; Hebda, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Palmer, C; Piroué, P; Stickland, D; Tully, C; Zuranski, A; Malik, S; Barker, A; Barnes, V E; Benedetti, D; Folgueras, S; Gutay, L; Jha, M K; Jones, M; Jung, A W; Jung, K; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shi, X; Sun, J; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Parashar, N; Stupak, J; Adair, A; Akgun, B; Chen, Z; Ecklund, K M; Geurts, F J M; Guilbaud, M; Li, W; Michlin, B; Northup, M; Padley, B P; Redjimi, R; Roberts, J; Rorie, J; Tu, Z; Zabel, J; Betchart, B; Bodek, A; de Barbaro, P; Demina, R; Duh, Y T; Eshaq, Y; Ferbel, T; Galanti, M; Garcia-Bellido, A; Han, J; Hindrichs, O; Khukhunaishvili, A; Lo, K H; Tan, P; Verzetti, M; Chou, J P; Contreras-Campana, E; Gershtein, Y; Gómez Espinosa, T A; Halkiadakis, E; Heindl, M; Hidas, D; Hughes, E; Kaplan, S; Kunnawalkam Elayavalli, R; Kyriacou, S; Lath, A; Nash, K; Saka, H; Salur, S; Schnetzer, S; Sheffield, D; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Foerster, M; Heideman, J; Riley, G; Rose, K; Spanier, S; Thapa, K; Bouhali, O; Castaneda Hernandez, A; Celik, A; Dalchenko, M; De Mattia, M; Delgado, A; Dildick, S; Eusebi, R; Flanagan, W; Gilmore, J; Huang, T; Juska, E; Kamon, T; Krutelyov, V; Mueller, R; Pakhotin, Y; Patel, R; Perloff, A; Perniè, L; Rathjens, D; Rose, A; Safonov, A; Tatarinov, A; Ulmer, K A; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Faulkner, J; Kunori, S; Lamichhane, K; Lee, S W; Libeiro, T; Undleeb, S; Volobouev, I; Wang, Z; Delannoy, A G; Greene, S; Gurrola, A; Janjam, R; Johns, W; Maguire, C; Melo, A; Ni, H; Sheldon, P; Tuo, S; Velkovska, J; Xu, Q; Arenton, M W; Barria, P; Cox, B; Goodell, J; Hirosky, R; Ledovskoy, A; Li, H; Neu, C; Sinthuprasith, T; Sun, X; Wang, Y; Wolfe, E; Xia, F; Clarke, C; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sturdy, J; Belknap, D A; Dasu, S; Dodd, L; Duric, S; Gomber, B; Grothe, M; Herndon, M; Hervé, A; Klabbers, P; Lanaro, A; Levine, A; Long, K; Loveless, R; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ruggles, T; Savin, A; Sharma, A; Smith, N; Smith, W H; Taylor, D; Verwilligen, P; Woods, N

    2017-01-13

    A first search for pair production of dark matter candidates through vector boson fusion in proton-proton collisions at sqrt[s]=8  TeV is performed with the CMS detector. The vector boson fusion topology enhances missing transverse momentum, providing a way to probe supersymmetry, even in the case of a compressed mass spectrum. The data sample corresponds to an integrated luminosity of 18.5  fb^{-1}, recorded by the CMS experiment. The observed dijet mass spectrum is consistent with the standard model expectation. In an effective field theory, dark matter masses are explored as a function of contact interaction strength. The most stringent limit on bottom squark production with mass below 315 GeV is also reported, assuming a 5 GeV mass difference with respect to the lightest neutralino.

  8. [Study on spectrum analysis of X-ray based on rotational mass effect in special relativity].

    PubMed

    Yu, Zhi-Qiang; Xie, Quan; Xiao, Qing-Quan

    2010-04-01

    Based on special relativity, the formation mechanism of characteristic X-ray has been studied, and the influence of rotational mass effect on X-ray spectrum has been given. A calculation formula of the X-ray wavelength based upon special relativity was derived. Error analysis was carried out systematically for the calculation values of characteristic wavelength, and the rules of relative error were obtained. It is shown that the values of the calculation are very close to the experimental values, and the effect of rotational mass effect on the characteristic wavelength becomes more evident as the atomic number increases. The result of the study has some reference meaning for the spectrum analysis of characteristic X-ray in application.

  9. Can neutrino mass be deduced from beta particle spectrum?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semkow, T.M.

    1993-12-31

    With 17-keV neutrino faith being uncertain, it is important to examine the effects of detector resolution and response on the detection limits of massive neutrino. The authors use Fermi theory and generate by Monte Carlo up to 5-10{sup 9} {beta}{sup {minus}} decay events from {sup 35}S. The {beta}{sup {minus}} spectra are then resolved by {chi}{sup 2} minimization. We show that given high statistics and accurate knowledge of the response function it should be possible to detect neutrino mass with a proportional detector, particularly with the gas-scintillation proportional detector, in addition to semiconductor, in addition to semiconductor detectors. This paper presentsmore » a design of double-chamber Xe gas-scintillation proportional detector in which the backscattering effects are suppressed. However, even the slight uncertainties in the response functions as well as {approximately} 10{sup {minus}3} relative energy nonlinearities in the {beta}{sup {minus}} spectrum may create an artificial effect of neutrino mass.« less

  10. Rapid Differentiation of Haemophilus influenzae and Haemophilus haemolyticus by Use of Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry with ClinProTools Mass Spectrum Analysis

    PubMed Central

    Cheng, Vincent C. C.; Wong, Chun-Pong; Wong, Sally C. Y.; Yam, Wing-Cheong

    2017-01-01

    ABSTRACT Haemophilus influenzae is associated with severe invasive disease, while Haemophilus haemolyticus is considered part of the commensal flora in the human respiratory tract. Although the addition of a custom mass spectrum library into the matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) system could improve identification of these two species, the establishment of such a custom database is technically complicated and requires a large amount of resources, which most clinical laboratories cannot afford. In this study, we developed a mass spectrum analysis model with 7 mass peak biomarkers for the identification of H. influenzae and H. haemolyticus using the ClinProTools software. We evaluated the diagnostic performance of this model using 408 H. influenzae and H. haemolyticus isolates from clinical respiratory specimens from 363 hospitalized patients and compared the identification results with those obtained with the Bruker IVD MALDI Biotyper. The IVD MALDI Biotyper identified only 86.9% of H. influenzae (311/358) and 98.0% of H. haemolyticus (49/50) clinical isolates to the species level. In comparison, the ClinProTools mass spectrum model could identify 100% of H. influenzae (358/358) and H. haemolyticus (50/50) clinical strains to the species level and significantly improved the species identification rate (McNemar's test, P < 0.0001). In conclusion, the use of ClinProTools demonstrated an alternative way for users lacking special expertise in mass spectrometry to handle closely related bacterial species when the proprietary spectrum library failed. This approach should be useful for the differentiation of other closely related bacterial species. PMID:28637909

  11. Mass spectrum and decay constants of radially excited vector mesons

    NASA Astrophysics Data System (ADS)

    Mojica, Fredy F.; Vera, Carlos E.; Rojas, Eduardo; El-Bennich, Bruno

    2017-07-01

    We calculate the masses and weak decay constants of flavorless and flavored ground and radially excited JP=1- mesons within a Poincaré covariant continuum framework based on the Bethe-Salpeter equation. We use in both the quark's gap equation and the meson bound-state equation an infrared massive and finite interaction in the leading symmetry-preserving truncation. While our numerical results are in rather good agreement with experimental values where they are available, no single parametrization of the QCD inspired interaction reproduces simultaneously the ground and excited mass spectrum, which confirms earlier work on pseudoscalar mesons. This feature being a consequence of the lowest truncation, we pin down the range and strength of the interaction in both cases to identify common qualitative features that may help to tune future interaction models beyond the rainbow-ladder approximation.

  12. SOLAR-ISS: A new reference spectrum based on SOLAR/SOLSPEC observations

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Damé, L.; Bolsée, D.; Hauchecorne, A.; Pereira, N.; Sluse, D.; Cessateur, G.; Irbah, A.; Bureau, J.; Weber, M.; Bramstedt, K.; Hilbig, T.; Thiéblemont, R.; Marchand, M.; Lefèvre, F.; Sarkissian, A.; Bekki, S.

    2018-03-01

    Context. Since April 5, 2008 and up to February 15, 2017, the SOLar SPECtrometer (SOLSPEC) instrument of the SOLAR payload on board the International Space Station (ISS) has performed accurate measurements of solar spectral irradiance (SSI) from the middle ultraviolet to the infrared (165 to 3088 nm). These measurements are of primary importance for a better understanding of solar physics and the impact of solar variability on climate. In particular, a new reference solar spectrum (SOLAR-ISS) is established in April 2008 during the solar minima of cycles 23-24 thanks to revised engineering corrections, improved calibrations, and advanced procedures to account for thermal and aging corrections of the SOLAR/SOLSPEC instrument. Aims: The main objective of this article is to present a new high-resolution solar spectrum with a mean absolute uncertainty of 1.26% at 1σ from 165 to 3000 nm. This solar spectrum is based on solar observations of the SOLAR/SOLSPEC space-based instrument. Methods: The SOLAR/SOLSPEC instrument consists of three separate double monochromators that use concave holographic gratings to cover the middle ultraviolet (UV), visible (VIS), and infrared (IR) domains. Our best ultraviolet, visible, and infrared spectra are merged into a single absolute solar spectrum covering the 165-3000 nm domain. The resulting solar spectrum has a spectral resolution varying between 0.6 and 9.5 nm in the 165-3000 nm wavelength range. We build a new solar reference spectrum (SOLAR-ISS) by constraining existing high-resolution spectra to SOLAR/SOLSPEC observed spectrum. For that purpose, we account for the difference of resolution between the two spectra using the SOLAR/SOLSPEC instrumental slit functions. Results: Using SOLAR/SOLSPEC data, a new solar spectrum covering the 165-3000 nm wavelength range is built and is representative of the 2008 solar minimum. It has a resolution better than 0.1 nm below 1000 nm and 1 nm in the 1000-3000 nm wavelength range. The new

  13. Rapid Differentiation of Haemophilus influenzae and Haemophilus haemolyticus by Use of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry with ClinProTools Mass Spectrum Analysis.

    PubMed

    Chen, Jonathan H K; Cheng, Vincent C C; Wong, Chun-Pong; Wong, Sally C Y; Yam, Wing-Cheong; Yuen, Kwok-Yung

    2017-09-01

    Haemophilus influenzae is associated with severe invasive disease, while Haemophilus haemolyticus is considered part of the commensal flora in the human respiratory tract. Although the addition of a custom mass spectrum library into the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) system could improve identification of these two species, the establishment of such a custom database is technically complicated and requires a large amount of resources, which most clinical laboratories cannot afford. In this study, we developed a mass spectrum analysis model with 7 mass peak biomarkers for the identification of H. influenzae and H. haemolyticus using the ClinProTools software. We evaluated the diagnostic performance of this model using 408 H. influenzae and H. haemolyticus isolates from clinical respiratory specimens from 363 hospitalized patients and compared the identification results with those obtained with the Bruker IVD MALDI Biotyper. The IVD MALDI Biotyper identified only 86.9% of H. influenzae (311/358) and 98.0% of H. haemolyticus (49/50) clinical isolates to the species level. In comparison, the ClinProTools mass spectrum model could identify 100% of H. influenzae (358/358) and H. haemolyticus (50/50) clinical strains to the species level and significantly improved the species identification rate (McNemar's test, P < 0.0001). In conclusion, the use of ClinProTools demonstrated an alternative way for users lacking special expertise in mass spectrometry to handle closely related bacterial species when the proprietary spectrum library failed. This approach should be useful for the differentiation of other closely related bacterial species. Copyright © 2017 American Society for Microbiology.

  14. General relativistic description of the observed galaxy power spectrum: Do we understand what we measure?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Jaiyul

    2010-10-15

    We extend the general relativistic description of galaxy clustering developed in Yoo, Fitzpatrick, and Zaldarriaga (2009). For the first time we provide a fully general relativistic description of the observed matter power spectrum and the observed galaxy power spectrum with the linear bias ansatz. It is significantly different from the standard Newtonian description on large scales and especially its measurements on large scales can be misinterpreted as the detection of the primordial non-Gaussianity even in the absence thereof. The key difference in the observed galaxy power spectrum arises from the real-space matter fluctuation defined as the matter fluctuation at themore » hypersurface of the observed redshift. As opposed to the standard description, the shape of the observed galaxy power spectrum evolves in redshift, providing additional cosmological information. While the systematic errors in the standard Newtonian description are negligible in the current galaxy surveys at low redshift, correct general relativistic description is essential for understanding the galaxy power spectrum measurements on large scales in future surveys with redshift depth z{>=}3. We discuss ways to improve the detection significance in the current galaxy surveys and comment on applications of our general relativistic formalism in future surveys.« less

  15. VERITAS Observations of Six Bright, Hard-Spectrum Fermi-LAT Blazars

    NASA Technical Reports Server (NTRS)

    E. Aliu; Archambault, S.; Arlen, T.; Aune, T.; Beilicke, M.; Benbow, W.; Boettcher, M.; Bouvier, A.; Buckley, J. H.; Bugaev, V.; hide

    2012-01-01

    We report on VERITAS very-high-energy (VHE; E >= 100 GeV) observations of six blazars selected from the Fermi Large Area Telescope First Source Catalog (1FGL). The gamma-ray emission from 1FGL sources was extrapolated up to the VHE band, taking gamma-ray absorption by the extragalactic background light into account. This allowed the selection of six bright, hard-spectrum blazars that were good candidate TeV emitters. Spectroscopic redshift measurements were attempted with the Keck Telescope for the targets without Sloan Digital Sky Survey (SDSS) spectroscopic data. No VHE emission is detected during the observations of the six sources described here. Corresponding TeV upper limits are presented, along with contemporaneous Fermi observations and non-concurrent Swift UVOT and XRT data. The blazar broadband spectral energy distributions (SEDs) are assembled and modeled with a single-zone synchrotron self-Compton model. The SED built for each of the six blazars show a synchrotron peak bordering between the intermediate- and high-spectrum-peak classifications, with four of the six resulting in particle-dominated emission region.

  16. Lorentz Invariance Violation and the Observed Spectrum of Ultrahigh Energy Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Scully, S. T.; Stecker, F. W.

    2009-01-01

    There has been much interest in possible violations of Lorentz invariance, particularly motivated by quantum gravity theories. It has been suggested that a small amount of Lorentz invariance violation (LIV) could turn of photomeson interactions of ultrahigh energy cosmic rays (UHECRs) with photons of the cosmic background radiation and thereby eliminate the resulting sharp steepening in the spectrum of the highest energy CRs predicted by Greisen Zatsepin and Kuzmin (GZK). Recent measurements of the UHECR spectrum reported by the HiRes and Auger collaborations, however, indicate the presence of the GZK effect. We present the results of a detailed calculation of the modification of the UHECR spectrum caused by LIV using the formalism of Coleman and Glashow. We then compare these results with the experimental UHECR data from Auger and HiRes. Based on these data, we find a best fit amount of LIV of 4.5+1:5 ..4:5 x 10(exp -23),consistent with an upper limit of 6 x 10(exp -23). This possible amount of LIV can lead to a recovery of the cosmic ray spectrum at higher energies than presently observed. Such an LIV recovery effect can be tested observationally using future detectors.

  17. Mass spectrometry as a tool for studying autism spectrum disorder.

    PubMed

    Woods, Alisa G; Ngounou Wetie, Armand G; Sokolowska, Izabela; Russell, Stefanie; Ryan, Jeanne P; Michel, Tanja Maria; Thome, Johannes; Darie, Costel C

    2013-01-01

    Autism spectrum disorders (ASDs) are increasing in incidence but have an incompletely understood etiology. Tools for uncovering clues to the cause of ASDs and means for diagnoses are valuable to the field. Mass Spectrometry (MS) has been a useful method for evaluating differences between individuals with ASDs versus matched controls. Different biological substances can be evaluated using MS, including urine, blood, saliva, and hair. This technique has been used to evaluate relatively unsupported hypotheses based on introduction of exogenous factors, such as opiate and heavy metal excretion theories of ASDs. MS has also been used to support disturbances in serotonin-related molecules, which have been more consistently observed in ASDs. Serotonergic system markers, markers for oxidative stress, cholesterol system disturbances, peptide hypo-phosphorylation and methylation have been measured using MS in ASDs, although further analyses with larger numbers of subjects are needed (as well as consideration of behavioral data). Refinements in MS and data analysis are ongoing, allowing for the possibility that future studies examining body fluids and specimens from ASD subjects could continue to yield novel insights. This review summarizes MS investigations that have been conducted to study ASD to date and provides insight into future promising applications for this technique, with focus on proteomic studies.

  18. Validity of the Autism Spectrum Disorder Observation for Children (ASD-OC)

    ERIC Educational Resources Information Center

    Neal, Daniene; Matson, Johnny L.; Hattier, Megan A.

    2014-01-01

    The Autism Spectrum Disorder Observation for Children (ASD-OC) is a 45-item observation scale used to assess autistic symptomatology. The reliability of this measure has been established in previous research; therefore, the purpose of this study is to evaluate its validity among a sample of children (1-15 years). The large correlation between the…

  19. VERITAS Observations of Six Bright, Hard-Spectrum Fermi-LAT Blazars

    DOE PAGES

    Aliu, E.; Archambault, S.; Arlen, T.; ...

    2012-10-25

    In this paper, we report on VERITAS very high energy (VHE; E ≥ 100 GeV) observations of six blazars selected from the Fermi Large Area Telescope First Source Catalog (1FGL). The gamma-ray emission from 1FGL sources was extrapolated up to the VHE band, taking gamma-ray absorption by the extragalactic background light into account. This allowed the selection of six bright, hard-spectrum blazars that were good candidate TeV emitters. Spectroscopic redshift measurements were attempted with the Keck Telescope for the targets without Sloan Digital Sky Survey spectroscopic data. No VHE emission is detected during the observations of the six sources describedmore » here. Corresponding TeV upper limits are presented, along with contemporaneous Fermi observations and non-concurrent Swift UVOT and X-Ray Telescope data. The blazar broadband spectral energy distributions (SEDs) are assembled and modeled with a single-zone synchrotron self-Compton model. Finally, the SED built for each of the six blazars shows a synchrotron peak bordering between the intermediate- and high-spectrum-peak classifications, with four of the six resulting in particle-dominated emission regions.« less

  20. Discovery and Monitoring of a New Black Hole Candidate XTE J1752-223 with RXTE: RMS Spectrum Evolution, BH Mass and the Source Distance

    NASA Technical Reports Server (NTRS)

    Shaposhinikov, Nikolai; Markwardt, Craig; Swank, Jean; Krimm, Hans

    2010-01-01

    We report on the discovery and monitoring observations of a new galactic black hole candidate XTE J1752-223 by Rossi X-ray Timing Explorer (RXTE). The new source appeared on the X-ray sky on October 21 2009 and was active for almost 8 months. Phenomenologically, the source exhibited the low-hard/highsoft spectral state bi-modality and the variability evolution during the state transition that matches standard behavior expected from a stellar mass black hole binary. We model the energy spectrum throughout the outburst using a generic Comptonization model assuming that part of the input soft radiation in the form of a black body spectrum gets reprocessed in the Comptonizing medium. We follow the evolution of fractional root-mean-square (RMS) variability in the RXTE/PCA energy band with the source spectral state and conclude that broad band variability is strongly correlated with the source hardness (or Comptonized fraction). We follow changes in the energy distribution of rms variability during the low-hard state and the state transition and find further evidence that variable emission is strongly concentrated in the power-law spectral component. We discuss the implication of our results to the Comptonization regimes during different spectral states. Correlations of spectral and variability properties provide measurements of the BH mass and distance to the source. The spectral-timing correlation scaling technique applied to the RXTE observations during the hardto- soft state transition indicates a mass of the BH in XTE J1752-223 between 8 and 11 solar masses and a distance to the source about 3.5 kiloparsec.

  1. Aerosol mass spectrometric features of biogenic SOA: observations from a plant chamber and in rural atmospheric environments.

    PubMed

    Kiendler-Scharr, Astrid; Zhang, Qi; Hohaus, Thorsten; Kleist, Einhard; Mensah, Amewu; Mentel, Thomas F; Spindler, Christian; Uerlings, Ricarda; Tillmann, Ralf; Wildt, Jürgen

    2009-11-01

    Secondary organic aerosol (SOA) is known to form from a variety of anthropogenic and biogenic precursors. Current estimates of global SOA production vary over 2 orders of magnitude. Since no direct measurement technique for SOA exists, quantifying SOA remains a challenge for atmospheric studies. The identification of biogenic SOA (BSOA) based on mass spectral signatures offers the possibility to derive source information of organic aerosol (OA) with high time resolution. Here we present data from simulation experiments. The BSOA from tree emissions was characterized with an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS). Collection efficiencies were close to 1, and effective densities of the BSOA were found to be 1.3 +/- 0.1 g/cm(3). The mass spectra of SOA from different trees were found to be highly similar. The average BSOA mass spectrum from tree emissions is compared to a BSOA component spectrum extracted from field data. It is shown that overall the spectra agree well and that the mass spectral features of BSOA are distinctively different from those of OA components related to fresh fossil fuel and biomass combustions. The simulation chamber mass spectrum may potentially be useful for the identification and interpretation of biogenic SOA components in ambient data sets.

  2. First Observation of the Submillimeter Polarization Spectrum in a Translucent Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Ashton, Peter C.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Devlin, Mark J.; Dober, Bradley; Fissel, Laura M.; Fukui, Yasuo; Galitzki, Nicholas; Gandilo, Natalie N.; Klein, Jeffrey; Korotkov, Andrei L.; Li, Zhi-Yun; Martin, Peter G.; Matthews, Tristan G.; Moncelsi, Lorenzo; Nakamura, Fumitaka; Netterfield, Calvin B.; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Santos, Fabio P.; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan D.; Thomas, Nicholas E.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2018-04-01

    Polarized emission from aligned dust is a crucial tool for studies of magnetism in the ISM, but a troublesome contaminant for studies of cosmic microwave background polarization. In each case, an understanding of the significance of the polarization signal requires well-calibrated physical models of dust grains. Despite decades of progress in theory and observation, polarized dust models remain largely underconstrained. During its 2012 flight, the balloon-borne telescope BLASTPol obtained simultaneous broadband polarimetric maps of a translucent molecular cloud at 250, 350, and 500 μm. Combining these data with polarimetry from the Planck 850 μm band, we have produced a submillimeter polarization spectrum, the first for a cloud of this type. We find the polarization degree to be largely constant across the four bands. This result introduces a new observable with the potential to place strong empirical constraints on ISM dust polarization models in a previously inaccessible density regime. Compared to models by Draine & Fraisse, our result disfavors two of their models for which all polarization arises due only to aligned silicate grains. By creating simple models for polarized emission in a translucent cloud, we verify that extinction within the cloud should have only a small effect on the polarization spectrum shape, compared to the diffuse ISM. Thus, we expect the measured polarization spectrum to be a valid check on diffuse ISM dust models. The general flatness of the observed polarization spectrum suggests a challenge to models where temperature and alignment degree are strongly correlated across major dust components.

  3. DISCO: Distance and Spectrum Correlation Optimization Alignment for Two Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry-based Metabolomics

    PubMed Central

    Wang, Bing; Fang, Aiqin; Heim, John; Bogdanov, Bogdan; Pugh, Scott; Libardoni, Mark; Zhang, Xiang

    2010-01-01

    A novel peak alignment algorithm using a distance and spectrum correlation optimization (DISCO) method has been developed for two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) based metabolomics. This algorithm uses the output of the instrument control software, ChromaTOF, as its input data. It detects and merges multiple peak entries of the same metabolite into one peak entry in each input peak list. After a z-score transformation of metabolite retention times, DISCO selects landmark peaks from all samples based on both two-dimensional retention times and mass spectrum similarity of fragment ions measured by Pearson’s correlation coefficient. A local linear fitting method is employed in the original two-dimensional retention time space to correct retention time shifts. A progressive retention time map searching method is used to align metabolite peaks in all samples together based on optimization of the Euclidean distance and mass spectrum similarity. The effectiveness of the DISCO algorithm is demonstrated using data sets acquired under different experiment conditions and a spiked-in experiment. PMID:20476746

  4. The Mass Function of GX 339-4 from Spectroscopic Observations of Its Donor Star

    NASA Astrophysics Data System (ADS)

    Heida, M.; Jonker, P. G.; Torres, M. A. P.; Chiavassa, A.

    2017-09-01

    We obtained 16 VLT/X-shooter observations of GX 339-4 in quiescence during the period 2016 May-September and detected absorption lines from the donor star in its NIR spectrum. This allows us to measure the radial velocity curve and projected rotational velocity of the donor for the first time. We confirm the 1.76 day orbital period and we find that K 2 = 219 ± 3 km s-1, γ = 26 ± 2 km s-1, and v\\sin I = 64 ± 8 km s-1. From these values we compute a mass function f(M) = 1.91 ± 0.08 {M}⊙ , a factor ˜3 lower than previously reported, and a mass ratio q = 0.18 ± 0.05. We confirm the donor is a K-type star and estimate that it contributes ˜ 4 % {--}50 % of the light in the J- and H-bands. We constrain the binary inclination to 37° < I < 78° and the black hole (BH) mass to 2.3 {M}⊙ < {M}{BH} < 9.5 {M}⊙ . GX 339-4 may therefore be the first BH to fall in the “mass-gap” of 2-5 M ⊙. Based on ESO program IDs 097.D-0915 and 297.D-5048.

  5. Earth's transmission spectrum from lunar eclipse observations.

    PubMed

    Pallé, Enric; Osorio, María Rosa Zapatero; Barrena, Rafael; Montañés-Rodríguez, Pilar; Martín, Eduardo L

    2009-06-11

    Of the 342 planets so far discovered orbiting other stars, 58 'transit' the stellar disk, meaning that they can be detected through a periodic decrease in the flux of starlight. The light from the star passes through the atmosphere of the planet, and in a few cases the basic atmospheric composition of the planet can be estimated. As we get closer to finding analogues of Earth, an important consideration for the characterization of extrasolar planetary atmospheres is what the transmission spectrum of our planet looks like. Here we report the optical and near-infrared transmission spectrum of the Earth, obtained during a lunar eclipse. Some biologically relevant atmospheric features that are weak in the reflection spectrum (such as ozone, molecular oxygen, water, carbon dioxide and methane) are much stronger in the transmission spectrum, and indeed stronger than predicted by modelling. We also find the 'fingerprints' of the Earth's ionosphere and of the major atmospheric constituent, molecular nitrogen (N(2)), which are missing in the reflection spectrum.

  6. Mass flow in interacting binaries observed in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Kondo, Yoji

    1989-01-01

    Recent satellite observations of close binary systems show that practically all binaries exhibit evidence of mass flow and that, where the observations are sufficiently detailed, a fraction of the matter flowing out of the mass-losing component is accreted by the companion and the remainder is lost from the binary system. The mass flow is not conservative. During the phase of dynamic mass flow, the companion star becomes immersed in optically-thick plasma and the physical properties of that star elude close scrutiny.

  7. Direct observation of a Γ -X energy spectrum transition in narrow AlAs quantum wells

    NASA Astrophysics Data System (ADS)

    Khisameeva, A. R.; Shchepetilnikov, A. V.; Muravev, V. M.; Gubarev, S. I.; Frolov, D. D.; Nefyodov, Yu. A.; Kukushkin, I. V.; Reichl, C.; Tiemann, L.; Dietsche, W.; Wegscheider, W.

    2018-03-01

    Spectra of magnetoplasma excitations have been investigated in two-dimensional electron systems in AlAs quantum wells (QWs) of different widths. The magnetoplasma spectrum has been found to change profoundly when the quantum well width becomes thinner than 5.5 nm, indicating a drastic change in the conduction electron energy spectrum. The transformation can be interpreted in terms of transition from the in-plane strongly anisotropic Xx-Xy valley occupation to the out-of-plane isotropic Xz valley in the QW plane. Strong enhancement of the cyclotron effective mass over the band value in narrow AlAs QWs is reported.

  8. Preparing transition-metal clusters in known structural forms: the mass-analyzed threshold ionization spectrum of V3.

    PubMed

    Ford, Mark S; Mackenzie, Stuart R

    2005-08-22

    The first results are presented of a new experiment designed both to generate and characterize spectroscopically individual isomers of transition-metal cluster cations. As a proof of concept the one-photon mass-analyzed threshold ionization (MATI) spectrum of V3 has been recorded in the region of 44,000-45,000 cm-1. This study extends the range of a previous zero-kinetic-energy (ZEKE) photoelectron study of Yang et al. [Chem. Phys. Lett. 231, 177 (1994)] with which the current results are compared. The MATI spectra reported here exhibit surprisingly high resolution (0.2 cm-1) for this technique despite the use of large discrimination and extraction fields. Analysis of the rotational profile of the origin band allows assignment of the V3 ground state as and the V3+ ground state as , both with D3h geometry, in agreement with the density-functional theory study of the V3 ZEKE spectrum by Calaminici et al. [J. Chem. Phys. 114, 4036 (2001)]. There is also some evidence in the spectrum of transitions to the low-lying excited state of the ion. The vibrational structure observed in the MATI spectrum is, however, significantly different to and less extensive than that predicted in the density-functional theory study. Possible reasons for the discrepancies are discussed and an alternative assignment is proposed which results in revised values for the vibrational wave numbers of both the neutral and ionic states. These studies demonstrate the efficient generation of cluster ions in known structural (isomeric) forms and pave the way for the study of cluster reactivity as a function of geometrical structure.

  9. EGRET/COMPTEL Observations of an Unusual, Steep-Spectrum Gamma-Ray Source

    NASA Technical Reports Server (NTRS)

    Thompson, D. J.; Bertsch, D. L.; Hartman, R. C.; Collmar, W.; Johnson, W. N.

    1999-01-01

    During analysis of sources below the threshold of the third EGRET catalog, we have discovered a source, named GRO J1400-3956 based on the best position, with a remarkably steep spectrum. Archival analysis of COMPTEL data shows that the spectrum must have a strong turn-over in the energy range between COMPTEL and EGRET. The EGRET data show some evidence of time variability, suggesting an AGN, but the spectral change of slope is larger than that seen for most gamma-ray blazars. The sharp cutoff resembles the high-energy spectral breaks seen in some gamma-ray pulsars. There have as yet been no OSSE observations of this source.

  10. Suspected-target pesticide screening using gas chromatography-quadrupole time-of-flight mass spectrometry with high resolution deconvolution and retention index/mass spectrum library.

    PubMed

    Zhang, Fang; Wang, Haoyang; Zhang, Li; Zhang, Jing; Fan, Ruojing; Yu, Chongtian; Wang, Wenwen; Guo, Yinlong

    2014-10-01

    A strategy for suspected-target screening of pesticide residues in complicated matrices was exploited using gas chromatography in combination with hybrid quadrupole time-of-flight mass spectrometry (GC-QTOF MS). The screening workflow followed three key steps of, initial detection, preliminary identification, and final confirmation. The initial detection of components in a matrix was done by a high resolution mass spectrum deconvolution; the preliminary identification of suspected pesticides was based on a special retention index/mass spectrum (RI/MS) library that contained both the first-stage mass spectra (MS(1) spectra) and retention indices; and the final confirmation was accomplished by accurate mass measurements of representative ions with their response ratios from the MS(1) spectra or representative product ions from the second-stage mass spectra (MS(2) spectra). To evaluate the applicability of the workflow in real samples, three matrices of apple, spinach, and scallion, each spiked with 165 test pesticides in a set of concentrations, were selected as the models. The results showed that the use of high-resolution TOF enabled effective extractions of spectra from noisy chromatograms, which was based on a narrow mass window (5 mDa) and suspected-target compounds identified by the similarity match of deconvoluted full mass spectra and filtering of linear RIs. On average, over 74% of pesticides at 50 ng/mL could be identified using deconvolution and the RI/MS library. Over 80% of pesticides at 5 ng/mL or lower concentrations could be confirmed in each matrix using at least two representative ions with their response ratios from the MS(1) spectra. In addition, the application of product ion spectra was capable of confirming suspected pesticides with specificity for some pesticides in complicated matrices. In conclusion, GC-QTOF MS combined with the RI/MS library seems to be one of the most efficient tools for the analysis of suspected-target pesticide residues

  11. Spectrum-to-Spectrum Searching Using a Proteome-wide Spectral Library*

    PubMed Central

    Yen, Chia-Yu; Houel, Stephane; Ahn, Natalie G.; Old, William M.

    2011-01-01

    The unambiguous assignment of tandem mass spectra (MS/MS) to peptide sequences remains a key unsolved problem in proteomics. Spectral library search strategies have emerged as a promising alternative for peptide identification, in which MS/MS spectra are directly compared against a reference library of confidently assigned spectra. Two problems relate to library size. First, reference spectral libraries are limited to rediscovery of previously identified peptides and are not applicable to new peptides, because of their incomplete coverage of the human proteome. Second, problems arise when searching a spectral library the size of the entire human proteome. We observed that traditional dot product scoring methods do not scale well with spectral library size, showing reduction in sensitivity when library size is increased. We show that this problem can be addressed by optimizing scoring metrics for spectrum-to-spectrum searches with large spectral libraries. MS/MS spectra for the 1.3 million predicted tryptic peptides in the human proteome are simulated using a kinetic fragmentation model (MassAnalyzer version2.1) to create a proteome-wide simulated spectral library. Searches of the simulated library increase MS/MS assignments by 24% compared with Mascot, when using probabilistic and rank based scoring methods. The proteome-wide coverage of the simulated library leads to 11% increase in unique peptide assignments, compared with parallel searches of a reference spectral library. Further improvement is attained when reference spectra and simulated spectra are combined into a hybrid spectral library, yielding 52% increased MS/MS assignments compared with Mascot searches. Our study demonstrates the advantages of using probabilistic and rank based scores to improve performance of spectrum-to-spectrum search strategies. PMID:21532008

  12. Obesity and associated factors in youth with an autism spectrum disorder.

    PubMed

    Granich, Joanna; Lin, Ashleigh; Hunt, Anna; Wray, John; Dass, Alena; Whitehouse, Andrew Jo

    2016-11-01

    Weight status on children and youth with autism spectrum disorder is limited. We examined the prevalence of overweight/obesity in children and youth with autism spectrum disorder, and associations between weight status and range of factors. Children and youth with autism spectrum disorder aged 2-16 years (n = 208) and their parents participated in this study. Body mass index was calculated using the Centers for Disease Control and Prevention growth charts and the International Obesity Task Force body mass index cut-offs. The Autism Diagnostic Observation Schedule was administered. Parents completed questionnaires about socio-demographics, diagnosed comorbidities, sleep disturbances, social functioning and medication of youth with autism spectrum disorder. The prevalence of overweight/obesity in participants with autism spectrum disorder was 35%. One quarter of obese children and youth (25.6%) had obese parents. There was a significant association between children and youth's body mass index and maternal body mass index (r = 0.25, n = 199, p < 0.001). The gender and age, parental education, family income, ethnicity, autism spectrum disorder severity, social functioning, psychotropic and complementary medication use of children and youth with autism spectrum disorder were not statistically associated with their weight status. Findings suggest the need for clinical settings to monitor weight status of children and youth with autism spectrum disorder in a bid to manage or prevent overweight/obesity in this population. Incorporating a family system approach to influence health behaviours among children and youth with autism spectrum disorder especially for specific weight interventions is warranted and should be further explored. © The Author(s) 2016.

  13. Thermospheric Mass Density Specification: Synthesis of Observations and Models

    DTIC Science & Technology

    2013-10-21

    Simulation Experiments (OSSEs) of the column-integrated ratio of atomic oxygen and molecular nitrogen. Note that OSSEs assimilate, for a given...realistic observing system, synthetically generated observational data often sampled from model simulation results, in place of actually observed values...and molecular oxygen mass mixing ratio). Note that in the TIEGCM the molecular nitrogen mass mixing ratio is specified so that the sum of mixing

  14. Wave function, spectrum and effective mass of holes in 2 D quantum antiferromagnet

    NASA Astrophysics Data System (ADS)

    Su, Zhao-bin; Ll, Yan-min; Lai, Wu-yan; Yu, Lu

    1989-12-01

    A new quantum Bogoliubov-de Gennes (BdeG) formalism is developed to study the self-consistent motion of holes on an quantum antiferromagnetic (QAFM) background within the generalized t- J model. The local distortion of spin configurations and the renormalization of the hole motion due to virtual excitations of the distorted spin background are treated on an equal footing. The hole wave function and its spectrum, as well as the effective mass for a propagating hole are calculated explicitly.

  15. Observational Properties of Coronal Mass Ejections

    DTIC Science & Technology

    2006-01-01

    speeds 2.5. Masses and Energies of CMEs exceeded 2000 km s-1; the fastest CME speed measured thus far was 2657 km s-1 on 4 November 2000. When compiled The...accelerated. The average deceleration of the fastest (> 900 km s-1) The CME kinetic energies can also be calculated from the CME group is -16 m s-2...OBSERVATIONAL PROPERTIES OF CORONAL MASS EJECTIONS 15 *"...... .. ’..’... ... ’...... kinetic energy is 2.4 x 1030 ergs (5.0 x 1029 ergs) [Vourlidas, 2004

  16. Swift Observations of 2MASS J070931-353746

    NASA Astrophysics Data System (ADS)

    Schartel, Dirk Grupe Norbert; Komossa, S.

    2018-05-01

    We report of Swift observations of 2MASS J070931-353746 which was discovered as a bright X-ray source during an XMM slew on 2018-April-26. Compared with the flux seen during the ROSAT All Sky Survey (Voges et al. 1999) the source appeared to be brighter by a factor of about 16. We performed a short 1ks Swift observation of 2MASS J070931-353746 on 2018-May-18.

  17. Identifying water mass depletion in Northern Iraq observed by GRACE

    NASA Astrophysics Data System (ADS)

    Mulder, G.; Olsthoorn, T. N.; Al-Manmi, D. A. M. A.; Schrama, E. J. O.; Smidt, E. H.

    2014-10-01

    Observations acquired by Gravity Recovery And Climate Experiment (GRACE) mission indicate a mass loss of 31 ± 3 km3 or 130 ± 14 mm in Northern Iraq between 2007 and 2009. This data is used as an independent validation of a hydrologic model of the region including lake mass variations. We developed a rainfall-runoff model for five tributaries of the Tigris River, based on local geology and climate conditions. Model inputs are precipitation from Tropical Rainfall Measurement Mission (TRMM) observations, and potential evaporation from GLDAS model parameters. Our model includes a representation of the karstified aquifers that cause large natural groundwater variations in this region. Observed river discharges were used to calibrate our model. In order to get the total mass variations, we corrected for lake mass variations derived from Moderate Resolution Imaging Spectroradiometer (MODIS) in combination with satellite altimetry and some in-situ data. Our rainfall-runoff model confirms that Northern Iraq suffered a drought between 2007 and 2009 and is consistent with the mass loss observed by GRACE over that period. Also, GRACE observed the annual cycle predicted by the rainfall-runoff model. The total mass depletion seen by GRACE between 2007 and 2009 is mainly explained by a lake mass depletion of 74 ± 4 mm and a natural groundwater depletion of 37 ± 6 mm. Our findings indicate that man-made groundwater extraction has a minor influence in this region while depletion of lake mass and geology play a key role.

  18. Observation and mass measurement of the baryon Xib-.

    PubMed

    Aaltonen, T; Abulencia, A; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carrillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; DaRonco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dörr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-08-03

    We report the observation and measurement of the mass of the bottom, strange baryon Xi(b)- through the decay chain Xi(b)- -->J/psiXi-, where J/psi-->mu+mu-, Xi- -->Lambdapi-, and Lambda-->ppi-. A signal is observed whose probability of arising from a background fluctuation is 6.6 x 10(-15), or 7.7 Gaussian standard deviations. The Xi(b)- mass is measured to be 5792.9+/-2.5(stat) +/- 1.7(syst) MeV/c2.

  19. MIRO Observation of Comet C/2002 T7 (LINEAR) Water Line Spectrum

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Frerking, Margaret; Hofstadter, Mark; Gulkis, Samuel; von Allmen, Paul; Crovisier, Jaques; Biver, Nicholas; Bockelee-Morvan, Dominique

    2011-01-01

    Comet C/2002 T7 (LINEAR) was observed with the Microwave Instrument for Rosetta Orbiter (MIRO) on April 30, 2004, between 5 hr and 16 hr UT. The comet was 0.63AU distance from the Sun and 0.68AU distance from the MIRO telescope at the time of the observations. The water line involving the two lowest rotational levels at 556.936 GHz is observed at 557.070 GHz due to a large Doppler frequency shift. The detected water line spectrum is interpreted using a non local thermal equilibrium (Non-LTE) molecular excitation and radiative transfer model. Several synthetic spectra are calculated with various coma profiles that are plausible for the comet at the time of observations. The coma profile is modeled with three characteristic parameters: outgassing rate, a constant expansion velocity, and a constant gas temperature. The model calculation result shows that for the distant line observation where contributions from a large coma space is averaged, the combination of the outgassing rate and the gas expansion velocity determines the line shape while the gas temperature has a negligible effect. The comparison between the calculated spectra and the MIRO measured spectrum suggests that the outgassing rate of the comet is about 2.0x1029 molecules/second and its gas expansion velocity about 1.2 km/s at the time of the observations.

  20. The Infrared Continuum Spectrum of VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Harwit, Martin; Malfait, Koen; Decin, Leen; Waelkens, Christoffel; Feuchtgruber, Helmut; Melnick, Gary J.

    2001-08-01

    We combine spectra of VY CMa obtained with the short- and long-wavelength spectrometers, SWS and LWS, on the Infrared Space Observatory3 to provide a first detailed continuum spectrum of this highly luminous star. The circumstellar dust cloud through which the star is observed is partially self-absorbing, which makes for complex computational modeling. We review previous work and comment on the range of uncertainties about the physical traits and mineralogical composition of the modeled disk. We show that these uncertainties significantly affect the modeling of the outflow and the estimated mass loss. In particular, we demonstrate that a variety of quite diverse models can produce good fits to the observed spectrum. If the outflow is steady, and the radiative repulsion on the dust cloud dominates the star's gravitational attraction, we show that the total dust mass loss rate is ~4×10-6 Msolar yr-1, assuming that the star is at a distance of 1.5 kpc. Several indications, however, suggest that the outflow from the star may be spasmodic. We discuss this and other problems facing the construction of a physically coherent model of the dust cloud and a realistic mass-loss analysis.

  1. Reflectance spectrum of plasmon waveguide interband cascade lasers and observation of the Berreman effect

    NASA Astrophysics Data System (ADS)

    Hinkey, Robert T.; Tian, Zhaobing; Yang, Rui Q.; Mishima, Tetsuya D.; Santos, Michael B.

    2011-08-01

    Noninvasive infrared reflectance measurements have been explored as a method for studying the optical properties of Si-doped cladding layers of plasmon waveguide interband cascade lasers. Measurements and theoretical simulations of the reflectance spectra were carried out on both the laser structures themselves, as well as highly doped InAs films grown on GaAs substrates. We have found that there is a sharp drop in the signal of the reflectance spectrum for p-polarized light oscillating near the plasma frequency. This is a manifestation of the so-called Berreman effect, which occurs at frequencies where the dielectric function approaches zero. This is distinct from the plasma edge feature seen in the reflectance spectrum of thick samples. The plasma frequencies of the highly doped layers were obtained by identifying the Berreman feature in the measured spectrum and fitting the spectrum to a modeled curve. Using a model for the effective mass, we were able to obtain measurements of the conduction electron concentration (in a range from 1018 to 1019 cm-3) in the waveguide cladding layers with values that were in good agreement with those found using Hall effect and SIMS measurements. The reflectance data was effectively used to achieve better calibration of the Si-doping during the growth of the n++-type InAs layers in the plasmon waveguide laser structures.

  2. The identification of H3S(+) with the ion of mass per charge (m/q) 35 observed in the coma of Comet Halley

    NASA Technical Reports Server (NTRS)

    Marconi, M. L.; Mendis, D. A.; Korth, A.; Lin, R. P.; Mitchell, D. L.

    1990-01-01

    A sharp peak in the mass spectrum at 35 amu is observed by the heavy ion analyzer on board the Giotto spacecraft just inside the ionopause. This peak is identified with H3S(+) and it is argued that the dominant source of its likely parent molecule (H2S) is the observed distributed source of circumnuclear dust, rather than the central nucleus. In this case, the total production rate of H2S is more than about 0.5 percent that of the dominant cometary molecule H2O.

  3. [Fiat Lux. May be no more true in cytometry! Go to mass and spectrum but still stay classic].

    PubMed

    Idziorek, Thierry; Cazareth, Julie; Blanc, Catherine; Jouy, Nathalie; Bourdely, Pierre; Corneau, Aurélien

    2018-05-01

    The last decade has been an era of accelerated technological progress for flow cytometry. New technologies have been developed such as mass cytometry in which standard fluorochromes have been replaced by lanthanide-based non-radioactive metals and by spectral cytometry that measures the complete fluorescence spectrum. In this review, we schematically describe conventional, mass and spectral cytometry and present the plus and minus of each technology. © 2018 médecine/sciences – Inserm.

  4. Quark-mass dependence of two-nucleon observables

    NASA Astrophysics Data System (ADS)

    Chen, Jiunn-Wei; Lee, Tze-Kei; Liu, C.-P.; Liu, Yu-Sheng

    2012-11-01

    We study the potential implications of lattice QCD determinations of the S-wave nucleon-nucleon scattering lengths with unphysical light quark masses. If the light quark masses are small enough such that nuclear effective field theory (NEFT) can be used to perform quark-mass extrapolations, then the leading quark-mass dependence of not only the effective range and the two-body current, but also all the low-energy deuteron matrix elements up to next-to-leading-order in NEFT can be obtained. As a proof of principle, we compute the quark-mass dependence of the deuteron charge radius, magnetic moment, polarizability, and the deuteron photodisintegration cross section using the lattice calculation of the scattering lengths at 354 MeV pion mass by the ``Nuclear Physics with Lattice QCD'' (NPLQCD) collaboration and the NEFT power counting scheme of Beane, Kaplan, and Vuorinen (BKV), even though it is not yet established that the 354 MeV pion mass is within the radius of convergence of the BKV scheme. Once the lattice result with quark mass within the NEFT radius of convergence is obtained, our observation can be used to constrain the time variation of isoscalar combination of u and d quark mass mq, to help the anthropic principle study to find the mq range that allows the existence of life, and to provide a weak test of the multiverse conjecture.

  5. Identifying water mass depletion in Northern Iraq observed by GRACE

    NASA Astrophysics Data System (ADS)

    Mulder, Gert; Olsthoorn, Theo; Al-Manmi, Diary; Schrama, Ernst; Smidt, Ebel

    2014-05-01

    Observations acquired by Gravity Recovery And Climate Experiment (GRACE) mission indicates a mass loss of 31±3 km3 or 130±14 mm in Northern Iraq between 2006 and 2009. This data is used as an independent validation of a hydrologic model of the region including lake mass variations. We developed a rainfall-runoff model for five tributaries of the Tigris River, based on local geology and climate conditions. Model inputs are precipitation data from Tropical Rainfall Measurement Mission (TRMM) observations, and potential evaporation from GLDAS parameters. Our model includes an extensive network of karstified aquifers that causes large natural groundwater variations in this region. Observed river discharges have been used to calibrate our model. In order to get the total mass variations, we correct for lake mass variations derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data in combination with satellite altimetry and some in-situ data. Our rainfall-runoff model confirms that Northern Iraq suffered a drought between 2006 and 2009 and is consistent with the mass loss observed by GRACE in that period. Also, GRACE picks up the annual cycle predicted by the rainfall-runoff model. The total mass depletion seen by GRACE between 2006 and 2009 is 130±14 mm, which is mainly explained by a lake mass depletion of 74±4 mm and a natural groundwater depletion of approximately 50 mm. Our findings indicate that man-made groundwater extraction has a minor influence in this region while depletion of lake mass and geology play a key role.

  6. All-particle cosmic ray energy spectrum measured with 26 IceTop stations

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Klepser, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Pieloth, D.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Schmidt, T.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Smith, M. W. E.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2013-04-01

    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, the surface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysis were taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 km2. The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenith angle ranges between 0° and 46°. Because of the isotropy of cosmic rays in this energy range the spectra from all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under different assumptions on the primary mass composition. Good agreement of spectra in the three zenith angle ranges was found for the assumption of pure proton and a simple two-component model. For zenith angles θ < 30°, where the mass dependence is smallest, the knee in the cosmic ray energy spectrum was observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indication of a flattening of the spectrum above 22 PeV was observed.

  7. NGC 4051: Black hole mass and photon index-mass accretion rate correlation

    NASA Astrophysics Data System (ADS)

    Seifina, Elena; Chekhtman, Alexandre; Titarchuk, Lev

    2018-05-01

    We present a discovery of the correlation between the X-ray spectral (photon) index and mass accretion rate observed in an active galactic nucleus, NGC 4051. We analyzed spectral transition episodes observed in NGC 4051 using XMM-Newton, Suzaku and RXTE. We applied a scaling technique for a black hole (BH) mass evaluation which uses a correlation between the photon index and normalization of the seed (disk) component, which is proportional to a mass accretion rate. We developed an analytical model that shows the spectral (photon) index of the BH emergent spectrum undergoes an evolution from lower to higher values depending on a mass accretion rate in the accretion disk. We considered Cygnus X-1 and GRO J1550-564 as reference sources for which distances, inclination angles and the BH masses are evaluated by dynamical measurements. Application of the scaling technique for the photon index-mass accretion rate correlation provides an estimate of the black hole mass in NGC 4051 to be more than 6 × 105 solar masses.

  8. Predicting Constraints on Ultra-Light Axion Parameters due to LSST Observations

    NASA Astrophysics Data System (ADS)

    Given, Gabriel; Grin, Daniel

    2018-01-01

    Ultra-light axions (ULAs) are a type of dark matter or dark energy candidate (depending on the mass) that are predicted to have a mass between $10^{‑33}$ and $10^{‑18}$ eV. The Large Synoptic Survey Telescope (LSST) is expected to provide a large number of weak lensing observations, which will lower the statistical uncertainty on the convergence power spectrum. I began work with Daniel Grin to predict how accurately the data from the LSST will be able to constrain ULA properties. I wrote Python code that takes a matter power spectrum calculated by axionCAMB and converts it to a convergence power spectrum. My code then takes derivatives of the convergence power spectrum with respect to several cosmological parameters; these derivatives will be used in Fisher Matrix analysis to determine the sensitivity of LSST observations to axion parameters.

  9. Transient Mass-loss Analysis of Solar Observations Using Stellar Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosley, M. K.; Norman, C.; Osten, R. A.

    Low-frequency dynamic spectra of radio bursts from nearby stars offer the best chance to directly detect the stellar signature of transient mass loss on low-mass stars. Crosley et al. (2016) proposes a multi-wavelength methodology to determine coronal mass ejection (CME) parameters, such as speed, mass, and kinetic energy. We test the validity and accuracy of the results derived from the methodology by using Geostationary Operational Environmental Satellite X-ray observations and Bruny Island Radio Spectrometer radio observations. These are analogous observations to those that would be found in the stellar studies. Derived results from these observations are compared to direct whitemore » light measurements of the Large Angle and Spectrometric Coronagraph. We find that, when a pre-event temperature can be determined, the accuracy of CME speeds are within a few hundred km s{sup −1}, and are reliable when specific criteria has been met. CME mass and kinetic energies are only useful in determining the approximate order of magnitude measurements when considering the large errors associated to them. These results will be directly applicable to the interpretation of any detected stellar events and the derivation of stellar CME properties.« less

  10. Mass spectrometric immunoassay

    DOEpatents

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2007-12-04

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  11. Mass spectrometric immunoassay

    DOEpatents

    Nelson, Randall W; Williams, Peter; Krone, Jennifer Reeve

    2013-07-16

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  12. Mass spectrometric immunoassay

    DOEpatents

    Nelson, Randall W.; Williams, Peter; Krone, Jennifer Reeve

    2005-12-13

    Rapid mass spectrometric immunoassay methods for detecting and/or quantifying antibody and antigen analytes utilizing affinity capture to isolate the analytes and internal reference species (for quantification) followed by mass spectrometric analysis of the isolated analyte/internal reference species. Quantification is obtained by normalizing and calibrating obtained mass spectrum against the mass spectrum obtained for an antibody/antigen of known concentration.

  13. Using Power Spectrum Analysis to Evaluate 18O-Water Labeling Data Acquired from Low Resolution Mass Spectrometers

    PubMed Central

    Sadygov, Rovshan G.; Zhao, Yingxin; Haidacher, Sigmund J.; Starkey, Jonathan M.; Tilton, Ronald G.; Denner, Larry

    2010-01-01

    We describe a method for ratio estimations in 18O-water labeling experiments acquired from low resolution isotopically resolved data. The method is implemented in a software package specifically designed for use in experiments making use of zoom-scan mode data acquisition. Zoom-scan mode data allows commonly used ion trap mass spectrometers to attain isotopic resolution, which make them amenable to use in labeling schemes such as 18O-water labeling, but algorithms and software developed for high resolution instruments may not be appropriate for the lower resolution data acquired in zoom-scan mode. The use of power spectrum analysis is proposed as a general approach which may be uniquely suited to these data types. The software implementation uses power spectrum to remove high-frequency noise, and band-filter contributions from co-eluting species of differing charge states. From the elemental composition of a peptide sequence we generate theoretical isotope envelopes of heavy-light peptide pairs in five different ratios; these theoretical envelopes are correlated with the filtered experimental zoom scans. To automate peptide quantification in high-throughput experiments, we have implemented our approach in a computer program, MassXplorer. We demonstrate the application of MassXplorer to two model mixtures of known proteins, and to a complex mixture of mouse kidney cortical extract. Comparison with another algorithm for ratio estimations demonstrates the increased precision and automation of MassXplorer. PMID:20568695

  14. Identifying water mass depletion in northern Iraq observed by GRACE

    NASA Astrophysics Data System (ADS)

    Mulder, G.; Olsthoorn, T. N.; Al-Manmi, D. A. M. A.; Schrama, E. J. O.; Smidt, E. H.

    2015-03-01

    Observations acquired by Gravity Recovery And Climate Experiment (GRACE) mission indicate a mass loss of 146 ± 6 mm equivalent water height (EWH) in northern Iraq between 2007 and 2009. These data are used as an independent validation of lake mass variations and a rainfall-runoff model, which is based on local geology and climate conditions. Model inputs are precipitation from Tropical Rainfall Measurement Mission (TRMM) observations, and climatic parameters from Global Land Data Assimilation Systems (GLDAS) model parameters. The model is calibrated with observed river discharge and includes a representation of the karstified aquifers in the region to improve model realism. Lake mass variations were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) in combination with satellite altimetry and some in situ data. Our rainfall-runoff model confirms that northern Iraq suffered a drought between 2007 and 2009 and captures the annual cycle and longer trend of the observed GRACE data. The total mass depletion seen by GRACE between 2007 and 2009 is mainly explained by a lake mass depletion of 75 ± 3 mm EWH and a natural groundwater depletion of 39 ± 8 mm EWH. Our findings indicate that anthropogenic groundwater extraction has a minor influence in this region, while a decline in lake mass and natural depletion of groundwater play a key role.

  15. Observation of cosmic-ray particles with Z of 50 or greater and interpretation of the charge spectrum.

    NASA Technical Reports Server (NTRS)

    Blanford, G. E., Jr.; Friedlander, M. W.; Klarmann, J.; Walker, R. M.; Wefel, J. P.

    1973-01-01

    Large areas of plastic detectors and nuclear emulsions were exposed to the primary cosmic radiation on two high-altitude balloon flights in May 1968 and September 1969. From measurements on the tracks found in the scanning of the plastic detectors, events with charges Z greater than 50 were selected, and these data were consolidated with those from our earlier flights. Several conclusions can be drawn from the observed charge spectrum. The detection of trans-bismuth nuclei confirms earlier observations of these particles in the cosmic rays. However, no trans-uranium particles were observed. Detailed features of the charge spectrum cannot be explained by nuclei from r-process nucleosynthesis alone. Although the addition of particles following s-process abundances yields improved agreement, the spectrum appears more complicated than would result from a simple combination of r- and s-process abundances with identical propagation histories.

  16. Modeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers.

    PubMed

    Bernuzzi, Sebastiano; Dietrich, Tim; Nagar, Alessandro

    2015-08-28

    In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the binary tidal interactions during the late-inspiral merger. The relation f(2)(κ(2)^T) depends very weakly on the binary total mass, mass ratio, equation of state, and thermal effects. This observation opens up the possibility of developing a model of the gravitational spectrum of every merger unifying the late-inspiral and postmerger descriptions.

  17. Diverse Long-term Variability of Five Candidate High-mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    NASA Astrophysics Data System (ADS)

    Corbet, Robin H. D.; Coley, Joel B.; Krimm, Hans A.

    2017-09-01

    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope. IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with the Swift X-ray Telescope show a hint of pulsations at 33.4 s. For AX J1700.2-4220, 54 s pulsations were previously found with XMM-Newton. Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090, which was previously proposed to be a Be star system with an orbital period of ˜30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although they might be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be star mass donors.

  18. Diverse Long-Term Variability of Five Candidate High-Mass X-ray Binaries from Swift Burst Alert Telescope Observations

    NASA Astrophysics Data System (ADS)

    Corbet, Robin; Coley, Joel Barry; Krimm, Hans A.

    2017-08-01

    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope. IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with Swift X-ray Telescope show a hint of pulsations at 33.4 s. For AX J1700.2-4220, 54 s pulsations were previously found with XMM-Newton. Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. (2014). AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090, which was previously proposed to be a Be star system with an orbital period of ˜30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although they might be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be star mass donors.

  19. Testing spatial uniformity of the CR spectrum in the local ISM with γ-ray observations

    NASA Astrophysics Data System (ADS)

    Prokhorov, D. A.; Colafrancesco, S.

    2018-05-01

    Gamma-ray observations of nearby radio-line-emitting gas structures in the interstellar medium allow us to probe the spectrum of cosmic rays (CRs). In this paper, we analysed Fermi Large Area Telescope (LAT) γ-ray observations of three such structures located near each other to check if their CR spectra are compatible with that of the CR background or might provide evidence for a population of "fresh" CRs. We found that the shape of the γ-ray spectrum in the Aquarius HI shell is consistent with the previously published stacked γ-ray spectrum of the Gould Belt molecular clouds. We also found that assumptions on the diffuse Galactic γ-ray background affect the spectral shapes of CRs derived in the R Coronae Australis and ρ Ophiuchi molecular clouds in which spectral deviations had previously been suggested. These two facts provide evidence to support the hypothesis of uniformity of the shapes of cosmic ray spectra in the local Galaxy environment.

  20. All-Particle Cosmic Ray Energy Spectrum Measured with 26 Icetop Stations

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; hide

    2013-01-01

    We report on a measurement of the cosmic ray energy spectrum with the IceTop air shower array, thesurface component of the IceCube Neutrino Observatory at the South Pole. The data used in this analysiswere taken between June and October, 2007, with 26 surface stations operational at that time, corresponding to about one third of the final array. The fiducial area used in this analysis was 0.122 square kilometers.The analysis investigated the energy spectrum from 1 to 100 PeV measured for three different zenithangle ranges between 0 and 46. Because of the isotropy of cosmic rays in this energy range the spectrafrom all zenith angle intervals have to agree. The cosmic-ray energy spectrum was determined under differentassumptions on the primary mass composition. Good agreement of spectra in the three zenithangle ranges was found for the assumption of pure proton and a simple two-component model. Forzenith angles theta less than 30 deg., where the mass dependence is smallest, the knee in the cosmic ray energy spectrumwas observed at about 4 PeV, with a spectral index above the knee of about -3.1. Moreover, an indicationof a flattening of the spectrum above 22 PeV was observed.

  1. Power spectrum of dark matter substructure in strong gravitational lenses

    NASA Astrophysics Data System (ADS)

    Diaz Rivero, Ana; Cyr-Racine, Francis-Yan; Dvorkin, Cora

    2018-01-01

    Studying the smallest self-bound dark matter structure in our Universe can yield important clues about the fundamental particle nature of dark matter. Galaxy-scale strong gravitational lensing provides a unique way to detect and characterize dark matter substructures at cosmological distances from the Milky Way. Within the cold dark matter (CDM) paradigm, the number of low-mass subhalos within lens galaxies is expected to be large, implying that their contribution to the lensing convergence field is approximately Gaussian and could thus be described by their power spectrum. We develop here a general formalism to compute from first principles the substructure convergence power spectrum for different populations of dark matter subhalos. As an example, we apply our framework to two distinct subhalo populations: a truncated Navarro-Frenk-White subhalo population motivated by standard CDM, and a truncated cored subhalo population motivated by self-interacting dark matter (SIDM). We study in detail how the subhalo abundance, mass function, internal density profile, and concentration affect the amplitude and shape of the substructure power spectrum. We determine that the power spectrum is mostly sensitive to a specific combination of the subhalo abundance and moments of the mass function, as well as to the average tidal truncation scale of the largest subhalos included in the analysis. Interestingly, we show that the asymptotic slope of the substructure power spectrum at large wave number reflects the internal density profile of the subhalos. In particular, the SIDM power spectrum exhibits a characteristic steepening at large wave number absent in the CDM power spectrum, opening the possibility of using this observable, if at all measurable, to discern between these two scenarios.

  2. UV and radiofrequency observations of Wolf-Rayet stars.

    NASA Technical Reports Server (NTRS)

    Johnson, H. M.

    1973-01-01

    Available spectrometric and photometric observations of Wolf-Rayet stars by the OAO 2 spacecraft in the UV range are discussed along with radio astronomical observations of W stars with symmetrical nebulae around them. The scanned spectrum of the WN5 star HD 50896 between 1200 and 1900 A is illustrated together with the photometered spectrum of the WN6 star HD 192163 from 1330 to 3320 A. RF observations of NGC 6888 around HD 192163 are examined relative to interpretation of the properties of a WN6 star ejecting mass into a nebular shell.

  3. Challenges to Constraining Exoplanet Masses via Transmission Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Batalha, Natasha E.; Kempton, Eliza M.-R.; Mbarek, Rostom, E-mail: neb149@psu.edu

    MassSpec , a method for determining the mass of a transiting exoplanet from its transmission spectrum alone, was proposed by de Wit and Seager. The premise of this method relies on the planet’s surface gravity being extracted from the transmission spectrum via its effect on the atmospheric scale height, which in turn determines the strength of absorption features. Here, we further explore the applicability of MassSpec to low-mass exoplanets—specifically those in the super-Earth size range for which radial velocity determinations of the planetary mass can be extremely challenging and resource intensive. Determining the masses of these planets is of themore » utmost importance because their nature is otherwise highly unconstrained. Without knowledge of the mass, these planets could be rocky, icy, or gas-dominated. To investigate the effects of planetary mass on transmission spectra, we present simulated observations of super-Earths with atmospheres made up of mixtures of H{sub 2}O and H{sub 2}, both with and without clouds. We model their transmission spectra and run simulations of each planet as it would be observed with James Webb Space Telescope using the NIRISS, NIRSpec, and MIRI instruments. We find that significant degeneracies exist between transmission spectra of planets with different masses and compositions, making it impossible to unambiguously determine the planet’s mass in many cases.« less

  4. Baryon spectrum from superconformal quantum mechanics and its light-front holographic embedding

    DOE PAGES

    de Teramond, Guy F.; Dosch, Hans Gunter; Brodsky, Stanley J.

    2015-02-27

    We describe the observed light-baryon spectrum by extending superconformal quantum mechanics to the light front and its embedding in AdS space. This procedure uniquely determines the confinement potential for arbitrary half-integer spin. To this end, we show that fermionic wave equations in AdS space are dual to light-front supersymmetric quantum-mechanical bound-state equations in physical space-time. The specific breaking of conformal invariance explains hadronic properties common to light mesons and baryons, such as the observed mass pattern in the radial and orbital excitations, from the spectrum generating algebra. Lastly, the holographic embedding in AdS also explains distinctive and systematic features, suchmore » as the spin-J degeneracy for states with the same orbital angular momentum, observed in the light-baryon spectrum.« less

  5. High-Frequency Observation of Water Spectrum and Its Application in Monitoring of Dynamic Variation of Suspended Materials in the Hangzhou Bay.

    PubMed

    Dai, Qian; Pan, De-lu; He, Xian-qiang; Zhu, Qian-kun; Gong, Fang; Huang, Hai-qing

    2015-11-01

    In situ measurement of water spectrum is the basis of the validation of the ocean color remote sensing. The traditional method to obtain the water spectrum is based on the shipboard measurement at limited stations, which is difficult to meet the requirement of validation of ocean color remote sensing in the highly dynamic coastal waters. To overcome this shortage, continuously observing systems of water spectrum have been developed in the world. However, so far, there are still few high-frequency observation systems of the water spectrum in coastal waters, especially in the highly turbid and high-dynamic waters. Here, we established a high-frequency water-spectrum observing system based on tower in the Hangzhou Bay. The system measures the water spectrum at a step of 3 minutes, which can fully match the satellite observation. In this paper, we primarily developed a data processing method for the tower-based high-frequency water spectrum data, to realize automatic judgment of clear sky, sun glint, platform shadow, and weak illumination, etc. , and verified the processing results. The results show that the normalized water-leaving radiance spectra obtained through tower observation have relatively high consistency with the shipboard measurement results, with correlation coefficient of more than 0. 99, and average relative error of 9.96%. In addition, the long-term observation capability of the tower-based high-frequency water-spectrum observing system was evaluated, and the results show that although the system has run for one year, the normalized water-leaving radiance obtained by this system have good consistency with the synchronously measurement by Portable spectrometer ASD in respect of spectral shape and value, with correlation coefficient of more than 0.90 and average relative error of 6.48%. Moreover, the water spectra from high-frequency observation by the system can be used to effectively monitor the rapid dynamic variation in concentration of suspended

  6. Observation of the ankle and evidence for a high-energy break in the cosmic ray spectrum

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abuzayyad, T.; Amman, J.; Archbold, G.; Atkins, R.; Bellido, J.; Belov, K.; Belz, J.; Benzvi, S.; Bergman, D.

    2005-07-01

    We have measured the cosmic ray spectrum at energies above $10^{17}$ eV using the two air fluorescence detectors of the High Resolution Fly's Eye experiment operating in monocular mode. We describe the detector, PMT and atmospheric calibrations, and the analysis techniques for the two detectors. We fit the spectrum to models describing galactic and extragalactic sources. Our measured spectrum gives an observation of a feature known as the ``ankle'' near $3\\times 10^{18}$ eV, and strong evidence for a suppression near $6\\times 10^{19}$ eV.

  7. Suzaku observation of the eclipsing high mass X-ray binary pulsar XTE J1855-026

    NASA Astrophysics Data System (ADS)

    Devasia, Jincy; Paul, Biswajit

    2018-02-01

    We report results from analysis performed on an eclipsing supergiant high mass X-ray binary pulsar XTE J1855-026 observed with the X-ray Imaging Spectrometer (XIS) on-board Suzaku Observatory in April 2015. Suzaku observed this source for a total effective exposure of ˜ 87 ks just before an eclipse. Pulsations are clearly observed and the pulse profiles of XTE J1855-026 did not show significant energy dependence during this observation consistent with previous reports. The time averaged energy spectrum of XTE J1855-026 in the 1.0-10.5 keV energy range can be well fitted with a partial covering power law model modified with interstellar absorption along with a black-body component for soft excess and a gaussian for iron fluorescence line emision. The hardness ratio evolution during this observation indicated significant absorption of soft X-rays in some segments of the observation. For better understanding of the reason behind this, we performed time-resolved spectroscopy in the 2.5-10.5 keV energy band which revealed significant variations in the spectral parameters, especially the hydrogen column density and iron line equivalent width with flux. The correlated variations in the spectral parameters indicate towards the presence of clumps in the stellar wind of the companion star accounting for the absorption of low energy X-rays in some time segments.

  8. Observation of water mass characteristics in the southwestern Mariana Trench

    NASA Astrophysics Data System (ADS)

    Xu, H.; Xie, Q.; Hong, B.

    2016-12-01

    The identification of large water mass characteristic can help oceanographer to better understand the oceanic circulation structures and other physical processes in open oceans. In current stage, the water mass characteristics were recognized well by extensive observation in the upper ocean, however, it was rarely studied in deep oceans, especially for deep trench with > 6000 m depth. In this study, we use observed data collected by CTDs during several surveys to investigate the water mass physical characteristic and transport in the world deepest trench, `Challenger Deep', in the southwestern Mariana Trench. The preliminary results show complex vertical structures of water mass in this trench. From surface to 4500 m, the water masses are occupied by typical tropical surface water, NPTUW, NPMW, NPIW and NPDW. Under 4500m, the water mass shows mixing characteristics of NPDW and AABW, which indicate AABW can be transported by form the deep ocean of the South Ocean to Northwestern Pacific and it can affect local water mass characteristics. The baroclinic geostrophic current calculated from the CTDs data shows the westerly transport of water mass can reach about 1.0 SV in the trench which is close to previous results.

  9. Absolute neutrino mass measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Joachim

    2011-10-06

    The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments inmore » Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.« less

  10. The first UV spectrum of Triton - IUE observations from 2600 to 3200 A

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan; Skinner, T. E.; Brosch, N.; Van Santvoort, J.; Trafton, L. M.

    1989-01-01

    The results of the first observations of Triton's spectrum below 3300 A are reported. Triton's 2700 A geometric albedo is found to be 0.28 + or - 0.04. The albedo increases monotonically from 2600 to 3200 A, with a slope of 0.13 + or - 0.03 per 1000 A. This positive slope is qualitatively similar to, but shallower than, Triton's visible albedo slope and argues against a strong Rayleigh scattering signature. Triton's integrated flux is found to be 1.5 times Pluto's, indicating Triton to be either more reflective in the UV, or bigger, or both. The redness of Triton's visible and UV colors argues against an extremely bright surface and for a larger radius than Pluto's. A lower limit on the radius of 1240 + or - 90 km is derived. The spectrum observed by IUE is consistent with either an icy surface or a suspended aerosol layer which preferentially absorbs UV light.

  11. Airborne observations of the Orion molecular hydrogen emission spectrum

    NASA Technical Reports Server (NTRS)

    Davis, D. S.; Larson, H. P.; Smith, H. A.

    1982-01-01

    The Orion near-infrared H2 emission spectrum was observed from an altitude of 12.5 km in order to measure line intensities free from interference by terrestrial H2O. For the peak source, the observations indicate that the differential extinction between 4126 and 4712 per cm is 0.59 + or -0.06 mag, and the relative line intensities are consistent with those expected from a homogeneous source in approximate LTE at 1540 + or -100 K. An anomalous ortho/para H2 abundance ratio of 3.5(+ or - 0.2):1 is found, and the estimated total luminosity in vibrationally excited H2 lines is 300 + or - 100 solar luminosities. Rough molecular abundance limits, based on the missing H2 Q(6) line and the good agreement between other line intensities and the LTE model, place the H2 region no deeper within OMC-1 than the IR cluster and no shallower than 50 percent of the depth to the cluster.

  12. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching.

    PubMed

    Du, Pan; Kibbe, Warren A; Lin, Simon M

    2006-09-01

    A major problem for current peak detection algorithms is that noise in mass spectrometry (MS) spectra gives rise to a high rate of false positives. The false positive rate is especially problematic in detecting peaks with low amplitudes. Usually, various baseline correction algorithms and smoothing methods are applied before attempting peak detection. This approach is very sensitive to the amount of smoothing and aggressiveness of the baseline correction, which contribute to making peak detection results inconsistent between runs, instrumentation and analysis methods. Most peak detection algorithms simply identify peaks based on amplitude, ignoring the additional information present in the shape of the peaks in a spectrum. In our experience, 'true' peaks have characteristic shapes, and providing a shape-matching function that provides a 'goodness of fit' coefficient should provide a more robust peak identification method. Based on these observations, a continuous wavelet transform (CWT)-based peak detection algorithm has been devised that identifies peaks with different scales and amplitudes. By transforming the spectrum into wavelet space, the pattern-matching problem is simplified and in addition provides a powerful technique for identifying and separating the signal from the spike noise and colored noise. This transformation, with the additional information provided by the 2D CWT coefficients can greatly enhance the effective signal-to-noise ratio. Furthermore, with this technique no baseline removal or peak smoothing preprocessing steps are required before peak detection, and this improves the robustness of peak detection under a variety of conditions. The algorithm was evaluated with SELDI-TOF spectra with known polypeptide positions. Comparisons with two other popular algorithms were performed. The results show the CWT-based algorithm can identify both strong and weak peaks while keeping false positive rate low. The algorithm is implemented in R and will be

  13. Full Two-Body Problem Mass Parameter Observability Explored Through Doubly Synchronous Systems

    NASA Astrophysics Data System (ADS)

    Davis, Alex Benjamin; Scheeres, Daniel

    2018-04-01

    The full two-body problem (F2BP) is often used to model binary asteroid systems, representing the bodies as two finite mass distributions whose dynamics are influenced by their mutual gravity potential. The emergent behavior of the F2BP is highly coupled translational and rotational mutual motion of the mass distributions. For these systems the doubly synchronous equilibrium occurs when both bodies are tidally-locked and in a circular co-orbit. Stable oscillations about this equilibrium can be shown, for the nonplanar system, to be combinations of seven fundamental frequencies of the system and the mutual orbit rate. The fundamental frequencies arise as the linear periods of center manifolds identified about the equilibrium which are heavily influenced by each body’s mass parameters. We leverage these eight dynamical constraints to investigate the observability of binary asteroid mass parameters via dynamical observations. This is accomplished by proving the nonsingularity of the relationship between the frequencies and mass parameters for doubly synchronous systems. Thus we can invert the relationship to show that given observations of the frequencies, we can solve for the mass parameters of a target system. In so doing we are able to predict the estimation covariance of the mass parameters based on observation quality and define necessary observation accuracies for desired mass parameter certainties. We apply these tools to 617 Patroclus, a doubly synchronous Trojan binary and flyby target of the LUCY mission, as well as the Pluto and Charon system in order to predict mutual behaviors of these doubly synchronous systems and to provide observational requirements for these systems’ mass parameters

  14. Magnetic Field Topology in Low-Mass Stars: Spectropolarimetric Observations of M Dwarfs

    NASA Astrophysics Data System (ADS)

    Phan-Bao, Ngoc; Lim, Jeremy; Donati, Jean-François; Johns-Krull, Christopher M.; Martín, Eduardo L.

    2009-10-01

    The magnetic field topology plays an important role in the understanding of stellar magnetic activity. While it is widely accepted that the dynamo action present in low-mass partially convective stars (e.g., the Sun) results in predominantly toroidal magnetic flux, the field topology in fully convective stars (masses below ~0.35 M sun) is still under debate. We report here our mapping of the magnetic field topology of the M4 dwarf G 164-31 (or Gl 490B), which is expected to be fully convective, based on time series data collected from 20 hr of observations spread over three successive nights with the ESPaDOnS spectropolarimeter. Our tomographic imaging technique applied to time series of rotationally modulated circularly polarized profiles reveals an axisymmetric large-scale poloidal magnetic field on the M4 dwarf. We then apply a synthetic spectrum fitting technique for measuring the average magnetic flux on the star. The flux measured in G 164-31 is |Bf| = 3.2 ± 0.4 kG, which is significantly greater than the average value of 0.68 kG determined from the imaging technique. The difference indicates that a significant fraction of the stellar magnetic energy is stored in small-scale structures at the surface of G 164-31. Our Hα emission light curve shows evidence for rotational modulation suggesting the presence of localized structure in the chromosphere of this M dwarf. The radius of the M4 dwarf derived from the rotational period and the projected equatorial velocity is at least 30% larger than that predicted from theoretical models. We argue that this discrepancy is likely primarily due to the young nature of G 164-31 rather than primarily due to magnetic field effects, indicating that age is an important factor which should be considered in the interpretation of this observational result. We also report here our polarimetric observations of five other M dwarfs with spectral types from M0 to M4.5, three of them showing strong Zeeman signatures. Based on

  15. Predictive Gaze during Observation of Irrational Actions in Adults with Autism Spectrum Conditions

    ERIC Educational Resources Information Center

    Marsh, L. E.; Pearson, A.; Ropar, D.; Hamilton, A. F. de C.

    2015-01-01

    Understanding irrational actions may require the observer to make mental state inferences about why an action was performed. Individuals with autism spectrum conditions (ASC) have well documented difficulties with mentalizing; however, the degree to which rationality understanding is impaired in autism is not yet clear. The present study uses…

  16. Brief Report: Physical Activity, Body Mass Index and Arterial Stiffness in Children with Autism Spectrum Disorder: Preliminary Findings

    ERIC Educational Resources Information Center

    Heffernan, Kevin S.; Columna, Luis; Russo, Natalie; Myers, Beth A.; Ashby, Christine E.; Norris, Michael L.; Barreira, Tiago V.

    2018-01-01

    We examined the association between physical activity (PA), body mass index (BMI) and novel measures of subclinical cardiovascular disease (CVD) in 15 children with autism spectrum disorder (ASD) (mean age 7 ± 2 years, 2 girls). PA was objectively assessed using accelerometry as time spent in moderate-vigorous physical activity (MVPA). Arterial…

  17. Study of the Dijet Mass Spectrum in pp→W+jets Events at s=7TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M., Jr.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Magass, C.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Autermann, C.; Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Scheurer, A.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Tabarelli de Fatis, T.; Buontempo, S.; Carrillo Montoya, C. A.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Vilela Pereira, A.; Belforte, S.; Candelise, V.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Heo, S. G.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Magaña Villalba, R.; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Ansari, M. H.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Belotelov, I.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sobron Sanudo, M.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Ricci-tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., Iii; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Li, W.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Acosta, J. G.; Brownson, E.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Ramirez Vargas, J. E.; Zatserklyaniy, A.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Bachtis, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2012-12-01

    We report an investigation of the invariant mass spectrum of the two jets with highest transverse momentum in pp→W+2-jet and W+3-jet events to look for resonant enhancement. The data sample corresponds to an integrated luminosity of 5.0fb-1 collected with the CMS detector at s=7TeV. We find no evidence for the anomalous structure reported by the CDF Collaboration, and establish an upper limit of 5.0 pb at 95% confidence level on the production cross section for a generic Gaussian signal with mass near 150 GeV. Additionally, we exclude two theoretical models that predict a CDF-like dijet resonance near 150 GeV.

  18. Low-mass ions observed in plasma desorption mass spectrometry of high explosives

    PubMed

    Hakansson; Coorey; Zubarev; Talrose; Hakansson

    2000-03-01

    The low-mass ions observed in both positive and negative plasma desorption mass spectrometry (PDMS) of the high explosives HMX, RDX, CL-20, NC, PETN and TNT are reported. Possible identities of the most abundant ions are suggested and their presence or absence in the different spectra is related to the properties of the explosives as matrices in PDMS. The detection of abundant NO+ and NO2- ions for HMX, RDX and CL-20, which are efficient matrices, indicates that explosive decomposition takes place in PDMS of these three substances and that a contribution from the corresponding chemical energy release is possible. The observation of abundant C2H4N+ and CH2N+ ions, which have high protonation properties, might also explain the higher protein charge states observed with these matrices. Also, the observation of NO2-, possibly formed by electron scavenging which increases the survival probability of positively charged protein molecular ions, completes the pattern. TNT does not give any of these ions and it is thereby possible to explain why it does not work as a PDMS matrix. For NC and PETN, decomposition does not seem to be as pronounced as for HMX, RDX and CL-20, and also no particularly abundant ions with high protonation properties are observed. The fact that NC works well as a matrix might be related to other properties of this compound, such as its high adsorption ability.

  19. On Weibull's Spectrum of Nonrelativistic Energetic Particles at IP Shocks: Observations and Theoretical Interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pallocchia, G.; Laurenza, M.; Consolini, G.

    2017-03-10

    Some interplanetary shocks are associated with short-term and sharp particle flux enhancements near the shock front. Such intensity enhancements, known as shock-spike events (SSEs), represent a class of relatively energetic phenomena as they may extend to energies of some tens of MeV or even beyond. Here we present an SSE case study in order to shed light on the nature of the particle acceleration involved in this kind of event. Our observations refer to an SSE registered on 2011 October 3 at 22:23 UT, by STEREO B instrumentation when, at a heliocentric distance of 1.08 au, the spacecraft was sweptmore » by a perpendicular shock moving away from the Sun. The main finding from the data analysis is that a Weibull distribution represents a good fitting function to the measured particle spectrum over the energy range from 0.1 to 30 MeV. To interpret such an observational result, we provide a theoretical derivation of the Weibull spectrum in the framework of the acceleration by “killed” stochastic processes exhibiting power-law growth in time of the velocity expectation, such as the classical Fermi process. We find an overall coherence between the experimental values of the Weibull spectrum parameters and their physical meaning within the above scenario. Hence, our approach based on the Weibull distribution proves to be useful for understanding SSEs. With regard to the present event, we also provide an alternative explanation of the Weibull spectrum in terms of shock-surfing acceleration.« less

  20. Psychometric Analysis of the Systematic Observation of Red Flags for Autism Spectrum Disorder in Toddlers

    ERIC Educational Resources Information Center

    Dow, Deanna; Guthrie, Whitney; Stronach, Sheri T.; Wetherby, Amy M.

    2017-01-01

    The purpose of this study was to examine the utility of the Systematic Observation of Red Flags as an observational level-two screening measure to detect risk for autism spectrum disorder in toddlers when used with a video-recorded administration of the Communication and Symbolic Behavior Scales. Psychometric properties of the Systematic…

  1. Constraints on pulsar masses from the maximum observed glitch

    NASA Astrophysics Data System (ADS)

    Pizzochero, P. M.; Antonelli, M.; Haskell, B.; Seveso, S.

    2017-07-01

    Neutron stars are unique cosmic laboratories in which fundamental physics can be probed in extreme conditions not accessible to terrestrial experiments. In particular, the precise timing of rotating magnetized neutron stars (pulsars) reveals sudden jumps in rotational frequency in these otherwise steadily spinning-down objects. These 'glitches' are thought to be due to the presence of a superfluid component in the star, and offer a unique glimpse into the interior physics of neutron stars. In this paper we propose an innovative method to constrain the mass of glitching pulsars, using observations of the maximum glitch observed in a star, together with state-of-the-art microphysical models of the pinning interaction between superfluid vortices and ions in the crust. We study the properties of a physically consistent angular momentum reservoir of pinned vorticity, and we find a general inverse relation between the size of the maximum glitch and the pulsar mass. We are then able to estimate the mass of all the observed glitchers that have displayed at least two large events. Our procedure will allow current and future observations of glitching pulsars to constrain not only the physics of glitch models but also the superfluid properties of dense hadronic matter in neutron star interiors.

  2. Low-mass X-ray binary MAXI J1421-613 observed by MAXI GSC and Swift XRT

    NASA Astrophysics Data System (ADS)

    Serino, Motoko; Shidatsu, Megumi; Ueda, Yoshihiro; Matsuoka, Masaru; Negoro, Hitoshi; Yamaoka, Kazutaka; Kennea, Jamie A.; Fukushima, Kosuke; Nagayama, Takahiro

    2015-04-01

    Monitor of All sky X-ray Image (MAXI) discovered a new outburst of an X-ray transient source named MAXI J1421-613. Because of the detection of three X-ray bursts from the source, it was identified as a neutron star low-mass X-ray binary. The results of data analyses of the MAXI GSC (Gas Slit Camera) and the Swift XRT (X-Ray Telescope) follow-up observations suggest that the spectral hardness remained unchanged during the first two weeks of the outburst. All the XRT spectra in the 0.5-10 keV band can be well explained by thermal Comptonization of multi-color disk blackbody emission. The photon index of the Comptonized component is ≈ 2, which is typical of low-mass X-ray binaries in the low/hard state. Since X-ray bursts have a maximum peak luminosity, it is possible to estimate the (maximum) distance from its observed peak flux. The peak flux of the second X-ray burst, which was observed by the GSC, is about 5 photons cm-2 s-1. By assuming a blackbody spectrum of 2.5 keV, the maximum distance to the source is estimated as 7 kpc. The position of this source is contained by the large error regions of two bright X-ray sources detected with Orbiting Solar Observatory-7 (OSO-7) in the 1970s. Besides this, no past activities at the XRT position are reported in the literature. If MAXI J1421-613 is the same source as (one of) these, the outburst observed with MAXI may have occurred after a quiescence of 30-40 years.

  3. Asteroid masses with Gaia from ground and space-based observations

    NASA Astrophysics Data System (ADS)

    Ivantsov, Anatoliy; Hestroffer, Daniel; Thuillot, William; Bancelin, David

    2013-04-01

    Determination of masses of large asteroids is one of the expected scientific outputs from the future Gaia astrometric space mission. With the exception of binary asteroids or fly-by with a space probe, the error in mass determination depends on the size of perturbation effect produced on the motion of small asteroids. Considering the 5 years nominal duration of the Gaia mission, there will be mutual close encounters between asteroids occurring either close to the beginning or to the end of the mission. So that the maximum of deflection angle pertained to the perturbation maxima will not be observed directly by Gaia. Since astrometric data of the perturbed body before and after the encounter are mandatory to derive a perturber mass, the precision of mass determinations based solely on the Gaia observations will deteriorate in such cases. The possible way out consists in acquiring ground-based observations of high astrometric precision in time either before or after the Gaia operations, as it was suggested in [1]. By adding such data, it is expected to increase the number of derived asteroids masses [2]. This paper updates earlier predictions of encounters of large asteroids with smaller ones, e.g. [3], in terms of newly discovered asteroids and available ground-based observations. The method used consists in the computation of the offsets in right ascension and declination between the unperturbed and perturbed solutions fitted to the available observations for each small (perturbed) asteroid. For the purpose of decreasing CPU time, a special filter was applied based on the solution of the two-body problem and systematical search for close encounters, e.g. less than 0.1 A.U., of all known asteroids with the large (perturber) ones. The obtained list of asteroids-candidates was used as the input file for the mentioned above accurate calculations. Such a procedure was used for a few asteroids in [2]. The maximum visible offset corresponds to the dates when the

  4. 50 years of mass balance observations at Vernagtferner, Eastern Alps

    NASA Astrophysics Data System (ADS)

    Braun, Ludwig; Mayer, Christoph

    2016-04-01

    The determination and monitoring of the seasonal and annual glacier mass balances of Vernagtferner, Austria, started in 1964 by the Commission of Glaciology, Bavarian Academy of Sciences. Detailed and continuous climate- and runoff measurements complement this mass balance series since 1974. Vernagtferner attracted the attention of scientists since the beginning of the 17th century due to its rapid advances and the resulting glacier lake outburst floods in the Ötztal valley. This is one reason for the first photogrammetric survey in 1889, which was followed by frequent topographic surveys, adding up to more than ten digital elevation models of the glacier until today. By including the known maximum glacier extent at the end of the Little Ice Age in 1845, the geodetic glacier volume balances cover a time span of almost 170 years. The 50 years of glacier mass balance and 40 years of water balance in the drainage basin are therefore embedded in a considerably longer period of glacier evolution, allowing an interpretation within an extended frame of climatology and ice dynamics. The direct mass balance observations cover not only the period of alpine-wide strong glacier mass loss since the beginning of the 1990s. The data also contain the last period of glacier advances between 1970 and 1990. The combination of the observed surface mass exchange and the determined periodic volumetric changes allows a detailed analysis of the dynamic reaction of the glacier over the period of half a century. The accompanying meteorological observations are the basis for relating these reactions to the climatic changes during this period. Vernagtferner is therefore one of the few glaciers in the world, where a very detailed glacier-climate reaction was observed for many decades and can be realistically reconstructed back to the end of the Little Ice Age.

  5. Observing stellar mass and supermassive black holes

    NASA Astrophysics Data System (ADS)

    Cherepashchuk, A. M.

    2016-07-01

    During the last 50 years, great progress has been made in observing stellar-mass black holes (BHs) in binary systems and supermassive BHs in galactic nuclei. In 1964, Zeldovich and Salpeter showed that in the case of nonspherical accretion of matter onto a BH, huge energy releases occur. The theory of disk accretion of matter onto BHs was developed in 1972-1973 by Shakura and Sunyaev, Pringle and Rees, and Novikov and Thorne. Up to now, 100 years after the creation of Albert Einstein's General Theory of Relativity, which predicts the existence of BHs, the masses of tens of stellar-mass BHs ( M_BH=(4-35) M_⊙) and many hundreds of supermassive BHs ( M_BH=(10^6-1010) M_⊙) have been determined. A new field of astrophysics, so-called BH demography, is developing. The recent discovery of gravitational waves from BH mergers in binary systems opens a new era in BH studies.

  6. Tom Bonner Prize Lecture: The Beta Spectrum of Tritium and the Problem of Neutrino Mass

    NASA Astrophysics Data System (ADS)

    Robertson, R. G. Hamish

    1997-04-01

    Enrico Fermi showed more than 60 years ago that the shape of beta spectra was sensitive to the mass of the unobserved particle, the neutrino, proposed by Wolfgang Pauli. With the discovery of tritium and its small decay energy, increasingly stringent limits were placed on the electron antineutrino mass. A roadblock at about 50 eV, namely the atomic and molecular structure of tritium-containing substances, was surmounted in the 1980s with the development at Los Alamos of methods for high-resolution beta spectroscopy with gases, together with worldwide theoretical work on the structure of diatomic T2 and T^3He^+. It was then possible to reach the very interesting region of cosmological relevance below 20 eV. An unexpected and strange new roadblock has now been encountered in all experiments on T_2. The spectrum near the endpoint is not consistent with theory either with or without neutrino mass. The questions now are, do the experiments all report the same phenomenon, and (if so) is it atomic theory, particle theory, or perhaps cosmology that needs repair?

  7. Observations of Intermediate-mass Black Holes and Ultra-Luminous X-ray sources

    NASA Astrophysics Data System (ADS)

    Colbert, E. J. M.

    2003-12-01

    I will review various observations that suggest that intermediate-mass black holes (IMBHs) with masses ˜102-104 M⊙ exist in our Universe. I will also discuss some of the limitations of these observations. HST Observations of excess dark mass in globular cluster cores suggest IMBHs may be responsible, and some mass estimates from lensing experiments are nearly in the IMBH range. The intriguing Ultra-Luminous X-ray sources (ULXs, or IXOs) are off-nuclear X-ray point sources with X-ray luminosities LX ≳ 1039 erg s-1. ULXs are typically rare (1 in every 5 galaxies), and the nature of their ultra-luminous emission is currently debated. I will discuss the evidence for IMBHs in some ULXs, and briefly outline some phenomenology. Finally, I will discuss future observations that can be made to search for IMBHs.

  8. Problems with the sources of the observed gravitational waves and their resolution

    NASA Astrophysics Data System (ADS)

    Dolgov, A. D.

    2017-04-01

    Recent direct registration of gravitational waves by LIGO and astronomical observations of the universe at redshifts 5-10 demonstrate that the standard astrophysics and cosmology are in tension with the data. The origin of the source of the GW150914 event, which presumably is a binary of coalescing black holes with masses about 30 solar masses, each with zero spin, as well as the densely populated universe at z= 5-10 by superheavy black holes, blight galaxies, supernovae, and dust does not fit the standard astrophysical picture. It is shown here that the model of primordial black hole (PBH) formation, suggested in 1993, nicely explains all these and more puzzles, including those in contemporary universe, such as MACHOs and the mass spectrum of the observed solar mass black holes.. The mass spectrum and density of PBH is predicted. The scenario may possibly lead to abundant antimatter in the universe and even in the Galaxy.

  9. Spectroscopic Observations of Nearby Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Vican, Laura; Zuckerman, B. M.; Rodriguez, D.

    2014-01-01

    Young low-mass stars are known to be bright in X-ray and UV due to a high level of magnetic activity. By cross-correlating the GALEX Catalog with the WISE and 2MASS Point Source Catalogs, we have identified more than 2,000 stars whose UV excesses suggest ages in the 10-100 Myr range. We used the Shane 3-m telescope at Lick Observatory on Mount Hamilton, California to observe some of these 2,000 stars spectroscopically. We measured the equivalent width of lithium at 6708 A absorption and H-alpha emission lines. Out of a total of 122 stars observed with the Kast grating spectrometer, we find that roughly 10% have strong lithium absorption features. The high percentage of stars with lithium present is further evidence of the importance of UV emission as a youth indicator for low-mass stars. In addition, we used high-resolution spectra obtained with the Hamilton echelle spectrograph to determine radial velocities for several UV-bright stars. These radial velocities will be useful for the calculation of Galactic UVW space velocities for determination of possible moving group membership. This work is supported by NASA Astrophysics Data Analysis Program award NNX12AH37G to RIT and UCLA and Chilean FONDECYT grant 3130520 to Universidad de Chile. This submission presents work for the GALNYSS project and should be linked to abstracts submitted by David Rodriguez, Laura Vican, and Joel Kastner.

  10. Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Onasch, T. B.; Aiken, A. C.; Williams, L. R.; de Foy, B.; Cubison, M. J.; Worsnop, D. R.; Molina, L. T.; Jimenez, J. L.

    2010-06-01

    We report the first measurements of particulate lead (Pb) from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO)/Mexico City Metropolitan Area 2006 (MCMA-2006) field campaigns. The high resolution mass spectrometer of one of the AMS instruments (HR-AMS) and the measured isotopic ratios unequivocally prove the detection of Pb in ambient particles. A substantial fraction of the lead evaporated slowly from the vaporizer of the instruments, which is indicative of species with low volatility at 600 °C. A model was developed in order to estimate the ambient particulate Pb entering the AMS from the signals in the "open" and the "closed" (or "background") mass spectrum modes of the AMS. The model suggests the presence of at least two lead fractions with ~25% of the Pb signal exhibiting rapid evaporation (1/e decay constant, τ<0.1 s) and ~75% exhibiting slow evaporation (τ~2.4 min) at the T0 urban supersite and a different fraction (70% prompt and 30% slow evaporation) at a site northwest from the metropolitan area (PEMEX site). From laboratory experiments with pure Pb(NO3)2 particles, we estimated that the Pb ionization efficiency relative to nitrate (RIEPb) is 0.5. Comparison of time series of AMS Pb with other measurements carried out at the T0 supersite during MILAGRO (using Proton Induced X-ray Emission (PIXE), Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) and single-particle counts from an Aerosol Time-of-Fight Mass Spectrometer (ATOFMS)) shows similar levels (for PIXE and ICP-MS) and substantial correlation. During part of the campaign, sampling at T0 was alternated every 10 min with an Aerosol Concentrator, which enabled the detection of signals for PbCl+ and PbS+ ions. PbS+ displays the signature of a slowly evaporating species, while PbCl+ appears to arise only from fast evaporation, which is likely due to the higher vapor pressure of the

  11. The high-energy pulsed X-ray spectrum of Hercules X-1 as observed with OSO 8

    NASA Technical Reports Server (NTRS)

    Maurer, G. S.; Dennis, B. R.; Coe, M. J.; Crannell, C. J.; Dolan, J. F.; Frost, K. J.; Orwig, L. E.; Cutler, E. P.

    1979-01-01

    Hercules X-1 was observed from August 30 to September 10, 1977, by using the high-energy X-ray scintillation spectrometer on board the OSO 8 satellite. The observation, during which the source was monitored continually for nearly an entire ON-state, covered the energy range from 16 to 280 keV. Pulsed-flux measurements as a function of binary orbit and binary phase are presented for energies between 16 and 98 keV. The pulsed flux between 16 and 33 keV exhibited a sharp decrease following the fourth binary orbit and was consistent with zero pulsed flux thereafter. Only weak evidence was found for temporal variation in the pulsed flux between 33 and 98 keV. The pulsed spectrum has been fitted with a power law, a thermal spectrum without features, and a thermal spectrum with a superposed Gaussian centered at 55 keV. The latter fit has the smallest value of chi-square per degree of freedom, and the resulting integrated line intensity is approximately 0.0015 photon/sec per sq cm for a width of 3.1 (+9.1, -2.6) keV. This result, while of low statistical significance, agrees with the value observed by Truemper (1978) during the same ON-state.

  12. Inferred Cosmic-Ray Spectrum from Fermi-LAT Gamma-Ray Observations of the Earths Limb

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Allafort, A.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Blandford, R. D.; hide

    2014-01-01

    Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly-discovered features may offer a clue to the origin of high-energy CRs. We use the Fermi Large Area Telescope observations of the -ray emission from the Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range approx. 90 GeV-6 TeV (derived from a photon energy range 15 GeV-1 TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index 2.68 +/- 0.04 and 2.61 +/- 0.08 above approx. 200 GeV, respectively.

  13. Fast radio burst search: cross spectrum vs. auto spectrum method

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zheng, Weimin; Yan, Zhen; Zhang, Juan

    2018-06-01

    The search for fast radio bursts (FRBs) is a hot topic in current radio astronomy studies. In this work, we carry out a single pulse search with a very long baseline interferometry (VLBI) pulsar observation data set using both auto spectrum and cross spectrum search methods. The cross spectrum method, first proposed in Liu et al., maximizes the signal power by fully utilizing the fringe phase information of the baseline cross spectrum. The auto spectrum search method is based on the popular pulsar software package PRESTO, which extracts single pulses from the auto spectrum of each station. According to our comparison, the cross spectrum method is able to enhance the signal power and therefore extract single pulses from data contaminated by high levels of radio frequency interference (RFI), which makes it possible to carry out a search for FRBs in regular VLBI observations when RFI is present.

  14. MULTIWAVELENGTH OBSERVATIONS OF A0620-00 IN QUIESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froning, Cynthia S.; France, Kevin; Khargharia, Juthika

    2011-12-10

    We present contemporaneous X-ray, ultraviolet, optical, near-infrared, and radio observations of the black hole binary system, A0620-00, acquired in 2010 March. Using the Cosmic Origins Spectrograph on the Hubble Space Telescope, we have obtained the first FUV spectrum of A0620-00 as well as NUV observations with the Space Telescope Imaging Spectrograph. The observed spectrum is flat in the FUV and very faint (with continuum fluxes {approx_equal} 1e - 17 erg cm{sup -2} s{sup -1} A{sup -1}). The UV spectra also show strong, broad (FWHM {approx} 2000 km s{sup -1}) emission lines of Si IV, C IV, He II, Fe II,more » and Mg II. The C IV doublet is anomalously weak compared to the other lines, which is consistent with the low carbon abundance seen in NIR spectra of the source. Comparison of these observations with previous NUV spectra of A0620-00 shows that the UV flux has varied by factors of 2-8 over several years. We compiled the dereddened, broadband spectral energy distribution (SED) of A0620-00 and compared it to previous SEDs as well as theoretical models. The SEDs show that the source varies at all wavelengths for which we have multiple samples. Contrary to previous observations, the optical-UV spectrum does not continue to drop to shorter wavelengths, but instead shows a recovery and an increasingly blue spectrum in the FUV. We created an optical-UV spectrum of A0620-00 with the donor star contribution removed. The non-stellar spectrum peaks at {approx_equal}3000 A. The peak can be fit with a T = 10,000 K blackbody with a small emitting area, probably originating in the hot spot where the accretion stream impacts the outer disk. However, one or more components in addition to the blackbody are needed to fit the FUV upturn and the red optical fluxes in the optical-UV spectrum. By comparing the mass accretion rate determined from the hot spot luminosity to the mean accretion rate inferred from the outburst history, we find that the latter is an order of magnitude

  15. Intrinsic scatter of caustic masses and hydrostatic bias: An observational study

    NASA Astrophysics Data System (ADS)

    Andreon, S.; Trinchieri, G.; Moretti, A.; Wang, J.

    2017-10-01

    All estimates of cluster mass have some intrinsic scatter and perhaps some bias with true mass even in the absence of measurement errors for example caused by cluster triaxiality and large scale structure. Knowledge of the bias and scatter values is fundamental for both cluster cosmology and astrophysics. In this paper we show that the intrinsic scatter of a mass proxy can be constrained by measurements of the gas fraction because masses with higher values of intrinsic scatter with true mass produce more scattered gas fractions. Moreover, the relative bias of two mass estimates can be constrained by comparing the mean gas fraction at the same (nominal) cluster mass. Our observational study addresses the scatter between caustic (I.e., dynamically estimated) and true masses, and the relative bias of caustic and hydrostatic masses. For these purposes, we used the X-ray Unbiased Cluster Sample, a cluster sample selected independently from the intracluster medium content with reliable masses: 34 galaxy clusters in the nearby (0.050 < z < 0.135) Universe, mostly with 14 < log M500/M⊙ ≲ 14.5, and with caustic masses. We found a 35% scatter between caustic and true masses. Furthermore, we found that the relative bias between caustic and hydrostatic masses is small, 0.06 ± 0.05 dex, improving upon past measurements. The small scatter found confirms our previous measurements of a highly variable amount of feedback from cluster to cluster, which is the cause of the observed large variety of core-excised X-ray luminosities and gas masses.

  16. Mass-losing peculiar red giants - The comparison between theory and observations

    NASA Technical Reports Server (NTRS)

    Jura, M.

    1989-01-01

    The mass loss from evolved red giants is considered. It seems that red giants on the Asymptotic Giant Branch (AGB) are losing between 0.0003 and 0.0006 solar mass/sq kpc yr in the solar neighborhood. If all the main sequence stars between 1 and 5 solar masses ultimately evolve into white dwarfs with masses of 0.7 solar mass, the predicted mass loss rate in the solar neighborhood from these stars is 0.0008 solar mass/sq kpc yr. Although there are still uncertainties, it appears that there is no strong disagreement between theory and observation.

  17. HIGH-RESOLUTION SPECTROSCOPY DURING ECLIPSE OF THE YOUNG SUBSTELLAR ECLIPSING BINARY 2MASS 0535-0546. II. SECONDARY SPECTRUM: NO EVIDENCE THAT SPOTS CAUSE THE TEMPERATURE REVERSAL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohanty, Subhanjoy; Stassun, Keivan G., E-mail: s.mohanty@imperial.ac.uk, E-mail: keivan.stassun@vanderbilt.edu

    2012-10-10

    We present high-resolution optical spectra of the young brown dwarf eclipsing binary 2M0535-05, obtained during eclipse of the higher-mass (primary) brown dwarf. Combined with our previous spectrum of the primary alone (Paper I), the new observations yield the spectrum of the secondary alone. We investigate, through a differential analysis of the two binary components, whether cool surface spots are responsible for suppressing the temperature of the primary. In Paper I, we found a significant discrepancy between the empirical surface gravity of the primary and that inferred via fine analysis of its spectrum. Here we find precisely the same discrepancy inmore » surface gravity, both qualitatively and quantitatively. While this may again be ascribed to either cool spots or model opacity errors, it implies that cool spots cannot be responsible for preferentially lowering the temperature of the primary: if they were, spot effects on the primary spectrum should be preferentially larger, and they are not. The T{sub eff}'s we infer for the primary and secondary, from the TiO-{epsilon} bands alone, show the same reversal, in the same ratio, as is empirically observed, bolstering the validity of our analysis. In turn, this implies that if suppression of convection by magnetic fields on the primary is the fundamental cause of the T{sub eff} reversal, then it cannot be a local suppression yielding spots mainly on the primary (though both components may be equally spotted), but a global suppression in the interior of the primary. We briefly discuss current theories of how this might work.« less

  18. Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yèche, Christophe; Palanque-Delabrouille, Nathalie; Baur, Julien

    We present constraints on masses of active and sterile neutrinos in the context of the ΛCDMν and ΛWDM models, respectively. We use the one-dimensional Lyα-forest power spectrum from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III) measured by Palanque-Delabrouille et al. [1], and from the VLT/XSHOOTER legacy survey (XQ-100). In this paper, we present our own measurement of the publicly released XQ-100 quasar spectra, focusing in particular on an improved determination of the spectrograph resolution that allows us to push to smaller scales than the public release and reach k -modes of 0.070 s km{supmore » −1}. We compare the obtained 1D Lyα flux power spectrum to the one measured by Irsic et al. [2] to k -modes of 0.057 s km{sup −1}. Fitting Lyα data alone leads to cosmological parameters in excellent agreement with the values derived independently from Planck 2015 Cosmic Microwave Background (CMB) data. Combining BOSS and XQ-100 Lyα power spectra, we constrain the sum of neutrino masses to ∑ m {sub ν} < 0.8 eV (95% C.L.) including all identified sources of systematic uncertainties. With the addition of CMB data, this bound is tightened to ∑ m {sub ν} < 0.14 eV (95% C.L.). With their sensitivity to small scales, Lyα data are ideal to constrain ΛWDM models. Using XQ-100 alone, we issue lower bounds on pure dark matter particles: m {sub X} ∼> 2.08 : keV (95% C.L.) for early decoupled thermal relics, and m {sub s} ∼> 10.2 : keV (95% C.L.) for non-resonantly produced right-handed neutrinos. Combining the 1D Lyα-forest power spectrum measured by BOSS and XQ-100, we improve the two bounds to m {sub X} ∼> 4.17 : keV and m {sub s} ∼> 25.0 : keV (95% C.L.), slightly more constraining than what was achieved in Baur et al. 2015 [3] with BOSS data alone. The 3 σ bound shows a more significant improvement, increasing from m {sub X} ∼> 2.74 : keV for BOSS alone to m {sub X} ∼> 3.10 : keV for the

  19. Spitzer IRS Observations of Low-Mass Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, A. J.; Ho, L. C.; Greene, J. E.

    2010-01-01

    We present results from Spitzer IRS observations of a sample of 41 Seyfert galaxies with estimated black hole masses below 106 solar masses, including objects from the SDSS-selected samples of Seyfert 1 galaxies from Greene & Ho (2004) and Seyfert 2 galaxies from Barth et al. (2008), as well as NGC 4395 and POX 52. We use the IDL code PAHFIT (Smith et al. 2007) to derive measurements of continuum shapes and narrow emission line and PAH luminosities from the low-resolution spectra in order to examine the dust emission properties of these objects and investigate the relationship between Type 1 and Type 2 AGNs at low luminosities and low masses, to search for evidence of star formation, and to use emission-line diagnostics to constrain physical conditions within the narrow-line regions.

  20. Observation of an Exotic Baryon with S=+1 in Photoproduction from the Proton

    NASA Astrophysics Data System (ADS)

    Kubarovsky, V.; Guo, L.; Weygand, D. P.; Stoler, P.; Battaglieri, M.; Devita, R.; Adams, G.; Li, Ji; Nozar, M.; Salgado, C.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Chen, S.; Ciciani, L.; Cole, P. L.; Connelly, J.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Farhi, L.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Frolov, V.; Funsten, H.; Gaff, S. J.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gothe, R.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hancock, D.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, K.; Holtrop, M.; Hu, J.; Ilieva, Y.; Ito, M. M.; Jenkins, D.; Joo, K.; Juengst, H. G.; Kelley, J. H.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Longhi, A.; Lukashin, K.; Major, R. W.; Manak, J. J.; Marchand, C.; McAleer, S.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Mozer, M. U.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; O'Brien, J. T.; O'Rielly, G. V.; Opper, A. K.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Santoro, J. P.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, E. S.; Smith, T.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stavinsky, A.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weisberg, A.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.

    2004-01-01

    The reaction γp→π+K-K+n was studied at Jefferson Laboratory using a tagged photon beam with an energy range of 3 5.47GeV. A narrow baryon state with strangeness S=+1 and mass M=1555±10 MeV/c2 was observed in the nK+ invariant mass spectrum. The peak’s width is consistent with the CLAS resolution (FWHM=26 MeV/c2), and its statistical significance is (7.8±1.0)σ. A baryon with positive strangeness has exotic structure and cannot be described in the framework of the naive constituent quark model. The mass of the observed state is consistent with the mass predicted by the chiral soliton model for the Θ+ baryon. In addition, the pK+ invariant mass distribution was analyzed in the reaction γp→K-K+p with high statistics in search of doubly charged exotic baryon states. No resonance structures were found in this spectrum.

  1. The complete spectrum of the equatorial electrojet related to solar tides: CHAMP observations

    NASA Astrophysics Data System (ADS)

    Lühr, H.; Manoj, C.

    2013-08-01

    Based on 10 yr of magnetic field measurements by the CHAMP satellite we draw a detailed picture of the equatorial electrojet (EEJ) tidal variations. For the first time the complete EEJ spectrum related to average solar tides has been compiled. A large fraction of the resulting spectrum is related to the switch on/off of the EEJ between day and night. This effect has carefully been considered when interpreting the results. As expected, largest amplitudes are caused by the migrating tides representing the mean diurnal variation. Higher harmonics of the daily variations show a 1/f fall-off in amplitude. Such a spectrum is required to represent the vanishing of the EEJ current at night. The migrating tidal signal exhibits a distinct annual variation with large amplitudes during December solstice and equinox seasons but a depression by a factor of 1.7 around June-July. A rich spectrum of non-migrating tidal effects is deduced. Most prominent is the four-peaked longitudinal pattern around August. Almost 90% of the structure can be attributed to the diurnal eastward-propagating tide DE3. In addition the westward-propagating DW5 is contributing to wave-4. The second-largest non-migrating tide is the semi-diurnal SW4 around December solstice. It causes a wave-2 feature in satellite observations. The three-peaked longitudinal pattern, often quoted as typical for the December season, is significantly weaker. During the months around May-June a prominent wave-1 feature appears. To first order it represents a stationary planetary wave SPW1 which causes an intensification of the EEJ at western longitudes beyond 60° W and a weakening over Africa/India. In addition, a prominent ter-diurnal non-migrating tide TW4 causes the EEJ to peak later, at hours past 14:00 local time in the western sector. A particularly interesting non-migrating tide is the semi-diurnal SW3. It causes largest EEJ amplitudes from October through December. This tidal component shows a strong dependence on

  2. EIT Observations of Coronal Mass Ejections

    NASA Technical Reports Server (NTRS)

    Gurman, J. B.; Fisher, Richard B. (Technical Monitor)

    2000-01-01

    Before the Solar and Heliospheric Observatory (SOHO), we had only the sketchiest of clues as to the nature and topology of coronal mass ejections (CMEs) below 1.1 - 1.2 solar radii. Occasionally, dimmings (or 'transient coronal holes') were observed in time series of soft X-ray images, but they were far less frequent than CME's. Simply by imaging the Sun frequently and continually at temperatures of 0.9 - 2.5 MK we have stumbled upon a zoo of CME phenomena in this previously obscured volume of the corona: (1) waves, (2) dimmings, and (3) a great variety of ejecta. In the three and a half years since our first observations of coronal waves associated with CME's, combined Large Angle Spectroscopic Coronagraph (LASCO) and extreme ultra-violet imaging telescope (EIT) synoptic observations have become a standard prediction tool for space weather forecasters, but our progress in actually understanding the CME phenomenon in the low corona has been somewhat slower. I will summarize the observations of waves, hot (> 0.9 MK) and cool ejecta, and some of the interpretations advanced to date. I will try to identify those phenomena, analysis of which could most benefit from the spectroscopic information available from ultraviolet coronograph spectrometer (UVCS) observations.

  3. GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O’Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O’Reilly, B.; Ormiston, R.; Ortega, L. F.; O’Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses of {12}-2+7 {M}ȯ and {7}-2+2 {M}ȯ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through GWs with electromagnetic observations. The source’s luminosity distance is {340}-140+140 {Mpc}, corresponding to redshift {0.07}-0.03+0.03. We verify that the signal waveform is consistent with the predictions of general relativity.

  4. IUE observations of Comet Halley: Evolution of the UV spectrum between September 1985 and July 1986

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Festou, Michael C.; Ahearn, M. F.; Arpigny, C.; Butterworth, P. S.; Cosmovici, C. B.; Danks, A. C.; Gilmozzi, R.; Jackson, W. M.; Mcfadden, L. A.

    1986-01-01

    The ultraviolet spectrum of comet P/Halley was monitored with the IUE between 12 September 1985 and 8 July 1986 (r <2.6 AU pre and post-perihelion) at regular time intervals except for a two-month period around the time of perihelion. A complete characterization of the UV spectrum of the comet was obtained to derive coma abundances and to study the light emission mechanisms of the observed species. The Fine Error Sensor (FES) camera of the IUE was used to photometrically investigate the coma brightness variation on time scales of the order of hours. Spectroscopic observations as well as FES measurements show that the activity of the nucleus is highly variable, particularly at the end of December 1985 and during March and April 1986. The production rates of OH, CS and dust are derived for the entire period of the observations. The total water loss rate for this period is estimated to be 150 million metric tons.

  5. Implications of Voyager 1 observations beyond the heliopause for the local interstellar electron spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisschoff, D.; Potgieter, M. S., E-mail: 20056950@nwu.ac.za

    Cosmic-ray observations made by the Voyager 1 spacecraft outside the dominant modulating influence of the heliosphere finally allow the comparison of computed galactic spectra with experimental data at lower energies. These computed spectra, based on galactic propagation models, can now be compared with observations at low energies by Voyager 1 and at high energies by the PAMELA space detector at Earth. This improves understanding of basic propagation effects and also provides solar modulation studies with reliable input spectra from 1 MeV to 100 GeV. We set out to reproduce the Voyager 1 electron observations in the energy range of 6-60more » MeV, as well as the PAMELA electron spectrum above 10 GeV, using the GALPROP code. By varying the source spectrum and galactic diffusion parameters, specifically the rigidity dependence of spatial diffusion, we find local interstellar spectra that agree with both power-law spectra observed by Voyager 1 beyond the heliopause. The local interstellar spectrum between ∼1 MeV and 100 GeV indicates that it is the combination of two power laws, with E {sup –(1.45} {sup ±} {sup 0.15)} below ∼100 MeV and E {sup –(3.15} {sup ±} {sup 0.05)} above ∼100 MeV. A gradual turn in the spectral shape matching the power laws is found, between 2.0 ± 0.5) GeV and (100 ± 10) MeV. According to our simplified modeling, this transition is caused primarily by galactic propagation effects. We find that the intensity beyond the heliopause at 10 MeV is (350 ± 50) electrons m{sup –2} s{sup –1} sr{sup –1} MeV{sup –1}, decreasing to (50 ± 5) electrons m{sup –2} s{sup –1} sr{sup –1} MeV{sup –1} at 100 MeV.« less

  6. The high-energy X-ray spectrum of black hole candidate GX 339-4 during a transition

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Orwig, L. E.

    1987-01-01

    The X-ray emitting system GX 339-4 contains one of the prime candidates for a stellar mass-sized black hole. Determining the observational similarities and differences between the members of this group is of value in specifying which characteristics can be used to identify systems containing a black hole, especially those for which no mass determination can be made. The first observations of the E greater than 20 keV spectrum of GX 339-4 during a transition between luminosity states are reported here. The hard spectral state is the lower luminosity state of the system. GX 339-4 has a power-low spectrum above 20 keV which pivots during transitions between distinct luminosity states. The only other X-ray sources known to exhibit this behavior, Cyg XR-1 and (probably) A0620-00, are leading candidates for systems containing a black hole component based on their measured spectrocopic mass function.

  7. Determination of the top quark mass from leptonic observables

    NASA Astrophysics Data System (ADS)

    Frixione, Stefano; Mitov, Alexander

    2014-09-01

    We present a procedure for the determination of the mass of the top quark at the LHC based on leptonic observables in dilepton events. Our approach utilises the shapes of kinematic distributions through their few lowest Mellin moments; it is notable for its minimal sensitivity to the modelling of long-distance effects, for not requiring the reconstruction of top quarks, and for having a competitive precision, with theory errors on the extracted top mass of the order of 0.8 GeV. A novel aspect of our work is the study of theoretical biases that might influence in a dramatic way the determination of the top mass, and which are potentially relevant to all template-based methods. We propose a comprehensive strategy that helps minimise the impact of such biases, and leads to a reliable top mass extraction at hadron colliders.

  8. Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esfahani, Ali Ashtari; Asner, David M.; Böser, Sebastian

    The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range withmore » $${ \\mathcal O }(\\mathrm{eV})$$ resolution. A lower bound of $$m({\

  9. Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8

    DOE PAGES

    Esfahani, Ali Ashtari; Asner, David M.; Böser, Sebastian; ...

    2017-03-30

    The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range withmore » $${ \\mathcal O }(\\mathrm{eV})$$ resolution. A lower bound of $$m({\

  10. Unravelling associations between unassigned mass spectrometry peaks with frequent itemset mining techniques.

    PubMed

    Vu, Trung Nghia; Mrzic, Aida; Valkenborg, Dirk; Maes, Evelyne; Lemière, Filip; Goethals, Bart; Laukens, Kris

    2014-01-01

    Mass spectrometry-based proteomics experiments generate spectra that are rich in information. Often only a fraction of this information is used for peptide/protein identification, whereas a significant proportion of the peaks in a spectrum remain unexplained. In this paper we explore how a specific class of data mining techniques termed "frequent itemset mining" can be employed to discover patterns in the unassigned data, and how such patterns can help us interpret the origin of the unexpected/unexplained peaks. First a model is proposed that describes the origin of the observed peaks in a mass spectrum. For this purpose we use the classical correlative database search algorithm. Peaks that support a positive identification of the spectrum are termed explained peaks. Next, frequent itemset mining techniques are introduced to infer which unexplained peaks are associated in a spectrum. The method is validated on two types of experimental proteomic data. First, peptide mass fingerprint data is analyzed to explain the unassigned peaks in a full scan mass spectrum. Interestingly, a large numbers of experimental spectra reveals several highly frequent unexplained masses, and pattern mining on these frequent masses demonstrates that subsets of these peaks frequently co-occur. Further evaluation shows that several of these co-occurring peaks indeed have a known common origin, and other patterns are promising hypothesis generators for further analysis. Second, the proposed methodology is validated on tandem mass spectrometral data using a public spectral library, where associations within the mass differences of unassigned peaks and peptide modifications are explored. The investigation of the found patterns illustrates that meaningful patterns can be discovered that can be explained by features of the employed technology and found modifications. This simple approach offers opportunities to monitor accumulating unexplained mass spectrometry data for emerging new patterns

  11. SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables

    NASA Astrophysics Data System (ADS)

    Athron, Peter; Balázs, Csaba; Dal, Lars A.; Edsjö, Joakim; Farmer, Ben; Gonzalo, Tomás E.; Kvellestad, Anders; McKay, James; Putze, Antje; Rogan, Chris; Scott, Pat; Weniger, Christoph; White, Martin

    2018-01-01

    We present the GAMBIT modules SpecBit, DecayBit and PrecisionBit. Together they provide a new framework for linking publicly available spectrum generators, decay codes and other precision observable calculations in a physically and statistically consistent manner. This allows users to automatically run various combinations of existing codes as if they are a single package. The modular design allows software packages fulfilling the same role to be exchanged freely at runtime, with the results presented in a common format that can easily be passed to downstream dark matter, collider and flavour codes. These modules constitute an essential part of the broader GAMBIT framework, a major new software package for performing global fits. In this paper we present the observable calculations, data, and likelihood functions implemented in the three modules, as well as the conventions and assumptions used in interfacing them with external codes. We also present 3-BIT-HIT, a command-line utility for computing mass spectra, couplings, decays and precision observables in the MSSM, which shows how the three modules can easily be used independently of GAMBIT.

  12. The UV Spectrum of the Ultracool Dwarf LSR J1835+3259 Observed with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Fischer, Christian; Wennmacher, Alexandre; Feldman, Paul; Roth, Lorenz; Strobel, D.; Reiners, Ansgar

    2018-01-01

    An interesting question about ultracool dwarfs is whether their emission is purely internally driven or partially powered by external processes similar to auroral emission known from planetary bodies of the solar system. Here we present Hubble Space Telescope observations of the energy fluxes of the M8.5 ultracool dwarf LSR J1835+3259 throughout the UV. The dwarf’s UV emission is generally weaker compared to younger-type M-dwarfs. We detect the Mg II doublet at 2800 A and constrain an average flux throughout the Near-UV. In the Far-UV without Lyman alpha, the ultracool dwarf is extremely faint with an energy output of at least a factor of 1000 smaller than expected from auroral emission physically similar to that on Jupiter. We also detect the red wing of the Lyman alpha emission. Our overall finding is that the observed UV spectrum of LSR J1835+3259 resembles the spectrum of M-dwarf stars much closer than the spectrum expected from Jupiter-like auroral processes.

  13. The UV Spectrum of the Ultracool Dwarf LSR J1835+3259 Observed with the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Saur, Joachim; Fischer, Christian; Wennmacher, Alexandre; Feldman, Paul D.; Roth, Lorenz; Strobel, Darrell F.; Reiners, Ansgar

    2018-05-01

    An interesting question about ultracool dwarfs recently raised in the literature is whether their emission is purely internally driven or partially powered by external processes similar to planetary aurora known from the solar system. In this work, we present Hubble Space Telescope observations of the energy fluxes of the M8.5 ultracool dwarf LSR J1835+3259 throughout the ultraviolet (UV). The obtained spectra reveal that the object is generally UV-fainter compared with other earlier-type dwarfs. We detect the Mg II doublet at 2800 Å and constrain an average flux throughout the near-UV. In the far-UV without Lyα, the ultracool dwarf is extremely faint with an energy output at least a factor of 250 smaller as expected from auroral emission physically similar to that on Jupiter. We also detect the red wing of the Lyα emission. Our overall finding is that the observed UV spectrum of LSR J1835+3259 resembles the spectrum of mid/late-type M-dwarf stars relatively well, but it is distinct from a spectrum expected from Jupiter-like auroral processes.

  14. Fluorimetric and mass spectrometric study of the interaction of β-cyclodextrin and osthole

    NASA Astrophysics Data System (ADS)

    Zhang, Huarong; Zhang, Hanqi; Qu, Chenling; Bai, Lifei; Ding, Lan

    2007-11-01

    The inclusion complex of β-cyclodextrin (β-CD) and osthole was studied by the electrospray ionization mass spectrometry (ESI-MS) and fluorescence spectrometry. From the mass spectrum, the 1:1 stoichiometric inclusion complex of β-CD and osthole was observed. The tandem mass spectrum was performed. The fluorescence intensity of osthole increased in the present of β-CD. According to the 1:1 β-CD-osthole mode, the dissociation constant ( KD) was obtained by ESI-MS and fluorescence spectrometry. The KD of β-CD-osthole inclusion complex is 6.96 × 10 -3 mol L -1 obtained by mass spectrometry and that is 8.14 × 10 -3 mol L -1 obtained by fluorescence spectrometry, which is consistent with each other.

  15. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  16. Direct observation of feedout-related areal mass oscillations in planar plastic targets.

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Metzler, N.; Velikovich, A. L.; Karasik, M.; Serlin, V.; Pawley, C.; Mostovych, A. N.; Schmitt, A. J.; Obenschain, S. P.; Gardner, J. H.

    2001-10-01

    "Feedout" means the transfer of mass perturbations from the rear to the front surface of a driven target. The oscillations are expected if the perturbation wavelength λ is not large compared to 2π L_s, where Ls is the shock-compressed target thickness. We report the first direct experimental observation of areal mass oscillation associated with feedout, followed by the onset of exponential RT growth. Our experiments were performed with the Nike KrF laser at irradiation 50 TW/cm^2. The mass redistribution in the target was observed with the aid of monochromatic x-ray imaging coupled to a streak camera. We used 40 to 60 μm thick CH targets rippled on the rear side with wavelengths of either 30 or 45 μm, the ratio 2π L_s/λ thus being close to 2. Two phase reversals of mass variation predicted by the theory and simulations were consistently observed both on the original images and on the time histories of Fourier amplitudes.

  17. Characterization of polymer decomposition products by laser desorption mass spectrometry

    NASA Technical Reports Server (NTRS)

    Pallix, Joan B.; Lincoln, Kenneth A.; Miglionico, Charles J.; Roybal, Robert E.; Stein, Charles; Shively, Jon H.

    1993-01-01

    Laser desorption mass spectrometry has been used to characterize the ash-like substances formed on the surfaces of polymer matrix composites (PMC's) during exposure on LDEF. In an effort to minimize fragmentation, material was removed from the sample surfaces by laser desorption and desorbed neutrals were ionized by electron impact. Ions were detected in a time-of-flight mass analyzer which allows the entire mass spectrum to be collected for each laser shot. The method is ideal for these studies because only a small amount of ash is available for analysis. Three sets of samples were studied including C/polysulfone, C/polyimide and C/phenolic. Each set contains leading and trailing edge LDEF samples and their respective controls. In each case, the mass spectrum of the ash shows a number of high mass peaks which can be assigned to fragments of the associated polymer. These high mass peaks are not observed in the spectra of the control samples. In general, the results indicate that the ash is formed from decomposition of the polymer matrix.

  18. Observation of the fluorescence spectrum for a driven cascade model system in atomic beam.

    PubMed

    Tian, Si-Cong; Wang, Chun-Liang; Tong, Cun-Zhu; Wang, Li-Jun; Wang, Hai-Hua; Yang, Xiu-Bin; Kang, Zhi-Hui; Gao, Jin-Yue

    2012-10-08

    We experimentally study the resonance fluorescence from an excited two-level atom when the atomic upper level is coupled by a nonresonant field to a higher-lying state in a rubidium atomic beam. The heights, widths and positions of the fluorescence peaks can be controlled by modifying the detuning of the auxiliary field. We explain the observed spectrum with the transition properties of the dressed states generated by the coupling of the two laser fields. We also attribute the line narrowing to the effects of Spontaneously Generated Coherence between the close-lying levels in the dressed state picture generated by the auxiliary field. And the corresponding spectrum can be viewed as the evidence of Spontaneously Generated Coherence. The experimental results agree well with calculations based on the density-matrix equations.

  19. First Year Wilkinson Microwave Anisotropy Probe(WMAP)Observations: The Angular Power Spectrum

    NASA Technical Reports Server (NTRS)

    Hinshaw, G.; Spergel, D. N.; Verde, L.; Hill, R. S.; Meyer, S. S.; Barnes, C.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.

    2003-01-01

    We present the angular power spectrum derived from the first-year Wilkinson Microwave Anisotropy Probe (WMAP) sky maps. We study a variety of power spectrum estimation methods and data combinations and demonstrate that the results are robust. The data are modestly contaminated by diffuse Galactic foreground emission, but we show that a simple Galactic template model is sufficient to remove the signal. Point sources produce a modest contamination in the low frequency data. After masking approximately 700 known bright sources from the maps, we estimate residual sources contribute approximately 3500 mu sq Kappa at 41 GHz, and approximately 130 mu sq Kappa at 94 GHz, to the power spectrum [iota(iota + 1)C(sub iota)/2pi] at iota = 1000. Systematic errors are negligible compared to the (modest) level of foreground emission. Our best estimate of the power spectrum is derived from 28 cross-power spectra of statistically independent channels. The final spectrum is essentially independent of the noise properties of an individual radiometer. The resulting spectrum provides a definitive measurement of the CMB power spectrum, with uncertainties limited by cosmic variance, up to iota approximately 350. The spectrum clearly exhibits a first acoustic peak at iota = 220 and a second acoustic peak at iota approximately 540, and it provides strong support for adiabatic initial conditions. Researchers have analyzed the CT(sup Epsilon) power spectrum, and present evidence for a relatively high optical depth, and an early period of cosmic reionization. Among other things, this implies that the temperature power spectrum has been suppressed by approximately 30% on degree angular scales, due to secondary scattering.

  20. The marine diversity spectrum

    PubMed Central

    Reuman, Daniel C; Gislason, Henrik; Barnes, Carolyn; Mélin, Frédéric; Jennings, Simon

    2014-01-01

    Distributions of species body sizes within a taxonomic group, for example, mammals, are widely studied and important because they help illuminate the evolutionary processes that produced these distributions. Distributions of the sizes of species within an assemblage delineated by geography instead of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts the form of the ‘diversity spectrum’, which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope −0·5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between −0·5 and −0·1. Slopes of −0·5 and −0·1 represent markedly different communities: a slope of −0·5 depicts a 10-fold reduction in diversity for every 100-fold increase in asymptotic mass; a slope of −0·1 depicts a 1·6-fold reduction. Steeper slopes are predicted for larger or colder regions, meaning fewer large species per small species for such regions. Predictions were largely validated by a global empirical analysis. Results explain for the first time a new and widespread phenomenon of biodiversity. Results have implications for estimating numbers of species of small asymptotic mass, where taxonomic inventories are far from complete. Results show that the relationship between diversity and body mass can be explained from the dependence of predation behaviour

  1. Refinements in the Los Alamos model of the prompt fission neutron spectrum

    DOE PAGES

    Madland, D. G.; Kahler, A. C.

    2017-01-01

    This paper presents a number of refinements to the original Los Alamos model of the prompt fission neutron spectrum and average prompt neutron multiplicity as derived in 1982. The four refinements are due to new measurements of the spectrum and related fission observables many of which were not available in 1982. Here, they are also due to a number of detailed studies and comparisons of the model with previous and present experimental results including not only the differential spectrum, but also integal cross sections measured in the field of the differential spectrum. The four refinements are (a) separate neutron contributionsmore » in binary fission, (b) departure from statistical equilibrium at scission, (c) fission-fragment nuclear level-density models, and (d) center-of-mass anisotropy. With these refinements, for the first time, good agreement has been obtained for both differential and integral measurements using the same Los Alamos model spectrum.« less

  2. Measuring the power spectrum of dark matter substructure using strong gravitational lensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hezaveh, Yashar; Dalal, Neal; Holder, Gilbert

    2016-11-01

    In recent years, it has become possible to detect individual dark matter subhalos near images of strongly lensed extended background galaxies. Typically, only the most massive subhalos in the strong lensing region may be detected this way. In this work, we show that strong lenses may also be used to constrain the much more numerous population of lower mass subhalos that are too small to be detected individually. In particular, we show that the power spectrum of projected density fluctuations in galaxy halos can be measured using strong gravitational lensing. We develop the mathematical framework of power spectrum estimation, andmore » test our method on mock observations. We use our results to determine the types of observations required to measure the substructure power spectrum with high significance. We predict that deep observations (∼10 hours on a single target) with current facilities can measure this power spectrum at the 3σ level, with no apparent degeneracy with unknown clumpiness in the background source structure or fluctuations from detector noise. Upcoming ALMA measurements of strong lenses are capable of placing strong constraints on the abundance of dark matter subhalos and the underlying particle nature of dark matter.« less

  3. Microwave Spectrum of the H_2S Dimer: Observation of K_{a}=1 Lines

    NASA Astrophysics Data System (ADS)

    Das, Arijit; Mandal, Pankaj; Lovas, Frank J.; Medcraft, Chris; Arunan, Elangannan

    2017-06-01

    Large amplitude tunneling motions in (H_2S)_{2} complicate the analysis of its microwave spectrum. The previous rotational spectrum of (H_2S)_{2} was observed using the Balle-Flygare pulsed nozzle FT microwave spectrometers at NIST and IISc. For most isotopomers of (H_2S)_{2} a two state pattern of a-type K_{a}=0 transitions had been observed and were interpreted to arise from E_{1}^{+/-} and E_{2}^{+/-} states of the six tunneling states expected for (H_2S)_{2}. K_{a}=0 lines gave us only the distance between the acceptor and donor S atoms. The (B+C)/2 for E_{1} and E_{2} states were found to be 1749.3091(8) MHz and 1748.1090(8) MHz respectively. In this work, we have observed the K_{a}=1 microwave transitions which enable us to determine finer structural details of the dimer. The observation of the K_{a}=1 lines indicate that (H_2S)_{2} is not spherical in nature, their interactions do have some anisotropy. Preliminary assignment of K_{a}=1 lines for the E_{1} state results in B=1752.859 MHz and C=1745.780 MHz. We also report a new progression of lines which probably belongs to the parent isotopomers. F. J. Lovas, P. K. Mandal and E. Arunan, unpublished work P. K. Mandal Ph.D. Dissertation, Indian Institute of Science, (2005) F. J. Lovas, R. D. Suenram, and L. H. Coudert. 43rd Int.Symp. on Molecular Spectroscopy. (1988)

  4. The X-ray spectrum of QSO 0241+622. [OSO-8 observations

    NASA Technical Reports Server (NTRS)

    Worrall, D. M.; Boldt, E. A.; Holt, S. S.; Serlemitsos, P. J.

    1980-01-01

    Proportional counters on the OsO-8 spacecraft measured the X-ray spectrum of QSR 0241+622 in the range 2-50 keV. The best power law fit has a proton spectral index and 90 percent errors gamma = 1.93 (+0.5, -0.3) and low energy absorption consistent with reported gas column densities, but a thermal bremsstrahlung form with temperature 13.1 keV cannot be excluded. No indication of spectral variability is found in three observations of the source with HEAO-A2, although a possible 15-30 percent intensity change over a period of 6 months was observed. The quasar is similar to 3C 273 in the proportion of energy emitted in various bands, excluding the radio, if reported radiation above 50 keV from its direction is indeed associated with QSO 0241+622. The two quasars are compared and possible energy generation scenarios are discussed. Implications concerning quasar contributions to the diffuse background are discussed.

  5. Speeds of coronal mass ejections: SMM observations from 1980 and 1984-1989

    NASA Technical Reports Server (NTRS)

    Hundhausen, A. J.; Burkepile, J. T.; St. Cyr, O. C.

    1994-01-01

    The speeds of 936 features in 673 coronal mass ejections have been determined from trajectories observed with the Solar Maximum Mission (SMM) coronagraph in 1980 and 1984 to 1989. The distribution of observed speeds has a range (from 5th to 95th percentile) of 35 to 911 km/s; the average and median speeds are 349 and 285 km/s. The speed distributions of some selected classes of mass ejections are significantly different. For example, the speeds of 331 'outer loops' range from 80 to 1042 km/s; the average and median speeds for this class of ejections are 445 and 372 km/s. The speed distributions from each year of SMM observations show significant changes, with the annual average speeds varying from 157 (1984) to 458 km/s (1985). These variations are not simply related to the solar activity cycle; the annual averages from years near the sunspot maxima and minimum are not significantly different. The widths, latitudes, and speeds of mass ejections determined from the SMM observations are only weakly correlated. In particular, mass ejection speeds vary only slightly with the heliographic latitudes of the ejection. High-latitude ejections, which occur well poleward of the active latitudes, have speeds similar to active latitude ejections.

  6. SETI Observations of Low Mass Stars at the SETI Institute

    NASA Astrophysics Data System (ADS)

    Harp, Gerald R.

    2017-05-01

    Are planets orbiting low-mass stars suitable for the development of life? Observations in the near future, including radio, will help to assess whether atmospheres do persist over long timescales for planets orbiting nearby M dwarfs, and clarify the nature of the radiation that penetrates to the surface of these planets. These are important ingredients for assessing planetary habitability, yet the question of habitability can be answered only with the positive measurement of an unambiguous biosignature. Radio and optical SETI observations capable of detecting technological activities of intelligent inhabitants could provide the most compelling evidence for the habitability of exoplanets orbiting M dwarfs. In this presentation we shall consider what information can be gleaned from our observations so far. The SETI Institute is currently undertaking a large survey of 20,000 low mass stars that is now about 30% complete. The frequency coverage on each star is about 450 MHz bandwidth (per star) over a range of selected frequencies from 1-10 GHz. From these observations we derive quantitative results relating to the probability that M dwarfs are actually inhabited.

  7. Inferred cosmic-ray spectrum from Fermi large area telescope γ-ray observations of Earth's limb.

    PubMed

    Ackermann, M; Ajello, M; Albert, A; Allafort, A; Baldini, L; Barbiellini, G; Bastieri, D; Bechtol, K; Bellazzini, R; Blandford, R D; Bloom, E D; Bonamente, E; Bottacini, E; Bouvier, A; Brandt, T J; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Caraveo, P A; Cecchi, C; Charles, E; Chaves, R C G; Chekhtman, A; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Conrad, J; Cutini, S; Dalton, M; D'Ammando, F; de Angelis, A; de Palma, F; Dermer, C D; Digel, S W; Di Venere, L; do Couto e Silva, E; Drell, P S; Drlica-Wagner, A; Favuzzi, C; Fegan, S J; Ferrara, E C; Focke, W B; Franckowiak, A; Fukazawa, Y; Funk, S; Fusco, P; Gargano, F; Gasparrini, D; Germani, S; Giglietto, N; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Gomez-Vargas, G A; Grenier, I A; Grove, J E; Guiriec, S; Gustafsson, M; Hadasch, D; Hanabata, Y; Harding, A K; Hayashida, M; Hayashi, K; Hewitt, J W; Horan, D; Hou, X; Hughes, R E; Inoue, Y; Jackson, M S; Jogler, T; Jóhannesson, G; Johnson, A S; Kamae, T; Kawano, T; Knödlseder, J; Kuss, M; Lande, J; Larsson, S; Latronico, L; Longo, F; Loparco, F; Lovellette, M N; Lubrano, P; Mayer, M; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mitthumsiri, W; Mizuno, T; Moiseev, A A; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Nemmen, R; Nuss, E; Ohsugi, T; Okumura, A; Orienti, M; Orlando, E; Ormes, J F; Paneque, D; Panetta, J H; Perkins, J S; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T A; Rainò, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Ritz, S; Roth, M; Schaal, M; Schulz, A; Sgrò, C; Siskind, E J; Spandre, G; Spinelli, P; Strong, A W; Takahashi, H; Takeuchi, Y; Thayer, J G; Thayer, J B; Thompson, D J; Tibaldo, L; Tinivella, M; Torres, D F; Tosti, G; Troja, E; Tronconi, V; Usher, T L; Vandenbroucke, J; Vasileiou, V; Vianello, G; Vitale, V; Werner, M; Winer, B L; Wood, K S; Wood, M; Yang, Z

    2014-04-18

    Recent accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly discovered features may offer a clue to the origin of high-energy CRs. We use the Fermi Large Area Telescope observations of the γ-ray emission from Earth's limb for an indirect measurement of the local spectrum of CR protons in the energy range ∼90  GeV-6  TeV (derived from a photon energy range 15 GeV-1 TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index 2.68±0.04 and 2.61±0.08 above ∼200  GeV, respectively.

  8. Energy spectrum of ultra-high energy cosmic rays observed with the Telescope Array using a hybrid technique

    NASA Astrophysics Data System (ADS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, E. J.; Cho, W. R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Hanlon, W.; Hayashi, K.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Hiyama, K.; Honda, K.; Iguchi, T.; Ikeda, D.; Ikuta, K.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Iwamoto, S.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kanbe, T.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kido, E.; Kim, H. B.; Kim, H. K.; Kim, J. H.; Kim, J. H.; Kitamoto, K.; Kitamura, S.; Kitamura, Y.; Kobayashi, K.; Kobayashi, Y.; Kondo, Y.; Kuramoto, K.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, S.; Martens, K.; Matsuda, T.; Matsuura, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Miyata, K.; Murano, Y.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nam, S. W.; Nonaka, T.; Ogio, S.; Ohnishi, M.; Ohoka, H.; Oki, K.; Oku, D.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Roh, S. Y.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, J. I.; Shirahama, T.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T.; Suzuki, S.; Takahashi, Y.; Takeda, M.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Tsuyuguchi, Y.; Uchihori, Y.; Udo, S.; Ukai, H.; Urban, F.; Vasiloff, G.; Wada, Y.; Wong, T.; Yamakawa, Y.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhou, X.; Zollinger, R.; Zundel, Z.

    2015-02-01

    We measure the spectrum of cosmic rays with energies greater than 1018.2 eV with the fluorescence detectors (FDs) and the surface detectors (SDs) of the Telescope Array Experiment using the data taken in our first 2.3-year observation from May 27, 2008 to September 7, 2010. A hybrid air shower reconstruction technique is employed to improve accuracies in determination of arrival directions and primary energies of cosmic rays using both FD and SD data. The energy spectrum presented here is in agreement with our previously published spectra and the HiRes results.

  9. Chandra Observations of the M31

    NASA Technical Reports Server (NTRS)

    Garcia, Michael; Lavoie, Anthony R. (Technical Monitor)

    2000-01-01

    We report on Chandra observations of the nearest Spiral Galaxy, M3l, The nuclear source seen with previous X-ray observatories is resolved into five point sources. One of these sources is within 1 arc-sec of the M31 central super-massive black hole. As compared to the other point sources in M3l. this nuclear source has an unusually soft spectrum. Based on the spatial coincidence and the unusual spectrum. we identify this source with the central black hole. A bright transient is detected 26 arc-sec to the west of the nucleus, which may be associated with a stellar mass black hole. We will report on a comparison of the x-ray spectrum of the diffuse emission and point sources seen in the central few arcmin

  10. Proton albedo spectrum observation in low latitude region at Hyderabad, India

    NASA Technical Reports Server (NTRS)

    Verma, S. D.; Kothari, S. K.

    1985-01-01

    The flux and the energy spectrum of low energy (30-100 MeV) proton albedos, have been observed for the first time in a low latitude region, over Hyderabad, India. The preliminary results, based on the quick look data acquisition and display system are presented. A charged particle telescope, capable of distinguishing singly charged particles such as electrons, muons, protons in low energy region, records the data of both upward as well as downward moving particles. Thus spectra of splash and re-entrant albedo protons have been recorded simultaneously in a high altitude Balloon flight carried out on 8th December, 1985, over Hyderabad, India. Balloon floated at an latitude of approx. 37 km (4 mb).

  11. Optimal Asteroid Mass Determination from Planetary Range Observations: A Study of a Simplified Test Model

    NASA Technical Reports Server (NTRS)

    Kuchynka, P.; Laskar, J.; Fienga, A.

    2011-01-01

    Mars ranging observations are available over the past 10 years with an accuracy of a few meters. Such precise measurements of the Earth-Mars distance provide valuable constraints on the masses of the asteroids perturbing both planets. Today more than 30 asteroid masses have thus been estimated from planetary ranging data (see [1] and [2]). Obtaining unbiased mass estimations is nevertheless difficult. Various systematic errors can be introduced by imperfect reduction of spacecraft tracking observations to planetary ranging data. The large number of asteroids and the limited a priori knowledge of their masses is also an obstacle for parameter selection. Fitting in a model a mass of a negligible perturber, or on the contrary omitting a significant perturber, will induce important bias in determined asteroid masses. In this communication, we investigate a simplified version of the mass determination problem. Instead of planetary ranging observations from spacecraft or radar data, we consider synthetic ranging observations generated with the INPOP [2] ephemeris for a test model containing 25000 asteroids. We then suggest a method for optimal parameter selection and estimation in this simplified framework.

  12. Ankle-like feature in the energy spectrum of light elements of cosmic rays observed with KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velàzquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2013-04-01

    Recent results of the KASCADE-Grande experiment provided evidence for a mild knee-like structure in the all-particle spectrum of cosmic rays at E=1016.92±0.10eV, which was found to be due to a steepening in the flux of heavy primary particles. The spectrum of the combined components of light and intermediate masses was found to be compatible with a single power law in the energy range from 1016.3 to 1018eV. In this paper, we present an update of this analysis by using data with increased statistics, originating both from a larger data set including more recent measurements and by using a larger fiducial area. In addition, optimized selection criteria for enhancing light primaries are applied. We find a spectral feature for light elements, namely, a hardening at E=1017.08±0.08eV with a change of the power law index from -3.25±0.05 to -2.79±0.08.

  13. ALMA Compact Array observations of the Fried Egg nebula: Evidence for large-scale asymmetric mass-loss from the yellow hypergiant IRAS 17163-3907.

    PubMed

    Wallström, S H J; Lagadec, E; Muller, S; Black, J H; Cox, N L J; Galván-Madrid, R; Justtanont, K; Longmore, S; Olofsson, H; Oudmaijer, R D; Quintana-Lacaci, G; Szczerba, R; Vlemmings, W; van Winckel, H; Zijlstra, A

    2017-01-10

    Yellow hypergiants are rare and represent a fast evolutionary stage of massive evolved stars. That evolutionary phase is characterised by a very intense mass loss, the understanding of which is still very limited. Here we report ALMA Compact Array observations of a 50″-mosaic toward the Fried Egg nebula, around one of the few Galactic yellow hypergiants IRAS 17163-3907. The emission from the 12 CO J=2-1 line, H30 α recombination line, and continuum is imaged at a resolution of ~8″, revealing the morphology of the molecular environment around the star. The continuum emission is unresolved and peaks at the position of the star. The radio recombination line H30 α shows unresolved emission at the star, with an approximately gaussian spectrum centered on a velocity of 21±3 km s -1 with a width of 57±6 km s -1 . In contrast, the CO 2-1 emission is complex and decomposes into several components beyond the contamination from interstellar gas in the line of sight. The CO spectrum toward the star is a broad plateau, centered at the systemic velocity of +18 km s -1 and with an expansion velocity of 100±10 km s -1 . Assuming isotropic and constant mass-loss, we estimate a mass-loss rate of 8±1.5 ×10 -5 M ⊙ yr -1 . At a radius of 25″ from the star, we detect CO emission associated with the dust ring previously imaged by Herschel . The kinematics of this ring, however, is not consistent with an expanding shell, but show a velocity gradient of v sys ±20 km s -1 . In addition, we find a puzzling bright feature radially connecting the star to the CO ring, at a velocity of +40 km s -1 relative to the star. This spur feature may trace a unidirectional ejection event from the star. Our ACA observations reveal the complex morphology around IRAS 17163 and illustrate the breakthroughs that ALMA will bring to the field of massive stellar evolution.

  14. ALMA Compact Array observations of the Fried Egg nebula: Evidence for large-scale asymmetric mass-loss from the yellow hypergiant IRAS 17163-3907

    PubMed Central

    Wallström, S.H.J.; Lagadec, E.; Muller, S.; Black, J.H.; Cox, N.L.J.; Galván-Madrid, R.; Justtanont, K.; Longmore, S.; Olofsson, H.; Oudmaijer, R.D.; Quintana-Lacaci, G.; Szczerba, R.; Vlemmings, W.; van Winckel, H.; Zijlstra, A.

    2017-01-01

    Yellow hypergiants are rare and represent a fast evolutionary stage of massive evolved stars. That evolutionary phase is characterised by a very intense mass loss, the understanding of which is still very limited. Here we report ALMA Compact Array observations of a 50″-mosaic toward the Fried Egg nebula, around one of the few Galactic yellow hypergiants IRAS 17163-3907. The emission from the 12CO J=2-1 line, H30α recombination line, and continuum is imaged at a resolution of ~8″, revealing the morphology of the molecular environment around the star. The continuum emission is unresolved and peaks at the position of the star. The radio recombination line H30α shows unresolved emission at the star, with an approximately gaussian spectrum centered on a velocity of 21±3 km s−1 with a width of 57±6 km s−1. In contrast, the CO 2-1 emission is complex and decomposes into several components beyond the contamination from interstellar gas in the line of sight. The CO spectrum toward the star is a broad plateau, centered at the systemic velocity of +18 km s−1 and with an expansion velocity of 100±10 km s−1. Assuming isotropic and constant mass-loss, we estimate a mass-loss rate of 8±1.5 ×10−5 M⊙ yr−1. At a radius of 25″ from the star, we detect CO emission associated with the dust ring previously imaged by Herschel. The kinematics of this ring, however, is not consistent with an expanding shell, but show a velocity gradient of vsys±20 km s−1. In addition, we find a puzzling bright feature radially connecting the star to the CO ring, at a velocity of +40 km s−1 relative to the star. This spur feature may trace a unidirectional ejection event from the star. Our ACA observations reveal the complex morphology around IRAS 17163 and illustrate the breakthroughs that ALMA will bring to the field of massive stellar evolution. PMID:28190887

  15. The Complete Transmission Spectrum of WASP-39b with a Precise Water Constraint

    NASA Astrophysics Data System (ADS)

    Wakeford, H. R.; Sing, D. K.; Deming, D.; Lewis, N. K.; Goyal, J.; Wilson, T. J.; Barstow, J.; Kataria, T.; Drummond, B.; Evans, T. M.; Carter, A. L.; Nikolov, N.; Knutson, H. A.; Ballester, G. E.; Mandell, A. M.

    2018-01-01

    WASP-39b is a hot Saturn-mass exoplanet with a predicted clear atmosphere based on observations in the optical and infrared. Here, we complete the transmission spectrum of the atmosphere with observations in the near-infrared (NIR) over three water absorption features with the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) G102 (0.8–1.1 μm) and G141 (1.1–1.7 μm) spectroscopic grisms. We measure the predicted high-amplitude H2O feature centered at 1.4 μm and the smaller amplitude features at 0.95 and 1.2 μm, with a maximum water absorption amplitude of 2.4 planetary scale heights. We incorporate these new NIR measurements into previously published observational measurements to complete the transmission spectrum from 0.3 to 5 μm. From these observed water features, combined with features in the optical and IR, we retrieve a well constrained temperature T eq = 1030{}-20+30 K, and atmospheric metallicity {151}-46+48× solar, which is relatively high with respect to the currently established mass–metallicity trends. This new measurement in the Saturn-mass range hints at further diversity in the planet formation process relative to our solar system giants.

  16. Inferred Cosmic-Ray Spectrum from Fermi Large Area Telescope γ -Ray Observations of Earth’s Limb

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2014-04-17

    Accurate measurements of cosmic-ray (CR) species by ATIC-2, CREAM, and PAMELA recently reveal an unexpected hardening in the proton and He spectra above a few hundred GeV, a gradual softening of the spectra just below a few hundred GeV, and a harder spectrum of He compared to that of protons. These newly discovered features may offer a clue to the origin of high-energy CRs. Here, we use the Fermi Large Area Telescope observations of the γ -ray emission from Earth’s limb for an indirect measurement of the local spectrum of CR protons in the energy range ~ 90 GeV –more » 6 TeV (derived from a photon energy range 15 GeV–1 TeV). Our analysis shows that single power law and broken power law spectra fit the data equally well and yield a proton spectrum with index 2.68 ± 0.04 and 2.61 ± 0.08 above ~ 200 GeV , respectively.« less

  17. Mass spectrometer calibration standard

    NASA Technical Reports Server (NTRS)

    Ross, D. S.

    1978-01-01

    Inert perfluorinated alkane and alkyl ethers mixture is used to calibrate mass spectrometer. Noncontaminating, commercially-available liquid provides series of reproducible reference peaks over broad mass spectrum that ranges over mass numbers from 1 to 200.

  18. Diagnosing Autism Spectrum Disorders in Adults: The Use of Autism Diagnostic Observation Schedule (ADOS) Module 4

    ERIC Educational Resources Information Center

    Bastiaansen, Jojanneke A.; Meffert, Harma; Hein, Simone; Huizinga, Petra; Ketelaars, Cees; Pijnenborg, Marieke; Bartels, Arnold; Minderaa, Ruud; Keysers, Christian; de Bildt, Annelies

    2011-01-01

    Autism Diagnostic Observation Schedule (ADOS) module 4 was investigated in an independent sample of high-functioning adult males with an autism spectrum disorder (ASD) compared to three specific diagnostic groups: schizophrenia, psychopathy, and typical development. ADOS module 4 proves to be a reliable instrument with good predictive value. It…

  19. Challenging shock models with SOFIA OH observations in the high-mass star-forming region Cepheus A

    NASA Astrophysics Data System (ADS)

    Gusdorf, A.; Güsten, R.; Menten, K. M.; Flower, D. R.; Pineau des Forêts, G.; Codella, C.; Csengeri, T.; Gómez-Ruiz, A. I.; Heyminck, S.; Jacobs, K.; Kristensen, L. E.; Leurini, S.; Requena-Torres, M. A.; Wampfler, S. F.; Wiesemeyer, H.; Wyrowski, F.

    2016-01-01

    Context. OH is a key molecule in H2O chemistry, a valuable tool for probing physical conditions, and an important contributor to the cooling of shock regions around high-mass protostars. OH participates in the re-distribution of energy from the protostar towards the surrounding Interstellar Medium. Aims: Our aim is to assess the origin of the OH emission from the Cepheus A massive star-forming region and to constrain the physical conditions prevailing in the emitting gas. We thus want to probe the processes at work during the formation of massive stars. Methods: We present spectrally resolved observations of OH towards the protostellar outflows region of Cepheus A with the GREAT spectrometer onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope. Three triplets were observed at 1834.7 GHz, 1837.8 GHz, and 2514.3 GHz (163.4 μm, 163.1 μm between the 2Π1/2 J = 1/2 states, and 119.2 μm, a ground transition between the 2Π3/2 J = 3/2 states), at angular resolutions of 16.̋3, 16.̋3, and 11.̋9, respectively. We also present the CO (16-15) spectrum at the same position. We compared the integrated intensities in the redshifted wings to the results of shock models. Results: The two OH triplets near 163 μm are detected in emission, but with blending hyperfine structure unresolved. Their profiles and that of CO (16-15) can be fitted by a combination of two or three Gaussians. The observed 119.2 μm triplet is seen in absorption, since its blending hyperfine structure is unresolved, but with three line-of-sight components and a blueshifted emission wing consistent with that of the other lines. The OH line wings are similar to those of CO, suggesting that they emanate from the same shocked structure. Conclusions: Under this common origin assumption, the observations fall within the model predictions and within the range of use of our model only if we consider that four shock structures are caught in our beam. Overall, our comparisons suggest that

  20. The Low-Mass X-Ray Binary X1832-330 in the Globular Cluster NGC 6652: A Serendipitous ASCA Observation

    NASA Technical Reports Server (NTRS)

    Mukai, Koji; Smale, Alan P.

    1999-01-01

    The Low Mass X-ray Binary (LMXB) X1832-330 in NGC 6652 is one of about 10 bright X-ray sources to have been discovered in Globular Clusters. We report on a serendipitous ASCA observation of this Globular Cluster LMXB, during which a Type I burst was detected and the persistent, non-burst emission of the source was at its brightest level recorded to date. No orbital modulation was detected, which argues against a high inclination for the X1832-330 system. The spectrum of the persistent emission can be fit with a power law plus a partial covering absorber, although other models are not ruled out. Our time-resolved spectral analysis through the burst shows, for the first time, clear evidence for spectral cooling from kT = 2.4 +/- 0.6 keV to kT = 1.0 +/- 0.1 keV during the decay. The measured peak flux during the burst is approximately 10% of the Eddington luminosity for a 1.4 Solar Mass neutron star. These are characteristic of a Type I burst, in the context of the relatively low quiescent luminosity of X1832-330.

  1. Ion Outflow Observations

    NASA Technical Reports Server (NTRS)

    Mellot, Mary (Technical Monitor)

    2002-01-01

    The characteristics of out-flowing ions have been investigated under various circumstances. In particular the upwelling of ions from the cleft region has been studied to attempt to look at source characteristics (e.g., temperature, altitude). High altitude (6-8 Re) data tend to show ions species that have the same velocity and are adiabatically cooled. Such ions, while representative of their source, can not provide an accurate picture. Ion observations from the TIDE detector on the Polar spacecraft show an energy (or equivalently a velocity) spectrum of ions as they undo the geomagnetic mass spectrometer effect due to convection-gravity separation of the different species. Consolidation of this type of data into a complete representation of the source spectrum can be attempted by building a set of maximum-phase-space- density-velocity pairs and attributing the total to the source.

  2. Diverse Long-Term Variability of Five Candidate High-Mass X-Ray Binaries from Swift Burst Alert Telescope Observations

    NASA Technical Reports Server (NTRS)

    Corbet, Robin H. D.; Coley, Joel B.; Krimm, Hans A.

    2017-01-01

    We present an investigation of long-term modulation in the X-ray light curves of five little-studied candidate high-mass X-ray binaries using the Swift Burst Alert Telescope (SWIFT-BAT). IGR J14488-5942 and AX J1700.2-4220 show strong modulation at periods of 49.6 and 44 days, respectively, which are interpreted as orbital periods of Be star systems. For IGR J14488-5942, observations with the Swift X-ray Telescope show a hint of pulsations at 33.4 seconds. For AX J1700.2-4220, 54 second-pulsations were previously found with XMM-Newton. Swift J1816.7-1613 exhibits complicated behavior. The strongest peak in the power spectrum is at a period near 150 days, but this conflicts with a determination of a period of 118.5 days by La Parola et al. AX J1820.5-1434 has been proposed to exhibit modulation near 54 days, but the extended BAT observations suggest modulation at slightly longer than double this at approximately 111 days. There appears to be a long-term change in the shape of the modulation near 111 days, which may explain the apparent discrepancy. The X-ray pulsar XTE J1906+090,which was previously proposed to be a Be star system with an orbital period of approximately 30 days from pulse timing, shows peaks in the power spectrum at 81 and 173 days. The origins of these periods are unclear, although theymight be the orbital period and a superorbital period respectively. For all five sources, the long-term variability, together with the combination of orbital and proposed pulse periods, suggests that the sources contain Be starmass donors.

  3. The minimum mass of detectable planets in protoplanetary discs and the derivation of planetary masses from high-resolution observations.

    PubMed

    Rosotti, Giovanni P; Juhasz, Attila; Booth, Richard A; Clarke, Cathie J

    2016-07-01

    We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submillimetre (submm) continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about 2. To this end, we perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating simulated observations at 1.65, 10 and 850 μm. We show that the minimum planet mass that produces a detectable signature is ∼15 M ⊕ : this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of ∼20 M ⊕ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outwards of the planet and a reduction in the vicinity of the planet. These features are in steady state and can be understood in terms of variations in the dust radial velocity, imposed by the perturbed gas pressure radial profile, analogous to a traffic jam. We also show how planet masses can be derived from structure in scattered light and submm images. We emphasize that simulations with dust need to be run over thousands of planetary orbits so as to allow the gas profile to achieve a steady state and caution against the estimation of planet masses using gas-only simulations.

  4. Sizes and locations of coronal mass ejections - SMM observations from 1980 and 1984-1989

    NASA Technical Reports Server (NTRS)

    Hundhausen, A. J.

    1993-01-01

    A statistical description of the sizes and locations of 1209 mass ejections observed with the SMM coronagraph/polarimeter in 1980 and 1984-1989 is presented. The average width of the coronal mass ejections detected with this instrument was close to 40 deg in angle for the entire period of SMM observations. No evidence was found for a significant change in mass ejection widths as reported by Howard et al. (1986). There is clear evidence for changes in the latitude distribution of mass ejections over this epoch. Mass ejections occurred over a much wider range of latitudes at the times of high solar activity (1980 and 1989) than at times of low activity (1985-1986).

  5. The Ground-Based Transmission Spectrum of HD 189733b as Generated Through Multiple Broadband Filter Observations

    NASA Astrophysics Data System (ADS)

    Kasper, David; Cole, Jackson L.; Gardner, Cristilyn N.; Garver, Bethany; Jarka, Kyla L.; Kar, Aman; McGough, Aylin M.; PeQueen, David J.; Rivera, Daniel Ivan; Jang-Condell, Hannah; Kobulnicky, Henry A.; Dale, Daniel A.

    2018-06-01

    We present new multi-broadband transit photometry of HD 189733b observed with the Wyoming Infrared Observatory. With an ensemble of Sloan filter observations across multiple transits we have created an ultra-low resolution transmission spectrum to discern the nature of the exoplanet atmosphere. This data set exemplifies the capabilities of the 2.3 m observatory. The analysis was performed with a Markov-Chain Monte-Carlo method assisted by a Gaussian-processes regression model. These observations were taken as part of the University of Wyoming's 2017 Research Experience for Undergraduates (REU) and represent one of multiple hot Jupiter exoplanet targets for which we have transit event observations in multiple broadband filters.

  6. Risk of low bone mineral density and low body mass index in patients with non-celiac wheat-sensitivity: a prospective observation study.

    PubMed

    Carroccio, Antonio; Soresi, Maurizio; D'Alcamo, Alberto; Sciumè, Carmelo; Iacono, Giuseppe; Geraci, Girolamo; Brusca, Ignazio; Seidita, Aurelio; Adragna, Floriana; Carta, Miriam; Mansueto, Pasquale

    2014-11-28

    Non-celiac gluten sensitivity (NCGS) or 'wheat sensitivity' (NCWS) is included in the spectrum of gluten-related disorders. No data are available on the prevalence of low bone mass density (BMD) in NCWS. Our study aims to evaluate the prevalence of low BMD in NCWS patients and search for correlations with other clinical characteristics. This prospective observation study included 75 NCWS patients (63 women; median age 36 years) with irritable bowel syndrome (IBS)-like symptoms, 65 IBS and 50 celiac controls. Patients were recruited at two Internal Medicine Departments. Elimination diet and double-blind placebo controlled (DBPC) wheat challenge proved the NCWS diagnosis. All subjects underwent BMD assessment by Dual Energy X-Ray Absorptiometry (DXA), duodenal histology, HLA DQ typing, body mass index (BMI) evaluation and assessment for daily calcium intake. DBPC cow's milk proteins challenge showed that 30 of the 75 NCWS patients suffered from multiple food sensitivity. Osteopenia and osteoporosis frequency increased from IBS to NCWS and to celiac disease (CD) (P <0.0001). Thirty-five NCWS patients (46.6%) showed osteopenia or osteoporosis. Low BMD was related to low BMI and multiple food sensitivity. Values of daily dietary calcium intake in NCWS patients were significantly lower than in IBS controls. An elevated frequency of bone mass loss in NCWS patients was found; this was related to low BMI and was more frequent in patients with NCWS associated with other food sensitivity. A low daily intake of dietary calcium was observed in patients with NCWS.

  7. Principal component analysis of normalized full spectrum mass spectrometry data in multiMS-toolbox: An effective tool to identify important factors for classification of different metabolic patterns and bacterial strains.

    PubMed

    Cejnar, Pavel; Kuckova, Stepanka; Prochazka, Ales; Karamonova, Ludmila; Svobodova, Barbora

    2018-06-15

    Explorative statistical analysis of mass spectrometry data is still a time-consuming step. We analyzed critical factors for application of principal component analysis (PCA) in mass spectrometry and focused on two whole spectrum based normalization techniques and their application in the analysis of registered peak data and, in comparison, in full spectrum data analysis. We used this technique to identify different metabolic patterns in the bacterial culture of Cronobacter sakazakii, an important foodborne pathogen. Two software utilities, the ms-alone, a python-based utility for mass spectrometry data preprocessing and peak extraction, and the multiMS-toolbox, an R software tool for advanced peak registration and detailed explorative statistical analysis, were implemented. The bacterial culture of Cronobacter sakazakii was cultivated on Enterobacter sakazakii Isolation Agar, Blood Agar Base and Tryptone Soya Agar for 24 h and 48 h and applied by the smear method on an Autoflex speed MALDI-TOF mass spectrometer. For three tested cultivation media only two different metabolic patterns of Cronobacter sakazakii were identified using PCA applied on data normalized by two different normalization techniques. Results from matched peak data and subsequent detailed full spectrum analysis identified only two different metabolic patterns - a cultivation on Enterobacter sakazakii Isolation Agar showed significant differences to the cultivation on the other two tested media. The metabolic patterns for all tested cultivation media also proved the dependence on cultivation time. Both whole spectrum based normalization techniques together with the full spectrum PCA allow identification of important discriminative factors in experiments with several variable condition factors avoiding any problems with improper identification of peaks or emphasis on bellow threshold peak data. The amounts of processed data remain still manageable. Both implemented software utilities are available

  8. Double-observer approach to estimating egg mass abundance of vernal pool breeding amphibians

    USGS Publications Warehouse

    Grant, E.H.C.; Jung, R.E.; Nichols, J.D.; Hines, J.E.

    2005-01-01

    Interest in seasonally flooded pools, and the status of associated amphibian populations, has initiated programs in the northeastern United States to document and monitor these habitats. Counting egg masses is an effective way to determine the population size of pool-breeding amphibians, such as wood frogs (Rana sylvatica) and spotted salamanders (Ambystoma maculatum). However, bias is associated with counts if egg masses are missed. Counts unadjusted for the proportion missed (i.e., without adjustment for detection probability) could lead to false assessments of population trends. We used a dependent double-observer method in 2002-2003 to estimate numbers of wood frog and spotted salamander egg masses at seasonal forest pools in 13 National Wildlife Refuges, 1 National Park, 1 National Seashore, and 1 State Park in the northeastern United States. We calculated detection probabilities for egg masses and examined whether detection probabilities varied by species, observers, pools, and in relation to pool characteristics (pool area, pool maximum depth, within-pool vegetation). For the 2 years, model selection indicated that no consistent set of variables explained the variation in data sets from individual Refuges and Parks. Because our results indicated that egg mass detection probabilities vary spatially and temporally, we conclude that it is essential to use estimation procedures, such as double-observer methods with egg mass surveys, to determine population sizes and trends of these species.

  9. SU(5) with nonuniversal gaugino masses

    NASA Astrophysics Data System (ADS)

    Ajaib, M. Adeel

    2018-02-01

    We explore the sparticle spectroscopy of the supersymmetric SU(5) model with nonuniversal gaugino masses in light of latest experimental searches. We assume that the gaugino mass parameters are independent at the GUT scale. We find that the observed deviation in the anomalous magnetic moment of the muon can be explained in this model. The parameter space that explains this deviation predicts a heavy colored sparticle spectrum whereas the sleptons can be light. We also find a notable region of the parameter space that yields the desired relic abundance for dark matter. In addition, we analyze the model in light of latest limits from direct detection experiments and find that the parameter space corresponding to the observed deviation in the muon anomalous magnetic moment can be probed at some of the future direct detection experiments.

  10. The high energy X-ray spectrum of 4U 1700-37 observed from OSO 8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Coe, M. J.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.; Maurer, G. S.

    1980-01-01

    The most intense hard X-ray source in the confused region in Scorpius has been identified as 4U 1700-37 (=HD 153919). Observations extending over three binary periods in 1978 September were carried out with the high-energy X-ray spectrometer on OSO 8. The 3.4 day modulation is seen above 20 keV with the intensity during eclipse being consistent with zero flux. The photonumber spectrum from 20 to 150 keV is well represented by a single power law with a photonumber spectral index of -2.77 + or - 0.35 or by a thermal bremsstrahlung spectrum with kT = 27 (+15, -7)keV. The counting rate above 20 keV outside of eclipse shows no evidence for the 96.8 minute X-ray modulation previously reported at lower energies. Despite the difficulties that exist in reconciling both the lack of periodic modulation in the emitted X-radiation and the orbital dynamics of the system with our currently accepted theories of the evolution and physical properties of neutron stars, the observed properties of 4U 1700-37 are all consistent with the source being a spherically accreting neutron star rather than a black hole.

  11. A comparison between the observed and predicted Fe II spectrum in different plasmas

    NASA Astrophysics Data System (ADS)

    Johansson, S.

    This paper gives a survey of the spectral distribution of emission lines of Fe II, predicted from a single atomic model. The observed differences between the recorded and the predicted spectrum are discussed in terms of deficiencies of the model and interactions within the emitting plasma. A number of illustrative examples of unexpected features with applications to astrophysics are given. Selective population, due to charge transfer and resonant photo excitation, is elucidated. The future need of more laboratory data for Fe II as regards energy levels and line classification is also discussed.

  12. High temperature plasma in beta Lyrae, observed from Copernicus

    NASA Technical Reports Server (NTRS)

    Kondo, Y.; Hack, M.; Hutchings, J. B.; Mccluskey, G. E., Jr.; Plavec, M.; Polidan, R. S.

    1975-01-01

    High-resolution UV spectrophotometry of the complex close binary system beta Lyrae was performed with a telescope spectrometer on board Copernicus. Observations were made at phases 0.0, 0.25, 0.5, and 0.75 with resolutions of 0.2 A (far-UV) and 0.4 A (mid-UV). The far-UV spectrum is completely dominated by emission lines indicating the existence of a high-temperature plasma in this binary. The spectrum of this object is unlike that of any other object observed from Copernicus. It is believed that this high-temperature plasma results from dynamic mass transfer taking place in the binary. The current results are compared with OAO-2 observations and other observational results. The possibility that the secondary component is a collapsed object is also discussed; the Copernicus observations are consistent with the hypothesis that the spectroscopically invisible secondary component is a black hole.

  13. Young children with autism spectrum disorder use predictive eye movements in action observation.

    PubMed

    Falck-Ytter, Terje

    2010-06-23

    Does a dysfunction in the mirror neuron system (MNS) underlie the social symptoms defining autism spectrum disorder (ASD)? Research suggests that the MNS matches observed actions to motor plans for similar actions, and that these motor plans include directions for predictive eye movements when observing goal-directed actions. Thus, one important question is whether children with ASD use predictive eye movements in action observation. Young children with ASD as well as typically developing children and adults were shown videos in which an actor performed object-directed actions (human agent condition). Children with ASD were also shown control videos showing objects moving by themselves (self-propelled condition). Gaze was measured using a corneal reflection technique. Children with ASD and typically developing individuals used strikingly similar goal-directed eye movements when observing others' actions in the human agent condition. Gaze was reactive in the self-propelled condition, suggesting that prediction is linked to seeing a hand-object interaction. This study does not support the view that ASD is characterized by a global dysfunction in the MNS.

  14. MAGIC observations and multifrequency properties of the flat spectrum radio quasar 3C 279 in 2011

    DOE PAGES

    Aleksic, J.

    2014-07-01

    Aims. We present a study of the very high energy (VHE; E>100 GeV) γ-ray emission of the blazar PKS 1424+240 observed with the MAGIC telescopes. The primary aim of this paper is the multiwavelength spectral characterization and modeling of this blazar, which is made particularly interesting by the recent discovery of a lower limit of its redshift of z ≥ 0.6 and makes it a promising candidate to be the most distant VHE source. Methods. The source has been observed with the MAGIC telescopes in VHE rays for a total observation time of ~33.6 h from 2009 to 2011. Amore » detailed analysis of its γ-ray spectrum and time evolution has been carried out. Moreover, we have collected and analyzed simultaneous and quasi-simultaneous multiwavelength data. Results. The source was marginally detected in VHE rays during 2009 and 2010, and later, the detection was confirmed during an optical outburst in 2011. The combined significance of the stacked sample is ~7.2σ. The differential spectra measured during the different campaigns can be described by steep power laws with the indices ranging from 3.5 ± 1.2 to 5.0 ± 1.7. The MAGIC spectra corrected for the absorption due to the extragalactic background light connect smoothly, within systematic errors, with the mean spectrum in 2009-2011 observed at lower energies by the Fermi-LAT. The absorption-corrected MAGIC spectrum is flat with no apparent turn down up to 400 GeV. The multiwavelength light curve shows increasing flux in radio and optical bands that could point to a common origin from the same region of the jet. The large separation between the two peaks of the constructed non-simultaneous spectral energy distribution also requires an extremely high Doppler factor if an one zone synchrotron self-Compton model is applied. We find that a two-component synchrotron self-Compton model describes the spectral energy distribution of the source well, if the source is located at z ~ 0.6.« less

  15. Flat spectrum T Tauri stars: The case for infall

    NASA Technical Reports Server (NTRS)

    Calvet, Nuria; Hartmann, Lee; Kenyon, S. J.; Whitney, B. A.

    1994-01-01

    We show that the mid- to far-infrared fluxes of 'flat spectrum' T Tauri stars can be explained by radiative equilibrium emission from infalling dusty envelopes. Infall eliminates the need for accretion disks with non-standard temperature distributions. The simplicity and power of this explanantion indicates that models employing 'active' disks, in which the temperature distribution is a parameterized power law, should be invoked with caution. Infall also naturally explains the scattered light nebulae detected around many flat spectrum sources. To match the observed spectra, material must fall onto a disk rather than the central star, as expected for collapse of a rotating molecular cloud. It may be necessary to invoke cavities in the envelopes to explain the strength of optical and near-infrared emission; these cavities could be produced by the powerful bipolar outflows commonly observed from young stars. If viewed along the cavity, a source may be lightly extincted at visual wavelengths, while still accreting substantial amounts of material from the envelope. Infall may also be needed to explain the infrared-bright companions of many optical T Tauri stars. This picture suggests that many of the flat spectrum sources are 'protostars'-young stellar objects surrounded by dust infalling envelopes of substantial mass.

  16. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. Themore » observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.« less

  17. SHIELD: EVLA HI Spectral Line Observations of Low-mass Dwarfs

    NASA Astrophysics Data System (ADS)

    Miazzo, Masao; Ruvolo, Elizabeth; Cannon, John M.; McNichols, Andrew; Teich, Yaron; Adams, Elizabeth A.; Giovanelli, Riccardo; Haynes, Martha P.; McQuinn, Kristen B.; Salzer, John Joseph; Skillman, Evan D.; Dolphin, Andrew E.; Elson, Edward C.; Haurberg, Nathalie C.; Huang, Shan; Janowiecki, Steven; Jozsa, Gyula; Leisman, Luke; Ott, Juergen; Papastergis, Emmanouil; Rhode, Katherine L.; Saintonge, Amelie; Van Sistine, Angela; Warren, Steven R.

    2017-01-01

    The “Survey of HI in Extremely Low-mass Dwarfs” (SHIELD) is a multiwavelength study of local volume low-mass galaxies. Using the now-complete Arecibo Legacy Fast ALFA (ALFALFA) source catalog, 82 systems are identified that meet distance, line width, and HI flux criteria for being gas-rich, low-mass galaxies. These systems harbor neutral gas reservoirs smaller than 3x10^7 M_sun, thus populating the faint end of the HI mass function with statistical confidence for the first time. Here we present new Karl G. Jansky Very Large Array D-configuration HI spectral line observations of 32 previously unobserved galaxies. These low angular resolution (~40" beam) images localize the HI gas; with a few exceptions, the HI gas is co-spatial with the optical centers of the galaxies. These images provide the first glimpse of the neutral interstellar medium in these systems.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.

  18. Project 1640 Observations of Brown Dwarf GJ 758 B: Near-infrared Spectrum and Atmospheric Modeling

    NASA Astrophysics Data System (ADS)

    Nilsson, R.; Veicht, A.; Giorla Godfrey, P. A.; Rice, E. L.; Aguilar, J.; Pueyo, L.; Roberts, L. C., Jr.; Oppenheimer, R.; Brenner, D.; Luszcz-Cook, S. H.; Bacchus, E.; Beichman, C.; Burruss, R.; Cady, E.; Dekany, R.; Fergus, R.; Hillenbrand, L.; Hinkley, S.; King, D.; Lockhart, T.; Parry, I. R.; Sivaramakrishnan, A.; Soummer, R.; Vasisht, G.; Zhai, C.; Zimmerman, N. T.

    2017-03-01

    The nearby Sun-like star GJ 758 hosts a cold substellar companion, GJ 758 B, at a projected separation of ≲30 au, previously detected in high-contrast multi-band photometric observations. In order to better constrain the companion’s physical characteristics, we acquired the first low-resolution (R ˜ 50) near-infrared spectrum of it using the high-contrast hyperspectral imaging instrument Project 1640 on Palomar Observatory’s 5 m Hale telescope. We obtained simultaneous images in 32 wavelength channels covering the Y, J, and H bands (˜952-1770 nm), and used data processing techniques based on principal component analysis to efficiently subtract chromatic background speckle-noise. GJ 758 B was detected in four epochs during 2013 and 2014. Basic astrometric measurements confirm its apparent northwest trajectory relative to the primary star, with no clear signs of orbital curvature. Spectra of SpeX/IRTF observed T dwarfs were compared to the combined spectrum of GJ 758 B, with χ 2 minimization suggesting a best fit for spectral type T7.0 ± 1.0, but with a shallow minimum over T5-T8. Fitting of synthetic spectra from the BT-Settl13 model atmospheres gives an effective temperature T eff = 741 ± 25 K and surface gravity {log}g=4.3+/- 0.5 dex (cgs). Our derived best-fit spectral type and effective temperature from modeling of the low-resolution spectrum suggest a slightly earlier and hotter companion than previous findings from photometric data, but do not rule out current results, and confirm GJ 758 B as one of the coolest sub-stellar companions to a Sun-like star to date.

  19. The spectrum of the Jovian dayglow observed at 3 A resolution with the Hopkins ultraviolet telescope

    NASA Technical Reports Server (NTRS)

    Feldman, P. D.; Mcgrath, M. A.; Moos, H. W.; Durrance, S. T.; Strobel, D. F.; Davidsen, A. F.

    1993-01-01

    Ultraviolet spectra of the Jovian equatorial dayglow in the spectral range 830-1850 A were obtained at about 3 A resolution. The observed spectrum is dominated by electron impact excitation of the H2 Lyman and Werner band systems. Solar Lyman-beta induced fluorescence in the (6, nu-double prime) Lyman band progression is clearly identified in five distinct P(1) lines, and the contribution of solar fluorescence to the total 2.3 kR slit-averaged H2 emission rate is estimated to be 17-22 percent. The electron excitation spectrum is characterized by a relative weakness of the Werner band system and the absence of cascade contributions to the Lyman system and is very similar to that of the south polar aurora. The integrated H2 emission rate in the 900-1100 A band is a factor of two lower than that measured by the Voyager UVS. Based on model calculations, photoelectron excitation does not appear able to account for the amount of observed electron-excited H2 emission.

  20. Finite length-scale anti-gravity and observations of mass discrepancies in galaxies

    NASA Astrophysics Data System (ADS)

    Sanders, R. H.

    1986-01-01

    The modification of Newtonian attraction suggested by Sanders (1984) contains a repulsive Yukawa component which is characterised by two physical parameters: a coupling constant, α, and a length scale, r0. Although this form of the gravitational potential can result in flat rotation curves for a galaxy (or a point mass) it is not obvious that any modification of gravity associated with a definite length scale can reproduce the observed rotation curves of galaxies covering a wide range of mass and size. Here it is shown that the rotation curves of galaxies ranging in size from 5 to 40 kpc can be reproduced by this modified potential. Moreover, the implied mass-to-light ratios for a larger sample of galaxies are reasonable (one to three) and show no systematic trend with the size of the galaxy. The observed infrared Tully-Fisher law is shown to be consistent with the prediction of this revised gravity. The modified potential permits the X-ray emitting halos observed around elliptical galaxies to be bound without the addition of dark matter.

  1. The very low frequency power spectrum of Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Gruber, D. E.

    1988-01-01

    The long-term variability of Cen X-3 on time scales ranging from days to years has been examined by combining data obtained by the HEAO 1 A-4 instrument with data from Vela 5B. A simple interpretation of the data is made in terms of the standard alpha-disk model of accretion disk structure and dynamics. Assuming that the low-frequency variance represents the inherent variability of the mass transfer from the companion, the decline in power at higher frequencies results from the leveling of radial structure in the accretion disk through viscous mixing. The shape of the observed power spectrum is shown to be in excellent agreement with a calculation based on a simplified form of this model. The observed low-frequency power spectrum of Cen X-3 is consistent with a disk in which viscous mixing occurs about as rapidly as possible and on the largest scale possible.

  2. UHECR mass composition measurement at Telescope Array via stereoscopic observation

    NASA Astrophysics Data System (ADS)

    Stroman, Thomas; Telescope Array Collaboration

    2015-04-01

    The masses of primary ultra-high-energy cosmic-ray (UHECR) nuclei cannot be measured directly on an individual basis, but constraints on the chemical composition can be inferred from the distributions of observable properties. The atmospheric slant depth at which a UHECR-induced extensive air shower reaches its maximum number of particles, Xmax, is particularly sensitive to the mass of the incident nucleus, occurring earlier in the shower's longitudinal development for heavier nuclei at a given energy. The Telescope Array in west-central Utah, the northern hemisphere's largest UHECR detector, is equipped for accurate Xmax and energy measurements via stereoscopic fluorescence observation. Using data from seven years of operation, we will present Xmax distributions at several energies E >10 18 . 2eV , and compare them to distributions predicted by detailed detector simulations under an assortment of assumed UHECR compositions and high-energy hadronic interaction models.

  3. Infrared Observations of Hot Gas and Cold Ice Toward the Low Mass Protostar Elias 29

    NASA Technical Reports Server (NTRS)

    Boogert, A. C. A.; Tielens, A. G. G. M.; Ceccarelli, C.; Boonman, A. M. S.; vanDishoeck, E. F.; Keane, J. V.; Whittet, D. C. B.; deGraauw, T.

    2000-01-01

    We have obtained the full 1-200 micrometer spectrum of the low luminosity (36 solar luminosity Class I protostar Elias 29 in the rho Ophiuchi molecular cloud. It provides a unique opportunity to study the origin and evolution of interstellar ice and the interrelationship of interstellar ice and hot core gases around low mass protostars. We see abundant hot CO and H2O gas, as well as the absorption bands of CO, CO2, H2O and "6.85 micrometer" ices. We compare the abundances and physical conditions of the gas and ices toward Elias 29 with the conditions around several well studied luminous, high mass protostars. The high gas temperature and gas/solid ratios resemble those of relatively evolved high mass objects (e.g. GL 2591). However, none of the ice band profiles shows evidence for significant thermal processing, and in this respect Elias 29 resembles the least evolved luminous protostars, such as NGC 7538 : IRS9. Thus we conclude that the heating of the envelope of the low mass object Elias 29 is qualitatively different from that of high mass protostars. This is possibly related to a different density gradient of the envelope or shielding of the ices in a circumstellar disk. This result is important for our understanding of the evolution of interstellar ices, and their relation to cometary ices.

  4. First observation of a mass independent isotopic fractionation in a condensation reaction

    NASA Technical Reports Server (NTRS)

    Thiemens, M. H.; Nelson, R.; Dong, Q. W.; Nuth, Joseph A., III

    1994-01-01

    Thiemens and Heidenreich (1983) first demonstrated that a chemically produced mass independent isotopic fractionation process could produce an isotopic composition which is identical to that observed in Allende inclusions. This raised the possibility that the meteoritic components could be produced by chemical, rather than nuclear processes. In order to develop a mechanistic model of the early solar system, it is important that relevant reactions be studied, particularly, those which may occur in the earliest condensation reactions. The isotopic results for isotopic fractionations associated with condensation processes are reported. A large mass independent isotopic fractionation is observed in one of the experiments.

  5. UCSD OSO-7 observations of the hard X-ray spectrum and variability of Centaurus A

    NASA Technical Reports Server (NTRS)

    Mushotzky, R. F.; Baity, W. A.; Wheaton, W. A.; Peterson, L. E.

    1976-01-01

    Results are reported for four X-ray scans of the region containing Cen A. It is found that the X-ray source had a hard number spectrum (spectral index of -1.2) during these observations and that the intensity in the range from 10 to 100 keV apparently increased by 230% with no detectable change in spectral shape between two observations 210 days apart. Either a Compton-synchrotron mechanism or thermal bremsstrahlung at any temperature greater than 200 keV is suggested as the source of the X-rays. It is noted that the present observations, together with a similar detection of another galaxy, may establish a distinct class of extragalactic X-ray objects with flat and highly absorbed spectra.

  6. Screening of 439 Pesticide Residues in Fruits and Vegetables by Gas Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry Based on TOF Accurate Mass Database and Q-TOF Spectrum Library.

    PubMed

    Li, Jian-Xun; Li, Xiao-Ying; Chang, Qiao-Ying; Li, Yan; Jin, Ling-He; Pang, Guo-Fang; Fan, Chun-Lin

    2018-05-03

    Because of its unique characteristics of accurate mass full-spectrum acquisition, high resolution, and fast acquisition rates, GC-quadrupole-time-of-flight MS (GC-Q-TOF/MS) has become a powerful tool for pesticide residue analysis. In this study, a TOF accurate mass database and Q-TOF spectrum library of 439 pesticides were established, and the parameters of the TOF database were optimized. Through solid-phase extraction (SPE), whereby pesticides are extracted from fruit and vegetable substrates by using 40 mL 1% acetic acid in acetonitrile (v/v), purified by the Carbon/NH₂ SPE cartridge, and finally detected by GC-Q-TOF/MS, the rapid analysis of 439 pesticides in fruits and vegetables can be achieved. The methodology verification results show that more than 70 and 91% of pesticides, spiked in fruits and vegetables with concentrations of 10 and 100 μg/kg, respectively, saw recoveries that conform to the European Commission's criterion of between 70 and 120% with RSD ≤20%. Eighty-one percent of pesticides have screening detection limits lower than 10 μg/kg, which makes this a reliable analysis technology for the monitoring of pesticide residues in fruits and vegetables. This technology was further validated for its characteristics of high precision, high speed, and high throughput through successful detection of 9817 samples during 2013-2015.

  7. Ginga observations of dipping low mass X ray binaries

    NASA Technical Reports Server (NTRS)

    Smale, Alan P.; Mukai, Koji; Williams, O. Rees; Jones, Mark H.; Parmar, Arvind N.; Corbet, Robin H. D.

    1989-01-01

    Ginga observations of several low mass X ray binaries displaying pronounced dips of variable depth and duration in their X ray light curves are analyzed. The periodic occultation of the central X ray source by azimuthal accretion disk structure is considered. A series of spectra selected by intensity from the dip data from XB1916-053, are presented. The effects of a rapidly changing column density upon the spectral fitting results are modeled. EXO0748-676 was observed in March 1989 for three days. The source was found to be in a bright state with a 1 to 20 keV flux of 8.8 x 10 (exp -10) erg/sqcms. The data include two eclipses, observed with high time resolution.

  8. The High Energy X-ray Spectrum of 4U1700-37 Observed from OSO-8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Coe, M. J.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Maurer, G. S.; Orwig, L. E.

    1979-01-01

    The most intense hard X-ray source in the confused region in Scorpius is identified as 4U1700-37. The 3.4-day modulation is seen above 20 keV with the intensity during eclipse being consistent with zero flux. The photon-number spectrum from 20 to 150 keV is well represented by a single power law with a photo-number spectral index of -2.77 + or - 0.35 or by a thermal bremsstrahlung spectrum with kT = 27 96.8-min X-ray modulation previously reported at lower energies. Despite the difficulties in reconciling both the lack of periodic modulation in the emitted X-radiation and the orbital dynamics of the system with theories of the evolution and physical properties of neutron stars, the observed properties of 4U1700-37 are all consistent with the source being a spherically accreting neutron star rather than a black hole.

  9. Radar and optical observations of small mass meteors at Arecibo

    NASA Astrophysics Data System (ADS)

    Michell, R.; Janches, D.; DeLuca, M. D.; Samara, M.; Chen, R. Y.

    2016-12-01

    Optical observations of meteors were conducted over 4 separate nights alongside the Arecibo radar. Meteors were detected in the optical imaging data and with both of the radars at Arecibo. The UHF (430 MHz) radar is the most sensitive and therefore detected the most meteors however the VHF (46.8 MHz) radar detected a higher percentage of meteors in common with the optics, due to the larger beam size and larger mass detectability threshold. The emphasis of this presentation is on meteors that were detected by the optics and one or both radars. The comparisons between the the relative sensitivities of these 3 detecting techniques will improve the meteoroid mass estimates made from the optical intensities. The overall aim would be to develop more accurate and robust methods of calculating meteoroid mass from the radar data alone.

  10. Mass flows in a prominence spine as observed in EUV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucera, T. A.; Gilbert, H. R.; Karpen, J. T.

    2014-07-20

    We analyze a quiescent prominence observed by the Solar Dynamics Observatory's Atmospheric Imaging Assembly (AIA) with a focus on mass and energy flux in the spine, measured using Lyman continuum absorption. This is the first time this type of analysis has been applied with an emphasis on individual features and fluxes in a quiescent prominence. The prominence, observed on 2010 September 28, is detectable in most AIA wavebands in absorption and/or emission. Flows along the spine exhibit horizontal bands 5''-10'' wide and kinetic energy fluxes on the order of a few times 10{sup 5} erg s{sup –1}cm{sup –2}, consistent withmore » quiet sun coronal heating estimates. For a discrete moving feature we estimate a mass of a few times 10{sup 11} g. We discuss the implications of our derived properties for a model of prominence dynamics, the thermal non-equilibrium model.« less

  11. Mass loss in red giants and supergiants

    NASA Technical Reports Server (NTRS)

    Sanner, F.

    1975-01-01

    The circumstellar envelopes surrounding late-type giants and supergiants were studied using high resolution, photoelectric scans of strong optical resonance lines. A method for extracting the circumstellar from the stellar components of the lines allowed a quantitative determination of the physical conditions in the envelopes and the rates of mass loss at various positions in the red giant region of the HR diagram. The observed strengthening of the circumstellar spectrum with increasing luminosity and later spectral type is probably caused by an increase in the mass of the envelopes. The mass loss rate for individual stars is proportional to the visual luminosity; high rates for the supergiants suggest that mass loss is important in their evolution. The bulk of the mass return to the interstellar medium in the red giant region comes from the normal giants, at a rate comparable to that of planetary nebulae.

  12. Seasonal Mass Changes in the Red Sea Observed By GPS and Grace

    NASA Astrophysics Data System (ADS)

    Alothman, A. O.; Fing, W.; Fernandes, R. M. S.; Bos, M. S.; Elsaka, B.

    2014-12-01

    The Red Sea is a semi-enclosed basin and exchanges water with the Gulf of Aden through the strait of Bab-el-Mandeb at the southern part of the sea. Its circulation is affected by the Indian Monsoon through its connection via the Gulf of Aden. Two distinctive (in summer and in winter) seasonal signals represent the water exchange. To understand the seasonal mass changes in the Red Sea, estimates of the mass changes based on two geodetic techniques are presented: from the Gravity Recovery and Climate Experiment (GRACE) and from the Global Navigation Satellite System (GNSS). The GRACE solutions were truncated up to spherical harmonic degree and order degree 60 to estimate the average monthly mass change in the atmosphere and ocean from models (several hours). GNSS solution is based on observations from four stations along the Red Sea that have been acquired in continuous mode starting in 2007 (having at least 5 years' data-span). The time series analysis of the observed GNSS vertical deformation of these sites has been analyzed. The results revealed that the GNSS observed vertical loading agrees with the atmospheric loading (ATML) assuming that the hydrological signal along the costs of the Red sea is negligible. Computed values of daily vertical atmospheric loading using the NCEP surface pressure data (Inverted Barometer IB) for the 4 stations for 2003 until 2013 are provided. Comparison of the GRACE and GNSS solutions has shown significant annual mass variations in the Red Sea (about 15 cm annual amplitude). After removing the atmospheric effect (ATML), the ocean loading can be observed by GNSS and GRACE estimates in the Red Sea.

  13. Constraining the mass and radius of neutron star by future observations

    NASA Astrophysics Data System (ADS)

    Kwak, Kyujin; Lee, Chang-Hwan; Kim, Myungkuk; Kim, Young-Min

    2018-04-01

    The mass and radius of neutron star (NS) in the low mass X-ray binary (LMXB) can be measured simultaneously from the evolving spectra of the photospheric radius expansion (PRE) X-ray bursts (XRBs). Precise measurements require the distance to the target, information on the radiating surface, and the composition of accreted material. Future observations with large ground-based telescopes such as Giant Magellan Telescope (GMT) and Thirty Meter Telescope (TMT) may reduce the uncertainties in the estimation of the mass and radius of NS because they could provide information on the composition of accreted material by identifying the companion stars in LMXBs. We investigate these possibilities and present our results for selected targets.

  14. Fragmentation uncertainties in hadronic observables for top-quark mass measurements

    NASA Astrophysics Data System (ADS)

    Corcella, Gennaro; Franceschini, Roberto; Kim, Doojin

    2018-04-01

    We study the Monte Carlo uncertainties due to modeling of hadronization and showering in the extraction of the top-quark mass from observables that use exclusive hadronic final states in top decays, such as t →anything + J / ψ or t →anything + (B →charged tracks), where B is a B-hadron. To this end, we investigate the sensitivity of the top-quark mass, determined by means of a few observables already proposed in the literature as well as some new proposals, to the relevant parameters of event generators, such as HERWIG 6 and PYTHIA 8. We find that constraining those parameters at O (1%- 10%) is required to avoid a Monte Carlo uncertainty on mt greater than 500 MeV. For the sake of achieving the needed accuracy on such parameters, we examine the sensitivity of the top-quark mass measured from spectral features, such as peaks, endpoints and distributions of EB, mBℓ, and some mT2-like variables. We find that restricting oneself to regions sufficiently close to the endpoints enables one to substantially decrease the dependence on the Monte Carlo parameters, but at the price of inflating significantly the statistical uncertainties. To ameliorate this situation we study how well the data on top-quark production and decay at the LHC can be utilized to constrain the showering and hadronization variables. We find that a global exploration of several calibration observables, sensitive to the Monte Carlo parameters but very mildly to mt, can offer useful constraints on the parameters, as long as such quantities are measured with a 1% precision.

  15. Supersymmetry across the light and heavy-light hadronic spectrum. II.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dosch, Hans Gunter; de Téramond, Guy F.; Brodsky, Stanley J.

    We extend our analysis of the implications of hadronic supersymmetry for heavy-light hadrons in light-front holographic QCD. Although conformal symmetry is strongly broken by the heavy quark mass, supersymmetry and the holographic embedding of semiclassical light-front dynamics derived from five-dimensional anti-de Sitter space nevertheless determine the form of the confining potential in the light-front Hamiltonian to be harmonic. The resulting light-front bound-state equations lead to a heavy-light Regge-like spectrum for both mesons and baryons. The confinement hadron mass scale and their Regge slopes depend, however, on the mass of the heavy quark in the meson or baryon as expected frommore » heavy quark effective theory. Furthermore, this procedure reproduces the observed spectra of heavy-light hadrons with good precision and makes predictions for yet unobserved states.« less

  16. Supersymmetry across the light and heavy-light hadronic spectrum. II.

    DOE PAGES

    Dosch, Hans Gunter; de Téramond, Guy F.; Brodsky, Stanley J.

    2017-02-15

    We extend our analysis of the implications of hadronic supersymmetry for heavy-light hadrons in light-front holographic QCD. Although conformal symmetry is strongly broken by the heavy quark mass, supersymmetry and the holographic embedding of semiclassical light-front dynamics derived from five-dimensional anti-de Sitter space nevertheless determine the form of the confining potential in the light-front Hamiltonian to be harmonic. The resulting light-front bound-state equations lead to a heavy-light Regge-like spectrum for both mesons and baryons. The confinement hadron mass scale and their Regge slopes depend, however, on the mass of the heavy quark in the meson or baryon as expected frommore » heavy quark effective theory. Furthermore, this procedure reproduces the observed spectra of heavy-light hadrons with good precision and makes predictions for yet unobserved states.« less

  17. Constraining the CO intensity mapping power spectrum at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Hamsa

    2018-04-01

    We compile available constraints on the carbon monoxide (CO) 1-0 luminosity functions and abundances at redshifts 0-3. This is used to develop a data driven halo model for the evolution of the CO galaxy abundances and clustering across intermediate redshifts. It is found that the recent constraints from the CO Power Spectrum Survey (z ˜ 3; Keating et al. 2016), when combined with existing observations of local galaxies (z ˜ 0; Keres, Yun & Young 2003), lead to predictions that are consistent with the results of smaller surveys at intermediate redshifts (z ˜ 1-2). We provide convenient fitting forms for the evolution of the CO luminosity-halo mass relation, and estimates of the mean and uncertainties in the CO power spectrum in the context of future intensity mapping experiments.

  18. LUT observations of the mass-transferring binary AI Dra

    NASA Astrophysics Data System (ADS)

    Liao, Wenping; Qian, Shengbang; Li, Linjia; Zhou, Xiao; Zhao, Ergang; Liu, Nianping

    2016-06-01

    Complete UV band light curve of the eclipsing binary AI Dra was observed with the Lunar-based Ultraviolet Telescope (LUT) in October 2014. It is very useful to adopt this continuous and uninterrupted light curve to determine physical and orbital parameters of the binary system. Photometric solutions of the spot model are obtained by using the W-D (Wilson and Devinney) method. It is confirmed that AI Dra is a semi-detached binary with secondary component filling its critical Roche lobe, which indicates that a mass transfer from the secondary component to the primary one should happen. Orbital period analysis based on all available eclipse times suggests a secular period increase and two cyclic variations. The secular period increase was interpreted by mass transfer from the secondary component to the primary one at a rate of 4.12 ×10^{-8}M_{⊙}/yr, which is in agreement with the photometric solutions. Two cyclic oscillations were due to light travel-time effect (LTTE) via the presence of two cool stellar companions in a near 2:1 mean-motion resonance. Both photometric solutions and orbital period analysis confirm that AI Dra is a mass-transferring binary, the massive primary is filling 69 % of its critical Roche lobe. After the primary evolves to fill the critical Roche lobe, the mass transfer will be reversed and the binary will evolve into a contact configuration.

  19. Observation of the Doubly Charmed Baryon Ξ_{cc}^{++}.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Alfonso Albero, A; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Batozskaya, V; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Beliy, N; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Berninghoff, D; Bertholet, E; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bitadze, A; Bizzeti, A; Bjoern, M B; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Borysova, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Brundu, D; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Byczynski, W; Cadeddu, S; Cai, H; Calabrese, R; Calladine, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chitic, S-G; Chobanova, V; Chrzaszcz, M; Chubykin, A; Ciambrone, P; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Colombo, T; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; Davis, A; De Aguiar Francisco, O; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Douglas, L; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Federici, L; Ferguson, D; Fernandez, G; Fernandez Declara, P; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gabriel, E; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Grabowski, J P; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruber, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hancock, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hasse, C; Hatch, M; He, J; Hecker, M; Heinicke, K; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Huard, Z-C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Ibis, P; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kazeev, N; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Komarov, I; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozeiha, M; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, P-R; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Lisovskyi, V; Liu, X; Loh, D; Loi, A; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Macko, V; Mackowiak, P; Maddock, B; Maddrell-Mander, S; Maev, O; Maguire, K; Maisuzenko, D; Majewski, M W; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Marangotto, D; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Mead, J V; Meadows, B; Meaux, C; Meier, F; Meinert, N; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Millard, E; Minard, M-N; Minzoni, L; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Mombacher, T; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Ossowska, A; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Pullen, H; Punzi, G; Qian, W; Quagliani, R; Quintana, B; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Ravonel Salzgeber, M; Reboud, M; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Robert, A; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Ruiz Vidal, J; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Gonzalo, D; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarpis, G; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stepanova, M; Stevens, H; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; Szymanski, M; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Usachov, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagner, A; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M A; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zonneveld, J B; Zucchelli, S

    2017-09-15

    A highly significant structure is observed in the Λ_{c}^{+}K^{-}π^{+}π^{+} mass spectrum, where the Λ_{c}^{+} baryon is reconstructed in the decay mode pK^{-}π^{+}. The structure is consistent with originating from a weakly decaying particle, identified as the doubly charmed baryon Ξ_{cc}^{++}. The difference between the masses of the Ξ_{cc}^{++} and Λ_{c}^{+} states is measured to be 1334.94±0.72(stat.)±0.27(syst.)  MeV/c^{2}, and the Ξ_{cc}^{++} mass is then determined to be 3621.40±0.72(stat.)±0.27(syst.)±0.14(Λ_{c}^{+})  MeV/c^{2}, where the last uncertainty is due to the limited knowledge of the Λ_{c}^{+} mass. The state is observed in a sample of proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.7  fb^{-1}, and confirmed in an additional sample of data collected at 8 TeV.

  20. Observation of the Doubly Charmed Baryon Ξcc ++

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Bjoern, M. B.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Borysova, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fay, R.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianı, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Huard, Z.-C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddock, B.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombacher, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Gonzalo, D.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M. A.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.; LHCb Collaboration

    2017-09-01

    A highly significant structure is observed in the Λc+K-π+π+ mass spectrum, where the Λc+ baryon is reconstructed in the decay mode p K-π+. The structure is consistent with originating from a weakly decaying particle, identified as the doubly charmed baryon Ξcc ++. The difference between the masses of the Ξcc ++ and Λc+ states is measured to be 1334.94 ±0.72 (stat.) ±0.27 (syst. ) MeV /c2 , and the Ξcc ++ mass is then determined to be 3621.40 ±0.72 (stat.) ±0.27 (syst. ) ±0.14 (Λc+) MeV /c2 , where the last uncertainty is due to the limited knowledge of the Λc+ mass. The state is observed in a sample of proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.7 fb-1, and confirmed in an additional sample of data collected at 8 TeV.

  1. Spectroscopic observations of the detached binary PG 1413 + 015

    NASA Technical Reports Server (NTRS)

    Fulbright, Michael S.; Liebert, James; Bergeron, P.; Green, Richard

    1993-01-01

    We present improved estimates of the stellar parameters of the eclipsing, precataclysmic binary system PG 1413 + 015 (GH Vir), which has an orbital period of only 8h16m. Model atmosphere fits a Balmer line profiles yield T(eff) = 48,800 +/- 1200 K and log g = 7.70 +/- 0.11 for the DAO white dwarf primary star, from which a mass of 0.51 +/- 0.04 solar mass is inferred using evolutionary models. An ultraviolet spectrum obtained with the IUE Observatory has a slope consistent with this temperature and the assumption of no interstellar extinction. A red CCD spectrum of the secondary star during the 12-minute total eclipse indicates a spectral type of M3 V-M5 V. Reanalysis of the eclipse light curve leads to an inferred radius of 0.15 solar radius and a mass of 0.10 solar mass for the secondary, the latter being marginally consistent with the spectral type. Reprocessing on the facing side of the secondary produces phase-dependent Balmer line emission and detectable variations in the continuum from 6500-9000 A. The observed levels of reprocessing are consistent with expectations based on the above stellar parameters.

  2. Tailoring noise frequency spectrum between two consecutive second derivative filtering procedures to improve liquid chromatography-mass spectrometry determinations.

    PubMed

    Wang, Shau-Chun; Lin, Chiao-Juan; Chiang, Shu-Min; Yu, Sung-Nien

    2008-03-15

    This paper reports a simple chemometric technique to alter the noise spectrum of a liquid chromatography-mass spectrometry (LC-MS) chromatogram between two consecutive second-derivative filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one second-derivative filtered LC-MS chromatogram with another artificial chromatogram added with thermal noises prior to the other second-derivative filter. Because the second-derivative filter cannot eliminate frequency components within its own filter bandwidth, more efficient peak S/N ratio improvement cannot be accomplished using consecutive second-derivative filter procedures to process LC-MS chromatograms. In contrast, when the second-derivative filtered LC-MS chromatogram is conditioned with the multiplication alteration prior to the other second-derivative filter, much better ratio improvement is achieved. The noise frequency spectrum of the second-derivative filtered chromatogram, which originally contains frequency components within the filter bandwidth, is altered to span a broader range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward the other regimes, the other second-derivative filter, working as a band-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS chromatograms, of which 5-fold peak S/N ratio improvement achieved with two consecutive second-derivative filters remains the same S/N ratio improvement using a one-step second-derivative filter, are improved to accomplish much better ratio enhancement, approximately 25-fold or higher when the noise frequency spectrum is modified between two matched filters. The linear standard curve using the filtered LC-MS signals is validated. The filtered LC-MS signals are also more reproducible. The more accurate determinations of very low-concentration samples (S/N ratio about 5-7) are obtained via standard addition

  3. The ultraviolet spectrum of the eclipsing binary IM Aurigae

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Feibelman, W. A.; Kondo, Y.

    1986-01-01

    Low dispersion IUE spectra have been obtained at primary and secondary minima, together with a high dispersion spectrum near maximum, for the eclipsing Algol-type IM Aurigae system. The weak, sharp absorption features noted at two distinct velocities in the high dispersion data are attributed to circumbinary gaseous shells and/or gas streams between the stellar components. The implications of these results for the recently observed increase in O-C values of the primary minimum, which prompted this UV spectral search for evidence of a recent mass-loss event, are discussed.

  4. Through the Kinesthetic Lens: Observation of Social Attunement in Autism Spectrum Disorders.

    PubMed

    Samaritter, Rosemarie; Payne, Helen

    2017-03-18

    This paper will present a movement-informed perspective to social attunement in Autism Spectrum Disorders (ASD). Dance movement therapy (DMT) is a psychotherapeutic intervention that is used with participants with ASD in various settings. Regular clinical outcome monitoring in an outpatient setting in the Netherlands had shown positive effects on social attunement capacities in young people with ASD. However, a systematic study of the development of social attunement movement behaviors of participants with ASD throughout a DMT intervention was not yet available. A series of individual cases of DMT with young people with ASD (mean age 12.2 years.) were analyzed for changes in interpersonal movement behaviors employing video-based retrospective observation. The findings were summarized in an observation scale for interpersonal movement behaviors. This scale was then tested for its applicability for the monitoring of social attunement behaviors throughout therapy. A movement-informed perspective may be helpful to inventory changes in social attunement behaviors in participants with ASD. The relevance of a movement-informed perspective for the concept of social attunement in ASD will be discussed.

  5. Through the Kinesthetic Lens: Observation of Social Attunement in Autism Spectrum Disorders

    PubMed Central

    Samaritter, Rosemarie; Payne, Helen

    2017-01-01

    This paper will present a movement-informed perspective to social attunement in Autism Spectrum Disorders (ASD). Background: Dance movement therapy (DMT) is a psychotherapeutic intervention that is used with participants with ASD in various settings. Regular clinical outcome monitoring in an outpatient setting in the Netherlands had shown positive effects on social attunement capacities in young people with ASD. However, a systematic study of the development of social attunement movement behaviors of participants with ASD throughout a DMT intervention was not yet available. Methods: A series of individual cases of DMT with young people with ASD (mean age 12.2 years.) were analyzed for changes in interpersonal movement behaviors employing video-based retrospective observation. Results: The findings were summarized in an observation scale for interpersonal movement behaviors. This scale was then tested for its applicability for the monitoring of social attunement behaviors throughout therapy. Discussion: A movement-informed perspective may be helpful to inventory changes in social attunement behaviors in participants with ASD. The relevance of a movement-informed perspective for the concept of social attunement in ASD will be discussed. PMID:28335467

  6. Deconstructing the neutrino mass constraint from galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Boyle, Aoife; Komatsu, Eiichiro

    2018-03-01

    The total mass of neutrinos can be constrained in a number of ways using galaxy redshift surveys. Massive neutrinos modify the expansion rate of the Universe, which can be measured using baryon acoustic oscillations (BAOs) or the Alcock-Paczynski (AP) test. Massive neutrinos also change the structure growth rate and the amplitude of the matter power spectrum, which can be measured using redshift-space distortions (RSD). We use the Fisher matrix formalism to disentangle these information sources, to provide projected neutrino mass constraints from each of these probes alone and to determine how sensitive each is to the assumed cosmological model. We isolate the distinctive effect of neutrino free-streaming on the matter power spectrum and structure growth rate as a signal unique to massive neutrinos that can provide the most robust constraints, which are relatively insensitive to extensions to the cosmological model beyond ΛCDM . We also provide forecasted constraints using all of the information contained in the observed galaxy power spectrum combined, and show that these maximally optimistic constraints are primarily limited by the accuracy to which the optical depth of the cosmic microwave background, τ, is known.

  7. Observations of the Coronal Mass Ejection with a Complex Acceleration Profile

    NASA Astrophysics Data System (ADS)

    Reva, A. A.; Kirichenko, A. S.; Ulyanov, A. S.; Kuzin, S. V.

    2017-12-01

    We study the coronal mass ejection (CME) with a complex acceleration profile. The event occurred on 2009 April 23. It had an impulsive acceleration phase, an impulsive deceleration phase, and a second impulsive acceleration phase. During its evolution, the CME showed signatures of different acceleration mechanisms: kink instability, prominence drainage, flare reconnection, and a CME–CME collision. The special feature of the observations is the usage of the TESIS EUV telescope. The instrument could image the solar corona in the Fe 171 Å line up to a distance of 2 {R}ȯ from the center of the Sun. This allows us to trace the CME up to the LASCO/C2 field of view without losing the CME from sight. The onset of the CME was caused by kink instability. The mass drainage occurred after the kink instability. The mass drainage played only an auxiliary role: it decreased the CME mass, which helped to accelerate the CME. The first impulsive acceleration phase was caused by the flare reconnection. We observed the two-ribbon flare and an increase of the soft X-ray flux during the first impulsive acceleration phase. The impulsive deceleration and the second impulsive acceleration phases were caused by the CME–CME collision. The studied event shows that CMEs are complex phenomena that cannot be explained with only one acceleration mechanism. We should seek a combination of different mechanisms that accelerate CMEs at different stages of their evolution.

  8. Measuring Sensory Reactivity in Autism Spectrum Disorder: Application and Simplification of a Clinician-Administered Sensory Observation Scale

    ERIC Educational Resources Information Center

    Tavassoli, Teresa; Bellesheim, Katherine; Siper, Paige M.; Wang, A. Ting; Halpern, Danielle; Gorenstein, Michelle; Grodberg, David; Kolevzon, Alexander; Buxbaum, Joseph D.

    2016-01-01

    Sensory reactivity is a new DSM-5 criterion for autism spectrum disorder (ASD). The current study aims to validate a clinician-administered sensory observation in ASD, the Sensory Processing Scale Assessment (SPS). The SPS and the Short Sensory Profile (SSP) parent-report were used to measure sensory reactivity in children with ASD (n = 35) and…

  9. Double-detonation Sub-Chandrasekhar Supernovae: Synthetic Observables for Minimum Helium Shell Mass Models

    NASA Astrophysics Data System (ADS)

    Kromer, M.; Sim, S. A.; Fink, M.; Röpke, F. K.; Seitenzahl, I. R.; Hillebrandt, W.

    2010-08-01

    In the double-detonation scenario for Type Ia supernovae, it is suggested that a detonation initiates in a shell of helium-rich material accreted from a companion star by a sub-Chandrasekhar-mass white dwarf. This shell detonation drives a shock front into the carbon-oxygen white dwarf that triggers a secondary detonation in the core. The core detonation results in a complete disruption of the white dwarf. Earlier studies concluded that this scenario has difficulties in accounting for the observed properties of Type Ia supernovae since the explosion ejecta are surrounded by the products of explosive helium burning in the shell. Recently, however, it was proposed that detonations might be possible for much less massive helium shells than previously assumed (Bildsten et al.). Moreover, it was shown that even detonations of these minimum helium shell masses robustly trigger detonations of the carbon-oxygen core (Fink et al.). Therefore, it is possible that the impact of the helium layer on observables is less than previously thought. Here, we present time-dependent multi-wavelength radiative transfer calculations for models with minimum helium shell mass and derive synthetic observables for both the optical and γ-ray spectral regions. These differ strongly from those found in earlier simulations of sub-Chandrasekhar-mass explosions in which more massive helium shells were considered. Our models predict light curves that cover both the range of brightnesses and the rise and decline times of observed Type Ia supernovae. However, their colors and spectra do not match the observations. In particular, their B - V colors are generally too red. We show that this discrepancy is mainly due to the composition of the burning products of the helium shell of the Fink et al. models which contain significant amounts of titanium and chromium. Using a toy model, we also show that the burning products of the helium shell depend crucially on its initial composition. This leads us to

  10. Hartree-Fock mass formulas and extrapolation to new mass data

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Samyn, M.; Heenen, P.-H.; Pearson, J. M.; Tondeur, F.

    2002-08-01

    The two previously published Hartree-Fock (HF) mass formulas, HFBCS-1 and HFB-1 (HF-Bogoliubov), are shown to be in poor agreement with new Audi-Wapstra mass data. The problem lies first with the prescription adopted for the cutoff of the single-particle spectrum used with the δ-function pairing force, and second with the Wigner term. We find an optimal mass fit if the spectrum is cut off both above EF+15 MeV and below EF-15 MeV, EF being the Fermi energy of the nucleus in question. In addition to the Wigner term of the form VW exp(-λ|N-Z|/A) already included in the two earlier HF mass formulas, we find that a second Wigner term linear in |N-Z| leads to a significant improvement in lighter nuclei. These two features are incorporated into our new Hartree-Fock-Bogoliubov model, which leads to much improved extrapolations. The 18 parameters of the model are fitted to the 2135 measured masses for N,Z>=8 with an rms error of 0.674 MeV. With this parameter set a complete mass table, labeled HFB-2, has been constructed, going from one drip line to the other, up to Z=120. The new pairing-cutoff prescription favored by the new mass data leads to weaker neutron-shell gaps in neutron-rich nuclei.

  11. High energy primary electron spectrum observed by the emulsion chamber

    NASA Technical Reports Server (NTRS)

    Nishimura, J.; Fujii, M.; Aizu, H.; Hiraiwa, N.; Taira, T.; Kobayashi, T.; Niu, K.; Koss, T. A.; Lord, J. J.; Golden, R. L.

    1978-01-01

    A detector of the emulsion chamber type is used to measure the energy spectrum of cosmic-ray electrons. Two large emulsion chambers, each having an area of 40 by 50 sq cm, are exposed for about 25.5 hr at an average pressure altitude of 3.9 mbar. About 500 high-energy cascades (no less than about 600 GeV) are detected by searching for dark spots on the X-ray films. A power-law energy dependence formula is derived for the spectrum of primary cosmic-ray electrons in the energy region over 100 GeV. The results are in good agreement with the transition curves obtained previously by theoretical and Monte Carlo calculations.

  12. A combined transmission spectrum of the Earth-sized exoplanets TRAPPIST-1 b and c.

    PubMed

    de Wit, Julien; Wakeford, Hannah R; Gillon, Michaël; Lewis, Nikole K; Valenti, Jeff A; Demory, Brice-Olivier; Burgasser, Adam J; Burdanov, Artem; Delrez, Laetitia; Jehin, Emmanuël; Lederer, Susan M; Queloz, Didier; Triaud, Amaury H M J; Van Grootel, Valérie

    2016-09-01

    Three Earth-sized exoplanets were recently discovered close to the habitable zone of the nearby ultracool dwarf star TRAPPIST-1 (ref. 3). The nature of these planets has yet to be determined, as their masses remain unmeasured and no observational constraint is available for the planetary population surrounding ultracool dwarfs, of which the TRAPPIST-1 planets are the first transiting example. Theoretical predictions span the entire atmospheric range, from depleted to extended hydrogen-dominated atmospheres. Here we report observations of the combined transmission spectrum of the two inner planets during their simultaneous transits on 4 May 2016. The lack of features in the combined spectrum rules out cloud-free hydrogen-dominated atmospheres for each planet at ≥10σ levels; TRAPPIST-1 b and c are therefore unlikely to have an extended gas envelope as they occupy a region of parameter space in which high-altitude cloud/haze formation is not expected to be significant for hydrogen-dominated atmospheres. Many denser atmospheres remain consistent with the featureless transmission spectrum-from a cloud-free water-vapour atmosphere to a Venus-like one.

  13. DUAL-FREQUENCY OBSERVATIONS OF 140 COMPACT, FLAT-SPECTRUM ACTIVE GALACTIC NUCLEI FOR SCINTILLATION-INDUCED VARIABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koay, J. Y.; Macquart, J.-P.; Bignall, H. E.

    2011-10-15

    The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in interstellar scintillation (ISS) for sources at redshifts z {approx}> 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the intergalactic medium (IGM) in excess of the expected (1 + z){sup 1/2} angular diameter scaling of brightness temperature limited sources resulting from cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a samplemore » of 140 compact, flat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H{alpha} intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15-3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at {alpha} < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at four-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of three decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM, but the interpretation is complicated by subtle selection effects that will be

  14. Dual-Frequency Observations of 140 Compact, Flat-Spectrum Active Galactic Nuclei for Scintillation-Induced Variability

    NASA Technical Reports Server (NTRS)

    Koay, J. Y.; Macquart, J.- P.; Rickett, B. J.; Bignall, H. E.; Lovell, J. E. J.; Reynolds, C.; Jauncey, D. L.; Pursimo, T.; Kedziora-Chudczer, L.; Ojha, R.

    2012-01-01

    The 4.9 GHz Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey detected a drop in Interstellar Scintillation (ISS) for sources at red shifts z > or approx. 2, indicating an apparent increase in angular diameter or a decrease in flux density of the most compact components of these sources, relative to their extended emission. This can result from intrinsic source size effects or scatter broadening in the Intergalactic Medium (IGM) , in excess of the expected (1+z)1/2 angular diameter scaling of brightness temperature limited sources resulting from cosmological expansion. We report here 4.9 GHz and 8.4 GHz observations and data analysis for a sample of 140 compact, fiat-spectrum sources which may allow us to determine the origin of this angular diameter-redshift relation by exploiting their different wavelength dependences. In addition to using ISS as a cosmological probe, the observations provide additional insight into source morphologies and the characteristics of ISS. As in the MASIV Survey, the variability of the sources is found to be significantly correlated with line-of-sight H(alpha) intensities, confirming its link with ISS. For 25 sources, time delays of about 0.15 to 3 days are observed between the scintillation patterns at both frequencies, interpreted as being caused by a shift in core positions when probed at different optical depths. Significant correlation is found between ISS amplitudes and source spectral index; in particular, a large drop in ISS amplitudes is observed at alpha < -0.4 confirming that steep spectrum sources scintillate less. We detect a weakened redshift dependence of ISS at 8.4 GHz over that at 4.9 GHz, with the mean variance at 4-day timescales reduced by a factor of 1.8 in the z > 2 sources relative to the z < 2 sources, as opposed to the factor of 3 decrease observed at 4.9 GHz. This suggests scatter broadening in the IGM, but the interpretation is complicated by subtle selection effects that will be explored

  15. Observing and modeling the spectrum of a slow slip event: Constraints on the scaling of slow slip and tremor

    NASA Astrophysics Data System (ADS)

    Hawthorne, J. C.; Bartlow, N. M.; Ghosh, A.

    2017-12-01

    We estimate the normalized moment rate spectrum of a slow slip event in Cascadia and then attempt to reproduce it. Our goal is to further assess whether a single physical mechanism could govern slow slip and tremor events, with durations that span 6 orders of magnitude, so we construct the spectrum by parameterizing a large slow slip event as the sum of a number of subevents with various durations. The spectrum estimate uses data from three sources: the GPS-based slip inversion of Bartlow et al (2011), PBO borehole strain measurements, and beamforming-based tremor moment estimates of Ghosh et al (2009). We find that at periods shorter than 1 day, the moment rate power spectrum decays as frequencyn, where n is between 0.7 and 1.4 when measured from strain and between 1.2 and 1.4 when inferred from tremor. The spectrum appears roughly flat at periods of 1 to 10 days, as both the 1-day-period strain and tremor data and the 6-day-period slip inversion data imply a moment rate power of 0.02 times the the total moment squared. We demonstrate one way to reproduce this spectrum: by constructing the large-scale slow slip event as the sum of a series of subevents. The shortest of these subevents could be interpreted as VLFEs or even LFEs, while longer subevents might represent the aseismic slip that drives rapid tremor reverals, streaks, or rapid tremor migrations. We pick the subevent magnitudes from a Gutenberg-Richter distribution and place the events randomly throughout a 30-day interval. Then we assign each subevent a duration that scales with its moment to a specified power. Finally, we create a moment rate function for each subevent and sum all of the moment rates. We compute the summed slow slip moment rate spectra with two approaches: a time-domain numerical computation and a frequency-domain analytical summation. Several sets of subevent parameters can allow the constructed slow slip event to match the observed spectrum. One allowable set of parameters is of

  16. Piecewise mass flows within a solar prominence observed by the New Vacuum Solar Telescope

    NASA Astrophysics Data System (ADS)

    Li, Hongbo; Liu, Yu; Tam, Kuan Vai; Zhao, Mingyu; Zhang, Xuefei

    2018-06-01

    The material of solar prominences is often observed in a state of flowing. These mass flows (MF) are important and useful for us to understand the internal structure and dynamics of prominences. In this paper, we present a high resolution Hα observation of MFs within a quiescent solar prominence. From the observation, we find that the plasma primarily has a circular motion and a downward motion separately in the middle section and legs of the prominence, which creates a piecewise mass flow along the observed prominence. Moreover, the observation also shows a clear displacement of MF's velocity peaks in the middle section of the prominence. All of these provide us with a detailed record of MFs within a solar prominence and show a new approach to detecting the physical properties of prominence.

  17. A spectrum of an extrasolar planet.

    PubMed

    Richardson, L Jeremy; Deming, Drake; Horning, Karen; Seager, Sara; Harrington, Joseph

    2007-02-22

    Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly.

  18. Energy spectrum of cosmic-ray iron nucleus observed with emulsion chamber

    NASA Technical Reports Server (NTRS)

    Sato, Y.; Shimada, E.; Ohta, I.; Tasaka, S.; Tanaka, S.; Sugimoto, H.; Taira, K.; Tateyama, N.

    1985-01-01

    Energy spectrum of cosmic-ray Fe-nucleus has been measured from 4 GeV per nucleon to beyond 100 GeV per nucleon. The data were obtained using emulsion chambers on a balloon from Sanriku, Japan. The energies were estimated by the opening angle method after calibrated using 1.88 GeV per nucleon Fe collisions. The spectrum of Fe is approximately E-2.5 in the range from 10 to 200 GeV per nucleon. This result is in good agreement with those of other experiments.

  19. Observing the Solar Spectrum at the House of Science

    ERIC Educational Resources Information Center

    Johansson, K. E.; Kozma, C.; Nilsson, Ch.

    2007-01-01

    CCD spectrometers available at Stockholm House of Science allow students to measure the radiation from the Sun. Students are fascinated by the information that can be gathered from the spectrum, including the temperature of the solar surface and the presence of certain elements in both the Sun's atmosphere and the Earth's.

  20. Analysis of Sunyaev-Zel'dovich effect mass-observable relations using South Pole Telescope observations of an X-ray selected sample of low-mass galaxy clusters and groups

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, J.; Mohr, J.; Saro, A.

    2015-02-25

    We use microwave observations from the South Pole Telescope (SPT) to examine the Sunyaev–Zel'dovich effect (SZE) signatures of a sample of 46 X-ray selected groups and clusters drawn from ~6 deg 2 of the XMM–Newton Blanco Cosmology Survey. These systems extend to redshift z = 1.02 and probe the SZE signal to the lowest X-ray luminosities (≥10 42 erg s -1) yet; these sample characteristics make this analysis complementary to previous studies. We develop an analysis tool, using X-ray luminosity as a mass proxy, to extract selection-bias-corrected constraints on the SZE significance and Y_500 mass relations. The former is in good agreement with anmore » extrapolation of the relation obtained from high-mass clusters. However, the latter, at low masses, while in good agreement with the extrapolation from the high-mass SPT clusters, is in tension at 2.8σ with the Planck constraints, indicating the low-mass systems exhibit lower SZE signatures in the SPT data. We also present an analysis of potential sources of contamination. For the radio galaxy point source population, we find 18 of our systems have 843 MHz Sydney University Molonglo Sky Survey sources within 2 arcmin of the X-ray centre, and three of these are also detected at significance >4 by SPT. Of these three, two are associated with the group brightest cluster galaxies, and the third is likely an unassociated quasar candidate. We examine the impact of these point sources on our SZE scaling relation analyses and find no evidence of biases. We also examine the impact of dusty galaxies using constraints from the 220 GHz data. The stacked sample provides 2.8σ significant evidence of dusty galaxy flux, which would correspond to an average underestimate of the SPT Y_500 signal that is (17 ± 9)per cent in this sample of low-mass systems. Finally, we explore the impact of future data from SPTpol and XMM-XXL, showing that it will lead to a factor of 4 to 5 tighter constraints on these SZE mass–observable

  1. Internal hydraulic control in the Little Belt, Denmark - observations of flow configurations and water mass formation

    NASA Astrophysics Data System (ADS)

    Holtegaard Nielsen, Morten; Vang, Torben; Chresten Lund-Hansen, Lars

    2017-12-01

    Internal hydraulic control, which occurs when stratified water masses are forced through an abrupt constriction, plays an enormous role in nature on both large and regional scales with respect to dynamics, circulation, and water mass formation. Despite a growing literature on this subject surprisingly few direct observations have been made that conclusively show the existence of and the circumstances related to internal hydraulic control in nature. In this study we present observations from the Little Belt, Denmark, one of three narrow straits connecting the Baltic Sea and the North Sea. The observations (comprised primarily of along-strait, detailed transects of salinity and temperature; continuous observations of flow velocity, salinity, and temperature at a permanent station; and numerous vertical profiles of salinity, temperature, fluorescence, and flow velocity in various locations) show that internal hydraulic control is a frequently occurring phenomenon in the Little Belt. The observations, which are limited to south-going flows of approximately two-layered water masses, show that internal hydraulic control may take either of two configurations, i.e. the lower or the upper layer being the active, accelerating one. This is connected to the depth of the pycnocline on the upstream side and the topography, which is both deepening and contracting toward the narrow part of the Little Belt. The existence of two possible flow configurations is known from theoretical and laboratory studies, but we believe that this has never been observed in nature and reported before. The water masses formed by the intense mixing, which is tightly connected with the presence of control, may be found far downstream of the point of control. The observations show that these particular water masses are associated with chlorophyll concentrations that are considerably higher than in adjacent water masses, showing that control has a considerable influence on the primary production and

  2. FERMI/LAT Observations of LS 5039

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-10-30

    The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. In this report, our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 ± 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux (100 MeV-300more » GeV) of 4.9 ± 0.5(stat) ± 1.8(syst) ×10 –7 photon cm –2 s –1, with a cutoff at 2.1 ± 0.3(stat) ± 1.1(syst) GeV and photon index Γ = 1.9 ± 0.1(stat) ± 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. Lastly, we suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.« less

  3. Fermi LAT Observations of LS 5039

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdo, A.A.; /Naval Research Lab, Wash., D.C. /Federal City Coll.; Ackermann, M.

    The first results from observations of the high-mass X-ray binary LS 5039 using the Fermi Gamma-ray Space Telescope data between 2008 August and 2009 June are presented. Our results indicate variability that is consistent with the binary period, with the emission being modulated with a period of 3.903 {+-} 0.005 days; the first detection of this modulation at GeV energies. The light curve is characterized by a broad peak around superior conjunction in agreement with inverse Compton scattering models. The spectrum is represented by a power law with an exponential cutoff, yielding an overall flux (100 MeV-300 GeV) of 4.9more » {+-} 0.5(stat) {+-} 1.8(syst) x 10{sup -7} photon cm{sup -2} s{sup -1}, with a cutoff at 2.1 {+-} 0.3(stat) {+-} 1.1(syst) GeV and photon index {Gamma} = 1.9 {+-} 0.1(stat) {+-} 0.3(syst). The spectrum is observed to vary with orbital phase, specifically between inferior and superior conjunction. We suggest that the presence of a cutoff in the spectrum may be indicative of magnetospheric emission similar to the emission seen in many pulsars by Fermi.« less

  4. Coronal Mass Ejections and Dimmings: A Comparative Study using MHD Simulations and SDO Observations

    NASA Astrophysics Data System (ADS)

    Jin, M.; Cheung, C. M. M.; DeRosa, M. L.; Nitta, N.; Schrijver, K.

    2017-12-01

    Solar coronal dimmings have been observed extensively in the past two decades. Due to their close association with coronal mass ejections (CMEs), there is a critical need to improve our understanding of the physical processes that cause dimmings and determine their relationship with CMEs. In this study, we investigate coronal dimmings by combining simulation and observational efforts. By utilizing a data-driven global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we simulate coronal dimmings resulting from different CME energetics and flux rope configurations. We synthesize the emissions of different EUV spectral bands/lines and compare with SDO/AIA and EVE observations. A detailed analysis of simulation and observation data suggests that although the transient dimming / brightening patterns could relate to plasma heating processes (either by adiabatic compression or reconnection), the long-lasting "core" and "remote" (also known as "secondary") dimmings both originate from regions with open/quasi-open fields and are caused by mass loss process. The mass loss in the remote dimming region is induced by CME-driven shock. Using metrics such as dimming depth, dimming slope, and recovery time, we investigate the relationship between dimmings and CME properties (e.g., CME mass, CME speed) in the simulation. Our result suggests that coronal dimmings encode important information about CME energetics, CME-driven shock properties, and magnetic configuration of erupting flux ropes. We also discuss how our knowledge about solar coronal dimmings could be extended to the study of stellar CMEs, which may prove important for exoplanet atmospheres and habitability but which are currently not observable.

  5. The Mass-dependent Star Formation Histories of Disk Galaxies: Infall Model Versus Observations

    NASA Astrophysics Data System (ADS)

    Chang, R. X.; Hou, J. L.; Shen, S. Y.; Shu, C. G.

    2010-10-01

    We introduce a simple model to explore the star formation histories of disk galaxies. We assume that the disk originate and grows by continuous gas infall. The gas infall rate is parameterized by the Gaussian formula with one free parameter: the infall-peak time tp . The Kennicutt star formation law is adopted to describe how much cold gas turns into stars. The gas outflow process is also considered in our model. We find that, at a given galactic stellar mass M *, the model adopting a late infall-peak time tp results in blue colors, low-metallicity, high specific star formation rate (SFR), and high gas fraction, while the gas outflow rate mainly influences the gas-phase metallicity and star formation efficiency mainly influences the gas fraction. Motivated by the local observed scaling relations, we "construct" a mass-dependent model by assuming that the low-mass galaxy has a later infall-peak time tp and a larger gas outflow rate than massive systems. It is shown that this model can be in agreement with not only the local observations, but also with the observed correlations between specific SFR and galactic stellar mass SFR/M * ~ M * at intermediate redshifts z < 1. Comparison between the Gaussian-infall model and the exponential-infall model is also presented. It shows that the exponential-infall model predicts a higher SFR at early stage and a lower SFR later than that of Gaussian infall. Our results suggest that the Gaussian infall rate may be more reasonable in describing the gas cooling process than the exponential infall rate, especially for low-mass systems.

  6. Observational Signatures of Mass-loading in Jets Launched by Rotating Black Holes

    NASA Astrophysics Data System (ADS)

    O’ Riordan, Michael; Pe’er, Asaf; McKinney, Jonathan C.

    2018-01-01

    It is widely believed that relativistic jets in X-ray binaries (XRBs) and active-galactic nuclei are powered by the rotational energy of black holes. This idea is supported by general-relativistic magnetohydrodynamic (GRMHD) simulations of accreting black holes, which demonstrate efficient energy extraction via the Blandford–Znajek mechanism. However, due to uncertainties in the physics of mass loading, and the failure of GRMHD numerical schemes in the highly magnetized funnel region, the matter content of the jet remains poorly constrained. We investigate the observational signatures of mass loading in the funnel by performing general-relativistic radiative transfer calculations on a range of 3D GRMHD simulations of accreting black holes. We find significant observational differences between cases in which the funnel is empty and cases where the funnel is filled with plasma, particularly in the optical and X-ray bands. In the context of Sgr A*, current spectral data constrains the jet filling only if the black hole is rapidly rotating with a ≳ 0.9. In this case, the limits on the infrared flux disfavor a strong contribution from material in the funnel. We comment on the implications of our models for interpreting future Event Horizon Telescope observations. We also scale our models to stellar-mass black holes, and discuss their applicability to the low-luminosity state in XRBs.

  7. Discovery of large-scale diffuse radio emission in low-mass galaxy cluster Abell 1931

    NASA Astrophysics Data System (ADS)

    Brüggen, M.; Rafferty, D.; Bonafede, A.; van Weeren, R. J.; Shimwell, T.; Intema, H.; Röttgering, H.; Brunetti, G.; Di Gennaro, G.; Savini, F.; Wilber, A.; O'Sullivan, S.; Ensslin, T. A.; De Gasperin, F.; Hoeft, M.

    2018-07-01

    Extended, steep-spectrum radio synchrotron sources are pre-dominantly found in massive galaxy clusters as opposed to groups. LOFAR Two-Metre Sky Survey images have revealed a diffuse, ultra-steep-spectrum radio source in the low-mass cluster Abell 1931. The source has a fairly irregular morphology with the largest linear size of about 550 kpc. The source is only seen in LOFAR observations at 143 MHz and Giant Metre Radio Telescope observations at 325 MHz. The spectral index of the total source between 143 and 325 MHz is α _{143}^{325} = -2.86 ± 0.36. The source remains invisible in Very Large Array (1-2 GHz) observations as expected given the spectral index. Chandra X-ray observations of the cluster revealed a bolometric luminosity of LX = (1.65 ± 0.39) × 1043 erg s-1 and a temperature of 2.92_{-0.87}^{+1.89} keV which implies a mass of around ˜1014 M⊙. We conclude that the source is a remnant radio galaxy that has shut off around 200 Myr ago. The brightest cluster galaxy, a radio-loud elliptical galaxy, could be the source for this extinct source. Unlike remnant sources studied in the literature, our source has a steep spectrum at low radio frequencies. Studying such remnant radio galaxies at low radio frequencies is important for understanding the scarcity of such sources and their role in feedback processes.

  8. Discovery of large-scale diffuse radio emission in low-mass galaxy cluster Abell 1931

    NASA Astrophysics Data System (ADS)

    Brüggen, M.; Rafferty, D.; Bonafede, A.; van Weeren, R. J.; Shimwell, T.; Intema, H.; Röttgering, H.; Brunetti, G.; Di Gennaro, G.; Savini, F.; Wilber, A.; O'Sullivan, S.; Ensslin, T. A.; De Gasperin, F.; Hoeft, M.

    2018-04-01

    Extended, steep-spectrum radio synchrotron sources are pre-dominantly found in massive galaxy clusters as opposed to groups. LOFAR Two-Metre Sky Survey images have revealed a diffuse, ultra-steep spectrum radio source in the low-mass cluster Abell 1931. The source has a fairly irregular morphology with a largest linear size of about 550 kpc. The source is only seen in LOFAR observations at 143 MHz and GMRT observations at 325 MHz. The spectral index of the total source between 143 MHz and 325 MHz is α _{143}^{325} = -2.86 ± 0.36. The source remains invisible in Very Large Array (1-2 GHz) observations as expected given the spectral index. Chandra X-ray observations of the cluster revealed a bolometric luminosity of LX = (1.65 ± 0.39) × 1043 erg s-1 and a temperature of 2.92_{-0.87}^{+1.89} keV which implies a mass of around ˜1014M⊙. We conclude that the source is a remnant radio galaxy that has shut off around 200 Myr ago. The brightest cluster galaxy, a radio-loud elliptical galaxy, could be the source for this extinct source. Unlike remnant sources studied in the literature, our source has a steep spectrum at low radio frequencies. Studying such remnant radio galaxies at low radio frequencies is important for understanding the scarcity of such sources and their role in feedback processes.

  9. Comprehensive observations of the bright and energetic Type Iax SN 2012Z: Interpretation as a Chandrasekhar mass white dwarf explosion

    NASA Astrophysics Data System (ADS)

    Stritzinger, M. D.; Valenti, S.; Hoeflich, P.; Baron, E.; Phillips, M. M.; Taddia, F.; Foley, R. J.; Hsiao, E. Y.; Jha, S. W.; McCully, C.; Pandya, V.; Simon, J. D.; Benetti, S.; Brown, P. J.; Burns, C. R.; Campillay, A.; Contreras, C.; Förster, F.; Holmbo, S.; Marion, G. H.; Morrell, N.; Pignata, G.

    2015-01-01

    We present ultraviolet through near-infrared (NIR) broadband photometry, and visual-wavelength and NIR spectroscopy of the Type Iax supernova (SN) 2012Z. The data set consists of both early- and late-time observations, including the first late phase NIR spectrum obtained for a spectroscopically classified SN Iax. Simple model calculations of its bolometric light curve suggest SN 2012Z produced ~0.3 M⊙ of 56Ni, ejected about a Chandrasekhar mass of material, and had an explosion energy of ~1051 erg, making it one of the brightest (MB = -18.3 mag) and most energetic SN Iax yet observed. The late phase (+269d) NIRspectrum of SN 2012Z is found to broadly resemble similar epoch spectra of normal SNe Ia; however, like other SNe Iax, corresponding visual-wavelength spectra differ substantially from all supernova types. Constraints from the distribution of intermediate mass elements, e.g., silicon and magnesium, indicate that the outer ejecta did not experience significant mixing during or after burning, and the late phase NIR line profiles suggests most of the 56Ni is produced during high density burning. The various observational properties of SN 2012Z are found to be consistent with the theoretical expectations of a Chandrasekhar mass white dwarf progenitor that experiences a pulsational delayed detonation, which produced several tenths of a solar mass of 56Ni during the deflagration burning phase and little (or no) 56Ni during the detonation phase. Within this scenario only a moderate amount of Rayleigh-Taylor mixing occurs both during the deflagration and fallback phase of the pulsation, and the layered structure of the intermediate mass elements is a product of the subsequent denotation phase. The fact that the SNe Iax population does not follow a tight brightness-decline relation similar to SNe Ia can then be understood in the framework of variable amounts of mixing during pulsational rebound and variable amounts of 56Ni production during the early subsonic phase

  10. Snow mass and river flows modelled using GRACE total water storage observations

    NASA Astrophysics Data System (ADS)

    Wang, S.

    2017-12-01

    Snow mass and river flow measurements are difficult and less accurate in cold regions due to the hash environment. Floods in cold regions are commonly a result of snowmelt during the spring break-up. Flooding is projected to increase with climate change in many parts of the world. Forecasting floods from snowmelt remains a challenge due to scarce and quality issues in basin-scale snow observations and lack of knowledge for cold region hydrological processes. This study developed a model for estimating basin-level snow mass (snow water equivalent SWE) and river flows using the total water storage (TWS) observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission. The SWE estimation is based on mass balance approach which is independent of in situ snow gauge observations, thus largely eliminates the limitations and uncertainties with traditional in situ or remote sensing snow estimates. The model forecasts river flows by simulating surface runoff from snowmelt and the corresponding baseflow from groundwater discharge. Snowmelt is predicted using a temperature index model. Baseflow is predicted using a modified linear reservoir model. The model also quantifies the hysteresis between the snowmelt and the streamflow rates, or the lump time for water travel in the basin. The model was applied to the Red River Basin, the Mackenzie River Basin, and the Hudson Bay Lowland Basins in Canada. The predicted river flows were compared with the observed values at downstream hydrometric stations. The results were also compared to that for the Lower Fraser River obtained in a separate study to help better understand the roles of environmental factors in determining flood and their variations with different hydroclimatic conditions. This study advances the applications of space-based time-variable gravity measurements in cold region snow mass estimation, river flow and flood forecasting. It demonstrates a relatively simple method that only needs GRACE TWS

  11. A Study on Sunward-propagating Alfvénic Fluctuations with a Power-law Spectrum (SAFP) Observed by the WIND Spacecraft

    NASA Astrophysics Data System (ADS)

    Wang, X.; Wu, H.; Tu, C. Y.; Wang, L.; He, J.; Tian, H.

    2017-12-01

    Sunward-propagating Alfvénic fluctuations with a power-law spectrum (SAFP) have been recently reported to be a significant physical phenomenon in the solar wind. However, some characteristics of these SAFPs are still unknown. Here we develop a new method for identifying SAFPs. In this method, we can identify all SAFPs with any value of θRB (angle between the global magnetic field and the radial direction). We find 508 SAFPs using the WIND spacecraft observation from 1995 to 2014. We also find that SAFP occurs more frequently when θRB equals 90°. The spectral index with an average -1.77 changes continuously from -2.18 for the parallel to -1.71 for the perpendicular. SAFPs occur more at the maximum and tend to be observed in the slow solar wind especially at solar minimum. We also apply the new method to identify anti-sunward-propagating Alfvénic fluctuations with a power-law spectrum (AFP) for comparison. The number of SAFPs is much less than AFPs, and the cases with local bending account for about half of all observed cases. SAFPs have a preference for negative σc and ASFs for positive. The statistical results demonstrate that SAFP has a steeper and weaker power spectrum and present a weaker power anisotropy than that of AFP. These new results may reveal new insight into the physical mechanism of the SAFP generation.

  12. Modelled and observed mass balance of Rikha Samba Glacier, Nepal, Central Himalaya

    NASA Astrophysics Data System (ADS)

    Gurung, T. R.; Kayastha, R. B.; Fujita, K.; Sinisalo, A. K.; Stumm, D.; Joshi, S.; Litt, M.

    2016-12-01

    Glacier mass balance variability has an implication for the regional water resources and it helps to understand the response of glacier to climate change in the Himalayan region. Several mass balance studies have been started in the Himalayan region since 1970s, but they are characterized by frequent temporal gaps and a poor spatial representatively. This study aims at bridging the temporal gaps in a long term mass balance series of the Rikha Samba glacier (5383 - 6475 m a.s.l.), a benchmark glacier located in the Hidden Valley, Mustang, Nepal. The ERA Interim reanalysis data for the period 2011-2015 is calibrated with the observed meteorological variables from an AWS installed near the glacier terminus. We apply an energy mass balance model, validated with the available in-situ measurements for the years 1998 and 2011-2015. The results show that the glacier is shrinking at a moderate negative mass balance rate for the period 1995 to 2015 and the high altitude location of Rikha Samba also prevents a bigger mass loss compared to other small Himalayan glaciers. Precipitation from July to January and the mean air temperature from June to October are the most influential climatic parameters of the annual mass balance variability of Rikha Samba glacier.

  13. Low-lying baryon spectrum with two dynamical twisted mass fermions

    NASA Astrophysics Data System (ADS)

    Alexandrou, C.; Baron, R.; Carbonell, J.; Drach, V.; Guichon, P.; Jansen, K.; Korzec, T.; Pène, O.

    2009-12-01

    The masses of the low-lying baryons are evaluated using two degenerate flavors of twisted mass sea quarks corresponding to pseudoscalar masses in the range of about 270-500 MeV. The strange valence quark mass is tuned to reproduce the mass of the kaon in the physical limit. The tree-level Symanzik improved gauge action is employed. We use lattices of spatial size 2.1 and 2.7 fm at two values of the lattice spacing with r0/a=5.22(2) and r0/a=6.61(3). We check for both finite volume and cutoff effects on the baryon masses. We performed a detailed study of the chiral extrapolation of the octet and decuplet masses using SU(2) χPT. The lattice spacings determined using the nucleon mass at the physical point are consistent with the values extracted using the pion decay constant. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent with zero, as expected. The baryon masses that we find after taking the continuum limit and extrapolating to the physical limit are in good agreement with experiment.

  14. On p-mode oscillations in stars from 1 solar mass to 2 solar masses

    NASA Astrophysics Data System (ADS)

    Audard, N.; Provost, J.

    1994-06-01

    The structure of stars more massive than about 1.2 solar masses is characterized by a convective core. We have studied the evolution with age and mass of acoustic frequencies of high radical order n and low degree l for models of stars of 1, 1.5 and 2 solar masses. Using a polynomial approximation for the frequency, the p-mode spectrum can be characterized by derived global asteroseismic coefficients, i.e. the mean separation nu0 is approximately equal to nun, l - nun - 1, l and the small frequency separation Delta nu0, 2 is approximately equal to nun, l = 0 - nun - 1, l = 2. The diagram (nu0, delta nu0, 2/nu0) plotted along the evolutionary tracks would help to separate the effects of age and mass. We study the sensitivity of these coefficients and other observable quantities, like the radius and luminosity, to stellar parameters in the vicinity of 1 solar mass and 2 solar masses; this sensitivity substantially depends on the stellar mass and must be taken into account for asteroseismic calibration of stellar clusters. Considering finally some rapid variations of the internal structure, we show that the second frequency difference delta2 nu = nu(subn, l) - 2 nun - 1, l + nun - 2, l exponent gamma in the He II ionization zone.

  15. Search for high-mass resonances decaying to dimuons at CDF.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Pagan Griso, S; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-03-06

    We present a search for high-mass neutral resonances using dimuon data corresponding to an integrated luminosity of 2.3 fb(-1) collected in pp[over ] collisions at sqrt[s]=1.96 TeV by the CDF II detector at the Fermilab Tevatron. No significant excess above the standard model expectation is observed in the dimuon invariant-mass spectrum. We set 95% confidence level upper limits on sigmaBR(pp-->X-->micromicro), where X is a boson with spin-0, 1, or 2. Using these cross section limits, we determine lower mass limits on sneutrinos in R-parity-violating supersymmetric models, Z' bosons, and Kaluza-Klein gravitons in the Randall-Sundrum model.

  16. Status, methods and aims of the knee investigations at CR spectrum

    NASA Astrophysics Data System (ADS)

    Shaulov, S. B.; Bezshapov, S. P.

    2013-02-01

    Usually it is supposed that the definition of the CR mass composition in knee region is the key to problem of CR spectrum modification in this range. However tens of experiments done for the last half a century, have not decided this problem. The possible causes of fiasco and arguments in favour of necessity to reformulate a method of attack are discussed. It is formulated that the first experimental task now is to solve a more simple problem: is there abnormal CR component in knee field or not. It seams that impossible to formulate correctly more common problem of mass composition without solving of this one. The observational basis is discussed. The hypothesis of strange quark matter is suggested for the abnormal component.

  17. Mass shift of charmonium states in p bar A collision

    NASA Astrophysics Data System (ADS)

    Wolf, György; Balassa, Gábor; Kovács, Péter; Zétényi, Miklós; Lee, Su Houng

    2018-05-01

    The masses of the low lying charmonium states, namely, the J / Ψ, Ψ (3686), and Ψ (3770) are shifted downwards due to the second order Stark effect. In p bar +Au collisions at 6-10 GeV we study their in-medium propagation. The time evolution of the spectral functions of these charmonium states is studied with a Boltzmann-Uehling-Uhlenbeck (BUU) type transport model. We show that their in-medium mass shift can be observed in the dilepton spectrum. Therefore, by observing the dileptonic decay channel of these low lying charmonium states, especially for Ψ (3686), we can gain information about the magnitude of the gluon condensate in nuclear matter. This measurement could be performed at the upcoming PANDA experiment at FAIR.

  18. NuSTAR and XMM-Newton Observations of the Hard X- Ray Spectrum of Centaurus A

    NASA Technical Reports Server (NTRS)

    Furst, F.; Muller, C.; Madsen, K. K.; Lanz, L.; Rivers, E.; Brightman, M.; Arevalo, P.; Balokovic, M.; Beuchert, T.; Zhang, W.

    2016-01-01

    We present simultaneous XMM-Newton and Nuclear Spectroscopic Telescope Array (NuSTAR) observations spanning 3-78 keV of the nearest radio galaxy, Centaurus A (Cen A). The accretion geometry around the central engine in Cen A is still debated, and we investigate possible configurations using detailed X-ray spectral modeling. NuSTAR imaged the central region of Cen A with subarcminute resolution at X-ray energies above 10 keV for the first time, but found no evidence for an extended source or other off-nuclear point sources. The XMM-Newton and NuSTAR spectra agree well and can be described with an absorbed power law with a photon index Gamma = 1.8150 +/- 0.005 and a fluorescent Fe Kaline in good agreement with literature values. The spectrum is greater than 1 MeV. A thermal Comptonization continuum describes the data well, with parameters that agree with values measured by INTEGRAL, in particular an electron temperature kTe between approximately 100-300 keV and seed photon input temperatures between 5 and 50 eV. We do not find evidence for reflection or a broad iron line and put stringent upper limits of R is less than 0.01 on the reflection fraction and accretion disk illumination. We use archival Chandra data to estimate the contribution from diffuse emission, extra-nuclear point sources, and the outer X-ray jet to the observed NuSTAR and XMM-Newton X-ray spectra and find the contribution to be negligible. We discuss different scenarios for the physical origin of the observed hard X-ray spectrum and conclude that the inner disk is replaced by an advection-dominated accretion flow or that the X-rays are dominated by synchrotron self-Compton emission from the inner regions of the radio jet or a combination thereof.

  19. Copernicus ultraviolet observations of mass-loss effects in O and B stars

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.; Morton, D. C.

    1976-01-01

    Far-UV spectra of 47 O, B, and A stars obtained with the Copernicus satellite are examined for P Cygni profiles. For all 40 stars with displaced absorption lines, values are given for the velocities of the short-wavelength edge, the line center, and the emission peak (if present). Parts of the spectra of 42 stars are reproduced, evidence for mass motions in ground-based spectra is discussed, and the best available data are summarized on the wavelengths and oscillator strengths of most lines likely to show mass-loss effects in either visual or UV spectra. The main conclusions are that: (1) the far-UV transitions, especially resonance lines, show that mass flow is present over a much wider group of stars than revealed by visible data on subordinate lines; (2) most of the line shifts imply mass motion away from the stars; (3) mass flow occurs in all but one star brighter than a bolometric magnitude of -6.0; and (4) the observed terminal velocities generally exhibit no significant correlation with temperature, luminosity, gravity, rotational velocity, or line strength.

  20. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.; hide

    2016-01-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5(sigma). The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4(+0.7/-0.9) x 10(exp -22). The inferred source-frame initial black hole masses are 14.2(+8.3/-3.7 Stellar Mass and 7.5(+2.3/-2.3) Stellar Mass, and the final black hole mass is 20.8(+6.1/-1.7) Stellar Mass. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440(+180/-190) Mpc corresponding to a redshift of 0.090(+.030/-0.04). All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  1. Mass balance of Djankuat Glacier, Central Caucasus: observations, modeling and prediction

    NASA Astrophysics Data System (ADS)

    Rybak, Oleg; Mariia, Kaminskaia; Stanislav, Kutuzov; Ivan, Lavrentiev; Polina, Morozova; Victor, Popovnin; Elena, Rybak

    2017-04-01

    Djankuat is a typical valley glacier on the northern slope of the main Caucasus chain. Its present day area is approximately 2.5 square km with the characteristic ice thickness of several tens of meters. As well as other glaciers in the region, Djankuat has been shrinking during the last several decades, its cumulative mass balance in 1968-2016 was equal to -13.6 m w.e. In general, Caucasus' glaciers lost approximately one-third of their area and half of the volume. Prediction of further deradation of glaciers in changing environment is a challenging task because rivers fed by glacier melt water provide from 40 to 70% of the total river run-off in the adjacent piedmont territories. Growing demand in fresh water is rather critical for the local economy development and for growing population, motivating elaboration of an effitient instrument for evaluation and forecasting of the glaciation in the Greater Caucasus. Unfortunately, systematic observations are sparse limiting possibilities for proper model development for the most of the glaciers. Under these circumstances, we have to rely on the models developed for the few well-studied ones, like Djankuat, which is probably one of the most explored glaciers in the world. Accumulation and ablation rates have been observed here systematically and uninterruptedly since mid 60-ies using dense stake network. Together with the mass balance components, changes in flow velocity, ice thickness and geometry were regularly evaluated. During the last several ablation seasons, direct meteorological observations were carried out using an AMS. Long series of meteorological observations at the nearest weather station allow making assessment of the glacier response to climate change in the second half of the 20th century. Abundant observation data gave us the opportunity to elaborate, calibrate and validate an efficient mathematical model of surface mass balance of a typical glacier in the region. Since many glaciers in the Caucasus

  2. The high-energy pulsed X-ray spectrum of HER X-1 as observed with OSO-8. Ph.D. Thesis - Catholic Univ. of America

    NASA Technical Reports Server (NTRS)

    Maurer, G. S.; Dennis, B. R.; Coe, M. J.; Crannell, C. J.; Cutler, E. P.; Dolan, J. F.; Frost, K. J.; Orwig, L. E.

    1978-01-01

    Her X-1 was observed from 1977 August 30 to September 10 using the High-Energy X-Ray Scintillation Spectrometer on board the OSO-8 satellite. The observation, during which the source was monitored continually for nearly an entire ON-state, covered the energy range from 16 to 280 keV. Pulsed flux measurements as a function of binary orbit and binary phase are presented for energies between 16 and 98 keV. The pulsed flux between 16 and 33 keV exhibited a sharp decrease following the fourth binary orbit and was consistent with zero pulsed flux thereafter. The pulsed spectrum was fitted with a power law, a thermal spectrum without features, and a thermal spectrum with a superposed gaussian centered at 55 keV. The latter fit has the smallest value of chi - squared per degree of freedom, and the resulting integrated line intensity is 1.5 superscript + 4.1 subscript - 1.4 x .001 photons s superscript-1 cm superscript-2 for a width of 3.1 superscript + 9.1 subscript -2.6 keV. This result, while of low statistical significance, agrees with the value observed by Trumper (1978) during the same On-state.

  3. Baryon spectrum with Nf=2+1+1 twisted mass fermions

    NASA Astrophysics Data System (ADS)

    Alexandrou, C.; Drach, V.; Jansen, K.; Kallidonis, C.; Koutsou, G.

    2014-10-01

    The masses of the low-lying baryons are evaluated using a total of ten ensembles of dynamical twisted mass fermion gauge configurations. The simulations are performed using two degenerate flavors of light quarks, and a strange and a charm quark fixed to approximately their physical values. The light sea quarks correspond to pseudo scalar masses in the range of about 210 to 430 MeV. We use the Iwasaki improved gluonic action at three values of the coupling constant corresponding to lattice spacing a=0.094, 0.082 and 0.065 fm determined from the nucleon mass. We check for both finite volume and cutoff effects on the baryon masses. We examine the issue of isospin symmetry breaking for the octet and decuplet baryons and its dependence on the lattice spacing. We show that in the continuum limit isospin breaking is consistent with zero, as expected. We performed a chiral extrapolation of the forty baryon masses using SU(2) χPT. After taking the continuum limit and extrapolating to the physical pion mass our results are in good agreement with experiment. We provide predictions for the mass of the doubly charmed Ξcc*, as well as of the doubly and triply charmed Ωs that have not yet been determined experimentally.

  4. The masses of retired A stars with asteroseismology: Kepler and K2 observations of exoplanet hosts

    NASA Astrophysics Data System (ADS)

    North, Thomas S. H.; Campante, Tiago L.; Miglio, Andxsrea; Davies, Guy R.; Grunblatt, Samuel K.; Huber, Daniel; Kuszlewicz, James S.; Lund, Mikkel N.; Cooke, Benjamin F.; Chaplin, William J.

    2017-12-01

    We investigate the masses of 'retired A stars' using asteroseismic detections on seven low-luminosity red-giant and sub-giant stars observed by the NASA Kepler and K2 missions. Our aim is to explore whether masses derived from spectroscopy and isochrone fitting may have been systematically overestimated. Our targets have all previously been subject to long-term radial velocity observations to detect orbiting bodies, and satisfy the criteria used by Johnson et al. to select survey stars which may have had A-type (or early F-type) main-sequence progenitors. The sample actually spans a somewhat wider range in mass, from ≈ 1 M⊙ up to ≈ 1.7 M⊙. Whilst for five of the seven stars the reported discovery mass from spectroscopy exceeds the mass estimated using asteroseismology, there is no strong evidence for a significant, systematic bias across the sample. Moreover, comparisons with other masses from the literature show that the absolute scale of any differences is highly sensitive to the chosen reference literature mass, with the scatter between different literature masses significantly larger than reported error bars. We find that any mass difference can be explained through use of different constraints during the recovery process. We also conclude that underestimated uncertainties on the input parameters can significantly bias the recovered stellar masses, which may have contributed to the controversy on the mass scale for retired A stars.

  5. NuSTAR Observation of the Symbiotic System GX 1+4

    NASA Astrophysics Data System (ADS)

    Wolff, Michael Thomas; Becker, Peter A.; Enoto, Teruaki; Pottschmidt, Katja; Wood, Kent

    2017-08-01

    We report on a NuSTAR observation of the symbiotic binary system GX 1+4. GX 1+4 is one of a small number of systems with a red giant mass donor and a magnetic neutron star in orbit around each other. The accreting pulsar in GX 1+4 has a spin period of ~150 seconds with epochs of both spin-up and spin-down. The orbital period that has not been determined. Magnetic accretion theory in such systems suggests that the neutron star has a magnetic field in the range 1013-1014 Gauss although this is not settled because no cyclotron absorption feature has been observed in the X-ray spectrum. The NuSTAR spectrum shows broad Fe-line emission near ~6.5 keV and also shows a broad power law shape detected up to ~60 keV. We analyze and discuss the NuSTAR X-ray data with particular attention to the question of what can the spectrum tell us about the structure of the accretion flow onto the neutron star and the magnetic field strength.

  6. SuperLFV: An SLHA tool for lepton flavor violating observables in supersymmetric models

    NASA Astrophysics Data System (ADS)

    Murakami, Brandon

    2014-02-01

    We introduce SuperLFV, a numerical tool for calculating low-energy observables that exhibit charged lepton flavor violation (LFV) in the context of the minimal supersymmetric standard model (MSSM). As the Large Hadron Collider and MEG, a dedicated μ+→e+γ experiment, are presently acquiring data, there is need for tools that provide rapid discrimination of models that exhibit LFV. SuperLFV accepts a spectrum file compliant with the SUSY Les Houches Accord (SLHA), containing the MSSM couplings and masses with complex phases at the supersymmetry breaking scale. In this manner, SuperLFV is compatible with but divorced from existing SLHA spectrum calculators that provide the low energy spectrum. Hence, input spectra are not confined to the LFV sources provided by established SLHA spectrum calculators. Input spectra may be generated by personal code or by hand, allowing for arbitrary models not supported by existing spectrum calculators.

  7. Power Spectrum Density of Long-Term MAXI Data

    NASA Astrophysics Data System (ADS)

    Sugimoto, Juri; Mihara, Tatehiro; Sugizaki, Mutsumi; Serino, Motoko; Kitamoto, Shunji; Sato, Ryousuke; Ueda, Yoshihiro; Ueno, Shiro

    Monitor of All-sky X-ray Image (MAXI) on the International Space Station has been observing the X-ray sky since 2009 August 15. It has accumulated the X-ray data for about four years, so far. X-ray objects are usually variable and their variability can be studied by the power spectrum density (PSD) of the X-ray light curves. We applied our method to calculate PSDs of several kinds of objects observed with MAXI. We obtained significant PSDs from 16 Seyfert galaxies. For blackhole binary Cygnus X-1 there was a difference in the shape of PSD between the hard state and the soft state. For high mass X-ray binaries, Cen X-3, SMC X-1, and LMC X-4, there were several peaks in the PSD corresponding to the orbital period and the superorbital period.

  8. Probing the low-stellar-mass domain with Kepler and APOGEE observations of eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Prsa, Andrej; Hambleton, Kelly

    2018-01-01

    Observations of low-mass stars (M < 0.5 Msun) have been shown to systematically disagree with the predictions of stellar evolutionary models, where observed radii can be inflated by as much as 5-15% as compared to model predictions. One of the proposed explanations for this discrepancy that is gaining traction are stellar magnetic fields impeding the onset of convection and the subsequent bloating of the star. Here we present modeling analysis results of two benchmark eclipsing binaries, KIC 3003991 and KIC 2445134, with low mass companions (M ~ 0.2 MSun and M ~ 0.5 MSun, respectively). The models are based on Kepler photometry and APOGEE spectroscopy. APOGEE is a part of the Sloan spectroscopic survey that observes in the near-infrared, providing greater sensitivity towards fainter, red companions. We combine the binary modeling software PHOEBE with emcee, an affine invariant Markov chain Monte Carlo sampler; celerite, a Gaussian process library; and our own codes to create a modeling suite capable of modeling correlated noise, shot noise, nuisance astrophysical signals (such as spots) and the full set of eclipsing binary parameters. The results are obtained within a probabilistic framework, with robust mass and radius uncertainties ~1-4%. We overplot the derived masses, radii and temperatures over evolutionary models and note stellar size bloating w.r.t. model predictions for both systems. This work has been funded by the NSF grant #1517460.

  9. Peroxy Radicals Observed in a Forested Environment with Time of Flight Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cantrell, C. A.; Mauldin, L.; Nowak, J. B.

    2017-12-01

    Observations of peroxy radicals were made using time-of-flight chemical ionization mass spectrometry (ToF-CIMS) during the PROPHET-AMOS (Program for Research on Oxidants, Photochemistry, Emissions and Transport - Atmospheric Measurements of Oxidants in Summer) campaign in summer 2016 at the University of Michigan Biological Station (UMBS) in the northern lower peninsula of Michigan. The environment is one of high isoprene productivity and generally low NOx, depending on the origin of air masses that are sampled, and has been the subject of several comprehensive atmospheric observational studies. The ToF-CIMS was configured to measure OH, HO2+RO2, and extremely oxygenated volatile organic compounds (ELVOCs) in a cycle of about 5 minutes for each. This presentation examines the time- and chemical coordinate-dependent behavior of the peroxy radicals, and compares the observations with models that are constrained by observations of the controlling variables. The results are used to estimate factors such as the photochemical production rate of ozone and other atmospheric oxidation parameters for this remote forest site.

  10. Simultaneous, multi-wavelength flare observations of nearby low-mass stars

    NASA Astrophysics Data System (ADS)

    Thackeray, Beverly; Barclay, Thomas; Quintana, Elisa; Villadsen, Jacqueline; Wofford, Alia; Schlieder, Joshua; Boyd, Patricia

    2018-01-01

    Low-mass stars are the most common stars in the Galaxy and have been targeted in the tens-of-thousands by K2, the re-purposed Kepler mission, as they are prime targets to search for and characterize small, Earth-like planets. Understanding how these fully convective stars drive magnetic activity that manifests as stochastic, short-term brightenings, or flares, provides insight into the prospects of planetary habitability. High energy radiation and energetic particle emission associated with these stars can erode atmospheres, and impact habitability. An innovative campaign to study low mass stars through simultaneous multi-wavelength observations is currently underway with observations ongoing in the X-ray, UV, optical, and radio. I will present early results of our pilot study of the nearby M-Dwarf star Wolf 359 (CN Leo) using K2, SWIFT, and ground based radio observatories, forming a comprehensive picture of flare activity from an M-Dwarf, and discuss the potential impact of these results on exoplanets. "This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1322106. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation."

  11. Can an unbroken flavour symmetry provide an approximate description of lepton masses and mixing?

    NASA Astrophysics Data System (ADS)

    Reyimuaji, Y.; Romanino, A.

    2018-03-01

    We provide a complete answer to the following question: what are the flavour groups and representations providing, in the symmetric limit, an approximate description of lepton masses and mixings? We assume that neutrino masses are described by the Weinberg operator. We show that the pattern of lepton masses and mixings only depends on the dimension, type (real, pseudoreal, complex), and equivalence of the irreducible components of the flavour representation, and we find only six viable cases. In all cases the neutrinos are either anarchical or have an inverted hierarchical spectrum. In the context of SU(5) unification, only the anarchical option is allowed. Therefore, if the hint of a normal hierarchical spectrum were confirmed, we would conclude (under the above assumption) that symmetry breaking effects must play a leading order role in the understanding of neutrino flavour observables. In order to obtain the above results, we develop a simple algorithm to determine the form of the lepton masses and mixings directly from the structure of the decomposition of the flavour representation in irreducible components, without the need to specify the form of the lepton mass matrices.

  12. Evidence for a mixed mass composition at the 'ankle' in the cosmic-ray spectrum

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pȩkala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollant, R.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Younk, P.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration

    2016-11-01

    We report a first measurement for ultrahigh energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the 'ankle' at lg ⁡ (E /eV) = 18.5- 19.0 differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass A > 4. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavored as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.

  13. The Disk Wind in the Rapidly Spinning Stellar-mass Black Hole 4U 1630-472 Observed with NuSTAR

    NASA Technical Reports Server (NTRS)

    King, Ashley L.; Walton, Dominic J.; Miller, Jon M.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fabian, Andy C.; Furst, Felix; Hailey, Charles J.; hide

    2014-01-01

    We present an analysis of a short NuSTAR observation of the stellar-mass black hole and low-mass X-ray binary 4U 1630-472. Reflection from the inner accretion disk is clearly detected for the first time in this source, owing to the sensitivity of NuSTAR. With fits to the reflection spectrum, we find evidence for a rapidly spinning black hole, a* = 0.985(+0.005/-0.014) (1 sigma statistical errors). However, archival data show that the source has relatively low radio luminosity. Recently claimed relationships between jet power and black hole spin would predict either a lower spin or a higher peak radio luminosity. We also report the clear detection of an absorption feature at 7.03 +/- 0.03 keV, likely signaling a disk wind. If this line arises in dense, moderately ionized gas (log xi = 3.6(+0.2/-0.3) and is dominated by He-like Fe xxv, the wind has a velocity of v/c = 0.043(+0.002/-0.007) (12900(+600/-2100) km s(exp -1)). If the line is instead associated with a more highly ionized gas (log xi = 6.1(+0.7/-0.6)), and is dominated by Fe xxvi, evidence of a blueshift is only marginal, after taking systematic errors into account. Our analysis suggests the ionized wind may be launched within 200-1100 Rg, and may be magnetically driven.

  14. On the energy spectrum of cosmogenic neutrons

    NASA Astrophysics Data System (ADS)

    Malgin, A. S.

    2017-11-01

    The processes of the generation of cosmogenic neutrons (cg-neutrons) underground are considered. The neutrons produced by cosmic-ray muons in their interactions with matter are called cosmogenic. Deep-inelastic π A-collisions of pions in muon-induced hadronic showers are mainly their source at energies above 30 MeV. The characteristics of the energy spectrum for the generation of cg-neutrons have been determined by invoking the additive quark model of deep-inelastic soft processes and the mechanism for the interactions of high-energy nucleons in a nucleus. The three-component shape of the spectrum is explained, and the energy of the "knee" in the spectrum has been found to depend on the mass number A. The peculiarities of deep-inelastic π A-scattering lead to the conclusion that the spectrum of cg-neutrons steepens sharply at energies above 1 GeV. The calculated quantitative characteristics of the spectrum are compared with those obtained in measurements.

  15. Tracing the temporal stability of autism spectrum diagnosis and severity as measured by the Autism Diagnostic Observation Schedule: A systematic review and meta-analysis.

    PubMed

    Bieleninik, Łucja; Posserud, Maj-Britt; Geretsegger, Monika; Thompson, Grace; Elefant, Cochavit; Gold, Christian

    2017-01-01

    Exploring ways to improve the trajectory and symptoms of autism spectrum disorder is prevalent in research, but less is known about the natural prognosis of autism spectrum disorder and course of symptoms. The objective of this study was to examine the temporal stability of autism spectrum disorder and autism diagnosis, and the longitudinal trajectories of autism core symptom severity. We furthermore sought to identify possible predictors for change. We searched PubMed, PsycInfo, EMBASE, Web of Science, Cochrane Library up to October 2015 for prospective cohort studies addressing the autism spectrum disorder/autism diagnostic stability, and prospective studies of intervention effects. We included people of all ages with autism spectrum disorder/autism or at risk of having autism spectrum disorder, who were diagnosed and followed up for at least 12 months using the Autism Diagnostic Observation Schedule (ADOS). Both continuous ADOS scores and dichotomous diagnostic categories were pooled in random-effects meta-analysis and meta-regression. Of 1443 abstracts screened, 44 were eligible of which 40 studies contained appropriate data for meta-analysis. A total of 5771 participants from 7 months of age to 16.5 years were included. Our analyses showed no change in ADOS scores across time as measured by Calibrated Severity Scores (mean difference [MD] = 0.05, 95% CI -0.26 to 0.36). We observed a minor but statistically significant change in ADOS total raw scores (MD = -1.51, 95% CI -2.70 to -0.32). There was no improvement in restricted and repetitive behaviours (standardised MD [SMD] = -0.04, 95% CI -0.19 to 0.11), but a minor improvement in social affect over time (SMD = -0.31, 95% CI -0.50 to -0.12). No changes were observed for meeting the autism spectrum disorder criteria over time (risk difference [RD] = -0.01, 95% CI -0.03 to 0.01), but a significant change for meeting autism criteria over time (RD = -0.18, 95% CI -0.29 to -0.07). On average, there was a high

  16. Tracing the temporal stability of autism spectrum diagnosis and severity as measured by the Autism Diagnostic Observation Schedule: A systematic review and meta-analysis

    PubMed Central

    Geretsegger, Monika; Thompson, Grace; Elefant, Cochavit

    2017-01-01

    Background Exploring ways to improve the trajectory and symptoms of autism spectrum disorder is prevalent in research, but less is known about the natural prognosis of autism spectrum disorder and course of symptoms. The objective of this study was to examine the temporal stability of autism spectrum disorder and autism diagnosis, and the longitudinal trajectories of autism core symptom severity. We furthermore sought to identify possible predictors for change. Methods We searched PubMed, PsycInfo, EMBASE, Web of Science, Cochrane Library up to October 2015 for prospective cohort studies addressing the autism spectrum disorder/autism diagnostic stability, and prospective studies of intervention effects. We included people of all ages with autism spectrum disorder/autism or at risk of having autism spectrum disorder, who were diagnosed and followed up for at least 12 months using the Autism Diagnostic Observation Schedule (ADOS). Both continuous ADOS scores and dichotomous diagnostic categories were pooled in random-effects meta-analysis and meta-regression. Results Of 1443 abstracts screened, 44 were eligible of which 40 studies contained appropriate data for meta-analysis. A total of 5771 participants from 7 months of age to 16.5 years were included. Our analyses showed no change in ADOS scores across time as measured by Calibrated Severity Scores (mean difference [MD] = 0.05, 95% CI -0.26 to 0.36). We observed a minor but statistically significant change in ADOS total raw scores (MD = -1.51, 95% CI -2.70 to -0.32). There was no improvement in restricted and repetitive behaviours (standardised MD [SMD] = -0.04, 95% CI -0.19 to 0.11), but a minor improvement in social affect over time (SMD = -0.31, 95% CI -0.50 to -0.12). No changes were observed for meeting the autism spectrum disorder criteria over time (risk difference [RD] = -0.01, 95% CI -0.03 to 0.01), but a significant change for meeting autism criteria over time (RD = -0.18, 95% CI -0.29 to -0.07). On

  17. Plasmon mass scale in two-dimensional classical nonequilibrium gauge theory

    NASA Astrophysics Data System (ADS)

    Lappi, T.; Peuron, J.

    2018-02-01

    We study the plasmon mass scale in classical gluodynamics in a two-dimensional configuration that mimics the boost-invariant initial color fields in a heavy-ion collision. We numerically measure the plasmon mass scale using three different methods: a hard thermal loop (HTL) expression involving the quasiparticle spectrum constructed from Coulomb gauge field correlators, an effective dispersion relation, and the measurement of oscillations between electric and magnetic energies after introducing a spatially uniform perturbation to the electric field. We find that the HTL expression and the uniform electric field measurement are in rough agreement. The effective dispersion relation agrees with other methods within a factor of 2. We also study the dependence on time and occupation number, observing similar trends as in three spatial dimensions, where a power-law dependence sets in after an occupation-number-dependent transient time. We observe a decrease of the plasmon mass squared as t-1 / 3 at late times.

  18. The mass function of black holes 1observations

    NASA Astrophysics Data System (ADS)

    Natarajan, Priyamvada; Volonteri, Marta

    2012-05-01

    In this paper, we compare the observationally derived black hole mass function (BHMF) of luminous (>1045-1046 erg s-1) broad-line quasars (BLQSOs) at 1 < z < 4.5 drawn from the Sloan Digital Sky Survey (SDSS) presented by Kelly et al., with models of merger-driven black hole (BH) growth in the context of standard hierarchical structure formation models. In these models, we explore two distinct black hole seeding prescriptions at the highest redshifts: 'light seeds'- remnants of Population III stars and 'massive seeds' that form from the direct collapse of pre-galactic discs. The subsequent merger triggered mass build-up of the black hole population is tracked over cosmic time under the assumption of a fixed accretion rate as well as rates drawn from the distribution derived by Merloni & Heinz. Four model snapshots at z= 1.25, 2, 3.25 and 4.25 are compared with the SDSS-derived BHMFs of BLQSOs. We find that the light seed models fall short of reproducing the observationally derived mass function of BLQSOs at MBH > 109 M⊙ throughout the redshift range; the massive seed models with a fixed accretion rate of 0.3 Edd, or with accretion rates drawn from the Merloni & Heinz distribution provide the best fit to the current observational data at z > 2, although they overestimate the high-mass end of the mass function at lower redshifts. At low redshifts, a drastic drop in the accretion rate is observed and this is explained as arising due to the diminished gas supply available due to consumption by star formation or changes in the geometry of the inner feeding regions. Therefore, the overestimate at the high-mass end of the black hole mass function for the massive seed models can be easily modified, as the accretion rate is likely significantly lower at these epochs than what we assume. For the Merloni & Heinz model, examining the Eddington ratio distributions fEdd, we find that they are almost uniformly sampled from fEdd= 10-2 to 1 at z≃ 1, while at high redshift

  19. High-z objects and cold dark matter cosmogonies - Constraints on the primordial power spectrum on small scales

    NASA Technical Reports Server (NTRS)

    Kashlinsky, A.

    1993-01-01

    Modified cold dark matter (CDM) models were recently suggested to account for large-scale optical data, which fix the power spectrum on large scales, and the COBE results, which would then fix the bias parameter, b. We point out that all such models have deficit of small-scale power where density fluctuations are presently nonlinear, and should then lead to late epochs of collapse of scales M between 10 exp 9 - 10 exp 10 solar masses and (1-5) x 10 exp 14 solar masses. We compute the probabilities and comoving space densities of various scale objects at high redshifts according to the CDM models and compare these with observations of high-z QSOs, high-z galaxies and the protocluster-size object found recently by Uson et al. (1992) at z = 3.4. We show that the modified CDM models are inconsistent with the observational data on these objects. We thus suggest that in order to account for the high-z objects, as well as the large-scale and COBE data, one needs a power spectrum with more power on small scales than CDM models allow and an open universe.

  20. Coronal mass ejection kinematics deduced from white light (Solar Mass Ejection Imager) and radio (Wind/WAVES) observations

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Jackson, B. V.; Webb, D. F.; Mizuno, D. R.; Kaiser, M. L.; Bougeret, J.-L.

    2005-09-01

    White-light and radio observations are combined to deduce the coronal and interplanetary kinematics of a fast coronal mass ejection (CME) that was ejected from the Sun at about 1700 UT on 2 November 2003. The CME, which was associated with an X8.3 solar flare from W56°, was observed by the Mauna Loa and Solar and Heliospheric Observatory (SOHO) Large-Angle Spectrometric Coronograph (LASCO) coronagraphs to 14 R⊙. The measured plane-of-sky speed of the LASCO CME was 2600 km s-1. To deduce the kinematics of this CME, we use the plane-of-sky white light observations from both the Solar Mass Ejection Imager (SMEI) all-sky camera on board the Coriolis spacecraft and the SOHO/LASCO coronagraph, as well as the frequency drift rate of the low-frequency radio data and the results of the radio direction-finding analysis from the WAVES experiment on the Wind spacecraft. In agreement with the in situ observations for this event, we find that both the white light and radio observations indicate that the CME must have decelerated significantly beginning near the Sun and continuing well into the interplanetary medium. More specifically, by requiring self-consistency of all the available remote and in situ data, together with a simple, but not unreasonable, assumption about the general characteristic of the CME deceleration, we were able to deduce the radial speed and distance time profiles for this CME as it propagated from the Sun to 1 AU. The technique presented here, which is applicable to mutual SMEI/WAVES CME events, is expected to provide a more complete description and better quantitative understanding of how CMEs propagate through interplanetary space, as well as how the radio emissions, generated by propagating CME/shocks, relate to the shock and CME. This understanding can potentially lead to more accurate predictions for the onset times of space weather events, such as those that were observed during this unique period of intense solar activity.

  1. SYSTEMATIZATION OF MASS LEVELS OF PARTICLES AND RESONANCES ON HEURISTIC BASIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takabayasi, T.

    1963-12-16

    Once more a scheme of simple mass rules and formulas for particles and resonant levels is investigated and organized, based on some general hypotheses. The essential ingredients in the scheme are, on one hand, the equalinterval rule governing the isosinglet meson series, associated with particularly simple mass ratio between the 2/sup ++/ level f and 0/sup ++/ level ABC, and on the other a new basic mass formula that unifies some of the meson and baryon levels. The whole baryon levels are arranged in a table analogous to the periodic table, and then correspondences between different series and equivalence betweenmore » spin and hypercharge, when properly applied, just fix the whole baryon mass spectrum in good agreement with observations. Connections with the scheme of mass formulas formerly given are also shown. (auth)« less

  2. The Spectrum of the Universe.

    PubMed

    Hill, Ryley; Masui, Kiyoshi W; Scott, Douglas

    2018-05-01

    Cosmic background (CB) radiation, encompassing the sum of emission from all sources outside our own Milky Way galaxy across the entire electromagnetic spectrum, is a fundamental phenomenon in observational cosmology. Many experiments have been conceived to measure it (or its constituents) since the extragalactic Universe was first discovered; in addition to estimating the bulk (cosmic monopole) spectrum, directional variations have also been detected over a wide range of wavelengths. Here we gather the most recent of these measurements and discuss the current status of our understanding of the CB from radio to γ-ray energies. Using available data in the literature, we piece together the sky-averaged intensity spectrum and discuss the emission processes responsible for what is observed. We examine the effect of perturbations to the continuum spectrum from atomic and molecular line processes and comment on the detectability of these signals. We also discuss how one could, in principle, obtain a complete census of the CB by measuring the full spectrum of each spherical harmonic expansion coefficient. This set of spectra of multipole moments effectively encodes the entire statistical history of nuclear, atomic, and molecular processes in the Universe.

  3. The Spectrum of the Universe

    NASA Astrophysics Data System (ADS)

    Hill, Ryley; Masui, Kiyoshi W.; Scott, Douglas

    2018-05-01

    The cosmic background (CB) radiation, encompassing the sum of emission from all sources outside our own Milky Way galaxy across the entire electromagnetic spectrum, is a fundamental phenomenon in observational cosmology. Many experiments have been conceived to measure it (or its constituents) since the extragalactic Universe was first discovered; in addition to estimating the bulk (cosmic monopole) spectrum, directional variations have also been detected over a wide range of wavelengths. Here we gather the most recent of these measurements and discuss the current status of our understanding of the CB from radio to $\\gamma$-ray energies. Using available data in the literature we piece together the sky-averaged intensity spectrum, and discuss the emission processes responsible for what is observed. We examine the effect of perturbations to the continuum spectrum from atomic and molecular line processes and comment on the detectability of these signals. We also discuss how one could in principle obtain a complete census of the CB by measuring the full spectrum of each spherical harmonic expansion coefficient. This set of spectra of multipole moments effectively encodes the entire statistical history of nuclear, atomic and molecular processes in the Universe.

  4. The spectrum of Phobos from Phobos 2 observations at 0.3-2.6 microns: Comparison to previous data and meteorite analogs

    NASA Technical Reports Server (NTRS)

    Murchie, Scott; Erard, Stephane

    1993-01-01

    The surface of Phobos has been proposed to consist of carbonaceous chondrite or optically darkened ordinary chondrite ('black chondrite'). Measurements of Phobos's spectrum are key evidence for testing these hypotheses. Disk-integrated measurements were obtained by the Mariner 9 UV spectrometer, Viking Lander cameras, and groundbased observations. In 1989 disk-resolved measurements of Phobos and Mars were obtained by three instruments on Phobos 2: the KRFM spectrometer, which covered the wavelength range 0.32 - 0.6 microns; the ISM imaging spectrometer, which covered the wavelength range 0.76 - 3.16 microns; and the VSK TV cameras, whose wavelength ranges overlap those of KRFM and ISM. Here we report analysis of the Phobos 2 measurements completed since earlier results were reported. We validated calibration of the Phobos measurements using observations of Mars for reference, and compared them with pre-1989 measurements. We also combined spectra from the three detectors to produce an integrated spectrum of Phobos from 0.3 - 2.6 microns. Phobos 2 results agree well with previous measurements, contrary to some reports. The general shape of the spectrum is consistent with both proposed analogues. However position and depth of the previously unobserved 1 micron absorption are more diagnostic, and indicate the composition of typical surfaces to be more consistent with black chondrite.

  5. On the Effective Mass of the Electron Neutrino in Beta Decay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farzan, Yasaman

    2002-12-20

    In the presence of mixing between massive neutrino states, the distortion of the electron spectrum in beta decay is, in general, a function of several masses and mixing angles. For 3{nu}-schemes which describe the solar and atmospheric neutrino data, this distortion can be described by a single effective mass, under certain conditions. In the literature, two different definitions for the effective mass have been suggested. We show that for quasi-degenerate mass schemes (with an overall mass scale m and splitting {Delta}m{sup 2}) the two definitions coincide up to ({Delta}m{sup 2}){sup 2}/m{sup 4} corrections. We consider the impact of different effectivemore » masses on the integral energy spectrum. We show that the spectrum with a single mass can be used also to fit the data in the case of 4{nu}-schemes motivated, in particular, by the LSND results. In this case the accuracy of the mass determination turns out to be better than (10-15)%.« less

  6. Deimos: A featureless asteroid-like spectrum

    NASA Technical Reports Server (NTRS)

    Grundy, W. M.; Fink, Uwe

    1991-01-01

    High quality CCD spectra were obtained of Deimos from 0.5 to 1.0 micron at a spectral resolution of 15A at the time of the 1988 Mars opposition. The data acquisition and reduction methods allowed the quantitative prevention of scattered light from Mars contaminating the spectra. Solar analog stars BS560, BS2007, and BS8931 were observed the same night to allow removal of telluric absorptions. The ratio spectrum of Deimos has a red slope, increasing in reflectance by a factor of approx. 50 pct. over the one octave wavelength interval observed. Other than this slope, the spectrum is remarkably featureless. The absence of absorption bands in the spectrum of Deimos is in marked contrast with the spectra of Martian surface materials. No trace of the Fe(2+) charge transfer absorption band around 1 micron is observed, which rules out the presence of significant quantities of minerals such as the pyroxenes or olivine at the surface of Deimos. The featureless red spectrum of Deimos appears to be consistent with a surface composition of fine grained carbonaceous chondrite type material. An analysis is presented of the spectrum of Deimos which makes use of the Hapke scattering surface model.

  7. Improving Estimates of Greenland Ice Sheet Surface Mass Balance with Satellite Observations

    NASA Astrophysics Data System (ADS)

    Briggs, K.

    2016-12-01

    Mass losses from the Greenland Ice Sheet have been accelerating over recent years (e.g. McMillan et al., 2016; Velicogna et al., 2014). This acceleration has predominantly been linked to increasing rates of negative surface mass balance, and in particular, increasing ice surface melt rates (e.g. McMillan et al., 2016; Velicogna et al., 2014). At the ice sheet scale, SMB is assessed using SMB model outputs, which in addition to enabling understanding of the origin of mass balance signals, are required as ancillary data in mass balance assessments from altimetry and the mass budget method. Due to the importance of SMB for mass balance over Greenland and the sensitivity of mass balance assessments to SMB model outputs, high accuracy of these models is crucial. A critical limiting factor in SMB modeling is however, a lack of in-situ data that is required for model constraint and evaluation. Such data is limited in time and space due to inherent logistical and financial constraints. Remote sensing datasets, being spatially extensive and relatively densely sampled in both space and time, do not suffer such constraints. Here, we show satellite observations of Greenland SMB. McMillan, M., Leeson, A., Shepherd, A., Briggs, K., Armitage, T. W.K., Hogg, A., Kuipers Munneke, P., van den Broeke, M., Noël, B., van de Berg, W., Ligtenberg, S., Horwath, M., Groh, A. , Muir, A. and Gilbert, L. 2016. A high resolution record of Greenland Mass Balance. Geophysical Research Letters. 43, doi:10.1002/2016GL069666 Velicogna, I., Sutterley, T. C. and van den Broeke, M. R. 2014. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophysical Research Letters. 41, 8130-8137, doi:10.1002/2014GL061052

  8. Using nonlinear programming to correct leakage and estimate mass change from GRACE observation and its application to Antarctica

    NASA Astrophysics Data System (ADS)

    Tang, Jingshi; Cheng, Haowen; Liu, Lin

    2012-11-01

    The Gravity Recovery And Climate Experiment (GRACE) mission has been providing high quality observations since its launch in 2002. Over the years, fruitful achievements have been obtained and the temporal gravity field has revealed the ongoing geophysical, hydrological and other processes. These discoveries help the scientists better understand various aspects of the Earth. However, errors exist in high degree and order spherical harmonics, which need to be processed before use. Filtering is one of the most commonly used techniques to smooth errors, yet it attenuates signals and also causes leakage of gravity signal into surrounding areas. This paper reports a new method to estimate the true mass change on the grid (expressed in equivalent water height or surface density). The mass change over the grid can be integrated to estimate regional or global mass change. This method assumes the GRACE-observed apparent mass change is only caused by the mass change on land. By comparing the computed and observed apparent mass change, the true mass change can be iteratively adjusted and estimated. The problem is solved with nonlinear programming (NLP) and yields solutions which are in good agreement with other GRACE-based estimates.

  9. DSP-Based dual-polarity mass spectrum pattern recognition for bio-detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riot, V; Coffee, K; Gard, E

    2006-04-21

    The Bio-Aerosol Mass Spectrometry (BAMS) instrument analyzes single aerosol particles using a dual-polarity time-of-flight mass spectrometer recording simultaneously spectra of thirty to a hundred thousand points on each polarity. We describe here a real-time pattern recognition algorithm developed at Lawrence Livermore National Laboratory that has been implemented on a nine Digital Signal Processor (DSP) system from Signatec Incorporated. The algorithm first preprocesses independently the raw time-of-flight data through an adaptive baseline removal routine. The next step consists of a polarity dependent calibration to a mass-to-charge representation, reducing the data to about five hundred to a thousand channels per polarity. Themore » last step is the identification step using a pattern recognition algorithm based on a library of known particle signatures including threat agents and background particles. The identification step includes integrating the two polarities for a final identification determination using a score-based rule tree. This algorithm, operating on multiple channels per-polarity and multiple polarities, is well suited for parallel real-time processing. It has been implemented on the PMP8A from Signatec Incorporated, which is a computer based board that can interface directly to the two one-Giga-Sample digitizers (PDA1000 from Signatec Incorporated) used to record the two polarities of time-of-flight data. By using optimized data separation, pipelining, and parallel processing across the nine DSPs it is possible to achieve a processing speed of up to a thousand particles per seconds, while maintaining the recognition rate observed on a non-real time implementation. This embedded system has allowed the BAMS technology to improve its throughput and therefore its sensitivity while maintaining a large dynamic range (number of channels and two polarities) thus maintaining the systems specificity for bio-detection.« less

  10. The Anisotropy of the Microwave Background to l=3500: Mosaic Observations with the Cosmic Background Imager

    NASA Technical Reports Server (NTRS)

    Pearson, T. J.; Mason, B. S.; Readhead, A. C. S.; Shepherd, M. C.; Sievers, J. L.; Udomprasert, P. S.; Cartwright, J. K.; Farmer, A. J.; Padin, S.; Myers, S. T.; hide

    2002-01-01

    Using the Cosmic Background Imager, a 13-element interferometer array operating in the 26-36 GHz frequency band, we have observed 40 deg (sup 2) of sky in three pairs of fields, each approximately 145 feet x 165 feet, using overlapping pointings: (mosaicing). We present images and power spectra of the cosmic microwave background radiation in these mosaic fields. We remove ground radiation and other low-level contaminating signals by differencing matched observations of the fields in each pair. The primary foreground contamination is due to point sources (radio galaxies and quasars). We have subtracted the strongest sources from the data using higher-resolution measurements, and we have projected out the response to other sources of known position in the power-spectrum analysis. The images show features on scales approximately 6 feet-15 feet, corresponding to masses approximately 5-80 x 10(exp 14) solar mass at the surface of last scattering, which are likely to be the seeds of clusters of galaxies. The power spectrum estimates have a resolution delta l approximately 200 and are consistent with earlier results in the multipole range l approximately less than 1000. The power spectrum is detected with high signal-to-noise ratio in the range 300 approximately less than l approximately less than 1700. For 1700 approximately less than l approximately less than 3000 the observations are consistent with the results from more sensitive CBI deep-field observations. The results agree with the extrapolation of cosmological models fitted to observations at lower l, and show the predicted drop at high l (the "damping tail").

  11. Determining the neutrino mass with cyclotron radiation emission spectroscopy—Project 8

    NASA Astrophysics Data System (ADS)

    Ashtari Esfahani, Ali; Asner, David M.; Böser, Sebastian; Cervantes, Raphael; Claessens, Christine; de Viveiros, Luiz; Doe, Peter J.; Doeleman, Shepard; Fernandes, Justin L.; Fertl, Martin; Finn, Erin C.; Formaggio, Joseph A.; Furse, Daniel; Guigue, Mathieu; Heeger, Karsten M.; Jones, A. Mark; Kazkaz, Kareem; Kofron, Jared A.; Lamb, Callum; LaRoque, Benjamin H.; Machado, Eric; McBride, Elizabeth L.; Miller, Michael L.; Monreal, Benjamin; Mohanmurthy, Prajwal; Nikkel, James A.; Oblath, Noah S.; Pettus, Walter C.; Hamish Robertson, R. G.; Rosenberg, Leslie J.; Rybka, Gray; Rysewyk, Devyn; Saldaña, Luis; Slocum, Penny L.; Sternberg, Matthew G.; Tedeschi, Jonathan R.; Thümmler, Thomas; VanDevender, Brent A.; E Vertatschitsch, Laura; Wachtendonk, Megan; Weintroub, Jonathan; Woods, Natasha L.; Young, André; Zayas, Evan M.

    2017-05-01

    The most sensitive direct method to establish the absolute neutrino mass is observation of the endpoint of the tritium beta-decay spectrum. Cyclotron radiation emission spectroscopy (CRES) is a precision spectrographic technique that can probe much of the unexplored neutrino mass range with { O }({eV}) resolution. A lower bound of m({ν }e)≳ 9(0.1) {meV} is set by observations of neutrino oscillations, while the KATRIN experiment—the current-generation tritium beta-decay experiment that is based on magnetic adiabatic collimation with an electrostatic (MAC-E) filter—will achieve a sensitivity of m({ν }e)≲ 0.2 {eV}. The CRES technique aims to avoid the difficulties in scaling up a MAC-E filter-based experiment to achieve a lower mass sensitivity. In this paper we review the current status of the CRES technique and describe Project 8, a phased absolute neutrino mass experiment that has the potential to reach sensitivities down to m({ν }e)≲ 40 {meV} using an atomic tritium source.

  12. EVN observations of eleven GHz-Peaked-Spectrum radio sources at 2.3/8.4 GHz

    NASA Astrophysics Data System (ADS)

    Xiang, L.; Dallacasa, D.; Cassaro, P.; Jiang, D.; Reynolds, C.

    2005-04-01

    We present results of EVN observations of eleven GHz-Peaked-Spectrum (GPS) radio sources at 2.3/8.4 GHz. These sources are from the classical "bright" GPS source samples with peak flux densities > 0.2 Jy and spectral indices α < -0.2 (S ∝ ν-α) in the optically thick regime of their convex spectra. Most of the target sources did not have VLBI images at the time this project started. The aim of the work is to find Compact Symmetric Object (CSO) candidates from the "bright" GPS samples. These CSOs play a key role in understanding the very early stage of the evolution of individual radio galaxies. The reason for investigating GPS source samples is that CSO candidates are more frequently found among this class of radio sources. In fact both classes, GPS and CSO, represent a small fraction of the flux limited and flat-spectrum samples like PR+CJ1 (PR: Pearson-Readhead survey, CJ1: the first Caltech-Jodrell Bank survey) and CJF (the Caltech-Jodrell Bank flat spectrum source survey) with a single digit percentage progressively decreasing with decreasing flux density limit. Our results, with at least 3, but possibly more CSO sources detected among a sample of 11, underline the effectiveness of our approach. The three confirmed CSO sources (1133+432, 1824+271, and 2121-014) are characterized by a symmetric pair of resolved components, each with steep spectral indices. Five further sources (0144+209, 0554-026, 0904+039, 0914+114 and 2322-040) can be considered likely CSO candidates. The remaining three sources (0159+839, 0602+780 and 0802+212) are either of core-jet type or dominated by a single component at both frequencies.

  13. Mass Accretion Rate of Very Low Luminosity Objects

    NASA Astrophysics Data System (ADS)

    Sung, Ren-Shiang; Lai, Shih-Ping; Hsieh, Tien-Hao

    2013-08-01

    We propose to measure the mass accretion rate of six Very Low Luminosity Objects (VeLLOs) using Near-infrared Integral Spectrometer (NIFS). The extremely low luminosity of VeLLOs, L_int ≤ 0.1 L_⊙, was previously thought not existing in the nature because the typical accretion rate gives much larger accretion luminosity even for the lowest mass star (``Luminosity Problem''). The commonly accepted solution is that the accretion rate is not constant but episodic. Thus, VeLLOs could be interpreted as protostars being in the quiescent phase of accretion activities. However, there is no observational data directly measuring the mass accretion rate of VeLLOs. The main goal of this proposal is to examine such theory and directly measure the mass accretion rate of VeLLOs for the first time. We propose to measure the blue continuum excess (veiling) of the stellar spectrum, which is the most reliable method for measuring the accretion rate. The measurements have to be made in infrared due to the very high extinction for highly embedded protostars. Our proposal provide a first opportunity to explain the long time ``Luminosity Problem'' through the observational aspects, and Gemini is the only instrument that can provide accurate and high sensitivity infrared spectroscopy measurements within reasonably short time scale.

  14. Factorization for jet radius logarithms in jet mass spectra at the LHC

    DOE PAGES

    Kolodrubetz, Daniel W.; Pietrulewicz, Piotr; Stewart, Iain W.; ...

    2016-12-14

    To predict the jet mass spectrum at a hadron collider it is crucial to account for the resummation of logarithms between the transverse momentum of the jet and its invariant mass m J . For small jet areas there are additional large logarithms of the jet radius R, which affect the convergence of the perturbative series. We present an analytic framework for exclusive jet production at the LHC which gives a complete description of the jet mass spectrum including realistic jet algorithms and jet vetoes. It factorizes the scales associated with m J , R, and the jet veto, enablingmore » in addition the systematic resummation of jet radius logarithms in the jet mass spectrum beyond leading logarithmic order. We discuss the factorization formulae for the peak and tail region of the jet mass spectrum and for small and large R, and the relations between the different regimes and how to combine them. Regions of experimental interest are classified which do not involve large nonglobal logarithms. We also present universal results for nonperturbative effects and discuss various jet vetoes.« less

  15. The Energy Spectrum of Solar Energetic Electrons

    NASA Astrophysics Data System (ADS)

    Wang, L.; Yang, L.; Krucker, S.; Wimmer-Schweingruber, R. F.; Bale, S. D.

    2015-12-01

    Here we present a statistical survey of the energy spectrum of solar energetic electron events (SEEs) observed by the WIND 3DP instrument from 1995 though 2014. For SEEs with the minimum energy below 10 keV and the maximum energy above 100 keV, ~85% (~2%) have a double-power-law energy spectrum with a steepening (hardening) above the break energy, while ~13% have a single-power-law energy spectrum at all energies. The average spectral index is ~2.4 below the energy break and is ~4.0 above the energy break. For SEEs detected only at energies <10 keV (>20 keV), they generally show a single-power-law spectrum with the average index of ~3.0 (~3.3). The spectrum of SEEs detected only below 10 keV appears to get harder with increasing solar activity, but the spectrum of SEEs with higher-energy electrons shows no clear correlation with solar activity. We will also investigate whether the observed energy spectrum of SEEs at 1 AU mainly reflects the electron acceleration at the Sun or the electron transport in the interplanetary medium.

  16. The KASCADE-Grande energy spectrum of cosmic rays and the role of hadronic interaction models

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuchs, B.; Fuhrmann, D.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Mayer, H. J.; Melissas, M.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2014-05-01

    Previous results obtained by KASCADE-Grande using the QGSjetII-02 hadronic interaction model have shown that the energy spectrum of cosmic rays between 1016 eV and 1018 eV exhibits a significant hardening at approximately 2×1016 eV and a slight but statistically significant steepening close to 1017 eV. Moreover, the analysis with QGSjetII-02 suggests that the break observed around 1017 eV is caused by the heavy component of primary cosmic rays. In this paper, we report on the results of similar analyses performed using the SIBYLL 2.1 and EPOS 1.99 hadronic interaction models to interpret the data. The present results confirm qualitatively the previous findings. However, the intensity of the all-particle spectrum, the positions of the hardening and steepening of the spectrum, as well as the relative abundance of the heavy and light mass groups depend on the hadronic interaction model used to interpret the data.

  17. Measurement of the top quark mass in the dileptonic ttbar decay channel using the mass observables Mbl, MT2, and Mblv in pp collisions at sqrt(s) = 8 TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirunyan, Albert M; et al.

    A measurement of the top quark mass (M[t]) in the dileptonic ttbar decay channel is performed using data from proton-proton collisions at a center-of-mass energy of 8 TeV. The data was recorded by the CMS experiment at the LHC and corresponding to an integrated luminosity of 19.7 +/- 0.5 inverse femtobarns. Events are selected with two oppositely charged leptons (l = e, mu) and two jets identified as originating from b quarks. The analysis is based on three kinematic observables whose distributions are sensitive to the value of M[t]. An invariant mass observable, M[b l], and a `stransverse mass' observable,more » M[T2], are employed in a simultaneous fit to determine the value of M[t] and an overall jet energy scale factor (JSF). A complementary approach is used to construct an invariant mass observable, M[b l nu], that is combined with M[T2] to measure M[t]. The shapes of the observables, along with their evolutions in M[t] and JSF, are modeled by a nonparametric Gaussian process regression technique. The sensitivity of the observables to the value of M[t] is investigated using a Fisher information density method. The top quark mass is measured to be 172.22 +/- 0.18 (stat) +0.89/-0.93 (syst) GeV.« less

  18. Observation of an Exotic S=+1 Baryon in Exclusive Photoproduction from the Deuteron

    NASA Astrophysics Data System (ADS)

    Stepanyan, S.; Hicks, K.; Carman, D. S.; Pasyuk, E.; Schumacher, R. A.; Smith, E. S.; Tedeschi, D. J.; Todor, L.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Audit, G.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S. P.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bouchigny, S.; Bradford, R.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carnahan, B.; Chen, S.; Ciciani, L.; Cole, P. L.; Coleman, A.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; de Vita, R.; Dharmawardane, K. V.; Dhuga, K. S.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Empl, A.; Eugenio, P.; Fatemi, R.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Gordon, C. I.; Gothe, R.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Heddle, D.; Heimberg, P.; Hersman, F. W.; Hicks, R. S.; Holtrop, M.; Hu, J.; Hyde-Wright, C. E.; Ito, M. M.; Jenkins, D.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, K. Y.; Kim, K.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A. V.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kubarovsky, V.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Lawrence, D.; Li, J.; Lima, A.; Livingston, K.; Lukashin, K.; Manak, J. J.; McAleer, S.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S.; Muccifora, V.; Mueller, J.; Murphy, L. Y.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Brien, J.; O'Rielly, G. V.; Opper, A. K.; Osipenko, M.; Park, K.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P.; Sabatié, F.; Salgado, C.; Santoro, J.; Sapunenko, V.; Serov, V. S.; Sharabian, Y. G.; Shaw, J.; Simionatto, S.; Skabelin, A. V.; Smith, L. C.; Sober, D. I.; Strakovsky, I. I.; Stavinsky, A.; Stoler, P.; Suleiman, R.; Taiuti, M.; Taylor, S.; Thoma, U.; Thompson, R.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.

    2003-12-01

    In an exclusive measurement of the reaction γd→K+K-pn, a narrow peak that can be attributed to an exotic baryon with strangeness S=+1 is seen in the K+n invariant mass spectrum. The peak is at 1.542±0.005 GeV/c2 with a measured width of 0.021 GeV/c2 FWHM, which is largely determined by experimental mass resolution. The statistical significance of the peak is (5.2±0.6)σ. The mass and width of the observed peak are consistent with recent reports of a narrow S=+1 baryon by other experimental groups.

  19. Mass loss from red giants - Infrared spectroscopy

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    A discussion is presented of IR spectroscopy, particularly high-resolution spectroscopy in the approximately 1-20 micron band, as it impacts the study of circumstellar envelopes. The molecular bands within this region contain an enormous amount of information, especially when observed with sufficient resolution to obtain kinematic information. In a single spectrum, it is possible to resolve lines from up to 50 different rotational/vibrational levels of a given molecule and to detect several different isotopic variants. When high resolution techniques are combined with mapping techniques and/or time sequence observations of variable stars, the resulting information can paint a very detailed picture of the mass-loss phenomenon. To date, near-IR observations have been made of 20 molecular species. CO is the most widely observed molecule and useful information has been gleaned from the observed rotational excitation, kinematics, time variability and spatial structure of its lines. Examples of different observing techniques are discussed in the following sections.

  20. Dopant-assisted direct analysis in real time mass spectrometry with argon gas.

    PubMed

    Cody, Robert B; Dane, A John

    2016-05-30

    Dopants used with Atmospheric Pressure Photoionization (APPI) were examined with the Direct Analysis in Real Time (DART ® ) ion source operated with argon gas. Charge-exchange and proton transfer reactions were observed by adding toluene, anisole, chlorobenzene and acetone to the DART gas stream, complementing the information obtained by helium DART. Mass spectra were acquired with a time-of-flight mass spectrometer equipped with a DART ion source operated with argon gas. A syringe pump was used to introduce dopants directly into the DART gas stream through deactivated fused-silica capillary tubing. Samples including polycyclic aromatic hydrocarbons (PAHs), diesel fuel, trinitrotoluene and cannabinoids were deposited onto the sealed end of melting tube, allowed to dry, and the tube was then suspended in the dopant-enhanced DART gas stream. PAHs could be detected as molecular ions at concentrations in the low parts-per-billion range by using a solution of 0.5% anisole in toluene as a dopant. Argon DART analysis of a diesel fuel sample with the same dopant mixture showed a simpler mass spectrum than obtained by using helium DART. The argon DART mass spectrum was dominated by molecular ions for aromatic compounds, whereas the helium DART mass spectrum showed both molecular ions and protonated molecules. In contrast O 2 - attachment DART showed saturated hydrocarbons and oxygen-containing species. Mass spectra for trinitrotoluene with argon DART in negative-ion mode showed a prominent [M - H] - peak, whereas conventional helium DART showed both M - and [M - H] - . Lastly, in analogy to a report in the literature using APPI, positive ions produced by argon DART ionization for delta-9-tetrahydrocannabinol (THC) and cannabidiol showed distinctive product-ion mass spectra. Dopant-assisted argon DART operates by a mechanism that is analogous to those proposed for dopant-assisted atmospheric-pressure photoionization. Copyright © 2016 John Wiley & Sons, Ltd. Copyright

  1. Design Spectrum Analysis in NASTRAN

    NASA Technical Reports Server (NTRS)

    Butler, T. G.

    1984-01-01

    The utility of Design Spectrum Analysis is to give a mode by mode characterization of the behavior of a design under a given loading. The theory of design spectrum is discussed after operations are explained. User instructions are taken up here in three parts: Transient Preface, Maximum Envelope Spectrum, and RMS Average Spectrum followed by a Summary Table. A single DMAP ALTER packet will provide for all parts of the design spectrum operations. The starting point for getting a modal break-down of the response to acceleration loading is the Modal Transient rigid format. After eigenvalue extraction, modal vectors need to be isolated in the full set of physical coordinates (P-sized as opposed to the D-sized vectors in RF 12). After integration for transient response the results are scanned over the solution time interval for the peak values and for the times that they occur. A module called SCAN was written to do this job, that organizes these maxima into a diagonal output matrix. The maximum amplifier in each mode is applied to the eigenvector of each mode which then reveals the maximum displacements, stresses, forces and boundary reactions that the structure will experience for a load history, mode by mode. The standard NASTRAN output processors have been modified for this task. It is required that modes be normalized to mass.

  2. Observational Study of Morphological Changes in Medium-mass Evolved Stars

    NASA Astrophysics Data System (ADS)

    Chong, Sze-Ning

    2014-02-01

    Medium-mass (or intermediate-mass) stars refer to main sequence stars with masses ranging from 0.4 to 8 solar masses. These stars are believed to finally evolve into the central stars of planetary nebulae (PNe) and white dwarfs. One of the fascinating aspects of PNe is their diverse morphology. To understand the mechanisms of the morphological changes from spherical circumstellar envelopes (CSEs) of asymptotic giant branch (AGB) stars to those forming highly diversified PNe, it is necessary to investigate the true three-dimensional (3D) morphology of PNe from two-dimensional images, and the short transition phase in-between the two phases should also be explored. "Water Fountain" (WF) sources belong to transition phase objects; they are AGB or post-AGB stars with collimated jets traced by high velocity water maser emissions in their CSEs. This thesis comprises of four chapters. The results can be divided into two major parts. Chapter 1 is the introduction on the related fields with brief reviews of previous observational studies on PNe and the rapidly evolving transition phase objects. Basic theories necessary for understanding the next chapters were also described, including those explaining the commonly observed Hα emission in PNe, the formation of multipolar PNe, the maser emission and the role of shock in circumstellar materials. The first major part of the results, about the morphological classification of multipolar PNe, is presented in Chapter 2. At the beginning of the chapter, the problems on the previous classification methods were pointed out. Then a three-lobed model was introduced. By changing the combination of the orientations of the three pairs of lobes, simulations using the model produced statistical results in classification and quantified the errors of misidentification. Assuming that all PNe observed have the true structure of three lobes, due to projection effect, only 49% of them would be correctly classified. 46% and 5% of them would be

  3. The energy spectrum and the optical absorption spectrum of C{sub 60} fullerene within the Hubbard model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silant’ev, A. V., E-mail: kvvant@rambler.ru

    2015-10-15

    Anticommutator Green’s functions and the energy spectrum of C{sub 60} fullerene are calculated in the approximation of static fluctuations within the Hubbard model. On the basis of this spectrum, an interpretation is proposed for the experimentally observed optical absorption bands of C{sub 60} fullerene. The parameters of C{sub 60} fullerene that characterize it within the Hubbard model are calculated by the optical absorption spectrum.

  4. Evidence for a mixed mass composition at the ‘ankle’ in the cosmic-ray spectrum

    DOE PAGES

    Aab, Alexander

    2016-09-28

    Here, we report a first measurement for ultra-high energy cosmic rays of the correlation between the depth of shower maximum and the signal in the water Cherenkov stations of air-showers registered simultaneously by the fluorescence and the surface detectors of the Pierre Auger Observatory. Such a correlation measurement is a unique feature of a hybrid air-shower observatory with sensitivity to both the electromagnetic and muonic components. It allows an accurate determination of the spread of primary masses in the cosmic-ray flux. Up till now, constraints on the spread of primary masses have been dominated by systematic uncertainties. The present correlation measurement is not affected by systematics in the measurement of the depth of shower maximum or the signal in the water Cherenkov stations. The analysis relies on general characteristics of air showers and is thus robust also with respect to uncertainties in hadronic event generators. The observed correlation in the energy range around the `ankle' atmore » $$\\lg(E/{\\rm eV})=18.5-19.0$$ differs significantly from expectations for pure primary cosmic-ray compositions. A light composition made up of proton and helium only is equally inconsistent with observations. The data are explained well by a mixed composition including nuclei with mass $A > 4$. Scenarios such as the proton dip model, with almost pure compositions, are thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray flux at Earth.« less

  5. The first H-band spectrum of the giant planet β Pictoris b

    DOE PAGES

    Chilcote, Jeffrey; Barman, Travis; Fitzgerald, Michael P.; ...

    2014-12-12

    Using the recently installed Gemini Planet Imager (GPI), we have obtained the first H-band spectrum of the planetary companion to the nearby young star β Pictoris. GPI is designed to image and provide low-resolution spectra of Jupiter-sized, self-luminous planetary companions around young nearby stars. These observations were taken covering the H band (1.65 μm). The spectrum has a resolving power of ~45 and demonstrates the distinctive triangular shape of a cool substellar object with low surface gravity. Using atmospheric models, we find an effective temperature of 1600-1700 K and a surface gravity of log (g) = 3.5-4.5 (cgs units). Thesemore » values agree well with "hot-start" predictions from planetary evolution models for a gas giant with mass between 10 and 12 M Jup and age between 10 and 20 Myr.« less

  6. Observation of Five New Narrow Ω_{c}^{0} States Decaying to Ξ_{c}^{+}K^{-}.

    PubMed

    Aaij, R; Adeva, B; Adinolfi, M; Ajaltouni, Z; Akar, S; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; An, L; Anderlini, L; Andreassi, G; Andreotti, M; Andrews, J E; Appleby, R B; Archilli, F; d'Argent, P; Arnau Romeu, J; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Baalouch, M; Babuschkin, I; Bachmann, S; Back, J J; Badalov, A; Baesso, C; Baker, S; Balagura, V; Baldini, W; Baranov, A; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Baryshnikov, F; Baszczyk, M; Batozskaya, V; Batsukh, B; Battista, V; Bay, A; Beaucourt, L; Beddow, J; Bedeschi, F; Bediaga, I; Beiter, A; Bel, L J; Bellee, V; Belloli, N; Belous, K; Belyaev, I; Ben-Haim, E; Bencivenni, G; Benson, S; Beranek, S; Berezhnoy, A; Bernet, R; Bertolin, A; Betancourt, C; Betti, F; Bettler, M-O; van Beuzekom, M; Bezshyiko, Ia; Bifani, S; Billoir, P; Birnkraut, A; Bitadze, A; Bizzeti, A; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Boettcher, T; Bondar, A; Bondar, N; Bonivento, W; Bordyuzhin, I; Borgheresi, A; Borghi, S; Borisyak, M; Borsato, M; Bossu, F; Boubdir, M; Bowcock, T J V; Bowen, E; Bozzi, C; Braun, S; Britton, T; Brodzicka, J; Buchanan, E; Burr, C; Bursche, A; Buytaert, J; Cadeddu, S; Calabrese, R; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Campora Perez, D H; Capriotti, L; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carniti, P; Carson, L; Carvalho Akiba, K; Casse, G; Cassina, L; Castillo Garcia, L; Cattaneo, M; Cavallero, G; Cenci, R; Chamont, D; Charles, M; Charpentier, Ph; Chatzikonstantinidis, G; Chefdeville, M; Chen, S; Cheung, S F; Chobanova, V; Chrzaszcz, M; Chubykin, A; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coco, V; Cogan, J; Cogneras, E; Cogoni, V; Cojocariu, L; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombs, G; Coquereau, S; Corti, G; Corvo, M; Costa Sobral, C M; Couturier, B; Cowan, G A; Craik, D C; Crocombe, A; Cruz Torres, M; Cunliffe, S; Currie, R; D'Ambrosio, C; Da Cunha Marinho, F; Dall'Occo, E; Dalseno, J; David, P N Y; Davis, A; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Paula, L; De Serio, M; De Simone, P; Dean, C T; Decamp, D; Deckenhoff, M; Del Buono, L; Dembinski, H-P; Demmer, M; Dendek, A; Derkach, D; Deschamps, O; Dettori, F; Dey, B; Di Canto, A; Di Nezza, P; Dijkstra, H; Dordei, F; Dorigo, M; Dosil Suárez, A; Dovbnya, A; Dreimanis, K; Dufour, L; Dujany, G; Dungs, K; Durante, P; Dzhelyadin, R; Dziewiecki, M; Dziurda, A; Dzyuba, A; Déléage, N; Easo, S; Ebert, M; Egede, U; Egorychev, V; Eidelman, S; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; Ely, S; Esen, S; Evans, H M; Evans, T; Falabella, A; Farley, N; Farry, S; Fay, R; Fazzini, D; Ferguson, D; Fernandez, G; Fernandez Prieto, A; Ferrari, F; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fini, R A; Fiore, M; Fiorini, M; Firlej, M; Fitzpatrick, C; Fiutowski, T; Fleuret, F; Fohl, K; Fontana, M; Fontanelli, F; Forshaw, D C; Forty, R; Franco Lima, V; Frank, M; Frei, C; Fu, J; Funk, W; Furfaro, E; Färber, C; Gallas Torreira, A; Galli, D; Gallorini, S; Gambetta, S; Gandelman, M; Gandini, P; Gao, Y; Garcia Martin, L M; García Pardiñas, J; Garra Tico, J; Garrido, L; Garsed, P J; Gascon, D; Gaspar, C; Gavardi, L; Gazzoni, G; Gerick, D; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gianì, S; Gibson, V; Girard, O G; Giubega, L; Gizdov, K; Gligorov, V V; Golubkov, D; Golutvin, A; Gomes, A; Gorelov, I V; Gotti, C; Govorkova, E; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graverini, E; Graziani, G; Grecu, A; Greim, R; Griffith, P; Grillo, L; Gruberg Cazon, B R; Grünberg, O; Gushchin, E; Guz, Yu; Gys, T; Göbel, C; Hadavizadeh, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hamilton, B; Han, X; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hatch, M; He, J; Head, T; Heister, A; Hennessy, K; Henrard, P; Henry, L; van Herwijnen, E; Heß, M; Hicheur, A; Hill, D; Hombach, C; Hopchev, P H; Huard, Z-C; Hulsbergen, W; Humair, T; Hushchyn, M; Hutchcroft, D; Idzik, M; Ilten, P; Jacobsson, R; Jalocha, J; Jans, E; Jawahery, A; Jiang, F; John, M; Johnson, D; Jones, C R; Joram, C; Jost, B; Jurik, N; Kandybei, S; Karacson, M; Kariuki, J M; Karodia, S; Kecke, M; Kelsey, M; Kenzie, M; Ketel, T; Khairullin, E; Khanji, B; Khurewathanakul, C; Kirn, T; Klaver, S; Klimaszewski, K; Klimkovich, T; Koliiev, S; Kolpin, M; Komarov, I; Kopecna, R; Koppenburg, P; Kosmyntseva, A; Kotriakhova, S; Kozachuk, A; Kozeiha, M; Kravchuk, L; Kreps, M; Krokovny, P; Kruse, F; Krzemien, W; Kucewicz, W; Kucharczyk, M; Kudryavtsev, V; Kuonen, A K; Kurek, K; Kvaratskheliya, T; Lacarrere, D; Lafferty, G; Lai, A; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Leflat, A; Lefrançois, J; Lefèvre, R; Lemaitre, F; Lemos Cid, E; Leroy, O; Lesiak, T; Leverington, B; Li, T; Li, Y; Li, Z; Likhomanenko, T; Lindner, R; Lionetto, F; Liu, X; Loh, D; Longstaff, I; Lopes, J H; Lucchesi, D; Lucio Martinez, M; Luo, H; Lupato, A; Luppi, E; Lupton, O; Lusiani, A; Lyu, X; Machefert, F; Maciuc, F; Maev, O; Maguire, K; Malde, S; Malinin, A; Maltsev, T; Manca, G; Mancinelli, G; Manning, P; Maratas, J; Marchand, J F; Marconi, U; Marin Benito, C; Marinangeli, M; Marino, P; Marks, J; Martellotti, G; Martin, M; Martinelli, M; Martinez Santos, D; Martinez Vidal, F; Martins Tostes, D; Massacrier, L M; Massafferri, A; Matev, R; Mathad, A; Mathe, Z; Matteuzzi, C; Mauri, A; Maurice, E; Maurin, B; Mazurov, A; McCann, M; McNab, A; McNulty, R; Meadows, B; Meier, F; Melnychuk, D; Merk, M; Merli, A; Michielin, E; Milanes, D A; Minard, M-N; Mitzel, D S; Mogini, A; Molina Rodriguez, J; Monroy, I A; Monteil, S; Morandin, M; Morello, M J; Morgunova, O; Moron, J; Morris, A B; Mountain, R; Muheim, F; Mulder, M; Mussini, M; Müller, D; Müller, J; Müller, K; Müller, V; Naik, P; Nakada, T; Nandakumar, R; Nandi, A; Nasteva, I; Needham, M; Neri, N; Neubert, S; Neufeld, N; Neuner, M; Nguyen, T D; Nguyen-Mau, C; Nieswand, S; Niet, R; Nikitin, N; Nikodem, T; Nogay, A; Novoselov, A; O'Hanlon, D P; Oblakowska-Mucha, A; Obraztsov, V; Ogilvy, S; Oldeman, R; Onderwater, C J G; Otalora Goicochea, J M; Owen, P; Oyanguren, A; Pais, P R; Palano, A; Palutan, M; Papanestis, A; Pappagallo, M; Pappalardo, L L; Pappenheimer, C; Parker, W; Parkes, C; Passaleva, G; Pastore, A; Patel, M; Patrignani, C; Pearce, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perret, P; Pescatore, L; Petridis, K; Petrolini, A; Petrov, A; Petruzzo, M; Picatoste Olloqui, E; Pietrzyk, B; Pikies, M; Pinci, D; Pistone, A; Piucci, A; Placinta, V; Playfer, S; Plo Casasus, M; Poikela, T; Polci, F; Poli Lener, M; Poluektov, A; Polyakov, I; Polycarpo, E; Pomery, G J; Ponce, S; Popov, A; Popov, D; Popovici, B; Poslavskii, S; Potterat, C; Price, E; Prisciandaro, J; Prouve, C; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, C; Qian, W; Quagliani, R; Rachwal, B; Rademacker, J H; Rama, M; Ramos Pernas, M; Rangel, M S; Raniuk, I; Ratnikov, F; Raven, G; Redi, F; Reichert, S; Dos Reis, A C; Remon Alepuz, C; Renaudin, V; Ricciardi, S; Richards, S; Rihl, M; Rinnert, K; Rives Molina, V; Robbe, P; Rodrigues, A B; Rodrigues, E; Rodriguez Lopez, J A; Rodriguez Perez, P; Rogozhnikov, A; Roiser, S; Rollings, A; Romanovskiy, V; Romero Vidal, A; Ronayne, J W; Rotondo, M; Rudolph, M S; Ruf, T; Ruiz Valls, P; Saborido Silva, J J; Sadykhov, E; Sagidova, N; Saitta, B; Salustino Guimaraes, V; Sanchez Gonzalo, D; Sanchez Mayordomo, C; Sanmartin Sedes, B; Santacesaria, R; Santamarina Rios, C; Santimaria, M; Santovetti, E; Sarti, A; Satriano, C; Satta, A; Saunders, D M; Savrina, D; Schael, S; Schellenberg, M; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmelzer, T; Schmidt, B; Schneider, O; Schopper, A; Schreiner, H F; Schubert, K; Schubiger, M; Schune, M-H; Schwemmer, R; Sciascia, B; Sciubba, A; Semennikov, A; Sergi, A; Serra, N; Serrano, J; Sestini, L; Seyfert, P; Shapkin, M; Shapoval, I; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, V; Siddi, B G; Silva Coutinho, R; Silva de Oliveira, L; Simi, G; Simone, S; Sirendi, M; Skidmore, N; Skwarnicki, T; Smith, E; Smith, I T; Smith, J; Smith, M; Soares Lavra, L; Sokoloff, M D; Soler, F J P; Souza De Paula, B; Spaan, B; Spradlin, P; Sridharan, S; Stagni, F; Stahl, M; Stahl, S; Stefko, P; Stefkova, S; Steinkamp, O; Stemmle, S; Stenyakin, O; Stevens, H; Stoica, S; Stone, S; Storaci, B; Stracka, S; Stramaglia, M E; Straticiuc, M; Straumann, U; Sun, L; Sutcliffe, W; Swientek, K; Syropoulos, V; Szczekowski, M; Szumlak, T; T'Jampens, S; Tayduganov, A; Tekampe, T; Tellarini, G; Teubert, F; Thomas, E; van Tilburg, J; Tilley, M J; Tisserand, V; Tobin, M; Tolk, S; Tomassetti, L; Tonelli, D; Topp-Joergensen, S; Toriello, F; Tourinho Jadallah Aoude, R; Tournefier, E; Tourneur, S; Trabelsi, K; Traill, M; Tran, M T; Tresch, M; Trisovic, A; Tsaregorodtsev, A; Tsopelas, P; Tully, A; Tuning, N; Ukleja, A; Ustyuzhanin, A; Uwer, U; Vacca, C; Vagnoni, V; Valassi, A; Valat, S; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; van Veghel, M; Velthuis, J J; Veltri, M; Veneziano, G; Venkateswaran, A; Verlage, T A; Vernet, M; Vesterinen, M; Viana Barbosa, J V; Viaud, B; Vieira, D; Vieites Diaz, M; Viemann, H; Vilasis-Cardona, X; Vitti, M; Volkov, V; Vollhardt, A; Voneki, B; Vorobyev, A; Vorobyev, V; Voß, C; de Vries, J A; Vázquez Sierra, C; Waldi, R; Wallace, C; Wallace, R; Walsh, J; Wang, J; Ward, D R; Wark, H M; Watson, N K; Websdale, D; Weiden, A; Whitehead, M; Wicht, J; Wilkinson, G; Wilkinson, M; Williams, M; Williams, M P; Williams, M; Williams, T; Wilson, F F; Wimberley, J; Winn, M A; Wishahi, J; Wislicki, W; Witek, M; Wormser, G; Wotton, S A; Wraight, K; Wyllie, K; Xie, Y; Xing, Z; Xu, Z; Yang, Z; Yang, Z; Yao, Y; Yin, H; Yu, J; Yuan, X; Yushchenko, O; Zarebski, K A; Zavertyaev, M; Zhang, L; Zhang, Y; Zhelezov, A; Zheng, Y; Zhu, X; Zhukov, V; Zucchelli, S

    2017-05-05

    The Ξ_{c}^{+}K^{-} mass spectrum is studied with a sample of pp collision data corresponding to an integrated luminosity of 3.3  fb^{-1}, collected by the LHCb experiment. The Ξ_{c}^{+} is reconstructed in the decay mode pK^{-}π^{+}. Five new, narrow excited Ω_{c}^{0} states are observed: the Ω_{c}(3000)^{0}, Ω_{c}(3050)^{0}, Ω_{c}(3066)^{0}, Ω_{c}(3090)^{0}, and Ω_{c}(3119)^{0}. Measurements of their masses and widths are reported.

  7. The Infrared Spectrum of Isotopomers of the TeH Radical, Observed by CO Laser Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Gillett, D. A.; Towle, J. P.; Islam, M.; Brown, J. M.

    1994-02-01

    The infrared spectrum of the TeH radical in its X2Π state has been recorded using an intracavity CO laser magnetic resonance (LMR) spectrometer. Seven of the eight naturally occurring Te isotopomers were observed, with resonances originating from the first three vibrational levels; many were recorded as Lamb-dips. These observations have been combined with existing data for TeH and TeD in the X2Π state and used to determine the parameters of an N 2 Hamiltonian, including isotopic scaling and nonadiabatic corrections. The data are well described by the parameters. The different isotopic dependences of the effects of the parameters A D and γ has allowed their separation and the extent to which TeH shows Hund's case (c) coupling is discussed. Trends displayed by the chalcogen monohydrides are considered.

  8. Upper Bounds on r-Mode Amplitudes from Observations of Low-Mass X-Ray Binary Neutron Stars

    NASA Technical Reports Server (NTRS)

    Mahmoodifar, Simin; Strohmayer, Tod

    2013-01-01

    We present upper limits on the amplitude of r-mode oscillations and gravitational-radiation-induced spin-down rates in low-mass X-ray binary neutron stars, under the assumption that the quiescent neutron star luminosity is powered by dissipation from a steady-state r-mode. For masses <2M solar mass we find dimensionless r-mode amplitudes in the range from about 1×10(exp-8) to 1.5×10(exp-6). For the accreting millisecond X-ray pulsar sources with known quiescent spin-down rates, these limits suggest that approx. less than 1% of the observed rate can be due to an unstable r-mode. Interestingly, the source with the highest amplitude limit, NGC 6440, could have an r-mode spin-down rate comparable to the observed, quiescent rate for SAX J1808-3658. Thus, quiescent spin-down measurements for this source would be particularly interesting. For all sources considered here, our amplitude limits suggest that gravitational wave signals are likely too weak for detection with Advanced LIGO. Our highest mass model (2.21M solar mass) can support enhanced, direct Urca neutrino emission in the core and thus can have higher r-mode amplitudes. Indeed, the inferred r-mode spin-down rates at these higher amplitudes are inconsistent with the observed spin-down rates for some of the sources, such as IGR J00291+5934 and XTE J1751-305. In the absence of other significant sources of internal heat, these results could be used to place an upper limit on the masses of these sources if they were made of hadronic matter, or alternatively it could be used to probe the existence of exotic matter in them if their masses were known.

  9. Improving signal-to-noise ratios of liquid chromatography-tandem mass spectrometry peaks using noise frequency spectrum modification between two consecutive matched-filtering procedures.

    PubMed

    Wang, Shau-Chun; Huang, Chih-Min; Chiang, Shu-Min

    2007-08-17

    This paper reports a simple chemometric technique to alter the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS-MS) chromatogram between two consecutive matched filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one match-filtered LC-MS-MS chromatogram with another artificial chromatogram added with thermal noises prior to the second matched filter. Because matched filter cannot eliminate low-frequency components inherent in the flicker noises of spike-like sharp peaks randomly riding on LC-MS-MS chromatograms, efficient peak S/N ratio improvement cannot be accomplished using one-step or consecutive matched filter procedures to process LC-MS-MS chromatograms. In contrast, when the match-filtered LC-MS-MS chromatogram is conditioned with the multiplication alteration prior to the second matched filter, much better efficient ratio improvement is achieved. The noise frequency spectrum of match-filtered chromatogram, which originally contains only low-frequency components, is altered to span a boarder range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward higher frequency regime, the second matched filter, working as a low-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS-MS chromatograms containing random spike-like peaks, of which peak S/N ratio improvement is less than four times with two consecutive matched filters typically, are remedied to accomplish much better ratio enhancement approximately 16-folds when the noise frequency spectrum is modified between two matched filters.

  10. Observation of the decay Bc+/--->J/psipi+/- and measurement of the Bc+/- mass.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-05-09

    The Bc+/- meson is observed through the decay Bc+/--->J/psipi+/-, in data corresponding to an integrated luminosity of 2.4 fb(-1) recorded by the Collider Detector at Fermilab II detector at the Fermilab Tevatron. A signal of 108+/-15 candidates is observed, with a significance that exceeds 8sigma. The mass of the Bc+/- meson is measured to be 6275.6+/-2.9(stat)+/-2.5(syst) MeV/c2.

  11. Processing Doppler Lidar and Cloud Radar Observations for Analysis of Convective Mass Flux Parameterizations Using DYNAMO Direct Observations

    DTIC Science & Technology

    2014-09-30

    for Analysis of Convective Mass Flux Parameterizations Using DYNAMO Direct Observations R. Michael Hardesty CIRES/University of Colorado/NOAA 325...the RV-Revell during legs 2 & 3 of the DYNAMO experiement to help characterize vertical transport through the boundary layer and to build statistics...obtained during DYNAMO , and to investigate whether cold pools that emanate from convection organize the interplay between humidity and convection and

  12. Predictive gaze during observation of irrational actions in adults with autism spectrum conditions.

    PubMed

    Marsh, L E; Pearson, A; Ropar, D; Hamilton, A F de C

    2015-01-01

    Understanding irrational actions may require the observer to make mental state inferences about why an action was performed. Individuals with autism spectrum conditions (ASC) have well documented difficulties with mentalizing; however, the degree to which rationality understanding is impaired in autism is not yet clear. The present study uses eye-tracking to measure online understanding of action rationality in individuals with ASC. Twenty adults with ASC and 20 typically developing controls, matched for age and IQ watched movies of rational and irrational actions while their eye movements were recorded. Measures of looking time, scan path and saccade latency were calculated. Results from looking time and scan path analyses demonstrate that participants with ASC have reduced visual attention to salient action features such as the action goal and the hand performing the action, regardless of action rationality. However, when participants with ASC do attend to these features, they are able to make anticipatory goal saccades as quickly as typically developing controls. Taken together these results indicate that individuals with autism have reduced attention to observed actions, but when attention is maintained, goal prediction is typical. We conclude that the basic mechanisms of action understanding are intact in individuals with ASC although there may be impairment in the top-down, social modulation of eye movements.

  13. The Zodiacal Emission Spectrum as Determined by COBE and its Implications

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Dwek, Eli; Oliversen, R. (Technical Monitor)

    2002-01-01

    We combine observations from the DIRBE and FIRAS instruments on the COBE satellite to derive an annually-averaged spectrum of the zodiacal cloud in the 10 to 1000 micron wavelength region. The spectrum exhibits a break at approx. 150 microns which indicates a sharp break in the dust size distribution at a radius of about 30 microns The spectrum can be fit with a single blackbody with a lambda(exp -2) emissivity law beyond 150 microns and a temperature of 240 K. We also used a more realistic characterization of the cloud to fit the spectrum, including a distribution of dust temperatures, representing different dust compositions and distances from the sun, as well as a realistic representation of the spatial distribution of the dust. We show that amorphous carbon and silicate dust with respective temperatures of 280 and 274 K at 1 AU, and size distributions with a break at grain radii of 14 and 32 microns, can provide a good fit to the average zodiacal dust spectrum. The total mass of the zodiacal cloud is 2 to 11 Eg (Eg=10(exp 18) g), depending on the grain composition. The lifetime of the cloud, against particle loss by Poynting- Robertson drag and the effects of solar wind, is about 10(exp 5) yr. The required replenishment rate is approx. 10(exp 14) g/yr. If this is provided by asteroid belt alone, the asteroids lifetime would be approx. 3 x 10(exp 10) yr. But comets and Kuiper belt objects may also contribute to the zodiacal cloud.

  14. Spitzer IRS Observations of Low-Mass Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, A. J.; Greene, J. E.; Ho, L. C.

    2009-05-01

    The Sloan Digital Sky Survey has made it possible to identify the first samples of active galaxies with estimated black hole masses below 106 solar masses. We have obtained Spitzer IRS low-resolution spectra, covering 5-30 microns, of a sample of 41 Seyfert galaxies with low-mass black holes. Our sample includes SDSS-selected objects from the low-mass Seyfert 1 sample of Greene & Ho (2004) and the low-mass Seyfert 2 sample of Barth et al. (2008), as well as NGC 4395 and POX 52. The goals of this work are to examine the dust emission properties of these objects and investigate the relationship between Type 1 and Type 2 AGNs at low luminosities and low masses, to search for evidence of star formation, and to use emission-line diagnostics to constrain physical conditions within the narrow-line regions. We will present preliminary results from this project, including measurements of continuum shapes and dust temperatures, narrow-line region diagnostics, and PAH features, derived using the IDL code PAHFIT (Smith et al. 2007).

  15. Mass spectrum analysis of K - π + from the semileptonic decay D + → K - π +μ +v

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massafferri Rodrigues, Andre

    The Higgs mechanism preserves the gauge symmetries of the Standard Model while giving masses to the W, Z bosons. Supersymmetry, which protects the Higgs boson mass scale from quantum corrections, predicts at least 5 Higgs bosons, none of which has been directly observed. This thesis presents a search for neutral Higgs bosons, produced in association with bottom quarks. The production rate is greatly enhanced at large values of the Supersymmetric parameter tan β. High-energy pmore » $$\\bar{p}$$ collision data, collected from Run II of the Fermilab Tevatron using the D0 detector, are analyzed. In the absence of a signal, values of tan β > 80-120 are excluded at 95% Confidence Level (C.L.), depending on the (CP-odd) neutral Higgs boson mass (studied from 100 to 150 GeV/c 2).« less

  16. Spectral Variability of Two Rapidly Rotating Brown Dwarfs: 2MASS J08354256-0819237 and 2MASS J18212815+1414010

    NASA Astrophysics Data System (ADS)

    Schlawin, E.; Burgasser, Adam J.; Karalidi, T.; Gizis, J. E.; Teske, J.

    2017-11-01

    L dwarfs exhibit low-level, rotationally modulated photometric variability generally associated with heterogeneous, cloud-covered atmospheres. The spectral character of these variations yields insight into the particle sizes and vertical structure of the clouds. Here, we present the results of a high-precision, ground-based, near-infrared, spectral monitoring study of two mid-type L dwarfs that have variability reported in the literature, 2MASS J08354256-0819237 and 2MASS J18212815+1414010, using the SpeX instrument on the Infrared Telescope Facility. By simultaneously observing a nearby reference star, we achieve < 0.15 % per-band sensitivity in relative brightness changes across the 0.9-2.4 μm bandwidth. We find that 2MASS J0835-0819 exhibits marginal (≲0.5% per band) variability with no clear spectral dependence, while 2MASS J1821+1414 varies by up to ±1.5% at 0.9 μm, with the variability amplitude declining toward longer wavelengths. The latter result extends the variability trend observed in prior HST/WFC3 spectral monitoring of 2MASS J1821+1414, and we show that the full 0.9-2.4 μm variability amplitude spectrum can be reproduced by Mie extinction from dust particles with a log-normal particle size distribution with a median radius of 0.24 μm. We do not detect statistically significant phase variations with wavelength. The different variability behavior of 2MASS J0835-0819 and 2MASS J1821+1414 suggests dependencies on viewing angle and/or overall cloud content, underlying factors that can be examined through a broader survey.

  17. Kinetic Features in the Ion Flux Spectrum

    NASA Astrophysics Data System (ADS)

    Vafin, S.; Riazantseva, M.; Yoon, P. H.

    2017-11-01

    An interesting feature of solar wind fluctuations is the occasional presence of a well-pronounced peak near the spectral knee. These peaks are well investigated in the context of magnetic field fluctuations in the magnetosheath and they are typically related to kinetic plasma instabilities. Recently, similar peaks were observed in the spectrum of ion flux fluctuations of the solar wind and magnetosheath. In this paper, we propose a simple analytical model to describe such peaks in the ion flux spectrum based on the linear theory of plasma fluctuations. We compare our predictions with a sample observation in the solar wind. For the given observation, the peak requires ˜10 minutes to grow up to the observed level that agrees with the quasi-linear relaxation time. Moreover, our model well reproduces the form of the measured peak in the ion flux spectrum. The observed lifetime of the peak is about 50 minutes, which is relatively close to the nonlinear Landau damping time of 30-40 minutes. Overall, our model proposes a plausible scenario explaining the observation.

  18. Observation of Classroom Social Communication: Do Children with Fetal Alcohol Spectrum Disorders Spend Their Time Differently than Their Typically Developing Peers?

    ERIC Educational Resources Information Center

    Olswang, Lesley B.; Svensson, Liselotte; Astley, Susan

    2010-01-01

    Purpose: In this research, the authors examined how social communication profiles during classroom activities differed between children with fetal alcohol spectrum disorders (FASD) and typically developing pair-matched peers. Method: Twelve pairs of children were observed in their classrooms 20 min a day for 4 days across 2 weeks. Coders…

  19. Bounds on neutrino mass in viscous cosmology

    NASA Astrophysics Data System (ADS)

    Anand, Sampurn; Chaubal, Prakrut; Mazumdar, Arindam; Mohanty, Subhendra; Parashari, Priyank

    2018-05-01

    Effective field theoretic description of dark matter fluid on large scales predicts viscosity of the order 10‑6 H0 MP2. Recently, it has been shown that the same magnitude of viscosity can resolve the discordance between large scale structure observations and Planck CMB data in the σ8-Ωm0 and H0-Ωm0 parameters space. On the other hand, massive neutrinos suppresses the matter power spectrum on the small length scales similar to the viscosities. Therefore, it is expected that the viscous dark matter setup along with massive neutrinos can provide stringent constraint on neutrino mass. In this article, we show that the inclusion of effective viscosity, which arises from summing over non linear perturbations at small length scales, indeed severely constrains the cosmological bound on neutrino masses. Under a joint analysis of Planck CMB and different large scale observation data, we find that upper bound on the sum of the neutrino masses, at 2-σ level, decreases respectively from ∑ mν <= 0.396 eV (for normal hierarchy) and ∑ mν <= 0.378 eV (for inverted hierarchy) to ∑ mν <= 0.267 eV (for normal hierarchy) and ∑ mν <= 0.146 eV (for inverted hierarchy).

  20. Forecasting neutrino masses from combining KATRIN and the CMB observations: Frequentist and Bayesian analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Host, Ole; Lahav, Ofer; Abdalla, Filipe B.

    We present a showcase for deriving bounds on the neutrino masses from laboratory experiments and cosmological observations. We compare the frequentist and Bayesian bounds on the effective electron neutrino mass m{sub {beta}} which the KATRIN neutrino mass experiment is expected to obtain, using both an analytical likelihood function and Monte Carlo simulations of KATRIN. Assuming a uniform prior in m{sub {beta}}, we find that a null result yields an upper bound of about 0.17 eV at 90% confidence in the Bayesian analysis, to be compared with the frequentist KATRIN reference value of 0.20 eV. This is a significant difference whenmore » judged relative to the systematic and statistical uncertainties of the experiment. On the other hand, an input m{sub {beta}}=0.35 eV, which is the KATRIN 5{sigma} detection threshold, would be detected at virtually the same level. Finally, we combine the simulated KATRIN results with cosmological data in the form of present (post-WMAP) and future (simulated Planck) observations. If an input of m{sub {beta}}=0.2 eV is assumed in our simulations, KATRIN alone excludes a zero neutrino mass at 2.2{sigma}. Adding Planck data increases the probability of detection to a median 2.7{sigma}. The analysis highlights the importance of combining cosmological and laboratory data on an equal footing.« less

  1. Total Kinetic Energy and Fragment Mass Distribution of Neutron-Induced Fission of U-233

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higgins, Daniel James; Schmitt, Kyle Thomas; Mosby, Shea Morgan

    Properties of fission in U-233 were studied at the Los Alamos Neutron Science Center (LANSCE) at incident neutron energies from thermal to 40 MeV at both the Lujan Neutron Scattering Center flight path 12 and at WNR flight path 90-Left from Dec 2016 to Jan 2017. Fission fragments are observed in coincidence using a twin ionization chamber with Frisch grids. The average total kinetic energy (TKE) released from fission and fragment mass distributions are calculated from observations of energy deposited in the detector and conservation of mass and momentum. Accurate experimental measurements of these parameters are necessary to better understandmore » the fission process and obtain data necessary for calculating criticality. The average TKE released from fission has been well characterized for several isotopes at thermal neutron energy, however, few measurements have been made at fast neutron energies. This experiment expands on previous successful experiments using an ionization chamber to measure TKE and fragment mass distributions of U-235, U-238, and Pu-239. This experiment requires the full spectrum of neutron energies and can therefore only be performed at a small number of facilities in the world. The required full neutron energy spectrum is obtained by combining measurements from WNR 90L and Lujan FP12 at LANSCE.« less

  2. Usher syndrome in Denmark: mutation spectrum and some clinical observations.

    PubMed

    Dad, Shzeena; Rendtorff, Nanna Dahl; Tranebjærg, Lisbeth; Grønskov, Karen; Karstensen, Helena Gásdal; Brox, Vigdis; Nilssen, Øivind; Roux, Anne-Françoise; Rosenberg, Thomas; Jensen, Hanne; Møller, Lisbeth Birk

    2016-09-01

    Usher syndrome (USH) is a genetically heterogeneous deafness-blindness syndrome, divided into three clinical subtypes: USH1, USH2 and USH3. Mutations in 21 out of 26 investigated Danish unrelated individuals with USH were identified, using a combination of molecular diagnostic methods. Before Next Generation Sequencing (NGS) became available mutations in nine individuals (1 USH1, 7 USH2, 1 USH3) were identified by Sanger sequencing of USH1C , USH2A or CLRN1 or by Arrayed Primer EXtension (APEX) method. Mutations in 12 individuals (7 USH1, 5 USH2) were found by targeted NGS of ten known USH genes. Five novel pathogenic variants were identified. We combined our data with previously published, and obtained an overview of the USH mutation spectrum in Denmark, including 100 unrelated individuals; 32 with USH1, 67 with USH2, and 1 with USH3. Macular edema was observed in 44 of 117 individuals. Olfactory function was tested in 12 individuals and found to be within normal range in all. Mutations that lead to USH1 were predominantly identified in MYO7A (75%), whereas all mutations in USH2 cases were identified in USH2A . The MYO7A mutation c.93C>A, p.(Cys31*) accounted for 33% of all USH1 mutations and the USH2A c.2299delG, p.(Glu767Serfs*21) variant accounted for 45% of all USH2 mutations in the Danish cohort.

  3. Nutritional deficiencies and overweight prevalence among children with autism spectrum disorder.

    PubMed

    Shmaya, Yael; Eilat-Adar, Sigal; Leitner, Yael; Reif, Shimon; Gabis, Lidia

    2015-03-01

    Children with autism spectrum disorder (ASD) are at risk of developing nutritional deviations. Three to six year old children with ASD were compared to their typically developing siblings and to a typically developing age and gender matched control group, in order to evaluate their intake and body mass index. Nutrient intake was compared to the Dietary Reference Intake using three-day diet diaries completed by the parents. The sum percentage of nutritional deficiencies in the ASD group compared to the typical development group was 342.5% (±122.9%) vs. 275.9% (±106.8%), respectively (P=0.026). A trend toward higher deficiency in the ASD group was observed as compared to the sibling group 363% (±122.9%) vs. 283.2% (±94.7%) (P=0.071). A higher body mass index was found in the ASD group compared to their counterparts, despite their nutritional deficiencies. In conclusion, children with ASD are more likely to suffer from nutritional deficiencies despite higher body mass index. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. European VLBI network observations of fourteen GHz-peaked-spectrum radio sources at 5 GHz

    NASA Astrophysics Data System (ADS)

    Xiang, L.; Reynolds, C.; Strom, R. G.; Dallacasa, D.

    2006-08-01

    We present the results of EVN polarization observations of fourteen GHz-Peaked-Spectrum (GPS) radio sources at 5 GHz. These sources were selected from bright GPS source samples and we aimed at finding Compact Symmetric Objects (CSOs). We have obtained full polarization 5 GHz VLBI observations of 14 sources providing information on their source structure and spectral indices. The results show that two core-jet sources 1433-040 and DA193, out of 14 GPS sources, exhibit integrated fractional polarizations of 3.6% and 1.0% respectively. The other 12 sources have no clear detection of pc-scale polarization. The results confirm that the GPS sources generally have very low polarization at 5 GHz. The sources 1133+432, 1824+271 and 2121-014 are confirmed as CSOs. Three new CSOs 0914+114, 1518+046 and 2322-040 (tentative) have been classified on the basis of 5 GHz images and spectral indices. The sources 1333+589, 1751+278 and 2323+790 can be classified either as compact doubles, and then they are likely CSO candidates or core-jet sources; further observations are needed for an appropriate classification; 0554-026, 1433-040 and 1509+054 are core-jet sources. In addition, we estimate that a component in the jet of quasar DA193 has superluminal motion of 3.3±0.6 h-1 c in 5.5 years.

  5. Spitzer IRS Observations of Low-Mass Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Thornton, Carol E.; Barth, Aaron J.; Ho, Luis C.; Greene, Jenny E.

    2010-05-01

    The Sloan Digital Sky Survey has made it possible to identify the first samples of active galaxies with estimated black hole masses below ~ 106 M⊙. We have obtained Spitzer IRS low-resolution spectra, covering 5-38 μm, of a sample of 41 Seyfert galaxies with low-mass black holes. Our sample includes SDSS-selected objects from the low-mass Seyfert 1 sample of Greene & Ho (2004) and the low-mass Seyfert 2 sample of Barth et al. (2008), as well as NGC 4395 and POX 52. The goals of this work are to examine the dust emission properties of these objects and investigate the relationship between type 1 and type 2 AGNs at low luminosities and low masses, to search for evidence of star formation, and to use emission-line diagnostics to constrain physical conditions within the narrow-line regions. Here we present preliminary results from this project.

  6. Nucleosynthesis Predictions for Intermediate-Mass AGB Stars: Comparison to Observations of Type I Planetary Nebulae

    NASA Technical Reports Server (NTRS)

    Karakas, Amanda I.; vanRaai, Mark A.; Lugaro, Maria; Sterling, Nicholas C.; Dinerstein, Harriet L.

    2008-01-01

    Type I planetary nebulae (PNe) have high He/H and N/O ratios and are thought to be descendants of stars with initial masses of approx. 3-8 Stellar Mass. These characteristics indicate that the progenitor stars experienced proton-capture nucleosynthesis at the base of the convective envelope, in addition to the slow neutron capture process operating in the He-shell (the s-process). We compare the predicted abundances of elements up to Sr from models of intermediate-mass asymptotic giant branch (AGB) stars to measured abundances in Type I PNe. In particular, we compare predictions and observations for the light trans-iron elements Se and Kr, in order to constrain convective mixing and the s-process in these stars. A partial mixing zone is included in selected models to explore the effect of a C-13 pocket on the s-process yields. The solar-metallicity models produce enrichments of [(Se, Kr)/Fe] less than or approx. 0.6, consistent with Galactic Type I PNe where the observed enhancements are typically less than or approx. 0.3 dex, while lower metallicity models predict larger enrichments of C, N, Se, and Kr. O destruction occurs in the most massive models but it is not efficient enough to account for the greater than or approx. 0.3 dex O depletions observed in some Type I PNe. It is not possible to reach firm conclusions regarding the neutron source operating in massive AGB stars from Se and Kr abundances in Type I PNe; abundances for more s-process elements may help to distinguish between the two neutron sources. We predict that only the most massive (M grester than or approx.5 Stellar Mass) models would evolve into Type I PNe, indicating that extra-mixing processes are active in lower-mass stars (3-4 Stellar Mass), if these stars are to evolve into Type I PNe.

  7. Serum protein profiling and proteomics in autistic spectrum disorder using magnetic bead-assisted mass spectrometry.

    PubMed

    Taurines, Regina; Dudley, Edward; Conner, Alexander C; Grassl, Julia; Jans, Thomas; Guderian, Frank; Mehler-Wex, Claudia; Warnke, Andreas; Gerlach, Manfred; Thome, Johannes

    2010-04-01

    The pathophysiology of autistic spectrum disorder (ASD) is not fully understood and there are no diagnostic or predictive biomarkers. Proteomic profiling has been used in the past for biomarker research in several non-psychiatric and psychiatric disorders and could provide new insights, potentially presenting a useful tool for generating such biomarkers in autism. Serum protein pre-fractionation with C8-magnetic beads and protein profiling by matrix-assisted laser desorption/ionisation-time of flight-mass spectrometry (MALDI-ToF-MS) were used to identify possible differences in protein profiles in patients and controls. Serum was obtained from 16 patients (aged 8-18) and age-matched controls. Three peaks in the MALDI-ToF-MS significantly differentiated the ASD sample from the control group. Sub-grouping the ASD patients into children with and without comorbid Attention Deficit and Hyperactivity Disorder, ADHD (ASD/ADHD+ patients, n = 9; ASD/ADHD- patients, n = 7), one peak distinguished the ASD/ADHD+ patients from controls and ASD/ADHD- patients. Our results suggest that altered protein levels in peripheral blood of patients with ASD might represent useful biomarkers for this devastating psychiatric disorder.

  8. Hot Evolved Companions to Intermediate-Mass Main-Sequence Stars: Solving the Mystery of KOI-81

    NASA Astrophysics Data System (ADS)

    Gies, Douglas

    2010-09-01

    The NASA Kepler Science Team recently announced the discovery of twotransiting binaries that have "planets" hotter than their host stars.These systems probably represent the first known examples of white dwarfsformed through mass loss and transfer among intermediate mass, closebinary stars. Here we propose to obtain COS FUV spectroscopy of one ofthese systems, KOI-81, in order to detect the hot companion in a part of the spectrum where it is relatively bright. The spectral flux and Doppler shift measurements will yield the temperatures, masses, radii, and compositions of both components. These observations will provide our first opportunity to explore this previously hidden stage of close binary evolution.

  9. Some characteristics of matrix-assisted UV laser desorption/ionization mass spectrometric analysis of large proteins

    NASA Astrophysics Data System (ADS)

    Perera, I. K.; Kantartzoglou, S.; Dyer, P. E.

    1996-12-01

    We have performed experiments to explore the characteristics of the matrix-assisted laser desorption/ionization (MALDI) process and to ascertain optimal operational conditions for observing intact molecular ions of large proteins. In this study, several methods have been adopted for the preparation of analyte samples. Of these, the samples prepared with the simple dried-droplet method were found to be the most suitable for the generation of the large molecular clusters, while the near-uniform spin-coated samples were observed to produce highly reproducible molecular ion signals of relatively high mass resolutions. A resulting mass spectrum which illustrates the formation of cluster ions up to the 26-mer [26M+H]+ of bovine insulin corresponding to a mass of about 150,000 Da, is presented. The effect of fluence on the extent of clustering of protein molecules has been studied, the results revealing the existence of an optimum fluence for detecting the large cluster ions. Investigations have also indicated that the use of polyethylene-coated metallic substrates as sample supports can considerably reduce the fragmentation of the matrix/analyte molecular ions and the desorption of "neat" MALDI matrices deposited on these polyethylene-coated sample probes enhance their aggregation, forming up to the heptamer [7M+H]+ of the matrix, ferulic acid. The dependence of the mass resolution on the applied acceleration voltage and the desorption fluence has been examined and the results obtained are discussed in terms of a simple analysis of the linear time-of-flight mass spectrometer. A spectrum of chicken egg lysozyme (M~14,306) displaying the high mass resolutions (M/[Delta]M~690) that can be attained when the mass spectrometer is operated in the reflectron mode is also presented.

  10. Mass Dependence of the HBT Radii Observed in e+e- Annihilation

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Zalewski, K.

    1999-02-01

    It is shown that the recently established strong mass-dependence of the radii of the hadron sources, as observed in HBT analyses of the e+e- annihilation, can be explained by assuming a generalized inside--outside cascade, i.e. that (i) the four-momenta and the space-time position four-vectors of the produced particles are approximately proportional to each other and (ii) the ``freeze-out'' times are distributed along the hyperbola t2-z2= τ02.

  11. Reconstructing the primordial spectrum of fluctuations of the universe from the observed nonlinear clustering of galaxies

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.; Matthews, Alex; Kumar, P.; Lu, Edward

    1991-01-01

    It was discovered that the nonlinear evolution of the two point correlation function in N-body experiments of galaxy clustering with Omega = 1 appears to be described to good approximation by a simple general formula. The underlying form of the formula is physically motivated, but its detailed representation is obtained empirically by fitting to N-body experiments. In this paper, the formula is presented along with an inverse formula which converts a final, nonlinear correlation function into the initial linear correlation function. The inverse formula is applied to observational data from the CfA, IRAs, and APM galaxy surveys, and the initial spectrum of fluctuations of the universe, if Omega = 1.

  12. Sonographic Spectrum of Tunica Albuginea Cyst

    PubMed Central

    Alvarez, Daniel M.; Bhatt, Shweta; Dogra, Vikram S.

    2011-01-01

    Tunica albuginea (TA) cyst is the most common extratesticular benign mass, which is usually palpable. Ultrasound examination is the imaging modality of choice to characterize palpable testicular lesions. This pictorial essay presents the spectrum of sonographic features of TA cysts in order to assist radiologists in making the correct diagnosis and avoid unnecessary surgeries. PMID:21915386

  13. Mass sensing based on a circuit cavity electromechanical system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    We present a scheme for mass sensing based on a circuit cavity electromechanical system where a free-standing, flexible aluminium membrane is capacitively coupled to a superconducting microwave cavity. Integration with the microwave cavity enables capacitive readout of the mechanical resonance directly on the chip. A microwave pump field and a second probe field are simultaneously applied to the cavity. The accreted mass landing on the membrane can be measured conveniently by tracking the mechanical resonance frequency shifts due to mass changes in the probe transmission spectrum. The mass responsivity for the membrane is 0.72 Hz/ag and we demonstrate that frequency shifts induced by adsorption of one hundred 1587 bp DNA molecules can be well resolved in the probe transmission spectrum.

  14. Activity associated with coronal mass ejections at solar minimum - SMM observations from 1984-1986

    NASA Technical Reports Server (NTRS)

    St. Cyr, O. C.; Webb, D. F.

    1991-01-01

    Seventy-three coronal mass ejections (CMEs) observed by the coronagraph aboard SMM between 1984 and 1986 were examined in order to determine the distribution of various forms of solar activity that were spatially and temporally associated with mass ejections during solar minimum phase. For each coronal mass ejection a speed was measured, and the departure time of the transient from the lower corona estimated. Other forms of solar activity that appeared within 45 deg longitude and 30 deg latitude of the mass ejection and within +/-90 min of its extrapolated departure time were explored. The statistical results of the analysis of these 73 CMEs are presented, and it is found that slightly less than half of them were infrequently associated with other forms of solar activity. It is suggested that the distribution of the various forms of activity related to CMEs does not change at different phases of the solar cycle. For those CMEs with associations, it is found that eruptive prominences and soft X-rays were the most likely forms of activity to accompany the appearance of mass ejections.

  15. Isomeric and Isotopic Effects on the Electronic Spectrum of {{\\rm{C}}}_{60}^{+}–He: Consequences for Astronomical Observations of {{\\rm{C}}}_{60}^{+}

    NASA Astrophysics Data System (ADS)

    Campbell, E. K.; Maier, J. P.

    2018-05-01

    Laboratory measurements are reported that enable a more accurate determination of the characteristics of the near-infrared absorptions of {{{C}}}60+ below 10 K. These data were obtained by photofragmentation of {{{C}}}60+{--}{He} complexes in a cryogenic trap. Asymmetry in the profiles of the observed 9577 and 9632 Å absorption bands of {{{C}}}60+{--}{He} is caused by the attachment of the weakly bound helium atom to hexagonal or pentagonal faces of {{{C}}}60+. The implication is that the FWHM of the bands in the electronic spectrum of {{{C}}}60+ below 10 K is 1.4 Å. The effect of 13C isotopes on the {{{C}}}60+ electronic spectrum is experimentally evaluated by measurement of {}12{{{C}}}60+{--}{He}, {}13{{{C}}}112{{{C}}}59+{--}{He}, and {}13{{{C}}}212{{{C}}}58+{--}{He}. Data on the 9365 Å absorption band indicate a wavelength shift of about 0.3 Å between the former and latter. This result is consistent with models used to interpret the vibrational isotope effect in the Raman spectrum of neutral C60. The influence of 13C isotopes on the 9348, 9365, 9428, 9577, and 9632 Å diffuse interstellar bands is expected to be minor considering other broadening factors that affect astronomical observations. The presented data also provide more accurate relative intensities of the five interstellar bands attributed to {{{C}}}60+.

  16. New Evidence for Mass Loss from δ Cephei from H I 21 cm Line Observations

    NASA Astrophysics Data System (ADS)

    Matthews, L. D.; Marengo, M.; Evans, N. R.; Bono, G.

    2012-01-01

    Recently published Spitzer Space Telescope observations of the classical Cepheid archetype δ Cephei revealed an extended dusty nebula surrounding this star and its hot companion HD 213307. At far-infrared wavelengths, the emission resembles a bow shock aligned with the direction of space motion of the star, indicating that δ Cephei is undergoing mass loss through a stellar wind. Here we report H I 21 cm line observations with the Very Large Array (VLA) to search for neutral atomic hydrogen associated with this wind. Our VLA data reveal a spatially extended H I nebula (~13' or 1 pc across) surrounding the position of δ Cephei. The nebula has a head-tail morphology, consistent with circumstellar ejecta shaped by the interaction between a stellar wind and the interstellar medium (ISM). We directly measure a mass of circumstellar atomic hydrogen M_H I ≈ 0.07 M_{⊙}, although the total H I mass may be larger, depending on the fraction of circumstellar material that is hidden by Galactic contamination within our band or that is present on angular scales too large to be detected by the VLA. It appears that the bulk of the circumstellar gas has originated directly from the star, although it may be augmented by material swept from the surrounding ISM. The H I data are consistent with a stellar wind with an outflow velocity V o = 35.6 ± 1.2 km s-1 and a mass-loss rate of {\\dot{M}}≈ (1.0+/- 0.8)× 10^{-6} M_{⊙} yr-1. We have computed theoretical evolutionary tracks that include mass loss across the instability strip and show that a mass-loss rate of this magnitude, sustained over the preceding Cepheid lifetime of δ Cephei, could be sufficient to resolve a significant fraction of the discrepancy between the pulsation and evolutionary masses for this star.

  17. The nuclear region of low luminosity flat radio spectrum sources. II. Emission-line spectra

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. C.; Serote Roos, M.

    2004-01-01

    We report on the spectroscopic study of 19 low luminosity Flat Radio Spectrum (LL FRS) sources selected from Marchã's et al. (\\cite{March96}) 200 mJy sample. In the optical, these objects are mainly dominated by the host galaxy starlight. After correcting the data for this effect, we obtain a new set of spectra clearly displaying weak emission lines; such features carry valuable information concerning the excitation mechanisms at work in the nuclear regions of LL FRS sources. We have used a special routine to model the spectra and assess the intensities and velocities of the emission lines; we have analyzed the results in terms of diagnostic diagrams. Our analysis shows that 79% of the studied objects harbour a Low Ionization Nuclear Emission-line Region (or LINER) whose contribution was swamped by the host galaxy starlight. The remaining objects display a higher ionization spectrum, more typical of Seyferts; due to the poor quality of the spectra, it was not possible to identify any possible large Balmer components. The fact that we observe a LINER-type spectrum in LL FRS sources supports the idea that some of these objects could be undergoing an ADAF phase; in addition, such a low ionization emission-line spectrum is in agreement with the black hole mass values and sub-Eddington accretion rates published for some FRS sources. Based on observations collected at the Multiple Mirror Telescope on Mt. Hopkins. Full Fig. 1 is only available in electronic form at http://www.edpsciences.org

  18. An L Band Spectrum of the Coldest Brown Dwarf

    NASA Astrophysics Data System (ADS)

    Morley, Caroline V.; Skemer, Andrew J.; Allers, Katelyn N.; Marley, Mark. S.; Faherty, Jacqueline K.; Visscher, Channon; Beiler, Samuel A.; Miles, Brittany E.; Lupu, Roxana; Freedman, Richard S.; Fortney, Jonathan J.; Geballe, Thomas R.; Bjoraker, Gordon L.

    2018-05-01

    The coldest brown dwarf, WISE 0855, is the closest known planetary-mass, free-floating object and has a temperature nearly as cold as the solar system gas giants. Like Jupiter, it is predicted to have an atmosphere rich in methane, water, and ammonia, with clouds of volatile ices. WISE 0855 is faint at near-infrared wavelengths and emits almost all its energy in the mid-infrared. Skemer et al. presented a spectrum of WISE 0855 from 4.5–5.1 μm (M band), revealing water vapor features. Here, we present a spectrum of WISE 0855 in the L band, from 3.4–4.14 μm. We present a set of atmosphere models that include a range of compositions (metallicities and C/O ratios) and water ice clouds. Methane absorption is clearly present in the spectrum. The mid-infrared color can be better matched with a methane abundance that is depleted relative to solar abundance. We find that there is evidence for water ice clouds in the M band spectrum, and we find a lack of phosphine spectral features in both the L and M band spectra. We suggest that a deep continuum opacity source may be obscuring the near-infrared flux, possibly a deep phosphorous-bearing cloud, ammonium dihyrogen phosphate. Observations of WISE 0855 provide critical constraints for cold planetary atmospheres, bridging the temperature range between the long-studied solar system planets and accessible exoplanets. The James Webb Space Telescope will soon revolutionize our understanding of cold brown dwarfs with high-precision spectroscopy across the infrared, allowing us to study their compositions and cloud properties, and to infer their atmospheric dynamics and formation processes.

  19. Method for increasing the dynamic range of mass spectrometers

    DOEpatents

    Belov, Mikhail; Smith, Richard D.; Udseth, Harold R.

    2004-09-07

    A method for enhancing the dynamic range of a mass spectrometer by first passing a sample of ions through the mass spectrometer having a quadrupole ion filter, whereupon the intensities of the mass spectrum of the sample are measured. From the mass spectrum, ions within this sample are then identified for subsequent ejection. As further sampling introduces more ions into the mass spectrometer, the appropriate rf voltages are applied to a quadrupole ion filter, thereby selectively ejecting the undesired ions previously identified. In this manner, the desired ions may be collected for longer periods of time in an ion trap, thus allowing better collection and subsequent analysis of the desired ions. The ion trap used for accumulation may be the same ion trap used for mass analysis, in which case the mass analysis is performed directly, or it may be an intermediate trap. In the case where collection is an intermediate trap, the desired ions are accumulated in the intermediate trap, and then transferred to a separate mass analyzer. The present invention finds particular utility where the mass analysis is performed in an ion trap mass spectrometer or a Fourier transform ion cyclotron resonance mass spectrometer.

  20. Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds

    NASA Astrophysics Data System (ADS)

    Loehnert, U.; Maahn, M.

    2015-12-01

    More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual

  1. Potential of Higher Moments of the Radar Doppler Spectrum for Studying Ice Clouds

    NASA Astrophysics Data System (ADS)

    Lunt, M. F.; Rigby, M. L.; Ganesan, A.; Manning, A.; O'Doherty, S.; Prinn, R. G.; Saito, T.; Harth, C. M.; Muhle, J.; Weiss, R. F.; Salameh, P.; Arnold, T.; Yokouchi, Y.; Krummel, P. B.; Steele, P.; Fraser, P. J.; Li, S.; Park, S.; Kim, J.; Reimann, S.; Vollmer, M. K.; Lunder, C. R.; Hermansen, O.; Schmidbauer, N.; Young, D.; Simmonds, P. G.

    2014-12-01

    More observations of ice clouds are required to fill gaps in understanding of microphysical properties and processes. However, in situ observations by aircraft are costly and cannot provide long term observations which are required for a deeper understanding of the processes. Ground based remote sensing observations have the potential to fill this gap, but their observations do not contain sufficient information to unambiguously constrain ice cloud properties which leads to high uncertainties. For vertically pointing cloud radars, usually only reflectivity and mean Doppler velocity are used for retrievals; some studies proposed also the use of Doppler spectrum width.In this study, it is investigated whether additional information can be obtained by exploiting also higher moments of the Doppler spectrum such as skewness and kurtosis together with the slope of the Doppler peak. For this, observations of pure ice clouds from the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in Alaska 2008 are analyzed. Using the ISDAC data set, an Optimal Estimation based retrieval is set up based on synthetic and real radar observations. The passive and active microwave radiative transfer model (PAMTRA) is used as a forward model together with the Self-Similar Rayleigh-Gans approximation for estimation of the scattering properties. The state vector of the retrieval consists of the parameters required to simulate the radar Doppler spectrum and describes particle mass, cross section area, particle size distribution, and kinematic conditions such as turbulence and vertical air motion. Using the retrieval, the information content (degrees of freedom for signal) is quantified that higher moments and slopes can contribute to an ice cloud retrieval. The impact of multiple frequencies, radar sensitivity and radar calibration is studied. For example, it is found that a single-frequency measurement using all moments and slopes contains already more information content than a dual

  2. Femtosecond time-domain observation of atmospheric absorption in the near-infrared spectrum

    NASA Astrophysics Data System (ADS)

    Hammond, T. J.; Monchocé, Sylvain; Zhang, Chunmei; Brown, Graham G.; Corkum, P. B.; Villeneuve, D. M.

    2016-12-01

    As light propagates through a medium, absorption caused by electronic or rovibrational transitions is evident in the transmitted spectrum. The incident electromagnetic field polarizes the medium and the absorption is due to the imaginary part of the linear susceptibility. In the time domain, the field establishes a coherence in the medium that radiates out of phase with the initial field. This coherence can persist for tens of picoseconds in atmospheric molecules such as H2O . We propagate a few-cycle laser pulse centered at 1.8 μ m through the atmosphere and measure the long-lasting molecular coherence in the time domain by high-order harmonic cross correlation. The measured optical free-induction decay of the pulse is compared with a calculation based on the calculated rovibrational spectrum of H2O absorption.

  3. Confirmation of an Intermediate-Mass Black Hole in an Extragalactic Globular Cluster

    NASA Astrophysics Data System (ADS)

    Irwin, Jimmy

    2015-10-01

    The long and controversial search for black holes within globular clusters has reached the point where extragalactic globular clusters provide fertile hunting grounds for finding black holes of both stellar and intermediate-mass (IMBH) varieties. While a luminous X-ray point source within a cluster can indicate the presence of a black hole, little can generally be said of its mass without further observation. In the event that a black hole tidally disrupts a passing star in the cluster, optical/UV emission lines from the X-ray-illuminated debris can not only demonstrate the existence of a black hole in the cluster, but can also provide powerful constraints on the mass of the black hole, the composition of the disrupted star, and even the time since the tidal disruption event took place. We propose an HST COS G140L UV spectrum of a globular cluster within the Fornax elliptical galaxy NGC1399 that exhibits unusual optical [N II] and [O III] forbidden emission lines that are believed to result from such a tidal disruption event by a 100 solar mass black hole. Our models predict that the ratios of the expected emission lines from carbon, nitrogen, and oxygen that should be present in the UV spectrum of the source will be able to distinguish a stellar-mass black hole from an IMBH as the disruptor, as well as determine the nature of the disrupted star. If the mass of the black hole is constrained to be in excess of 100 solar masses, this would provide one of the most compelling pieces of evidence to date that IMBHs exist within globular clusters.

  4. Clustered star formation and the origin of stellar masses.

    PubMed

    Pudritz, Ralph E

    2002-01-04

    Star clusters are ubiquitous in galaxies of all types and at all stages of their evolution. We also observe them to be forming in a wide variety of environments, ranging from nearby giant molecular clouds to the supergiant molecular clouds found in starburst and merging galaxies. The typical star in our galaxy and probably in others formed as a member of a star cluster, so star formation is an intrinsically clustered and not an isolated phenomenon. The greatest challenge regarding clustered star formation is to understand why stars have a mass spectrum that appears to be universal. This review examines the observations and models that have been proposed to explain these fundamental issues in stellar formation.

  5. Measuring neutrino mass imprinted on the anisotropic galaxy clustering

    NASA Astrophysics Data System (ADS)

    Oh, Minji; Song, Yong-Seon

    2017-04-01

    The anisotropic galaxy clustering of large scale structure observed by the Baryon Oscillation Spectroscopic Survey Data Release 11 is analyzed to probe the sum of neutrino masses in the small mν lesssim 1 eV limit in which the early broadband shape determined before the last scattering surface is immune from the variation of mν. The signature of mν is imprinted on the altered shape of the power spectrum at later epoch, which provides an opportunity to access the non-trivial mν through the measured anisotropic correlation function in redshift space (hereafter RSD instead of Redshift Space Distortion). The non-linear RSD corrections with massive neutrinos in the quasi linear regime are approximately estimated using one-loop order terms. We suggest an approach to probe mν simultaneously with all other distance measures and coherent growth functions, exploiting this deformation of the early broadband shape of the spectrum at later epoch. If the origin of cosmic acceleration is unknown, mν is poorly determined after marginalizing over all other observables. However, we find that the measured distances and coherent growth functions are minimally affected by the presence of mild neutrino mass. Although the standard model of cosmic acceleration is assumed to be the cosmological constant, the constraint on mν is little improved. Interestingly, the measured Cosmic Microwave Background (hereafter CMB) distance to the last scattering surface sharply slices the degeneracy between the matter content and mν, and the mν is observed to be mν = 0.19+0.28-0.17 eV which is different from massless neutrino at 68% confidence.

  6. Experimental observations on the links between surface perturbation parameters and shock-induced mass ejection

    NASA Astrophysics Data System (ADS)

    Monfared, S. K.; Oró, D. M.; Grover, M.; Hammerberg, J. E.; LaLone, B. M.; Pack, C. L.; Schauer, M. M.; Stevens, G. D.; Stone, J. B.; Turley, W. D.; Buttler, W. T.

    2014-08-01

    We have assembled together our ejecta measurements from explosively shocked tin acquired over a period of about ten years. The tin was cast at 0.99995 purity, and all of the tin targets or samples were shocked to loading pressures of about 27 GPa, allowing meaningful comparisons. The collected data are markedly consistent, and because the total ejected mass scales linearly with the perturbations amplitudes they can be used to estimate how much total Sn mass will be ejected from explosively shocked Sn, at similar loading pressures, based on the surface perturbation parameters of wavelength and amplitude. Most of the data were collected from periodic isosceles shapes that approximate sinusoidal perturbations. Importantly, however, we find that not all periodic perturbations behave similarly. For example, we observed that sawtooth (right triangular) perturbations eject more mass than an isosceles perturbation of similar depth and wavelength, demonstrating that masses ejected from irregular shaped perturbations cannot be normalized to the cross-sectional areas of the perturbations.

  7. Laboratory Observation of the Rotational Spectrum of a Potential Interstellar Sugar, Erythrose

    NASA Astrophysics Data System (ADS)

    Pena, I.; Cabezas, C.; Daly, A. M.; Mata, S.; Alonso, J. L.

    2013-06-01

    The rotational spectrum of erythrose has been recorded in the frequency region 6 -- 12 GHz using a chirped-pulse Fourier transform microwave spectrometer (CP-FTMW) combined with a laser ablation (LA) source. The investigation of rotational spectra of erythrose is of astrophysical and biological relevance. However, no gas-phase data were available on erythrose. It is syrup at room temperature and vaporization using conventional methods leads to decomposition. A non convetional laser ablation method has been successfully used to vaporize erythrose and two cyclic forms have been observed using rotational spectroscopy. α-erythrose has been found to have rotational constants are A = 2586.8998 (21) MHz, B = 2353.0837 (41) MHz and C = 1773.2378 (18) MHz and β-erythrose is characterized with rotational constants A = 3109.2005 (46) MHz, B = 1856.1298 (15) MHz, C = 1616.5557 (18) MHz. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, B. H. Pate, Rev. Sci. Instrum. 2008, 79, 053103. S. Mata, I. Peña, C. Cabezas, J. C. López, J. L. Alonso, J. Mol. Spectrosc. 2012, 280, 91.

  8. Observation of asymmetric spectrum broadening induced by silver nanoparticles in a heavy-metal oxide glass

    NASA Astrophysics Data System (ADS)

    Zhavoronkov, N.; Driben, R.; Bregadiolli, B. A.; Nalin, M.; Malomed, B. A.

    2011-05-01

    We demonstrate experimentally and support by a theoretical analysis an effect of asymmetric spectrum broadening, which results from doping of silver nanoparticles into a heavy-glass matrix, 90(0.5WO3-0.3SbPO4-0.2PbO)-10AgCl. The strong dispersion of the effective nonlinear coefficient of the composite significantly influences the spectral broadening via the self-phase modulation, and leads to a blue upshift of the spectrum. Further extension of the spectrum towards shorter wavelengths is suppressed by a growing loss caused by the plasmon resonance in the silver particles. The red-edge spectral broadening is dominated by the stimulated Raman scattering.

  9. Suzaku Observation of Two Ultraluminous X-ray Sources in NGC 1313

    NASA Technical Reports Server (NTRS)

    Mizuno, T.; Miyawaki, R.; Ebisawa, K.; Kubota, A.; Miyamoto, M.; Winter, L.; Ueda, Y.; Isobe, N.; Dewangan, G.; Mushotzky, R.F.; hide

    2007-01-01

    TA study was made of two ultraluminous X-ray sources (ULXs) in the nearby faceon, late-type Sb galaxy NGC 1313 using data from Suzaku, the 5th Japanese X-ray satellite. Within the 90 ks observation, both sources named X-1 and X-2 exhibited luminosity change by about 50%. The o.4-10keV X-ray luminosity was measured. For X-1, the spectrum exhibited a strong power-law component with a high energy cutoff which is thought to arise from strong Comptonization by a disk corona, suggesting the source was in a very high state. Absorption line features with equivalent widths of 40-80 eV found at 7.00 keV and 7.8 keV in the X-1 spectrum support the presence of a highly ionized plasma and a high mass accretion rate on the system. The spectrum of X-2 in fainter phase is presented by a multicolor disk blackbody model.

  10. Observations of Carbon Chain Chemistry in the Envelopes of Low-Mass Protostars

    NASA Technical Reports Server (NTRS)

    Cordiner, M.; Charnley, S.; Buckle, J. V.; Walsh, C.; Millar, T. J.

    2012-01-01

    Observational results are reported from our surveys in the Northern Hemisphere (using the Onsala 20 m telescope) and the Southern Hemisphere (using the Mopra 22 m telescope) to search for 3 mm emission lines from carbon-chain-bearing species and other complex molecules in the envelopes of low-mass protostars. Based on a sample of approximately 60 sources, we find that carbon-chain-bearing species including HC3N (and C4H) are highly abundant in the vicinity of more than half of the observed protostars. The origin and evolution of these species, including their likely incorporation into ices in protoplanetary disks will be discussed

  11. Constraints from thermal Sunyaev-Zel'dovich cluster counts and power spectrum combined with CMB

    NASA Astrophysics Data System (ADS)

    Salvati, Laura; Douspis, Marian; Aghanim, Nabila

    2018-06-01

    The thermal Sunyaev-Zel'dovich (tSZ) effect is one of the recent probes of cosmology and large-scale structures. We update constraints on cosmological parameters from galaxy clusters observed by the Planck satellite in a first attempt to combine cluster number counts and the power spectrum of hot gas; we used a new value of the optical depth and, at the same time, sampling on cosmological and scaling-relation parameters. We find that in the ΛCDM model, the addition of a tSZ power spectrum provides small improvements with respect to number counts alone, leading to the 68% c.l. constraints Ωm = 0.32 ± 0.02, σ8 = 0.76 ± 0.03, and σ8(Ωm/0.3)1/3 = 0.78 ± 0.03 and lowering the discrepancy with results for cosmic microwave background (CMB) primary anisotropies (updated with the new value of τ) to ≃1.8σ on σ8. We analysed extensions to the standard model, considering the effect of massive neutrinos and varying the equation of state parameter for dark energy. In the first case, we find that the addition of the tSZ power spectrum helps in improving cosmological constraints with respect to number count alone results, leading to the 95% upper limit ∑ mν < 1.88 eV. For the varying dark energy equation of state scenario, we find no important improvements when adding tSZ power spectrum, but still the combination of tSZ probes is able to provide constraints, producing w = -1.0 ± 0.2. In all cosmological scenarios, the mass bias to reconcile CMB and tSZ probes remains low at (1 - b) ≲ 0.67 as compared to estimates from weak lensing and X-ray mass estimate comparisons or numerical simulations.

  12. Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading

    NASA Astrophysics Data System (ADS)

    Liu, B.; Cong, Z.; Wang, Y.; Xin, J.; Wan, X.; Pan, Y.; Liu, Z.; Wang, Y.; Zhang, G.; Kang, S.

    2016-12-01

    To investigate the atmospheric aerosols of the Himalayas and Tibetan Plateau (HTP), an observation network was established within the region's various ecosystems, including at Ngari, Qomolangma (QOMS), Nam Co, and SouthEastern Tibetan (SET) stations. In this paper we illustrate aerosol mass loadings by integrating in situ measurements with satellite and ground-based remote sensing datasets for the 2011-2013 period, on both local and large scales. Mass concentrations of these surface atmospheric aerosols were relatively low and varied with land cover, showing a general tendency of Ngari and QOMS (barren sites) > Nam Co (grassland site) > SET (forest site). Bimodal mass distributions of size-segregated particles were found at all sites, with a relatively small peak in accumulation mode and a more notable peak in coarse mode. Diurnal variations in fine aerosol masses generally displayed a bi-peak pattern at the QOMS, Nam Co and SET stations and a single-peak pattern at the Ngari station, controlled by the effects of local geomorphology, mountain-valley breeze circulation and aerosol emissions. Combining surface aerosols data and atmospheric-column aerosol optical properties, the TSP mass and aerosol optical depth (AOD) of the Multi-angle Imaging Spectroradiometer (MISR) generally decreased as land cover changed from barren to forest, in inverse relation to the PM2.5 ratios. The seasonality of aerosol mass parameters was land-cover dependent. Over forest and grassland areas, TSP mass, PM2.5 mass, MISR-AOD and fine-mode AOD were higher in spring and summer, followed by relatively lower values in autumn and winter. At the barren site (the QOMS station), there were inconsistent seasonal variations between surface TSP mass (PM2.5 mass) and atmospheric column AOD (fine-mode AOD). Our findings implicate that, HTP aerosol masses (especially their reginal characteristics and fine particle emissions) need to be treated sensitively in relation to assessments of their climatic

  13. The high-energy X-ray spectrum of Centaurus XR-3 observed from OSO 8

    NASA Technical Reports Server (NTRS)

    Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.

    1984-01-01

    Observations of the X-ray binary Cen XR-3 in the 20-120 keV energy range by means of OSO 8's high energy X-ray spectrometer, during July 16-19, 1975, and July 5-14 and 28-29, 1978, indicate that the source was in a high luminosity state during 1975 and a low luminosity one in 1978. While mean orbital light curves appear similar in shape in both years, orbit-to-orbit intensity variations are noted. Spectral, luminosity, and the 4.84 sec modulation are characterized. Cen XR-3 may be a system in which mass transfer by Roche lobe overflow, and by accretion from a stellar wind, are both effective in the production of observable X-ray radiation.

  14. Guided mass spectrum labelling in atom probe tomography.

    PubMed

    Haley, D; Choi, P; Raabe, D

    2015-12-01

    Atom probe tomography (APT) is a valuable near-atomic scale imaging technique, which yields mass spectrographic data. Experimental correctness can often pivot on the identification of peaks within a dataset, this is a manual process where subjectivity and errors can arise. The limitations of manual procedures complicate APT experiments for the operator and furthermore are a barrier to technique standardisation. In this work we explore the capabilities of computer-guided ranging to aid identification and analysis of mass spectra. We propose a fully robust algorithm for enumeration of the possible identities of detected peak positions, which assists labelling. Furthermore, a simple ranking scheme is developed to allow for evaluation of the likelihood of each possible identity being the likely assignment from the enumerated set. We demonstrate a simple, yet complete work-chain that allows for the conversion of mass-spectra to fully identified APT spectra, with the goal of minimising identification errors, and the inter-operator variance within APT experiments. This work chain is compared to current procedures via experimental trials with different APT operators, to determine the relative effectiveness and precision of the two approaches. It is found that there is little loss of precision (and occasionally gain) when participants are given computer assistance. We find that in either case, inter-operator precision for ranging varies between 0 and 2 "significant figures" (2σ confidence in the first n digits of the reported value) when reporting compositions. Intra-operator precision is weakly tested and found to vary between 1 and 3 significant figures, depending upon species composition levels. Finally it is suggested that inconsistencies in inter-operator peak labelling may be the largest source of scatter when reporting composition data in APT. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Cong, Zhiyuan; Wang, Yuesi; Xin, Jinyuan; Wan, Xin; Pan, Yuepeng; Liu, Zirui; Wang, Yonghong; Zhang, Guoshuai; Wang, Zhongyan; Wang, Yongjie; Kang, Shichang

    2017-01-01

    To investigate the atmospheric aerosols of the Himalayas and Tibetan Plateau (HTP), an observation network was established within the region's various ecosystems, including at the Ngari, Qomolangma (QOMS), Nam Co, and Southeastern Tibetan (SET) stations. In this paper we illustrate aerosol mass loadings by integrating in situ measurements with satellite and ground-based remote sensing datasets for the 2011-2013 period, on both local and large scales. Mass concentrations of these surface atmospheric aerosols were relatively low and varied with land cover, showing a general tendency of Ngari and QOMS (barren sites) > Nam Co (grassland site) > SET (forest site). Daily averages of online PM2.5 (particulates with aerodynamic diameters below 2.5 µm) at these sites were sequentially 18.2 ± 8.9, 14.5 ± 7.4, 11.9 ± 4.9 and 11.7 ± 4.7 µg m-3. Correspondingly, the ratios of PM2.5 to total suspended particles (TSP) were 27.4 ± 6.65, 22.3 ± 10.9, 37.3 ± 11.1 and 54.4 ± 6.72 %. Bimodal mass distributions of size-segregated particles were found at all sites, with a relatively small peak in accumulation mode and a more notable peak in coarse mode. Diurnal variations in fine-aerosol masses generally displayed a bi-peak pattern at the QOMS, Nam Co and SET stations and a single-peak pattern at the Ngari station, controlled by the effects of local geomorphology, mountain-valley breeze circulation and aerosol emissions. Dust aerosol content in PM2.1 samples gave fractions of 26 % at the Ngari station and 29 % at the QOMS station, or ˜ 2-3 times that of reported results at human-influenced sites. Furthermore, observed evidence confirmed the existence of the aerodynamic conditions necessary for the uplift of fine particles from a barren land surface. Combining surface aerosol data and atmospheric-column aerosol optical properties, the TSP mass and aerosol optical depth (AOD) of the Multi-angle Imaging Spectroradiometer (MISR) generally decreased as land cover changed from

  16. A mass of less than 15 solar masses for the black hole in an ultraluminous X-ray source.

    PubMed

    Motch, C; Pakull, M W; Soria, R; Grisé, F; Pietrzyński, G

    2014-10-09

    Most ultraluminous X-ray sources have a typical set of properties not seen in Galactic stellar-mass black holes. They have luminosities of more than 3 × 10(39) ergs per second, unusually soft X-ray components (with a typical temperature of less than about 0.3 kiloelectronvolts) and a characteristic downturn in their spectra above about 5 kiloelectronvolts. Such puzzling properties have been interpreted either as evidence of intermediate-mass black holes or as emission from stellar-mass black holes accreting above their Eddington limit, analogous to some Galactic black holes at peak luminosity. Recently, a very soft X-ray spectrum was observed in a rare and transient stellar-mass black hole. Here we report that the X-ray source P13 in the galaxy NGC 7793 is in a binary system with a period of about 64 days and exhibits all three canonical properties of ultraluminous sources. By modelling the strong optical and ultraviolet modulations arising from X-ray heating of the B9Ia donor star, we constrain the black hole mass to be less than 15 solar masses. Our results demonstrate that in P13, soft thermal emission and spectral curvature are indeed signatures of supercritical accretion. By analogy, ultraluminous X-ray sources with similar X-ray spectra and luminosities of up to a few times 10(40) ergs per second can be explained by supercritical accretion onto massive stellar-mass black holes.

  17. Differentiating Fragmentation Pathways of Cholesterol by Two-Dimensional Fourier Transform Ion Cyclotron Resonance Mass Spectrometry.

    PubMed

    van Agthoven, Maria A; Barrow, Mark P; Chiron, Lionel; Coutouly, Marie-Aude; Kilgour, David; Wootton, Christopher A; Wei, Juan; Soulby, Andrew; Delsuc, Marc-André; Rolando, Christian; O'Connor, Peter B

    2015-12-01

    Two-dimensional Fourier transform ion cyclotron resonance mass spectrometry is a data-independent analytical method that records the fragmentation patterns of all the compounds in a sample. This study shows the implementation of atmospheric pressure photoionization with two-dimensional (2D) Fourier transform ion cyclotron resonance mass spectrometry. In the resulting 2D mass spectrum, the fragmentation patterns of the radical and protonated species from cholesterol are differentiated. This study shows the use of fragment ion lines, precursor ion lines, and neutral loss lines in the 2D mass spectrum to determine fragmentation mechanisms of known compounds and to gain information on unknown ion species in the spectrum. In concert with high resolution mass spectrometry, 2D Fourier transform ion cyclotron resonance mass spectrometry can be a useful tool for the structural analysis of small molecules. Graphical Abstract ᅟ.

  18. HAWC+/SOFIA observations of Rho Oph A: far-infrared polarization spectrum

    NASA Astrophysics Data System (ADS)

    Santos, Fabio; Dowell, Charles D.; Houde, Martin; Looney, Leslie; Lopez-Rodriguez, Enrique; Novak, Giles; Ward-Thompson, Derek; HAWC+ Science Team

    2018-01-01

    In this work, we present preliminary results from the HAWC+ far-infrared polarimeter that operates on the SOFIA airborne observatory. The densest portions of the Rho Ophiuchi molecular complex, known as Rho Oph A, have been mapped using HAWC+ bands C (89 microns) and D (155 microns). Rho Oph A is a well known nearby star forming region. At the target's distance of approximately 130 pc, our observations provide excellent spatial resolution (~5 mpc in band C).The magnetic field map suggests a compressed and distorted field morphology around Oph S1, a massive B3 star that is the main heat source of Rho Oph A. We compute the ratio p(D)/p(C), where p(C) and p(D) are the polarization degree maps at bands C and D, respectively. This ratio estimates the slope of the polarization spectrum in the far-infrared. Although the slope is predicted to be positive by dust grain models, previous observations of other molecular clouds have revealed that negative slopes are common. In Rho Oph A, we find that there is a smooth gradient of p(D)/p(C) across the mapped field. The change in p(D)/p(C) is well correlated with the integrated NH3 (1,1) emission. A positive slope dominates the lower density and well illuminated portions of the cloud, whereas a transition to a negative slope is observed at the denser and less evenly illuminated cloud core.We interpret the positive to negative slope transition as being consistent with the radiative torques (RATs) grain alignment theory. For the sight lines of higher column density, polarized emission from the warmer outer cloud layers is added to emission from the colder inner well-shielded layers lying along the same line-of-sight. Given that the outer layers receive more radiation from Oph S1, their grain alignment efficiency is expected to be higher according to RATs. The combination of warmer, well aligned grains with cooler, poorly aligned grains is what causes the negative slope. This effect is not present in the sight lines of lower column

  19. Constraints on the Mass and Location of Planet 9 set by Range and VLBI Observations of Cassini

    NASA Astrophysics Data System (ADS)

    Jacobson, Robert Arthur; Folkner, William; Park, Ryan; Williams, James

    2018-04-01

    Batygin and Brown, 2016 AJ, found that Kuiper belt objects (KBOs) with well determined orbits having periods greater than 4000 years are apsidally aligned. They attribute this orbital clustering to the existence of a distant planet, Planet 9, well beyond Neptune, with a mass roughly ten times that of Earth. If such a planet exists, it would affect the motion of the known solar system planets, in particular Saturn, which is well observed with radiometric ranging from the Cassini spacecraft and VLBI observations of Cassini. The current planetary ephemerides do not account for the postulated Planet 9, yet their fit to the observational data shows no obvious effect that could be attributed to neglecting that planet. However, it is possible that the effect could be absorbed by the estimated parameters used to determine the ephemerides. Those parameters include the planetary orbital elements, mass of the Sun, and the masses of the asteroids that perturb the Martian orbit. We recently updated the Cassini data set and extended it through the end of the mssion in 2017 September. We analyze the sensitivity of these data to the tidal perturbations caused by the postulated Planet 9 for a range of positions on the sky and tidal parameters (the ratio of the mass of Planet 9 to the cube of its distance from Saturn). We determine an upper bound on the tidal parameter and the most probable directions consistent with the observational data.

  20. Sheldon spectrum and the plankton paradox: two sides of the same coin-a trait-based plankton size-spectrum model.

    PubMed

    Cuesta, José A; Delius, Gustav W; Law, Richard

    2018-01-01

    The Sheldon spectrum describes a remarkable regularity in aquatic ecosystems: the biomass density as a function of logarithmic body mass is approximately constant over many orders of magnitude. While size-spectrum models have explained this phenomenon for assemblages of multicellular organisms, this paper introduces a species-resolved size-spectrum model to explain the phenomenon in unicellular plankton. A Sheldon spectrum spanning the cell-size range of unicellular plankton necessarily consists of a large number of coexisting species covering a wide range of characteristic sizes. The coexistence of many phytoplankton species feeding on a small number of resources is known as the Paradox of the Plankton. Our model resolves the paradox by showing that coexistence is facilitated by the allometric scaling of four physiological rates. Two of the allometries have empirical support, the remaining two emerge from predator-prey interactions exactly when the abundances follow a Sheldon spectrum. Our plankton model is a scale-invariant trait-based size-spectrum model: it describes the abundance of phyto- and zooplankton cells as a function of both size and species trait (the maximal size before cell division). It incorporates growth due to resource consumption and predation on smaller cells, death due to predation, and a flexible cell division process. We give analytic solutions at steady state for both the within-species size distributions and the relative abundances across species.

  1. The Colorado Ultraviolet Transit Experiment (CUTE): Observing Mass Loss on Short-Period Exoplanets

    NASA Astrophysics Data System (ADS)

    Egan, Arika; Fleming, Brian; France, Kevin

    2018-06-01

    The Colorado Ultraviolet Transit Experiment (CUTE) is an NUV spectrograph packaged into a 6U CubeSat, designed to characterize the interaction between exoplanetary atmospheres and their host stars. CUTE will conduct a transit spectroscopy survey, gathering data over multiple transits on more than 12 short-period exoplanets with a range of masses and radii. The instrument will characterize the spectral properties of the transit light curves to < 1% depth sensitivity. The NUV is host to several high oscillator strength atomic and molecular absorption features predicted to exist in the upper atmospheres of these planets, including Mg I, Mg II, Fe II, and OH. The shape and evolution of these spectral light curves will be used to quantify mass loss rates, the stellar drives of that mass loss, and the possible existence of exoplanetary magnetic fiends. This poster presents the science motivation for CUTE, planned observation and data analysis methods, and expected results.

  2. Mass Determination of Pluto and Charon from New Horizon REX Radio Science Observations

    NASA Astrophysics Data System (ADS)

    Pätzold, M.; Andert, T. P.; Tyler, G. L.; Bird, M. K.; Hinson, D. H.; Linscott, I. R.

    2013-09-01

    The anticipated 14 July 2015 New Horizons flythrough of the Pluto system provides the first opportunity to determine both the total system mass and the individual masses of Pluto and Charon by direct observation. This will be accomplished by use of: i) two-way Doppler radio frequency tracking data during intervals along the fly-in and -out trajectory, and ii) one-way uplink Doppler frequency recorded by the on-board radio science instrument, REX, during the day of closest approaches to Pluto and Charon. Continuous tracking is not feasible as a result of pointing sharing with the instruments during the encounter phase. Needed radio tracking will be obtained during time slots shared with i) two-way Doppler tracking for navigation, ii) 'plasma rolls' with the spacecraft antenna pointing to Earth, and iii) during the ingress and egress phases of the occultations. Simulations of the NH encounter indicate the potential accuracies of the combined and individual mass determinations of Pluto and Charon in the order of 0.1%.

  3. Mothers' reports of play dates and observation of school playground behavior of children having high-functioning autism spectrum disorders.

    PubMed

    Frankel, Frederick D; Gorospe, Clarissa M; Chang, Ya-Chih; Sugar, Catherine A

    2011-05-01

    Children with high-functioning autism spectrum disorders (ASD) are generally included with typically developing peers at school. They have difficulties interacting with peers on the school playground. Previous literature suggests that having play dates in the home may be related to better peer acceptance at school. This study examines the relationship between mother-reported play date frequency and amount of conflict, and peer interaction observed on the school playground for a sample of 27 boys and 4 girls meeting structured interview and observation criteria for ASD. Measures of intellectual functioning, adaptive behavior, and social skills were included in a stepwise regression analysis to account for their impact on relationships between maternal play date reports, general peer acceptance at school (as rated by the child's teacher) and observations of school playground behavior. Results revealed that children with autism spectrum disorders who had more play dates in their home tended to spend a greater amount of time engaged in behaviors such as mutual offering of objects, conversing and other turn-taking activities with peers on the school playground. They also received more positive responses to their overtures from peers. These relationships remained highly significant even after accounting for other demographic, general social, and cognitive variables. The present results suggest that play date frequency is strongly related to school playground behavior. Owing to the design of this study, future research must assess whether play dates in the home promote better peer relationships on the playground or the reverse. In either case, the assessment of play dates, as well as observation of spontaneous unsupervised social interactions, are important outcome measures to consider in social skills interventions for children with high-functioning ASD. © 2010 The Authors. Journal of Child Psychology and Psychiatry © 2010 Association for Child and Adolescent Mental

  4. Mothers’ Reports of Play Dates and Observation of School Playground Behavior of Children Having High-Functioning Autism Spectrum Disorders

    PubMed Central

    Frankel, Frederick D.; Gorospe, Clarissa M.; Chang, Ya-Chih; Sugar, Catherine A.

    2010-01-01

    Background Children with high functioning autism spectrum disorders (ASD) are generally included with typically developing peers at school. They have difficulties interacting with peers on the school play ground. Previous literature suggests that having play dates in the home may be related to better peer acceptance at school. Methods This study examines the relationship between mother-reported play date frequency and amount of conflict, and peer interaction observed on the school playground for a sample of 27 boys and 4 girls meeting structured interview and observation criteria for ASD. Measures of intellectual functioning, adaptive behavior, and social skills were included in a stepwise regression analysis to account for their impact on relationships between maternal play date reports, general peer acceptance at school (as rated by the child’s teacher) and observations of school playground behavior. Results Results revealed that children with autism spectrum disorders who had more play dates in their home tended to spend a greater amount of time engaged in behaviors such as mutual offering of objects, conversing and other turn taking activities with peers on the school playground. They also received more positive responses to their overtures from peers. These relationships remained highly significant even after accounting for other demographic, general social, and cognitive variables. Conclusions The present results suggest that play date frequency is strongly related to school playground behavior. Due to the design of this study, future research must assess whether play dates in the home promote better peer relationships on the playground or the reverse. In either case, the assessment of play dates, as well as observation of spontaneous unsupervised social interactions are important outcome measures to consider in social skills interventions for children with high functioning ASD. PMID:20860756

  5. A NEW MASS SPECTROMETRIC TECHNIQUE FOR ...

    EPA Pesticide Factsheets

    Most organic compounds are not found in mass spectral libraries and cannot be easily identified from low resolution mass spectra. Ion Composition Elucidation (ICE) utilizes selected ion recording with a double focusing mass spectrometer in a new way to determine exact masses and relative abundances of ions more rapidly and with greater accuracy than by full scanning. These measurements are made as analytes from a complex mixture elute from a GC column into the ion source. The exact masses and relative abundances establish the elemental compositions of the ions in a mass spectrum, which limits the possible identify of the compound sufficiently to make searches of the chemical and commercial literature feasible. ICE has two facets: Mass Peak Profiling from Selected Ion Recording Data (MPPSIRD) for data acquisition and a Profile Generation Model (PGM) for automated data interpretation. NTPSIRD and the PGM will be described and several applications of ICE will be shown: tentative identification of a compound that provided a mass spectrum with I I plausible NIST library matches; confirmation of the presence of temazepam, a sedative and one of the 200 most prescribed drugs in 1999. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this T

  6. REDEFINING THE BOUNDARIES OF INTERPLANETARY CORONAL MASS EJECTIONS FROM OBSERVATIONS AT THE ECLIPTIC PLANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cid, C.; Palacios, J.; Saiz, E.

    2016-09-01

    On 2015 January 6–7, an interplanetary coronal mass ejection (ICME) was observed at L1. This event, which can be associated with a weak and slow coronal mass ejection, allows us to discuss the differences between the boundaries of the magnetic cloud and the compositional boundaries. A fast stream from a solar coronal hole surrounding this ICME offers a unique opportunity to check the boundaries’ process definition and to explain differences between them. Using Wind and ACE data, we perform a complementary analysis involving compositional, magnetic, and kinematic observations providing relevant information regarding the evolution of the ICME as travelling awaymore » from the Sun. We propose erosion, at least at the front boundary of the ICME, as the main reason for the difference between the boundaries, and compositional signatures as the most precise diagnostic tool for the boundaries of ICMEs.« less

  7. High-Frequency Peaks in the Power Spectrum of Solar Velocity Observations from the GOLF Experiment

    NASA Astrophysics Data System (ADS)

    García, R. A.; Pallé, P. L.; Turck-Chièze, S.; Osaki, Y.; Shibahashi, H.; Jefferies, S. M.; Boumier, P.; Gabriel, A. H.; Grec, G.; Robillot, J. M.; Cortés, T. Roca; Ulrich, R. K.

    1998-09-01

    The power spectrum of more than 630 days of full-disk solar velocity data, provided by the GOLF spectrophotometer aboard the Solar and Heliospheric Observatory, has revealed the presence of modelike structure well beyond the acoustic cutoff frequency for the solar atmosphere (νac~5.4 mHz). Similar data produced by full-disk instruments deployed in Earth-based networks (BiSON and IRIS) had not shown any peak structure above νac: this is probably due to the higher levels of noise that are inherent in Earth-based experiments. We show that the observed peak structure (νac<=ν<=7.5 mHz) can be explained by a simple two-wave interference model if the high-frequency waves are partially reflected at the back side of the Sun.

  8. Stellar and Circumstellar Properties of Low-Mass, Young, Subarcsecond Binaries

    NASA Astrophysics Data System (ADS)

    Bruhns, Sara; Prato, L. A.

    2014-01-01

    We present a study of the stellar and circumstellar characteristics of close (< 1''), young (< 2 to 3 Myr), low-mass (<1 solar mass) binary stars in the Taurus star forming region. Low-resolution (R ~ 2000) spectra were taken in the K-band using adaptive optics to separate the observations for each component and identify the individual spectral types, extinction, and K-band excess. Combining these data with stellar luminosities allows us to estimate the stellar masses and ages. We also measured equivalent widths of the hydrogen Brackett gamma line in order to estimate the strength of gas accretion. We obtained spectra for six binary systems with separations from 1'' down to 0.3''. In the CZ Tau binary we found that the fainter secondary star spectrum appears to be of earlier spectral type than the primary; we speculate on the origin of this inversion.

  9. Toward the excited isoscalar meson spectrum from lattice QCD

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; ...

    2013-11-18

    We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to about ~400 MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between light and strange in most J PC channels; one notable exception is the pseudoscalar sector where the approximate SU(3) F octet, singlet structure of the η, η' is reproduced. We extract exotic Jmore » PC states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet qqbar pair, along with non-exotic hybrid mesons embedded in a qq¯-like spectrum.« less

  10. Mass quantization of the Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Vaz, Cenalo; Witten, Louis

    1999-07-01

    We examine the Wheeler-DeWitt equation for a static, eternal Schwarzschild black hole in Kuchař-Brown variables and obtain its energy eigenstates. Consistent solutions vanish in the exterior of the Kruskal manifold and are nonvanishing only in the interior. The system is reminiscent of a particle in a box. States of definite parity avoid the singular geometry by vanishing at the origin. These definite parity states admit a discrete energy spectrum, depending on one quantum number which determines the Arnowitt-Deser-Misner mass of the black hole according to a relation conjectured long ago by Bekenstein M~nMp. If attention is restricted only to these quantized energy states, a black hole is described not only by its mass but also by its parity. States of indefinite parity do not admit a quantized mass spectrum.

  11. Red-Supergiant and Supernova Rate Problems: Implication for the Relic Supernova Neutrino Spectrum

    NASA Astrophysics Data System (ADS)

    Hidaka, J.; Kajino, T.; Mathews, G. J.

    2016-08-01

    Direct observations of core-collapse supernovae (SNe) and their red supergiant (RSG) progenitors suggest that the upper mass limit of RSGs may be only about 16.5{--}18{M}⊙ , while the standard theoretical value is as much as 25{M}⊙ . We investigate the possibility that RSGs with m\\gt 16.5{--}18{M}⊙ end their lives as failed supernovae (fSNe) and analyze their contribution to the relic supernova neutrino spectrum. We show that adopting this mass limit simultaneously solves both the RSG problem and the supernova rate problem. In addition, energetic neutrinos that originated from fSNe are sensitive to the explosion mechanism, and in particular, to the nuclear equation of state (EOS). We show that this solution to the RSG problem might also be used to constrain the EOS for failed supernovae.

  12. Identification of Reactive and Refractory Components of Dissolved Organic Nitrogen by FT-ICR Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cooper, W. T.; Podgorski, D. C.; Osborne, D. M.; Corbett, J.; Chanton, J.

    2010-12-01

    Dissolved organic nitrogen is an often overlooked but potentially significant bioavailable component of dissolved organic matter. Studies of bulk DON turnover have been reported, but the compositions of the reactive and refractory components of DON are largely unknown. Here we show the unique ability of atmospheric pressure photoionization (APPI) coupled to ultrahigh resolution mass spectrometry to identify the reactive and refractory components of DON. Figure 1 is an isolated 0.30 m/z window from an ultrahigh resolution APPI FT-ICR mass spectrum of DON in surface waters draining an agricultural area in South Florida. Using this optimized, negative-ion APPI strategy we have been able to identify the reactive and refractory components of DON in these nitrogen-rich waters. Similar results were observed with samples from soil porewaters in sedge-dominated fens and sphagnum-dominated bogs within the Glacial Lake Agassiz Peatlands (GLAP) of northern Minnesota. Surprisingly, microbes appear to initially use similar enzymatic pathways to degrade DON and DOC, often with little release of nitrogen. Figure 1. Isolated 0.30 m/z window at nominal mass 432 from negative-ion APPI FT-ICR mass spectrum of DOM from waters draining an agricultural area in South Florida. Peaks marked contain nitrogen.

  13. Autistic spectrum disorder, epilepsy, and vagus nerve stimulation.

    PubMed

    Hull, Mariam Mettry; Madhavan, Deepak; Zaroff, Charles M

    2015-08-01

    In individuals with a comorbid autistic spectrum disorder and medically refractory epilepsy, vagus nerve stimulation may offer the potential of seizure control and a positive behavioral side effect profile. We aimed to examine the behavioral side effect profile using longitudinal and quantitative data and review the potential mechanisms behind behavioral changes. We present a case report of a 10-year-old boy with autistic spectrum disorder and epilepsy, who underwent vagus nerve stimulation subsequent to unsuccessful treatment with antiepileptic medication. Following vagus nerve stimulation implantation, initial, if temporary, improvement was observed in seizure control. Modest improvements were also observed in behavior and development, improvements which were observed independent of seizure control. Vagus nerve stimulation in autistic spectrum disorder is associated with modest behavioral improvement, with unidentified etiology, although several candidates for this improvement are evident.

  14. Energy Spectrum of Cosmic-Ray Electron and Positron from 10 GeV to 3 TeV Observed with the Calorimetric Electron Telescope on the International Space Station

    NASA Astrophysics Data System (ADS)

    Adriani, O.; Akaike, Y.; Asano, K.; Asaoka, Y.; Bagliesi, M. G.; Bigongiari, G.; Binns, W. R.; Bonechi, S.; Bongi, M.; Brogi, P.; Buckley, J. H.; Cannady, N.; Castellini, G.; Checchia, C.; Cherry, M. L.; Collazuol, G.; di Felice, V.; Ebisawa, K.; Fuke, H.; Guzik, T. G.; Hams, T.; Hareyama, M.; Hasebe, N.; Hibino, K.; Ichimura, M.; Ioka, K.; Ishizaki, W.; Israel, M. H.; Javaid, A.; Kasahara, K.; Kataoka, J.; Kataoka, R.; Katayose, Y.; Kato, C.; Kawanaka, N.; Kawakubo, Y.; Krawczynski, H. S.; Krizmanic, J. F.; Kuramata, S.; Lomtadze, T.; Maestro, P.; Marrocchesi, P. S.; Messineo, A. M.; Mitchell, J. W.; Miyake, S.; Mizutani, K.; Moiseev, A. A.; Mori, K.; Mori, M.; Mori, N.; Motz, H. M.; Munakata, K.; Murakami, H.; Nakahira, S.; Nishimura, J.; de Nolfo, G. A.; Okuno, S.; Ormes, J. F.; Ozawa, S.; Pacini, L.; Palma, F.; Papini, P.; Penacchioni, A. V.; Rauch, B. F.; Ricciarini, S. B.; Sakai, K.; Sakamoto, T.; Sasaki, M.; Shimizu, Y.; Shiomi, A.; Sparvoli, R.; Spillantini, P.; Stolzi, F.; Takahashi, I.; Takayanagi, M.; Takita, M.; Tamura, T.; Tateyama, N.; Terasawa, T.; Tomida, H.; Torii, S.; Tsunesada, Y.; Uchihori, Y.; Ueno, S.; Vannuccini, E.; Wefel, J. P.; Yamaoka, K.; Yanagita, S.; Yoshida, A.; Yoshida, K.; Yuda, T.; Calet Collaboration

    2017-11-01

    First results of a cosmic-ray electron and positron spectrum from 10 GeV to 3 TeV is presented based upon observations with the CALET instrument on the International Space Station starting in October, 2015. Nearly a half million electron and positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 X0 and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum over 30 GeV can be fit with a single power law with a spectral index of -3.152 ±0.016 (stat+syst ). Possible structure observed above 100 GeV requires further investigation with increased statistics and refined data analysis.

  15. Model independent particle mass measurements in missing energy events at hadron colliders

    NASA Astrophysics Data System (ADS)

    Park, Myeonghun

    2011-12-01

    This dissertation describes several new kinematic methods to measure the masses of new particles in events with missing transverse energy at hadron colliders. Each method relies on the measurement of some feature (a peak or an endpoint) in the distribution of a suitable kinematic variable. The first method makes use of the "Gator" variable s min , whose peak provides a global and fully inclusive measure of the production scale of the new particles. In the early stage of the LHC, this variable can be used both as an estimator and a discriminator for new physics over the standard model backgrounds. The next method studies the invariant mass distributions of the visible decay products from a cascade decay chain and the shapes and endpoints of those distributions. Given a sufficient number of endpoint measurements, one could in principle attempt to invert and solve for the mass spectrum. However, the non-linear character of the relevant coupled quadratic equations often leads to multiple solutions. In addition, there is a combinatorial ambiguity related to the ordering of the decay products from the cascade decay chain. We propose a new set of invariant mass variables which are less sensitive to these problems. We demonstrate how the new particle mass spectrum can be extracted from the measurement of their kinematic endpoints. The remaining methods described in the dissertation are based on "transverse" invariant mass variables like the "Cambridge" transverse mass MT2, the "Sheffield" contrasverse mass MCT and their corresponding one-dimensional projections MT2⊥, M T2||, MCT⊥ , and MCT|| with respect to the upstream transverse momentum U⃗T . The main advantage of all those methods is that they can be applied to very short (single-stage) decay topologies, as well as to a subsystem of the observed event. The methods can also be generalized to the case of non-identical missing particles, as demonstrated in Chapter 7. A complete set of analytical results for the

  16. Herschel-PACS observation of the 10 Myr old T Tauri disk TW Hya. Constraining the disk gas mass

    NASA Astrophysics Data System (ADS)

    Thi, W.-F.; Mathews, G.; Ménard, F.; Woitke, P.; Meeus, G.; Riviere-Marichalar, P.; Pinte, C.; Howard, C. D.; Roberge, A.; Sandell, G.; Pascucci, I.; Riaz, B.; Grady, C. A.; Dent, W. R. F.; Kamp, I.; Duchêne, G.; Augereau, J.-C.; Pantin, E.; Vandenbussche, B.; Tilling, I.; Williams, J. P.; Eiroa, C.; Barrado, D.; Alacid, J. M.; Andrews, S.; Ardila, D. R.; Aresu, G.; Brittain, S.; Ciardi, D. R.; Danchi, W.; Fedele, D.; de Gregorio-Monsalvo, I.; Heras, A.; Huelamo, N.; Krivov, A.; Lebreton, J.; Liseau, R.; Martin-Zaidi, C.; Mendigutía, I.; Montesinos, B.; Mora, A.; Morales-Calderon, M.; Nomura, H.; Phillips, N.; Podio, L.; Poelman, D. R.; Ramsay, S.; Rice, K.; Solano, E.; Walker, H.; White, G. J.; Wright, G.

    2010-07-01

    Planets are formed in disks around young stars. With an age of ~10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, making TW Hya the perfect test case in a large survey of disks with Herschel-PACS to directly study their gaseous component. We aim to constrain the gas and dust mass of the circumstellar disk around TW Hya. We observed the fine-structure lines of [O i] and [C ii] as part of the open-time large program GASPS. We complement this with continuum data and ground-based 12 CO 3-2 and 13CO 3-2 observations. We simultaneously model the continuum and the line fluxes with the 3D Monte-Carlo code MCFOST and the thermo-chemical code ProDiMo to derive the gas and dust masses. We detect the [O i] line at 63 μm. The other lines that were observed, [O i] at 145 μm and [C ii] at 157 μm, are not detected. No extended emission has been found. Preliminary modeling of the photometric and line data assuming [ 12CO] /[ 13CO] = 69 suggests a dust mass for grains with radius <1 mm of ~1.9 × 10-4 M⊙ (total solid mass of 3 × 10-3 M⊙) and a gas mass of (0.5-5) × 10-3 M⊙. The gas-to-dust mass may be lower than the standard interstellar value of 100. Herschel is an ESA space observatory with science instruments provided by Principal Investigator consortia. It is open for proposals for observing time from the worldwide astronomical community.Appendix is only available in electronic form at http://www.aanda.org

  17. Improved mass resolution and mass accuracy in TOF-SIMS spectra and images using argon gas cluster ion beams.

    PubMed

    Shon, Hyun Kyong; Yoon, Sohee; Moon, Jeong Hee; Lee, Tae Geol

    2016-06-09

    The popularity of argon gas cluster ion beams (Ar-GCIB) as primary ion beams in time-of-flight secondary ion mass spectrometry (TOF-SIMS) has increased because the molecular ions of large organic- and biomolecules can be detected with less damage to the sample surfaces. However, Ar-GCIB is limited by poor mass resolution as well as poor mass accuracy. The inferior quality of the mass resolution in a TOF-SIMS spectrum obtained by using Ar-GCIB compared to the one obtained by a bismuth liquid metal cluster ion beam and others makes it difficult to identify unknown peaks because of the mass interference from the neighboring peaks. However, in this study, the authors demonstrate improved mass resolution in TOF-SIMS using Ar-GCIB through the delayed extraction of secondary ions, a method typically used in TOF mass spectrometry to increase mass resolution. As for poor mass accuracy, although mass calibration using internal peaks with low mass such as hydrogen and carbon is a common approach in TOF-SIMS, it is unsuited to the present study because of the disappearance of the low-mass peaks in the delayed extraction mode. To resolve this issue, external mass calibration, another regularly used method in TOF-MS, was adapted to enhance mass accuracy in the spectrum and image generated by TOF-SIMS using Ar-GCIB in the delayed extraction mode. By producing spectra analyses of a peptide mixture and bovine serum albumin protein digested with trypsin, along with image analyses of rat brain samples, the authors demonstrate for the first time the enhancement of mass resolution and mass accuracy for the purpose of analyzing large biomolecules in TOF-SIMS using Ar-GCIB through the use of delayed extraction and external mass calibration.

  18. Autism spectrum disorder: seeing is not understanding.

    PubMed

    Fecteau, Shirley; Lepage, Jean-François; Théoret, Hugo

    2006-02-21

    Impairments in social and emotional skills are a defining feature of autism spectrum disorder. Recent research shows that structural and functional abnormalities within the neural system that matches observation and execution of actions--the mirror neuron system--may explain the social aspects of the pathophysiology of autism spectrum disorder.

  19. Basic Modeling of the Solar Atmosphere and Spectrum

    NASA Technical Reports Server (NTRS)

    Avrett, Eugene; Wagner, William J. (Technical Monitor)

    2003-01-01

    This grant supported the research and publication of a major 26-page paper in The Astrophysical Journal, by Fontenla, Avrett, & Loeser (2002): 'Energy Balance in the Solar Transition Region. IV. Hydrogen and Helium Mass Flows with Diffusion.' This paper extended our previous modeling of the chromosphere-corona transition region to include cases with particle and mass flows. Inflows and outflows were shown to produce striking changes in the profiles of hydrogen and helium lines. An important conclusion is that line shifts are much less significant than the changes in line intensity and central reversal due to the influence of flows on the excitation and ionization of atoms in the solar atmosphere. This modeling effort at SAO is the only current one being undertaken anywhere to simulate in detail the full range of non-LTE absorption, emission, and scattering processes in the solar atmosphere to account for the entire solar spectrum from radio waves to X-rays. This effort is being continued with internal SAO funding at a relatively slow pace. Further NASA support in the future would yield results of great value for the interpretation of solar observations from NASA spacecraft.

  20. Halo Substructure and the Power Spectrum

    NASA Astrophysics Data System (ADS)

    Zentner, Andrew R.; Bullock, James S.

    2003-11-01

    We present a semianalytic model to investigate the merger history, destruction rate, and survival probability of substructure in hierarchically formed dark matter halos and use it to study the substructure content of halos as a function of input primordial power spectrum. For a standard cold dark matter ``concordance'' cosmology (ΛCDM n=1, σ8=0.95) we successfully reproduce the subhalo velocity function and radial distribution profile seen in N-body simulations and determine that the rate of merging and disruption peaks ~10-12 Gyr in the past for Milky Way-like halos, while surviving substructures are typically accreted within the last ~0-8 Gyr. We explore power spectra with normalizations and spectral ``tilts'' spanning the ranges σ8~=1-0.65 and n~=1-0.8, and include a ``running-index'' model with dn/dlnk=-0.03 similar to the best-fit model discussed in the first-year Wilkinson Microwave Anisotropy Probe (WMAP) report. We investigate spectra with truncated small-scale power, including a broken-scale inflation model and three warm dark matter cases with mW=0.75-3.0 keV. We find that the mass fraction in substructure is relatively insensitive to the tilt and overall normalization of the primordial power spectrum. All of the CDM-type models yield projected substructure mass fractions that are consistent with, but on the low side, of published estimates from strong lens systems: f9=0.4%-1.5% (64th percentile) for subhalos smaller than 109 Msolar within projected cylinders of radius r<10 kpc. Truncated models produce significantly smaller fractions, f9=0.02%-0.2% for mW~=1 keV, and are disfavored by lensing estimates. This suggests that lensing and similar probes can provide a robust test of the CDM paradigm and a powerful constraint on broken-scale inflation/warm particle masses, including masses larger than the ~1 keV upper limits of previous studies. We compare our predicted subhalo velocity functions with the dwarf satellite population of the Milky Way. Assuming

  1. From CELSIUS to COSY: on the observation of a dibaryon resonance

    NASA Astrophysics Data System (ADS)

    Clement, H.; Bashkanov, M.; Skorodko, T.

    2015-11-01

    Using a high-quality beam of storage rings in combination with a pellet target and a hermetic WASA detector covering practically the full solid angle, two-pion production in nucleon-nucleon collisions has been systematically studied by exclusive and kinematically complete measurements—first at CELSIUS and subsequently at COSY. These measurements resulted in a detailed understanding of the two-pion production mechanism by t-channel meson exchange. The investigation of the ABC effect, which denotes an unusual low-mass enhancement in the ππ-invariant mass spectrum, in double-pionic fusion reactions led the trace to the observation of a narrow dibaryon resonance with I({J}P)=0({3}+) about 80 MeV below the nominal mass of the conventional Δ Δ system. New neutron-proton scattering data, taken with a polarized beam at COSY, produced a pole in the coupled {}3{D}3-3{G}3 partial waves at (2380+/- 10\\-\\i\\40+/- 5) MeV, establishing thus the first observation of a genuine s-channel dibaryon resonance.

  2. CSO CO (2–1) and Spitzer IRAC observations of a bipolar outflow in high-mass star-forming region IRAS 22506+5944

    NASA Astrophysics Data System (ADS)

    Xie, Ze-Qiang; Qiu, Ke-Ping

    2018-02-01

    We present Caltech Submillimeter Observatory CO (2–1) and Spitzer IRAC observations toward IRAS 22506+5944, which is a 104 L ⊙ massive star-forming region. The CO (2–1) maps show an east-west bipolar molecular outflow originating from the 3 mm dust continuum peak. The Spitzer IRAC color-composite image reveals a pair of bow-shaped tips which are prominent in excess 4.5μm emission and are located at the leading fronts of the bipolar outflow, providing compelling evidence for the existence of bow-shocks as the driving agents of the molecular outflow. By comparing our CO (2–1) observations with previously published CO (1–0) data, we find that the CO (2–1)/(1–0) line ratio increases from low (∼5 kms‑1) to moderate (∼8–12 kms‑1) velocities, and then decreases at higher velocities. This is qualitatively consistent with the scenario that the molecular outflow is driven by multiple bow-shocks. We also revisit the position-velocity diagram of the CO (1–0) data, and find two spur structures along the outflow axis, which are further evidence for the presence of multiple jet bowshocks. Finally, power-law fittings to the mass spectrum of the outflow gives power law indexes more consistent with the jet bow-shock model than the wide-angle wind model.

  3. CO observations of southern mergers

    NASA Technical Reports Server (NTRS)

    Casoli, F.; Dupraz, C.; Combes, F.

    1990-01-01

    There are good reasons to believe that the formation of some elliptical galaxies result from the merging of two disk galaxies, as Toomre and Toomre first suggested (1972, Ap. J. 178, 623). Such a process strongly enhances the star-formation activity of the system, thus consuming its molecular gas. This might account for the low cold-gas content of elliptical galaxies compared to that of spirals. Researchers present here CO(1-0) and CO(2-1) observations of a sequence of three objects, NGC 1614, NGC 3256, and NGC 7252, that present characteristic features of merger remnants: single body and extended tidal tails. NGC 3256 and 7252 even exhibit the r(exp 1/4) radial light distribution that is the signature of elliptical galaxies, which indicates that their stellar bodies are in late stages of relaxation. Both NGC 1614 and NGC 3256 undergo extended bursts of star formation revealed by their large far-infrared luminosities, and by the presence in the near-infrared spectrum of the 3.28 microns feature (Morwood: 1986, A. A. 166, 4) attributed to polycyclic aromatic hydrocarbons. On the other hand, NGC 7252 has a milder activity of star formation, as suggested by a lower infrared luminosity, and thus seems to have gone past the starburst phase. The CO data were collected with the Swedish-ESO 15 m Submillimeter Telescope (SEST) (beamsize = 43 seconds at 115 GHz, 23 seconds at 230 GHz). For NGC 7252, researchers have only observed the central position in CO-12(1-0). The spectrum is displayed together with an HI spectrum obtained with the Nancay radiotelescope. Researchers mapped NGC 1614 and NGC 3256 in CO-12(1-0) and CO-12(2-1), and also observed the nucleus of NGC 3256 in CO-13(1-0). The various CO spectra obtained towards the nuclei of both galaxies are presented. Characteristics of the galaxies are gathered, with luminosities and masses in solar units and temperatures in Kelvins.

  4. Relationship between Intensity of Fullerene-Mass Spectrum and Carbon Vibrational Temperature in Microwave-Helium Plasmas

    NASA Astrophysics Data System (ADS)

    Ueda, Kengo; Kuwahara, Kiyoshi; Fujiyama, Hiroshi

    1999-07-01

    Soot containing fullerenes, such as C60 and C70, was synthesized with He plasmas generated in a quartz tube by microwave-glow discharge. A reticulated vitreous carbon (RVC) heated by the microwave He plasmas with an electric field of TE10 mode was used as the carbon source. Swan bands of C2 molecules were observed during the synthesis by optical emission spectroscopy (OES) in order to investigate the effect of the vibrational temperature of C2 molecules on the formation of the fullerenes. The soot deposited on the quartz tube was analyzed by laser desorption time-of-flight mass-spectroscopy (LD-TOF-MS). The intensities of the mass spectra of fullerenes were confirmed to be maximum for the conditions as follows: the absorbed microwave power Pab=200 W and the He gas pressure P=100 Torr, while the C2 vibrational temperature was approximately 7000 K.

  5. Charon/Pluto Mass Ratio Obtained with HST CCD Observations in 1991 and 1993

    NASA Technical Reports Server (NTRS)

    Null, George W.

    1995-01-01

    We have analyzed Hubble Space Telescope wide field camera observations of Pluto, Charon, and a reference star, acquired in 1991 and 1993, to observe Pluto's barycentric motion and determine the Charon/Pluto mass ratio, q = 0.1237 +/-0.0081, with 6.5% accuracy. Solution values for Charon orbital elements include the semimajor axis, a = 19662 +/-81 km; inclination, i = 96.57 +/-0.24 deg; eccentricity, e = 0.0072 +/-0.0067; longitude of periapsis, w = 2 +/-35 deg; and mean longitude, l = 123.58 +/-0.43 deg. These elements are referred to the J2000 Earth equator and equinox at epoch JED 2446600.5.

  6. Spectrum response estimation for deep-water floating platforms via retardation function representation

    NASA Astrophysics Data System (ADS)

    Liu, Fushun; Liu, Chengcheng; Chen, Jiefeng; Wang, Bin

    2017-08-01

    The key concept of spectrum response estimation with commercial software, such as the SESAM software tool, typically includes two main steps: finding a suitable loading spectrum and computing the response amplitude operators (RAOs) subjected to a frequency-specified wave component. In this paper, we propose a nontraditional spectrum response estimation method that uses a numerical representation of the retardation functions. Based on estimated added mass and damping matrices of the structure, we decompose and replace the convolution terms with a series of poles and corresponding residues in the Laplace domain. Then, we estimate the power density corresponding to each frequency component using the improved periodogram method. The advantage of this approach is that the frequency-dependent motion equations in the time domain can be transformed into the Laplace domain without requiring Laplace-domain expressions for the added mass and damping. To validate the proposed method, we use a numerical semi-submerged pontoon from the SESAM. The numerical results show that the responses of the proposed method match well with those obtained from the traditional method. Furthermore, the estimated spectrum also matches well, which indicates its potential application to deep-water floating structures.

  7. Mass spectrum of mesons in the quasi-potential approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goloskokov, S.V.; Kuleshov, S.P.; Sidorov, A.V.

    1980-01-20

    The masses of J/ psi and ..gamma.. mesons are calculated by using the the quasi-potential Logunov--Tavkhelidze equation. The potential was chosen in the form V(r)=sigmar. A good agreement with the experiment is obtained.

  8. A rapid novel derivatization of amphetamine and methamphetamine using 2,2,2-trichloroethyl chloroformate for gas chromatography electron ionization and chemical ionization mass spectrometric analysis.

    PubMed

    Dasgupta, A; Spies, J

    1998-05-01

    Amphetamine and methamphetamine are commonly abused central nervous system stimulants. We describe a rapid new derivatization of amphetamine and methamphetamine using 2,2,2-trichloroethyl chloroformate for gas chromatography-mass spectrometric analysis. Amphetamine and methamphetamine, along with N-propyl amphetamine (internal standard), were extracted from urine using 1-chlorobutane. The derivatization with 2,2,2-trichloroethyl chloroformate can be achieved at room temperature in 10 minutes. The electron ionization mass spectrum of amphetamine 2,2,2-trichloroethyl carbamate showed two weak molecular ions at m/z 309 and 311, but showed diagnostic strong peaks at m/z 218, 220, and 222. In contrast, chemical ionization of the mass spectrum of amphetamine 2,2,2-trichloroethyl carbamate showed strong (M + 1) ions at m/z 310 and 312 and other strong diagnostic peaks at m/z 274 and 276. The major advantages of this derivative are the presence of a diagnostic cluster of peaks due to the isotopic effect of three chlorine atoms (isotopes 35 and 37) in the derivatized molecule and the relative ease of its preparation. We also observed strong molecular ions for derivatized methamphetamine in the chemical ionization mass spectrum, but the molecular ions were very weak in the electron ionization mass spectrum. We used the scan mode of mass spectrometry in all analyses. When using a urine standard containing 1,000 ng/mL of amphetamine (a 7.4-micromol/L concentration) and methamphetamine (a 6.7-micromol/L concentration), the within-run precisions were 4.8% for amphetamine and 3.6% for methamphetamine. The corresponding between-run precisions were 5.3% for amphetamine and 6.7% for methamphetamine. The assay was linear for amphetamine and methamphetamine concentrations of 250 to 5,000 ng/mL (amphetamine, 1.9-37.0 micromol/L; methamphetamine, 1.7-33.6 micromol/L). The detection limit was 100 ng/mL (amphetamine, 0.74 micromol/L; methamphetamine, 0.67 micromol/L) using the scan mode

  9. The Solar Spectrum on the Martian Surface and its Effect on Photovoltaic Performance

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hyatt, Daniel

    2007-01-01

    Solar cells operating on the surface of Mars receive a spectrum of illumination different from the AM0 spectrum, since the sunlight is filtered by dust suspended in the atmosphere. This spectrum changes with the amount of dust in the atmosphere, as well as with air mass change due to time of day and season. This spectral variation affects the performance of solar cells. We used data from Mars Exploration Rovers to measure this spectrum. By comparing the measured intensity with the known reflectance of the pancam calibration target on the rovers Spirit and Opportunity, we measure the solar spectrum reaching the surface. The effect of this spectrum on the performance of solar cells is then calculated based on the spectral response of several different solar cell types.

  10. The Solar Spectrum on the Martian Surface and Its Effect on Photovoltaic Performance

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hyatt, Dan

    2006-01-01

    Solar cells operating on the surface of Mars receive a spectrum of illumination different from the AM0 spectrum, since the sunlight is filtered by dust suspended in the atmosphere. This spectrum changes with the amount of dust in the atmosphere, as well as with air mass change due to time of day and season. This spectral variation affects the performance of solar cells. We used data from Mars Exploration Rovers to measure this spectrum. By comparing the measured intensity with the known reflectance of the pancam calibration target on the rovers Spirit and Opportunity, we measure the solar spectrum reaching the surface. The effect of this spectrum on the performance of solar cells is then calculated based on the spectral response of several different solar cell types.

  11. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Hemberger, D.; Kidder, L. E.; Lovelace, G.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; LIGO Scientific Collaboration; VIRGO Collaboration

    2016-06-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ . The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3. 4-0.9+0.7×10-22 . The inferred source-frame initial black hole masses are 14.2-3.7+8.3 M⊙ and 7. 5-2.3+2.3 M⊙, and the final black hole mass is 20.8-1.7+6.1 M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 44 0-190+180 Mpc corresponding to a redshift of 0.0 9-0.04+0.03. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  12. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S

    2016-06-17

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180}  Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  13. An Fe XXVI Absorption Line in the Persistent Spectrum of the Dipping Low Mass X-ray Binary 1A 1744-361

    NASA Technical Reports Server (NTRS)

    Gavriil, Fotis P.; Strohmayer, Tod E.; Bhattacharyya, Sudip

    2009-01-01

    We report on Chandra X-ray Observatory (CXO) High-Energy Transmission Grating (HETG) spectra of the dipping Low Mass X-ray Binary (LMXB) 1A 1744-361 during its July 2008 outburst. We find that its persistent emission is well modeled by a blackbody (kT approx. 1.0 keV) plus power-law (Gamma approx. 1.7) with an absorption edge at 7.6 keV. In the residuals of the combined spectrum we find a significant absorption line at 6.961+/-0.002 keV, consistent with the Fe XXVI (hydrogen-like Fe) 2 - 1 transition. We place an upper limit on the velocity of a redshifted flow of v < 221 km/s. We find an equivalent width for the line of 27+2/-3 eV, from which we determine a column density of 7+/-1 x 10(exp 17)/sq cm via a curve-of-growth analysis. Using XSTAR simulations, we place a lower limit on the ionization parameter of > 10(exp 3.6) erg cm/s. The properties of this line are consistent with those observed in other dipping LMXBs. Using Rossi X-ray Timing Explorer (RXTE) data accumulated during this latest outburst we present an updated color-color diagram which clearly shows that IA 1744-361 is an "atoll" source. Finally, using additional dips found in the RXTE and CXO data we provide an updated orbital period estimate of 52+/-5 minutes.

  14. A new method to quantify the effects of baryons on the matter power spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, Aurel; Teyssier, Romain, E-mail: aurel@physik.uzh.ch, E-mail: teyssier@physik.uzh.ch

    2015-12-01

    Future large-scale galaxy surveys have the potential to become leading probes for cosmology provided the influence of baryons on the total mass distribution is understood well enough. As hydrodynamical simulations strongly depend on details in the feedback implementations, no unique and robust predictions for baryonic effects currently exist. In this paper we propose a baryonic correction model that modifies the density field of dark-matter-only N-body simulations to mimic the effects of baryons from any underlying adopted feedback recipe. The model assumes haloes to consist of 4 components: 1- hot gas in hydrostatical equilibrium, 2- ejected gas from feedback processes, 3-more » central galaxy stars, and 4- adiabatically relaxed dark matter, which all modify the initial dark-matter-only density profiles. These altered profiles allow to define a displacement field for particles in N-body simulations and to modify the total density field accordingly. The main advantage of the baryonic correction model is to connect the total matter density field to the observable distribution of gas and stars in haloes, making it possible to parametrise baryonic effects on the matter power spectrum. We show that the most crucial quantities are the mass fraction of ejected gas and its corresponding ejection radius. The former controls how strongly baryons suppress the power spectrum, while the latter provides a measure of the scale where baryonic effects become important. A comparison with X-ray and Sunyaev-Zel'dovich cluster observations suggests that baryons suppress wave modes above k∼0.5 h/Mpc with a maximum suppression of 10-25 percent around k∼ 2 h/Mpc. More detailed observations of the gas in the outskirts of groups and clusters are required to decrease the large uncertainties of these numbers.« less

  15. Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations

    NASA Astrophysics Data System (ADS)

    Barandun, Martina; Huss, Matthias; Usubaliev, Ryskul; Azisov, Erlan; Berthier, Etienne; Kääb, Andreas; Bolch, Tobias; Hoelzle, Martin

    2018-06-01

    Glacier surface mass balance observations in the Tien Shan and Pamir are relatively sparse and often discontinuous. Nevertheless, glaciers are one of the most important components of the high-mountain cryosphere in the region as they strongly influence water availability in the arid, continental and intensely populated downstream areas. This study provides reliable and continuous surface mass balance series for selected glaciers located in the Tien Shan and Pamir-Alay. By cross-validating the results of three independent methods, we reconstructed the mass balance of the three benchmark glaciers, Abramov, Golubin and Glacier no. 354 for the past 2 decades. By applying different approaches, it was possible to compensate for the limitations and shortcomings of each individual method. This study proposes the use of transient snow line observations throughout the melt season obtained from satellite optical imagery and terrestrial automatic cameras. By combining modelling with remotely acquired information on summer snow depletion, it was possible to infer glacier mass changes for unmeasured years. The model is initialized with daily temperature and precipitation data collected at automatic weather stations in the vicinity of the glacier or with adjusted data from climate reanalysis products. Multi-annual mass changes based on high-resolution digital elevation models and in situ glaciological surveys were used to validate the results for the investigated glaciers. Substantial surface mass loss was confirmed for the three studied glaciers by all three methods, ranging from -0.30 ± 0.19 to -0.41 ± 0.33 m w.e. yr-1 over the 2004-2016 period. Our results indicate that integration of snow line observations into mass balance modelling significantly narrows the uncertainty ranges of the estimates. Hence, this highlights the potential of the methodology for application to unmonitored glaciers at larger scales for which no direct measurements are available.

  16. The optimally sampled galaxy-wide stellar initial mass function. Observational tests and the publicly available GalIMF code

    NASA Astrophysics Data System (ADS)

    Yan, Zhiqiang; Jerabkova, Tereza; Kroupa, Pavel

    2017-11-01

    Here we present a full description of the integrated galaxy-wide initial mass function (IGIMF) theory in terms of the optimal sampling and compare it with available observations. Optimal sampling is the method we use to discretize the IMF deterministically into stellar masses. Evidence indicates that nature may be closer to deterministic sampling as observations suggest a smaller scatter of various relevant observables than random sampling would give, which may result from a high level of self-regulation during the star formation process. We document the variation of IGIMFs under various assumptions. The results of the IGIMF theory are consistent with the empirical relation between the total mass of a star cluster and the mass of its most massive star, and the empirical relation between the star formation rate (SFR) of a galaxy and the mass of its most massive cluster. Particularly, we note a natural agreement with the empirical relation between the IMF power-law index and the SFR of a galaxy. The IGIMF also results in a relation between the SFR of a galaxy and the mass of its most massive star such that, if there were no binaries, galaxies with SFR < 10-4M⊙/yr should host no Type II supernova events. In addition, a specific list of initial stellar masses can be useful in numerical simulations of stellar systems. For the first time, we show optimally sampled galaxy-wide IMFs (OSGIMF) that mimic the IGIMF with an additional serrated feature. Finally, a Python module, GalIMF, is provided allowing the calculation of the IGIMF and OSGIMF dependent on the galaxy-wide SFR and metallicity. A copy of the python code model is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A126

  17. The Role of the Autism Diagnostic Observation Schedule in the Assessment of Autism Spectrum Disorders in School and Community Settings.

    PubMed

    Akshoomoff, Natacha; Corsello, Christina; Schmidt, Heather

    2006-01-01

    Autism diagnostic practices among school and clinical psychologists, particularly those using the Autism Diagnostic Observation Schedule (ADOS), were examined using national survey results (N = 132). School and clinical psychologists were similar in following the Best Practice Guidelines for screening, diagnosis and assessment, School psychologists were more likely to include a school or home observation and teacher report than clinical psychologists but evaluated significantly fewer children with autism spectrum disorders per year compared to clinical psychologists. School psychologists who were ADOS users were more likely to consider themselves autism experts and include a review of records than ADOS non-users. Perceived advantages of the ADOS included its strength in capturing ASD-specific behaviors and the standardized structure provided for observation, while diagnostic discrimination and required resources were the most commonly identified disadvantages.

  18. Mass Determination of Pluto and Charon from New Horizon REX Radio Science Observations

    NASA Astrophysics Data System (ADS)

    Paetzold, Martin; Andert, T. P.; Tyler, G.; Bird, M. K.; Hinson, D. P.; Linscott, I. R.

    2013-10-01

    The anticipated 14 July 2015 New Horizons fly-through of the Pluto system provides the first opportunity to determine both the total system mass and the individual masses of Pluto and Charon by direct observation. This will be accomplished by use of: i) two-way Doppler radio frequency tracking data during intervals along the fly-in and -out trajectory, and ii) one-way uplink Doppler frequency recorded by the on-board radio science instrument, REX, during the day of closest approaches to Pluto and Charon. Continuous tracking is not feasible as a result of pointing sharing with the instruments during the encounter phase. Needed radio tracking will be obtained during time slots shared with i) two-way Doppler tracking for navigation, ii) 'plasma rolls' with the spacecraft antenna pointing to Earth, and iii) during the ingress and egress phases of the occultations. Simulations of the NH encounter indicate the potential accuracies of the combined and individual mass determinations of Pluto and Charon in the order of 0.1%.

  19. A survey of mass-loss effects in early-type stars

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.

    1976-01-01

    Intermediate-resolution data obtained with the Copernicus satellite are surveyed in order to define the region in the H-R diagram where mass loss occurs. The survey includes 40 stars, providing good coverage of supergiants from O4 to A2 and main-sequence stars from O4 to B7 as well as spotty coverage of late O giants and intermediate to late B stars. The spectral transitions examined are primarily resonance lines of ions of abundant elements plus some lines arising from excited states (e.g., C III at 1175.7 A and Si IV at 1122.5 A). Observed P Cygni profiles are discussed along with interesting features of some individual profiles. The data are shown to indicate that mass-loss effects occur over a wide portion of the H-R diagram, that mass ejection generally occurs when the holometric magnitude is greater than -6.0, and that the mass-ejection rate is usually high enough to produce P Cygni profile whenever the N V feature at 1240 A is present in a spectrum.

  20. Primordial Black Holes: Observational characteristics of the final evaporation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ukwatta, T. N.; Stump, D. R.; Linnemann, J. T.

    For many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to 105 solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. Moreover, the final moments of this evaporation phase should be explosive and its description is dependent on the particle physics model. In this work we investigatemore » the final few seconds of BH evaporation, using the Standard Model and incorporating the most recent Large Hadron Collider (LHC) results, and provide a new parameterization for the instantaneous emission spectrum. We calculate for the first time energy-dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures. We have found a unique signature in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray observatories such as the High Altitude Water Cerenkov (HAWC) observatory. Finally, the implications of beyond the Standard Model theories on the PBH burst observational characteristics are also discussed, including potential sensitivity of the instantaneous photon detection rate to a squark threshold in the 5–10 TeV range.« less

  1. Primordial Black Holes: Observational characteristics of the final evaporation

    DOE PAGES

    Ukwatta, T. N.; Stump, D. R.; Linnemann, J. T.; ...

    2016-07-01

    For many early universe theories predict the creation of Primordial Black Holes (PBHs). PBHs could have masses ranging from the Planck mass to 105 solar masses or higher depending on the size of the universe at formation. A Black Hole (BH) has a Hawking temperature which is inversely proportional to its mass. Hence a sufficiently small BH will quasi-thermally radiate particles at an ever-increasing rate as emission lowers its mass and raises its temperature. Moreover, the final moments of this evaporation phase should be explosive and its description is dependent on the particle physics model. In this work we investigatemore » the final few seconds of BH evaporation, using the Standard Model and incorporating the most recent Large Hadron Collider (LHC) results, and provide a new parameterization for the instantaneous emission spectrum. We calculate for the first time energy-dependent PBH burst light curves in the GeV/TeV energy range. Moreover, we explore PBH burst search methods and potential observational PBH burst signatures. We have found a unique signature in the PBH burst light curves that may be detectable by GeV/TeV gamma-ray observatories such as the High Altitude Water Cerenkov (HAWC) observatory. Finally, the implications of beyond the Standard Model theories on the PBH burst observational characteristics are also discussed, including potential sensitivity of the instantaneous photon detection rate to a squark threshold in the 5–10 TeV range.« less

  2. Highly sensitive solids mass spectrometer uses inert-gas ion source

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Mass spectrometer provides a recorded analysis of solid material surfaces and bulk. A beam of high-energy inert-gas ions bombards the surface atoms of a sample and converts a percentage into an ionized vapor. The mass spectrum analyzer separates the vapor ionic constituents by mass-to-charge ratio.

  3. Direct Spectrum of the Benchmark T Dwarf HD 19467 B

    NASA Astrophysics Data System (ADS)

    Crepp, Justin R.; Rice, Emily L.; Veicht, Aaron; Aguilar, Jonathan; Pueyo, Laurent; Giorla, Paige; Nilsson, Ricky; Luszcz-Cook, Statia H.; Oppenheimer, Rebecca; Hinkley, Sasha; Brenner, Douglas; Vasisht, Gautam; Cady, Eric; Beichman, Charles A.; Hillenbrand, Lynne A.; Lockhart, Thomas; Matthews, Christopher T.; Roberts, Lewis C., Jr.; Sivaramakrishnan, Anand; Soummer, Remi; Zhai, Chengxing

    2015-01-01

    HD 19467 B is presently the only directly imaged T dwarf companion known to induce a measurable Doppler acceleration around a solar-type star. We present spectroscopy measurements of this important benchmark object taken with the Project 1640 integral field unit at Palomar Observatory. Our high-contrast R ≈ 30 observations obtained simultaneously across the JH bands confirm the cold nature of the companion as reported from the discovery article and determine its spectral type for the first time. Fitting the measured spectral energy distribution to SpeX/IRTF T dwarf standards and synthetic spectra from BT-Settl atmospheric models, we find that HD 19467 B is a T5.5 ± 1 dwarf with effective temperature T_eff=978+20-43 K. Our observations reveal significant methane absorption affirming its substellar nature. HD 19467 B shows promise to become the first T dwarf that simultaneously reveals its mass, age, and metallicity independent from the spectrum of light that it emits.

  4. Mass Spectrometer for Airborne Micro-Organisms

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1986-01-01

    Bacteria and other micro-organisms identified continously with aid of new technique for producing samples for mass spectrometer. Technique generates aerosol of organisms and feeds to spectrometer. Given species of organism produces characteristic set of peaks in mass spectrum and thereby identified. Technique useful for monitoring bacterial makeup in environmental studies and in places where cleanliness is essential, such as hospital operating rooms, breweries, and pharmaceutical plants.

  5. Altered metabolites in the plasma of autism spectrum disorder: a capillary electrophoresis time-of-flight mass spectroscopy study.

    PubMed

    Kuwabara, Hitoshi; Yamasue, Hidenori; Koike, Shinsuke; Inoue, Hideyuki; Kawakubo, Yuki; Kuroda, Miho; Takano, Yosuke; Iwashiro, Norichika; Natsubori, Tatsunobu; Aoki, Yuta; Kano, Yukiko; Kasai, Kiyoto

    2013-01-01

    Clinical diagnosis and severity of autism spectrum disorders (ASD) are determined by trained clinicians based on clinical evaluations of observed behaviors. As such, this approach is inevitably dependent on the expertise and subjective assessment of those administering the clinical evaluations. There is a need to identify objective biological markers associated with diagnosis or clinical severity of the disorder. To identify novel candidate metabolites as potential biomarkers for ASD, the current study applied capillary electrophoresis time-of-flight mass spectroscopy (CE-TOFMS) for high-throughput profiling of metabolite levels in the plasma of 25 psychotropic-naïve adult males with high-functioning ASD and 28 age-matched typically-developed control subjects. Ten ASD participants and ten age-matched controls were assigned in the first exploration set, while 15 ASD participants and 18 controls were included in the second replication set. By CE-TOFMS analysis, a total of 143 metabolites were detected in the plasma of the first set. Of these, 17 metabolites showed significantly different relative areas between the ASD participants and the controls (p<0.05). Of the 17 metabolites, we consistently found that the ASD participants had significantly high plasma levels of arginine (p = 0.024) and taurine (p = 0.018), and significantly low levels of 5-oxoproline (p<0.001) and lactic acid (p = 0.031) compared with the controls in the second sample set. Further confirmatory analysis using quantification of absolute metabolite concentrations supported the robustness of high arginine (p = 0.001) and low lactic acid (p = 0.003) in the combined sample (n = 53). The present study identified deviated plasma metabolite levels associated with oxidative stress and mitochondrial dysfunction in individuals with ASD.

  6. Altered Metabolites in the Plasma of Autism Spectrum Disorder: A Capillary Electrophoresis Time-of-Flight Mass Spectroscopy Study

    PubMed Central

    Kuwabara, Hitoshi; Yamasue, Hidenori; Koike, Shinsuke; Inoue, Hideyuki; Kawakubo, Yuki; Kuroda, Miho; Takano, Yosuke; Iwashiro, Norichika; Natsubori, Tatsunobu; Aoki, Yuta; Kano, Yukiko; Kasai, Kiyoto

    2013-01-01

    Clinical diagnosis and severity of autism spectrum disorders (ASD) are determined by trained clinicians based on clinical evaluations of observed behaviors. As such, this approach is inevitably dependent on the expertise and subjective assessment of those administering the clinical evaluations. There is a need to identify objective biological markers associated with diagnosis or clinical severity of the disorder. To identify novel candidate metabolites as potential biomarkers for ASD, the current study applied capillary electrophoresis time-of-flight mass spectroscopy (CE-TOFMS) for high-throughput profiling of metabolite levels in the plasma of 25 psychotropic-naïve adult males with high-functioning ASD and 28 age-matched typically-developed control subjects. Ten ASD participants and ten age-matched controls were assigned in the first exploration set, while 15 ASD participants and 18 controls were included in the second replication set. By CE-TOFMS analysis, a total of 143 metabolites were detected in the plasma of the first set. Of these, 17 metabolites showed significantly different relative areas between the ASD participants and the controls (p<0.05). Of the 17 metabolites, we consistently found that the ASD participants had significantly high plasma levels of arginine (p = 0.024) and taurine (p = 0.018), and significantly low levels of 5-oxoproline (p<0.001) and lactic acid (p = 0.031) compared with the controls in the second sample set. Further confirmatory analysis using quantification of absolute metabolite concentrations supported the robustness of high arginine (p = 0.001) and low lactic acid (p = 0.003) in the combined sample (n = 53). The present study identified deviated plasma metabolite levels associated with oxidative stress and mitochondrial dysfunction in individuals with ASD. PMID:24058493

  7. Primary Energy Spectrum as Reconstructed from S(500) Measurements by KASCADE-Grande

    NASA Astrophysics Data System (ADS)

    Toma, G.; Apel, W. D.; Arteaga, J. C.; Badea, F.; Bekk, K.; Bertaina, M.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Brüggemann, M.; Buchholz, P.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Finger, M.; Fuhrmann, D.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kickelbick, D.; Klages, H. O.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Navarra, G.; Nehls, S.; Oehlschläger, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schröder, F.; Sima, O.; Stümpert, M.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Wommer, M.; Zabierowski, J.

    2010-01-01

    In cosmic ray investigations by observations of extensive air showers (EAS) the general question arises how to relate the registered EAS observables to the energy of the primary particle from the cosmos entering into the atmosphere. We present results on the reconstruction of the primary energy spectrum of cosmic rays from the experimentally recorded S(500) observable using the KASCADE-Grande detector array. The KASCADE-Grande experiment is installed in Forschungszentrum Karlsruhe, Germany, and driven by an international collaboration. Previous EAS investigations have shown that for a fixed energy the charged particle density becomes independent of the primary mass at certain distances from the shower core. This feature can be used as an estimator for the primary energy. The particular radial distance from the shower core where this effect shows up is a characteristic of the detector. For the KASCADE-Grande experiment it was shown to be around 500 m, hence a notation S(500). Extensive simulation studies have shown that S(500) is mapping the primary energy. The constant intensity cut (CIC) method is applied to evaluate the attenuation of the S(500) observable with the zenith angle. An attenuation correction is applied and all recorded S(500) values are corrected for attenuation. A calibration of S(500) values with the primary energy has been worked out by simulations and was used for conversion providing the possibility to obtain the primary energy spectrum (in the energy range accessible to KASCADE-Grande 1010-1018 eV). The systematic uncertainties induced by different factors are considered.

  8. Observation of Asian Mineral Dust Particles in Japan by a Single-Particle Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Matsumoto, J.; Takahashi, K.; Matsumi, Y.; Sugimoto, N.; Matsui, I.; Shimizu, A.

    2005-12-01

    The Asian mineral dust (Kosa) particles, emitted from the desert area of inland China, are characteristic of East Asian aerosols. The Kosa particles are important as regional carriers of various materials, especially in spring when the stormy dusts are transported to Japan and Pacific Ocean. In this study, the chemical mixing state of each atmospheric aerosol was measured individually by a laser-based time-of-flight mass spectrometer (TOFMS) to discuss chemical changes of Kosa particles during the transport. Observation was conducted at Tsukuba (36.05°N, 140.12°E) in April and May 2004. The LIDAR measurement was also carried out to determine the Kosa events. To classify the source of the air mass, the NOAA-HYSPLIT backward trajectory was applied. For the TOFMS instrument, particles with μm and sub-μm diameters were detected. The polarity of ion detection was altered every minute. During 30 days, the numbers of logged mass spectra (MS) were 5993 and 4382 for positive and negative ions, respectively. When the MS of ambient aerosols were compared with that of the standard Kosa sample, sulfate- and nitrate-mixed Kosa particles were found. To explore the mixing state of particles further, classification of the particles by the ART-2a algorithm was adopted. NO2-, NO3-, HSO4-, SiO2-, SiO3-, Cl- and NaCl2- were focused. Finally, particles were classified to 4 categories as A: sulfate and sulfate-rich mineral; B: sulfate-poor mineral; C: sea salt; D: unidentified. The relative fractions of A were 30 % and 1 % for a Kosa event and a maritime air mass, respectively. Note that the air mass for Kosa event case passed over the coast region of China, where SOx emission was intensive. It was reasonable that sulfate was internally mixed with Kosa particles and transported to Japan. Consequently, it was confirmed experimentally that Kosa particles are important as carriers of pollutants in the rim region of Pacific Ocean. Comparison with the observation in 2005 is also shown.

  9. Charmed Hadron Spectrum and Interactions

    NASA Astrophysics Data System (ADS)

    Liu, Liuming

    Studying hadrons containing heavy quarks in lattice QCD is challenging mainly due to finite lattice spacing effects. To control the discretization errors, mQa is required to be much less than 1, where mQ is the quark mass and a is the lattice spacing. For currently accessible lattice spacings, the charm quark mass doesn't satisfy this requirement. One approach to simulate heavy quarks on the lattice is non-relativestic QCD, which treats heavy quark as a static source and expand the lattice quark action in powers of 1mQa . Unfortunately, the charm quark is not heavy enough to justify this expansion. An other is Heavy Quark Effective Theory (HQET) matched on QCD. Non-relativestic QCD and HQET are mainly used for bottom quark. Relativistic heavy-quark action, which incorporates both small mass and large mass formulations, is better suited to study the charm quark sector. The discretization errors can be reduced systematically following Symanzik improvement. In this work, we use the relativistic heavy quark action to study the charmed hadron spectrum and interactions in full lattice QCD. For the light quarks we use domain-wall fermions in the valence sector and improved Kogut-Susskind sea quarks. The parameters in the heavy quark action are tuned to reduce lattice artifacts and match the charm quark mass and the action is tested by calculating the low-lying charmonium spectrum. We compute the masses of the spin-1/2 singly and doubly charmed baryons. For the singly charmed baryons, our results are in good agreement with experiment within our systematics. For the doubly charmed baryon xicc we find the isospin-averaged mass to be MXcc = 3665 +/- 17 +/- 14+0-78 MeV; the three given uncertainties are statistical, systematic and an estimate of lattice discretization errors, respectively. In addition, we predict the mass splitting of the (isospin-averaged) spin-1/2 O cc with the xicc to be MWcc-MXcc = 98 +/- 9 +/- 22 +/- 13 MeV (in this mass splitting, the leading

  10. Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex.

    PubMed

    Niinemets, Ulo

    2015-01-01

    The leaf economics spectrum is a general concept describing coordinated variation in foliage structural, chemical and physiological traits across resource gradients. Yet, within this concept,the role of within-species variation, including ecotypic and plastic variation components, has been largely neglected. This study hypothesized that there is a within-species economics spectrum within the general spectrum in the evergreen sclerophyll Quercus ilex which dominates low resource ecosystems over an exceptionally wide range. An extensive database of foliage traits covering the full species range was constructed, and improved filtering algorithms were developed. Standardized data filtering was deemed absolutely essential as additional variation sources can result in trait variation of 10–300%,blurring the broad relationships. Strong trait variation, c. two-fold for most traits to up to almost an order of magnitude, was uncovered.Although the Q. ilex spectrum is part of the general spectrum, within-species trait and climatic relationships in this species partly differed from the overall spectrum. Contrary to world-wide trends, Q. ilex does not necessarily have a low nitrogen content per mass and can increase photosynthetic capacity with increasing foliage robustness. This study argues that the within-species economics spectrum needs to be considered in regional- to biome-level analyses.

  11. A DEEP CHANDRA OBSERVATION OF THE WOLF-RAYET + BLACK HOLE BINARY NGC 300 X-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Binder, B.; Williams, B. F.; Anderson, S. F.

    We have obtained a 63 ks Chandra ACIS-I observation of the Wolf-Rayet + black hole binary NGC 300 X-1. We measure rapid low-amplitude variability in the 0.35-8 keV light curve. The power density spectrum has a power-law index {gamma} = 1.02 {+-} 0.15 consistent with an accreting black hole in a steep power-law state. When compared to previous studies of NGC 300 X-1 performed with XMM-Newton, we find the source at the low end of the previously measured 0.3-10 keV luminosity. The spectrum of NGC 300 X-1 is dominated by a power law ({Gamma} = 2.0 {+-} 0.3) with amore » contribution at low energies by a thermal component. We estimate the 0.3-10 keV luminosity to be 2.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 38} erg s{sup -1}. The timing and spectroscopic properties of NGC 300 X-1 are consistent with being in a steep power-law state, similar to earlier observations performed with XMM-Newton. We additionally compare our observations to known high-mass X-ray binaries and ultraluminous X-ray sources, and find the properties of NGC 300 X-1 are most consistent with black hole high-mass X-ray binaries.« less

  12. Masses of the components of SB2 binaries observed with Gaia - IV. Accurate SB2 orbits for 14 binaries and masses of three binaries*

    NASA Astrophysics Data System (ADS)

    Kiefer, F.; Halbwachs, J.-L.; Lebreton, Y.; Soubiran, C.; Arenou, F.; Pourbaix, D.; Famaey, B.; Guillout, P.; Ibata, R.; Mazeh, T.

    2018-02-01

    The orbital motion of non-contact double-lined spectroscopic binaries (SB2s), with periods of a few tens of days to several years, holds unique, accurate information on individual stellar masses, which only long-term monitoring can unlock. The combination of radial velocity measurements from high-resolution spectrographs and astrometric measurements from high-precision interferometers allows the derivation of SB2 component masses down to the percent precision. Since 2010, we have observed a large sample of SB2s with the SOPHIE spectrograph at the Observatoire de Haute-Provence, aiming at the derivation of orbital elements with sufficient accuracy to obtain masses of components with relative errors as low as 1 per cent when the astrometric measurements of the Gaia satellite are taken into account. In this paper, we present the results from 6 yr of observations of 14 SB2 systems with periods ranging from 33 to 4185 days. Using the TODMOR algorithm, we computed radial velocities from the spectra and then derived the orbital elements of these binary systems. The minimum masses of the 28 stellar components are then obtained with an average sample accuracy of 1.0 ± 0.2 per cent. Combining the radial velocities with existing interferometric measurements, we derived the masses of the primary and secondary components of HIP 61100, HIP 95995 and HIP 101382 with relative errors for components (A,B) of, respectively, (2.0, 1.7) per cent, (3.7, 3.7) per cent and (0.2, 0.1) per cent. Using the CESAM2K stellar evolution code, we constrained the initial He abundance, age and metallicity for HIP 61100 and HIP 95995.

  13. The energy spectrum in a barotropic atmosphere

    NASA Astrophysics Data System (ADS)

    Kurgansky, M. V.

    2008-03-01

    In a forced-dissipative barotropic model of the atmosphere on a spherical planet, by following mathematical techniques in (Thompson, P. D.: The equilibrium energy spectrum of randomly forced two-dimensional turbulence, Journal of the Atmospheric Sciences, 30, 1593-1598, 1973) but applying them in a novel context of the discrete spectrum on a rotating sphere, the "minus 2" energy spectrum for wavenumbers much greater than a characteristic wavenumber of the baroclinic forcing has been obtained if the forcing is taken in the simplest and most fundamental form. Some observation-based atmospheric kinetic energy spectra, with their slopes lying between "minus 2" and "minus 3" laws, are discussed from the perspective of the deduced "minus 2" energy spectrum.

  14. Broad-spectrum drug screening of meconium by liquid chromatography with tandem mass spectrometry and time-of-flight mass spectrometry.

    PubMed

    Ristimaa, Johanna; Gergov, Merja; Pelander, Anna; Halmesmäki, Erja; Ojanperä, Ilkka

    2010-09-01

    Analysis of the major drugs of abuse in meconium has been established in clinical practice for detecting fetal exposure to illicit drugs, particularly for the ready availability of the sample and ease of collection from diapers, compared with neonatal hair and urine. Very little is known about the occurrence and detection possibilities of therapeutic and licit drugs in meconium. Meconium specimens (n = 209) were collected in delivery hospitals, from infants of mothers who were suspected to be drug abusers. A targeted analysis method by liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS) was developed for abused drugs: amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, 3,4-methylenedioxymethamphetamine, morphine, codeine, 6-monoacetylmorphine, oxycodone, methadone, tramadol, buprenorphine, and norbuprenorphine. A separate LC-MS/MS method was developed for 11-nor-∆(9)-tetrahydrocannabinol-9-carboxylic acid. A screening method based on LC coupled to time-of-flight MS was applied to a broad spectrum of drugs. As a result, a total of 77 different compounds were found. The main drug findings in meconium were as follows: local anesthetics 82.5% (n = 172), nicotine or its metabolites 61.5% (n = 129), opioids 48.5% (n = 101), stimulants 21.0% (n = 44), hypnotics and sedatives 19.0% (n = 40), antidepressants 18.0% (n = 38), antipsychotics 5.5% (n = 11), and cannabis 3.0% (n = 5). By revealing drugs and metabolites beyond the ordinary scope, the present procedure helps the pediatrician in cases where maternal denial is strong but the infant seems to suffer from typical drug-withdrawal symptoms. Intrapartum drug administration cannot be differentiated from gestational drug use by meconium analysis, which affects the interpretation of oxycodone, tramadol, fentanyl, pethidine, and ephedrine findings.

  15. Can you see it too? Observed and self-rated participation in mainstream schools in students with and without autism spectrum disorders.

    PubMed

    Falkmer, Marita; Oehlers, Kirsty; Granlund, Mats; Falkmer, Torbjörn

    2015-01-01

    To examine the degree to which observations can capture perception of participation, observed and self-rated levels of interactions for students with and without autism spectrum disorders (ASD) were explored. Frequencies and levels of involvement in interactions with classmates were observed and compared in 22 students with ASD and 84 of their classmates in mainstream schools, using a standardized protocol. Self-reported participation measurements regarding interactions with classmates and teachers from five questionnaire items were correlated with the observations. In total, 51,516 data points were coded and entered into the analyses, and correlated with 530 questionnaire ratings. Only one weak correlation was found in each group. Compared with classmates, students with ASD participated less frequently, but were not less involved when they actually did. Observations alone do not capture the individuals' perception of participation and are not sufficient if the subjective aspect of participation is to be measured.

  16. The inner mass power spectrum of galaxies using strong gravitational lensing: beyond linear approximation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Saikat; Koopmans, Léon V. E.

    2018-02-01

    In the last decade, the detection of individual massive dark matter sub-haloes has been possible using potential correction formalism in strong gravitational lens imaging. Here, we propose a statistical formalism to relate strong gravitational lens surface brightness anomalies to the lens potential fluctuations arising from dark matter distribution in the lens galaxy. We consider these fluctuations as a Gaussian random field in addition to the unperturbed smooth lens model. This is very similar to weak lensing formalism and we show that in this way we can measure the power spectrum of these perturbations to the potential. We test the method by applying it to simulated mock lenses of different geometries and by performing an MCMC analysis of the theoretical power spectra. This method can measure density fluctuations in early type galaxies on scales of 1-10 kpc at typical rms levels of a per cent, using a single lens system observed with the Hubble Space Telescope with typical signal-to-noise ratios obtained in a single orbit.

  17. Radio Observations of Ultra-Luminous X-Ray Sources ---Microblazars or Intermediate-Mass Black Holes?---

    NASA Astrophysics Data System (ADS)

    Körding, E.; Colbert, E.; Falcke, H.

    In recent years Ultra-Luminous X-Ray sources (ULXs) received wide attention, however, their true nature is not yet understood. Many explanations have been suggested, including intermediate-mass black holes, super-Eddington accretion flows, anisotropic emission, and relativistic beaming of microquasars. We model the logN-logS distribution of ULXs assuming that each neutron star or black hole XRB can be described by an accretion disk plus jet model, where the jet is relativistically beamed. The distribution can be either fit by intermediate-mass black holes or by stellar mass black holes with mildly relativistic jets. Even though the jet is intrinsically weaker than the accretion disk, relativistic beaming can in the latter approach lead to the high fluxes observed. To further explore the possibility of microblazars contributing to the ULX phenomenon, we have embarked on a radio-monitoring study of ULXs in nearby galaxies with the VLA. However, up to now no radio flare has been detected. Using the radio/X-ray correlation the upper limits on the radio flux can be converted into upper limits for the black hole masses of MBH ≲ 10^3 M⊙.

  18. Spectrum of Th-Ar Hollow Cathode Lamps

    National Institute of Standards and Technology Data Gateway

    SRD 161 NIST Spectrum of Th-Ar Hollow Cathode Lamps (Web, free access)   This atlas presents observations of the infra-red (IR) spectrum of a low current Th-Ar hollow cathode lamp with the 2-m Fourier transform spectrometer (FTS) at NIST. These observations establish more than 2400 lines that are suitable for use as wavelength standards in the range 691 nm to 5804 nm. The observations were made in collaboration with the European Southern Observatory (ESO), in order to provide calibration reference data for new high-resolution Echelle spectrographs, such as the Cryogenic High-Resolution IR Echelle Spectrograph ([CRIRES]), ESO's new IR spectrograph at the Very Large Telescope in Chile.

  19. Storage and retrieval of mass spectral information

    NASA Technical Reports Server (NTRS)

    Hohn, M. E.; Humberston, M. J.; Eglinton, G.

    1977-01-01

    Computer handling of mass spectra serves two main purposes: the interpretation of the occasional, problematic mass spectrum, and the identification of the large number of spectra generated in the gas-chromatographic-mass spectrometric (GC-MS) analysis of complex natural and synthetic mixtures. Methods available fall into the three categories of library search, artificial intelligence, and learning machine. Optional procedures for coding, abbreviating and filtering a library of spectra minimize time and storage requirements. Newer techniques make increasing use of probability and information theory in accessing files of mass spectral information.

  20. A New Observation of the Quiet Sun Soft X-ray (0.5-5 keV) Spectrum

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Woods, T. N.; Stone, J.

    2012-12-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable with solar activity. While this is particularly true during solar flares, when emission can be enhanced by many orders of magnitude up to gamma-ray energies, even the so-called "quiet Sun" is bright in soft X-rays (SXRs), as the ~1-2 MK ambient plasma of the corona emits significant thermal bremsstrahlung up to ~5 keV. However, the actual solar SXR (0.5-5 keV) spectrum is not well known, particularly during quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include ultra-high-resolution but very narrow-band spectra from crystral spectrometers (e.g. Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g. GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with fair energy resolution (~0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and XRS on MESSENGER, although they did not extend below ~1 keV. We present observations of the quiet Sun SXR emission obtained using a new SXR spectrometer flown on the third SDO/EVE underflight calibration rocket (NASA 36.286). The commercial off-the-shelf Amptek X123 silicon drift detector, with an 8-micron Be window and custom aperture, measured the solar SXR emission from ~0.5 to >10 keV with ~0.15 keV FWHM resolution (though, due to hardware limitations, with only ~0.12 keV binning) and 2-sec cadence over ~5 minutes on 23 June 2012. Despite the rising solar cycle, activity on 23 June 2012 was abnormally low, with no visible active regions and GOES XRS emission near 2010 levels; we measured no solar counts above ~4 keV during the observation period. We compare our X123 measurements with spectra and broadband irradiances from other instruments, including the SphinX observations during the deep solar minimum of 2009, and with upper limits of >3 keV quiet Sun emission

  1. A New Observation of the Quiet Sun Soft X-ray (0.5-5 keV) Spectrum

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Woods, Thomas N.; Stone, Jordan

    2013-03-01

    The solar corona is the brightest source of X-rays in the solar system, and the X-ray emission is highly variable with solar activity. While this is particularly true during solar flares, when emission can be enhanced by many orders of magnitude up to gamma-ray energies, even the so-called "quiet Sun" is bright in soft X-rays (SXRs), as the 1-2 MK ambient plasma of the corona emits significant thermal bremsstrahlung up to 5 keV. However, the actual solar SXR (0.5-5 keV) spectrum is not well known, particularly during quiet periods, as, with few exceptions, this energy range has not been systematically studied in many years. Previous observations include ultra-high-resolution but very narrow-band spectra from crystral spectrometers (e.g. Yohkoh/BCS), or integrated broadband irradiances from photometers (e.g. GOES/XRS, TIMED/XPS, etc.) that lack detailed spectral information. In recent years, broadband measurements with fair energy resolution ( 0.5-0.7 keV FWHM) were made by SphinX on CORONAS-Photon and XRS on MESSENGER, although they did not extend below 1 keV. We present observations of the quiet Sun SXR emission obtained using a new SXR spectrometer flown on the third SDO/EVE underflight calibration rocket (NASA 36.286). The commercial off-the-shelf Amptek X123 silicon drift detector, with an 8-micron Be window and custom aperture, measured the solar SXR emission from 0.5 to >10 keV with 0.15 keV FWHM resolution (though, due to hardware limitations, with only 0.12 keV binning) and 2-sec cadence over 5 minutes on 23 June 2012. Despite the rising solar cycle, activity on 23 June 2012 was abnormally low, with no visible active regions and GOES XRS emission near 2010 levels; we measured no solar counts above 4 keV during the observation period. We compare our X123 measurements with spectra and broadband irradiances from other instruments, including the SphinX observations during the deep solar minimum of 2009, and with upper limits of >3 keV quiet Sun emission

  2. Mass spectra stimulated by O+ and Ar+ interacting with a surface.

    NASA Technical Reports Server (NTRS)

    Siegel, M. W.; Krauss, R. H.; Boring, J. W.

    1972-01-01

    Beams of O(+) and Ar(+) in the energy range from 100 to 300 eV were directed into an aperture in one face of a copper box. The mass spectrum from a similar aperture in an adjacent face was observed with the aid of a commercial RF quadrupole spectrometer. On the basis of the results obtained it is reported that O(+) beams at about 200 eV may be essentially lost after a few collisions with a surface, in agreement with similar conclusions about atomic oxygen at thermal energies.

  3. OBSERVATIONS OF THE HIGH-MASS X-RAY BINARY A 0535+26 IN QUIESCENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothschild, Richard; Markowitz, Alex; Hemphill, Paul

    2013-06-10

    We have analyzed three observations of the high-mass X-ray binary A 0535+26 performed by the Rossi X-Ray Timing Explorer (RXTE) three, five, and six months after the last outburst in 2011 February. We detect pulsations only in the second observation. The 3-20 keV spectra can be fit equally well with either an absorbed power law or absorbed thermal bremsstrahlung model. Reanalysis of two earlier RXTE observations made 4 yr after the 1994 outburst, original BeppoSAX observations 2 yr later, reanalysis of four EXOSAT observations made 2 yr after the last 1984 outburst, and a recent XMM-Newton observation in 2012 revealmore » a stacked, quiescent flux level decreasing from {approx}2 to <1 Multiplication-Sign 10{sup -11} erg cm{sup -2} s{sup -1} over 6.5 yr after outburst. The detection of pulsations during half of the quiescent observations would imply that accretion onto the magnetic poles of the neutron star continues despite the fact that the circumstellar disk may no longer be present. The accretion could come from material built up at the corotation radius or from an isotropic stellar wind.« less

  4. Mass spectrometry based on a coupled Cooper-pair box and nanomechanical resonator system

    NASA Astrophysics Data System (ADS)

    Jiang, Cheng; Chen, Bin; Li, Jin-Jin; Zhu, Ka-Di

    2011-10-01

    Nanomechanical resonators (NRs) with very high frequency have a great potential for mass sensing with unprecedented sensitivity. In this study, we propose a scheme for mass sensing based on the NR capacitively coupled to a Cooper-pair box (CPB) driven by two microwave currents. The accreted mass landing on the resonator can be measured conveniently by tracking the resonance frequency shifts because of mass changes in the signal absorption spectrum. We demonstrate that frequency shifts induced by adsorption of ten 1587 bp DNA molecules can be well resolved in the absorption spectrum. Integration with the CPB enables capacitive readout of the mechanical resonance directly on the chip.

  5. Forbidden unique beta-decays and neutrino mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dvornický, Rastislav; Šimkovic, Fedor

    2013-12-30

    The measurement of the electron spectrum in beta-decays provides a robust direct determination of the values of neutrino masses. The planned rhenium beta-decay experiment, called the “Microcalorimeter Arrays for a Rhenium Experiment” (MARE), might probe the absolute mass scale of neutrinos with the same sensitivity as the Karlsruhe tritium neutrino mass (KATRIN) experiment, which is expected to collect data in a near future. In this contribution we discuss the spectrum of emitted electrons close to the end point in the case of the first unique forbidden beta-decay of {sup 79}Se, {sup 107}Pd and {sup 187}Re. It is found that themore » p{sub 3/2}-wave emission dominates over the s{sub 1/2}-wave. It is shown that the Kurie plot near the end point is within a good accuracy linear in the limit of massless neutrinos like the Kurie plot of the superallowed beta-decay of {sup 3}H.« less

  6. A preferred mass range for primordial black hole formation and black holes as dark matter revisited

    NASA Astrophysics Data System (ADS)

    Georg, Julian; Watson, Scott

    2017-09-01

    Bird et al. [1] and Sasaki et al. [2] have recently proposed the intriguing possibility that the black holes detected by LIGO could be all or part of the cosmological dark matter. This offers an alternative to WIMPs and axions, where dark matter could be comprised solely of Standard Model particles. The mass range lies within an observationally viable window and the predicted merger rate can be tested by future LIGO observations. In this paper, we argue that non-thermal histories favor production of black holes near this mass range — with heavier ones unlikely to form in the early universe and lighter black holes being diluted through late-time entropy production. We discuss how this prediction depends on the primordial power spectrum, the likelihood of black hole formation, and the underlying model parameters. We find the prediction for the preferred mass range to be rather robust assuming a blue spectral index less than two. We consider the resulting relic density in black holes, and using recent observational constraints, establish whether they could account for all of the dark matter today.

  7. Observing mass exchange with the Lofoten Basin using surface drifters

    NASA Astrophysics Data System (ADS)

    Dugstad, Johannes S.; LaCasce, Joe; Koszalka, Inga M.; Fer, Ilker

    2017-04-01

    The Lofoten Basin in the Nordic Seas plays a central role in the global overturning circulation, acting as a reservoir for northward-flowing Atlantic water. Substantial heat loss occurs here, permitting the waters to become denser and eventually sink nearer the Arctic. Idealized modeling studies and theoretical arguments suggest the warm water enters the Lofoten Basin via eddy transport from the boundary current over the adjacent continental slope. But there is no observational evidence that this is the major contribution to mass exchange between the warm Atlantic Current and the Basin. How the basin waters exit also remains a mystery. Surface drifters offer an unique possibility to study the pathways of the boundary-basin exchange of mass and heat. We thereby examine trajectories of surface drifters released in the Nordic Seas in the POLEWARD and PROVOLO experiments, and supplemented by historical data from the Global Drifter Array. Contrary to the idea that the boundary current eddies are the main source, the results suggest that fluid is entering the Lofoten Basin from all sides. However, the drifters exit preferentially in the northeast corner of the basin. This asymmetry likely contributes to the extended residence times of the warm Atlantic waters in the Lofoten Basin. We consider various measures to quantify the effect, and test whether this is captured in a high resolution numerical model.

  8. The Broader Autism Phenotype in Mothers is Associated with Increased Discordance between Maternal-Reported and Clinician-Observed Instruments That Measure Child Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Rubenstein, Eric; Edmondson Pretzel, Rebecca; Windham, Gayle C.; Schieve, Laura A.; Wiggins, Lisa D.; DiGuiseppi, Carolyn; Olshan, Andrew F.; Howard, Annie G.; Pence, Brian W.; Young, Lisa; Daniels, Julie

    2017-01-01

    Autism spectrum disorder (ASD) diagnosis relies on parent-reported and clinician-observed instruments. Sometimes, results between these instruments disagree. The broader autism phenotype (BAP) in parent-reporters may be associated with discordance. Study to Explore Early Development data (N = 712) were used to address whether mothers with BAP and…

  9. Peptide Analysis Using Tandem Mass Spectrometry

    DTIC Science & Technology

    1989-06-01

    to give pyroglutamic acid during storage, eliminating ammonia. It is almost absent in the spectrum of a freshly-prepared sample and is not seen in...USING TANDEM MASS SPECTROMETRY INTRODUCTION S The objective of the project was to determine the complete amino acid sequence of the large polypeptide...Ubiquitin by use of fast atom bombardment (FAB) ionization and tandem mass spectrometry. The peptide containing 76 amino acid residues was available

  10. Evaporation Spectrum of Black Holes from a Local Quantum Gravity Perspective.

    PubMed

    Barrau, Aurélien

    2016-12-30

    We revisit the hypothesis of a possible line structure in the Hawking evaporation spectrum of black holes. Because of nonperturbative quantum gravity effects, this would take place arbitrarily far away from the Planck mass. We show, based on a speculative but consistent hypothesis, that this naive prediction might in fact hold in the specific context of loop quantum gravity. A small departure from the ideal case is expected for some low-spin transitions and could allow us to distinguish several quantum gravity models. We also show that the effect is not washed out by the dynamics of the process, by the existence of a mass spectrum up to a given width, or by the secondary component induced by the decay of neutral pions emitted during the time-integrated evaporation.

  11. Observation of fluctuation of gamma-ray count rate accompanying thunderstorm activity and energy spectrum of gamma rays in the atmosphere up to several kilometers altitude from the ground

    NASA Astrophysics Data System (ADS)

    Torii, T.; Sanada, Y.; Watanabe, A.

    2017-12-01

    In the vicinity of the tops of high mountains and in the coastal areas of the Sea of Japan in winter, the generation of high energy photons that lasts more than 100 seconds at the occurrence of thunderclouds has been reported. At the same time, 511 keV gamma rays are also detected. On the other hand, we irradiated a radiosonde equipped with gamma-ray detectors at the time of thunderstorm and observed fluctuation in gamma-ray count-rate. As a result, we found that the gamma-ray count-rate increases significantly near the top of the thundercloud. Therefore, in order to investigate the fluctuation of the energy of the gamma rays, we developed a radiation detector for radiosonde to observe the fluctuation of the low energy gamma-ray spectrum and observed the fluctuation of the gamma-ray spectrum. We will describe the counting rate and spectral fluctuation of gamma-ray detectors for radiosonde observed in the sky in Fukushima prefecture, Japan.

  12. Observations of enhanced ion line frequency spectrum during Arecibo ionospheric modification experiment

    NASA Technical Reports Server (NTRS)

    Hagfors, T.; Zamlutti, C. J.

    1974-01-01

    The Arecibo 430 MHz incoherent scatter radar (ISR) was used to monitor the effects of modifying the ionosphere by a high power HF transmitter feeding the 305 m reflector antenna. When in the ordinary magnetoionic mode parametric instabilities develop in the ionosphere near the reflection level. Manifestations of these instabilities are the strong enhancement of Langmuir oscillations in the direction of the ISR beam at a wavelength of 35 cm and the simultaneous much weaker enhancement of ion oscillations in that direction. The spectral analysis of the enhanced peak with a height resolution of 2.4 km shows that the ionic mode enhancement most often has a double humped frequency spectrum corresponding to up- and down-going ion acoustic waves. The shape of the frequency spectrum is interpreted in terms of a stable oscillation which is driven by a secondary electrostatic field caused by nonlinear interaction of Langmuir waves within a cone centered on the magnetic field and by the scattering of the pump field on stable Langmuir waves travelling along the direction of the ISR.

  13. Variations of the TeV energy spectrum at different flux levels of Mkn 421 observed with the HEGRA system of Cherenkov telescopes

    NASA Astrophysics Data System (ADS)

    Aharonian, F.; Akhperjanian, A.; Beilicke, M.; Bernlöhr, K.; Börst, H.; Bojahr, H.; Bolz, O.; Coarasa, T.; Contreras, J.; Cortina, J.; Costamante, L.; Denninghoff, S.; Fonseca, V.; Girma, M.; Götting, N.; Heinzelmann, G.; Hermann, G.; Heusler, A.; Hofmann, W.; Horns, D.; Jung, I.; Kankanyan, R.; Kestel, M.; Kettler, J.; Kohnle, A.; Konopelko, A.; Kornmeyer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lopez, M.; Lorenz, E.; Lucarelli, F.; Mang, O.; Meyer, H.; Mirzoyan, R.; Milite, M.; Moralejo, A.; Ona, E.; Panter, M.; Plyasheshnikov, A.; Pühlhofer, G.; Rauterberg, G.; Reyes, R.; Rhode, W.; Ripken, J.; Rowell, G.; Sahakian, V.; Samorski, M.; Schilling, M.; Siems, M.; Sobzynska, D.; Stamm, W.; Tluczykont, M.; Völk, H. J.; Wiedner, C. A.; Wittek, W.; Remillard, R. A.

    2002-10-01

    The nearby BL Lacertae (BL Lac) object Markarian 421 (Mkn 421) at a red shift z=0.031 was observed to undergo strong TeV gamma -ray outbursts in the observational periods from December 1999 until May 2001. The time averaged flux level F(E>1 TeV) in the 1999/2000 season was (1.43+/-0.04) x 10-11 ph cm-2 s-1, whereas in the 2000/2001 season the average integral flux increased to (4.19+/-0.04) x 10-11 ph cm-2 s-1. Both energy spectra are curved and well fit by a power law with an exponential cut-off energy at 3.6(+0.4-0.3)_stat(+0.9-0.8)_sys TeV. The respective energy spectra averaged over each of the two time periods indicate a spectral hardening for the 2000/2001 spectrum. The photon index changes from 2.39+/-0.09_stat for 1999/2000 to 2.19+/-0.02_stat in 2000/2001. The energy spectra derived for different average flux levels ranging from 0.5 to 10 x 10-11 ph cm-2 s-1 follow a clear correlation of photon index and flux level. Generally, the energy spectra are harder for high flux levels. From January to April 2001 Mkn 421 showed rapid variability (doubling time as short as 20 min), accompanied with a spectral hardening with increasing flux level within individual nights. For two successive nights (MJD 51989-51991, March 21-23, 2001), this correlation of spectral hardness and change in flux has been observed within a few hours. The cut-off energy for the Mkn 421 TeV spectrum remains within the errors constant for the different flux levels and differs by Delta E=2.6+/-0.6_stat+/-0.6_sys TeV from the value determined for Mkn 501. This indicates that the observed exponential cut-off in the energy spectrum of Mkn 421 is not solely caused by absorption of multi-TeV photons by pair-production processes with photons of the extragalactic near/mid infrared background radiation.

  14. Cassini CAPS-ELS observations of carbon-based anions and aerosol growth in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Desai, Ravindra; Coates, Andrew; Wellbrock, Anne; Kataria, Dhiren; Jones, Geraint; Lewis, Gethyn; Waite, J.

    2016-06-01

    Cassini observations of Titans ionosphere revealed an atmosphere rich in positively charged ions with masses up to > 350 amu and negatively charged ions and aerosols with mass over charge ratios as high as 13,800 amu/q. The detection of negatively charged molecules by the Cassini CAPS Electron Spectrometer (CAPS-ELS) was particularly surprising and showed how the synthesis of large aerosol-size particles takes place at altitudes much greater than previously thought. Here, we present further analysis into this CAPS-ELS dataset, through an enhanced understanding of the instrument's response function. In previous studies the intrinsic E/E energy resolution of the instrument did not allow specific species to be identified and the detections were classified into broad mass ranges. In this study we use an updated fitting procedure to show how the ELS mass spectrum can be resolved into specific peaks at multiples of carbon-based anions up to > 100 amu/q. The negatively charged ions and aerosols in Titans ionosphere increase in mass with decreasing altitude, the lightest species being observed close to Titan's exobase of ˜1,450km and heaviest species observed at altitudes < 950km. We identify key stages in this apparent growth process and report on key intermediaries which appear to trigger the rapid growth of the larger aerosol-size particles.

  15. Observationally Testing the Triple Origin of Blue Straggler Stars with Near-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kohler, Jacob P.; Gosnell, Natalie M.; Sokal, Kimberly R.; Mace, Gregory N.

    2018-01-01

    Presented are results to constrain blue straggler star (BSS) formation mechanisms in open cluster NGC 188 using data from the Immersion Grating INfrared Spectrometer (IGRINS) while at the Discovery Channel Telescope. The majority (at least 16 of 21) of NGC 188s BSSs are binaries, and, to date, seven white dwarf (WD) companions have been detected. This leaves at least nine undetected companion stars. Observations show a sharp peak of the BSSs companion mass distribution at 0.5 solar masses, highly suggestive of a WD or M-type main sequence (MS) star. Under our tested formation mechanism, the progenitors of BSSs are arranged in primordial hierarchical triple star systems that dynamically evolve through the Kozai-cycle tidal friction (KCTF) process into a binary composed of a BSS and, statistically, an M dwarf companion. We test for the presence of an M dwarf by cross-correlating a near-IR spectrum with both a BSS template and an M dwarf template. We present, for the first time, a preliminary detection of a 3800K, 0.5 solar mass M dwarf companion in each of the long period (log[P(d)]=3), single-lined binaries WOCS 451 and WOCS 5671 in NGC 188. To assess the possibility of a false M dwarf detection, we carry out Monte Carlo simulations cross-correlating an M dwarf template with a BSS-only spectrum with a signal-to-noise ratio matching our observations. Theoretical detection limits for various BSS-M dwarf pairs are reported. In the case of a non-detection, such as in WOCS 4970, we are able to place an upper limit on the mass, and thus temperature, of the companion star. Current and future research goals aim for further insight into the BSS formation mechanism frequencies of NGC 188.

  16. IUE observations of long period eclipsing binaries - A study of accretion onto non-degenerate stars

    NASA Technical Reports Server (NTRS)

    Plavec, M. J.

    1980-01-01

    IUE observations made in 1978-1979 recorded a whole class of interacting long-period binaries similar to beta Lyrae, which includes RX Cas, SX Cas, V 367 Cyg, W Cru, beta Lyr, and W Ser, called the W Serpentis stars. These mass-transferring binaries with relatively high mass transfer rate show two prominent features in the far ultraviolet: a continuum with a color temperature higher than the one observed in the optical region (about 12,000 K), and a strong emission line spectrum with the N V doublet at 1240 A, C IV doublet at 1550 A and lines of Si II, Si III, Si IV, C II, Fe III, AI III, etc. These phenomena are discussed on the assumption that they are due to accretion onto non-degenerate stars.

  17. Charge detection mass spectrometry: Instrumentation & applications to viruses

    NASA Astrophysics Data System (ADS)

    Pierson, Elizabeth E.

    For over three decades, electrospray ionization (ESI) has been used to ionize non-covalent complexes and subsequently transfer the intact ion into the gas phase for mass spectrometry (MS) analysis. ESI generates a distribution of multiple charged ions, resulting in an m/z spectrum comprised of a series of peaks, known as a charge state envelope. To obtain mass information, the number of charges for each peak must be deduced. For smaller biological analytes like peptides, the charge states are sufficiently resolved and this process is straightforward. For macromolecular complexes exceeding ~100 kDa, this process is complicated by the broadening and shifting of charge states due to incomplete desolvation, salt adduction, and inherent mass heterogeneity. As the analyte mass approaches the MDa regime, the m/z spectrum is often comprised of a broad distribution of unresolved charge states. In such cases, mass determination is precluded. Charge detection mass spectrometry (CDMS) is an emerging MS technique for determining the masses of heterogeneous, macromolecular complexes. In CDMS, the m/z and z of single ions are measured concurrently so that mass is easily calculated. With this approach, deconvolution of an m/z spectrum is unnecessary. This measurement is carried out by passing macroions through a conductive cylinder. The induced image charge on the cylindrical detector provides information about m/z and z: the m/z is related to its time-of-flight through the detector, and the z is related to the intensity of the image charge. We have applied CDMS to study the self-assembly of virus capsids. Late-stage intermediates in the assembly of hepatitis B virus, a devastating human pathogen, have been identified. This is the first time that such intermediates have been detected and represent a significant advancement towards understanding virus capsid assembly. CDMS has also been used to identify oversized, non-icosahedral polymorphs in the assembly of woodchuck hepatitis

  18. Clinical spectrum of psychogenic non epileptic seizures in children; an observational study.

    PubMed

    Madaan, Priyanka; Gulati, Sheffali; Chakrabarty, Biswaroop; Sapra, Savita; Sagar, Rajesh; Mohammad, Akbar; Pandey, R M; Tripathi, Manjari

    2018-07-01

    The current study was designed to analyze the clinical spectrum of Psychogenic non-epileptic seizures (PNES) in children. Children aged 6-16years with clinically suspected PNES, confirmed by short-term VEEG (STVEEG{video electroencephalogram}) and induction were classified as per Seneviratne classification. Stressors, associated co morbidities, Verbal IQ (Intelligence Quotient) and behavioral abnormalities were assessed using HTP(House tree person) test, DSM IV (Diagnostic and statistical manual of mental disorders) TR criteria, MISIC (Malin intelligence scale for Indian children) and CBCL (Child behaviour checklist). Eighty children with PNES {45 boys; mean age: 10.5 (±1.6) years} were enrolled. Median delay in diagnosis was 5 months {IQR(interquartile range)- 0.5 to 48 months}) and 45% patients were already on AEDs (antiepileptic drugs). Commonest semiology was dialeptic (42.5%), followed by mixed (28.8%), motor (15%) and nonepileptic aura (13.8%). Family stressors were the commonest followed by school related issues. The most common psychiatric comorbidity was adjustment disorder. Somatic complaints were observed in 50% children. Dialeptic PNES is commonest in children. In resource constrained settings, STVEEG along with induction is a reliable method to diagnose PNES. A comprehensive assessment protocol (including assessment of stressors) is needed for holistic management of pediatric PNES. Copyright © 2018 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  19. Evidence for an Intermediate Mass Black Hole in NGC 5408 X-1

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Mushotzky, Richard F.

    2009-01-01

    We report the discovery with XMM-Newton of correlated spectral and timing behavior in the ultraluminous X-ray source (ULX) NGC 5408 X-1. An approx. 100 ksec pointing with XMM/Newton obtained in January, 2008 reveals a strong 10 mHz QPO in the > 1 keV flux, as well as flat-topped, band limited noise breaking to a power law. The energy spectrum is again dominated by two components, a 0.16 keV thermal disk and a power-law with an index of approx. 2.5. These new measurements, combined with results from our previous January 2006 pointing in which we first detected QPOs, show for the first time in a ULX a pattern of spectral and temporal correlations strongly analogous to that seen in Galactic black hole sources, but at much higher X-ray luminosity and longer characteristic time-scales. We find that the QPO frequency is proportional to the inferred disk flux, while the QPO and broad-band noise amplitude (root mean squared, rms) are inversely proportional to the disk flux. Assuming that QPO frequency scales inversely with black hole mass at a given power-law spectral index we derive mass estimates using the observed QPO frequency - spectral index relations from five stellar-mass black hole systems with dynamical mass constraints. The results from all sources are consistent with a mass range for NGC 5408 X-1 from 1000 - 9000 Stellar mass. We argue that these are conservative limits, and a more likely range is from 2000 - 5000 Stellar mass. Moreover, the recent relation from Gierlinski et al. that relates black hole mass to the strength of variability at high frequencies (above the break in the power spectrum), and the variability plane results of McHardy et al. and Koerding et al., are also suggestive of such a. high mass for NGC 5408 X-1. Importantly, none of the above estimates appears consistent with a black hole mass less than approx. 1000 Stellar mass for NGC 5408 X-1. We argue that these new findings strongly support the conclusion that NGC 5408 X-1 harbors an

  20. Energy Spectrum of Cosmic-Ray Electron and Positron from 10 GeV to 3 TeV Observed with the Calorimetric Electron Telescope on the International Space Station.

    PubMed

    Adriani, O; Akaike, Y; Asano, K; Asaoka, Y; Bagliesi, M G; Bigongiari, G; Binns, W R; Bonechi, S; Bongi, M; Brogi, P; Buckley, J H; Cannady, N; Castellini, G; Checchia, C; Cherry, M L; Collazuol, G; Di Felice, V; Ebisawa, K; Fuke, H; Guzik, T G; Hams, T; Hareyama, M; Hasebe, N; Hibino, K; Ichimura, M; Ioka, K; Ishizaki, W; Israel, M H; Javaid, A; Kasahara, K; Kataoka, J; Kataoka, R; Katayose, Y; Kato, C; Kawanaka, N; Kawakubo, Y; Krawczynski, H S; Krizmanic, J F; Kuramata, S; Lomtadze, T; Maestro, P; Marrocchesi, P S; Messineo, A M; Mitchell, J W; Miyake, S; Mizutani, K; Moiseev, A A; Mori, K; Mori, M; Mori, N; Motz, H M; Munakata, K; Murakami, H; Nakahira, S; Nishimura, J; de Nolfo, G A; Okuno, S; Ormes, J F; Ozawa, S; Pacini, L; Palma, F; Papini, P; Penacchioni, A V; Rauch, B F; Ricciarini, S B; Sakai, K; Sakamoto, T; Sasaki, M; Shimizu, Y; Shiomi, A; Sparvoli, R; Spillantini, P; Stolzi, F; Takahashi, I; Takayanagi, M; Takita, M; Tamura, T; Tateyama, N; Terasawa, T; Tomida, H; Torii, S; Tsunesada, Y; Uchihori, Y; Ueno, S; Vannuccini, E; Wefel, J P; Yamaoka, K; Yanagita, S; Yoshida, A; Yoshida, K; Yuda, T

    2017-11-03

    First results of a cosmic-ray electron and positron spectrum from 10 GeV to 3 TeV is presented based upon observations with the CALET instrument on the International Space Station starting in October, 2015. Nearly a half million electron and positron events are included in the analysis. CALET is an all-calorimetric instrument with total vertical thickness of 30 X_{0} and a fine imaging capability designed to achieve a large proton rejection and excellent energy resolution well into the TeV energy region. The observed energy spectrum over 30 GeV can be fit with a single power law with a spectral index of -3.152±0.016 (stat+syst). Possible structure observed above 100 GeV requires further investigation with increased statistics and refined data analysis.

  1. A mechanism to explain the spectrum of Hessdalen Lights phenomenon

    NASA Astrophysics Data System (ADS)

    Paiva, G. S.; Taft, C. A.

    2012-07-01

    In this work, we present a model to explain the apparently contradictory spectrum observed in Hessdalen Lights (HL) phenomenon. According to our model, its nearly flat spectrum on the top with steep sides is due to the effect of optical thickness on the bremsstrahlung spectrum. At low frequencies self-absorption modifies the spectrum to follow the Rayleigh-Jeans part of the blackbody curve. This spectrum is typical of dense ionized gas. Additionally, spectrum produced in the thermal bremsstrahlung process is flat up to a cutoff frequency, ν cut, and falls off exponentially at higher frequencies. This sequence of events forms the typical spectrum of HL phenomenon when the atmosphere is clear, with no fog.

  2. VLT Captures First Direct Spectrum of an Exoplanet

    NASA Astrophysics Data System (ADS)

    2010-01-01

    By studying a triple planetary system that resembles a scaled-up version of our own Sun's family of planets, astronomers have been able to obtain the first direct spectrum - the "chemical fingerprint" [1] - of a planet orbiting a distant star [2], thus bringing new insights into the planet's formation and composition. The result represents a milestone in the search for life elsewhere in the Universe. "The spectrum of a planet is like a fingerprint. It provides key information about the chemical elements in the planet's atmosphere," says Markus Janson, lead author of a paper reporting the new findings. "With this information, we can better understand how the planet formed and, in the future, we might even be able to find tell-tale signs of the presence of life." The researchers obtained the spectrum of a giant exoplanet that orbits the bright, very young star HR 8799. The system is at about 130 light-years from Earth. The star has 1.5 times the mass of the Sun, and hosts a planetary system that resembles a scaled-up model of our own Solar System. Three giant companion planets were detected in 2008 by another team of researchers, with masses between 7 and 10 times that of Jupiter. They are between 20 and 70 times as far from their host star as the Earth is from the Sun; the system also features two belts of smaller objects, similar to our Solar System's asteroid and Kuiper belts. "Our target was the middle planet of the three, which is roughly ten times more massive than Jupiter and has a temperature of about 800 degrees Celsius," says team member Carolina Bergfors. "After more than five hours of exposure time, we were able to tease out the planet's spectrum from the host star's much brighter light." This is the first time the spectrum of an exoplanet orbiting a normal, almost Sun-like star has been obtained directly. Previously, the only spectra to be obtained required a space telescope to watch an exoplanet pass directly behind its host star in an "exoplanetary

  3. The Physics of Extrasolar Gaseous Planets : from Theory to Observable Signatures

    NASA Astrophysics Data System (ADS)

    Chabrier, G.; Allard, F.; Baraffe, I.; Barman, T.; Hauschildt, P. H.

    2004-12-01

    We review our present understanding of the physical properties of substellar objects, brown dwarfs and irradiated or non-irradiated gaseous exoplanets. This includes a description of their internal properties, mechanical structure and heat content, their atmospheric properties, thermal profile and emergent spectrum, and their evolution, in particular as irradiated companions of a close parent star. The general theory can be used to make predictions in term of detectability for the future observational projects. Special attention is devoted to the evolution of the two presently detected transit planets, HD 209458b and OGLE-TR-56B. For this latter, we present a consistent evolution for its recently revised mass and show that we reproduce the observed radius within its error bars. We briefly discuss differences between brown dwarfs and gaseous planets, both in terms of mass function and formation process. We outline several arguments to show that the minimum mass for deuterium burning, recently adopted officially as the limit to distinguish the two types of objects, is unlikely to play any specific role in star formation, so that such a limit is of purely semantic nature and is not supported by a physical justification.

  4. Strong-lensing analysis of MACS J0717.5+3745 from Hubble Frontier Fields observations: How well can the mass distribution be constrained?

    NASA Astrophysics Data System (ADS)

    Limousin, M.; Richard, J.; Jullo, E.; Jauzac, M.; Ebeling, H.; Bonamigo, M.; Alavi, A.; Clément, B.; Giocoli, C.; Kneib, J.-P.; Verdugo, T.; Natarajan, P.; Siana, B.; Atek, H.; Rexroth, M.

    2016-04-01

    We present a strong-lensing analysis of MACSJ0717.5+3745 (hereafter MACS J0717), based on the full depth of the Hubble Frontier Field (HFF) observations, which brings the number of multiply imaged systems to 61, ten of which have been spectroscopically confirmed. The total number of images comprised in these systems rises to 165, compared to 48 images in 16 systems before the HFF observations. Our analysis uses a parametric mass reconstruction technique, as implemented in the Lenstool software, and the subset of the 132 most secure multiple images to constrain a mass distribution composed of four large-scale mass components (spatially aligned with the four main light concentrations) and a multitude of galaxy-scale perturbers. We find a superposition of cored isothermal mass components to provide a good fit to the observational constraints, resulting in a very shallow mass distribution for the smooth (large-scale) component. Given the implications of such a flat mass profile, we investigate whether a model composed of "peaky" non-cored mass components can also reproduce the observational constraints. We find that such a non-cored mass model reproduces the observational constraints equally well, in the sense that both models give comparable total rms. Although the total (smooth dark matter component plus galaxy-scale perturbers) mass distributions of both models are consistent, as are the integrated two-dimensional mass profiles, we find that the smooth and the galaxy-scale components are very different. We conclude that, even in the HFF era, the generic degeneracy between smooth and galaxy-scale components is not broken, in particular in such a complex galaxy cluster. Consequently, insights into the mass distribution of MACS J0717 remain limited, emphasizing the need for additional probes beyond strong lensing. Our findings also have implications for estimates of the lensing magnification. We show that the amplification difference between the two models is larger

  5. X-shooter study of accretion in Chamaeleon I. II. A steeper increase of accretion with stellar mass for very low-mass stars?

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Herczeg, G. J.; Pascucci, I.; Alcalá, J. M.; Natta, A.; Antoniucci, S.; Fedele, D.; Mulders, G. D.; Henning, T.; Mohanty, S.; Prusti, T.; Rigliaco, E.

    2017-08-01

    The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star-forming region carried out using spectra taken with the ESO VLT/X-shooter spectrograph. The sample is nearly complete down to stellar masses (M⋆) 0.1 M⊙ for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broadband flux-calibrated medium resolution spectrum. The correlation between accretion luminosity to stellar luminosity, and of mass accretion rate to stellar mass in the logarithmic plane yields slopes of 1.9 ± 0.1 and 2.3 ± 0.3, respectively. These slopes and the accretion rates are consistent with previous results in various star-forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity lower than 0.45 L⊙ and for stellar masses lower than 0.3 M⊙ is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane that are empty of objects: one region at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second region is located just above the observational limits imposed by chromospheric emission, at M⋆ 0.3 - 0.4 M⊙. These are typical masses where photoevaporation is known to be effective. The mass accretion rates of this region are 10-10M⊙/yr, which is compatible with the value expected for photoevaporation to rapidly dissipate the inner disk. This work is

  6. SOHO Observations of a Coronal Mass Ejection

    NASA Astrophysics Data System (ADS)

    Akmal, Arya; Raymond, John C.; Vourlidas, Angelos; Thompson, Barbara; Ciaravella, A.; Ko, Y.-K.; Uzzo, M.; Wu, R.

    2001-06-01

    We describe a coronal mass ejection (CME) observed on 1999 April 23 by the Ultraviolet Coronagraph Spectrometer (UVCS), the Extreme-Ultraviolet Imaging Telescope (EIT), and the Large-Angle and Spectrometric Coronagraphs (LASCO) aboard the Solar and Heliospheric Observatory (SOHO). In addition to the O VI and C III lines typical of UVCS spectra of CMEs, this 480 km s-1 CME exhibits the forbidden and intercombination lines of O V at λλ1213.8 and 1218.4. The relative intensities of the O V lines represent an accurate electron density diagnostic not generally available at 3.5 Rsolar. By combining the density with the column density derived from LASCO, we obtain the emission measure of the ejected gas. With the help of models of the temperature and time-dependent ionization state of the expanding gas, we determine a range of heating rates required to account for the UV emission lines. The total thermal energy deposited as the gas travels to 3.5 Rsolar is comparable to the kinetic and gravitational potential energies. We note a core of colder material radiating in C III, surrounded by hotter material radiating in the O V and O VI lines. This concentration of the coolest material into small regions may be a common feature of CMEs. This event thus represents a unique opportunity to describe the morphology of a CME, and to characterize its plasma parameters.

  7. Hadron spectrum of quenched QCD on a 32{sup 3} {times} 64 lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seyong; Sinclair, D.K.

    1992-10-01

    Preliminary results from a hadron spectrum calculation of quenched Quantumchromodynamics on a 32{sup 3} {times} 64 lattice at {beta} = 6.5 are reported. The hadron spectrum calculation is done with staggered quarks of masses, m{sub q}a = 0.001, 0.005 and 0.0025. We use two different sources in order to be able to extract the {Delta} mass in addition to the usual local light hadron masses. The numerical simulation is executed on the Intel Touchstone Delta computer. The peak speed of the Delta for a 16 {times} 32 mesh configuration is 41 Gflops for 32 bit precision. The sustained speed formore » our updating code is 9.5 Gflops. A multihit metropolis algorithm combined with an over-relaxation method is used in the updating and the conjugate gradient method is employed for Dirac matrix inversion. Configurations are stored every 1000 sweeps.« less

  8. Hadron spectrum of quenched QCD on a 32[sup 3] [times] 64 lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seyong; Sinclair, D.K.

    1992-10-01

    Preliminary results from a hadron spectrum calculation of quenched Quantumchromodynamics on a 32[sup 3] [times] 64 lattice at [beta] = 6.5 are reported. The hadron spectrum calculation is done with staggered quarks of masses, m[sub q]a = 0.001, 0.005 and 0.0025. We use two different sources in order to be able to extract the [Delta] mass in addition to the usual local light hadron masses. The numerical simulation is executed on the Intel Touchstone Delta computer. The peak speed of the Delta for a 16 [times] 32 mesh configuration is 41 Gflops for 32 bit precision. The sustained speed formore » our updating code is 9.5 Gflops. A multihit metropolis algorithm combined with an over-relaxation method is used in the updating and the conjugate gradient method is employed for Dirac matrix inversion. Configurations are stored every 1000 sweeps.« less

  9. Clinical features of bipolar spectrum with binge eating behaviour.

    PubMed

    McElroy, Susan L; Crow, Scott; Blom, Thomas J; Cuellar-Barboza, Alfredo B; Prieto, Miguel L; Veldic, Marin; Winham, Stacey J; Bobo, William V; Geske, Jennifer; Seymour, Lisa R; Mori, Nicole; Bond, David J; Biernacka, Joanna M; Frye, Mark A

    2016-09-01

    To determine whether bipolar spectrum disorder with binge eating behavior (BE) is an important clinical sub-phenotype. Prevalence rates and correlates of different levels of BE were assessed in 1114 bipolar spectrum patients participating in a genetic biobank. BE and eating disorders (EDs) were assessed with the Eating Disorder Diagnostic Scale (EDDS). Psychiatric illness burden was evaluated with measures of suicidality, psychosis, mood instability, anxiety disorder comorbidity, and substance abuse comorbidity. Medical illness burden was evaluated with body mass index (BMI) and the Cumulative Index Rating Scale (CIRS). Thirty percent of patients had any BE and 27% had BE plus an ED diagnosis. Compared with bipolar spectrum patients without BE, bipolar spectrum patients with BE were younger and more likely to be female; had significantly higher levels of eating psychopathology, suicidality, mood instability, and anxiety disorder comorbidity; had a significantly higher mean BMI and a significantly higher rate of obesity; and had a significantly higher medical illness burden. Bipolar spectrum patients with BE but no ED diagnosis were more similar to bipolar spectrum patients without BE than to those with an ED. Nonetheless, the positive predictive value and specificity of BE predicting an ED was 0.90 and 0.96, respectively. As only two patients had co-occurring anorexia nervosa, these results may not generalize to bipolar spectrum patients with restricting EDs. Bipolar spectrum disorder with broadly-defined BE may not be as clinically relevant a sub-phenotype as bipolar spectrum disorder with an ED but may be an adequate proxy for the latter when phenotyping large samples of individuals. Copyright © 2016. Published by Elsevier B.V.

  10. Multi-Hadron Observables from Lattice Quantum Chromodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Maxwell

    2014-01-01

    We describe formal work that relates the nite-volume spectrum in a quantum eld theory to scattering and decay amplitudes. This is of particular relevance to numerical calculations performed using Lattice Quantum Chromodynamics (LQCD). Correlators calculated using LQCD can only be determined on the Euclidean time axis. For this reason the standard method of determining scattering amplitudes via the Lehmann-Symanzik-Zimmermann reduction formula cannot be employed. By contrast, the nite-volume spectrum is directly accessible in LQCD calculations. Formalism for relating the spectrum to physical scattering observables is thus highly desirable. In this thesis we develop tools for extracting physical information from LQCDmore » for four types of observables. First we analyze systems with multiple, strongly-coupled two-scalar channels. Here we accommodate both identical and nonidentical scalars, and in the latter case allow for degenerate as well as nondegenerate particle masses. Using relativistic eld theory, and summing to all orders in perturbation theory, we derive a result relating the nite-volume spectrum to the two-to-two scattering amplitudes of the coupled-channel theory. This generalizes the formalism of Martin L uscher for the case of single-channel scattering. Second we consider the weak decay of a single particle into multiple, coupled two-scalar channels. We show how the nite-volume matrix element extracted in LQCD is related to matrix elements of asymptotic two-particle states, and thus to decay amplitudes. This generalizes work by Laurent Lellouch and Martin L uscher. Third we extend the method for extracting matrix elements by considering currents which insert energy, momentum and angular momentum. This allows one to extract transition matrix elements and form factors from LQCD. Finally we look beyond two-particle systems to those with three-particles in asymptotic states. Working again to all orders in relativistic eld theory, we derive a relation

  11. Observation of a resonancelike structure in the pi +- psi' mass distribution in exclusive B-->Kpi +- psi' decays.

    PubMed

    Choi, S-K; Olsen, S L; Adachi, I; Aihara, H; Aulchenko, V; Aushev, T; Aziz, T; Bakich, A M; Balagura, V; Bedny, I; Bitenc, U; Bondar, A; Bozek, A; Bracko, M; Brodzicka, J; Browder, T E; Chang, P; Chao, Y; Chen, A; Chen, K-F; Chen, W T; Cheon, B G; Chistov, R; Choi, Y; Dalseno, J; Danilov, M; Dash, M; Eidelman, S; Gabyshev, N; Golob, B; Haba, J; Hara, T; Hayasaka, K; Hayashii, H; Hazumi, M; Heffernan, D; Hoshi, Y; Hou, W-S; Hyun, H J; Iijima, T; Inami, K; Ishikawa, A; Ishino, H; Itoh, R; Iwasaki, M; Iwasaki, Y; Kah, D H; Kang, J H; Katayama, N; Kawai, H; Kawasaki, T; Kichimi, H; Kim, H O; Kim, S K; Kim, Y J; Kinoshita, K; Krizan, P; Krokovny, P; Kumar, R; Kuo, C C; Kuzmin, A; Kwon, Y-J; Lange, J S; Lee, J S; Lee, M J; Lee, S E; Lesiak, T; Limosani, A; Lin, S-W; Liu, Y; Liventsev, D; Mandl, F; Matyja, A; McOnie, S; Medvedeva, T; Mitaroff, W; Miyabayashi, K; Miyake, H; Miyata, H; Miyazaki, Y; Mizuk, R; Moloney, G R; Nakano, E; Nakao, M; Nishida, S; Nitoh, O; Nozaki, T; Ogawa, S; Ohshima, T; Okuno, S; Ozaki, H; Pakhlov, P; Pakhlova, G; Park, C W; Park, H; Peak, L S; Pestotnik, R; Piilonen, L E; Sahoo, H; Sakai, Y; Schneider, O; Schwartz, A J; Senyo, K; Shapkin, M; Shen, C P; Shibuya, H; Shwartz, B; Singh, J B; Somov, A; Stanic, S; Staric, M; Sumiyoshi, T; Suzuki, S Y; Takasaki, F; Tamai, K; Tanaka, M; Teramoto, Y; Tikhomirov, I; Uehara, S; Uglov, T; Unno, Y; Uno, S; Urquijo, P; Varner, G; Vervink, K; Villa, S; Wang, C H; Wang, M-Z; Wang, P; Wang, X L; Watanabe, Y; Wedd, R; Won, E; Yabsley, B D; Yamashita, Y; Yuan, C Z; Zhang, Z P; Zhulanov, V; Zupanc, A; Zyukova, O

    2008-04-11

    A distinct peak is observed in the pi +/- psi' invariant mass distribution near 4.43 GeV in B-->K pi +/- psi' decays. A fit using a Breit-Wigner resonance shape yields a peak mass and width of M=4433+/-4(stat)+/-2(syst) MeV and Gamma=45-13+18(stat)-13+30(syst) MeV. The product branching fraction is determined to be B(B 0-->K -/+Z+/-(4430)) x B(Z+/-(4430)-->pi+/-psi')=(4.1+/-1.0(stat)+/-1.4(syst)) x 10(-5), where Z+/-(4430) is used to denote the observed structure. The statistical significance of the observed peak is 6.5 sigma. These results are obtained from a 605 fb(-1) data sample that contains 657 x 10(6) BB pairs collected near the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric energy e+ e- collider.

  12. Effects of a Prototypical Training Program on the Implementation of Systematic Observational Data Collection on IEP Objectives for the Core Deficits of Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Harkins, Jessica L.

    2013-01-01

    Legal mandates and best practice recommendations for the education of students with autism spectrum disorders (ASD) emphasize the importance of systematic, ongoing observational data collection in order to monitor progress and demonstrate accountability. The absence of such documentation in decision-making on instructional objectives indicates a…

  13. Dynamic evolution of recurrent mass ejections observed in H-alpha and C IV lines

    NASA Technical Reports Server (NTRS)

    Schmieder, B.; Mein, P.; Martres, M. J.; Tandberg-Hanssen, E.

    1984-01-01

    The mass ejections of 1 September, 1980 are studied from observations obtained with the MSDP spectrograph and with the Ultraviolet Spectrometer and Polarimeter aboard the Solar Maximum Mission satellite. The analysis is focused on observations in the chromospheric H-alpha line and the transition region C IV 1548 A line. It is noted that cold and hot material had the same projection, although the upward C IV velocity structure was more extended than the H-alpha one. It is shown that the observed contrast of the H-alpha absorbing structure can be interpreted in terms of a dynamic cloud model overlying the chromosphere. Radial velocities of 25-30 km/s and -40 km/s are estimated for the first and second phases of ejection, respectively.

  14. IRIS Observations of Coronal Rain and Prominences: Return Flows of the Chromosphere-Corona Mass Cycle

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Berger, Thomas; Antolin, Patrick; Schrijver, Karel

    2014-06-01

    It has recently been recognized that a mass cycle (e.g., Berger et al. 2011; McIntosh et al. 2012) between the hot, tenuous solar corona and the cool, dense chromosphere underneath it plays an important role in the mass budget and dynamic evolution of the solar atmosphere. Although the corona ultimately loses mass through the solar wind and coronal mass ejections, a fraction of its mass returns to the chromosphere in coronal rain, downflows of prominences, and other as-yet unidentified processes. We present here analysis of joint observations of IRIS, SDO/AIA, and Hinode/SOT of such phenomena. By utilizing the wide temperature coverage (logT: 4 - 7) provided by these instruments combined, we track the coronal cooling sequence (e.g., Schrijver 2001; Liu et al. 2012; Berger et al. 2012) leading to the formation of such material at transition region or chromospheric temperatures (logT: 4 - 5) in the million-degree corona. We compare the cooling times with those expected from the radiative cooling instability. We also measure the kinematics and densities of such downflows and infer their mass fluxes, which are compared to the upward mass fluxes into the corona, e.g., those associated with spicules and flux emergence. Special attention is paid to coronal rain formed near cusp-shaped portions of coronal loops, funnel-shaped prominences at dips of coronal loops, and their respective magnetic environments. With the information about where and when such catastrophic cooling events take place, we discuss the implications for the enigmatic coronal heating mechanisms (e.g., Antolin et al. 2010).

  15. Spectroscopic Confirmation That 2MASS J07414279–0506464 Is a Mid-type L Dwarf

    NASA Astrophysics Data System (ADS)

    Cushing, Michael C.; Moskovitz, Nicholas; Gustafsson, Annika

    2018-06-01

    We present a low-resolution near-infrared spectrum of 2MASS J07414279-0506464, a mid-type L dwarf candidate recently identified by Scholz & Bell. The spectrum was obtained using the Near-Infrared High Throughput Spectrograph (NIHTS) on Lowell Observatory's 4.3 m Discovery Channel Telescope and indicates that 2MASS J07414279-0506464 has a spectral type of L5.

  16. Human brain mass: similar body composition associations as observed across mammals.

    PubMed

    Heymsfield, Steven B; Müller, Manfred J; Bosy-Westphal, Anja; Thomas, Diana; Shen, Wei

    2012-01-01

    A classic association is the link between brain mass and body mass across mammals that has now been shown to derive from fat-free mass (FFM) and not fat mass (FM). This study aimed to establish for the first time the associations between human brain mass and body composition and to compare these relations with those established for liver as a reference organ. Subjects were 112 men and 148 women who had brain and liver mass measured by magnetic resonance imaging with FM and FFM measured by dual-energy X-ray absorptiometry. Brain mass scaled to height (H) with powers of ≤0.6 in men and women; liver mass and FFM both scaled similarly as H(~2) . The fraction of FFM as brain thus scaled inversely to height (P < 0.001) while liver mass/FFM was independent of height. After controlling for age, brain, and liver mass were associated with FFM while liver was additionally associated with FM (all models P ≤ 0.01). After controlling for age and sex, FFM accounted for ~5% of the variance in brain mass while levels were substantially higher for liver mass (~60%). Brain mass was significantly larger (P < 0.001) in men than in women, even after controlling for age and FFM. As across mammals, human brain mass associates significantly, although weakly, with FFM and not FM; the fraction of FFM as brain relates inversely to height; brain differs in these relations from liver, another small high metabolic rate organ; and the sexual dimorphism in brain mass persists even after adjusting for age and FFM. Copyright © 2012 Wiley Periodicals, Inc.

  17. The cosmic ray spectrum and composition measured by KASCADE-Grande between 1016 eV and 1018 eV

    NASA Astrophysics Data System (ADS)

    Bertaina, M.; Apel, W. D.; Arteaga-Velázquez, J. C.; Bekk, K.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Cossavella, F.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Engler, J.; Fuchs, B.; Fuhrmann, D.; Gherghel-Lascu, A.; Gils, H. J.; Glasstetter, R.; Grupen, C.; Haungs, A.; Heck, D.; Hörandel, J. R.; Huber, D.; Huege, T.; Kampert, K.-H.; Kang, D.; Klages, H. O.; Link, K.; Łuczak, P.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Oehlschläger, J.; Ostapchenko, S.; Palmieri, N.; Petcu, M.; Pierog, T.; Rebel, H.; Roth, M.; Schieler, H.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Weindl, A.; Wochele, J.; Zabierowski, J.

    2014-11-01

    The shape and composition of the primary spectrum of cosmic rays are key elements to understand the origin, acceleration and propagation of the Galactic cosmic rays. Besides the well known knee and ankle features, the recent results of KASCADE-Grande indicate that the measured energy spectrum exhibits also a less pronounced but still clear deviation from a single power law between the knee and the ankle, with a spectral hardening at 2 × 1016 eV and a steepening at 1017 eV. The average mass composition gets heavier after the knee till 1017 eV where a bending of the heavy component is observed. An indication of a hardening of the light component just above 1017 eV has been measured as well. In this paper the major results obtained so far by the KASCADE-Grande experiment are reviewed.

  18. Search with UVES and X-Shooter for signatures of the low-mass secondary in the post common-envelope binary AA Doradus

    NASA Astrophysics Data System (ADS)

    Hoyer, D.; Rauch, T.; Werner, K.; Hauschildt, P. H.; Kruk, J. W.

    2015-06-01

    Context. AA Dor is a close, totally eclipsing, post common-envelope binary with an sdOB-type primary star and an extremely low-mass secondary star, located close to the mass limit of stable central hydrogen burning. Within error limits, it may either be a brown dwarf or a late M-type dwarf. Aims: We aim to extract the secondary's contribution to the phase-dependent composite spectra. The spectrum and identified lines of the secondary decide on its nature. Methods: In January 2014, we measured the phase-dependent spectrum of AA Dor with X-Shooter over one complete orbital period. Since the secondary's rotation is presumable synchronized with the orbital period, its surface strictly divides into a day and night side. Therefore, we may obtain the spectrum of its cool side during its transit and of its hot, irradiated side close to its occultation. We developed the Virtual Observatory (VO) tool TLISA to search for weak lines of a faint companion in a binary system. We successfully applied it to the observations of AA Dor. Results: We identified 53 spectral lines of the secondary in the ultraviolet-blue, visual, and near-infrared X-Shooter spectra that are strongest close to its occultation. We identified 57 (20 additional) lines in available Ultraviolet and Visual Echelle Spectrograph (UVES) spectra from 2001. The lines are mostly from C ii-iii and O ii, typical for a low-mass star that is irradiated and heated by the primary. We verified the orbital period of P = 22 597.033201 ± 0.00007 s and determined the orbital velocity K_sec = 232.9+16.6-6.5 km s-1 of the secondary. The mass of the secondary is M_sec = 0.081+0.018-0.010 M_⊙ and, hence, it is not possible to reliably determine a brown dwarf or an M-type dwarf nature. Conclusions: Although we identified many emission lines of the secondary's irradiated surface, the resolution and signal-to-noise ratio of our UVES and X-Shooter spectra are not good enough to extract a good spectrum of the secondary

  19. The dark-baryonic matter mass relation for observational verification in Verlinde's emergent gravity

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2018-06-01

    Recently, a new interesting idea of origin of gravity has been developed by Verlinde. In this scheme of emergent gravity, where horizon entropy, microscopic de Sitter states and relevant contribution to gravity are involved, an entropy displacement resulting from matter behaves as a memory effect and can be exhibited at sub-Hubble scales, namely, the entropy displacement and its "elastic" response would lead to emergent gravity, which gives rise to an extra gravitational force. Then galactic dark matter effects may origin from such extra emergent gravity. We discuss some concepts in Verlinde's theory of emergent gravity and point out some possible problems or issues, e.g., the gravitational potential caused by Verlinde's emergent apparent dark matter may no longer be continuous in spatial distribution at ordinary matter boundary (such as a massive sphere surface). In order to avoid the unnatural discontinuity of the extra emergent gravity of Verlinde's apparent dark matter, we suggest a modified dark-baryonic mass relation (a formula relating Verlinde's apparent dark matter mass to ordinary baryonic matter mass) within this framework of emergent gravity. The modified mass relation is consistent with Verlinde's result at relatively small scales (e.g., R<3h_{70}^{-1} Mpc). However, it seems that, compared with Verlinde's relation, at large scales (e.g., gravitating systems with R>3h_{70}^{-1} Mpc), the modified dark-baryonic mass relation presented here might be in better agreement with the experimental curves of weak lensing analysis in the recent work of Brouwer et al. Galactic rotation curves are compared between Verlinde's emergent gravity and McGaugh's recent model of MOND (Modified Newtonian Dynamics established based on recent galaxy observations). It can be found that Verlinde rotational curves deviate far from those of McGaugh MOND model when the MOND effect (or emergent dark matter) dominates. Some applications of the modified dark-baryonic mass relation

  20. Constraints on the Mass and Location of Planet 9 set by Range and VLBI Observations of Spacecraft at Saturn

    NASA Astrophysics Data System (ADS)

    Jacobson, Robert A.; Folkner, William M.; Park, Ryan S.; Williams, James G.

    2017-06-01

    Batygin and Brown, 2016 AJ, found that all Kuiper belt objects (KBOs) with well determined orbits having periods greater than 4000 years share nearly the same orbital plane and are apsidally aligned. They attribute this orbital clustering to the existence of a distant planet, Planet 9, well beyond Neptune, with a mass roughly ten times that of Earth. If such a planet exists, it would affect the motion of the known solar system planets, in particular Saturn, which is well observed with radiometric ranging from the Voyager and Cassini spacecraft and VLBI observations of Cassini. The current planetary ephemerides do not account for the postulated Planet 9, yet their fit to the observational data shows no obvious effect that could be attributed to neglecting that planet. However, it is possible that the effect could be absorbed by the estimated parameters used to determine the ephemerides. Those parameters include the planetary orbital elements, mass of the Sun, and the masses of the asteroids that perturb the Martian orbit. We recently updated the Voyager and Cassini data sets and extended the latter through 2017 March. We analyze the sensitivity of these data to the tidal perturbations caused by Planet 9 for a range of positions on the sky and tidal parameters (the ratio of the mass of Planet 9 to the cube of its distance from Saturn). We determine an upper bound on the tidal parameter and the most probable directions consistent with the observational data.

  1. The gamma-ray spectrum of Centaurus A: A high-resolution observation between 70 keV and 8 MeV

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cline, T. L.; Teegarden, B. J.; Paciesas, W. S.; Tueller, J.; Durouchoux, P.; Hameury, J. M.

    1983-01-01

    The NASA/Goddard Space Flight Center Low Energy Gamma ray Spectrometer (LEGS) observed the nearby active nucleus galaxy Centaurus A (NGC 5128) during a balloon flight on 1981 November 19. There is no evidence of a break in the spectrum or of any line features. The 1.6 MeV limit is a factor of 8 lower than the 1974 line flux, indicating that, if the 1974 feature was real, and, if it was narrow, then the line intensity decreased significantly between 1974 and 1981. The lack of observed annihilation radiation from Cen A, combined with the temporal variations that are seen in the X-ray and gamma-ray intensities, constrain the size of the emission region to be between 10 to the 13th power and 5 x 10 to the 17th power cm.

  2. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Wald, R. M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zimmerman, A.; Zucker, M. E.; Zweizig, J.; LIGO Scientific; Virgo Collaboration

    2017-06-01

    We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31. 2-6.0+8.4M⊙ and 19. 4-5.9+5.3 M⊙ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χeff=-0.1 2-0.30+0.21 . This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 88 0-390+450 Mpc corresponding to a redshift of z =0.1 8-0.07+0.08 . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to mg≤7.7 ×10-23 eV /c2 . In all cases, we find that GW170104 is consistent with general relativity.

  3. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; AultONeal, K; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bawaj, M; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chatterjee, D; Chatziioannou, K; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Deelman, E; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Duncan, J; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gabel, M; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garufi, F; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mayani, R; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Ramirez, K E; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Rynge, M; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Taylor, J A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahi, K; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Wald, R M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, M; Wang, Y-F; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zimmerman, A; Zucker, M E; Zweizig, J

    2017-06-02

    We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2_{-6.0}^{+8.4}M_{⊙} and 19.4_{-5.9}^{+5.3}M_{⊙} (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χ_{eff}=-0.12_{-0.30}^{+0.21}. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880_{-390}^{+450}  Mpc corresponding to a redshift of z=0.18_{-0.07}^{+0.08}. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m_{g}≤7.7×10^{-23}  eV/c^{2}. In all cases, we find that GW170104 is consistent with general relativity.

  4. Seismological properties of intermediate-mass stars

    NASA Astrophysics Data System (ADS)

    Audard, N.; Provost, J.

    1994-02-01

    Stars more massive than about 1.2 solar mass are characterized by a convective core, which induces at its frontier a rapid variation of the density, sound speed and Brunt-Vaisala frequency, close to a discontinuity. For three stars of 1, 1.5 and 2 solar mass we have studied the properties of p-mode frequencies of high radial order and low degree, and we present results on the effects on p-mode oscillations of some rapid variations of the internal structure. We first point out the difficulties of the classical asymptotic theory to represent with accuracy the p-mode spectrum of the stars considered. We compare the numerical frequencies with asymptotic and polynomial approximations obtained from fits. The variation of the derived global coefficients characterizing the p-mode spectrum along the evolutionary tracks has been estimated; it would help to separate the effects of age and mass of intermediate-mass stars. The sensitivity of these coefficients to stellar parameters substantially depends on the stellar mass and must be considered for asteroseismic calibration. The effects of rapid variations in the stellar internal structure are finally considered. An asymptotic formula taking into account the rapid variation of the sound speed at the convective core boundary of the 1.5 and 2 solar mass stars predicts an oscillatory behavior of the frequencies with a very large period. We also show that the second frequency difference delta2nu = nun, l - 2nun-1, l + nun-2, l exhibits a substantial oscillation which corresponds to the region of the He II ionization of the 1, 1.5 and 2 solar mass stars.

  5. CFBDSIR 2149-0403: young isolated planetary-mass object or high-metallicity low-mass brown dwarf?

    NASA Astrophysics Data System (ADS)

    Delorme, P.; Dupuy, T.; Gagné, J.; Reylé, C.; Forveille, T.; Liu, M. C.; Artigau, E.; Albert, L.; Delfosse, X.; Allard, F.; Homeier, D.; Malo, L.; Morley, C.; Naud, M. E.; Bonnefoy, M.

    2017-06-01

    Aims: We conducted a multi-wavelength, multi-instrument observational characterisation of the candidate free-floating planet CFBDSIR J214947.2-040308.9, a late T-dwarf with possible low-gravity features, in order to constrain its physical properties. Methods: We analysed nine hours of X-shooter spectroscopy with signal detectable from 0.8 to 2.3 μm, as well as additional photometry in the mid-infrared using the Spitzer Space Telescope. Combined with a VLT/HAWK-I astrometric parallax, this enabled a full characterisation of the absolute flux from the visible to 5 μm, encompassing more than 90% of the expected energy emitted by such a cool late T-type object. Our analysis of the spectrum also provided the radial velocity and therefore the determination of its full 3D kinematics. Results: While our new spectrum confirms the low gravity and/or high metallicity of CFBDSIR 2149, the parallax and kinematics safely rule out membership to any known young moving group, including AB Doradus. We use the equivalent width of the K I doublet at 1.25 μm as a promising tool to discriminate the effects of low-gravity from the effects of high-metallicity on the emission spectra of cool atmospheres. In the case of CFBDSIR 2149, the observed K I doublet clearly favours the low-gravity solution. Conclusions: CFBDSIR 2149 is therefore a peculiar late-T dwarf that is probably a young, planetary-mass object (2-13 MJup, <500 Myr) possibly similar to the exoplanet 51 Eri b, or perhaps a 2-40 MJup brown dwarf with super-solar metallicity. Based on observations obtained with X-shooter on VLT-UT2 at ESO-Paranal (run 091.D-0723). Based on observations obtained with HAWKI on VLT-UT4 (run 089.C-0952, 090.C-0483, 091.C-0543,092.C-0548,293.C-5019(A) and run 086.C-0655(A)). Based on observations obtained with ISAAC on VLT-UT3 at ESO-Paranal (run 290.C-5083). Based on observation obtained with WIRCam at CFHT (program 2012BF12). Based on Spitzer Space telescope DDT observation (program 10166).

  6. Mass-induced sea level variations in the Red Sea from GRACE, steric-corrected altimetry, in situ bottom pressure records, and hydrographic observations

    NASA Astrophysics Data System (ADS)

    Feng, W.; Lemoine, J.-M.; Zhong, M.; Hsu, H. T.

    2014-08-01

    An annual amplitude of ∼18 cm mass-induced sea level variations (SLV) in the Red Sea is detected from the Gravity Recovery and Climate Experiment (GRACE) satellites and steric-corrected altimetry from 2003 to 2011. The annual mass variations in the region dominate the mean SLV, and generally reach maximum in late January/early February. The annual steric component of the mean SLV is relatively small (<3 cm) and out of phase of the mass-induced SLV. In situ bottom pressure records at the eastern coast of the Red Sea validate the high mass variability observed by steric-corrected altimetry and GRACE. In addition, the horizontal water mass flux of the Red Sea estimated from GRACE and steric-corrected altimetry is validated by hydrographic observations.

  7. The Eating Habits of Milky Way Mass Halos: Destroyed Dwarf Satellites and the Metallicity Distribution of Accreted Stars

    DOE PAGES

    Deason, Alis J.; Mao, Yao-Yuan; Wechsler, Risa H.

    2016-04-01

    In this paper, we study the mass spectrum of destroyed dwarfs that contribute to the accreted stellar mass of Milky Way (MW)-mass (M vir ~ 10 12.1 M ⊙) halos using a suite of 45 zoom-in dissipationless simulations. Empirical models are employed to relate (peak) subhalo mass to dwarf stellar mass, and we use constraints from z = 0 observations and hydrodynamical simulations to estimate the metallicity distribution of the accreted stellar material. The dominant contributors to the accreted stellar mass are relatively massive dwarfs with M star ~ 10 8–10 10M ⊙. Halos with more quiescent accretion histories tendmore » to have lower mass progenitors (10 8–10 9 M ⊙), and lower overall accreted stellar masses. Ultra-faint mass (M star < 10 5 M ⊙) dwarfs contribute a negligible amount (<<1%) to the accreted stellar mass and, despite having low average metallicities, supply a small fraction (~2%–5%) of the very metal-poor stars with [Fe/H] < -2. Dwarfs with masses 10 5 < M star/M ⊙ < 10 8 provide a substantial amount of the very metal-poor stellar material (~40%–80%), and even relatively metal-rich dwarfs with M star > 10 8 M ⊙ can contribute a considerable fraction (~20%–60%) of metal-poor stars if their metallicity distributions have significant metal-poor tails. Finally, we find that the generic assumption of a quiescent assembly history for the MW halo seems to be in tension with the mass spectrum of its surviving dwarfs. In conclusion, we suggest that the MW could be a "transient fossil"; a quiescent halo with a recent accretion event(s) that disguises the preceding formation history of the halo.« less

  8. Observational constraints on black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Liang, Edison P.

    1994-01-01

    We review the empirical constraints on accretion disk models of stellar-mass black holes based on recent multiwavelength observational results. In addition to time-averaged emission spectra, the time evolutions of the intensity and spectrum provide critical information about the structure, stability, and dynamics of the disk. Using the basic thermal Keplerian disk paradigm, we consider in particular generalizations of the standard optically thin disk models needed to accommodate the extremely rich variety of dynamical phenomena exhibited by black hole candidates ranging from flares of electron-positron annihilations and quasiperiodic oscillations in the X-ray intensity to X-ray novae activity. These in turn provide probes of the disk structure and global geometry. The goal is to construct a single unified framework to interpret a large variety of black hole phenomena. This paper will concentrate on the interface between basic theory and observational data modeling.

  9. Evaluation of the Revised Algorithm of Autism Diagnostic Observation Schedule (ADOS) in the Diagnostic Investigation of High-Functioning Children and Adolescents with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Kamp-Becker, Inge; Ghahreman, Mardjan; Heinzel-Gutenbrunner, Monika; Peters, Mira; Remschmidt, Helmut; Becker, Katja

    2013-01-01

    The Autism Diagnostic Observation Schedule (ADOS) is a semi-structured, standardized assessment designed for use in diagnostic evaluation of individuals with suspected autism spectrum disorder (ASD). The ADOS has been effective in categorizing children who definitely have autism or not, but has lower specificity and sometimes sensitivity for…

  10. Spectrum of Transient ASASSN-13at

    NASA Astrophysics Data System (ADS)

    Garnavich, Peter; Deal, Shanel

    2013-06-01

    We observed the transient ASASSN-13at (ATEL 5168) on June 28.3 (UT) with the Vatican Advanced Technology Telescope (VATT) and VATTSPEC instrument. The resulting spectrum covers the wavelength range between 365 nm and 750 nm with a resolution of 1100. The spectrum of ASASSN-13at shows a blue continuum with strong Balmer absorption lines. Helium absorption at 447 nm and 588 nm is also seen. Blue-shifted emission lines are visible within the Halpha and Hbeta absorption features.

  11. A large light-mass component of cosmic rays at 10(17)-10(17.5) electronvolts from radio observations.

    PubMed

    Buitink, S; Corstanje, A; Falcke, H; Hörandel, J R; Huege, T; Nelles, A; Rachen, J P; Rossetto, L; Schellart, P; Scholten, O; ter Veen, S; Thoudam, S; Trinh, T N G; Anderson, J; Asgekar, A; Avruch, I M; Bell, M E; Bentum, M J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J W; Brouw, W N; Brüggen, M; Butcher, H R; Carbone, D; Ciardi, B; Conway, J E; de Gasperin, F; de Geus, E; Deller, A; Dettmar, R-J; van Diepen, G; Duscha, S; Eislöffel, J; Engels, D; Enriquez, J E; Fallows, R A; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; Grießmeier, J M; Gunst, A W; van Haarlem, M P; Hassall, T E; Heald, G; Hessels, J W T; Hoeft, M; Horneffer, A; Iacobelli, M; Intema, H; Juette, E; Karastergiou, A; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Kuper, G; van Leeuwen, J; Loose, G M; Maat, P; Mann, G; Markoff, S; McFadden, R; McKay-Bukowski, D; McKean, J P; Mevius, M; Mulcahy, D D; Munk, H; Norden, M J; Orru, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pietka, M; Pizzo, R; Polatidis, A G; Reich, W; Röttgering, H J A; Scaife, A M M; Schwarz, D J; Serylak, M; Sluman, J; Smirnov, O; Stappers, B W; Steinmetz, M; Stewart, A; Swinbank, J; Tagger, M; Tang, Y; Tasse, C; Toribio, M C; Vermeulen, R; Vocks, C; Vogt, C; van Weeren, R J; Wijers, R A M J; Wijnholds, S J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P; Zensus, J A

    2016-03-03

    Cosmic rays are the highest-energy particles found in nature. Measurements of the mass composition of cosmic rays with energies of 10(17)-10(18) electronvolts are essential to understanding whether they have galactic or extragalactic sources. It has also been proposed that the astrophysical neutrino signal comes from accelerators capable of producing cosmic rays of these energies. Cosmic rays initiate air showers--cascades of secondary particles in the atmosphere-and their masses can be inferred from measurements of the atmospheric depth of the shower maximum (Xmax; the depth of the air shower when it contains the most particles) or of the composition of shower particles reaching the ground. Current measurements have either high uncertainty, or a low duty cycle and a high energy threshold. Radio detection of cosmic rays is a rapidly developing technique for determining Xmax (refs 10, 11) with a duty cycle of, in principle, nearly 100 per cent. The radiation is generated by the separation of relativistic electrons and positrons in the geomagnetic field and a negative charge excess in the shower front. Here we report radio measurements of Xmax with a mean uncertainty of 16 grams per square centimetre for air showers initiated by cosmic rays with energies of 10(17)-10(17.5) electronvolts. This high resolution in Xmax enables us to determine the mass spectrum of the cosmic rays: we find a mixed composition, with a light-mass fraction (protons and helium nuclei) of about 80 per cent. Unless, contrary to current expectations, the extragalactic component of cosmic rays contributes substantially to the total flux below 10(17.5) electronvolts, our measurements indicate the existence of an additional galactic component, to account for the light composition that we measured in the 10(17)-10(17.5) electronvolt range.

  12. Mass-induced sea level variations in the Red Sea from steric-corrected altimetry, GRACE, in-situ bottom pressure records, and hydrographic observations

    NASA Astrophysics Data System (ADS)

    Feng, Wei; Lemoine, Jean-Michel; Zhong, Min; Xu, Houze

    2014-05-01

    An annual amplitude of ~18 cm mass-induced sea level variations (SLV) in the Red Sea is detected from steric-corrected altimetry and the Gravity Recovery and Climate Experiment (GRACE) satellites from 2003 to 2011, which dominates the mean sea level in the region. Seawater mass variations here generally reach maximum in late January/early February. The steric component of SLV calculated from oceanographic temperature and salinity data is relatively small and peaks about seven months later than mass variations. The phase difference between the steric SLV and the mass-induced SLV indicates that when the Red Sea gains the mass from inflow water in winter, the steric SLV fall, and vice versa in summer. In-situ bottom pressure records in the eastern coast of the Red Sea validate the high mass variability observed by steric-corrected altimetry and GRACE. Furthermore, we compare the horizontal water mass flux in the Red Sea from steric-corrected altimetry and GRACE with that estimated from hydrographic observations.

  13. OSSE Observations of Seyfert AGN

    NASA Astrophysics Data System (ADS)

    Johnson, W. N.; Grove, J. E.; Kinzer, R. L.; Kroeger, R. A.; Kurfess, J. D.; Strickman, M. S.; McNaron-Brown, K.; Grabelsky, D. A.; Purcell, W. R.; Ulmer, M. P.; Jung, G. V.; Cameron, R. A.

    1993-12-01

    In the first two years of the Compton Gamma Ray Observatory mission, the Oriented Scintillation Spectrometer Experiment (OSSE) has observed about two dozen Seyfert active galactic nuclei (AGN) selected from the HEAO-1 list (Rothschild et al. 1983) and intense X-ray sources detected by EXOSAT and Ginga. The OSSE observations in the 50 keV - 10 MeV range indicate spectra which, on average, are significantly softer than the power law photon index of Gamma =1.7 which is generally reported in the Xray band. The average spectrum is well described by exponential or thermal Comptonization models indicating a break in the spectrum near 100 keV. We summarize the OSSE observations of AGN and present the average Seyfert spectrum above 50 keV. Rothschild, R.E., et al. 1983, Ap. J., 269, 423.

  14. Subaru And Gemini Observations Of SS 433: New Constraint On The Mass Of The Compact Object

    NASA Astrophysics Data System (ADS)

    Kubota, K.; Ueda, Y.; Fabrika, S.; Medvedev, A.; Barsukova, E. A.; Sholukhova, O.; Goranskij, V. P.

    2010-02-01

    We present results of optical spectroscopic observations of the mass donor star in SS 433 with Subaru and Gemini, with an aim to best constrain the mass of the compact object. Subaru/Faint Object Camera and Spectrograph observations were performed on four nights of 2007 October 6-8 and 10, covering the orbital phase of phi = 0.96 - 0.26. We first calculate the cross-correlation function (CCF) of these spectra with that of the reference star HD 9233 in the wavelength range of 4740-4840 Å. This region is selected to avoid "strong" absorption lines accompanied with contaminating emission components, which most probably originate from the surroundings of the donor star, such as the wind and gas stream. The same analysis is applied to archive data of Gemini/GMOS taken at phi = 0.84 - 0.30 by Hillwig & Gies. From the Subaru and Gemini CCF results, the amplitude of the radial velocity curve of the donor star is determined to be 58.3 ± 3.8 km s-1 with a systemic velocity of 59.2 ± 2.5 km s-1. Together with the radial velocity curve of the compact object, we derive the mass of the donor star and compact object to be M O = 12.4 ± 1.9 M sun and M X = 4.3 ± 0.6 M sun, respectively. We conclude, however, that these values should be taken as upper limits. From the analysis of the averaged absorption line profiles of strong lines (mostly ions) and weak lines (mostly neutrals) observed with Subaru, we find evidence for heating effects from the compact object. Using a simple model, we find that the true radial velocity amplitude of the donor star could be as low as 40 ± 5 km s-1 in order to produce the observed absorption-line profiles. Taking into account the heating of the donor star may lower the derived masses to M O = 10.4+2.3 -1.9 M sun and M X = 2.5+0.7 -0.6 M sun. Our final constraint, 1.9 M sun <=M X<= 4.9 M sun, indicates that the compact object in SS 433 is most likely a low mass black hole, although the possibility of a massive neutron star cannot be firmly

  15. Discrete quantum spectrum of black holes

    NASA Astrophysics Data System (ADS)

    Lochan, Kinjalk; Chakraborty, Sumanta

    2016-04-01

    The quantum genesis of Hawking radiation is a long-standing puzzle in black hole physics. Semi-classically one can argue that the spectrum of radiation emitted by a black hole look very much sparse unlike what is expected from a thermal object. It was demonstrated through a simple quantum model that a quantum black hole will retain a discrete profile, at least in the weak energy regime. However, it was suggested that this discreteness might be an artifact of the simplicity of eigen-spectrum of the model considered. Different quantum theories can, in principle, give rise to different complicated spectra and make the radiation from black hole dense enough in transition lines, to make them look continuous in profile. We show that such a hope from a geometry-quantized black hole is not realized as long as large enough black holes are dubbed with a classical mass area relation in any gravity theory ranging from GR, Lanczos-Lovelock to f(R) gravity. We show that the smallest frequency of emission from black hole in any quantum description, is bounded from below, to be of the order of its inverse mass. That leaves the emission with only two possibilities. It can either be non-thermal, or it can be thermal only with the temperature being much larger than 1/M.

  16. Automated detection of coronal mass ejections in three-dimensions using multi-viewpoint observations

    NASA Astrophysics Data System (ADS)

    Hutton, J.; Morgan, H.

    2017-03-01

    A new, automated method of detecting coronal mass ejections (CMEs) in three dimensions for the LASCO C2 and STEREO COR2 coronagraphs is presented. By triangulating isolated CME signal from the three coronagraphs over a sliding window of five hours, the most likely region through which CMEs pass at 5 R⊙ is identified. The centre and size of the region gives the most likely direction of propagation and approximate angular extent. The Automated CME Triangulation (ACT) method is tested extensively using a series of synthetic CME images created using a wireframe flux rope density model, and on a sample of real coronagraph data; including halo CMEs. The accuracy of the angular difference (σ) between the detection and true input of the synthetic CMEs is σ = 7.14°, and remains acceptable for a broad range of CME positions relative to the observer, the relative separation of the three observers and even through the loss of one coronagraph. For real data, the method gives results that compare well with the distribution of low coronal sources and results from another instrument and technique made further from the Sun. The true three dimension (3D)-corrected kinematics and mass/density are discussed. The results of the new method will be incorporated into the CORIMP database in the near future, enabling improved space weather diagnostics and forecasting.

  17. Dark Energy Constraints from the Thermal Sunyaev Zeldovich Power Spectrum

    NASA Astrophysics Data System (ADS)

    Bolliet, Boris; Comis, Barbara; Komatsu, Eiichiro; Macías-Pérez, Juan Francisco

    2018-03-01

    We constrain the dark energy equation of state parameter, w, using the power spectrum of the thermal Sunyaev-Zeldovich (tSZ) effect. We improve upon previous analyses by taking into account the trispectrum in the covariance matrix and marginalising over the foreground parameters, the correlated noise, the mass bias B in the Planck universal pressure profile, and all the relevant cosmological parameters (i.e., not just Ωm and σ8). We find that the amplitude of the tSZ power spectrum at ℓ ≲ 103 depends primarily on F ≡ σ8(Ωm/B)0.40h-0.21, where B is related to more commonly used variable b by B = (1 - b)-1. We measure this parameter with 2.6% precision, F = 0.460 ± 0.012 (68% CL). By fixing the bias to B = 1.25 and adding the local determination of the Hubble constant H0 and the amplitude of the primordial power spectrum constrained by the Planck Cosmic Microwave Background (CMB) data, we find w = -1.10 ± 0.12, σ8 = 0.802 ± 0.037, and Ωm = 0.265 ± 0.022 (68% CL). Our limit on w is consistent with and is as tight as that from the distance-alone constraint from the CMB and H0. Finally, by combining the tSZ power spectrum and the CMB data we find, in the Λ Cold Dark Matter (CDM) model, the mass bias of B = 1.71 ± 0.17, i.e., 1 - b = 0.58 ± 0.06 (68% CL).

  18. The Evolution of Interstellar Medium Mass Probed by Dust Emission: ALMA Observations at z = 0.3-2

    NASA Astrophysics Data System (ADS)

    Scoville, N.; Aussel, H.; Sheth, K.; Scott, K. S.; Sanders, D.; Ivison, R.; Pope, A.; Capak, P.; Vanden Bout, P.; Manohar, S.; Kartaltepe, J.; Robertson, B.; Lilly, S.

    2014-03-01

    The use of submillimeter dust continuum emission to probe the mass of interstellar dust and gas in galaxies is empirically calibrated using samples of local star-forming galaxies, Planck observations of the Milky Way, and high-redshift submillimeter galaxies. All of these objects suggest a similar calibration, strongly supporting the view that the Rayleigh-Jeans tail of the dust emission can be used as an accurate and very fast probe of the interstellar medium (ISM) in galaxies. We present ALMA Cycle 0 observations of the Band 7 (350 GHz) dust emission in 107 galaxies from z = 0.2 to 2.5. Three samples of galaxies with a total of 101 galaxies were stellar-mass-selected from COSMOS to have M * ~= 1011 M ⊙: 37 at z ~ 0.4, 33 at z ~ 0.9, and 31 at z = 2. A fourth sample with six infrared-luminous galaxies at z = 2 was observed for comparison with the purely mass-selected samples. From the fluxes detected in the stacked images for each sample, we find that the ISM content has decreased by a factor ~6 from 1 to 2 × 1010 M ⊙ at both z = 2 and 0.9 down to ~2 × 109 M ⊙ at z = 0.4. The infrared-luminous sample at z = 2 shows a further ~4 times increase in M ISM compared with the equivalent non-infrared-bright sample at the same redshift. The gas mass fractions are ~2% ± 0.5%, 12% ± 3%, 14% ± 2%, and 53% ± 3% for the four subsamples (z = 0.4, 0.9, and 2 and infrared-bright galaxies).

  19. Active and observational reward learning in adults with autism spectrum disorder: relationship with empathy in an atypical sample.

    PubMed

    Bellebaum, Christian; Brodmann, Katja; Thoma, Patrizia

    2014-01-01

    Autism spectrum disorders (ASDs) are characterised by disturbances in social behaviour. A prevailing hypothesis suggests that these problems are related to deficits in assigning rewarding value to social stimuli. The present study aimed to examine monetary reward processing in adults with ASDs by means of event-related potentials (ERPs). Ten individuals with mild ASDs (Asperger's syndrome and high-functioning autism) and 12 healthy control subjects performed an active and an observational probabilistic reward-learning task. Both groups showed similar overall learning performance. With respect to reward processing, subjects with ASDs exhibited a general reduction in feedback-related negativity (FRN) amplitude, irrespective of feedback valence and type of learning (active or observational). Individuals with ASDs showed lower scores for cognitive empathy, while affective empathy did not differ between groups. Correlation analyses revealed that higher empathy (both cognitive and affective) negatively affected performance in observational learning in controls and in active learning in ASDs (only cognitive empathy). No relationships were seen between empathy and ERPs. Reduced FRN amplitudes are discussed in terms of a deficit in fast reward processing in ASDs, which may indicate altered reward system functioning.

  20. Cassini observations of carbon-based anions in Titan's ionosphere

    NASA Astrophysics Data System (ADS)

    Desai, Ravindra; Lewis, Gethyn; Waite, J. Hunter; Kataria, Dhiren; Wellbrock, Anne; Jones, Geraint; Coates, Andrew

    2016-07-01

    Cassini observations of Titan's ionosphere revealed an atmosphere rich in positively and negatively charged ions and organic molecules. The detection of large quantities of negatively charged ions was particularly surprising and adds Titan to the growing list of locations where anion chemistry has been observed to play an important role. In this study we present updated analysis on these negatively charged ions through an enhanced understanding of the Cassini CAPS Electron Spectrometer (CAPS-ELS) instrument response. The ionisation of Titan's dominant atmospheric constituent, N2, by the HeII Solar line, results in an observable photoelectron population at 24.1eV which we use to correct for differential spacecraft charging. Correcting for further energy-angle signatures within this dataset, we use an updated fitting procedure to show how the ELS mass spectrum, previously grouped into broad mass ranges, can be resolved into specific peaks at multiples of carbon-based anion species up to over 100amu/q. These peaks are shown to be ubiquitous within Titan's upper atmosphere and reminiscent of carbon-based anions identified in dense molecular clouds beyond our Solar System. It is thus shown how the moon Titan in the Outer Solar System can be used as an analogue to study these even more remote and exotic astrophysical environments.

  1. Effective holographic models for QCD: Glueball spectrum and trace anomaly

    NASA Astrophysics Data System (ADS)

    Ballon-Bayona, Alfonso; Boschi-Filho, Henrique; Mamani, Luis A. H.; Miranda, Alex S.; Zanchin, Vilson T.

    2018-02-01

    We investigate effective holographic models for QCD arising from five-dimensional dilaton gravity. The models are characterized by a dilaton with a mass term in the UV, dual to a CFT deformation by a relevant operator, and quadratic in the IR. The UV constraint leads to the explicit breaking of conformal symmetry, whereas the IR constraint guarantees linear confinement. We propose semianalytic interpolations between the UV and the IR and obtain a spectrum for scalar and tensor glueballs consistent with lattice QCD data. We use the glueball spectrum as a physical constraint to find the evolution of the model parameters as the mass term goes to 0. Finally, we reproduce the universal result for the trace anomaly of deformed CFTs and propose a dictionary between this result and the QCD trace anomaly. A nontrivial consequence of this dictionary is the emergence of a β function similar to the two-loop perturbative QCD result.

  2. Spectral variations of LMC X-3 observed with Ginga

    NASA Technical Reports Server (NTRS)

    Ebisawa, Ken; Makino, Fumiyoshi; Mitsuda, Kazuhisa; Belloni, Tomaso; Cowley, Anne P.; Schmidtke, Paul C.; Treves, Aldo

    1993-01-01

    The prime black hole candidate LMC X-3 was observed over three years with the Ginga satellite, and a characteristic spectral variation was found accompanying the periodic intensity variation of about 198 (or possibly about 99) days (Cowley et al., 1991). The energy spectrum of LMC X-3 consists of the soft, thermal component and the hard, power-law component, which are respectively dominant below and above about 9 keV. The soft component, which carries most of the X-ray intensity, shows a clear correlation between the intensity and the hardness, while the hard component varies independently of the soft component. It was found that the spectral variation of the soft component is well described by an optically thick accretion disk model with a remarkably constant innermost radius and variable mass accretion rate. The constancy of the innermost radius suggests it is related to the mass of the central object.

  3. Suzaku Observation of Two Ultraluminous X-Ray Sources in NGC 1313

    NASA Technical Reports Server (NTRS)

    Mizuno, T.; Miyawaki, R.; Ebisawa, K.; Kubota, A.; Miyamoto, M.; Winter, L.; Ueda, Y.; Isobe, N.; Dewangan, G.; Done, C.; hide

    2001-01-01

    A study was made of two ultraluminous X-ray soures (ULXs) in the nearby face-on, late-type Sb galaxy NGC 1313 using data from Suzaku, the 5th Japanese X-ray satellite. Within the 90 ks observation, both sources named X-1 and X-2 exhibited luminosity change by about 50%. The 0.4-10 keV X-ray luminosity was measured to be 2.5 x 10(exp 40) erg per second and 5.8 x 10 erg per second for X-1 and X-2, respectively, requiring a black hole of 50-200 solar mass in order not to exceed the Eddingtion limit. For X-1: the spectrum exhibited a strong power-law component with a high energy cutoff which is thought to arise from strong Comptonization by a disk corona, suggesting the source was in a very high state. Absorption line features with equivalent widths of 40-80 eV found at 7.0 keV and 7.8 keV in the X-1 spectrum support the presence of a highly ionized plasma and a high mass accretion rate on the system. Oxygen abundance of the NGC 1313 circumstellar matter toward X-1 was found to be subsolar, viz. O/H = (5.0 plus or minus 1.0) x 10(exp -4). The spectrum of X-2 in fainter phase is best represented by a multicolor disk blackbody model with T (sub in) = 1.2-1.3 keV and becomes flatter as the flux increases; the source is interpreted to be in a slim disk state.

  4. The dust mass in Cassiopeia A

    NASA Astrophysics Data System (ADS)

    De Looze, Ilse; Barlow, Mike; Marcowith, Alexandre; Tatischef, Vincent

    2016-06-01

    Theoretical models predict that core-collapse supernovae (CCSNe) can be efficient dust producers (0.1-1 Msun) and potentially responsible for most of the dust production in the early Universe. Observational evidence for this dust production efficiency has remained limited. Herschel observations from 70-500 microns of the 335-year old Cassiopeia A have indicated the presence of ˜0.1 Msun of cool (T˜35 K) dust interior to the reverse shock (Barlow et al. 2010), while Dunne et al. (2009) have claimed a detection of ˜1 Msun of cold (˜20 K) dust, based on SCUBA 850-micron polarimetric data. At sub-millimeter wavelengths, the supernova dust emission is heavily contaminated by interstellar dust emission and by the synchrotron radiation from the SNR. We present the first spatially resolved analysis of the infrared and submillimeter emission of Cas, A at better than 1 parsec resolution, based on our Herschel PACS and SPIRE 70-500um images. We used our PACS IFU and SPIRE FTS spectra to remove the contaminating emission from bright lines (e.g. [OIII]88, [CII]158). We updated the spectral index of the synchrotron emission based on recent Planck data, and extrapolated this synchrotron spectrum from a 3.7 mm VLA image to infrared/submillimeter wavelengths. We modeled the interstellar dust emission using a Galactic dust emission template from Jones et al. (2013), while the ISM dust mass is scaled to reproduce the continuum emission in the SPIRE FTS spectra at wavelengths > 650 micron (after subtraction of synchrotron emission). The UV radiation field that illuminates the ISM dust was constrained through PDR modelling of the [CI] 1-0, 2-1 and CO 4-3 lines observed in the SPIRE FTS spectra, and was found to range between 0.3 G0 and 1.0 G0 in units of the Draine IS radiation field. Within the uncertainties of the radiation field that illuminates the ISM material and the observational errors, we detect a dust mass of up to 0.8 Msun in Cas, A, with an average temperature of 30 K

  5. Extragalactic Peaked-spectrum Radio Sources at Low Frequencies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.

    We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak.more » We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.« less

  6. Identification of RNA molecules by specific enzyme digestion and mass spectrometry: software for and implementation of RNA mass mapping

    PubMed Central

    Matthiesen, Rune; Kirpekar, Finn

    2009-01-01

    The idea of identifying or characterizing an RNA molecule based on a mass spectrum of specifically generated RNA fragments has been used in various forms for well over a decade. We have developed software—named RRM for ‘RNA mass mapping’—which can search whole prokaryotic genomes or RNA FASTA sequence databases to identify the origin of a given RNA based on a mass spectrum of RNA fragments. As input, the program uses the masses of specific RNase cleavage of the RNA under investigation. RNase T1 digestion is used here as a demonstration of the usability of the method for RNA identification. The concept for identification is that the masses of the digestion products constitute a specific fingerprint, which characterize the given RNA. The search algorithm is based on the same principles as those used in peptide mass fingerprinting, but has here been extended to work for both RNA sequence databases and for genome searches. A simple and powerful probability model for ranking RNA matches is proposed. We demonstrate viability of the entire setup by identifying the DNA template of a series of RNAs of biological and of in vitro transcriptional origin in complete microbial genomes and by identifying authentic 16S ribosomal RNAs in a ‘small ribosomal subunit RNA’ database. Thus, we present a new tool for a rapid identification of unknown RNAs using only a few picomoles of starting material. PMID:19264806

  7. Association between TPMT*3C and decreased thiopurine S-methyltransferase activity in patients with neuromyelitis optica spectrum disorders in China.

    PubMed

    Gong, Xiaoqing; Mei, Shenghui; Li, Xindi; Li, Xingang; Zhou, Heng; Liu, Yonghong; Zhou, Anna; Yang, Li; Zhao, Zhigang; Zhang, Xinghu

    2018-06-01

    Thiopurines are effective drugs in treating neuromyelitis optica spectrum disorders and other diseases. Thiopurines' toxicity is mainly imputed to thiopurine S-methyltransferase activity. In Chinese population, the most common and important variation of thiopurine S-methyltransferase is TPMT*3C (rs1142345). This study aims to reveal the association between thiopurine S-methyltransferase activity and genetic polymorphisms of thiopurine S-methyltransferase in patients with neuromyelitis optica spectrum disorders in China. A liquid chromatography tandem mass/mass method was used to evaluate the thiopurine S-methyltransferase activity by using 6-mercapthioprine as the substrate in human erythrocyte haemolysate via 1 h incubation at 37 °C to form its methylated product 6-methylmercaptopurine. The amount of 6-methylmercaptopurine was adjusted by haematocrit and normalized to 8 × 10 8 erythrocytes. The selected polymorphisms of thiopurine S-methyltransferase were identified using MassARRAY system (Sequenom) and multiple SNaPshot technique. In 69 patients with neuromyelitis optica spectrum disorders, thiopurine S-methyltransferase activity was 80.29-154.53 (127.51 ± 16.83) pmol/h/8 × 10 8 erythrocytes. TPMT*3C (rs1142345) was associated with lower thiopurine S-methyltransferase activity (BETA = -25.37, P = 0.011). Other selected variants were not associated with thiopurine S-methyltransferase activity. TPMT*3C affects TPMT activity in Chinese patients with neuromyelitis optica spectrum disorders. Further studies are warranted to confirm the results. TPRs = thiopurines; NMOSD = neuromyelitis optica spectrum disorders; TPMT = thiopurine S-methyltransferase; LC-MS/MS = liquid chromatography tandem mass/mass; 6-MMP = 6-methylmercaptopurine; IS = internal standard; SNP = single nucleotide polymorphism; MAF = minor allele frequency; HWE = Hardy-Weinberg equilibrium; BETA = regression coefficients; UTR-3 = untranslated region 3.

  8. Development and application of a channelized Hotelling observer for DBT optimization on structured background test images with mass simulating targets

    NASA Astrophysics Data System (ADS)

    Petrov, Dimitar; Michielsen, Koen; Cockmartin, Lesley; Zhang, Gouzhi; Young, Kenneth; Marshall, Nicholas; Bosmans, Hilde

    2016-03-01

    Digital breast tomosynthesis (DBT) is a 3D mammography technique that promises better visualization of low contrast lesions than conventional 2D mammography. A wide range of parameters influence the diagnostic information in DBT images and a systematic means of DBT system optimization is needed. The gold standard for image quality assessment is to perform a human observer experiment with experienced readers. Using human observers for optimization is time consuming and not feasible for the large parameter space of DBT. Our goal was to develop a model observer (MO) that can predict human reading performance for standard detection tasks of target objects within a structured phantom and subsequently apply it in a first comparative study. The phantom consists of an acrylic semi-cylindrical container with acrylic spheres of different sizes and the remaining space filled with water. Three types of lesions were included: 3D printed spiculated and non-spiculated mass lesions along with calcification groups. The images of the two mass lesion types were reconstructed with 3 different reconstruction methods (FBP, FBP with SRSAR, MLTRpr) and read by human readers. A Channelized Hotelling model observer was created for the non-spiculated lesion detection task using five Laguerre-Gauss channels, tuned for better performance. For the non-spiculated mass lesions a linear relation between the MO and human observer results was found, with correlation coefficients of 0.956 for standard FBP, 0.998 for FBP with SRSAR and 0.940 for MLTRpr. Both the MO and human observer percentage correct results for the spiculated masses were close to 100%, and showed no difference from each other for every reconstruction algorithm.

  9. The EPIC-MOS Particle-Induced Background Spectrum

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. L.

    2006-01-01

    We have developed a method for constructing a spectrum of the particle-induced instrumental background of the XMM-Newton EPIC MOS detectors that can be used for observations of the diffuse background and extended sources that fill a significant fraction of the instrument field of view. The strength and spectrum of the particle-induced background, that is, the background due to the interaction of particles with the detector and the detector surroundings, is temporally variable as well as spatially variable over individual chips. Our method uses a combination of the filter-wheel-closed data and a database of unexposed-region data to construct a spectrum of the "quiescent" background. We show that, using this method of background subtraction, the differences between independent observations of the same region of "blank sky" are consistent with the statistical uncertainties except when there is clear evidence of solar wind charge exchange emission. We use the blank sky observations to show that contamination by SWCX emission is a strong function of the solar wind proton flux, and that observations through the flanks of the magnetosheath appear to be contaminated only at much higher solar wind fluxes. We have also developed a spectral model of the residual soft proton flares, which allows their effects to be removed to a substantial degree during spectral fitting.

  10. A celestial gamma-ray foreground due to the albedo of small solar system bodies and a remote probe of the interstellar cosmic ray spectrum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moskalenko, Igor V.; Porter, Troy A.; Digel, Seth W.

    2007-12-17

    We calculate the {gamma}-ray albedo flux from cosmic-ray (CR) interactions with the solid rock and ice in Main Belt asteroids and Kuiper Belt objects (KBOs) using the Moon as a template. We show that the {gamma}-ray albedo for the Main Belt and Kuiper Belt strongly depends on the small-body mass spectrum of each system and may be detectable by the forthcoming Gamma Ray Large Area Space Telescope (GLAST). The orbits of the Main Belt asteroids and KBOs are distributed near the ecliptic, which passes through the Galactic center and high Galactic latitudes. If detected, the {gamma}-ray emission by the Mainmore » Belt and Kuiper Belt has to be taken into account when analyzing weak {gamma}-ray sources close to the ecliptic, especially near the Galactic center and for signals at high Galactic latitudes, such as the extragalactic {gamma}-ray emission. Additionally, it can be used to probe the spectrum of CR nuclei at close-to-interstellar conditions, and the mass spectrum of small bodies in the Main Belt and Kuiper Belt. The asteroid albedo spectrum also exhibits a 511 keV line due to secondary positrons annihilating in the rock. This may be an important and previously unrecognized celestial foreground for the INTErnational Gamma-Ray Astrophysics Laboratory (INTEGRAL) observations of the Galactic 511 keV line emission including the direction of the Galactic center.« less

  11. Broadband High-Energy Observations of the Superluminal Jet Source GRO J1655-40 During an Outburst

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Ebisawa, K.; Sunyaev, R.; Ueda, Y.; Harmon, B. A.; Sazonov, S.; Fishman, G. J.; Inoue, H.; Paciesas, W. S.; Takahash, T.

    1997-01-01

    The X-ray/radio transient superluminal jet source GRO J1655-40 was recently suggested to contain a black hole from optical observations. Because it is a relatively close-by system (d approximately 3.2 kpc), it can likely provide us with rich information about the physics operating in both Galactic and extragalactic jet sources. We present the first simultaneous broadband high-energy observations of GRO J1655-40 during the 1995 July-August outburst by three instruments: ASCA, WATCH/Granat, and BATSE/CGRO, in the energy band from 1 keV to 2 MeV. Our observations strengthen the interpretation that GRO J1655-40 contains a black hole. We detected a two-component energy spectrum, commonly seen from other Galactic black hole binaries, but never detected from a neutron star system. Combining our results with the mass limits derived from optical radial velocity and orbital period measurements, we further constrain the mass of the central object to be between 3.3 and 5.8 solar mass, above the well-established mass upper limit of 3.2 solar mass for a neutron star (the optical mass function for GRO J1655-40 is 3.16 + 0.2 solar mass). This system is therefore the first Galactic superluminal jet source for which there is strong evidence that the system contains a stellar mass black hole. The inclination angle of the binary system is constrained to be between 76 deg and 87 deg, consistent with estimates obtained from optical light curves and radio jet kinematics.

  12. Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD

    DOE PAGES

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin; ...

    2016-11-21

    Here, we analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the “energy peak” as an observable to determine the top quarkmass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or newmore » physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ±(1.2(exp) + 0.6(th)) GeV. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass.« less

  13. Top quark mass determination from the energy peaks of b-jets and B-hadrons at NLO QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agashe, Kaustubh; Franceschini, Roberto; Kim, Doojin

    Here, we analyze the energy spectra of single b-jets and B-hadrons resulting from the production and decay of top quarks within the SM at the LHC at the NLO QCD. For both hadrons and jets, we calculate the correlation of the peak of the spectrum with the top quark mass, considering the “energy peak” as an observable to determine the top quarkmass. Such a method is motivated by our previous work where we argued that this approach can have reduced sensitivity to the details of the production mechanism of the top quark, whether it concerns higher-order QCD effects or newmore » physics contributions. For a 1% jet energy scale uncertainty, the top quark mass can then be extracted using the energy peak of b-jets with an error ±(1.2(exp) + 0.6(th)) GeV. In view of the dominant jet energy scale uncertainty in the measurement using b-jets, we also investigate the extraction of the top quark mass from the energy peak of the corresponding B-hadrons which, in principle, can be measured without this uncertainty. The calculation of the B-hadron energy spectrum is carried out using fragmentation functions at NLO. The dependence on the fragmentation scale turns out to be the largest theoretical uncertainty in this extraction of top quark mass.« less

  14. Neoplastic stomach lesions and their mimickers: spectrum of imaging manifestations

    PubMed Central

    Virmani, Vivek; Sethi, Vineeta; Fraser-Hill, Margret; Fasih, Najla; Kielar, Ania

    2012-01-01

    Abstract This review illustrates a wide spectrum of gastric neoplasms with emphasis on imaging findings helpful in characterizing various gastric neoplasms. Both the malignant and benign neoplasms along with focal gastric masses mimicking tumour are illustrated. Moreover, imaging clues to reach an accurate diagnosis are emphasized. PMID:22935192

  15. KEPLER OBSERVATIONS OF THE SEYFERT 1 GALAXY II ZW 229.015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carini, M. T.; Ryle, Wesley T., E-mail: mike.carini@wku.edu

    2012-04-10

    The Seyfert 1 galaxy II ZW 229.015 has been observed with the Kepler spacecraft since quarter 4 of Kepler science operations. The results of the quarters 4-7 (1 year) Kepler observations are presented in this paper. We find the source to be highly variable on multiple timescales, with discrete variations occurring on timescales as short as tens of hours with amplitudes as small as 0.5%. Such small amplitude, rapid variability has never before been detected in active galactic nuclei. The presence of a strong galaxy component dilutes the variability determined from the photometric aperture used in the standard Kepler PDCmore » analysis. Using the tools provided by the Kepler Guest Observer Office and simultaneous V-band photometry found in the literature, we determine an optimal customized aperture for photometry of this source with Kepler. The results of a PSRESP analysis reveal tentative evidence of a characteristic variability timescale in the power spectrum. Using this timescale, we estimate the mass of the central supermassive black hole and this estimate is consistent with the virial mass estimate from reverberation mapping studies.« less

  16. Diode laser spectroscopy of the MnD radical ( 7Σ) and the determination of mass-independent parameters

    NASA Astrophysics Data System (ADS)

    Urban, Rolf-Dieter; Jones, Harold

    1991-03-01

    The infrared spectrum of the manganese deuteride radical has been observed in its ground electronic state ( 7Σ) using a diode-laser spectrometer. The hyperfine structure of a number of infrared transitions in the bands ν=1←0, ν=2←1 and ν=3←2 were measured with a nominal accuracy of ±0.001 cm -1. In all cases, the complete structure was easily resolved. Dunham parameters, spin—rotation and spin—spin coupling parameters were determined from the MnD data. A simultaneous fit of these data with those determined previously for MnH was carried out to determine mass-independent parameters and mass-scaling coefficients.

  17. The gamma-ray spectrum of Centaurus A - A high-resolution observation between 70 keV and 8 MeV

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Cline, T. L.; Teegarden, B. J.; Paciesas, W. S.; Tueller, J.; Durouchoux, PH.; Hameury, J. M.

    1984-01-01

    The NASA/Goddard Space Flight Center Low Energy Energy Gamma ray Spectrometer (LEGS) observed the nearby active nucleus galaxy Centaurus A (NGC 5128) during a balloon flight on 1981 November 19. There is no evidence of a break in the spectrum or of any line features. The 1.6 MeV limit is a factor of 8 lower than the 1974 line flux, indicating that, if the 1974 feature was real, and, if it was narrow, then the line intensity decreased significantly between 1974 and 1981. The lack of observed annihilation radiation from Cen A, combined with the temporal variations that are seen in the X-ray and gamma-ray intensities, constrain the size of the emission region to be between 10 to the 13th power and 5 x 10 to the 17th power cm. Previously announced in STAR as N83-35990

  18. Observations of Cygnus X-2 with IUE: Ultraviolet results from a multiwavelength campaign

    NASA Technical Reports Server (NTRS)

    Vrtilek, S. D.; Raymond, J. C.; Garcia, M. R.; Verbunt, F.; Hasinger, Guenther; Kuerster, M.

    1989-01-01

    The observations of the low-mass x ray binary, Cyg X-2, taken with the International Ultraviolet Explorer (IUE) in a campaign conducted in June and October of 1988 are reported. A direct relationship between the strength of the UV continuum and line emission and the placement of the x ray spectrum in one of three branches of the so-called Z-shaped curve is found by comparison with simultaneous x ray observations. All three previously known x ray spectral states are detected; the UV continuum and line emission increase monotonically along the Z with the least emission in the horizontal branch, and the most in the flaring branch. Emission lines due to HeII, CIV, NIII, NIV, NV, SiIV, and MgII are observed.

  19. The high-mass star-forming core G35.2N: what have we learnt from SOFIA and ALMA observations?

    NASA Astrophysics Data System (ADS)

    Zinnecker, Hans; Sandell, Goeran

    2014-07-01

    G35.2N is a luminouos, star forming core in a filamentary cloud at a distance of 2.2 kpc. It is associated with a thermal N-S radio jet and a misaligned NE-SW CO outflow observed both with SOFIA FORCAST (30 and 40 microns, ~4" resolution; Zhang, Tan, de Buizer et al. 2013) and with ALMA band 7 (850 micron line and continuum, 0.4" resolution; Sanchez-Monge, Cesaroni, Beltran et al. 2013, 2014). The ALMA observations revealed a NW-SE Keplerian rotating disk in the CH3CN molecule (Sanchez-Monge et al.) with an enclosed protostellar mass of 18 +/- 3 Mo, whose orientation is inconsistent with the N-S radio jet, and whose protostellar mass is marginally inconsistent with the one inferred from the SED modelling (20-34 Mo, L ~ 10(5) Lo; Zhang et al.) We review the various assumptions involved in the derivation of the disk interpretation and the SED modelling. The dynamical mass could be in the form of a close binary (two 9 Mo stars, say) in which case the predicted total luminosity would be 3 x 10(4) Lo, close to the actually observed one (as opposed to the modelled one, which takes into account the flashlight effect and unmeasured radiation that escapes along a bipolar cavity). One the other hand, if the inferred higher-luminosity model is correct, the disk interpretation of ALMA rotation curve may have to be challenged, and what seems like a nice disk might be a more complex dynamical structure, such as a warped or precessing disk around a binary protostar or a different (outflow-related) velocity-structure altogether. These observations show the complexity of the interpretation of multi-wavelength observations of high-mass star forming regions when viewed with different spatial resolutions.

  20. Observations of blazars with ASCA

    NASA Technical Reports Server (NTRS)

    Makino, F.; Edelson, R.; Fujimoto, R.; Kii, T.; Idesawa, E.; Makishima, K.; Takahashi, T.; Sasaki, K.; Kamae, T.; Kubo, H.; hide

    1996-01-01

    The Advanced Satellite for Cosmology and Astrophysics (ASCA) observations of 3C 279, Mkn 421, PKS 2155-304, BL Lac 0716+714 and OJ 287 blazars are presented. Blazars are a class of active galactic nuclei characterized by high variability, high polarization, flat radio spectrum and featureless spectrum. The X-ray spectra and flux variations of blazars are discussed. The inverse correlation between X-ray flux and index, soft lag, the convex curvature of the spectrum, flat gamma-ray and/or X-ray spectra, fast variability and featureless spectrum are common characteristics of blazars.