Sample records for observed ozone depletion

  1. Observations of ozone depletion events in a Finnish boreal forest

    NASA Astrophysics Data System (ADS)

    Chen, Xuemeng; Quéléver, Lauriane L. J.; Fung, Pak L.; Kesti, Jutta; Rissanen, Matti P.; Bäck, Jaana; Keronen, Petri; Junninen, Heikki; Petäjä, Tuukka; Kerminen, Veli-Matti; Kulmala, Markku

    2018-01-01

    We investigated the concentrations and vertical profiles of ozone over a 20-year period (1996-2016) at the SMEAR II station in southern Finland. Our results showed that the typical daily median ozone concentrations were in the range of 20-50 ppb with clear diurnal and annual patterns. In general, the profile of ozone concentrations illustrated an increase as a function of heights. The main aim of our study was to address the frequency and strength of ozone depletion events at this boreal forest site. We observed more than a thousand of 10 min periods at 4.2 m, with ozone concentrations below 10 ppb, and a few tens of cases with ozone concentrations below 2 ppb. Among these observations, a number of ozone depletion events that lasted for more than 3 h were identified, and they occurred mainly in autumn and winter months. The low ozone concentrations were likely related to the formation of a low mixing layer under the conditions of low temperatures, low wind speeds, high relative humidities and limited intensity of solar radiation.

  2. Issues in Stratospheric Ozone Depletion.

    NASA Astrophysics Data System (ADS)

    Lloyd, Steven Andrew

    Following the announcement of the discovery of the Antarctic ozone hole in 1985 there have arisen a multitude of questions pertaining to the nature and consequences of polar ozone depletion. This thesis addresses several of these specific questions, using both computer models of chemical kinetics and the Earth's radiation field as well as laboratory kinetic experiments. A coupled chemical kinetic-radiative numerical model was developed to assist in the analysis of in situ field measurements of several radical and neutral species in the polar and mid-latitude lower stratosphere. Modeling was used in the analysis of enhanced polar ClO, mid-latitude diurnal variation of ClO, and simultaneous measurements of OH, HO_2, H_2 O and O_3. Most importantly, such modeling was instrumental in establishing the link between the observed ClO and BrO concentrations in the Antarctic polar vortex and the observed rate of ozone depletion. The principal medical concern of stratospheric ozone depletion is that ozone loss will lead to the enhancement of ground-level UV-B radiation. Global ozone climatology (40^circS to 50^ circN latitude) was incorporated into a radiation field model to calculate the biologically accumulated dosage (BAD) of UV-B radiation, integrated over days, months, and years. The slope of the annual BAD as a function of latitude was found to correspond to epidemiological data for non-melanoma skin cancers for 30^circ -50^circN. Various ozone loss scenarios were investigated. It was found that a small ozone loss in the tropics can provide as much additional biologically effective UV-B as a much larger ozone loss at higher latitudes. Also, for ozone depletions of > 5%, the BAD of UV-B increases exponentially with decreasing ozone levels. An important key player in determining whether polar ozone depletion can propagate into the populated mid-latitudes is chlorine nitrate, ClONO_2 . As yet this molecule is only indirectly accounted for in computer models and field

  3. Revisiting Antarctic Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Grooß, Jens-Uwe; Tritscher, Ines; Müller, Rolf

    2015-04-01

    Antarctic ozone depletion is known for almost three decades and it has been well settled that it is caused by chlorine catalysed ozone depletion inside the polar vortex. However, there are still some details, which need to be clarified. In particular, there is a current debate on the relative importance of liquid aerosol and crystalline NAT and ice particles for chlorine activation. Particles have a threefold impact on polar chlorine chemistry, temporary removal of HNO3 from the gas-phase (uptake), permanent removal of HNO3 from the atmosphere (denitrification), and chlorine activation through heterogeneous reactions. We have performed simulations with the Chemical Lagrangian Model of the Stratosphere (CLaMS) employing a recently developed algorithm for saturation-dependent NAT nucleation for the Antarctic winters 2011 and 2012. The simulation results are compared with different satellite observations. With the help of these simulations, we investigate the role of the different processes responsible for chlorine activation and ozone depletion. Especially the sensitivity with respect to the particle type has been investigated. If temperatures are artificially forced to only allow cold binary liquid aerosol, the simulation still shows significant chlorine activation and ozone depletion. The results of the 3-D Chemical Transport Model CLaMS simulations differ from purely Lagrangian longtime trajectory box model simulations which indicates the importance of mixing processes.

  4. Observations of stratospheric temperature changes coincident with the recent Antarctic ozone depletions

    NASA Technical Reports Server (NTRS)

    Randel, William J.; Newman, Paul A.

    1988-01-01

    A high degree of correlation between the recent decline in Antarctic total ozone and cooling of the stratosphere during Austral spring has been noted in several recent studies (e.g., Sekiguchi, 1986; Angel, 1986). This study analyzes the observed temperature trends in detail, focusing on the spatial and temporal aspects of the observed cooling. Ozone losses and stratospheric cooling can be correlated for several reasons: (1) ozone losses (from an unspecified cause) will directly reduce temperatures due to decreased solar ultraviolet absorption (Shine, 1986), and/or (2) changes in both ozone and temperature structure due to modification of stratospheric circulation patterns (Mahlman and Fels, 1986). In order to scrutinize various ozone depletion scenarios, detailed information on the observed temperature changes is necessary; the goal is to provide such data. The data used are National Meteorological Center (NMC) Climate Analysis Center (CAC) derived temperatures, covering 1000 to 1 mb (0 to 48 km), for the period 1979 to 1987. Discussions on data origin and quality (assessed by extensive comparisons with radiosonde observations), along with other details of these observations, can be found in Newman and Randel (1988).

  5. Children's Models of the Ozone Layer and Ozone Depletion.

    ERIC Educational Resources Information Center

    Christidou, Vasilia; Koulaidis, Vasilis

    1996-01-01

    The views of 40 primary students on ozone and its depletion were recorded through individual, semi-structured interviews. The data analysis resulted in the formation of a limited number of models concerning the distribution and role of ozone in the atmosphere, the depletion process, and the consequences of ozone depletion. Identifies five target…

  6. Observing the Impact of Calbuco Volcanic Aerosols on South Polar Ozone Depletion in 2015

    NASA Astrophysics Data System (ADS)

    Stone, Kane A.; Solomon, Susan; Kinnison, Doug E.; Pitts, Michael C.; Poole, Lamont R.; Mills, Michael J.; Schmidt, Anja; Neely, Ryan R.; Ivy, Diane; Schwartz, Michael J.; Vernier, Jean-Paul; Johnson, Bryan J.; Tully, Matthew B.; Klekociuk, Andrew R.; König-Langlo, Gert; Hagiya, Satoshi

    2017-11-01

    The Southern Hemisphere Antarctic stratosphere experienced two noteworthy events in 2015: a significant injection of sulfur from the Calbuco volcanic eruption in Chile in April and a record-large Antarctic ozone hole in October and November. Here we quantify Calbuco's influence on stratospheric ozone depletion in austral spring 2015 using observations and an Earth system model. We analyze ozonesondes, as well as data from the Microwave Limb Sounder. We employ the Community Earth System Model, version 1, with the Whole Atmosphere Community Climate Model (WACCM) in a specified dynamics setup, which includes calculations of volcanic effects. The Cloud-Aerosol Lidar with Orthogonal Polarization data indicate enhanced volcanic liquid sulfate 532 nm backscatter values as far poleward as 68°S during October and November (in broad agreement with WACCM). Comparison of the location of the enhanced aerosols to ozone data supports the view that aerosols played a major role in increasing the ozone hole size, especially at pressure levels between 150 and 100 hPa. Ozonesonde vertical ozone profiles from the sites of Syowa, South Pole, and Neumayer display the lowest individual October or November measurements at 150 hPa since the 1991 Mount Pinatubo eruption period, with Davis showing similarly low values, but no available 1990 data. The analysis suggests that under the cold conditions ideal for ozone depletion, stratospheric volcanic aerosol particles from the moderate-magnitude eruption of Calbuco in 2015 greatly enhanced austral ozone depletion, particularly at 55-68°S, where liquid binary sulfate aerosols have a large influence on ozone concentrations.

  7. Decline in Antarctic Ozone Depletion and Lower Stratospheric Chlorine Determined From Aura Microwave Limb Sounder Observations

    NASA Astrophysics Data System (ADS)

    Strahan, Susan E.; Douglass, Anne R.

    2018-01-01

    Attribution of Antarctic ozone recovery to the Montreal protocol requires evidence that (1) Antarctic chlorine levels are declining and (2) there is a reduction in ozone depletion in response to a chlorine decline. We use Aura Microwave Limb Sounder measurements of O3, HCl, and N2O to demonstrate that inorganic chlorine (Cly) from 2013 to 2016 was 223 ± 93 parts per trillion lower in the Antarctic lower stratosphere than from 2004 to 2007 and that column ozone depletion declined in response. The mean Cly decline rate, 0.8%/yr, agrees with the expected rate based on chlorofluorocarbon lifetimes. N2O measurements are crucial for identifying changes in stratospheric Cly loading independent of dynamical variability. From 2005 to 2016, the ozone depletion and Cly time series show matching periods of decline, stability, and increase. The observed sensitivity of O3 depletion to changing Cly agrees with the sensitivity simulated by the Global Modeling Initiative chemistry transport model integrated with Modern Era Retrospective Analysis for Research and Applications 2 meteorology.

  8. Polar stratospheric clouds and ozone depletion

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.; Turco, Richard P.

    1991-01-01

    A review is presented of investigations into the correlation between the depletion of ozone and the formation of polar stratospheric clouds (PSCs). Satellite measurements from Nimbus 7 showed that over the years the depletion from austral spring to austral spring has generally worsened. Approximately 70 percent of the ozone above Antarctica, which equals about 3 percent of the earth's ozone, is lost during September and October. Various hypotheses for ozone depletion are discussed including the theory suggesting that chlorine compounds might be responsible for the ozone hole, whereby chlorine enters the atmosphere as a component of chlorofluorocarbons produced by humans. The three types of PSCs, nitric acid trihydrate, slowly cooling water-ice, and rapidly cooling water-ice clouds act as important components of the Antarctic ozone depletion. It is indicated that destruction of the ozone will be more severe each year for the next few decades, leading to a doubling in area of the Antarctic ozone hole.

  9. 48 CFR 52.223-11 - Ozone-Depleting Substances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Ozone-Depleting Substances....223-11 Ozone-Depleting Substances. As prescribed in 23.804(a), insert the following clause: Ozone-Depleting Substances (MAY 2001) (a) Definition. Ozone-depleting substance, as used in this clause, means any...

  10. 48 CFR 52.223-11 - Ozone-Depleting Substances.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Ozone-Depleting Substances....223-11 Ozone-Depleting Substances. As prescribed in 23.804(a), insert the following clause: Ozone-Depleting Substances (MAY 2001) (a) Definition. Ozone-depleting substance, as used in this clause, means any...

  11. 48 CFR 52.223-11 - Ozone-Depleting Substances.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Ozone-Depleting Substances....223-11 Ozone-Depleting Substances. As prescribed in 23.804(a), insert the following clause: Ozone-Depleting Substances (MAY 2001) (a) Definition. Ozone-depleting substance, as used in this clause, means any...

  12. 48 CFR 52.223-11 - Ozone-Depleting Substances.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Ozone-Depleting Substances....223-11 Ozone-Depleting Substances. As prescribed in 23.804(a), insert the following clause: Ozone-Depleting Substances (MAY 2001) (a) Definition. Ozone-depleting substance, as used in this clause, means any...

  13. 48 CFR 52.223-11 - Ozone-Depleting Substances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Ozone-Depleting Substances....223-11 Ozone-Depleting Substances. As prescribed in 23.804(a), insert the following clause: Ozone-Depleting Substances (MAY 2001) (a) Definition. Ozone-depleting substance, as used in this clause, means any...

  14. Studies of Arctic Tropospheric Ozone Depletion Events Through Buoy-Borne Observations and Laboratory Studies

    NASA Astrophysics Data System (ADS)

    Halfacre, John W.

    The photochemically-induced destruction of ground-level Arctic ozone in the Arctic occurs at the onset of spring, in concert with polar sunrise. Solar radiation is believed to stimulate a series of reactions that cause the production and release of molecular halogens from frozen, salty surfaces, though this mechanism is not yet well understood. The subsequent photolysis of molecular halogens produces reactive halogen atoms that remove ozone from the atmosphere in these so-called "Ozone Depletion Events" (ODEs). Given that much of the Arctic region is sunlit, meteorologically stable, and covered by saline ice and snow, it is expected that ODEs could be a phenomenon that occurs across the entire Arctic region. Indeed, an ever-growing body of evidence from coastal sites indicates that Arctic air masses devoid of O3 most often pass over sea ice-covered regions before arriving at an observation site, suggesting ODE chemistry occurs upwind over the frozen Arctic Ocean. However, outside of coastal observations, there exist very few long-term observations from the Arctic Ocean from which quantitative assessments of basic ODE characteristics can be made. This work presents the interpretation of ODEs through unique chemical and meteorological observations from several ice-tethered buoys deployed around the Arctic Ocean. These observations include detection of ozone, bromine monoxide, and measurements of temperature, relative humidity, atmospheric pressure, wind speed, and wind direction. To assess whether the O-Buoys were observing locally based depletion chemistry or the transport of ozone-poor air masses, periods of ozone decay were interpreted based on current understanding of ozone depletion kinetics, which are believed to follow a pseudo-first order rate law. In addition, the spatial extents of ODEs were estimated using air mass trajectory modeling to assess whether they are a localized or synoptic phenomenon. Results indicate that current understanding of the

  15. Arctic chlorine activation and ozone depletion: Comparison of chemistry transport models with satellite observations.

    NASA Astrophysics Data System (ADS)

    Grooß, J.-U.; Wegner, T.; Müller, R.; Chipperfield, M. P.; Feng, W.; Santee, M. L.

    2009-04-01

    The accurate simulation of Arctic stratospheric ozone depletion has been an issue for two decades. However, there are still notable quantitative discrepancies between the models and observations. We show results from the SLIMCAT and CLaMS 3D chemistry-transport models that differ in some aspects of simulated chlorine activation and descent in the polar vortex. Consequently, the estimates of accumulated ozone depletion in the polar vortex for these two models in cold Arctic winters still largely disagree. As shown recently by Santee et al. (JGR, 2008) using MLS and ACE data, the extent of chlorine activation for the cold Arctic winter of 2004/2005 within the basic SLIMCAT model is overestimated with the likely consequence of too much simulated ozone depletion. In contrast, the CLaMS simulation for the same winter shows too little chlorine activation compared to observations, and therefore likely too little loss. For SLIMCAT the version used by Santee et al. has been updated to replace the equilibrium treatment of NAT PSCs with a Lagrangian microphysical scheme. This leads to smaller regions of NAT particles and less denitrification, in better agreement with observations. The impact of this on the modeled extent of chlorine activation will be discussed. For CLaMS we have changed the parameterization of heterogeneous reactions on liquid aerosols from Carslaw et al. to that of Shi et al. (2001), with which chlorine activation on liquid aerosol becomes more efficient. In turn, the simulated chlorine activation agrees better with the observations. The impact of these model changes on chlorine activation and ozone loss will be assessed and remaining model-observation discrepancies will be discussed in terms of different model formulations. We will also show the impact of recent lab measurements of Cl2O2 absorption cross sections by von Hobe et al. (2009) on the simulated ozone depletion. References: von Hobe, M., F. Stroh, H. Beckers, T. Benter, and H. Willner, The UV

  16. Ozone depletion and chlorine loading potentials

    NASA Technical Reports Server (NTRS)

    Pyle, John A.; Wuebbles, Donald J.; Solomon, Susan; Zvenigorodsky, Sergei; Connell, Peter; Ko, Malcolm K. W.; Fisher, Donald A.; Stordal, Frode; Weisenstein, Debra

    1991-01-01

    The recognition of the roles of chlorine and bromine compounds in ozone depletion has led to the regulation or their source gases. Some source gases are expected to be more damaging to the ozone layer than others, so that scientific guidance regarding their relative impacts is needed for regulatory purposes. Parameters used for this purpose include the steady-state and time-dependent chlorine loading potential (CLP) and the ozone depletion potential (ODP). Chlorine loading potentials depend upon the estimated value and accuracy of atmospheric lifetimes and are subject to significant (approximately 20-50 percent) uncertainties for many gases. Ozone depletion potentials depend on the same factors, as well as the evaluation of the release of reactive chlorine and bromine from each source gas and corresponding ozone destruction within the stratosphere.

  17. The Case of Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Lambright, W. Henry

    2005-01-01

    While the National Aeronautics and Space Administration (NASA) is widely perceived as a space agency, since its inception NASA has had a mission dedicated to the home planet. Initially, this mission involved using space to better observe and predict weather and to enable worldwide communication. Meteorological and communication satellites showed the value of space for earthly endeavors in the 1960s. In 1972, NASA launched Landsat, and the era of earth-resource monitoring began. At the same time, in the late 1960s and early 1970s, the environmental movement swept throughout the United States and most industrialized countries. The first Earth Day event took place in 1970, and the government generally began to pay much more attention to issues of environmental quality. Mitigating pollution became an overriding objective for many agencies. NASA's existing mission to observe planet Earth was augmented in these years and directed more toward environmental quality. In the 1980s, NASA sought to plan and establish a new environmental effort that eventuated in the 1990s with the Earth Observing System (EOS). The Agency was able to make its initial mark via atmospheric monitoring, specifically ozone depletion. An important policy stimulus in many respects, ozone depletion spawned the Montreal Protocol of 1987 (the most significant international environmental treaty then in existence). It also was an issue critical to NASA's history that served as a bridge linking NASA's weather and land-resource satellites to NASA s concern for the global changes affecting the home planet. Significantly, as a global environmental problem, ozone depletion underscored the importance of NASA's ability to observe Earth from space. Moreover, the NASA management team's ability to apply large-scale research efforts and mobilize the talents of other agencies and the private sector illuminated its role as a lead agency capable of crossing organizational boundaries as well as the science-policy divide.

  18. Ozone depletion, related UVB changes and increased skin cancer incidence

    NASA Astrophysics Data System (ADS)

    Kane, R. P.

    1998-03-01

    Stratospheric ozone at middle latitudes shows a seasonal variation of about +/-20%, a quasi-biennial oscillation of 1-10% range and a long-term variation in which the level was almost steady up to about 1979 and declined thereafter to the present day by about 10%. These variations are expected to be reflected in solar UVB observed at the ground, but in an opposite direction. Thus UVB should have had a long-term increase of about 10-20%, which should cause an increase in skin cancer incidence of about 20-40%. Skin cancer incidence has increased all over the world, e.g. about 90% in USA during 1974-1990. It is popularly believed that this increase in skin cancer incidence is related to the recent ozone depletion. This seems to be incorrect, for two reasons. Firstly, the observed skin cancer increase is too large (90%) compared with the expected value (40%) from ozone depletion. Secondly, cancer does not develop immediately after exposure to solar UVB. The sunburns may occur within hours; but cancer development and detection may take years, even decades. Hence the observed skin cancer increase since 1974 (no data available for earlier periods) must have occurred due to exposure to solar UVB in the 1950s and 1960s, when there was no ozone depletion. Thus, the skin cancer increase must be attributed to harmful solar UVB levels existing even in the 1960s, accentuated later not by ozone depletion (which started only much later, by 1979) but by other causes, such as a longer human life span, better screening, increasing tendencies of sunbathing at beaches, etc., in affluent societies. On the other hand, the recent ozone depletion and the associated UVB increases will certainly take their toll; only that the effects will not be noticed now but years or decades from now. The concern for the future expressed in the Montreal Protocol for reducing ozone depletion by controlling CFC production is certainly justified, especially because increased UVB is harmful to animal and

  19. 26 CFR 52.4682-1 - Ozone-depleting chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 17 2014-04-01 2014-04-01 false Ozone-depleting chemicals. 52.4682-1 Section 52... EXCISE TAXES (CONTINUED) ENVIRONMENTAL TAXES § 52.4682-1 Ozone-depleting chemicals. (a) Overview. This section provides rules relating to the tax imposed on ozone-depleting chemicals (ODCs) under section 4681...

  20. 26 CFR 52.4682-1 - Ozone-depleting chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 17 2012-04-01 2012-04-01 false Ozone-depleting chemicals. 52.4682-1 Section 52... EXCISE TAXES (CONTINUED) ENVIRONMENTAL TAXES § 52.4682-1 Ozone-depleting chemicals. (a) Overview. This section provides rules relating to the tax imposed on ozone-depleting chemicals (ODCs) under section 4681...

  1. 26 CFR 52.4682-1 - Ozone-depleting chemicals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 17 2010-04-01 2010-04-01 false Ozone-depleting chemicals. 52.4682-1 Section 52... EXCISE TAXES (CONTINUED) ENVIRONMENTAL TAXES § 52.4682-1 Ozone-depleting chemicals. (a) Overview. This section provides rules relating to the tax imposed on ozone-depleting chemicals (ODCs) under section 4681...

  2. 26 CFR 52.4682-1 - Ozone-depleting chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 17 2011-04-01 2011-04-01 false Ozone-depleting chemicals. 52.4682-1 Section 52... EXCISE TAXES (CONTINUED) ENVIRONMENTAL TAXES § 52.4682-1 Ozone-depleting chemicals. (a) Overview. This section provides rules relating to the tax imposed on ozone-depleting chemicals (ODCs) under section 4681...

  3. A search for relativistic electron induced stratospheric ozone depletion

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1994-01-01

    Possible ozone changes at 1 mb associated with the time variation and precipitation of relativistic electrons are investigated by examining the NIMBUS 7 SBUV ozone data set and corresponding temperatures derived from NMC data. No ozone depletion was observed in high-latitude summer when temperature fluctuations are small. In winter more variation in ozone occurs, but large temperature changes make it difficult to identify specific ozone decreases as being the result of relativistic electron precipitation.

  4. Ozone Depletion from Nearby Supernovae

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Laird, Claude M.; Jackman, Charles H.; Cannizzo, John K.; Mattson, Barbara J.; Chen, Wan; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Estimates made in the 1970's indicated that a supernova occurring within tens of parsecs of Earth could have significant effects on the ozone layer. Since that time improved tools for detailed modeling of atmospheric chemistry have been developed to calculate ozone depletion, and advances have been made also in theoretical modeling of supernovae and of the resultant gamma ray spectra. In addition, one now has better knowledge of the occurrence rate of supernovae in the galaxy, and of the spatial distribution of progenitors to core-collapse supernovae. We report here the results of two-dimensional atmospheric model calculations that take as input the spectral energy distribution of a supernova, adopting various distances from Earth and various latitude impact angles. In separate simulations we calculate the ozone depletion due to both gamma rays and cosmic rays. We find that for the combined ozone depletion from these effects roughly to double the 'biologically active' UV flux received at the surface of the Earth, the supernova must occur at approximately or less than 8 parsecs.

  5. Arctic ozone depletion in 2002-2003 measured by ASUR and comparison with POAM observations

    NASA Astrophysics Data System (ADS)

    Kuttippurath, Jayanarayanan; KleinböHl, Armin; Sinnhuber, Miriam; Bremer, Holger; Küllmann, Harry; Notholt, Justus; Godin-Beekmann, Sophie; Tripathi, Omprakash; Nikulin, Grigory

    2011-11-01

    We present ozone loss estimated from airborne measurements taken during January-February and March in the Arctic winter 2002/2003. The first half of the winter was characterized by unusually cold temperatures and the second half by a major stratospheric sudden warming around 15-18 January 2003. The potential vorticity maps show a vortex split in the lower stratosphere during the major warming (MW) in late January and during the minor warming in mid-February due to wave 1 amplification. However, the warming can be termed as a vortex displacement event as there was no vortex split during the MW period at 10 hPa. Very low temperatures, large areas of polar stratospheric clouds (PSCs), and high chlorine activation triggered significant ozone loss in the early winter, as the vortex moved to the midlatitude regions. The ozone depletion derived from the ASUR measurements sampled inside the vortex, in conjunction with the Mimosa-Chim model tracer, shows a maximum of 1.3 ± 0.2 ppmv at 450-500 K by late March. The partial column loss derived from the ASUR ozone profiles reaches up to 61 ± 4 DU in 400-550 K in the same period. The evolution of ozone and ozone loss assessed from the ASUR measurements is in very good agreement with POAM observations. The reduction in ozone estimated from the POAM measurements shows a similar maximum of 1.3 ± 0.2 ppmv at 400-500 K or 63 ± 4 DU in 400-550 K in late March. Our study reveals that the Arctic winter 2002/2003 was unique as it had three minor warmings and a MW, yet showed large loss in ozone. No such feature was observed in any other Arctic winter in the 1989-2010 period. In addition, an unusually large ozone loss in December, around 0.5 ± 0.2 ppmv at 450-500 K or 12 ± 1 DU in 400-550 K, was estimated for the first time in the Arctic. A careful and detailed diagnosis with all available published results for this winter exhibits an average ozone loss of 1.5 ± 0.3 ppmv at 450-500 K or 65 ± 5 DU in 400-550 K by the end of March

  6. Northern Hemisphere Stratospheric Ozone Depletion Caused by Solar Proton Events: The Role of the Polar Vortex

    NASA Astrophysics Data System (ADS)

    Denton, M. H.; Kivi, R.; Ulich, T.; Clilverd, M. A.; Rodger, C. J.; von der Gathen, P.

    2018-02-01

    Ozonesonde data from four sites are analyzed in relation to 191 solar proton events from 1989 to 2016. Analysis shows ozone depletion ( 10-35 km altitude) commencing following the SPEs. Seasonally corrected ozone data demonstrate that depletions occur only in winter/early spring above sites where the northern hemisphere polar vortex (PV) can be present. A rapid reduction in stratospheric ozone is observed with the maximum decrease occurring 10-20 days after solar proton events. Ozone levels remain depleted in excess of 30 days. No depletion is observed above sites completely outside the PV. No depletion is observed in relation to 191 random epochs at any site at any time of year. Results point to the role of indirect ozone destruction, most likely via the rapid descent of long-lived NOx species in the PV during the polar winter.

  7. Arctic Ozone Depletion from UARS MLS Measurements

    NASA Technical Reports Server (NTRS)

    Manney, G. L.

    1995-01-01

    Microwave Limb Sounder (MLS) measurements of ozone during four Arctic winters are compared. The evolution of ozone in the lower stratosphere is related to temperature, chlorine monoxide (also measured by MLS), and the evolution of the polar vortex. Lagrangian transport calculations using winds from the United Kingdom Meteorological Office's Stratosphere-Troposphere Data Assimilation system are used to estimate to what extent the evolution of lower stratospheric ozone is controlled by dynamics. Observations, along with calculations of the expected dynamical behavior, show evidence for chemical ozone depletion throughout most of the Arctic lower stratospheric vortex during the 1992-93 middle and late winter, and during all of the 1994-95 winter that was observed by MLS. Both of these winters were unusually cold and had unusually cold and had unusually strong Arctic polar vortices compared to meteorological data over the past 17 years.

  8. Addressing Ozone Layer Depletion

    EPA Pesticide Factsheets

    Access information on EPA's efforts to address ozone layer depletion through regulations, collaborations with stakeholders, international treaties, partnerships with the private sector, and enforcement actions under Title VI of the Clean Air Act.

  9. Scientific assessment of ozone depletion: 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Over the past few years, there have been highly significant advances in the understanding of the impact of human activities on the Earth's stratospheric ozone layer and the influence of changes in chemical composition of the radiative balance of the climate system. Specifically, since the last international scientific review (1989), there have been five major advances: (1) global ozone decreases; (2) polar ozone; (3) ozone and industrial halocarbons; (4) ozone and climate relations; and (5) ozone depletion potentials (ODP's) and global warming potentials (GWP's). These topics and others are discussed.

  10. Tropical circulation and precipitation response to ozone depletion and recovery

    NASA Astrophysics Data System (ADS)

    Brönnimann, Stefan; Jacques-Coper, Martín; Rozanov, Eugene; Fischer, Andreas M.; Morgenstern, Olaf; Zeng, Guang; Akiyoshi, Hideharu; Yamashita, Yousuke

    2017-06-01

    Among the few well established changes in atmospheric circulation in recent decades are those caused by stratospheric ozone depletion. They include a strengthening and poleward contraction of the westerly atmospheric circulation over the Southern extratropics, i.e. a strengthening Southern Annular Mode (SAM), in austral spring and summer. Associated effects on extratropical temperature and precipitation and more recently subtropical precipitation have been documented and are understood in a zonal mean framework. We present zonally asymmetric effects of ozone depletion that reach into the tropics and affect atmospheric circulation and precipitation, including the South Pacific Convergence Zone (SPCZ), the most important rainband of the Southern Hemisphere. Using observation-based analyses and model simulations we show that over the 1961-1996 period, ozone depletion led to increased precipitation at the northern flank of the SPCZ and to decreased precipitation to the south. The effects originate from a flow pattern over the southwestern Pacific that extends equatorward and alters the propagation of synoptic waves and thus the position of the SPCZ. Model simulations suggest that anticipated stratospheric ozone recovery over the next decades will reverse these effects.

  11. Depletion of tropospheric ozone associated with mineral dust outbreaks.

    PubMed

    Soler, Ruben; Nicolás, J F; Caballero, S; Yubero, E; Crespo, J

    2016-10-01

    From May to September 2012, ozone reductions associated with 15 Saharan dust outbreaks which occurred between May to September 2012 have been evaluated. The campaign was performed at a mountain station located near the eastern coast of the Iberian Peninsula. The study has two main goals: firstly, to analyze the decreasing gradient of ozone concentration during the course of the Saharan episodes. These gradients vary from 0.2 to 0.6 ppb h(-1) with an average value of 0.39 ppb h(-1). The negative correlation between ozone and coarse particles occurs almost simultaneously. Moreover, although the concentration of coarse particles remained high throughout the episode, the time series shows the saturation of the ozone loss. The highest ozone depletion has been obtained during the last hours of the day, from 18:00 to 23:00 UTC. Outbreaks registered during this campaign have been more intense in this time slot. The second objective is to establish from which coarse particle concentration a significant ozone depletion can be observed and to quantify this reduction. In this regard, it has been confirmed that when the hourly particle concentration recorded during the Saharan dust outbreaks is above the hourly particle median values (N > N-median), the ozone concentration reduction obtained is statistically significant. An average ozone reduction of 5.5 % during Saharan events has been recorded. In certain cases, this percentage can reach values of higher than 15 %.

  12. Stratospheric ozone depletion

    PubMed Central

    Rowland, F. Sherwood

    2006-01-01

    Solar ultraviolet radiation creates an ozone layer in the atmosphere which in turn completely absorbs the most energetic fraction of this radiation. This process both warms the air, creating the stratosphere between 15 and 50 km altitude, and protects the biological activities at the Earth's surface from this damaging radiation. In the last half-century, the chemical mechanisms operating within the ozone layer have been shown to include very efficient catalytic chain reactions involving the chemical species HO, HO2, NO, NO2, Cl and ClO. The NOX and ClOX chains involve the emission at Earth's surface of stable molecules in very low concentration (N2O, CCl2F2, CCl3F, etc.) which wander in the atmosphere for as long as a century before absorbing ultraviolet radiation and decomposing to create NO and Cl in the middle of the stratospheric ozone layer. The growing emissions of synthetic chlorofluorocarbon molecules cause a significant diminution in the ozone content of the stratosphere, with the result that more solar ultraviolet-B radiation (290–320 nm wavelength) reaches the surface. This ozone loss occurs in the temperate zone latitudes in all seasons, and especially drastically since the early 1980s in the south polar springtime—the ‘Antarctic ozone hole’. The chemical reactions causing this ozone depletion are primarily based on atomic Cl and ClO, the product of its reaction with ozone. The further manufacture of chlorofluorocarbons has been banned by the 1992 revisions of the 1987 Montreal Protocol of the United Nations. Atmospheric measurements have confirmed that the Protocol has been very successful in reducing further emissions of these molecules. Recovery of the stratosphere to the ozone conditions of the 1950s will occur slowly over the rest of the twenty-first century because of the long lifetime of the precursor molecules. PMID:16627294

  13. The Effects of Volcano-Induced Ozone Depletion on Short-lived Climate Forcing in the Arctic

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2012-12-01

    Photodissociation of oxygen maintains the stratopause ~50°C warmer than the tropopause. Photodissociation of ozone warms the lower stratosphere, preventing most of this high-energy DNA-damaging solar radiation from reaching the troposphere. Ozone depletion allows more UV energy to reach the lower troposphere causing photodissociation of anthropogenic ozone and nitrogen dioxide. UV energy also penetrates the ocean >10 m where it is absorbed more efficiently than infrared radiation that barely penetrates the surface. Manmade chlorofluorocarbons caused ozone depletion from 1965 to 1994 with slow recovery predicted over the next 50+ years. But the lowest levels of ozone followed the eruptions of Pinatubo (1991 VEI=6), Eyjafjallajökull (2010 VEI=4), and Grímsvötn (2011 VEI=4). Each of the relatively small, basaltic eruptions in Iceland caused more ozone depletion than the long-term effects of chlorofluorocarbons, although total ozone appears to return to pre-eruption levels within a decade. Ozone depletion by 20% increases energy flux thru the lowermost troposphere by 0.7 W m-2 for overhead sun causing temperatures in the lower stratosphere to drop >2°C since 1958 in steps after the 3 largest volcanic eruptions: Agung 1963, El Chichón 1982, and Pinatubo. Temperatures at the surface increased primarily in the regions and at the times of the greatest observed ozone depletion. The greatest warming observed was along the Western Antarctic Peninsula (65.4°S) where minimum temperatures rose 6.7°C from 1951 to 2003 while maximum temperatures remained relatively constant. Minimum total column ozone in September-October was 40-56% lower than in 1972 almost every year since 1987, strongly anti-correlated with observed minimum temperatures. Sea ice decreased 10%, 7 ice shelves separated, 87% of the glaciers retreated and the Antarctic Circumpolar Current warmed. Elsewhere under the ozone hole, warming of continental Antarctica was limited by the high albedo (0.86) of

  14. Global Warming: Lessons from Ozone Depletion

    ERIC Educational Resources Information Center

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  15. Ozone layer depletion simulation in an Environmental Chemistry course.

    NASA Astrophysics Data System (ADS)

    Cano, G. S.; Gavilán, I. C.; Garcia-Reynoso, J. A.; Santos, E.; Mendoza, A.; Perea, B.

    2015-12-01

    The reactions taking place between the ozone (O3) and various compounds present in the stratosphere has been studied extensively. When the balance between these reactions breakdown, destruction of ozone is favored. Here we create an experiment for and Environmental Chemistry laboratory course where students evaluate the ozone behavior by comparing its reactivity to various physical and chemical conditions; and observe the destruction of ozone by the action of halogenated compounds by means of volumetric technic. The conditions used are: (1) Ozone vs. Time; (2) Ozone + UV vs. Time; (3) Ozone + halogenated compound vs. Time; and (4) Ozone + UV + halogenated compound vs. Time. The results show that the O3 breaks down rapidly within about 25 min (Fig). They also explain the chemical reactions that occur in the destruction and generation of the ozone layer and demonstrate ozone depletion through the presence of halogenated compounds. The aim of this work is to bring the knowledge gained from theory into practice and thus the possibility of developing a critical attitude towards various environmental problems that arise today.

  16. UARS Microwave Limb Sounder Observations of Upper Atmosphere Ozone and Chlorine Monoxide

    NASA Technical Reports Server (NTRS)

    Flower, D.; Froidevaux, L.; Jarnot, R.; Read, W.; Waters, J.

    1994-01-01

    UARS MLS observations of stratospheric ozone and chlorine monoxide are described. Enhanced concentrations of ClO, the predominant form of reactive chlorine responsible for ozone depletion, are seen within both the northern and southern winter polar vortices. In the southern hemisphere, this leads directly to the development of the annual Antarctic ozone hole. While ozone depletion is also observed in the north, it is less severe and there is considerable interannual variability.

  17. A general circulation model study of the climatic effect of observed stratospheric ozone depletion between 1980 and 1990

    NASA Technical Reports Server (NTRS)

    Dudek, Michael P.; Wang, Wei-Chyung; Liang, Xin-Zhong; Li, Zhu

    1994-01-01

    The total ozone mapping spectrometer (TOMS) and stratospheric aerosol and gas experiment (SAGE) measurements show a significant reduction in the stratospheric ozone over the middle and high latitudes of both hemispheres between the years 1979 and 1991 (WMO, 1992). This change in ozone will effect both the solar and longwave radiation with climate implications. However, recent studies (Ramaswamy et al., 1992; WMO, 1992) indicate that the net effect depends not only on latitudes and seasons, but also on the response of the lower stratospheric temperature. In this study we use a general circulation model (GCM) to calculate the climatic effect due to stratospheric ozone depletion and compare the effect with that due to observed increases of trace gases CO2, CH4, N2O, and CFC's for the period 1980-1990. In the simulations, we use the observed changes in ozone derived from the TOMS data. The GCM used is a version of the NCAR community climate model referenced in Wang et al. (1991). For the present study we run the model in perpetual January and perpetual July modes in which the incoming solar radiation and climatological sea surface temperatures are held constant.

  18. Visualization of stratospheric ozone depletion and the polar vortex

    NASA Technical Reports Server (NTRS)

    Treinish, Lloyd A.

    1995-01-01

    Direct analysis of spacecraft observations of stratospheric ozone yields information about the morphology of annual austral depletion. Visual correlation of ozone with other atmospheric data illustrates the diurnal dynamics of the polar vortex and contributions from the upper troposphere, including the formation and breakup of the depletion region each spring. These data require care in their presentation to minimize the introduction of visualization artifacts that are erroneously interpreted as data features. Non geographically registered data of differing mesh structures can be visually correlated via cartographic warping of base geometries without interpolation. Because this approach is independent of the realization technique, it provides a framework for experimenting with many visualization strategies. This methodology preserves the fidelity of the original data sets in a coordinate system suitable for three-dimensional, dynamic examination of atmospheric phenomena.

  19. Ozone Depletion at Mid-Latitudes: Coupling of Volcanic Aerosols and Temperature Variability to Anthropogenic Chlorine

    NASA Technical Reports Server (NTRS)

    Solomon, S.; Portmann, R. W.; Garcia, R. R.; Randel, W.; Wu, F.; Nagatani, R.; Gleason, J.; Thomason, L.; Poole, L. R.; McCormick, M. P.

    1998-01-01

    Satellite observations of total ozone at 40-60 deg N are presented from a variety of instruments over the time period 1979-1997. These reveal record low values in 1992-3 (after Pinatubo) followed by partial but incomplete recovery. The largest post-Pinatubo reductions and longer-term trends occur in spring, providing a critical test for chemical theories of ozone depletion. The observations are shown to be consistent with current understanding of the chemistry of ozone depletion when changes in reactive chlorine and stratospheric aerosol abundances are considered along with estimates of wave-driven fluctuations in stratospheric temperatures derived from global temperature analyses. Temperature fluctuations are shown to make significant contributions to model calculated northern mid-latitude ozone depletion due to heterogeneous chlorine activation on liquid sulfate aerosols at temperatures near 200-210 K (depending upon water vapor pressure), particularly after major volcanic eruptions. Future mid-latitude ozone recovery will hence depend not only on chlorine recovery but also on temperature trends and/or variability, volcanic activity, and any trends in stratospheric sulfate aerosol.

  20. Halocarbon ozone depletion and global warming potentials

    NASA Technical Reports Server (NTRS)

    Cox, Richard A.; Wuebbles, D.; Atkinson, R.; Connell, Peter S.; Dorn, H. P.; Derudder, A.; Derwent, Richard G.; Fehsenfeld, F. C.; Fisher, D.; Isaksen, Ivar S. A.

    1990-01-01

    Concern over the global environmental consequences of fully halogenated chlorofluorocarbons (CFCs) has created a need to determine the potential impacts of other halogenated organic compounds on stratospheric ozone and climate. The CFCs, which do not contain an H atom, are not oxidized or photolyzed in the troposphere. These compounds are transported into the stratosphere where they decompose and can lead to chlorine catalyzed ozone depletion. The hydrochlorofluorocarbons (HCFCs or HFCs), in particular those proposed as substitutes for CFCs, contain at least one hydrogen atom in the molecule, which confers on these compounds a much greater sensitivity toward oxidation by hydroxyl radicals in the troposphere, resulting in much shorter atmospheric lifetimes than CFCs, and consequently lower potential for depleting ozone. The available information is reviewed which relates to the lifetime of these compounds (HCFCs and HFCs) in the troposphere, and up-to-date assessments are reported of the potential relative effects of CFCs, HCFCs, HFCs, and halons on stratospheric ozone and global climate (through 'greenhouse' global warming).

  1. Ozone depletion following future volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  2. 48 CFR 211.271 - Elimination of use of class I ozone-depleting substances.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... class I ozone-depleting substances. 211.271 Section 211.271 Federal Acquisition Regulations System... Using and Maintaining Requirements Documents 211.271 Elimination of use of class I ozone-depleting substances. See subpart 223.8 for restrictions on contracting for ozone-depleting substances. [70 FR 73150...

  3. 48 CFR 211.271 - Elimination of use of class I ozone-depleting substances.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... class I ozone-depleting substances. 211.271 Section 211.271 Federal Acquisition Regulations System... Using and Maintaining Requirements Documents 211.271 Elimination of use of class I ozone-depleting substances. See subpart 223.8 for restrictions on contracting for ozone-depleting substances. [70 FR 73150...

  4. 48 CFR 211.271 - Elimination of use of class I ozone-depleting substances.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... class I ozone-depleting substances. 211.271 Section 211.271 Federal Acquisition Regulations System... Using and Maintaining Requirements Documents 211.271 Elimination of use of class I ozone-depleting substances. See subpart 223.8 for restrictions on contracting for ozone-depleting substances. [70 FR 73150...

  5. 48 CFR 211.271 - Elimination of use of class I ozone-depleting substances.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... class I ozone-depleting substances. 211.271 Section 211.271 Federal Acquisition Regulations System... Using and Maintaining Requirements Documents 211.271 Elimination of use of class I ozone-depleting substances. See subpart 223.8 for restrictions on contracting for ozone-depleting substances. [70 FR 73150...

  6. 48 CFR 211.271 - Elimination of use of class I ozone-depleting substances.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... class I ozone-depleting substances. 211.271 Section 211.271 Federal Acquisition Regulations System... Using and Maintaining Requirements Documents 211.271 Elimination of use of class I ozone-depleting substances. See subpart 223.8 for restrictions on contracting for ozone-depleting substances. [70 FR 73150...

  7. Simulation of Halocarbon Production and Emissions and Effects on Ozone Depletion

    PubMed

    Holmes; Ellis

    1997-09-01

    / This paper describes an integrated model that simulates future halocarbon production/emissions and potential ozone depletion. Applications and historical production levels for various halocarbons are discussed first. A framework is then presented for modeling future halocarbon impacts incorporating differences in underlying demands, applications, regulatory mandates, and environmental characteristics. The model is used to simulate the potential impacts of several prominent issues relating to halocarbon production, regulation, and environmental interactions, notably: changes in agricultural methyl bromide use, increases in effectiveness of bromine for ozone depletion, modifications to the elimination schedule for HCFCs, short-term expansion of CFC demand in low use compliance countries, and delays in Russian Federation compliance. Individually, each issue does not unequivocally represent a significant likely increase in long-term atmospheric halogen loading and stratospheric ozone depletion. In combination, however, these impacts could increase peak halogen concentrations and long-term integral halogen loading, resulting in higher levels of stratospheric ozone depletion and longer exposure to increased levels of UV radiation.KEY WORDS: Halocarbons; Ozone depletion; Montreal Protocol; Integrated assessment

  8. Arctic chlorine monoxide observations during spring 1993 over Thule, Greenland, and implications for ozone depletion

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.; Reeves, J. M.; Emmons, L. K.; De Zafra, R. L.

    1994-01-01

    We have determined the vertical distribution of chlorine monoxide (ClO), from measurements of pressure-broadened molecular-emission spectra made over Thule, Greenland, during the 1993 Arctic spring. The measurements show a weak lower stratospheric layer of chlorine monoxide inside the vortex in late February, which was, however, significantly greater in mixing ratio than that seen in observations we made in the spring of 1992. ClO was also observed in much smaller quantities in early to mid-March 1993 when Thule was outside the vortex. The amount of ClO within the vortex was severely reduced by the time it returned over Thule in late March. This reduction occurred several weeks earlier relative to the winter solstice than the decline of ClO inside the Antarctic vortex in 1993. The enhanced Arctic lower stratospheric layer seen in late February 1993 at a nearly equivalent photochemical period, and beyond. We have calculated daily ozone loss rates, due primarily to the dimer chlorine catalytic cycle, from both sets of measurements. The vertical integral of the Arctic daily percentage ozone loss when the largest ClO levels were present, at the end of February, is found to be approximately one quarter of that in the Antarctic at a photochemical period only 1 week later. The relative weakness of daily ozone depletion, combined with the early disappearance of ClO in the Arctic, suggests that hemispheric dilution by ozone-poor air from within the Arctic vortex is unlikely to be sufficient to explain the historically extreme loss of midlatitude northern hemisphere ozone which began in 1992 and persisted throughout 1993.

  9. 26 CFR 52.4681-1 - Taxes imposed with respect to ozone-depleting chemicals.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 17 2014-04-01 2014-04-01 false Taxes imposed with respect to ozone-depleting... to ozone-depleting chemicals. (a) Taxes imposed. Sections 4681 and 4682 impose the following taxes with respect to ozone-depleting chemicals (ODCs): (1) Tax on ODCs. Section 4681(a)(1) imposes a tax on...

  10. 26 CFR 52.4681-1 - Taxes imposed with respect to ozone-depleting chemicals.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 17 2012-04-01 2012-04-01 false Taxes imposed with respect to ozone-depleting... to ozone-depleting chemicals. (a) Taxes imposed. Sections 4681 and 4682 impose the following taxes with respect to ozone-depleting chemicals (ODCs): (1) Tax on ODCs. Section 4681(a)(1) imposes a tax on...

  11. 26 CFR 52.4681-1 - Taxes imposed with respect to ozone-depleting chemicals.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 17 2011-04-01 2011-04-01 false Taxes imposed with respect to ozone-depleting... to ozone-depleting chemicals. (a) Taxes imposed. Sections 4681 and 4682 impose the following taxes with respect to ozone-depleting chemicals (ODCs): (1) Tax on ODCs. Section 4681(a)(1) imposes a tax on...

  12. 26 CFR 52.4681-1 - Taxes imposed with respect to ozone-depleting chemicals.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 17 2013-04-01 2013-04-01 false Taxes imposed with respect to ozone-depleting... to ozone-depleting chemicals. (a) Taxes imposed. Sections 4681 and 4682 impose the following taxes with respect to ozone-depleting chemicals (ODCs): (1) Tax on ODCs. Section 4681(a)(1) imposes a tax on...

  13. A feasibility study of methods for stopping the depletion of ozone over Antarctica

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Ways of stopping the ozone depletion in the ozone hole over Antarctica were studied. The basic objectives were: (1) to define and understand the phenomenon of the ozone hole; (2) to determine possible methods of stopping the ozone depletion; (3) to identify unknowns about the hole and possible solutions. Two basic ways of attacking the problem were identified. First is replenishment of ozone as it is being depleted. Second is elimination of ozone destroying agents from the atmosphere. The second method is a more permanent form of the solution. Elimination and replenishment methods are discussed in detail.

  14. Stratospheric ozone depletion from future nitrous oxide increases

    NASA Astrophysics Data System (ADS)

    Wang, W.; Tian, W.; Dhomse, S.; Xie, F.; Shu, J.; Austin, J.

    2014-12-01

    We have investigated the impact of the assumed nitrous oxide (N2O) increases on stratospheric chemistry and dynamics using a series of idealized simulations with a coupled chemistry-climate model (CCM). In a future cooler stratosphere the net yield of NOy from N2O is shown to decrease in a reference run following the IPCC A1B scenario, but NOy can still be significantly increased by extra increases of N2O over 2001-2050. Over the last decade of simulations, 50% increases in N2O result in a maximal 6% reduction in ozone mixing ratios in the middle stratosphere at around 10 hPa and an average 2% decrease in the total ozone column (TCO) compared with the control run. This enhanced destruction could cause an ozone decline in the first half of this century in the middle stratosphere around 10 hPa, while global TCO still shows an increase at the same time. The results from a multiple linear regression analysis and sensitivity simulations with different forcings show that the chemical effect of N2O increases dominates the N2O-induced ozone depletion in the stratosphere, while the dynamical and radiative effects of N2O increases are overall insignificant. The analysis of the results reveals that the ozone depleting potential of N2O varies with the time period and is influenced by the environmental conditions. For example, carbon dioxide (CO2) increases can strongly offset the ozone depletion effect of N2O.

  15. Biomedical consequences of ozone depletion

    NASA Astrophysics Data System (ADS)

    Coohill, Thomas P.

    1994-07-01

    It is widely agreed that a portion of the earth's protective stratospheric ozone layer is being depleted. The major effect of this ozone loss will be an increase in the amount of ultraviolet radiation (UV reaching the biosphere. This increase will be completely contained within the UVB (290nm - 320nm). It is imperative that assessments be made of the effects of this additional UVB on living organisms. This requires a detailed knowledge of the UVB photobiology of these life forms. One analytical technique to aid in the approximations is the construction of UV action spectra for such important biological end-points as human skin cancer, cataracts, immune suppression; plant photosynthesis and crop yields; and aquatic organism responses to UVB, especially the phytoplankton. Combining these action spectra with the known solar spectrum (and estimates for various ozone depletion scenarios) can give rise to a series of effectiveness spectra for these parameters. This manuscript gives a first approximation, rough estimate, for the effectiveness spectra for some of these bioresponses, and a series of crude temporary values for how a 10% ozone loss would affect the above end-points. These are not intended to masquerade as final answers, but rather, to serve as beginning attempts for a process which should be continually refined. It is hoped that these estimates will be of some limited use to agencies, such as government and industry, that have to plan now for changes in human activities that might alter future atmospheric chemistry in a beneficial manner.

  16. Producing, Importing, and Exporting Ozone-Depleting Substances

    EPA Pesticide Factsheets

    Overview page provides links to information on producing, importing, and exporting ozone-depleting substances, including information about the HCFC allowance system, importing, labeling, recordkeeping and reporting.

  17. High School and College Student Perceptions of the Ozone Depletion Problem.

    ERIC Educational Resources Information Center

    Groves, Fred; Pugh, Ava

    This paper examines the knowledge of high school biology students (n=107), undergraduate elementary education majors (n=42), and graduate students in an advanced elementary science methods course (n=22) about ozone depletion. The questionnaire used contained 30 items pertaining to ozone depletion which were divided into three subscales: (1)…

  18. Possible ozone depletions following nuclear explosions

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Turco, R. P.

    1975-01-01

    The degree of depletion of the ozone layer ensuing after delivery of strategic nuclear warheads (5000 and 10,000 Mton) due to production of nitrogen oxides is theoretically assessed. Strong depletions are calculated for 16-km and 26-km altitudes, peaking 1-2 months after detonation and lasting for three years, while a significant depletion at 36 km would peak after one year. Assuming the explosions occur between 30 and 70 deg N, these effects should be much more pronounced in this region than over the Northern Hemisphere as a whole. It is concluded that Hampson's concern on this matter (1974) is well-founded.-

  19. Volcanic aerosol and ozone depletion within the Antarctic polar vortex during the austral spring of 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshler, T.; Adriani, A.; Gobbi, G.P.

    1992-09-01

    In the spring of 1991 the Antarctic lower stratosphere was characterized by a layer of volcanic aerosol from the Cerro Hudson eruption. This aerosol layer was observed from McMurdo Station, Antarctica, with both lidar and balloonborne particle counters beginning around 10 September. After 20 September the aerosol was observed daily between 9 and 13 km. In this layer homogeneous nucleation of new aerosol was observed with concentrations greater than 6000/cu cm. Comparisons of scattering ratio calculated from measured particle size distributions agree best with the lidar measurements when a real index of refraction near 1.5 is used. In the pastmore » 5 years of measurements, ozone below 13 km has been relatively unchanged during the annual Antartic ozone depletion; however, in 1991 ozone below 13 km decreased at a rate of 4 - 8 ppb/day over 30 days. This change began shortly after the appearance of the volcanic aerosol, providing direct measurements correlating volcanic aerosol and ozone depletion. 16 refs.« less

  20. 2011 Arctic ozone depletion as seen by ESA-ENVISAT Atmospheric-Chemistry sensors

    NASA Astrophysics Data System (ADS)

    Brizzi, G.; Niro, F.; Saavedra de Miguel, L.; Dehn, A.; Scarpino, G.; Fehr, T.; von Kuhlmann, R.

    2011-12-01

    Three Atmospheric-Chemistry sensors on-board the ENVISAT satellite (GOMOS, MIPAS, and SCIAMACHY) sound the Earth's atmosphere since about nine years and provide to the science community three separated, but complementary data sets of the most interesting atmospheric trace gases. These extended and coherent data sets, generated with ESA operational processors, give a historical overview over seasonal and long-term trends of geophysical parameters and allow investigating major atmospheric phenomena and natural events. During March 2011, ESA's satellite ENVISAT detected the severe ozone depletion above the Euro-Atlantic sector of the Northern Hemisphere. This record-breaking loss for the ozone layer over the North Pole was mainly caused by unusual polar vortex conditions characterized by very low temperatures in the Arctic stratosphere. This paper presents the chemical ozone depletion over the Arctic regions as detected by SCIAMACHY, MIPAS and GOMOS during spring of 2011. Global maps of total ozone column and vertical ozone profiles along the mission's lifetime clearly show the unprecedented Arctic ozone loss for 2011 with the subsequent migration of ozone depleted air masses towards lower latitudes. ENVISAT's atmospheric measurements reveal changes in the composition of the ozone-related chemical species and permit to point out the chemical correlations of the ozone distribution with nitrogen and chlorine compounds and with the evolution of stratospheric temperatures. The synergistic use of ESA operational data sets from the three instruments allows to closely monitor the occurrence and extension of seasonal ozone depletion events, and to draw a comprehensive picture of all chemistry processes involved in the full atmospheric range.

  1. Changes in tropospheric composition and air quality due to stratospheric ozone depletion.

    PubMed

    Solomon, Keith R; Tang, Xiaoyan; Wilson, Stephen R; Zanis, Prodromos; Bais, Alkiviadis F

    2003-01-01

    Increased UV-B through stratospheric ozone depletion leads to an increased chemical activity in the lower atmosphere (the troposphere). The effect of stratospheric ozone depletion on tropospheric ozone is small (though significant) compared to the ozone generated anthropogenically in areas already experiencing air pollution. Modeling and experimental studies suggest that the impacts of stratospheric ozone depletion on tropospheric ozone are different at different altitudes and for different chemical regimes. As a result the increase in ozone due to stratospheric ozone depletion may be greater in polluted regions. Attributable effects on concentrations are expected only in regions where local emissions make minor contributions. The vertical distribution of NOx (NO + NO2), the emission of volatile organic compounds and the abundance of water vapor, are important influencing factors. The long-term nature of stratospheric ozone depletion means that even a small increase in tropospheric ozone concentration can have a significant impact on human health and the environment. Trifluoroacetic acid (TFA) and chlorodifluoroacetic acid (CDFA) are produced by the atmospheric degradation of hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). TFA has been measured in rain, rivers, lakes, and oceans, the ultimate sink for these and related compounds. Significant anthropogenic sources of TFA other than degradation HCFCs and HFCs have been identified. Toxicity tests under field conditions indicate that the concentrations of TFA and CDFA currently produced by the atmospheric degradation of HFCs and HCFCs do not present a risk to human health and the environment. The impact of the interaction between ozone depletion and future climate change is complex and a significant area of current research. For air quality and tropospheric composition, a range of physical parameters such as temperature, cloudiness and atmospheric transport will modify the impact of UV-B. Changes in the

  2. 40 CFR Appendix F to Subpart A of... - Listing of Ozone-Depleting Chemicals

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Listing of Ozone-Depleting Chemicals F...) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. F Appendix F to Subpart A of Part 82—Listing of Ozone-Depleting Chemicals Controlled...

  3. 40 CFR Appendix F to Subpart A of... - Listing of Ozone-Depleting Chemicals

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Listing of Ozone-Depleting Chemicals F...) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. F Appendix F to Subpart A of Part 82—Listing of Ozone-Depleting Chemicals Controlled...

  4. 40 CFR Appendix F to Subpart A of... - Listing of Ozone-Depleting Chemicals

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Listing of Ozone-Depleting Chemicals F...) AIR PROGRAMS (CONTINUED) PROTECTION OF STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. F Appendix F to Subpart A of Part 82—Listing of Ozone-Depleting Chemicals Controlled...

  5. Is There Evidence that Mid-Latitude Stratospheric Ozone Depletion Occurs in Conjunction with North American Monsoon Convection?

    NASA Astrophysics Data System (ADS)

    Rosenlof, K. H.; Ray, E. A.; Portmann, R. W.

    2017-12-01

    A recent study suggests that during the period of the summertime North American Monsoon (NAM), ozone depletion could occur as a result of catalytic ozone destruction associated with the cold and wet conditions caused by overshooting convection. Aura Microwave Limb Sounder (MLS) water vapor measurements do show that the NAM region is wetter than other parts of the globe in regards to both the mean and extremes. However, definitive evidence of ozone depletion occurring in that region has not been presented. In this study, we examine coincident measurements of water vapor, ozone, and tropospheric tracers from aircraft data taken during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft campaign looking specifically for ozone depletion in regions identified as impacted by overshooting convection. Although we do find evidence of lower ozone values in air impacted by convective overshoots, using tropospheric tracers we attribute those observations to input of tropospheric air rather than catalytic ozone destruction. Additionally, we explore the consequences of these lower ozone values on surface UV, and conclude that there is minimal impact on the UV index.

  6. Teaching about ozone layer depletion in Turkey: pedagogical content knowledge of science teachers.

    PubMed

    Bozkurt, Orçun; Kaya, Osman Nafiz

    2008-04-01

    The purpose of this study was to investigate the pedagogical content knowledge of Prospective Science Teachers (PSTs) on the topic of "ozone layer depletion." In order to explore PSTs' subject matter knowledge on ozone layer depletion, they were given a form of multiple-choice test where they needed to write the reasons behind their answers. This test was completed by 140 PSTs in their final year at the College of Education. Individual interviews were carried out with 42 randomly selected PSTs to determine their pedagogical knowledge about ozone layer depletion. Data were obtained from the study which indicate that the PSTs did not have adequate subject matter and pedagogical knowledge to teach the topic of ozone layer depletion to middle school students. It was also evident that the PSTs held various misconceptions related to ozone layer depletion. PSTs' inadequate pedagogical knowledge was found in the areas of the curriculum, learning difficulties of students, and instructional strategies and activities. This study provides some pedagogical implications for the training of science teachers.

  7. 77 FR 74381 - Protection of Stratospheric Ozone: Listing of Substitutes for Ozone Depleting Substances-Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ... Protection of Stratospheric Ozone: Listing of Substitutes for Ozone Depleting Substances--Fire Suppression... a companion proposed rule issuing listings for three fire suppressants under EPA's Significant New... companion proposed rule issuing listings for three fire suppressants under EPA's Significant New...

  8. 21 CFR 2.125 - Use of ozone-depleting substances in foods, drugs, devices, or cosmetics.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Use of ozone-depleting substances in foods, drugs... Specific Products Subject to the Federal Food, Drug, and Cosmetic Act § 2.125 Use of ozone-depleting substances in foods, drugs, devices, or cosmetics. (a) As used in this section, ozone-depleting substance...

  9. 21 CFR 2.125 - Use of ozone-depleting substances in foods, drugs, devices, or cosmetics.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Use of ozone-depleting substances in foods, drugs... Specific Products Subject to the Federal Food, Drug, and Cosmetic Act § 2.125 Use of ozone-depleting substances in foods, drugs, devices, or cosmetics. (a) As used in this section, ozone-depleting substance...

  10. 21 CFR 2.125 - Use of ozone-depleting substances in foods, drugs, devices, or cosmetics.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Use of ozone-depleting substances in foods, drugs... Specific Products Subject to the Federal Food, Drug, and Cosmetic Act § 2.125 Use of ozone-depleting substances in foods, drugs, devices, or cosmetics. (a) As used in this section, ozone-depleting substance...

  11. 21 CFR 2.125 - Use of ozone-depleting substances in foods, drugs, devices, or cosmetics.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Use of ozone-depleting substances in foods, drugs... Specific Products Subject to the Federal Food, Drug, and Cosmetic Act § 2.125 Use of ozone-depleting substances in foods, drugs, devices, or cosmetics. (a) As used in this section, ozone-depleting substance...

  12. Changes in tropospheric composition and air quality due to stratospheric ozone depletion and climate change.

    PubMed

    Wilson, S R; Solomon, K R; Tang, X

    2007-03-01

    It is well-understood that reductions in air quality play a significant role in both environmental and human health. Interactions between ozone depletion and global climate change will significantly alter atmospheric chemistry which, in turn, will cause changes in concentrations of natural and human-made gases and aerosols. Models predict that tropospheric ozone near the surface will increase globally by up to 10 to 30 ppbv (33 to 100% increase) during the period 2000 to 2100. With the increase in the amount of the stratospheric ozone, increased transport from the stratosphere to the troposphere will result in different responses in polluted and unpolluted areas. In contrast, global changes in tropospheric hydroxyl radical (OH) are not predicted to be large, except where influenced by the presence of oxidizable organic matter, such as from large-scale forest fires. Recent measurements in a relatively clean location over 5 years showed that OH concentrations can be predicted by the intensity of solar ultraviolet radiation. If this relationship is confirmed by further observations, this approach could be used to simplify assessments of air quality. Analysis of surface-level ozone observations in Antarctica suggests that there has been a significant change in the chemistry of the boundary layer of the atmosphere in this region as a result of stratospheric ozone depletion. The oxidation potential of the Antarctic boundary layer is estimated to be greater now than before the development of the ozone hole. Recent modeling studies have suggested that iodine and iodine-containing substances from natural sources, such as the ocean, may increase stratospheric ozone depletion significantly in polar regions during spring. Given the uncertainty of the fate of iodine in the stratosphere, the results may also be relevant for stratospheric ozone depletion and measurements of the influence of these substances on ozone depletion should be considered in the future. In agreement with

  13. 21 CFR 2.125 - Use of ozone-depleting substances in foods, drugs, devices, or cosmetics.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Use of ozone-depleting substances in foods, drugs... Specific Products Subject to the Federal Food, Drug, and Cosmetic Act § 2.125 Use of ozone-depleting... 75 FR 19241, Apr. 14, 2010. (a) As used in this section, ozone-depleting substance (ODS) means any...

  14. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2007.

    PubMed

    2008-01-01

    This year the Montreal Protocol celebrates its 20th Anniversary. In September 1987, 24 countries signed the Montreal Protocol on Substances that Deplete the Ozone Layer. Today 191 countries have signed and have met strict commitments on phasing out of ozone depleting substances with the result that a 95% reduction of these substances has been achieved. The Montreal Protocol has also contributed to slowing the rate of global climate change, since most of the ozone depleting substances are also effective greenhouse gases. Even though much has been achieved, the future of the stratospheric ozone layer relies on full compliance of the Montreal Protocol by all countries for the remaining substances, including methyl bromide, as well as strict monitoring of potential risks from the production of substitute chemicals. Also the ozone depleting substances existing in banks and equipment need special attention to prevent their release to the stratosphere. Since many of the ozone depleting substances already in the atmosphere are long-lived, recovery cannot be immediate and present projections estimate a return to pre-1980 levels by 2050 to 2075. It has also been predicted that the interactions of the effects of the ozone layer and that of other climate change factors will become increasingly important.

  15. Potential For Stratospheric Ozone Depletion During Carboniferous

    NASA Astrophysics Data System (ADS)

    Bill, M.; Goldstein, A. H.

    Methyl bromide (CH3Br) constitutes the largest source of bromine atoms to the strato- sphere whereas methyl chloride (CH3Cl) is the most abundant halocarbon in the tro- posphere. Both gases play an important role in stratospheric ozone depletion. For in- stance, Br coupled reactions are responsible for 30 to 50 % of total ozone loss in the polar vortex. Currently, the largest natural sources of CH3Br and CH3Cl appear to be biological production in the oceans, inorganic production during biomass burning and plant production in salt marsh ecosystems. Variations of paleofluxes of CH3Br and CH3Cl can be estimated by analyses of oceanic paleoproductivity, stratigraphic analyses of frequency and distribution of fossil charcoal indicating the occurrence of wildfires, and/or by paleoreconstruction indicating the extent of salt marshes. Dur- ing the lower Carboniferous time (Tournaisian-Visean), the southern margin of the Laurasian continent was characterized by charcoal deposits. Estimation on frequency of charcoal layers indicates that wildfires occur in a range of 3-35 years (Falcon-Lang 2000). This suggests that biomass burning could be an important source of CH3Br and CH3Cl during Tournaisian-Viesan time. During Tounaisian and until Merame- cian carbon and oxygen isotope records have short term oscillations (Bruckschen et al. 1999, Mii et al. 1999). Chesterian time (mid- Carboniferous) is marked by an in- crease in delta18O values ( ~ 2 permil) and an increase of glacial deposit frequency suggesting lower temperatures. The occurrence of glacial deposits over the paleopole suggests polar conditions and the associated special features of polar mete- orology such as strong circumpolar wind in the stratosphere (polar vortex) and polar stratospheric clouds. Thus, conditions leading to polar statospheric ozone depletion can be found. Simultaneously an increase in delta13C values is documented. We interpret the positive shift in delta13C as a result of higher bioproductivity

  16. Ozone Depletion in the Arctic Lower Stratosphere; Timing and Impacts on the Polar Vortex.

    NASA Astrophysics Data System (ADS)

    Rae, Cameron; Pyle, John

    2017-04-01

    There a strong link between ozone depletion in the Antarctic lower stratosphere and the strength/duration of the southern hemisphere polar vortex. Ozone depletion arising from enhanced levels of ODS in the lower stratosphere during the last few decades of the 20th century has been accompanied by a delay in the final warming date in the southern hemisphere. The delay in final warming is associated with anomalous tropospheric conditions. The relationship in the Arctic, however, is less clear as the northern hemisphere experiences relatively less intense ozone destruction in the Arctic lower stratosphere and the polar vortex is generally less stable. This study investigates the impacts of imposed lower stratospheric ozone depletion on the evolution of the polar vortex, particularly in the late-spring towards the end of its lifetime. A perpetual-year integration is compared with a series of near-identical seasonal integrations which differ only by an imposed artificial ozone depletion event, occurring a fixed number of days before the polar vortex final warming date each year. Any differences between the seasonal forecasts and perpetual year simulation are due to the timely occurrence of a strong ozone depletion event in the late-spring Arctic polar vortex. This ensemble of seasonal forecasts demonstrates the impacts that a strong ozone depletion event in the Arctic lower stratosphere will have on the evolution of the polar vortex, and highlights tropospheric impacts associated with this phenomenon.

  17. Detectability of the impacts of ozone-depleting substances and greenhouse gases upon stratospheric ozone accounting for nonlinearities in historical forcings

    NASA Astrophysics Data System (ADS)

    Bandoro, Justin; Solomon, Susan; Santer, Benjamin D.; Kinnison, Douglas E.; Mills, Michael J.

    2018-01-01

    We perform a formal attribution study of upper- and lower-stratospheric ozone changes using observations together with simulations from the Whole Atmosphere Community Climate Model. Historical model simulations were used to estimate the zonal-mean response patterns (fingerprints) to combined forcing by ozone-depleting substances (ODSs) and well-mixed greenhouse gases (GHGs), as well as to the individual forcing by each factor. Trends in the similarity between the searched-for fingerprints and homogenized observations of stratospheric ozone were compared to trends in pattern similarity between the fingerprints and the internally and naturally generated variability inferred from long control runs. This yields estimated signal-to-noise (S/N) ratios for each of the three fingerprints (ODS, GHG, and ODS + GHG). In both the upper stratosphere (defined in this paper as 1 to 10 hPa) and lower stratosphere (40 to 100 hPa), the spatial fingerprints of the ODS + GHG and ODS-only patterns were consistently detectable not only during the era of maximum ozone depletion but also throughout the observational record (1984-2016). We also develop a fingerprint attribution method to account for forcings whose time evolutions are markedly nonlinear over the observational record. When the nonlinearity of the time evolution of the ODS and ODS + GHG signals is accounted for, we find that the S/N ratios obtained with the stratospheric ODS and ODS + GHG fingerprints are enhanced relative to standard linear trend analysis. Use of the nonlinear signal detection method also reduces the detection time - the estimate of the date at which ODS and GHG impacts on ozone can be formally identified. Furthermore, by explicitly considering nonlinear signal evolution, the complete observational record can be used in the S/N analysis, without applying piecewise linear regression and introducing arbitrary break points. The GHG-driven fingerprint of ozone changes was not statistically identifiable in

  18. The Impact of Ozone Depleting Substances on Tropical Upwelling, as Revealed by the Absence of Lower Stratospheric Cooling since the Late 1990s

    NASA Astrophysics Data System (ADS)

    Polvani, L. M.; Wang, L.; Aquila, V.; Waugh, D.

    2016-12-01

    The impact of ozone depleting substances on global lower stratospheric temperature trends is widely recognized. In the tropics, however, understanding lower stratospheric temperature trends has proven more challenging. While the tropical lower stratospheric cooling observed from 1979 to 1997 has also been shown to result almost entirely from ozone decreases, those ozone trends cannot be of chemical origin, as active chlorine is not abundant in the tropical lower stratosphere. The 1979-1997 tropical ozone trends are believed to originate from enhanced upwelling which, it is often stated, would be driven by increasing concentrations of well mixed greenhouse gases. In this study, using simple arguments based on observational evidence after 1997, combined with model integrations with incrementally added single forcings, we argue that ozone depleting substances, not well mixed greenhouse gases, have been the primary driver of temperature and ozone trends in the tropical lower stratosphere until 1997, and this has occurred because ozone depleting substances affect tropical upwelling and the entire Brewer-Dobson circulation.

  19. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    NASA Technical Reports Server (NTRS)

    Li, Feng; Newman, Paul; Pawson, Steven; Perlwitz, Judith

    2018-01-01

    The relative impacts of greenhouse gas (GHG) increase and stratospheric ozone depletion on stratospheric mean age of air in the 1960-2010 period are quantified using the Goddard Earth Observing System Chemistry-�Climate Model. The experiment compares controlled simulations using a coupled atmosphere-�ocean version of the Goddard Earth Observing System Chemistry-�Climate Model, in which either GHGs or ozone depleting substances, or both factors evolve over time. The model results show that GHGs and ozone-depleting substances have about equal contributions to the simulated mean age decrease, but GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. It is also found that both the acceleration of the diabatic circulation and the decrease of the mean age difference between downwelling and upwelling regions are mainly caused by GHG forcing. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: (1) a seasonal delay in the Antarctic polar vortex breakup that inhibits young midlatitude air from mixing with the older air inside the vortex, and (2) enhanced Antarctic downwelling that brings older air from middle and upper stratosphere into the lower stratosphere.

  20. Microphysical Modelling of the 1999-2000 Arctic Winter. 2; Chlorine Activation and Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Drdla, K.; Schoeberl, M. R.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    The effect of a range of assumptions about polar stratospheric clouds (PSCs) on ozone depletion has been assessed using at couple microphysical/photochemical model. The composition of the PSCs was varied (ternary solutions, nitric acid trihydrate, nitric acid dehydrate, or ice), as were parameters that affected the levels of denitrification and dehydration. Ozone depletion was affected by assumptions about PSC freezing because of the variability in resultant nitrification chlorine activation in all scenarios was similar despite the range of assumed PSC compositions. Vortex-average ozone loss exceeded 40% in the lower stratosphere for simulations without nitrification an additional ozone loss of 15-20% was possible in scenarios where vortex-average nitrification reached 60%. Ozone loss intensifies non-linearly with enhanced nitrification in air parcels with 90% nitrification 40% ozone loss in mid-April can be attributed to nitrification alone. However, these effects are sensitive to the stability of the vortex in springtime: nitrification only began to influence ozone depletion in mid-March.

  1. Polar ozone

    NASA Technical Reports Server (NTRS)

    Solomon, S.; Grose, W. L.; Jones, R. L.; Mccormick, M. P.; Molina, Mario J.; Oneill, A.; Poole, L. R.; Shine, K. P.; Plumb, R. A.; Pope, V.

    1990-01-01

    The observation and interpretation of a large, unexpected ozone depletion over Antarctica has changed the international scientific view of stratospheric chemistry. The observations which show the veracity, seasonal nature, and vertical structure of the Antarctic ozone hole are presented. Evidence for Arctic and midlatitude ozone loss is also discussed. The chemical theory for Antarctic ozone depletion centers around the occurrence of polar stratospheric clouds (PSCs) in Antarctic winter and spring; the climatology and radiative properties of these clouds are presented. Lab studies of the physical properties of PSCs and the chemical processes that subsequently influence ozone depletion are discussed. Observations and interpretation of the chemical composition of the Antarctic stratosphere are described. It is shown that the observed, greatly enhanced abundances of chlorine monoxide in the lower stratosphere are sufficient to explain much if not all of the ozone decrease. The dynamic meteorology of both polar regions is given, interannual and interhemispheric variations in dynamical processes are outlined, and their likely roles in ozone loss are discussed.

  2. Improvements in Total Column Ozone in GEOSCCM and Comparisons with a New Ozone-Depleting Substances Scenario

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.; Douglass, Anne R.

    2014-01-01

    The evolution of ozone is examined in the latest version of the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) using old and new ozone-depleting substances (ODS) scenarios. This version of GEOSCCM includes a representation of the quasi-biennial oscillation, a more realistic implementation of ozone chemistry at high solar zenith angles, an improved air/sea roughness parameterization, and an extra 5 parts per trillion of CH3Br to account for brominated very short-lived substances. Together these additions improve the representation of ozone compared to observations. This improved version of GEOSCCM was used to simulate the ozone evolution for the A1 2010 and the newStratosphere-troposphere Processes and their Role in Climate (SPARC) 2013 ODS scenario derived using the SPARC Lifetimes Report 2013. This new ODS scenario results in a maximum Cltot increase of 65 parts per trillion by volume (pptv), decreasing slightly to 60 pptv by 2100. Approximately 72% of the increase is due to the longer lifetime of CFC-11. The quasi-global (60degS-60degN) total column ozone difference is relatively small and less than 1Dobson unit on average and consistent with the 3-4% larger 2050-2080 average Cly in the new SPARC 2013 scenario. Over high latitudes, this small change in Cly compared to the relatively large natural variabilitymakes it not possible to discern a significant impact on ozone in the second half of the 21st century in a single set of simulations.

  3. Terrestrial Ozone Depletion Due to a Milky Way Gamma-Ray Burst

    NASA Technical Reports Server (NTRS)

    Thomas, Brian C.; Jackman, Charles H.; Melott, Adrian L.; Laird, Claude M.; Stolarski, Richard S.; Gehrels, Neil; Cannizzo, John K.; Hogan, Daniel P.

    2005-01-01

    Based on cosmological rates, it is probable that at least once in the last Gy the Earth has been irradiated by a gamma-ray burst in our Galaxy from within 2 kpc. Using a two-dimensional atmospheric model we have computed the effects upon the Earth's atmosphere of one such burst. A ten second burst delivering 100 kJ/sq m to the Earth results in globally averaged ozone depletion of 35%, with depletion reaching 55% at some latitudes. Significant global depletion persists for over 5 years after the burst. This depletion would have dramatic implications for life since a 50% decrease in ozone column density results in approximately three times the normal UVB flux. Widespread extinctions are likely, based on extrapolation from UVB sensitivity of modern organisms.

  4. Observation of NO(x) Enhancement and Ozone Depletion in the Northern and Southern hemispheres after the October-November 2003 Solar Proton Events

    NASA Technical Reports Server (NTRS)

    Lopez-Puertas, M.; Funke, B.; Gil-Lopez, S.; vonClarmann, T.; Stiller, G. P.; Hoepfner, M.; Kellmann, S.; Fischer, H.; Jackman, C. H.

    2005-01-01

    The large solar storms in October-November 2003 produced enormous solar proton events (SPEs) where high energetic particles reached the Earth and penetrated into the middle atmosphere in the polar regions. At this time, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was observing the atmosphere in the 6-68 km altitude range. MIPAS observations of NO(x) (NO+NO2) and O3 of the period from 25 October to 14 November 2003 are the first global measurements of NO(x) species, covering both the summer (daylight) and winter (dark) polar regions during an SPE. Very large values of NO(x) in the upper stratosphere of 180 ppbv (parts per billion by volume) have been measured, and a large asymmetry in Northern and Southern polar cap NO(x) enhancements was found. Arctic mean polar cap (>60 deg) NO(x) enhancements of 20 to 70 ppbv between 40 to 60 km lasted for at least two weeks, while the Antarctic mean NO(x) enhancement was between 10 and 35 ppbv and was halved after two weeks. Ozone shows depletion signatures associated with both HO(x) (H+OH+HO2) and NO(x) enhancements but at different time scales. Arctic lower mesospheric (upper stratospheric) ozone is reduced by 50-70% (30-40%) for about two weeks The large solar storms in October-November 2003 produced after the SPEs. A smaller ozone depletion signal was observed in the Antarctic atmosphere. After the locally produced Arctic middle and upper stratospheric as well as mesospheric NO(x) enhancement, large amounts of NO(x) were observed until the end of December. These are explained by downward transport processes.

  5. Contribution of different PSC types to Arctic ozone depletion caused by chlorine activation and denitrification

    NASA Astrophysics Data System (ADS)

    Kirner, Oliver; Khosrawi, Farah; Müller, Rolf; Weimer, Michael; Ruhnke, Roland

    2017-04-01

    Heterogeneous reactions on the surfaces of PSC particles and denitrification of the stratosphere are the cause for polar ozone depletion in spring. In a former study we investigated the impact of different types of PSCs on Antarctic ozone depletion with the help of the chemistry-climate model ECHAM5/MESSy Atmospheric chemistry (EMAC). In this study, we investigate the impact of PSCs on Arctic ozone loss. One standard and four sensitivity EMAC simulations (nudged with ERA-Interim) have been performed to evaluate the contribution of liquid, NAT and ice particles to ozone depletion in the Arctic winters 2010/2011 and 2015/2016 due to chlorine activation by heterogeneous chemistry on their surfaces and due to denitrification of the stratosphere. In the first three sensitivity simulations, we changed the heterogeneous chemistry on PSC particles by switching on and off the chemistry on liquid, NAT and ice particles. One further sensitivity simulation without NAT formation (only liquid and ice particles) was performed to evaluate the contribution of NAT to Arctic ozone depletion due to denitrification of the stratosphere. With the help of these different EMAC simulations, we will show the significance of liquid, NAT and ice particles to Arctic ozone depletion caused by chlorine activation and denitrification.

  6. STRATOSPHERIC OZONE DEPLETION: A FOCUS ON EPA'S RESEARCH

    EPA Science Inventory

    In September of 1987 the United States, along with 26 other countries, signed a landmark treaty to limit and subsequently, through revisions, phase out the production of all significant ozone depleting substances. Many researchers suspected that these chemicals, especially chl...

  7. 40 CFR Appendix F to Subpart A of... - Listing of Ozone-Depleting Chemicals

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Listing of Ozone-Depleting Chemicals F..., Subpt. A, App. F Appendix F to Subpart A of Part 82—Listing of Ozone-Depleting Chemicals Controlled...-Monochloropentafluoroethane (CFC-115) 0.6 400.0 2.0 0.00 All isomers of the above chemicals [Reserved] 2. Group II: CF2 ClBr...

  8. 40 CFR Appendix F to Subpart A of... - Listing of Ozone-Depleting Chemicals

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Listing of Ozone-Depleting Chemicals F..., Subpt. A, App. F Appendix F to Subpart A of Part 82—Listing of Ozone-Depleting Chemicals Controlled...-Monochloropentafluoroethane (CFC-115) 0.6 400.0 2.0 0.00 All isomers of the above chemicals [Reserved] 2. Group II: CF2 ClBr...

  9. Impact and mitigation of stratospheric ozone depletion by chemical rockets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcdonald, A.J.

    1992-03-01

    The American Institute of Aeronautics and Astronautics (AIAA) conducted a workshop in conjunction with the 1991 AIAA Joint Propulsion Conference in Sacramento, California, to assess the impact of chemical rocket propulsion on the environment. The workshop included recognized experts from the fields of atmospheric physics and chemistry, solid rocket propulsion, liquid rocket propulsion, government, and environmental agencies, and representatives from several responsible environmental organizations. The conclusion from this workshop relative to stratospheric ozone depletion was that neither solid nor liquid rocket launchers have a significant impact on stratospheric ozone depletion, and that there is no real significant difference between themore » two.« less

  10. LIDAR measurements of Arctic boundary layer ozone depletion events over the frozen Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Seabrook, J. A.; Whiteway, J.; Staebler, R. M.; Bottenheim, J. W.; Komguem, L.; Gray, L. H.; Barber, D.; Asplin, M.

    2011-09-01

    A differential absorption light detection and ranging instrument (Differential Absorption LIDAR or DIAL) was installed on-board the Canadian Coast Guard Ship Amundsen and operated during the winter and spring of 2008. During this period the vessel was stationed in the Amundsen Gulf (71°N, 121-124°W), approximately 10-40 km off the south coast of Banks Island. The LIDAR was operated to obtain a continuous record of the vertical profile of ozone concentration in the lower atmosphere over the sea ice during the polar sunrise. The observations included several ozone depletion events (ODE's) within the atmospheric boundary layer. The strongest ODEs consisted of air with ozone mixing ratio less than 10 ppbv up to heights varying from 200 m to 600 m, and the increase to the background mixing ratio of about 35-40 ppbv occurred within about 200 m in the overlying air. All of the observed ODEs were connected to the ice surface. Back trajectory calculations indicated that the ODEs only occurred in air that had spent an extended period of time below a height of 500 m above the sea ice. Also, all the ODEs occurred in air with temperature below -25°C. Air not depleted in ozone was found to be associated with warmer air originating from above the surface layer.

  11. Deplete! Deplete! Deplete!

    NASA Astrophysics Data System (ADS)

    Woodson, J.

    2017-12-01

    Deplete is intended to demonstrate by analogy the harmful effect that Green House Gases (GHG's) such as CO2 and H2O vapor are causing to the Ozone Layer. Increasing temperatures from human activities are contributing to the depletion of Ozone.

  12. Dynamical characterization of the 2010/2011 winter Arctic ozone depletion replaced in a climatologic context

    NASA Astrophysics Data System (ADS)

    Thiéblemont, R.; Huret, N.; Hauchecorne, A.; Drouin, M.

    2011-12-01

    The 2010/2011 stratospheric winter has recorded one of the strongest ozone depletion in the Arctic region since observations began. Such phenomenon is currently very difficult to predict as it strongly depends on winter dynamical conditions. The aim of this study is to characterize winter/spring dynamical stratospheric conditions and the ozone depletion yield. We used the AURA-MLS (Microwave Limb Sounder) measurements, the ECMWF (European Centre for Medium-Range Weather Forecasts) Era-Interim meteorological fields and the results of the potential vorticity contour advection model MIMOSA (Modélisation Isentrope du transport Méso-échelle de l'Ozone Stratosphérique par Advection). Dynamical processes associated with the 2010/2011 winter have been investigated and replaced in a climatologic context by comparing this winter to previous similar and different winter/spring seasons over the last 20 years. Preliminary results show that the polar night jet in 2010/2011 was of an extraordinary strength during February-March, as for the same period in 1995/1996 where the ozone depletion was close to 30 %. Using MIMOSA model, we also show that the polar vortex during February-March 2010/2011 was more centred above the pole than the climatologic location. Wave activity and heat fluxes deduced from ECMWF data allow us to evaluate the specific conditions encountered during this 2010/2011 winter and mechanisms which lead to such extreme situation.

  13. Climatic consequences of observed ozone loss in the 1980s: Relevance to the greenhouse problem

    NASA Technical Reports Server (NTRS)

    Molnar, G. I.; Ko, M. K. W.; Zhou, S.; Sze, N. D.

    1994-01-01

    Recently published findings using satellite and ground-based observations indicate a large winter and summertime decrease in the column abundance of ozone at high and middle latitudes during the last decade. Using a simple ozone depletion profile reflecting the observed decrease in ozone column abundance, Ramaswamy et al. (1992) showed that the negative radiative forcing that results from the ozone decrease between 1979 and 1990 approximately balanced the greenhouse climate forcing due to the chlorofluorocarbons emitted during the same period. Here, we extend the forcing analyses by calculating the equilibrium surface temperature response explicitly, using an updated version of the Atmospheric and Environmental Research two-dimensional radiative-dynamical seasonal model. The calculated steady state responses suggest that the surface cooling due to the ozone depletion in the lower stratosphere offsets about 30% of the surface warming due to greenhouse gases emitted during the same decade. The temperature offset is roughly a factor of 2 larger than the corresponding offset obtained from forcing intercomparisons. This result appears to be related to the climate feedback mechanisms operating in the model troposphere, most notably that associated with atmospheric meridional heat transport. Thus a comprehensive assessment of ozone change effects on the predicted greenhouse warming cannot be accomplished based on forcing evaluations alone. Our results also show that calculations adopting a seasonally and latitudinally dependent ozone depletion profile produce a negative forcing about 50% smaller than that calculated for the depletion profile used by Ramaswamy et al. (1992).

  14. A Two-Timescale Response to Ozone Depletion: Importance of the Background State

    NASA Astrophysics Data System (ADS)

    Seviour, W.; Waugh, D.; Gnanadesikan, A.

    2015-12-01

    It has been recently suggested that the response of Southern Ocean sea-ice extent to stratospheric ozone depletion is time-dependent; that the ocean surface initially cools due to enhanced northward Ekman drift caused by a poleward shift in the eddy-driven jet, and then warms after some time due to upwelling of warm waters from below the mixed layer. It is therefore possible that ozone depletion could act to favor a short-term increase in sea-ice extent. However, many uncertainties remain in understanding this mechanism, with different models showing widely differing time-scales and magnitudes of the response. Here, we analyze an ensemble of coupled model simulations with a step-function ozone perturbation. The two-timescale response is present with an approximately 30 year initial cooling period. The response is further shown to be highly dependent upon the background ocean temperature and salinity stratification, which is influenced by both natural internal variability and the isopycnal eddy mixing parameterization. It is suggested that the majority of inter-model differences in the Southern Ocean response to ozone depletion is caused by differences in stratification.

  15. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  16. 75 FR 56858 - Use of Ozone-Depleting Substances; Removal of Essential-Use Designation (Flunisolide, etc...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration 21 CFR Part 2 [Docket No. FDA-2006-N-0304] (formerly Docket No. 2006N-0262) RIN 0910-AF93 Use of Ozone-Depleting Substances; Removal... FDA's regulation on the use of ozone- depleting substances (ODSs) in self-pressurized containers to...

  17. Ozone depleting substances: a key forcing of the Brewer-Dobson circulation

    NASA Astrophysics Data System (ADS)

    Abalos, M.; Polvani, L. M.; Garcia, R. R.; Kinnison, D. E.; Randel, W. J.

    2017-12-01

    In contrast with monotonically-increasing greenhouse gases (GHG), Ozone Depleting Substances (ODS) peak approximately on the year 2000 and decrease thereafter, thanks to the Montreal Protocol. We examine the influence of these anthropogenic emissions on the Brewer-Dobson circulation (BDC) using specifically designed runs of the Community Earth System Model - Whole Atmosphere Community Climate Model (CESM-WACCM). Consistent with previous works, we find a dominant role of ODSs on the observed BDC acceleration up to 2000 in the SH summer, through dynamical changes induced by the ozone hole. We extend the analyses to quantify the influence of ODSs on the BDC for different regions and seasons, and compare the model results to observational estimates. Finally, we show that ODSs will substantially reduce the GHG-induced BDC acceleration in the future. Specifically, the trends in stratospheric mean age of air will be 4 times smaller in the period 2000-2080 as compared to the period 1965-2000.

  18. European commission research on stratospheric ozone depletion

    NASA Astrophysics Data System (ADS)

    Amanatidis, G. T.; Ott, H.

    1995-02-01

    The research policy of the European Commission (EC) on the stratospheric ozone depletion, which is implemented through the ENVIRONMENT Programme is described. The strategy of this stratospheric ozone research, which is developed to address the open scientific questions, requires a coordinated and balanced programme which is based on long term measurements, process studies at regional or global scale, laboratory studies, continuous and accurate measurements of ultraviolet (UV) radiation and development of instrumentation. These research activities, whenever necessary, take form of extensive and coordinated experiments (EASOE 1991/92, SESAME 1994-95), while the overall objective is to provide a firm scientific basis for future European Union (EU) policy actions in this area. Finally, priorities which have been identified for future research in the ENVIRONMENT and CLIMATE Programme (1994-1998) are also detailed.

  19. Ozone Sensitivity to Varying Greenhouse Gases and Ozone-Depleting Substances in CCMI-1 Simulations

    NASA Technical Reports Server (NTRS)

    Morgenstern, Olaf; Stone, Kane A.; Schofield, Robyn; Akiyoshi, Hideharu; Yamashita, Yousuke; Kinnison, Douglas E.; Garcia, Rolando R.; Sudo, Kengo; Plummer, David A.; Scinocca, John; hide

    2018-01-01

    Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  20. Ozone sensitivity to varying greenhouse gases and ozone-depleting substances in CCMI-1 simulations

    NASA Astrophysics Data System (ADS)

    Morgenstern, Olaf; Stone, Kane A.; Schofield, Robyn; Akiyoshi, Hideharu; Yamashita, Yousuke; Kinnison, Douglas E.; Garcia, Rolando R.; Sudo, Kengo; Plummer, David A.; Scinocca, John; Oman, Luke D.; Manyin, Michael E.; Zeng, Guang; Rozanov, Eugene; Stenke, Andrea; Revell, Laura E.; Pitari, Giovanni; Mancini, Eva; Di Genova, Glauco; Visioni, Daniele; Dhomse, Sandip S.; Chipperfield, Martyn P.

    2018-01-01

    Ozone fields simulated for the first phase of the Chemistry-Climate Model Initiative (CCMI-1) will be used as forcing data in the 6th Coupled Model Intercomparison Project. Here we assess, using reference and sensitivity simulations produced for CCMI-1, the suitability of CCMI-1 model results for this process, investigating the degree of consistency amongst models regarding their responses to variations in individual forcings. We consider the influences of methane, nitrous oxide, a combination of chlorinated or brominated ozone-depleting substances, and a combination of carbon dioxide and other greenhouse gases. We find varying degrees of consistency in the models' responses in ozone to these individual forcings, including some considerable disagreement. In particular, the response of total-column ozone to these forcings is less consistent across the multi-model ensemble than profile comparisons. We analyse how stratospheric age of air, a commonly used diagnostic of stratospheric transport, responds to the forcings. For this diagnostic we find some salient differences in model behaviour, which may explain some of the findings for ozone. The findings imply that the ozone fields derived from CCMI-1 are subject to considerable uncertainties regarding the impacts of these anthropogenic forcings. We offer some thoughts on how to best approach the problem of generating a consensus ozone database from a multi-model ensemble such as CCMI-1.

  1. UV-B radiation amplification factor determined based on the simultaneous observation of total ozone and global spectral irradiance

    NASA Technical Reports Server (NTRS)

    Ito, T.; Sakoda, Y.; Matsubara, K.; Kajihara, R.; Uekubo, T.; Kobayashi, M.; Shitamichi, M.; Ueno, T.; Ito, M.

    1994-01-01

    The Japan Meteorological Agency started the spectral observation of solar ultraviolet (UV) irradiance on 1 January 1990 at Tateno, Aerological Observatory in Tsukuba (35 deg N, 140 deg E). The observation has been carried out using the Brewer spectrophotometer for the wavelengths from 290 to 325 nm with a 0.5 nm interval every hour from 30 minutes before sunrise to 30 minutes after sunset throughout a year. Because of remarkable similarity within observed spectra, an observed spectrum can be expressed by a simple combination of a reference spectrum and two parameters expressing the deformation of the observed spectrum from the reference. By use of the relation between one of the deformation parameters and the total ozone simultaneously observed with the Dobson spectrophotometer, the possible increase of UV irradiance due to ozone depletion is estimated. For damaging UV, the irradiance possibly increases about 19 percent with the ozone depletion of 10 percent at noon throughout the year in the northern midlatitudes. DUV at noon on the summer solstice possibly increases about 5.6 percent with the ozone depletion of 10 m atm-cm for all latitudes in the Northern Hemisphere.

  2. 21st Century Trends in the Potential for Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Hurwitz, M. M.; Newman, P. A.

    2009-05-01

    We find robust trends in the area where Antarctic stratospheric temperatures are below the threshold for polar stratospheric cloud (PSC) formation in Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. In late winter (September-October-November), cold area trends are consistent with the respective trends in equivalent effective stratospheric chlorine (EESC), i.e. negative cold area trends in 'realistic future' simulations where EESC decreases and the ozone layer recovers. In the early winter (April through June), regardless of EESC scenario, we find an increasing cold area trend in all simulations; multiple linear regression analysis shows that this early winter cooling trend is associated with the predicted increase in greenhouse gas concentrations in the future. We compare the seasonality of the potential for Antarctic ozone depletion in two versions of the GEOS CCM and assess the impact of the above-mentioned cold area trends on polar stratospheric chemistry.

  3. Ozone depletion - Ultraviolet radiation and phytoplankton biology in Antarctic waters

    NASA Technical Reports Server (NTRS)

    Smith, R. C.; Prezelin, B. B.; Baker, K. S.; Bidigare, R. R.; Boucher, N. P.; Coley, T.; Karentz, D.; Macintyre, S.; Matlick, H. A.; Menzies, D.

    1992-01-01

    The near-50-percent thinning of the stratospheric ozone layer over the Antarctic, with increased passage of mid-UV radiation to the surface of the Southern Ocean, has prompted concern over possible radiation damage to the near-surface phytoplankton communities that are the bases of Antarctic marine ecosystems. As the ozone layer thinned, a 6-week study of the marginal ice zone of the Bellingshousen Sea in the austral spring of 1990 noted sea-surface and depth-dependent ratios of mid-UV irradiance to total irradiance increased, and mid-UV inhibition of photosynthesis increased. A 6-12 percent reduction in primary production associated with ozone depletion was estimated to have occurred over the course of the present study.

  4. Ozone depletion caused by NO and H2O emissions from hydrazine-fueled rockets

    NASA Astrophysics Data System (ADS)

    Ross, M. N.; Danilin, M. Y.; Weisenstein, D. K.; Ko, M. K. W.

    2004-11-01

    Rockets using unsymmetrical dimethyl hydrazine (N(CH3)2NH2) and dinitrogen tetroxide (N2O4) propellants account for about one third of all stratospheric rocket engine emissions, comparable to the solid-fueled rocket emissions. We use plume and global atmosphere models to provide the first estimate of the local and global ozone depletion caused by NO and H2O emissions from the Proton rocket, the largest hydrazine-fueled launcher in use. NO and H2O emission indices are assumed to be 20 and 350 g/kg (propellant), respectively. Predicted maximum ozone loss in the plume of the Proton rocket is 21% at 44 km altitude. Plume ozone loss at 20 km equals 8% just after launch and steadily declines to 2% by model sunset. Predicted steady state global ozone loss from ten Proton launches annually is 1.2 × 10-4%, with nearly all of the loss due to the NO component of the emission. Normalized by stratospheric propellant consumption, the global ozone depletion efficiency of the Proton is approximately 66-90 times less than that of solid-fueled rockets. In situ Proton plume measurements are required to validate assumed emission indices and to assess the role of rocket emissions not considered in these calculations. Such future studies would help to establish a formalism to evaluate the relative ozone depletion caused by different rocket engines using different propellants.

  5. A search of UARS data for ozone depletions caused by the highly relativistic electron precipitation events of May 1992

    NASA Astrophysics Data System (ADS)

    Pesnell, W. Dean; Goldberg, Richard A.; Jackman, Charles H.; Chenette, D. L.; Gaines, E. E.

    1999-01-01

    Highly relativistic electron precipitation (HRE) events containing significant fluxes of electrons with E>1MeV have been predicted by models to deplete mesospheric ozone. For the electron fluxes measured during the great HRE of May 1992, depletions were predicted to occur between altitudes of 55 and 80 km, where HOx reactions cause a local minimum in the ozone number density and mixing ratio. Measurements of the precipitating electron fluxes by the particle environment monitor (PEM) tend to underestimate their intensity; thus the predictions of ozone depletion should be considered an estimate of a lower limit. Since the horizontal distribution of the electron precipitation follows the terrestrial magnetic field, it would show a distinct boundary equatorward of the L=3 magnetic shell and be readily distinguished from material that was not affected by the HRE precipitation. To search for possible ozone depletion effects, we have analyzed data from the cryogenic limb array etalon spectrometer and microwave limb sounder instruments on UARS for the above HRE. A simplified diurnal model is proposed to understand the ozone data from UARS, also illustrating the limitations of the UARS instruments for seeing the ozone depletions caused by the HRE events. This diurnal analysis limits the relative ozone depletion at around 60 km altitude to values of <10% during the very intense May 1992 event, consistent with our prediction using an improved Goddard Space Flight Center two-dimensional model.

  6. Children's Use of Metaphors in Relation To Their Mental Models: The Case of the Ozone Layer and Its Depletion.

    ERIC Educational Resources Information Center

    Christidou, Vasilia; Koulaidis, Vasilis; Christidis, Theodor

    1997-01-01

    Examines the relationship between children's use of metaphors and their mental models concerning the ozone layer and ozone layer depletion. Results indicate that the way children represent the role and depletion of ozone is strongly correlated with the types of metaphors they use while constructing and/or articulating their models. Also discusses…

  7. ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: PROGRESS REPORT 2003

    EPA Science Inventory

    The measures needed for the protection of the Earth's ozone layer are decided regularly by the Parties to the Montreal Protocol. A section of this progress report focuses on the interactive effects of climate change and ozone depletion on biogeochemical cycles.

  8. The Effect of Climate Change on Ozone Depletion through Changes in Stratospheric Water Vapour

    NASA Technical Reports Server (NTRS)

    Kirk-Davidoff, Daniel B.; Hintsa, Eric J.; Anderson, James G.; Keith, David W.

    1999-01-01

    Several studies have predicted substantial increases in Arctic ozone depletion due to the stratospheric cooling induced by increasing atmospheric CO2 concentrations. But climate change may additionally influence Arctic ozone depletion through changes in the water vapor cycle. Here we investigate this possibility by combining predictions of tropical tropopause temperatures from a general circulation model with results from a one-dimensional radiative convective model, recent progress in understanding the stratospheric water vapor budget, modelling of heterogeneous reaction rates and the results of a general circulation model on the radiative effect of increased water vapor. Whereas most of the stratosphere will cool as greenhouse-gas concentrations increase, the tropical tropopause may become warmer, resulting in an increase of the mean saturation mixing ratio of water vapor and hence an increased transport of water vapor from the troposphere to the stratosphere. Stratospheric water vapor concentration in the polar regions determines both the critical temperature below which heterogeneous reactions on cold aerosols become important (the mechanism driving enhanced ozone depletion) and the temperature of the Arctic vortex itself. Our results indicate that ozone loss in the later winter and spring Arctic vortex depends critically on water vapor variations which are forced by sea surface temperature changes in the tropics. This potentially important effect has not been taken into account in previous scenarios of Arctic ozone loss under climate change conditions.

  9. GLOBAL CHANGE RESEARCH NEWS #7: ENVIRONMENTAL EFFECTS OF OZONE DEPLETION

    EPA Science Inventory

    This edition focuses on a recent UNEP report entitled, "Environmental Effects of Ozone Depletion: 1998 Assessment." Dr. Richard Zepp (ORD/NERL) is one of the Lead Authors of this report. The 1998 assessment focuses on new information produced since 1994. It also includes earlie...

  10. Human Health Effects of Ozone Depletion From Stratospheric Aircraft

    NASA Technical Reports Server (NTRS)

    Wey, Chowen (Technical Monitor)

    2001-01-01

    This report presents EPA's initial response to NASA's request to advise on potential environmental policy issues associated with the future development of supersonic flight technologies. Consistent with the scope of the study to which NASA and EPA agreed, EPA has evaluated only the environmental concerns related to the stratospheric ozone impacts of a hypothetical HSCT fleet, although recent research indicates that a fleet of HSCT is predicted to contribute to climate warming as well. This report also briefly describes the international and domestic institutional frameworks established to address stratospheric ozone depletion, as well as those established to control pollution from aircraft engine exhaust emissions.

  11. Children's and Adults' Knowledge and Models of Reasoning about the Ozone Layer and Its Depletion.

    ERIC Educational Resources Information Center

    Leighton, Jacqueline P.; Bisanz, Gay L.

    2003-01-01

    Examines children's and adults' knowledge of the ozone layer and its depletion, whether this knowledge increases with age, and how the ozone layer and ozone hole might be structured as scientific concepts. Uses a standardized set of questions to interview children and adults in Canada. Discusses implications of the results for health…

  12. A new approach to Ozone Depletion Potential (ODP) estimation

    NASA Astrophysics Data System (ADS)

    Portmann, R. W.; Daniel, J. S.; Yu, P.

    2017-12-01

    The Ozone Depletion Potential (ODP) is given by the time integrated global ozone loss of an ozone depleting substance (ODS) relative to a reference ODS (usually CFC-11). The ODP is used by the Montreal Protocol (and subsequent amendments) to inform policy decisions on the production of ODSs. Since the early 1990s, ODPs have usually been estimated using an approximate formulism that utilizes the lifetime and the fractional release factor of the ODS. This has the advantage that it can utilize measured concentrations of the ODSs to estimate their fractional release factors. However, there is a strong correlation between stratospheric lifetimes and fractional release factors of ODSs and that this can introduce uncertainties into ODP calculations when the terms are estimated independently. Instead, we show that the ODP is proportional to the average global ozone loss per equivalent chlorine molecule released in the stratosphere by the ODS loss process (which we call the Γ factor) and, importantly, this ratio varies only over a relatively small range ( 0.3-1.5) for ODPs with stratospheric lifetimes of 20 to more than 1,000 years. The Γ factor varies smoothly with stratospheric lifetime for ODSs with loss processes dominated by photolysis and is larger for long-lived species, while stratospheric OH loss processes produce relatively small Γs that are nearly independent of stratospheric lifetime. The fractional release approach does not accurately capture these relationships. We propose a new formulation that takes advantage of this smooth variation by parameterizing the Γ factor using ozone changes computed using the chemical climate model CESM-WACCM and the NOCAR two-dimensional model. We show that while the absolute Γ's vary between WACCM and NOCAR models, much of the difference is removed for the Γ/ΓCFC-11 ratio that is used in the ODP formula. This parameterized method simplifies the computation of ODPs while providing enhanced accuracy compared to the

  13. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    NASA Astrophysics Data System (ADS)

    Li, F.; Newman, P. A.; Pawson, S.; Perlwitz, J.

    2017-12-01

    The strength of the stratospheric Brewer-Dobson circulation (BDC) in a changing climate has been extensively studied, but the relative importance of greenhouse gas (GHG) increases and stratospheric ozone depletion in driving the BDC changes remains uncertain. This study separates the impacts of GHG and stratospheric ozone forcings on stratospheric mean age of air in the 1960-2010 period using the Goddard Earth Observing System Model (GEOS) Chemistry-Climate Model (CCM). The experiment compares a set of controlled simulations using a coupled atmosphere-ocean version of the GEOS CCM, in which either GHGs, or stratospheric ozone, or both factors evolve over time. The model results show that GHGs and stratospheric ozone have about equal contributions to the simulated mean age decrease. It is also found that GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: 1) a seasonal delay in the Antarctic polar vortex breakup, that inhibits young mid-latitude air from mixing with the older air inside the vortex; and 2) enhanced Antarctic downwelling, that brings older air from middle and upper stratosphere into the lower stratosphere.

  14. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2008.

    PubMed

    Andrady, Anthony; Aucamp, Pieter J; Bais, Alkiviadis; Ballaré, Carlos L; Björn, Lars Olof; Bornman, Janet F; Caldwell, Martyn; Cullen, Anthony P; Erickson, David J; de Gruijl, Frank R; Häder, Donat-P; Ilyas, Mohammad; Kulandaivelu, G; Kumar, H D; Longstreth, Janice; McKenzie, Richard L; Norval, Mary; Paul, Nigel; Redhwi, Halim Hamid; Smith, Raymond C; Solomon, Keith R; Sulzberger, Barbara; Takizawa, Yukio; Tang, Xiaoyan; Teramura, Alan H; Torikai, Ayako; van der Leun, Jan C; Wilson, Stephen R; Worrest, Robert C; Zepp, Richard G

    2009-01-01

    After the enthusiastic celebration of the 20th Anniversary of the Montreal Protocol on Substances that Deplete the Ozone Layer in 2007, the work for the protection of the ozone layer continues. The Environmental Effects Assessment Panel is one of the three expert panels within the Montreal Protocol. This EEAP deals with the increase of the UV irradiance on the Earth's surface and its effects on human health, animals, plants, biogeochemistry, air quality and materials. For the past few years, interactions of ozone depletion with climate change have also been considered. It has become clear that the environmental problems will be long-lasting. In spite of the fact that the worldwide production of ozone depleting chemicals has already been reduced by 95%, the environmental disturbances are expected to persist for about the next half a century, even if the protective work is actively continued, and completed. The latest full report was published in Photochem. Photobiol. Sci., 2007, 6, 201-332, and the last progress report in Photochem. Photobiol. Sci., 2008, 7, 15-27. The next full report on environmental effects is scheduled for the year 2010. The present progress report 2008 is one of the short interim reports, appearing annually.

  15. Unequivocal detection of ozone recovery in the Antarctic Ozone Hole through significant increases in atmospheric layers with minimum ozone

    NASA Astrophysics Data System (ADS)

    de Laat, Jos; van Weele, Michiel; van der A, Ronald

    2015-04-01

    An important new landmark in present day ozone research is presented through MLS satellite observations of significant ozone increases during the ozone hole season that are attributed unequivocally to declining ozone depleting substances. For many decades the Antarctic ozone hole has been the prime example of both the detrimental effects of human activities on our environment as well as how to construct effective and successful environmental policies. Nowadays atmospheric concentrations of ozone depleting substances are on the decline and first signs of recovery of stratospheric ozone and ozone in the Antarctic ozone hole have been observed. The claimed detection of significant recovery, however, is still subject of debate. In this talk we will discuss first current uncertainties in the assessment of ozone recovery in the Antarctic ozone hole by using multi-variate regression methods, and, secondly present an alternative approach to identify ozone hole recovery unequivocally. Even though multi-variate regression methods help to reduce uncertainties in estimates of ozone recovery, great care has to be taken in their application due to the existence of uncertainties and degrees of freedom in the choice of independent variables. We show that taking all uncertainties into account in the regressions the formal recovery of ozone in the Antarctic ozone hole cannot be established yet, though is likely before the end of the decade (before 2020). Rather than focusing on time and area averages of total ozone columns or ozone profiles, we argue that the time evolution of the probability distribution of vertically resolved ozone in the Antarctic ozone hole contains a better fingerprint for the detection of ozone recovery in the Antarctic ozone hole. The advantages of this method over more tradition methods of trend analyses based on spatio-temporal average ozone are discussed. The 10-year record of MLS satellite measurements of ozone in the Antarctic ozone hole shows a

  16. Terrestrial ozone depletion due to a Milky Way gamma-ray burst

    NASA Astrophysics Data System (ADS)

    Thomas, Brian C.

    Gamma-Ray Bursts (GRBs) are short, incredibly powerful astrophysical events which produce a flux of radiation detectable across the observable universe. A GRB within our own galaxy could cause major damage to the Earth's biosphere. Rate estimates suggest that at least one GRB has occurred within a dangerous range (about 2 kpc) in the last billion years. The gamma radiation from such a burst would quickly deplete much of the Earth's protective ozone layer, allowing an increase in solar UVB radiation reaching the surface. This radiation is harmful to life, causing sunburn and damaging DNA. In addition, NO 2 produced in the atmosphere would cause a decrease in visible sunlight reaching the surface and could cause global cooling. Nitric acid rain could stress portions of the biosphere, but the increased nitrate deposition could be helpful to land plants. We have used a two-dimensional atmospheric model to investigate the effects on the Earth's atmosphere of a GRB. We have simulated bursts delivering a range of fluences, at various latitudes, at the equinoxes and solstices, and at different times of day. We have computed DNA damage caused by increased solar UVB radiation, reduction in solar visible light due to NO 2 opacity; and deposition of nitrates through rainout of HNO 3 . For a "typical" burst in the last billion years, we find globally averaged ozone depletion up to 38%. Localized depletion reaches as much as 74%. Significant global depletion (at least 10%) persists up to about 7 years after the burst. Our results depend strongly on time of year and latitude over which the burst occurs. We find DNA damage of up to 16 times the normal annual global average, with greatest damage occurring at low to mid latitudes. We find reductions in visible sunlight of a few percent, primarily in the polar regions. Nitrate deposition similar to or slightly greater than that currently caused by lightning is also observed. We find support in our results for the hypothesis that the

  17. The influence of climate change and the timing of stratospheric warmings on Arctic ozone depletion

    NASA Astrophysics Data System (ADS)

    Austin, John; Butchart, Neal

    1994-01-01

    Satellite data are presented showing the timing of sudden warmings in the lower stratosphere during the winters 1979-1992. A three-dimensional dynamical-radiative-photochemical model is used to establish how Arctic ozone depletion will respond to a doubling of CO2 according to the timing of the warmings. In a series of idealized experiments the timing of the warmings is varied by specifying different geopotential wave amplitudes at the 316-mbar model lower boundary. Results from a "transient climate change experiment" show that the chosen wave amplitudes are appropriate for both the current and the doubled CO2 atmosphere. For doubled CO2 the experiments show that any significant risk of an Arctic ozone hole will be confined to those years with only a late stratospheric warming. In all other years the results suggest that springtime total ozone over the Arctic is more likely to increase by a small amount due to a combination of slower homogeneous chemistry and changes in transport. The predictions obtained from the idealized studies are then tested by prescribing at the model lower boundary the observed geopotential wave amplitudes from two specific years with late winter warmings. Doubling CO2 amounts produced no significant increase in ozone depletion with the 1989 wave amplitudes, but with 1990 wave amplitudes, an Arctic ozone hole occurred with minimum column of 187 Dobson Units. This contrasting response is attributed to the large midwinter pulse in the 1989 wave amplitudes compared to the less dramatic and shorter timescale fluctuations in the 1990 wave amplitudes. It is concluded that under doubled CO2 conditions an Arctic ozone hole is likely to occur in years with late stratospheric warmings following winters in which there were no significant pulses in the upper tropospheric planetary wave amplitudes.

  18. Persistent polar depletion of stratospheric ozone and emergent mechanisms of ultraviolet radiation-mediated health dysregulation.

    PubMed

    Dugo, Mark A; Han, Fengxiang; Tchounwou, Paul B

    2012-01-01

    Year 2011 noted the first definable ozone "hole" in the Arctic region, serving as an indicator to the continued threat of dangerous ultraviolet radiation (UVR) exposure caused by the deterioration of stratospheric ozone in the northern hemisphere. Despite mandates of the Montreal Protocol to phase out the production of ozone-depleting chemicals (ODCs), the relative stability of ODCs validates popular notions of persistent stratospheric ozone for several decades. Moreover, increased UVR exposure through stratospheric ozone depletion is occurring within a larger context of physiologic stress and climate change across the biosphere. In this review, we provide commentaries on stratospheric ozone depletion with relative comparisons between the well-known Antarctic ozone hole and the newly defined ozone hole in the Arctic. Compared with the Antarctic region, the increased UVR exposure in the Northern Hemisphere poses a threat to denser human populations across North America, Europe, and Asia. In this context, we discuss emerging targets of UVR exposure that can potentially offset normal biologic rhythms in terms of taxonomically conserved photoperiod-dependent seasonal signaling and entrainment of circadian clocks. Consequences of seasonal shifts during critical life history stages can alter fitness and condition, whereas circadian disruption is increasingly becoming associated as a causal link to increased carcinogenesis. We further review the significance of genomic alterations via UVR-induced modulations of phase I and II transcription factors located in skin cells, the aryl hydrocarbon receptor (AhR), and the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2), with emphasis on mechanism that can lead to metabolic shifts and cancer. Although concern for adverse health consequences due to increased UVR exposure are longstanding, recent advances in biochemical research suggest that AhR and Nrf2 transcriptional regulators are likely targets for UVR

  19. Persistent Polar Depletion of Stratospheric Ozone and Emergent Mechanisms of Ultraviolet Radiation-Mediated Health Dysregulation

    PubMed Central

    Dugo, Mark A.; Han, Fengxiang

    2013-01-01

    Year 2011 noted the first definable ozone “hole” in the Arctic region, serving as an indicator to the continued threat of dangerous ultraviolet radiation (UVR) exposure caused by the deterioration of stratospheric ozone in the northern hemisphere. Despite mandates of the Montreal Protocol to phase out the production of ozone depleting chemicals (ODCs), the relative stability of ODCs validates popular notions of persistent stratospheric ozone for several decades. Moreover, increased UVR exposure through stratospheric ozone depletion is occurring within a larger context of physiological stress and climate change across the biosphere. In this review, we provide commentaries on stratospheric ozone depletion with relative comparisons between the well-known Antarctic ozone hole and the newly defined ozone hole in the Arctic. Compared to the Antarctic region, increased UVR exposure in the Northern Hemisphere poses a threat to denser human populations across North America, Europe and Asia. In this context, we discuss emerging targets of UVR exposure that can potentially offset normal biological rhythms in terms of taxonomically conserved photoperiod dependent seasonal signaling and entrainment of circadian clocks. Consequences of seasonal shifts during critical life history stages can alter the fitness and condition, while circadian disruption is increasingly becoming associated as a causal link to increased carcinogenesis. We further review the significance of genomic alterations via UVR induced modulations of phase I and phase II transcription factors, the aryl hydrocarbon receptor (AhR) and the Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), with emphasis on mechanism that can lead to metabolic shifts and cancer. While concern for adverse health consequences due to increased UVR exposure are longstanding, recent advances in biochemical research suggest that AhR and Nrf2 transcriptional regulators are likely targets for UVR mediated dysregulations of rhymicity

  20. Response of Antarctic sea surface temperature and sea ice to ozone depletion

    NASA Astrophysics Data System (ADS)

    Ferreira, D.; Gnanadesikan, A.; Kostov, Y.; Marshall, J.; Seviour, W.; Waugh, D.

    2017-12-01

    The influence of the Antarctic ozone hole extends all the way from the stratosphere through the troposphere down to the surface, with clear signatures on surface winds, and SST during summer. In this talk we discuss the impact of these changes on the ocean circulation and sea ice state. We are notably motivated by the observed cooling of the surface Southern Ocean and associated increase in Antarctic sea ice extent since the 1970s. These trends are not reproduced by CMIP5 climate models, and the underlying mechanism at work in nature and the models remain unexplained. Did the ozone hole contribute to the observed trends?Here, we review recent advances toward answering these issues using "abrupt ozone depletion" experiments. The ocean and sea ice response is rather complex, comprising two timescales: a fast ( 1-2y) cooling of the surface ocean and sea ice cover increase, followed by a slower warming trend, which, depending on models, flip the sign of the SST and sea ice responses on decadal timescale. Although the basic mechanism seems robust, comparison across climate models reveal large uncertainties in the timescales and amplitude of the response to the extent that even the sign of the ocean and sea ice response to ozone hole and recovery remains unconstrained. After briefly describing the dynamics and thermodynamics behind the two-timescale response, we will discuss the main sources of uncertainties in the modeled response, namely cloud effects and air-sea heat exchanges, surface wind stress response and ocean eddy transports. Finally, we will consider the implications of our results on the ability of coupled climate models to reproduce observed Southern Ocean changes.

  1. Evidence for midwinter chemical ozone destruction over Antartica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voemel, H.; Hoffmann, D.J.; Oltmans, S.J.

    1995-09-01

    Two ozone profiles on June 15 and June 19, obtained over McMurdo, Antartica, showed a strong depletion in stratospheric ozone, and a simultaneous profile of water vapor on June 19 showed the first clear signs of dehydration. The observation of Polar Stratospheric Clouds (PSCs) beginning with the first sounding showing ozone depletion, the indication of rehydration layers, which could be a sign for recent dehydration, and trajectory calculations indicate that the observed low ozone was not the result of transport from lower latitudes. during this time the vortex was strongly distorted, transporting PSC processed air well into sunlit latitudes wheremore » photochemical ozone destruction may have occurred. The correlation of ozone depletion and dehydration indicates that water ice PSCs provided the dominant surface for chlorine activation. An analysis of the time when the observed air masses could have formed type II PSCs for the first time limits the time scale for the observed ozone destruction to about 4 days.« less

  2. TOPICAL REVIEW: Climate change, ozone depletion and the impact on ultraviolet exposure of human skin

    NASA Astrophysics Data System (ADS)

    Diffey, Brian

    2004-01-01

    For 30 years there has been concern that anthropogenic damage to the Earth's stratospheric ozone layer will lead to an increase of solar ultraviolet (UV) radiation reaching the Earth's surface, with a consequent adverse impact on human health, especially to the skin. More recently, there has been an increased awareness of the interactions between ozone depletion and climate change (global warming), which could also impact on human exposure to terrestrial UV. The most serious effect of changing UV exposure of human skin is the potential rise in incidence of skin cancers. Risk estimates of this disease associated with ozone depletion suggest that an additional peak incidence of 5000 cases of skin cancer per year in the UK would occur around the mid-part of this century. Climate change, which is predicted to lead to an increased frequency of extreme temperature events and high summer temperatures, will become more frequent in the UK. This could impact on human UV exposure by encouraging people to spend more time in the sun. Whilst future social trends remain uncertain, it is likely that over this century behaviour associated with climate change, rather than ozone depletion, will be the largest determinant of sun exposure, and consequent impact on skin cancer, of the UK population.

  3. INTERACTIVE EFFECTS OF OZONE DEPLETION AND CLIMATE CHANGE ON BIOGEOCHEMICAL CYCLES

    EPA Science Inventory

    The effects of ozone depletion on global biogeochemical cycles, via increased UV-B radiation at the Earth's surface, have continued to be documented over the past 4 years. In this report we also document various effects of UV-B that interact with global climate change because the...

  4. Ozone treatment and the depletion of detectable pharmaceuticals and atrazine herbicide in drinking water sourced from the upper Detroit River, Ontario, Canada.

    PubMed

    Hua, Wenyi; Bennett, Erin R; Letcher, Robert J

    2006-07-01

    The depletion and degradation of pharmacologically active compounds (PhACs) and pesticides as a function of ozonation in drinking water treatment processes is not well studied. The A.H. Weeks drinking water treatment plant (DWTP) serves the City of Windsor, Ontario Canada, and incorporates ozone treatment into the production of drinking water. This DWTP also operates a real-time, scaled down pilot plant, which has two parallel streams, conventional and ozone plus conventional treatments. In this study water samples were collected from key points in the two streams of the pilot plant system to determine the depletion and influence of seasonal changes in water processing parameters on eighteen major PhACs (and metabolites) and seven s-triazines herbicides. However, only carbamazepine (antiepileptic), caffeine (stimulant), cotinine (metabolite of nicotine) and atrazine were consistently detectable in the raw water intake (low to sub-ng/L level). Regardless of the seasonality, the flocculation-coagulation and dual media filtration steps without ozone treatment resulted in no decrease in analyte concentrations, while decreases of 66-100% (undetectable, method detection limits 0.05-1 ng/L) of the analyte concentrations were observed when ozone treatment was part of the water processing. These findings demonstrate that ozone treatment is highly effective in depleting carbamazepine, caffeine, cotinine, and atrazine, and thus is highly influential in the fate of these compounds in drinking water treatment regardless of the seasonal time frame. Currently very few Canadian DWTPs incorporate ozonation into conventional treatment, which suggests that human exposure to these compounds via drinking water consumption may be an issue in affected communities.

  5. Toward Describing the Effects of Ozone Depletion on Marine Primary Productivity and Carbon Cycling

    NASA Technical Reports Server (NTRS)

    Cullen, John J.

    1995-01-01

    This project was aimed at improved predictions of the effects of UVB and ozone depletion on marine primary productivity and carbon flux. A principal objective was to incorporate a new analytical description of photosynthesis as a function of UV and photosynthetically available radiation (Cullen et. al., Science 258:646) into a general oceanographic model. We made significant progress: new insights into the kinetics of photoinhibition were used in the analysis of experiments on Antarctic phytoplankton to generate a general model of UV-induced photoinhibition under the influence of ozone depletion and vertical mixing. The way has been paved for general models on a global scale.

  6. A Two-Timescale Response of the Southern Ocean to Ozone Depletion: Importance of the Background State

    NASA Astrophysics Data System (ADS)

    Seviour, W.; Waugh, D.; Gnanadesikan, A.

    2016-02-01

    It has been recently suggested that the response of Southern Ocean sea-ice extent to stratospheric ozone depletion is time-dependent; that the ocean surface initially cools due to enhanced northward Ekman drift caused by a poleward shift in the eddy-driven jet, and then warms after some time due to upwelling of warm waters from below the mixed layer. It is therefore possible that ozone depletion could act to favor a short-term increase in sea-ice extent. However, many uncertainties remain in understanding this mechanism, with different models showing widely differing time-scales and magnitudes of the response. Here, we analyze an ensemble of coupled model simulations with a step-function ozone perturbation. The two-timescale response is present with an approximately 30 year initial cooling period. The response is further shown to be highly dependent upon the background ocean temperature and salinity stratification, which is influenced by both natural internal variability and the isopycnal eddy mixing parameterization. It is suggested that the majority of inter-model differences in the Southern Ocean response to ozone depletion are caused by differences in stratification.

  7. Ozone depletion and solar ultraviolet radiation: ocular effects, a United nations environment programme perspective.

    PubMed

    Cullen, Anthony P

    2011-07-01

    To describe he role played by the United Nations Environmental Effects Panel with respect to the ocular effects of stratospheric ozone depletion and present the essence of the Health Chapter of the 2010 Assessment. A consideration of solar ultraviolet radiation (UVR) at the Earth's surface as it is affected by atmospheric changes and how these influence sunlight-related eye diseases. A review of the current Assessment with emphasis on pterygium, cataract, ocular melanoma, and age-related macular degeneration. Although the ozone layer is projected to recover slowly in the coming decades, continuing vigilance is required regarding exposure to the sun. Evidence implicating solar UVR, especially UVB, in every tissue of the eye continues to be amassed. The need for ocular UV protection existed before the discovery of the depletion of the ozone layer and will continue even when the layer fully recovers in approximately 2100.

  8. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Phaseout Schedule for Production of Ozone-Depleting Substances H Appendix H to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. H Appendix H to Subpart A of Part 82—Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances...

  9. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Phaseout Schedule for Production of Ozone-Depleting Substances H Appendix H to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. H Appendix H to Subpart A of Part 82—Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances...

  10. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Phaseout Schedule for Production of Ozone-Depleting Substances H Appendix H to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. H Appendix H to Subpart A of Part 82—Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances...

  11. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Phaseout Schedule for Production of Ozone-Depleting Substances H Appendix H to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. H Appendix H to Subpart A of Part 82—Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances...

  12. Nitrous Oxide: A Greenhouse Gas That is Also an Ozone Layer Depleting Gas

    NASA Astrophysics Data System (ADS)

    Reed, S.; Uriarte, M.; Wood, T. E.; Cavaleri, M. A.; Lugo, A. E.

    2014-12-01

    Nitrous oxide, N2O, is the major source of nitrogen oxides in the stratosphere, where these oxides playa critical roles in ozone layer depletion by itself and moderating ozone layer depletion by chlorinated chemicals. Thus N2O plays a complex role in the stratosphere. Nitrous oxide is also a greenhouse gas and it contributes to the radiative forcing of climate. Indeed, it is considered the third most important greenhouse gas next to carbon dioxide and methane. This dual role of nitrous oxide makes it an interesting gas for the atmosphere- it bridges the issue of ozone layer depletion and climate change. Nitrous oxide has both natural and anthropogenic sources. Therefore, one needs to consider this important distinction between natural and anthropogenic sources as well as its role in two related but separate environmental issues. Further, the sources of nitrous oxide are varied and diffuse, which makes it difficult to quantify different sources. However, it is clear that a majority of anthropogenic nitrous oxide comes from food production (including agricultural and animal growth practices), an activity that is at the heart of human existence. Thus, limiting N2O emissions is not a simple task! I will briefly summarize our understanding of these roles of nitrous oxide in the earth's atmosphere and touch on the possible ways to limit N2O emissions.

  13. Nitrous Oxide: A Greenhouse Gas That is Also an Ozone Layer Depleting Gas

    NASA Astrophysics Data System (ADS)

    Ravishankara, A. R.

    2015-12-01

    Nitrous oxide, N2O, is the major source of nitrogen oxides in the stratosphere, where these oxides playa critical roles in ozone layer depletion by itself and moderating ozone layer depletion by chlorinated chemicals. Thus N2O plays a complex role in the stratosphere. Nitrous oxide is also a greenhouse gas and it contributes to the radiative forcing of climate. Indeed, it is considered the third most important greenhouse gas next to carbon dioxide and methane. This dual role of nitrous oxide makes it an interesting gas for the atmosphere- it bridges the issue of ozone layer depletion and climate change. Nitrous oxide has both natural and anthropogenic sources. Therefore, one needs to consider this important distinction between natural and anthropogenic sources as well as its role in two related but separate environmental issues. Further, the sources of nitrous oxide are varied and diffuse, which makes it difficult to quantify different sources. However, it is clear that a majority of anthropogenic nitrous oxide comes from food production (including agricultural and animal growth practices), an activity that is at the heart of human existence. Thus, limiting N2O emissions is not a simple task! I will briefly summarize our understanding of these roles of nitrous oxide in the earth's atmosphere and touch on the possible ways to limit N2O emissions.

  14. Model predictions of latitude-dependent ozone depletion due to aerospace vehicle operations

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.; Whitten, R. C.; Watson, V. R.; Riegel, C. A.; Maples, A. L.; Capone, L. A.

    1976-01-01

    Results are presented from a two-dimensional model of the stratosphere that simulates the seasonal movement of ozone by both wind and eddy transport, and contains all the chemistry known to be important. The calculated reductions in ozone due to NO2 injection from a fleet of supersonic transports are compared with the zonally averaged results of a three-dimensional model for a similar episode of injection. The agreement is good in the northern hemisphere, but is not as good in the southern hemisphere. Both sets of calculations show a strong corridor effect in that the predicted ozone depletions are largest to the north of the flight corridor for aircraft operating in the northern hemisphere.

  15. Solar ultraviolet radiation and ozone depletion-driven climate change: effects on terrestrial ecosystems.

    PubMed

    Bornman, J F; Barnes, P W; Robinson, S A; Ballaré, C L; Flint, S D; Caldwell, M M

    2015-01-01

    In this assessment we summarise advances in our knowledge of how UV-B radiation (280-315 nm), together with other climate change factors, influence terrestrial organisms and ecosystems. We identify key uncertainties and knowledge gaps that limit our ability to fully evaluate the interactive effects of ozone depletion and climate change on these systems. We also evaluate the biological consequences of the way in which stratospheric ozone depletion has contributed to climate change in the Southern Hemisphere. Since the last assessment, several new findings or insights have emerged or been strengthened. These include: (1) the increasing recognition that UV-B radiation has specific regulatory roles in plant growth and development that in turn can have beneficial consequences for plant productivity via effects on plant hardiness, enhanced plant resistance to herbivores and pathogens, and improved quality of agricultural products with subsequent implications for food security; (2) UV-B radiation together with UV-A (315-400 nm) and visible (400-700 nm) radiation are significant drivers of decomposition of plant litter in globally important arid and semi-arid ecosystems, such as grasslands and deserts. This occurs through the process of photodegradation, which has implications for nutrient cycling and carbon storage, although considerable uncertainty exists in quantifying its regional and global biogeochemical significance; (3) UV radiation can contribute to climate change via its stimulation of volatile organic compounds from plants, plant litter and soils, although the magnitude, rates and spatial patterns of these emissions remain highly uncertain at present. UV-induced release of carbon from plant litter and soils may also contribute to global warming; and (4) depletion of ozone in the Southern Hemisphere modifies climate directly via effects on seasonal weather patterns (precipitation and wind) and these in turn have been linked to changes in the growth of plants

  16. Are chlorine-free compounds a solution for health problems caused by ozone-depleting substances?

    PubMed

    Valić, F; Beritić-Stahuljak, D

    1996-01-01

    In January 1996, the Government of Croatia and United Nations Environment Programme (UNEP) signed an agreement on the phasing out of ozone-depleting substances in Croatia, making the problem of identifying adequate substitutes a high priority. In this paper, the main ecologic characteristics of chlorine-containing fully halogenated chlorofluorocarbons (CFCs) and partially halogenated chlorofluorocarbons (HCFCs) compared with chlorine-free hydrofluorocarbons (HFCs) are presented. The data showed HCFCs to be ecologically more acceptable than CFCs, particularly regarding the ozone-depleting potential (ODP), and have therefore been proposed as substitutes for CFCs. However, although having lower ODP, long-term they could still harm the stratospheric ozone layer, and are therefore hardly acceptable. HFCs are promising substitutes which, having no chlorine, have no ODP. Six were toxicologically evaluated; three of them were found flammable. Toxicological characteristics of three nonflammable compounds (HFC 125, HFC 134a and HFC 227ea) are presented. Their toxicity, not yet completely evaluated, appears to be low.

  17. Radiative forcing perturbation due to observed increases in tropospheric ozone at Hohenpeissenberg

    NASA Technical Reports Server (NTRS)

    Wang, Wei-Chyung; Bojkov, Rumen D.; Zhuang, Yi-Cheng

    1994-01-01

    The effect on surface temperature due to changes in atmospheric O3 depends highly on the latitude where the change occurs. Previous sensitivity calculations indicate that ozone changes in the upper troposphere and lower stratosphere are more effective in causing surface temperature change (Wang et al., 1980). Long term ground-based observations show that tropospheric ozone, especially at the tropopause region, has been increasing at middle and high latitudes in the Northern Hemisphere (NATO, 1988; Quadrennial Ozone Symposium, 1992). These increases will enhance the greenhouse effect and increase the radiative forcing to the troposphere-surface system, which is opposite to the negative radiative forcing calculated from the observed stratospheric ozone depletion recently reported in WMO (1992). We used more than two thousands regularly measured ozonesondes providing reliable vertical O3 distribution at Hohenpeissenberg (47N; 11E) for the 1967-1990 to study the instantaneous solar and longwave radiative forcing the two decades 1971-1990 and compare the forcing with those caused by increasing CO2, CH4, N2O, and CFCs. Calculations are also made to compare the O3 radiative forcing between stratospheric depletion and tropospheric increase. Results indicate that the O3 changes will induce a positive radiative forcing dominated by tropospheric O3 increase and the magnitude of the forcing is comparable to that due to CO2 increases during the two decades. The significant implications of the tropospheric O3 increase to the global climate are discussed.

  18. 2009 Antarctic Ozone Hole

    NASA Image and Video Library

    2009-09-16

    The annual ozone hole has started developing over the South Pole, and it appears that it will be comparable to ozone depletions over the past decade. This composite image from September 10 depicts ozone concentrations in Dobson units, with purple and blues depicting severe deficits of ozone. "We have observed the ozone hole again in 2009, and it appears to be pretty average so far," said ozone researcher Paul Newman of NASA's Goddard Space Flight Center in Greenbelt, Md. "However, we won't know for another four weeks how this year's ozone hole will fully develop." Scientists are tracking the size and depth of the ozone hole with observations from the Ozone Monitoring Instrument on NASA's Aura spacecraft, the Global Ozone Monitoring Experiment on the European Space Agency's ERS-2 spacecraft, and the Solar Backscatter Ultraviolet instrument on the National Oceanic and Atmospheric Administration's NOAA-16 satellite. The depth and area of the ozone hole are governed by the amount of chlorine and bromine in the Antarctic stratosphere. Over the southern winter, polar stratospheric clouds (PSCs) form in the extreme cold of the atmosphere, and chlorine gases react on the cloud particles to release chlorine into a form that can easily destroy ozone. When the sun rises in August after months of seasonal polar darkness, the sunlight heats the clouds and catalyzes the chemical reactions that deplete the ozone layer. The ozone hole begins to grow in August and reaches its largest area in late September to early October. Recent observations and several studies have shown that the size of the annual ozone hole has stabilized and the level of ozone-depleting substances has decreased by 4 percent since 2001. But since chlorine and bromine compounds have long lifetimes in the atmosphere, a recovery of atmospheric ozone is not likely to be noticeable until 2020 or later. Visit NASA's Ozone Watch page for current imagery and data: ozonewatch.gsfc.nasa.gov/index.html

  19. Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models

    NASA Astrophysics Data System (ADS)

    Son, Seok-Woo; Han, Bo-Reum; Garfinkel, Chaim I.; Kim, Seo-Yeon; Park, Rokjin; Abraham, N. Luke; Akiyoshi, Hideharu; Archibald, Alexander T.; Butchart, N.; Chipperfield, Martyn P.; Dameris, Martin; Deushi, Makoto; Dhomse, Sandip S.; Hardiman, Steven C.; Jöckel, Patrick; Kinnison, Douglas; Michou, Martine; Morgenstern, Olaf; O’Connor, Fiona M.; Oman, Luke D.; Plummer, David A.; Pozzer, Andrea; Revell, Laura E.; Rozanov, Eugene; Stenke, Andrea; Stone, Kane; Tilmes, Simone; Yamashita, Yousuke; Zeng, Guang

    2018-05-01

    The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling.

  20. Mid-latitude Ozone Depletion Events Caused by Halogens from the Great Salt Lake in Utah

    NASA Astrophysics Data System (ADS)

    Fibiger, D. L.; Goldberger, L.; Womack, C.; McDuffie, E. E.; Dube, W. P.; Franchin, A.; Middlebrook, A. M.; Thornton, J. A.; Brown, S. S.

    2017-12-01

    Halogens are highly reactive chemicals and play an important role in atmospheric chemistry. They can be involved in many cycles which influence the oxidizing capacity of the atmosphere, including through destruction of ozone (O3). While the influence of halogens on O3 is well documented in the arctic, there are very few observations of O3 depletion driven by halogens in the mid-latitudes. To date, the most comprehensive study observed co-occurring plumes of BrO and depleted O3 near the Dead Sea in 1997. During the Utah Wintertime Fine Particulate Study (UWFPS) in winter 2017, simultaneous measurements of a comprehensive suite of halogen measurements by I- chemical ionization mass spectrometry and O3 from cavity ring-down spectroscopy, both at 1-second time resolution, were taken on a NOAA Twin Otter Aircraft over the Great Salt Lake and in the surrounding valleys. Many O3 depletion events were observed over the lake with O3 values sometimes below the instrument detection limit of 0.5 ppbv. Corresponding increases in BrO and/or ClO were observed. Many of these events were caused by extremely high levels of halogens (up to 1 ppmv Cl2) emitted from the U.S. Magnesium plant on the edge of the lake. The O3 depletion caused by U.S. Magnesium was usually isolated to a distinct vertical layer, but in other cases O3 depletion was vertically mixed and the origin of halogen activation was not immediately clear. The most complete O3 depletion was observed over the lake, but there were smaller events of a few ppbv observed in the adjacent valleys, including the highly populated Salt Lake Valley, with corresponding plumes of BrO and ClO, due to transport from the lake. Additionally, meteorology played a role in the observed O3 depletion. The strongest O3 depletion was observed during inversion events, when there is a low boundary layer and little mixing out of the air above the lake. During non-inversion conditions, only small depletions were observed, covering a much smaller

  1. Monitoring of Observation Errors in the Assimilation of Satellite Ozone Data

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Winslow, Nathan; Rood, Richard B.; Pawson, Steven

    2003-01-01

    The stratospheric ozone layer protects life on Earth from the harmful effects of solar ultravioiet radiation. The ozone layer is currently in a fragile state because of depletion caused by man-made chemicals, especially chlorofluorocarbons. The state of the ozone layer is being monitored and evaluated by scientific experts around the world, in order to help policy makers assess the impacts of international protocols that control the production and release of ozone depleting chemicals. Scientists use a variety ozone measurements and models in order to form a comprehensive picture about the current state of the ozone layer, and to predict the future behavior (expected to be a recovery, as the abundance of the depleting chemicals decreases). Among the data sets used, those from satellite-borne instruments have the advantage of providing a wealth of information about the ozone distribution over most of the globe. Several instruments onboard American and international satellites make measurements of the properties of the atmosphere, from which atmospheric ozone amounts are estimated; long-term measurement programs enable monitoring of trends in ozone. However, the characteristics of satellite instruments change in time. For example, the instrument lenses through which measurements are made may deteriorate over time, or the satellite orbit may drift so that measurements over each location are made later and later in the day. These changes may increase the errors in the retrieved ozone amounts, and degrade the quality of estimated ozone amounts and of their variability. Our work focuses on combining the satellite ozone data with global models that capture atmospheric motion and ozone chemistry, using advanced statistical techniques: this is known as data assimilation. Our method provides a three-dimensional global ozone distribution that is consistent with both the satellite measurements and with our understanding of processes (described in the models) that control ozone

  2. The increasing threat to stratospheric ozone from dichloromethane.

    PubMed

    Hossaini, Ryan; Chipperfield, Martyn P; Montzka, Stephen A; Leeson, Amber A; Dhomse, Sandip S; Pyle, John A

    2017-06-27

    It is well established that anthropogenic chlorine-containing chemicals contribute to ozone layer depletion. The successful implementation of the Montreal Protocol has led to reductions in the atmospheric concentration of many ozone-depleting gases, such as chlorofluorocarbons. As a consequence, stratospheric chlorine levels are declining and ozone is projected to return to levels observed pre-1980 later this century. However, recent observations show the atmospheric concentration of dichloromethane-an ozone-depleting gas not controlled by the Montreal Protocol-is increasing rapidly. Using atmospheric model simulations, we show that although currently modest, the impact of dichloromethane on ozone has increased markedly in recent years and if these increases continue into the future, the return of Antarctic ozone to pre-1980 levels could be substantially delayed. Sustained growth in dichloromethane would therefore offset some of the gains achieved by the Montreal Protocol, further delaying recovery of Earth's ozone layer.

  3. The increasing threat to stratospheric ozone from dichloromethane

    NASA Astrophysics Data System (ADS)

    Hossaini, Ryan; Chipperfield, Martyn P.; Montzka, Stephen A.; Leeson, Amber A.; Dhomse, Sandip S.; Pyle, John A.

    2017-06-01

    It is well established that anthropogenic chlorine-containing chemicals contribute to ozone layer depletion. The successful implementation of the Montreal Protocol has led to reductions in the atmospheric concentration of many ozone-depleting gases, such as chlorofluorocarbons. As a consequence, stratospheric chlorine levels are declining and ozone is projected to return to levels observed pre-1980 later this century. However, recent observations show the atmospheric concentration of dichloromethane--an ozone-depleting gas not controlled by the Montreal Protocol--is increasing rapidly. Using atmospheric model simulations, we show that although currently modest, the impact of dichloromethane on ozone has increased markedly in recent years and if these increases continue into the future, the return of Antarctic ozone to pre-1980 levels could be substantially delayed. Sustained growth in dichloromethane would therefore offset some of the gains achieved by the Montreal Protocol, further delaying recovery of Earth's ozone layer.

  4. The search for signs of recovery of the ozone layer.

    PubMed

    Weatherhead, Elizabeth C; Andersen, Signe Bech

    2006-05-04

    Evidence of mid-latitude ozone depletion and proof that the Antarctic ozone hole was caused by humans spurred policy makers from the late 1980s onwards to ratify the Montreal Protocol and subsequent treaties, legislating for reduced production of ozone-depleting substances. The case of anthropogenic ozone loss has often been cited since as a success story of international agreements in the regulation of environmental pollution. Although recent data suggest that total column ozone abundances have at least not decreased over the past eight years for most of the world, it is still uncertain whether this improvement is actually attributable to the observed decline in the amount of ozone-depleting substances in the Earth's atmosphere. The high natural variability in ozone abundances, due in part to the solar cycle as well as changes in transport and temperature, could override the relatively small changes expected from the recent decrease in ozone-depleting substances. Whatever the benefits of the Montreal agreement, recovery of ozone is likely to occur in a different atmospheric environment, with changes expected in atmospheric transport, temperature and important trace gases. It is therefore unlikely that ozone will stabilize at levels observed before 1980, when a decline in ozone concentrations was first observed.

  5. Children's and adults' knowledge and models of reasoning about the ozone layer and its depletion

    NASA Astrophysics Data System (ADS)

    Leighton, Jacqueline P.; Bisanz, Gay L.

    2003-01-01

    As environmental concepts, the ozone layer and ozone hole are important to understand because they can profoundly influence our health. In this paper, we examined: (a) children's and adults' knowledge of the ozone layer and its depletion, and whether this knowledge increases with age' and (b) how the 'ozone layer' and 'ozone hole' might be structured as scientific concepts. We generated a standardized set of questions and used it to interview 24 kindergarten students, 48 Grade 3 students, 24 Grade 5 students, and 24 adults in university, in Canada. An analysis of participants' responses revealed that adults have more knowledge than children about the ozone layer and ozone hole, but both adults and children exhibit little knowledge about protecting themselves from the ozone hole. Moreover, only some participants exhibited 'mental models' in their conceptual understanding of the ozone layer and ozone hole. The implications of these results for health professionals, educators, and scientists are discussed.

  6. Studies on Stratospheric Moistening and Its Effect on Ozone Depletion in Global Perspective

    NASA Astrophysics Data System (ADS)

    Saha, Upal; Maitra, Animesh; Adhikari, Arpita

    2012-07-01

    them with a significant correlation. Atomic and molecular oxygen are produced due to photo-dissociation of the H2O molecule in the stratosphere. The stratospheric hydroxyl free radicals are responsible to deplete stratospheric ozone into oxygen via combination-recombination reaction. A decrease in stratospheric ozone concentration caused by the OH radical is predominant in the lower stratosphere but this process also extends to troposphere. Thus a decrease of ozone concentration is expected in Indian and South Asian Monsoon region, which will indicate an overview of ozone depletion in global perspective due to stratospheric moistening.

  7. Modelling the Impacts of Long-term Changes in Ozone Depleting Substances on Stratospheric Composition

    NASA Astrophysics Data System (ADS)

    Chipperfield, M.; Feng, W.; Dhomse, S.; Hossaini, R.

    2016-12-01

    Long-lived ozone-depleting substances (ODSs), such as chlorofluorocarbons, halons and other gases, are controlled by the Montreal Protocol. Consequently, their atmospheric abundance has started to decline. This has led to a decrease in the overall loading of inorganic chlorine and bromine in the stratosphere and our expectation of recovery of the ozone layer. While observations of atmospheric composition are largely consistent with this picture, there remain some quantitative issues, which are investigated here using multi-decadal simulations of a three-dimensional chemical transport model. For example, atmospheric carbon tetrachloride has been decreasing at a slower rate than expected based on lifetime estimates and known emissions. We use the 3-D model to investigate the impact of uncertainties in the loss process. Also, increases in uncontrolled anthropogenic very short-lived species (VSLS), such as CH2Cl2, may offset some of the decline in chlorine from long-lived species, thereby delaying ozone recovery. We will quantify this impact using the 3-D model. Overall, we will use the model to test the agreement between observed changes in the near-surface abundance of ODSs and changes to stratospheric chlorine and bromine. For example, past studies have noted that variability in stratospheric dynamics (i.e. age of stratospheric air) can complicate the detection of composition trends. Finally, we will use the model to quantify the expected extent of ozone recovery from the combined effect of ODS decreases by late 2016.

  8. A depleted ozone layer absorbs less UV-B, cooling the ozone layer, increasing the amount of UV-B observed to reach Earth, heating air by dissociating tropospheric and ground-level ozone, and heating oceans very efficiently by penetrating tens of meters into the mixed layer. UV-B is 48 times more energetic ("hotter") than IR absorbed by greenhouse gases

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2017-12-01

    This new insight into the physics of radiation shows why changes in stratospheric ozone are observed to cause changes in global temperature. By 1970, manufactured CFC gases and ozone depletion began increasing. By 1993, increases in CFCs stopped as mandated by the Montreal Protocol. By 1995, increases in ozone depletion stopped. By 1998, increases in temperature stopped until 2014. Ozone is also depleted by halogen gases emitted from major basaltic lava flows, the largest of which, since 1783, occurred at Bardarbunga in Iceland in 2014, causing 2015 and 2016 to be the hottest years on record. Throughout Earth history, the largest basaltic lava flows were contemporaneous with periods of greatest warming and greatest levels of mass extinctions. Planck's empirical law shows that temperature of matter results from oscillation of all the bonds holding matter together. The higher the temperature, the higher the frequencies and amplitudes of oscillation. Thus, radiation from a nearby hotter body will make the absorbing body hotter than radiation from a cooler body. According to the Planck-Einstein relation, thermal energy (E) in matter and in radiation equals frequency of oscillation (ν) times the Planck constant (h), E=hν—the energy of a frictionless atomic oscillator. Since frequency is observed to be a very broad continuum extending from radio signals through visible light to gamma rays, thermal energy (E=hν) must also be a very broad continuum. Thermal flux cannot be represented properly by a single number of watts per square meter, as commonly assumed throughout the physical sciences, because all frequencies coexist and the number of watts increases with frequency. Thus, UV-B solar radiation is 48 times more energetic than IR terrestrial radiation absorbed by greenhouse gases and can make the absorbing body 48 times hotter. UV-B causes sunburn; no amount of IR can cause sunburn. Furthermore, in a basic experiment, I show that air containing more than 23 times

  9. Global Warming and Ozone Layer Depletion: STS Issues for Social Studies Classrooms.

    ERIC Educational Resources Information Center

    Rye, James A.; Strong, Donna D.; Rubba, Peter A.

    2001-01-01

    Explores the inclusion of science-technology-society (STS) education in social studies. Provides background information on global warming and the depletion of the ozone layer. Focuses on reasons for teaching global climate change in the social studies classroom and includes teaching suggestions. Offers a list of Web sites about global climate…

  10. Ozone Depletion Caused by Rocket Engine Emissions: A Fundamental Limit on the Scale and Viability of Space-Based Geoengineering Schemes

    NASA Astrophysics Data System (ADS)

    Ross, M. N.; Toohey, D.

    2008-12-01

    Emissions from solid and liquid propellant rocket engines reduce global stratospheric ozone levels. Currently ~ one kiloton of payloads are launched into earth orbit annually by the global space industry. Stratospheric ozone depletion from present day launches is a small fraction of the ~ 4% globally averaged ozone loss caused by halogen gases. Thus rocket engine emissions are currently considered a minor, if poorly understood, contributor to ozone depletion. Proposed space-based geoengineering projects designed to mitigate climate change would require order of magnitude increases in the amount of material launched into earth orbit. The increased launches would result in comparable increases in the global ozone depletion caused by rocket emissions. We estimate global ozone loss caused by three space-based geoengineering proposals to mitigate climate change: (1) mirrors, (2) sunshade, and (3) space-based solar power (SSP). The SSP concept does not directly engineer climate, but is touted as a mitigation strategy in that SSP would reduce CO2 emissions. We show that launching the mirrors or sunshade would cause global ozone loss between 2% and 20%. Ozone loss associated with an economically viable SSP system would be at least 0.4% and possibly as large as 3%. It is not clear which, if any, of these levels of ozone loss would be acceptable under the Montreal Protocol. The large uncertainties are mainly caused by a lack of data or validated models regarding liquid propellant rocket engine emissions. Our results offer four main conclusions. (1) The viability of space-based geoengineering schemes could well be undermined by the relatively large ozone depletion that would be caused by the required rocket launches. (2) Analysis of space- based geoengineering schemes should include the difficult tradeoff between the gain of long-term (~ decades) climate control and the loss of short-term (~ years) deep ozone loss. (3) The trade can be properly evaluated only if our

  11. Twenty Five Years of Airborne Observations of Ozone-Depleting and Climate-Related Gases in the Upper Troposphere and Lower Stratosphere.

    NASA Astrophysics Data System (ADS)

    Elkins, J. W.; Moore, F. L.; Hintsa, E. J.; Dutton, G. S.; Nance, J. D.; Hall, B. D.

    2016-12-01

    NOAA scientists started in situ airborne measurements of two strong ozone-depleting gases or chlorofluorocarbons, CFC-11 and CFC-113 in 1991 on the NASA ER-2 aircraft with a two-channel gas chromatograph, Airborne Chromatograph for Atmospheric Trace Species (ACATS). We broaden our list of gases to include more ozone-depleting and other climate-related gases. An improved 4-channel gas chromatograph that included N2O, SF6, CFC-11, -12, -113, halon-1211, CCl4, CH3CCl3, CH4, CO, and H2 was added to the ER-2 aircraft in 1994. As CFC replacements took hold, we add a gas chromatograph-mass spectrometer system, PAN and other Trace Hydro-halocarbon Experiment (PANTHER), to examine shorter-lived gases mainly in the upper troposphere. These airborne measurements were to complement of ground-based flask and in situ measurements from the NOAA Halocarbon and other Trace Species Network. This talk will show results from a tropical study, Airborne Tropical Tropopause Experiment (ATTREX) on the NASA Global Hawk aircraft and preliminary results from the Atmospheric Tomography Mission (ATom) conducted in August 2016 on the NASA DC-8 aircraft. A detrended, gridded, latitudinal distribution of SF6 is shown in the figure below for the years of 1994 through 2014. Such a plot may be useful to atmospheric modelers trying to capture transport or calculate emissions.

  12. Influence of Mountains on Arctic Tropospheric Ozone

    NASA Astrophysics Data System (ADS)

    Whiteway, J. A.; Seabrook, J.

    2015-12-01

    Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring using a differential absorption lidar (DIAL). Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletion events were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be presented.

  13. Student Teacher Understanding of the Greenhouse Effect, Ozone Layer Depletion, and Acid Rain.

    ERIC Educational Resources Information Center

    Dove, Jane

    1996-01-01

    Describes the results of a survey designed to ascertain details of student teachers' knowledge and misconceptions about the greenhouse effect, acid rain, and ozone layer depletion. Results indicate familiarity with the issues but little understanding of the concepts involved and many commonly held misconceptions. (JRH)

  14. Influence of mountains on Arctic tropospheric ozone

    NASA Astrophysics Data System (ADS)

    Seabrook, Jeffrey; Whiteway, James

    2016-02-01

    Tropospheric ozone was measured above Ellesmere Island in the Canadian Arctic during spring of 2008 using a differential absorption lidar. The observations were carried out at Eureka Weather Station, which is located between various mountain ranges. Analysis of the observations revealed that mountains had a significant effect on the vertical distribution of ozone. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when mountains blocked the flow of air from over the sea ice. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the midtroposphere descended in the lee of the mountains. Three case studies from spring of 2008 are described.

  15. Bromine atom production and chain propagation during springtime Arctic ozone depletion events in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Thompson, Chelsea R.; Shepson, Paul B.; Liao, Jin; Huey, L. Greg; Cantrell, Chris; Flocke, Frank; Orlando, John

    2017-03-01

    Ozone depletion events (ODEs) in the Arctic are primarily controlled by a bromine radical-catalyzed destruction mechanism that depends on the efficient production and recycling of Br atoms. Numerous laboratory and modeling studies have suggested the importance of heterogeneous recycling of Br through HOBr reaction with bromide on saline surfaces. On the other hand, the gas-phase regeneration of bromine atoms through BrO-BrO radical reactions has been assumed to be an efficient, if not dominant, pathway for Br reformation and thus ozone destruction. Indeed, it has been estimated that the rate of ozone depletion is approximately equal to twice the rate of the BrO self-reaction. Here, we use a zero-dimensional, photochemical model, largely constrained to observations of stable atmospheric species from the 2009 Ocean-Atmosphere-Sea Ice-Snowpack (OASIS) campaign in Barrow, Alaska, to investigate gas-phase bromine radical propagation and recycling mechanisms of bromine atoms for a 7-day period during late March. This work is a continuation of that presented in Thompson et al. (2015) and utilizes the same model construct. Here, we use the gas-phase radical chain length as a metric for objectively quantifying the efficiency of gas-phase recycling of bromine atoms. The gas-phase bromine chain length is determined to be quite small, at < 1.5, and highly dependent on ambient O3 concentrations. Furthermore, we find that Br atom production from photolysis of Br2 and BrCl, which is predominately emitted from snow and/or aerosol surfaces, can account for between 30 and 90 % of total Br atom production. This analysis suggests that condensed-phase production of bromine is at least as important as, and at times greater than, gas-phase recycling for the occurrence of Arctic ODEs. Therefore, the rate of the BrO self-reaction is not a sufficient estimate for the rate of O3 depletion.

  16. The Hole in the Ozone Layer.

    ERIC Educational Resources Information Center

    Hamers, Jeanne S.; Jacob, Anthony T.

    This document contains information on the hole in the ozone layer. Topics discussed include properties of ozone, ozone in the atmosphere, chlorofluorocarbons, stratospheric ozone depletion, effects of ozone depletion on life, regulation of substances that deplete the ozone layer, alternatives to CFCs and Halons, and the future of the ozone layer.…

  17. Polar boundary layer bromine explosion and ozone depletion events in the chemistry-climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

    NASA Astrophysics Data System (ADS)

    Falk, Stefanie; Sinnhuber, Björn-Martin

    2018-03-01

    Ozone depletion events (ODEs) in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR) and vertical column densities (VCDs) of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE) events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) based on the scheme of Toyota et al. (2011). In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME) satellite BrO VCDs and surface ozone observations.

  18. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015

    EPA Science Inventory

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, bi...

  19. The Antarctic Ozone Hole: New Approaches for Detection of the Onset of Stratospheric Ozone Recovery

    NASA Astrophysics Data System (ADS)

    de Laat, J.; van Weele, M.; van der A, R. J.

    2016-12-01

    An important aspect of human influences on climate concerns the Antarctic ozone hole, the strong thinning of the thickness of the ozone layer during springtime over Antarctica, first observed in the early 1980s. Antarctic stratospheric ozone is expected to fully recover in the second half of the 21st century because of policy measures to eliminate emissions of ozone depleting substances. Identification of the onset of this recovery would mark an important scientific and political milestone, but has remained difficult so far owing to natural climate variability and methodological ambiguities. In this presentation, we will first give a brief introduction to methods that have been used in the past to try to identify the onset of recovery, and discuss their shortcomings and ambiguities. Secondly, we introduce and discuss a several observations-based new approaches for ozone recovery detection in the Antarctic Ozone Hole that we have developed, explain why we believe these methods are more robust than standard methods, and outline how they circumvent crucial pitfalls of the previously used methods. Finally, we present our analyses, showing that these new approaches applied to various sets of remote sensing observations provide the best evidence to date that that ozone destruction within the Antarctic Ozone Hole has significantly decreased since approximately the year 2000, and which can be attributed to concurrently decreasing ozone depleting substances.

  20. Students' Understanding of the Greenhouse Effect, the Societal Consequences of Reducing CO2 Emissions and the Problem of Ozone Layer Depletion.

    ERIC Educational Resources Information Center

    Andersson, Bjorn; Wallin, Anita

    2000-01-01

    Contributes to the growing body of knowledge about students' conceptions and views of environmental and natural resource issues. Questions 9th and 12th grade Swedish students' understandings of the greenhouse effect, reduction of CO2 emissions, and the depletion of the ozone layer. Observes five models of the greenhouse effect that appear among…

  1. Photoreactivation in Paramecium tetraurelia under conditions of various degrees of ozone layer depletion.

    PubMed

    Takahashi, Akihisa; Kumatani, Toshihiro; Usui, Saori; Tsujimura, Ryoko; Seki, Takaharu; Morimoto, Kouichi; Ohnishi, Takeo

    2005-01-01

    Photoreactivation (PR) is an efficient survival mechanism that helps protect cells against the harmful effects of solar-ultraviolet (UV) radiation. The PR mechanism involves photolyase, just one enzyme, and can repair DNA damage, such as cyclobutane-pyrimidine dimers (CPD) induced by near-UV/blue light, a component of sunlight. Although the balance of near-UV/blue light and far-UV light reaching the Earth's surface could be altered by the atmospheric ozone layer's depletion, experiments simulating this environmental change and its possible effects on life have not yet been performed. To quantify the strength of UVB in sunlight reaching the Earth's surface, we measured the number of CPD generated in plasmid DNA after UVB irradiation or exposure to sunlight. To simulate the increase of solar-UV radiation resulting from the ozone layer depletion, Paramecium tetraurelia was exposed to UVB and/or sunlight in clear summer weather. PR recovery after exposure to sunlight was complete at a low dose rate of 0.2 J/m2 x s, but was less efficient when the dose rate was increased by a factor of 2.5 to 0.5 J/m2 x s. It is suggested that solar-UV radiation would not influence the cell growth of P. tetraurelia for the reason of high PR activity even when the ozone concentration was decreased 30% from the present levels.

  2. Spaceship Nigeria: A Topic Study for Global Warming, Greenhouse Effect and Ozone Layer Depletion.

    ERIC Educational Resources Information Center

    Okebukola, Peter; Akpan, Ben B.

    1997-01-01

    Explains the concept of a topic study, how it meets the needs of teachers seeking to integrate their teaching, and how it is especially well suited for environmental education. Outlines curriculum for a topic study on the greenhouse effect and ozone layer depletion. (DDR)

  3. OZONE DEPLETION AND THE AIR-SEA EXCHANGE OF GREENHOUSE AND CHEMICALLY REACTIVE TRACE GASES

    EPA Science Inventory

    One of the most important aspects of global change is that of stratospheric ozone depletion and the resulting increase in UV radiation reaching the surface of the Earth. Some 70% of the Earth surface is covered by water containing an extremely complicated milieu of organic and in...

  4. Balloon-borne observations of the development and vertical structure of the Antarctic ozone hole in 1986

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Harder, J. W.; Rolf, S. R.; Rosen, J. M.

    1987-01-01

    The vertical distribution of ozone measured at McMurdo Station, Antarctica using balloon-borne sensors on 33 occasions during November 6, 1986 - August 25, 1986 is described. These observations suggest a highly structured cavity confined to the 12-20 km altitude region. In the 17-19 km altitude range, the ozone volume mixing ratio declined from about 2 ppm at the end of August to about 0.5 ppm by mid-October. The average decay in this region can be described as exponential with a half life of about 25 days. While total ozone, as obtained from profile integration, declined only about 35 percent, the integrated ozone between 14 and 18 km declined more than 70 percent. Vertical ozone profiles in the vortex revealed unusual structure with major features from 1 to 5 km thick which had suffered ozone depletions as great as 90 percent.

  5. Ozone Depletion, UVB and Atmospheric Chemistry

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.

    1999-01-01

    The primary constituents of the Earth's atmosphere are molecular nitrogen and molecular oxygen. Ozone is created when ultraviolet light from the sun photodissociates molecular oxygen into two oxygen atoms. The oxygen atoms undergo many collisions but eventually combine with a molecular oxygen to form ozone (O3). The ozone molecules absorb ultraviolet solar radiation, primarily in the wavelength region between 200 and 300 nanometers, resulting in the dissociation of ozone back into atomic oxygen and molecular oxygen. The oxygen atom reattaches to an O2 molecule, reforming ozone which can then absorb another ultraviolet photon. This sequence goes back and forth between atomic oxygen and ozone, each time absorbing a uv photon, until the oxygen atom collides with and ozone molecule to reform two oxygen molecules.

  6. Spatio-temporal observations of tertiary ozone maximum

    NASA Astrophysics Data System (ADS)

    Sofieva, V. F.; Kyrölä, E.; Verronen, P. T.; Seppälä, A.; Tamminen, J.; Marsh, D. R.; Smith, A. K.; Bertaux, J.-L.; Hauchecorne, A.; Dalaudier, F.; Fussen, D.; Vanhellemont, F.; Fanton D'Andon, O.; Barrot, G.; Guirlet, M.; Fehr, T.; Saavedra, L.

    2009-03-01

    We present spatio-temporal distributions of tertiary ozone maximum (TOM), based on GOMOS (Global Ozone Monitoring by Occultation of Stars) ozone measurements in 2002-2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at altitude ~72 km. Although the explanation for this phenomenon has been found recently - low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses - models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time obtaining spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere. The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory), TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model) and found that the specific features are reproduced satisfactorily by the model. Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.

  7. Highlights from a Decade of OMI-TOMS Total Ozone Observations on EOS Aura

    NASA Technical Reports Server (NTRS)

    Haffner, David P.; Bhartia, Pawan K.; McPeters, Richard D.; Joiner, Joanna; Ziemke, Jerald R.; Vassilkov, Alexander; Labow, Gordon J.; Chiou, Er-Woon

    2014-01-01

    Total ozone measurements from OMI have been instrumental in meeting Aura science objectives. In the last decade, OMI has extended the length of the TOMS total ozone record to over 35 years to monitor stratospheric ozone recovery. OMI-TOMS total ozone measurements have also been combined synergistically with measurements from other Aura instruments and MLS in particular, which provides vertically resolved information that complements the total O3 mapping capability of OMI. With this combined approach, the EOS Aura platform has produced more accurate and detailed measurements of tropospheric ozone. This has led in turn to greater understanding of the sources and transport of tropospheric ozone as well as its radiative forcing effect. The combined use of OMI and MLS data was also vital to the analysis of the severe Arctic ozone depletion event of 2011. The quality of OMI-TOMS total O3 data used in these studies is the result of several factors: a mature and well-validated algorithm, the striking stability of the OMI instrument, and OMI's hyperspectral capabilities used to derive cloud pressures. The latter has changed how we think about the effects of clouds on total ozone retrievals. We will discuss the evolution of the operational V8.5 algorithm and provide an overview and motivation for V9. After reviewing results and developments of the past decade, we finally highlight how ozone observations from EOS Aura are playing an important role in new ozone mapping missions.

  8. Chemical and Dynamical Impacts of Stratospheric Sudden Warmings on Arctic Ozone Variability

    NASA Technical Reports Server (NTRS)

    Strahan, S. E.; Douglass, A. R.; Steenrod, S. D.

    2016-01-01

    We use the Global Modeling Initiative (GMI) chemistry and transport model with Modern-Era Retrospective Analysis for Research and Applications (MERRA) meteorological fields to quantify heterogeneous chemical ozone loss in Arctic winters 2005-2015. Comparisons to Aura Microwave Limb Sounder N2O and O3 observations show the GMI simulation credibly represents the transport processes and net heterogeneous chemical loss necessary to simulate Arctic ozone. We find that the maximum seasonal ozone depletion varies linearly with the number of cold days and with wave driving (eddy heat flux) calculated from MERRA fields. We use this relationship and MERRA temperatures to estimate seasonal ozone loss from 1993 to 2004 when inorganic chlorine levels were in the same range as during the Aura period. Using these loss estimates and the observed March mean 63-90N column O3, we quantify the sensitivity of the ozone dynamical resupply to wave driving, separating it from the sensitivity of ozone depletion to wave driving. The results show that about 2/3 of the deviation of the observed March Arctic O3 from an assumed climatological mean is due to variations in O3 resupply and 13 is due to depletion. Winters with a stratospheric sudden warming (SSW) before mid-February have about 1/3 the depletion of winters without one and export less depletion to the midlatitudes. However, a larger effect on the spring midlatitude ozone comes from dynamical differences between warm and cold Arctic winters, which can mask or add to the impact of exported depletion.

  9. Ozone, ozone production rates and NO observations on the outskirts of Quito, Ecuador

    NASA Astrophysics Data System (ADS)

    Cazorla, M.

    2014-12-01

    Air quality measurements of ambient ozone, ozone production rates and nitrogen oxides, in addition to baseline meterology observations, are being taken at a recently built roof-top facility on the campus of Universidad San Francisco de Quito, in Ecuador. The measurement site is located in Cumbayá, a densely populated valley adjacent to the city of Quito. Time series of ozone and NO are being obtained with commercial air quality monitors. Rush-hour peaks of NO, above 100 ppb, have been observed, while daytime ozone levels are low. In addition, ozone production rates are being measured with the Ecuadorian version of the MOPS, Measurement of Ozone Production Sensor, originally built at Penn State University in 2010. NO and ozone observations and test results of measured ozone production rates will be presented.

  10. Lidar Measurements of Tropospheric Ozone in the Arctic

    NASA Astrophysics Data System (ADS)

    Seabrook, Jeffrey; Whiteway, James

    2016-06-01

    This paper reports on differential absorption lidar (DIAL) measurements of tropospheric ozone in the Canadian Arctic during springtime. Measurements at Eureka Weather Station revealed that mountains have a significant effect on the vertical structure of ozone above Ellesmere Island. Ozone depletion events were observed when air that had spent significant time near to the frozen surface of the Arctic Ocean reached Eureka. This air arrived at Eureka by flowing over the surrounding mountains. Surface level ozone depletions were not observed during periods when the flow of air from over the sea ice was blocked by mountains. In the case of blocking there was an enhancement in the amount of ozone near the surface as air from the mid troposphere descended in the lee of the mountains. Three case studies will be shown in the presentation, while one is described in this paper.

  11. Depletion of ozone and reservoir species of chlorine and nitrogen oxide in the lower Antarctic polar vortex measured from aircraft

    NASA Astrophysics Data System (ADS)

    Jurkat, T.; Voigt, C.; Kaufmann, S.; Grooß, J.-U.; Ziereis, H.; Dörnbrack, A.; Hoor, P.; Bozem, H.; Engel, A.; Bönisch, H.; Keber, T.; Hüneke, T.; Pfeilsticker, K.; Zahn, A.; Walker, K. A.; Boone, C. D.; Bernath, P. F.; Schlager, H.

    2017-06-01

    Novel airborne in situ measurements of inorganic chlorine, nitrogen oxide species, and ozone were performed inside the lower Antarctic polar vortex and at its edge in September 2012. We focus on one flight during the Transport and Composition of the LMS/Earth System Model Validation (TACTS/ESMVal) campaign with the German research aircraft HALO (High-Altitude LOng range research aircraft), reaching latitudes of 65°S and potential temperatures up to 405 K. Using the early winter correlations of reactive trace gases with N2O from the Atmospheric Chemistry Experiment-Fourier Transform Spectrometer (ACE-FTS), we find high depletion of chlorine reservoir gases up to ˜40% (0.8 ppbv) at 12 km to 14 km altitude in the vortex and 0.4 ppbv at the edge in subsided stratospheric air with mean ages up to 4.5 years. We observe denitrification of up to 4 ppbv, while ozone was depleted by 1.2 ppmv at potential temperatures as low as 380 K. The advanced instrumentation aboard HALO enables high-resolution measurements with implications for the oxidation capacity of the lowermost stratosphere.

  12. Turkish Primary Science Teacher Candidates' Understandings of Global Warming and Ozone Layer Depletion

    ERIC Educational Resources Information Center

    Yalcin, Fatma Aggul; Yalcin, Mehmet

    2017-01-01

    The purpose of the study was to explore Turkish primary science teacher candidates' understanding of global warming and ozone layer depletion. In the study, as the research approach the survey method was used. The sample consisted of one hundred eighty nine third grade science teacher candidates. Data was collected using the tool developed by the…

  13. Stratospheric ozone depletion due to nitrous oxide: influences of other gases

    PubMed Central

    Portmann, R. W.; Daniel, J. S.; Ravishankara, A. R.

    2012-01-01

    The effects of anthropogenic emissions of nitrous oxide (N2O), carbon dioxide (CO2), methane (CH4) and the halocarbons on stratospheric ozone (O3) over the twentieth and twenty-first centuries are isolated using a chemical model of the stratosphere. The future evolution of ozone will depend on each of these gases, with N2O and CO2 probably playing the dominant roles as halocarbons return towards pre-industrial levels. There are nonlinear interactions between these gases that preclude unambiguously separating their effect on ozone. For example, the CH4 increase during the twentieth century reduced the ozone losses owing to halocarbon increases, and the N2O chemical destruction of O3 is buffered by CO2 thermal effects in the middle stratosphere (by approx. 20% for the IPCC A1B/WMO A1 scenario over the time period 1900–2100). Nonetheless, N2O is expected to continue to be the largest anthropogenic emission of an O3-destroying compound in the foreseeable future. Reductions in anthropogenic N2O emissions provide a larger opportunity for reduction in future O3 depletion than any of the remaining uncontrolled halocarbon emissions. It is also shown that 1980 levels of O3 were affected by halocarbons, N2O, CO2 and CH4, and thus may not be a good choice of a benchmark of O3 recovery. PMID:22451111

  14. Observed and theoretical variations of atmospheric ozone

    NASA Technical Reports Server (NTRS)

    London, J.

    1976-01-01

    Results are summarized from three areas of ozone research: (1) continued analysis of the global distribution of total ozone to extend the global ozone atlas to summarize 15 years (1957-72) of ground based observations; (2) analysis of balloon borne ozonesonde observations for Arosa, Switzerland, and Hohenpeissenberg, Germany (GFR); (3) contined processing of the (Orbiting Geophysical Observatory-4) satellite data to complete the analysis of the stratospheric ozone distribution from the available OGO-4 data. Results of the analysis of the total ozone observations indicated that the long term ozone variation have marked regional patterns and tend to alternate with season and hemisphere. It is becoming increasingly clear that these long period changes are associated with large scale variations in the general upper atmosphere circulation patterns.

  15. Ozone profiles over McMurdo Station, Antarctica, during August, September, and October of 1986 - 1991

    NASA Technical Reports Server (NTRS)

    Deshler, Terry; Hofmann, David J.

    1994-01-01

    Vertical profiles of ozone and temperature have been measured at McMurdo Station, Antarctica, during the springs of 1986 to 1991, roughly every two days from 25 August to 31 October. Comparisons of temporal histories and average vertical structure for these years reveals some striking consistency in the ozone depletion process. Ozone depletion generally begins in early September, and with a half-life of 20-30 days, reaches its maximum in mid-October. The depletion occurs almost exclusively between 12 and 20 km. At the time of maximum depletion total ozone has been decreased roughly 40 percent while ozone between 12 and 20 km has been reduced 80 percent. Recovery generally begins in late October with the influx, above 20 km, of ozone rich air from the lower latitudes. From this record the worst years for ozone depletion were 1987, 1989, and 1990. A new region of ozone depletion, below 12 km, was observed in 1991, coinciding with the entrainment of a volcanic cloud into the polar vortex.

  16. Questions and answers about the effects of the depletion of the ozone layer on humans and the environment.

    PubMed

    Aucamp, Pieter J

    2007-03-01

    The ozone molecule contains three atoms of oxygen and is mainly formed by the action of the ultraviolet rays of the sun on the diatomic oxygen molecules in the upper part of the Earth's atmosphere (called the stratosphere). Atmospheric pollution near the Earth's surface can form localized areas of ozone. The stratospheric ozone layer protects life on Earth by absorbing most of the harmful ultraviolet radiation from the sun. In the mid 1970s it was discovered that some manmade products destroy ozone molecules in the stratosphere. This destruction can result in damage to ecosystems and to materials such as plastics. It may cause an increase in human diseases such as skin cancers and cataracts. The discovery of the role of the synthetic ozone-depleting chemicals such as chlorofluorocarbons (CFCs) stimulated increased research and monitoring in this field. Computer models predicted a disaster if no action was taken to protect the ozone layer. Based on this research and monitoring, the nations of the world took action in 1985 with the Vienna Convention for the Protection of the Ozone Layer followed by the Montreal Protocol on Substances that Deplete the Ozone Layer in 1987. The Convention and Protocol were amended and adjusted several times as new knowledge was obtained. The Meetings of the Parties to the Montreal Protocol appointed three Assessment Panels to review the progress in scientific knowledge on their behalf. These panels are the Scientific Assessment Panel, the Technological and Economic Assessment Panel and the Environmental Effects Assessment Panel. Each panel covers a designated area and there is a natural level of overlap. The main reports of the Panels are published every four years as required by the Meeting of the Parties. All the reports have an executive summary that is distributed more widely than the main report itself. It became customary to add a set of questions and answers--mainly for non-expert readers--to the executive summaries. This

  17. Volcanoes drive climate variability by emitting ozone weeks before eruptions, by forming lower stratospheric aerosols, by causing sustained ozone depletion, and by causing rapid changes in regional ozone concentrations affecting temperature and pressure differences driving atmospheric oscillations

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2016-12-01

    Total column ozone observed by satellite on February 19, 2010, increased 75% in a plume from Eyjafjallajökull volcano in southern Iceland eastward past Novaya Zemlya, extending laterally from northern Greenland to southern Norway (http://youtu.be/wJFZcPEfoR4). Contemporaneous ground deformation and rapidly increasing numbers of earthquakes imply magma began rising from a sill 4-6 km below the volcano, erupting a month later. Whether the ozone formed from the magma or from very hot gases rising through cracks in the ground is unclear. On February 20-22, 1991, similar increases in ozone were observed north of Pinatubo volcano before its initial eruption on April 2 (http://youtu.be/5y1PU2Qu3ag). Annual average total column ozone during the year of most moderate to large explosive volcanic eruptions since routine observations of ozone began in 1927 has been substantially higher than normal. Increased total column ozone absorbs more solar ultraviolet-B radiation, warming the ozone layer and cooling Earth. Most major volcanic eruptions form sulfuric-acid aerosols in the lower part of the ozone layer providing aqueous surfaces on which heterogeneous chemical reactions enhance ozone depletion. Within a year, aerosol droplets grew large enough to reflect and scatter high-frequency solar radiation, cooling Earth 0.5oC for 2-3 years. Temperature anomalies in the northern hemisphere rose 0.7oC in 28 years from 1970 to 1998 (HadCRUT4), while annual average ozone at Arosa dropped 27 DU because of manufactured CFC gases. Beginning in August 2014, temperature anomalies in the northern hemisphere rose another 0.6oC in less than two years apparently because of the 6-month eruption of Bárðarbunga volcano in central Iceland, the highest rate of basaltic lava extrusion since 1783. Large extrusions of basaltic lava are typically contemporaneous with the greatest periods of warming throughout Earth history. Ozone concentrations at Arosa change by season typically from 370 DU during

  18. The ozone depletion potentials on halocarbons: Their dependence of calculation assumptions

    NASA Technical Reports Server (NTRS)

    Karol, Igor L.; Kiselev, Andrey A.

    1994-01-01

    The concept of Ozone Depletion Potential (ODP) is widely used in the evaluation of numerous halocarbons and of their replacement effects on ozone, but the methods, assumptions and conditions used in ODP calculations have not been analyzed adequately. In this paper a model study of effects on ozone of the instantaneous releases of various amounts of CH3CCl3 and of CHF2Cl (HCFC-22) for several compositions of the background atmosphere are presented, aimed at understanding connections of ODP values with the assumptions used in their calculations. To facilitate the ODP computation in numerous versions for the long time periods after their releases, the above rather short-lived gases and the one-dimensional radiative photochemical model of the global annually averaged atmospheric layer up to 50 km height are used. The variation of released gas global mass from 1 Mt to 1 Gt leads to ODP value increase with its stabilization close to the upper bound of this range in the contemporary atmosphere. The same variations are analyzed for conditions of the CFC-free atmosphere of 1960's and for the anthropogenically loaded atmosphere in the 21st century according to the known IPCC 'business as usual' scenario. Recommendations for proper ways of ODP calculations are proposed for practically important cases.

  19. Ozone: Good Up High, Bad Nearby

    MedlinePlus

    ... How Does the Depletion of “Good” Ozone Affect Human Health and the Environment? Ozone depletion can cause increased ... their original sources. How Does “Bad” Ozone Affect Human Health and the Environment? Breathing ozone can trigger a ...

  20. Is the Ozone Hole over Your Classroom?

    ERIC Educational Resources Information Center

    Cordero, Eugene C.

    2002-01-01

    Reports on a survey of first year university science students regarding their understanding of the ozone layer, ozone depletion, and the effect of ozone depletion on Australia. Suggests that better teaching resources for environmental issues such as ozone depletion and global warming are needed before improvements in student understanding can be…

  1. Alternatives to ozone depleting refrigerants in test equipment

    NASA Technical Reports Server (NTRS)

    Hall, Richard L.; Johnson, Madeleine R.

    1995-01-01

    This paper describes the initial results of a refrigerant retrofit project at the Aerospace Guidance and Metrology Center (AGMC) at Newark Air Force Base, Ohio. The objective is to convert selected types of test equipment to properly operate on hydrofluorocarbon (HFC) alternative refrigerants, having no ozone depleting potential, without compromising system reliability or durability. This paper discusses the primary technical issues and summarizes the test results for 17 different types of test equipment: ten environmental chambers, two ultralow temperature freezers, two coolant recirculators, one temperature control unit, one vapor degreaser, and one refrigerant recovery system. The postconversion performance test results have been very encouraging: system capacity and input power remained virtually unchanged. In some cases, the minimum operating temperature increased by a few degrees as a result of the conversion, but never beyond AGMC's functional requirements.

  2. Ozone Layer Protection

    MedlinePlus

    ... Offices Labs and Research Centers Contact Us Share Ozone Layer Protection The stratospheric ozone layer is Earth’s “ ... to ozone-depleting substances, and sun safety. Stratospheric Ozone Layer Basic Ozone Layer Science Health and Environmental ...

  3. Assimilation of Satellite Ozone Observations

    NASA Technical Reports Server (NTRS)

    Stajner, I.; Winslow, N.; Wargan, K.; Hayashi, H.; Pawson, S.; Rood, R.

    2003-01-01

    This talk will discuss assimilation of ozone data from satellite-borne instruments. Satellite observations of ozone total columns and profiles have been measured by a series of Total Ozone Mapping Spectrometer (TOMS), Solar Backscatter Ultraviolet (SBUV) instruments, and more recently by the Global Ozone Monitoring Experiment. Additional profile data are provided by instruments on NASA's Upper Atmosphere Research Satellite and by occultation instruments on other platforms. Instruments on Envisat' and future EOS Aura satellite will supply even more comprehensive data about the ozone distribution. Satellite data contain a wealth of information, but they do not provide synoptic global maps of ozone fields. These maps can be obtained through assimilation of satellite data into global chemistry and transport models. In the ozone system at NASA's Data Assimilation Office (DAO) any combination of TOMS, SBUV, and Microwave Limb sounder (MLS) data can be assimilated. We found that the addition of MLS to SBUV and TOMS data in the system helps to constrain the ozone distribution, especially in the polar night region and in the tropics. The assimilated ozone distribution in the troposphere and lower stratosphere is sensitive also to finer changes in the SBUV and TOMS data selection and to changes in error covariance models. All results are established by comparisons of assimilated ozone with independent profiles from ozone sondes and occultation instruments.

  4. Spatio-temporal observations of the tertiary ozone maximum

    NASA Astrophysics Data System (ADS)

    Sofieva, V. F.; Kyrölä, E.; Verronen, P. T.; Seppälä, A.; Tamminen, J.; Marsh, D. R.; Smith, A. K.; Bertaux, J.-L.; Hauchecorne, A.; Dalaudier, F.; Fussen, D.; Vanhellemont, F.; Fanton D'Andon, O.; Barrot, G.; Guirlet, M.; Fehr, T.; Saavedra, L.

    2009-07-01

    We present spatio-temporal distributions of the tertiary ozone maximum (TOM), based on GOMOS (Global Ozone Monitoring by Occultation of Stars) ozone measurements in 2002-2006. The tertiary ozone maximum is typically observed in the high-latitude winter mesosphere at an altitude of ~72 km. Although the explanation for this phenomenon has been found recently - low concentrations of odd-hydrogen cause the subsequent decrease in odd-oxygen losses - models have had significant deviations from existing observations until recently. Good coverage of polar night regions by GOMOS data has allowed for the first time to obtain spatial and temporal observational distributions of night-time ozone mixing ratio in the mesosphere. The distributions obtained from GOMOS data have specific features, which are variable from year to year. In particular, due to a long lifetime of ozone in polar night conditions, the downward transport of polar air by the meridional circulation is clearly observed in the tertiary ozone maximum time series. Although the maximum tertiary ozone mixing ratio is achieved close to the polar night terminator (as predicted by the theory), TOM can be observed also at very high latitudes, not only in the beginning and at the end, but also in the middle of winter. We have compared the observational spatio-temporal distributions of the tertiary ozone maximum with that obtained using WACCM (Whole Atmosphere Community Climate Model) and found that the specific features are reproduced satisfactorily by the model. Since ozone in the mesosphere is very sensitive to HOx concentrations, energetic particle precipitation can significantly modify the shape of the ozone profiles. In particular, GOMOS observations have shown that the tertiary ozone maximum was temporarily destroyed during the January 2005 and December 2006 solar proton events as a result of the HOx enhancement from the increased ionization.

  5. Substituting HCFC-22 for HFC-410A: an environmental impact trade-off between the ozone depletion and climate change regimes

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Fang, X.; Zhang, J.

    2015-12-01

    After the phase-out of hydrochlorofluorocarbons (HCFCs) as ozone-depleting substances pursuant to the requirements of the Montreal Protocol, hydrofluorocarbons (HFCs) are worldwide used as substitutes although the bulk of them are potent greenhouse gases (GHGs). Therefore, the alternation may bring side effect on global climate change. The trade-off of its environmental impacts between the ozone depletion and climate change regimes necessitates a quantification of the past and future consumption and emissions of both the original HCFCs and their alternative HFCs. Now a dilemma arise in China's RAC industry that HCFC-22, which has an ozone-depleting potential (ODP) of 0.055, has been replaced by HFC-410A, which is a blended potent GHG from respective 50% HFC-32 and HFC-125 with a global warming potential (GWP) of 1923.5. Here, we present our results of estimates of consumption and emissions of HCFC-22 and HFC-410A from 1994 to 2050. Historic emissions of HCFC-22 contributed to global total HCFCs by 4.0% (3.0%-5.6%) ODP-weighted. Projection under a baseline scenario shows future accumulative emissions of HFC-410A make up 5.9%-11.0% of global GWP-weighted HFCs emissions, and its annual contribution to national overall CO2 emissions can be 5.5% in 2050. This makes HCFC-22 and HFC-410A emissions of significant importance in ozone depletion and climate change regimes. Two mitigation scenarios were set to assess the mitigation performance under the North America Proposal and an accelerated schedule. In practice of international environmental agreement, "alternative to alternative" should be developed to avoid regrettable alternations.

  6. Basic Ozone Layer Science

    EPA Pesticide Factsheets

    Learn about the ozone layer and how human activities deplete it. This page provides information on the chemical processes that lead to ozone layer depletion, and scientists' efforts to understand them.

  7. Arctic Ozone Depletion Observed by UARS MLS During the 1994-95 Winter

    NASA Technical Reports Server (NTRS)

    Manney, G. L.; Froidevaux, L.; Waters, J. W.; Santee, M. L.; Read, W. G.; Flower, D. A.; Jarnot, R. F.; Zurek, R. W.

    1996-01-01

    During the unusually cold 1994-95 Arctic winter, the Microwave Limb Sounder observed enhanced chlorine monoxide (ClO) in late Dec and throughout Feb and early Mar. Late Dec ClO was higher than during any of the previous 3 years, consistent with the colder early winter. Between late Dec 1994 and early Feb 1995, 465 K (about 50 hPa) vortex-averaged ozone (03) decreased by about 15%, with local decreases of about 30%; additional local decreases of about 5% were seen between early Feb and early Mar. Transport calculations indicate that vortex-averaged chemical loss between late Dec and early Feb was about 20% at 465 K, with about 1/4 of that masked by downward transport of O3. This Arctic chemical O3 loss is not readily detectable in MLS column O3 data.

  8. Influence of climate variability on near-surface ozone depletion events in the Arctic spring

    NASA Astrophysics Data System (ADS)

    Koo, Ja-Ho; Wang, Yuhang; Jiang, Tianyu; Deng, Yi; Oltmans, Samuel J.; Solberg, Sverre

    2014-04-01

    Near-surface ozone depletion events (ODEs) generally occur in the Arctic spring, and the frequency shows large interannual variations. We use surface ozone measurements at Barrow, Alert, and Zeppelinfjellet to analyze if their variations are due to climate variability. In years with frequent ODEs at Barrow and Alert, the western Pacific (WP) teleconnection pattern is usually in its negative phase, during which the Pacific jet is strengthened but the storm track originated over the western Pacific is weakened. Both factors tend to reduce the transport of ozone-rich air mass from midlatitudes to the Arctic, creating a favorable environment for the ODEs. The correlation of ODE frequencies at Zeppelinfjellet with WP indices is higher in the 2000s, reflecting stronger influence of the WP pattern in recent decade to cover ODEs in broader Arctic regions. We find that the WP pattern can be used to diagnose ODE changes and subsequent environmental impacts in the Arctic spring.

  9. Ozone Layer Observations

    NASA Technical Reports Server (NTRS)

    McPeters, Richard; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The US National Aeronautics and Space Administration (NASA) has been monitoring the ozone layer from space using optical remote sensing techniques since 1970. With concern over catalytic destruction of ozone (mid-1970s) and the development of the Antarctic ozone hole (mid-1980s), long term ozone monitoring has become the primary focus of NASA's series of ozone measuring instruments. A series of TOMS (Total Ozone Mapping Spectrometer) and SBUV (Solar Backscatter Ultraviolet) instruments has produced a nearly continuous record of global ozone from 1979 to the present. These instruments infer ozone by measuring sunlight backscattered from the atmosphere in the ultraviolet through differential absorption. These measurements have documented a 15 Dobson Unit drop in global average ozone since 1980, and the declines in ozone in the antarctic each October have been far more dramatic. Instruments that measure the ozone vertical distribution, the SBUV and SAGE (Stratospheric Aerosol and Gas Experiment) instruments for example, show that the largest changes are occurring in the lower stratosphere and upper troposphere. The goal of ozone measurement in the next decades will be to document the predicted recovery of the ozone layer as CFC (chlorofluorocarbon) levels decline. This will require a continuation of global measurements of total column ozone on a global basis, but using data from successor instruments to TOMS. Hyperspectral instruments capable of measuring in the UV will be needed for this purpose. Establishing the relative roles of chemistry and dynamics will require instruments to measure ozone in the troposphere and in the stratosphere with good vertical resolution. Instruments that can measure other chemicals important to ozone formation and destruction will also be needed.

  10. [The relationship between the ozone layer and skin cancer].

    PubMed

    Sánchez C, Francisca

    2006-09-01

    In the recent decades, a sustained increase in the worldwide incidence of skin cancer has been observed and Chile is not the exception. The most important risk factor is the exaggerated and repeated exposure to ultraviolet radiation coming from the sun. The ozone layer restricts the transmission of type B and C ultraviolet light. Since 1980, a sustained depletion of stratospheric ozone levels is occurring, specially in middle latitudes (-30 to -60). Along with this depletion, the amount of ultraviolet light that reaches the earth surface is increasing. This article reviews some basic concepts about the ozone layer and the association between its depletion and skin cancer. The general population should be informed about the risks of inadequate and exaggerated exposure to sunlight.

  11. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?

    NASA Astrophysics Data System (ADS)

    Newman, P. A.; Oman, L. D.; Douglass, A. R.; Fleming, E. L.; Frith, S. M.; Hurwitz, M. M.; Kawa, S. R.; Jackman, C. H.; Krotkov, N. A.; Nash, E. R.; Nielsen, J. E.; Pawson, S.; Stolarski, R. S.; Velders, G. J.

    2008-12-01

    Ozone depletion by chlorofluorocarbons (CFCs) was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the scientific connection between ozone losses and CFCs and other ozone depleting substances (ODSs) has been firmly established with laboratory measurements, atmospheric observations, and modeling research. The nations of the world implemented the Montreal Protocol (and amendments) which stopped ODS production in 1992. In this presentation we use a fully coupled radiation- chemical-dynamical model to simulate a future world where ODSs were never regulated and ODS production grew at an annual rate of 3%. In this "world avoided" simulation, 17% of the globally average column ozone is destroyed by 2020, and 67% is destroyed by 2065 in comparison to 1980. Large ozone depletions in the polar region become year-round rather than just seasonal as is currently observed in the Antarctic ozone hole. Very large temperature decreases are observed in response to circulation changes and decreased shortwave radiation absorption by ozone. Ozone levels in the tropical lower stratosphere remain constant until about 2053 and then collapse to near zero by 2058 as a result of heterogeneous chemical processes (as currently observed in the Antarctic ozone hole). The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical upwelling. In response to ozone changes, ultraviolet (UV) radiation increases, tripling the erythemal (sunburn) radiation in the northern summer mid-latitudes by 2065.

  12. Satellite ozone measurements and the detection of trends

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest

    1990-01-01

    Due to the international scientific community's concern with the problem of anthropogenic gas-caused depletion of the ozone layer, an international observational program has been established to conduct stratospheric studies for at least a decade. These observations, which will be performed both by the Space Shuttle and the Upper Atmosphere Research Satellite, will encompass the energy input by solar UV irradiance, source and intermediate gases in ozone chemistry, and the global distributions of these ozone-affecting gases by winds.

  13. The human health effects of ozone depletion and interactions with climate change.

    PubMed

    Norval, M; Lucas, R M; Cullen, A P; de Gruijl, F R; Longstreth, J; Takizawa, Y; van der Leun, J C

    2011-02-01

    Depletion of the stratospheric ozone layer has led to increased solar UV-B radiation (280-315 nm) at the surface of the Earth. This change is likely to have had an impact on human exposure to UV-B radiation with consequential detrimental and beneficial effects on health, although behavioural changes in society over the past 60 years or so with regard to sun exposure are of considerable importance. The present report concentrates on information published since our previous report in 2007. The adverse effects of UV radiation are primarily on the eye and the skin. While solar UV radiation is a recognised risk factor for some types of cataract and for pterygium, the evidence is less strong, although increasing, for ocular melanoma, and is equivocal at present for age-related macular degeneration. For the skin, the most common harmful outcome is skin cancer, including melanoma and the non-melanoma skin cancers, basal cell carcinoma and squamous cell carcinoma. The incidence of all three of these tumours has risen significantly over the past five decades, particularly in people with fair skin, and is projected to continue to increase, thus posing a significant world-wide health burden. Overexposure to the sun is the major identified environmental risk factor in skin cancer, in association with various genetic risk factors and immune effects. Suppression of some aspects of immunity follows exposure to UV radiation and the consequences of this modulation for the immune control of infectious diseases, for vaccination and for tumours, are additional concerns. In a common sun allergy (polymorphic light eruption), there is an imbalance in the immune response to UV radiation, resulting in a sun-evoked rash. The major health benefit of exposure to solar UV-B radiation is the production of vitamin D. Vitamin D plays a crucial role in bone metabolism and is also implicated in protection against a wide range of diseases. Although there is some evidence supporting protective effects

  14. Quantitative characterization of the Antarctic ozone hole

    NASA Technical Reports Server (NTRS)

    Ito, T.; Sakoda, Y.; Matsubara, K.; Takao, T.; Akagi, K.; Watanabe, Y.; Shibata, S.; Naganuma, H.

    1994-01-01

    The long-term evolution of the Antarctic ozone hole is studied based on the TOMS data and the JMA data-set of stratospheric temperature in relation with the possible role of polar stratospheric clouds (PSC's). The effective mass of depleted ozone in the ozone hole at its annual mature stage reached a historical maximum of 55 Mt in 1991, 4.3 times larger than in 1981. The ozone depletion rate during 30 days before the mature ozone hole does not show any appreciable long-term trend but the interannual fluctuations do, ranging from 0.169 to 0.689 Mt/day with the average of 0.419 Mt/day for the period of 1979 - 1991. The depleted ozone mass has the highest correlation with the region below 195 K on the 30 mb surface in June, whereas the ozone depletion rate correlates most strongly with that in August. The present result strongly suggests that the long-term evolution of the mature ozone hole is caused both by the interannual change of the latitudinal coverage of the early PSC's, which may control the latitude and date of initiation of ozone decrease, and by that of the spatial coverage of the mature PSC's which may control the ozone depletion rate in the Antarctic spring.

  15. Observational evidence of planetary wave influences on ozone enhancements over upper troposphere North Africa

    NASA Astrophysics Data System (ADS)

    Mengistu Tsidu, Gizaw; Ture, Kassahun; Sivakumar, V.

    2013-07-01

    location of observation. The positive PV anomalies upstream or at the observation region bring ozone rich airmass to the region while a negative PV anomaly upstream does the opposite. The position of the anomalies with time changes in accordance with the period of the waves involved. The snap shot of coherent variation of PV and ozone at different time during half cycle of the 5.8-day period has indicated that a region could experience positive (enhancement) or negative (depletion) ozone anomalies of different degree as the wave propagates eastward.

  16. Low Ozone over Europe Doesn't Mean the Sky Is Falling, Its Actually Rising

    NASA Technical Reports Server (NTRS)

    Strahan, Susan; Newman, Paul; Steenrod, Stephen

    2016-01-01

    Data Sources: NASA Aura Microwave Limb Sounder (MLS) (O3 profiles and columns), NASA Global Modeling Initiative (GMI) Chemistry and Transport Model (calculated O3depletion), and MERRA Tropopause Heights. Technical Description of Figures: The left graphics show MLS northern hemisphere stratospheric column ozone on Feb. 1, 2016. Very low columns are seen over the UK and Europe (<225 DU, inside dashed circle). The lower graphic shows the GMI-calculated O3 depletion. It's very small, suggesting the low O3 does not indicate significant depletion. The right graphics show how the high tropopause height in this region explains the observed low ozone. The lower panel shows that the high tropopause on Feb. 1 lifts the O3 profile compared to a typical profile found earlier in winter. This motion lifts the profile to lower pressures thus reducing the total column. The GMI Model shows only 4 Dobson Units (DU) of O3 depletion even though the column is more than 100 DU lower than one month earlier. Scientific significant and societal relevance: To quantitatively understand anthropogenic impacts to the stratospheric ozone layer, we must be able to distinguish between low ozone caused by ozone depleting substances and that caused by natural dynamical variability in the atmosphere. Observations and realistic simulations of atmospheric composition are both required in order to separate natural and anthropogenic ozone variability.

  17. United Kingdom Deriving Emissions linked to Climate Change Network: greenhouse gas and ozone depleting substance measurements from a UK network of tall towers

    NASA Astrophysics Data System (ADS)

    Stanley, Kieran; O'Doherty, Simon; Young, Dickon; Grant, Aoife; Manning, Alistair; Simmonds, Peter; Oram, Dave; Sturges, Bill; Derwent, Richard

    2016-04-01

    Real-time, high-frequency measurement networks are essential for investigating the emissions of gases linked with climate change and stratospheric ozone depletion. These networks can be used to verify greenhouse gas (GHG) and ozone depleting substances (ODS) emission inventories for the Kyoto and Montreal Protocols. Providing accurate and reliable country- and region-specific emissions to the atmosphere are critical for reporting to the UN agencies. The United Kingdom Deriving Emissions linked to Climate Change (UK DECC) Network, operating since 2012, is distinguished by its capability to measure at high-frequency, the influence of all of the important species in the Kyoto and Montreal Protocols from the UK, Ireland and Continental Europe. Data obtained from the UK DECC network are also fed into the European Integrated Carbon Observation System (ICOS). This presentation will give an overview of the UK DECC Network, detailing the analytical techniques used to determine the suite of GHGs and ODSs, as well as the calibration strategy used within the network. Interannual results of key GHGs from the network will also be presented.

  18. 40 CFR Appendix H to Subpart A of... - Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Clean Air Act Amendments of 1990 Phaseout Schedule for Production of Ozone-Depleting Substances H Appendix H to Subpart A of Part 82... STRATOSPHERIC OZONE Production and Consumption Controls Pt. 82, Subpt. A, App. H Appendix H to Subpart A of Part...

  19. Nocturnal Ozone Depletion Events at the Amphitrite Point Observatory on West Vancouver Island

    NASA Astrophysics Data System (ADS)

    Garner, N.; Brownsey, D. K.; Tokarek, T. W.; Ye, C. Z.; Yordanov, N. R.; Osthoff, H. D.; Schiller, C. L.; Vingarzan, R.

    2015-12-01

    Routine monitoring stations on the West coast of North America serve to monitor baseline levels of criteria pollutants such as ozone (O3) arriving from the Pacific Ocean. In Canada, the Amphitrite Point Observatory (APO) in Ucluelet on the West coast of Vancouver Island has been added to this network to provide regional baseline measurements. Recently, McKendry and coworkers have reported frequent episodes of nocturnal O3 depletion events (ODEs) at APO (range: 5-20 ppbv) that generally correlate with alongshore winds, elevated levels of carbon dioxide (CO2), and low vertical entrainment but whose cause(s) has (have) remained unclear. In this work, results from the Ozone-depleting reactions in a coastal atmosphere (ORCA) campaign, which took place at APO from July 6 - 31, 2015, are presented. In addition to the long-term measurements that include aerosol size distribution and composition measurements, mixing ratios of speciated monoterpenes (e.g., α- and β-pinene, limonene), molecular halogens (i.e., Cl2, I2), halogen oxides (i.e., OIO), plus a full suite of nitrogen oxides (including N2O5, PAN, PPN, ΣPN, ΣAN, HNO3, HONO, and ClNO2) were quantified. Synoptic conditions at the site varied greatly between nights. During westerly flow of relatively clean marine air, O3 was generally conserved at night, indicating that deposition of O3 to the ocean surface is a minor loss pathway. When the air mass originated from other sectors, episodes of nocturnal ODEs were observed on several occasions, in which mixing ratios of biogenic VOCs were enhanced. These included air masses that originated from densely forested areas to the East, air masses polluted by marine traffic emissions from the southeast, and air masses from the NW that have traveled parallel to the coastline. In this sector, the air was likely in contact with terrestrial vegetation via land-sea breeze circulations. The results suggest that nocturnal ODEs at APO are mainly driven by local or regional processes

  20. Mesospheric ionization and O2 1Delta(g) depletion

    NASA Technical Reports Server (NTRS)

    Spear, K. A.; Solomon, S.

    1987-01-01

    Observations of O2 1Delta(g) emission during solar proton events reveal large depletions below 80 and near 90 km. The lower-altitude depletions are believed to be due to odd hydrogen production and associated depletion of ozone, but the mechanism producing the depletion near 90 km has not yet been established. In this paper, it is proposed that an exothermic charge exchange reaction between O2(+) and O2 1Delta(g) is likely to be responsible for these high-altitude depletions. In particular, it is shown that the vertical structure of the observed change in airglow emission is consistent with this mechanism.

  1. Linkages Between Ozone-depleting Substances, Tropospheric Oxidation and Aerosols

    NASA Technical Reports Server (NTRS)

    Voulgarakis, A.; Shindell, D. T.; Faluvegi, G.

    2013-01-01

    Coupling between the stratosphere and the troposphere allows changes in stratospheric ozone abundances to affect tropospheric chemistry. Large-scale effects from such changes on chemically produced tropospheric aerosols have not been systematically examined in past studies. We use a composition-climate model to investigate potential past and future impacts of changes in stratospheric ozone depleting substances (ODS) on tropospheric oxidants and sulfate aerosols. In most experiments, we find significant responses in tropospheric photolysis and oxidants, with small but significant effects on methane radiative forcing. The response of sulfate aerosols is sizeable when examining the effect of increasing future nitrous oxide (N2O) emissions. We also find that without the regulation of chlorofluorocarbons (CFCs) through the Montreal Protocol, sulfate aerosols could have increased by 2050 by a comparable amount to the decreases predicted due to relatively stringent sulfur emissions controls. The individual historical radiative forcings of CFCs and N2O through their indirect effects on methane (-22.6mW/sq. m for CFCs and -6.7mW/sq. m for N2O) and sulfate aerosols (-3.0mW/sq. m for CFCs and +6.5mW/sq. m for N2O when considering the direct aerosol effect) discussed here are non-negligible when compared to known historical ODS forcing. Our results stress the importance of accounting for stratosphere-troposphere, gas-aerosol and composition-climate interactions when investigating the effects of changing emissions on atmospheric composition and climate.

  2. Ozone, Climate, and Global Atmospheric Change.

    ERIC Educational Resources Information Center

    Levine, Joel S.

    1992-01-01

    Presents an overview of global atmospheric problems relating to ozone depletion and global warming. Provides background information on the composition of the earth's atmosphere and origin of atmospheric ozone. Describes causes, effects, and evidence of ozone depletion and the greenhouse effect. A vignette provides a summary of a 1991 assessment of…

  3. Observing and Understanding Tropospheric Ozone Changes

    NASA Astrophysics Data System (ADS)

    Logan, Jennifer; Schultz, Martin; Oltmans, Samuel

    2010-03-01

    Tropospheric Ozone Changes Workshop; Boulder, Colorado, 14-16 October 2009; Prompted by the lack of consensus on, and the need to assess current understanding of, long-term changes in tropospheric ozone, a workshop was held in Colorado to (1) evaluate the consistency of data records; (2) assess robust long-term changes; (3) determine how to combine observations and model studies; and (4) define research and observation needs for the future. At the workshop, long-term ozone records from regionally representative surface and mountain sites, ozonesondes, and aircraft were reviewed by region. In western Europe there are several time series of ˜15-40 years from all platforms. Overall, they show a rise in ozone into the middle to late 1990s and a leveling off, or in some cases declines, in the 2000s, in general agreement with precursor emission changes. However, significant differences in detail in the time series from nearby locations provide less confidence in changes before the late 1990s.

  4. Southern America stratospheric ozone variation during the last decade (1996-2005)

    NASA Astrophysics Data System (ADS)

    Imai, T.; Martin, I.; Iha, K.; Souza, S.

    Stratospheric ozone variation in the last decade reveals important dynamics of environmental areas in Brazil possible to be correlated with natural disasters like droughts in the Amazon region and the first hurricane observed in Santa Catarina at sea temperatures bellow 22 r C in South America A team of 74 ozone specialists lead by Prof Fahey from 1965 to 2001 elaborated a very well known graphic The graphic shows that the global ozone remained constant from 1965 to 1980 with 3 000 megatons of Global Ozone when it started to quickly decline in approximately 3 or 80 megatons per year In 2001 more than 50 of the ozone was depleted IPCC specialists recognize the ozone depletion of Fahey studies in the IPCC 2001 8-1 decision the Climate Change and the Ozone Depletion In 2002 Fahey s works went through a deep methodological conference being approved by 44 more specialists in Atmospheric Chemistry in Les Diabretes Switzerland The ozone hole after 1985 reached about 27 millions km 2 or 5 of the surface of the Planet and there practically all the stratospheric ozone annually disappeared in the beginning of October Projecting these figures until 2005 we reached 70 when Katrina Hurricane and Amazons River drought happens and in 2015 the depletion will reach 100 But between 2003 and 2005 the IPCC using the same graphic and exchanging the annual loss of ozone quota for deviation specialist starts saying that the problem will be solved in 2050 That the biggest deviation of --5 was in 1993

  5. Analysis of 1970-1995 Trends in Tropospheric Ozone at Northern Hemisphere Midlatitudes with the GEOS-CHEM Model

    NASA Technical Reports Server (NTRS)

    Fusco, Andrew C.; Logan, Jennifer A.

    2004-01-01

    I ] The causes of trends in tropospheric ozone at Northern Hemisphere midlatitudes from 1970 to 1995 are investigated with the GEOS-CHEM model, a global three-dimensional model of the troposphere driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS). This model is used to investigate the sensitivity of tropospheric ozone with respect to (1) changes in the anthropogenic emission of nitrogen oxides and nonmethane hydrocarbons, (2) increases in methane concentrations, (3) variations in the stratospheric source of ozone, (4) changes in solar radiation resulting from stratospheric ozone depletion, and ( 5 ) increases in tropospheric temperatures. Model results indicate that local increases in NO, emissions have caused most of the increases seen in lower tropospheric ozone over Europe and Japan. Increases in methane are responsible for roughly one fifth of the anthropogenically induced increase in tropospheric ozone at northern midlatitudes. However, changes in ozone precursors do not adequately explain either the spatial differences in observed ozone trends across midlatitudes or the observed decreases in ozone over Canada throughout the troposphere. We argue that ozone depletion in the lowermost stratosphere is likely to have reduced the stratospheric source by as much as 30% from the early 1970s to the mid 1990s. Model simulations that account for such a reduction along with reported changes in anthropogenic emissions show steep declines of ozone in the upper troposphere and variable increases in the lower troposphere that are more consistent with observations. Differential temperature trends in summer between North America and Europe may account for at least some of the remaining spatial variation in tropospheric ozone trends. Increases in ultraviolet (UV) radiation due to stratospheric ozone depletion do not appear to significantly reduce tropospheric ozone, except at midlatitudes in the Southern Hemisphere following the

  6. OZONE PRODUCTION EFFICIENCY AND NOX DEPLETION IN AN URBAN PLUME: INTERPRETATION OF FIELD OBSERVATIONS AND IMPLICATIONS FOR EVALUATING O3-NOX-VOC SENSITIVITY

    EPA Science Inventory

    Ozone production efficiency (OPE) can be defined as the number of ozone (O3) molecules photochemically produced by a molecule of NOx (NO + NO2) before it is lost from the NOx - O3 cycle. Here, we consider observational and modeling techniques to evaluate various operational defi...

  7. Reconciliation of Halogen-Induced Ozone Loss with the Total-Column Ozone Record

    NASA Technical Reports Server (NTRS)

    Shepherd, T. G.; Plummer, D. A.; Scinocca, J. F.; Hegglin, M. I.; Fioletov, V. E.; Reader, M. C.; Remsberg, E.; von Clarmann, T.; Wang, H. J.

    2014-01-01

    The observed depletion of the ozone layer from the 1980s onwards is attributed to halogen source gases emitted by human activities. However, the precision of this attribution is complicated by year-to-year variations in meteorology, that is, dynamical variability, and by changes in tropospheric ozone concentrations. As such, key aspects of the total-column ozone record, which combines changes in both tropospheric and stratospheric ozone, remain unexplained, such as the apparent absence of a decline in total-column ozone levels before 1980, and of any long-term decline in total-column ozone levels in the tropics. Here we use a chemistry-climate model to estimate changes in halogen-induced ozone loss between 1960 and 2010; the model is constrained by observed meteorology to remove the eects of dynamical variability, and driven by emissions of tropospheric ozone precursors to separate out changes in tropospheric ozone. We show that halogen-induced ozone loss closely followed stratospheric halogen loading over the studied period. Pronounced enhancements in ozone loss were apparent in both hemispheres following the volcanic eruptions of El Chichon and, in particular, Mount Pinatubo, which significantly enhanced stratospheric aerosol loads. We further show that approximately 40% of the long-term non-volcanic ozone loss occurred before 1980, and that long-term ozone loss also occurred in the tropical stratosphere. Finally, we show that halogeninduced ozone loss has declined by over 10% since stratospheric halogen loading peaked in the late 1990s, indicating that the recovery of the ozone layer is well underway.

  8. Global ozone observations from the UARS MLS: An overview of zonal-mean results

    NASA Technical Reports Server (NTRS)

    Froidevaux, Lucien; Waters, Joe W.; Read, William G.; Elson, Lee S.; Flower, Dennis A.; Jarnot, Robert F.

    1994-01-01

    Global ozone observations from the Microwave Limb Sounder (MLS) aboard the Upper Atmosphere Research Satellite (UARS) are presented, in both vertically resolved and column abundance formats. The authors review the zonal-mean ozone variations measured over the two and a half years since launch in September 1991. Well-known features such as the annual and semiannual variations are ubiquitous. In the equatorial regions, longer-term changes are believed to be related to the quasi-biennial oscillation (QBO), with a strong semiannual signal above 20 hPa. Ozone values near 50 hPa exhibit an equatorial low from October 1991 to June 1992, after which the low ozone pattern splits into two subtropical lows (possibly in connection with residual circulation changes tied to the QBO) and returns to an equatorial low in September 1993. The ozone hole development at high southern latitudes is apparent in MLS column data integrated down to 100 hPa, the MLS data reinforce current knowledge of this lower-stratospheric phenomenon by providing a height-dependent view of the variations. The region from 30 deg S to 30 deg N (an area equal to half the global area) shows very little change in the ozone column from year to year and within each year. The most striking ozone changes have occurred at northern midlatitudes, with the October 1992 to July 1993 column values significantly lower than during the prior year. The zonal-mean changes manifest themselves as a slower rate of increase during the 1992/93 winter, and there is some evidence for a lower fall minimum. A recovery occurs during late summer of 1993; early 1994 values are significantly larger than during the two previous winters. The timing and latitudinal extent of the northern midlatitude decreases appear to rule out observed ClO enhancements in the Arctic vortex, with related chemical processing and ozone dilution effects, as a unique cause. Local depletion from ClO-related chemical mechanisms alone is also not sufficient, based

  9. Asymmetries in ozone depressions between the polar stratospheres following a solar proton event

    NASA Technical Reports Server (NTRS)

    Maeda, K.; Heath, D. F.

    1978-01-01

    Ozone depletions in the polar stratosphere during the energetic solar proton event on 4 August 1972 were observed by the backscattered ultraviolet (BUV) experiments on the Nimbus 4 satellite. The observed ozone contents, the ozone depressions and their temporal variations above the 4 mb level exhibited distinct asymmetries between the northern and southern hemispheres. Since the ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres, due to the geomagnetic dipole field, it is suggested that these asymmetries may be explained in terms of the differences in dynamics between the summer and the winter polar atmospheres. In the summer (northern) hemisphere, the stratospheric and mesospheric ozone depletion and recovery are smooth functions of time due to the preponderance of undistributed orderly flow in this region. On the other hand, the temporal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) exhibits large amplitude irregularities. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperatures and winds observed by balloons and rocket soundings.

  10. Climate Throughout Geologic Time Was Cooled by Sequences of Explosive Volcanic Eruptions Forming Aerosols That Reflect and Scatter Ultraviolet Solar Radiation and Warmed by Relatively Continuous Extrusion of Basaltic Lava that Depletes Ozone, Allowing More Solar Ultraviolet Radiation to Reach Earth

    NASA Astrophysics Data System (ADS)

    Ward, P. L.

    2015-12-01

    Active volcanoes of all sizes and eruptive styles, emit chlorine and bromine gases observed to deplete ozone. Effusive, basaltic volcanic eruptions, typical in Hawaii and Iceland, extrude large lava flows, depleting ozone and causing global warming. Major explosive volcanoes also deplete ozone with the same emissions, causing winter warming, but in addition eject megatons of water and sulfur dioxide into the lower stratosphere where they form sulfuric-acid aerosols whose particles grow large enough to reflect and scatter ultraviolet sunlight, causing net global cooling for a few years. The relative amounts of explosive and effusive volcanism are determined by the configuration of tectonic plates moving around Earth's surface. Detailed studies of climate change throughout geologic history, and since 1965, are not well explained by greenhouse-gas theory, but are explained quite clearly at OzoneDepletionTheory.info. Ozone concentrations vary substantially by the minute and show close relationships to weather system highs and lows (as pointed out by Dobson in the 1920s), to the height of the tropopause, and to the strength and location of polar vortices and jet streams. Integrating the effects of volcanism on ozone concentrations and the effects of ozone concentrations on synoptic weather patterns should improve weather forecasting. For example, the volcano Bárðarbunga, in central Iceland, extruded 85 km2 of basaltic lava between August 29, 2014, and February 28, 2015, having a profound effect on weather. Most surprising, more than a week before the March 4 eruption of Eyjafjallajökull in 2010, substantial amounts of ozone were released in the vicinity of the volcano precisely when surface deformation showed that magma first began moving up from sills below 4 km depth. Ozone similarly appears to have been emitted 3.5 months before the Pinatubo eruption in 1991. Readily available daily maps of ozone concentrations may allow early warning of an imminent volcanic

  11. Replacement of ozone depleting and toxic chemicals in gravimetric analysis of non-volatile residue

    NASA Technical Reports Server (NTRS)

    Arnold, G. S.; Uht, J. C.; Sinsheimer, F. B.

    1995-01-01

    The standard tests for determining nonvolatile residue accretion on spacecraft surfaces and in clean processing facilities rely on the use of halogenated solvents that are targeted for elimination because of their toxic or ozone-depleting natures. This paper presents a literature-based screening survey for candidate replacement solvents. Potential replacements were evaluated for their vapor pressure, toxicity, and solvent properties. Three likely candidates were identified: ethyl acetate, methyl acetate, and acetone. Laboratory tests are presented that evaluate the suitability of these candidate replacement solvents.

  12. Literature review of some selected types of results and statistical analyses of total-ozone data. [for the ozonosphere

    NASA Technical Reports Server (NTRS)

    Myers, R. H.

    1976-01-01

    The depletion of ozone in the stratosphere is examined, and causes for the depletion are cited. Ground station and satellite measurements of ozone, which are taken on a worldwide basis, are discussed. Instruments used in ozone measurement are discussed, such as the Dobson spectrophotometer, which is credited with providing the longest and most extensive series of observations for ground based observation of stratospheric ozone. Other ground based instruments used to measure ozone are also discussed. The statistical differences of ground based measurements of ozone from these different instruments are compared to each other, and to satellite measurements. Mathematical methods (i.e., trend analysis or linear regression analysis) of analyzing the variability of ozone concentration with respect to time and lattitude are described. Various time series models which can be employed in accounting for ozone concentration variability are examined.

  13. Kindergarten Teachers' Conceptual Framework on the Ozone Layer Depletion. Exploring the Associative Meanings of a Global Environmental Issue

    ERIC Educational Resources Information Center

    Daskolia, Maria; Flogaitis, Evgenia; Papageorgiou, Evgenia

    2006-01-01

    This paper reports on a study conducted among Greek kindergarten teachers aiming to explore their conceptual frameworks on a major environmental issue of our times: the ozone layer depletion. The choice of this particular issue was premised on its novelty, complexity and abstractness which present teachers with difficulties in its teaching. A free…

  14. Ozone depletion, greenhouse gases, and climate change

    NASA Technical Reports Server (NTRS)

    Mooney, Harold A.; Baker, D. James, Jr.; Bretherton, Francis P.; Burke, Kevin C.; Clark, William C.; Davis, Margaret B.; Dickinson, Robert E.; Imbrie, John; Malone, Thomas F.; Mcelroy, Michael B.

    1989-01-01

    This symposium was organized to study the unusual convergence of a number of observations, both short and long term that defy an integrated explanation. Of particular importance are surface temperature observations and observations of upper atmospheric temperatures, which have declined significantly in parts of the stratosphere. There has also been a dramatic decline in ozone concentration over Antarctica that was not predicted. Significant changes in precipitation that seem to be latitude dependent have occurred. There has been a threefold increase in methane in the last 100 years; this is a problem because a source does not appear to exist for methane of the right isotopic composition to explain the increase. These and other meteorological global climate changes are examined in detail.

  15. What would have happened to the ozone layer if chlorofluorocarbons (CFCs) had not been regulated?

    NASA Astrophysics Data System (ADS)

    Oman, L.; Newman, P. A.; Douglass, A. R.; Fleming, E. L.; Frith, S. M.; Hurwitz, M.; Kawa, S. R.; Jackman, C. H.; Krotkov, N. A.; Nash, E. R.; Nielsen, J. E.; Pawson, S.; Stolarski, R. S.; Velders, G. J.

    2010-12-01

    The Montreal Protocol on Substances that Deplete the Ozone Layer was negotiated in 1987 and by 2010 had been signed by all of the nations of the world. In this presentation we use a fully coupled radiation-chemical-dynamical model to simulate a future world where ozone depletion substances (ODSs) were never regulated. In this “world avoided” simulation, ODS levels increase by 3% per year. From 1980 to 2020 we find that 17% of the globally average column ozone is destroyed, and from 1980 to 2065 67% is destroyed. Severe polar depletions (e.g., the Antarctic ozone hole) become year-round rather than just seasonal. Ozone levels in the tropical lower stratosphere remain constant until about 2053 and then collapse to near zero by 2058 as a result of heterogeneous chemical processes (as currently observed in the Antarctic ozone hole). The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical lower stratospheric upwelling. In response to ozone changes, ultraviolet (UV) radiation increases, tripling the erythemal (sunburn) radiation in the northern summer mid-latitudes by 2065.

  16. SMM mesospheric ozone measurements

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  17. Observing Tropospheric Ozone From Space

    NASA Technical Reports Server (NTRS)

    Fishman, Jack

    2000-01-01

    The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry

  18. Quantifying Chemical Ozone Loss in the Arctic Stratosphere with GEOS-STRATCHEM Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Nielsen, J. E.

    2017-01-01

    A faithful representation of polar stratospheric chemistry in models and its connection with dynamical variability is essential for our understanding of the evolution of the ozone layer in a changing climate and during the projected continuing decline of ozone depleting substances in the atmosphere. We use a new configuration of the Goddard Earth Observing System Data Assimilation System with a stratospheric chemistry model to study ozone depletion in the Arctic polar stratosphere during the exceptionally cold (in the stratosphere) winters 2015/2016 and 2010/2011.

  19. Atmospheric chemistry of short-chain haloolefins: photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs).

    PubMed

    Wallington, T J; Sulbaek Andersen, M P; Nielsen, O J

    2015-06-01

    Short-chain haloolefins are being introduced as replacements for saturated halocarbons. The unifying chemical feature of haloolefins is the presence of a CC double bond which causes the atmospheric lifetimes to be significantly shorter than for the analogous saturated compounds. We discuss the atmospheric lifetimes, photochemical ozone creation potentials (POCPs), global warming potentials (GWPs), and ozone depletion potentials (ODPs) of haloolefins. The commercially relevant short-chain haloolefins CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) have short atmospheric lifetimes (days to weeks), negligible POCPs, negligible GWPs, and ODPs which do not differ materially from zero. In the concentrations expected in the environment their atmospheric degradation products will have a negligible impact on ecosystems. CF3CFCH2 (1234yf), trans-CF3CHCHF (1234ze(Z)), CF3CFCF2 (1216), cis-CF3CHCHCl (1233zd(Z)), and trans-CF3CHCHCl (1233zd(E)) are environmentally acceptable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Mortality tradeoff between air quality and skin cancer from changes in stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Eastham, Sebastian D.; Keith, David W.; Barrett, Steven R. H.

    2018-03-01

    Skin cancer mortality resulting from stratospheric ozone depletion has been widely studied. Similarly, there is a deep body of literature on surface ozone and its health impacts, with modeling and observational studies demonstrating that surface ozone concentrations can be increased when stratospheric air mixes to the Earth’s surface. We offer the first quantitative estimate of the trade-off between these two effects, comparing surface air quality benefits and UV-related harms from stratospheric ozone depletion. Applying an idealized ozone loss term in the stratosphere of a chemistry-transport model for modern-day conditions, we find that each Dobson unit of stratospheric ozone depletion results in a net decrease in the global annual mortality rate of ~40 premature deaths per billion population (d/bn/DU). The impacts are spatially heterogeneous in sign and magnitude, composed of a reduction in premature mortality rate due to ozone exposure of ~80 d/bn/DU concentrated in Southeast Asia, and an increase in skin cancer mortality rate of ~40 d/bn/DU, mostly in Western Europe. This is the first study to quantify air quality benefits of stratospheric ozone depletion, and the first to find that marginal decreases in stratospheric ozone around modern-day values could result in a net reduction in global mortality due to competing health impact pathways. This result, which is subject to significant methodological uncertainty, highlights the need to understand the health and environmental trade-offs involved in policy decisions regarding anthropogenic influences on ozone chemistry over the 21st century.

  1. An observational study of the ozone dilution effect: Ozone transport in the austral spring stratosphere

    NASA Technical Reports Server (NTRS)

    Atkinson, Roger J.; Plumb, R. Alan

    1994-01-01

    In a previous observational analysis, Atkinson et al (1989) ascribed a sudden decrease in Southern Hemisphere midlatitude total ozone during December 1987 to an 'ozone dilution effect' brought about by the breakup of the polar stratospheric vortex at that time. A question alluded to but unanswered by that study was the degree to which the observed total ozone decrease might have been caused by the quasi-horizontal equatorward transport of 'ozone hold' air from within the vortex, and to what degree by the vertical advection from lower levels of air naturally low in ozone, a dynamical adjustment process which must accompany the equatorward outbreak of a discrete high-latitude airmass. In the present study, analyses of Ertel potential vorticity, TOMS total ozone, and SAGE and ozone sonde vertical profile data are employed using a novel technique to examine the 1987 event in greater detail, to answer this question. Recent progress is then reported in refining the technique and extending the investigation to examine the dynamical evolution of the austral spring stratosphere during other recent years, to shed more light on the precise nature, frequency, and severity of such 'ozone dilution' events, and the effect that this process may have on long term ozone behavior in the Southern Hemisphere.

  2. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion

    PubMed Central

    McConnell, Joseph R.; Burke, Andrea; Dunbar, Nelia W.; Köhler, Peter; Thomas, Jennie L.; Chellman, Nathan J.; Maselli, Olivia J.; Sigl, Michael; Adkins, Jess F.; Baggenstos, Daniel; Burkhart, John F.; Brook, Edward J.; Buizert, Christo; Cole-Dai, Jihong; Fudge, T. J.; Knorr, Gregor; Graf, Hans-F.; Grieman, Mackenzie M.; Iverson, Nels; McGwire, Kenneth C.; Mulvaney, Robert; Paris, Guillaume; Rhodes, Rachael H.; Saltzman, Eric S.; Steffensen, Jørgen Peder; Taylor, Kendrick C.; Winckler, Gisela

    2017-01-01

    Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics—similar to those associated with modern stratospheric ozone depletion over Antarctica—plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka. PMID:28874529

  3. Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion.

    PubMed

    McConnell, Joseph R; Burke, Andrea; Dunbar, Nelia W; Köhler, Peter; Thomas, Jennie L; Arienzo, Monica M; Chellman, Nathan J; Maselli, Olivia J; Sigl, Michael; Adkins, Jess F; Baggenstos, Daniel; Burkhart, John F; Brook, Edward J; Buizert, Christo; Cole-Dai, Jihong; Fudge, T J; Knorr, Gregor; Graf, Hans-F; Grieman, Mackenzie M; Iverson, Nels; McGwire, Kenneth C; Mulvaney, Robert; Paris, Guillaume; Rhodes, Rachael H; Saltzman, Eric S; Severinghaus, Jeffrey P; Steffensen, Jørgen Peder; Taylor, Kendrick C; Winckler, Gisela

    2017-09-19

    Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found >2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics-similar to those associated with modern stratospheric ozone depletion over Antarctica-plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.

  4. Tropical behavior of mesospheric ozone as observed by SMM

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Kendig, D. J.

    1992-01-01

    The seasonal behavior of low latitude mesospheric ozone, as observed by the SMM satellite solar occultation experiment, is detailed for the 1985-1989 period. Annual as well as semi-annual waves are observed in the 50-70 km altitude region. In the latitude range of +/- 30 deg the ozone phase and amplitude are functions of temperature and seasonal changes in solar flux. Temperature is the controlling factor for the equatorial region and seasonal changes in solar flux become more dominant at latitudes outside the equatorial zone (greater than +/- 15 deg). There is a hemispheric asymmetry in the ozone annual wave in the 20-30 deg region, with Northern Hemispheric ozone having a larger amplitude than Southern Hemispheric ozone.

  5. Emergence of healing in the Antarctic ozone layer

    NASA Astrophysics Data System (ADS)

    Solomon, Susan; Ivy, Diane J.; Kinnison, Doug; Mills, Michael J.; Neely, Ryan R.; Schmidt, Anja

    2016-07-01

    Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or “healing”) is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile of ozone concentration, and (iii) decreases in the areal extent of the ozone hole. Along with chemistry, dynamical and temperature changes have contributed to the healing but could represent feedbacks to chemistry. Volcanic eruptions have episodically interfered with healing, particularly during 2015, when a record October ozone hole occurred after the Calbuco eruption.

  6. Interactive Ozone and Methane Chemistry in GISS-E2 Historical and Future Climate Simulations

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.; Pechony, O.; Voulgarakis, A.; Faluvegi, G.; Nazarenko. L.; Lamarque, J.-F.; Bowman, K.; Milly, G.; Kovari, B.; Ruedy, R.; hide

    2013-01-01

    The new generation GISS climate model includes fully interactive chemistry related to ozone in historical and future simulations, and interactive methane in future simulations. Evaluation of ozone, its tropospheric precursors, and methane shows that the model captures much of the largescale spatial structure seen in recent observations. While the model is much improved compared with the previous chemistry-climate model, especially for ozone seasonality in the stratosphere, there is still slightly too rapid stratospheric circulation, too little stratosphere-to-troposphere ozone flux in the Southern Hemisphere and an Antarctic ozone hole that is too large and persists too long. Quantitative metrics of spatial and temporal correlations with satellite datasets as well as spatial autocorrelation to examine transport and mixing are presented to document improvements in model skill and provide a benchmark for future evaluations. The difference in radiative forcing (RF) calculated using modeled tropospheric ozone versus tropospheric ozone observed by TES is only 0.016W/sq. m. Historical 20th Century simulations show a steady increase in whole atmosphere ozone RF through 1970 after which there is a decrease through 2000 due to stratospheric ozone depletion. Ozone forcing increases throughout the 21st century under RCP8.5 owing to a projected recovery of stratospheric ozone depletion and increases in methane, but decreases under RCP4.5 and 2.6 due to reductions in emissions of other ozone precursors. RF from methane is 0.05 to 0.18W/ sq. m higher in our model calculations than in the RCP RF estimates. The surface temperature response to ozone through 1970 follows the increase in forcing due to tropospheric ozone. After that time, surface temperatures decrease as ozone RF declines due to stratospheric depletion. The stratospheric ozone depletion also induces substantial changes in surface winds and the Southern Ocean circulation, which may play a role in a slightly stronger

  7. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol.

    PubMed

    Chipperfield, M P; Dhomse, S S; Feng, W; McKenzie, R L; Velders, G J M; Pyle, J A

    2015-05-26

    Chlorine- and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic ozone hole expected to disappear by ∼2050. However, we show that by 2013 the Montreal Protocol had already achieved significant benefits for the ozone layer. Using a 3D atmospheric chemistry transport model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with beneficial impacts on surface ultraviolet. A deep Arctic ozone hole, with column values <120 DU, would have occurred given meteorological conditions in 2011. The Antarctic ozone hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The decline over northern hemisphere middle latitudes would have continued, more than doubling to ∼15% by 2013.

  8. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol

    PubMed Central

    Chipperfield, M. P.; Dhomse, S. S.; Feng, W.; McKenzie, R. L.; Velders, G.J.M.; Pyle, J. A.

    2015-01-01

    Chlorine- and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic ozone hole expected to disappear by ∼2050. However, we show that by 2013 the Montreal Protocol had already achieved significant benefits for the ozone layer. Using a 3D atmospheric chemistry transport model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with beneficial impacts on surface ultraviolet. A deep Arctic ozone hole, with column values <120 DU, would have occurred given meteorological conditions in 2011. The Antarctic ozone hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The decline over northern hemisphere middle latitudes would have continued, more than doubling to ∼15% by 2013. PMID:26011106

  9. Quantifying the ozone and ultraviolet benefits already achieved by the Montreal Protocol

    NASA Astrophysics Data System (ADS)

    Chipperfield, M. P.; Dhomse, S. S.; Feng, W.; McKenzie, R. L.; Velders, G. J. M.; Pyle, J. A.

    2015-05-01

    Chlorine- and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic ozone hole expected to disappear by ~2050. However, we show that by 2013 the Montreal Protocol had already achieved significant benefits for the ozone layer. Using a 3D atmospheric chemistry transport model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with beneficial impacts on surface ultraviolet. A deep Arctic ozone hole, with column values <120 DU, would have occurred given meteorological conditions in 2011. The Antarctic ozone hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The decline over northern hemisphere middle latitudes would have continued, more than doubling to ~15% by 2013.

  10. Detecting recovery of the stratospheric ozone layer.

    PubMed

    Chipperfield, Martyn P; Bekki, Slimane; Dhomse, Sandip; Harris, Neil R P; Hassler, Birgit; Hossaini, Ryan; Steinbrecht, Wolfgang; Thiéblemont, Rémi; Weber, Mark

    2017-09-13

    As a result of the 1987 Montreal Protocol and its amendments, the atmospheric loading of anthropogenic ozone-depleting substances is decreasing. Accordingly, the stratospheric ozone layer is expected to recover. However, short data records and atmospheric variability confound the search for early signs of recovery, and climate change is masking ozone recovery from ozone-depleting substances in some regions and will increasingly affect the extent of recovery. Here we discuss the nature and timescales of ozone recovery, and explore the extent to which it can be currently detected in different atmospheric regions.

  11. Detecting recovery of the stratospheric ozone layer

    NASA Astrophysics Data System (ADS)

    Chipperfield, Martyn P.; Bekki, Slimane; Dhomse, Sandip; Harris, Neil R. P.; Hassler, Birgit; Hossaini, Ryan; Steinbrecht, Wolfgang; Thiéblemont, Rémi; Weber, Mark

    2017-09-01

    As a result of the 1987 Montreal Protocol and its amendments, the atmospheric loading of anthropogenic ozone-depleting substances is decreasing. Accordingly, the stratospheric ozone layer is expected to recover. However, short data records and atmospheric variability confound the search for early signs of recovery, and climate change is masking ozone recovery from ozone-depleting substances in some regions and will increasingly affect the extent of recovery. Here we discuss the nature and timescales of ozone recovery, and explore the extent to which it can be currently detected in different atmospheric regions.

  12. The World Already Avoided: Quantifying the Ozone Benefits Achieved by the Montreal Protocol

    NASA Astrophysics Data System (ADS)

    Chipperfield, Martyn; Dhomse, Sandip; Feng, Wuhu; McKenzie, Richard; Velders, Guus; Pyle, John

    2015-04-01

    Chlorine and bromine-containing ozone-depleting substances (ODSs) are controlled by the 1987 Montreal Protocol. In consequence, atmospheric equivalent chlorine peaked in 1993 and has been declining slowly since then. Consistent with this, models project a gradual increase in stratospheric ozone with the Antarctic Ozone Hole expected to disappear by ~2050. However, we show that by 2014 the Montreal Protocol has already achieved significant benefits for the ozone layer. Using an off-line 3-D atmospheric chemistry model, we demonstrate that much larger ozone depletion than observed has been avoided by the protocol, with benefits for surface UV and climate. A deep Arctic Ozone Hole, with column values <120 DU, would have occurred given the meteorological conditions in 2011. The Antarctic Ozone Hole would have grown in size by 40% by 2013, with enhanced loss at subpolar latitudes. The ozone decline over northern hemisphere middle latitudes would have continued, more than doubling to ~15% by 2013.

  13. Stratospheric ozone - Fragile shield. [SST exhausts and Freons impact

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Stewart, R. W.

    1975-01-01

    Atmospheric models that have been used in major studies on the possible impact of SST exhausts and Freons on stratospheric ozone are discussed and compared. An overview is given of ozone-reduction estimates that they produce, together with an assessment of possible effects of atmospheric testing of thermonuclear bombs in an attempt to find direct observational evidence for ozone depletion resulting from human activities. It is concluded that clear validation of atmospheric-model predictions is lacking.

  14. The characteristics of tropospheric ozone seasonality observed from ozone soundings at Pohang, Korea.

    PubMed

    Kim, Jae H; Lee, H J; Lee, S H

    2006-07-01

    This paper presents the first analysis of vertical ozone sounding measurements over Pohang, Korea. The main focus is to analyze the seasonal variation of vertical ozone profiles and determine the mechanisms controlling ozone seasonality. The maxima ozone at the surface and in the free troposphere are observed in May and June, respectively. In comparison with the ozone seasonality at Oki (near sea level) and Happo (altitude of 1840 m) in Japan, which are located at the same latitude as of Pohang, we have found that the time of the ozone maximum at the Japanese sites is always a month earlier than at Pohang. Analysis of the wind flow at the surface shows that the wind shifts from westerly to southerly in May over Japan, but in June over Pohang. However, this wind shift above boundary layer occurs a month later. This wind shift results in significantly smaller amounts of ozone because the southerly wind brings clean wet tropical air. It has been suggested that the spring ozone maximum in the lower troposphere is due to polluted air transported from China. However, an enhanced ozone amount over the free troposphere in June appears to have a different origin. A tongue-like structure in the time-height cross-section of ozone concentrations, which starts from the stratosphere and extends to the middle troposphere, suggests that the ozone enhancement occurs due to a gradual migration of ozone from the stratosphere. The high frequency of dry air with elevated ozone concentrations in the upper troposphere in June suggests that the air is transported from the stratosphere. HYSPLIT trajectory analysis supports the hypothesis that enhanced ozone in the free troposphere is not likely due to transport from sources of anthropogenic activity.

  15. Other EPA Initiatives to Protect the Ozone Layer

    EPA Pesticide Factsheets

    Access information on EPA's efforts to address ozone layer depletion through voluntary partnerships with the private sector and activities aimed at educating the public about the health effects of ozone layer depletion.

  16. The signs of Antarctic ozone hole recovery.

    PubMed

    Kuttippurath, Jayanarayanan; Nair, Prijitha J

    2017-04-03

    Absorption of solar radiation by stratospheric ozone affects atmospheric dynamics and chemistry, and sustains life on Earth by preventing harmful radiation from reaching the surface. Significant ozone losses due to increases in the abundances of ozone depleting substances (ODSs) were first observed in Antarctica in the 1980s. Losses deepened in following years but became nearly flat by around 2000, reflecting changes in global ODS emissions. Here we show robust evidence that Antarctic ozone has started to recover in both spring and summer, with a recovery signal identified in springtime ozone profile and total column measurements at 99% confidence for the first time. Continuing recovery is expected to impact the future climate of that region. Our results demonstrate that the Montreal Protocol has indeed begun to save the Antarctic ozone layer.

  17. Ozone Trend Detectability

    NASA Technical Reports Server (NTRS)

    Campbell, J. W. (Editor)

    1981-01-01

    The detection of anthropogenic disturbances in the Earth's ozone layer was studied. Two topics were addressed: (1) the level at which a trend in total ozoning is detected by existing data sources; and (2) empirical evidence in the prediction of the depletion in total ozone. Error sources are identified. The predictability of climatological series, whether empirical models can be trusted, and how errors in the Dobson total ozone data impact trend detectability, are discussed.

  18. When Will the Antarctic Ozone Hole Recover?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph; Montzka, Stephen A.; Schauffler, Sue

    2006-01-01

    The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. Herein we demonstrate an ozone hole parametric model. This model is based upon: 1) a new algorithm for estimating C1 and Br levels over Antarctica and 2) late-spring Antarctic stratospheric temperatures. This parametric model explains 95% of the ozone hole area s variance. We use future ODS levels to predict ozone hole recovery. Full recovery to 1980 levels will occur in approximately 2068. The ozone hole area will very slowly decline over the next 2 decades. Detection of a statistically significant decrease of area will not occur until approximately 2024. We further show that nominal Antarctic stratospheric greenhouse gas forced temperature change should have a small impact on the ozone hole.

  19. Nitrous Oxides Ozone Destructiveness Under Different Climate Scenarios

    NASA Technical Reports Server (NTRS)

    Kanter, David R.; McDermid, Sonali P.

    2016-01-01

    Nitrous oxide (N2O) is an important greenhouse gas and ozone depleting substance as well as a key component of the nitrogen cascade. While emissions scenarios indicating the range of N2O's potential future contributions to radiative forcing are widely available, the impact of these emissions scenarios on future stratospheric ozone depletion is less clear. This is because N2O's ozone destructiveness is partially dependent on tropospheric warming, which affects ozone depletion rates in the stratosphere. Consequently, in order to understand the possible range of stratospheric ozone depletion that N2O could cause over the 21st century, it is important to decouple the greenhouse gas emissions scenarios and compare different emissions trajectories for individual substances (e.g. business-as-usual carbon dioxide (CO2) emissions versus low emissions of N2O). This study is the first to follow such an approach, running a series of experiments using the NASA Goddard Institute for Space Sciences ModelE2 atmospheric sub-model. We anticipate our results to show that stratospheric ozone depletion will be highest in a scenario where CO2 emissions reductions are prioritized over N2O reductions, as this would constrain ozone recovery while doing little to limit stratospheric NOx levels (the breakdown product of N2O that destroys stratospheric ozone). This could not only delay the recovery of the stratospheric ozone layer, but might also prevent a return to pre-1980 global average ozone concentrations, a key goal of the international ozone regime. Accordingly, we think this will highlight the importance of reducing emissions of all major greenhouse gas emissions, including N2O, and not just a singular policy focus on CO2.

  20. New methodology for Ozone Depletion Potentials of short-lived compounds: n-Propyl bromide as an example

    NASA Astrophysics Data System (ADS)

    Wuebbles, Donald J.; Patten, Kenneth O.; Johnson, Matthew T.; Kotamarthi, Rao

    2001-07-01

    A number of the compounds proposed as replacements for substances controlled under the Montreal Protocol have extremely short atmospheric lifetimes, on the order of days to a few months. An important example is n-propyl bromide (also referred to as 1-bromopropane, CH2BrCH2CH3 or simplified as 1-C3H7Br or nPB). This compound, useful as a solvent, has an atmospheric lifetime of less than 20 days due to its reaction with hydroxyl. Because nPB contains bromine, any amount reaching the stratosphere has the potential to affect concentrations of stratospheric ozone. The definition of Ozone Depletion Potentials (ODP) needs to be modified for such short-lived compounds to account for the location and timing of emissions. It is not adequate to treat these chemicals as if they were uniformly emitted at all latitudes and longitudes as normally done for longer-lived gases. Thus, for short-lived compounds, policymakers will need a table of ODP values instead of the single value generally provided in past studies. This study uses the MOZART2 three-dimensional chemical-transport model in combination with studies with our less computationally expensive two-dimensional model to examine potential effects of nPB on stratospheric ozone. Multiple facets of this study examine key questions regarding the amount of bromine reaching the stratosphere following emission of nPB. Our most significant findings from this study for the purposes of short-lived replacement compound ozone effects are summarized as follows. The degradation of nPB produces a significant quantity of bromoacetone which increases the amount of bromine transported to the stratosphere due to nPB. However, much of that effect is not due to bromoacetone itself, but instead to inorganic bromine which is produced from tropospheric oxidation of nPB, bromoacetone, and other degradation products and is transported above the dry and wet deposition processes of the model. The MOZART2 nPB results indicate a minimal correction of the

  1. Ozone: What Would It Be Like to Live in a World Where the Sun Was Dangerous?

    ERIC Educational Resources Information Center

    Clearing, 1992

    1992-01-01

    Defines ozone layer and the meaning, evidence, causes, and significance of ozone depletion. Summarizes solutions to the problem of ozone depletion and government action concerning the issue. Graphically depicts ozone depletion, global ozone loss, and how ozone is destroyed. Provides a lesson plan and listing for additional educational resources.…

  2. Interhemispheric Differences in Dentifrication and Related Processes Affecting Polar Ozone

    NASA Technical Reports Server (NTRS)

    Santee, M. L.; Read, W. G.; Waters, J. W.; Froidevaux, L.; Manney, G. L.; Flower, D. A.; Jarnot, R. F.; Harwood, R. S.; Peckham, G. E.

    1994-01-01

    The severe depletion of stratospheric ozone over Antarctica in late winter and early spring is caused by enhanced CLO abundances arising from heterogeneous reactions on polar stratospheric clouds (PSCs). CLO abundances comparable to those over Antarctica have also been observed throughout the Arctic Vortex, but the accompanying loss of Arctic ozone has been much less severe.

  3. Concerns for Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Liang, Qing; Strahan, Susan E.; Fleming, Eric L.

    2017-01-01

    Reactive halogen gases containing chlorine (Cl) or bromine (Br) can destroy stratospheric ozone via catalytic cycles. The main sources of atmospheric reactive halogen are the long-lived synthetic chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs), carbon tetrachloride (CCl4), methyl chloroform (CH3CCl3), and bromine-containing halons, all of which persist in the atmosphere for years. These ozone-depleting substances are now controlled under the Montreal Protocol and its amendments. Natural methyl bromide (CH3Br) and methyl chloride (CH3Cl) emissions are also important long-lived sources of atmospheric reactive halogen. Rising concentrations of very-short-lived substances (VSLSs) with atmospheric lifetimes of less than half a year may also contribute to future stratospheric ozone depletion. A greater concern for ozone layer recovery is incomplete compliance with the Montreal Protocol, which will impact stratospheric ozone for many decades, as well as rising natural emissions as a result of climate change.

  4. Observations over Hurricanes from the Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Vasilkov, A.; Yang, K.; Bhartia, P. K.

    2006-01-01

    There is an apparent inconsistency between the total column ozone derived from the total ozone mapping spectrometer (TOMS) and aircraft observations within the eye region of tropical cyclones. The higher spectral resolution, coverage, and sampling of the ozone monitoring instrument (OMI) on NASA s Aura satellite as compared with TOMS allows for improved ozone retrievals by including estimates of cloud pressure derived simultaneously using the effects of rotational Raman scattering. The retrieved cloud pressures from OM1 are more appropriate than the climatological cloud-top pressures based on infrared measurements used in the TOMS and initial OM1 algorithms. We find that total ozone within the eye of hurricane Katrina is significantly overestimated when we use climatological cloud pressures. Using OMI-retrieved cloud pressures, total ozone in the eye is similar to that in the surrounding area. The corrected total ozone is in better agreement with aircraft measurements that imply relatively small or negligible amounts of stratospheric intrusion into the eye region of tropical cyclones.

  5. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations

    DOE PAGES

    Schultz, Martin G.; Schroder, Sabine; Lyapina, Olga; ...

    2017-11-27

    In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to buildmore » the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of a posteriori data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface observation

  6. Tropospheric Ozone Assessment Report: Database and Metrics Data of Global Surface Ozone Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Martin G.; Schroder, Sabine; Lyapina, Olga

    In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues, which are part of this special feature. Cooperation among many data centers and individual researchers worldwide made it possible to buildmore » the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. Considerable effort was made to harmonize and synthesize data formats and metadata information from various networks and individual data submissions. Extensive quality control was applied to identify questionable and erroneous data, including changes in apparent instrument offsets or calibrations. Such data were excluded from TOAR data products. Limitations of a posteriori data quality assurance are discussed. As a result of the work presented here, global coverage of surface ozone data for scientific analysis has been significantly extended. Yet, large gaps remain in the surface observation

  7. Depletions in winter total ozone values over southern England

    NASA Technical Reports Server (NTRS)

    Lapworth, A.

    1994-01-01

    A study has been made of the recently re-evaluated time series of daily total ozone values for the period 1979 to 1992 for southern England. The series consists of measurements made at two stations, Bracknell and Camborne. The series shows a steady decline in ozone values in the spring months over the period, and this is consistent with data from an earlier decade that has been published but not re-evaluated. Of exceptional note is the monthly mean for January 1992 which was very significantly reduced from the normal value, and was the lowest so far measured for this month. This winter was also noteworthy for a prolonged period during which a blocking anticyclone dominated the region, and the possibility existed that this was related to the ozone anomaly. It was possible to determine whether the origin of the low ozone value lay in ascending stratospheric motions. A linear regression analysis of ozone value deviation against 100hPa temperature deviations was used to reduce ozone values to those expected in the absence of high pressure. The assumption was made that the normal regression relation was not affected by atmospheric anomalies during the winter. This showed that vertical motions in the stratosphere only accounted for part of the ozone anomaly and that the main cause of the ozone deficit lay either in a reduced stratospheric circulation to which the anticyclone may be related or in chemical effects in the reduced stratospheric temperatures above the high pressure area. A study of the ozone time series adjusted to remove variations correlated with meteorological quantities, showed that during the period since 1979, one other winter, that of 1982/3, showed a similar although less well defined deficit in total ozone values.

  8. Some observations on the role of planetary waves in determining the spring time ozone distribution in the Antarctic

    NASA Technical Reports Server (NTRS)

    Chandra, S.; Mcpeters, R. D.

    1986-01-01

    Ozone measurements from 1970 to 1984 from the Nimbus 4 backscattered ultraviolet and the Nimbus 7 solar backscattered ultraviolet spectrometers show significant decrease in total ozone only after 1979. The downward trend is most apparent in October south of 70 deg S in the longitude zone 0 to 30 deg W where planetary wave activity is weak. Outside this longitude region, the trend in total ozone is much smaller due to strong interannual variability of wave activity. This paper gives a phenomenological description of ozone depletion in the Antarctic region based on vertical advection and transient planetary waves.

  9. When Will the Antarctic Ozone Hole Recover?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.

    2006-01-01

    The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. In this talk we will demonstrate an ozone hole parametric model. This model is based upon: 1) a new algorithm for estimating 61 and Br levels over Antarctica and 2) late-spring Antarctic stratospheric temperatures. This parametric model explains 95% of the ozone hole area's variance. We use future ODS levels to predict ozone hole recovery. Full recovery to 1980 levels will occur in approximately 2068. The ozone hole area will very slowly decline over the next 2 decades. Detection of a statistically significant decrease of area will not occur until approximately 2024. We further show that nominal Antarctic stratospheric greenhouse gas forced temperature change should have a small impact on the ozone hole.

  10. What Would Have Happened to the Ozone Layer if Chlorofluorocarbons (CFCs) had not been Regulated?

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Oman, L. D.; Douglass, A. R.; Fleming, E. L.; Frith, S. M.; Hurwitz, M. M.; Kawa, S. R.; Jackman, C. H.; Krotkov, N. A.; Nash, E. R.; hide

    2008-01-01

    Ozone depletion by chlorofluorocarbons (CFCs) was first proposed by Molina and Rowland in their 1974 Nature paper. Since that time, the sci entific connection between ozone losses and CFCs and other ozone depl eting substances (ODSs) has been firmly established with laboratory m easurements, atmospheric observations, and modeling research. This science research led to the implementation of international agreements t hat largely stopped the production of ODSs. In this study we use a fu lly-coupled radiation-chemical-dynamical model to simulate a future world where ODSs were never regulated and ODS production grew at an ann ual rate of 3%. In this "world avoided" simulation 1.7 % of the globa lly-average column ozone is destroyed by 2020, and 67% is destroyed b y 2065 in comparison to 1980. Large ozone depletions in the polar region become year-round rather than just seasonal as is currently observ ed in the Antarctic ozone hole. Very large temperature decreases are observed in response to circulation changes and decreased shortwave radiation absorption by ozone. Ozone levels in the tropical lower strat osphere remain constant until about 2053 and then collapse to near ze ro by 2058 as a result of heterogeneous chemical processes (as curren tly observed in the Antarctic ozone hole). The tropical cooling that triggers the ozone collapse is caused by an increase of the tropical upwelling. In response to ozone changes, ultraviolet radiation increa ses, more than doubling the erythemal radiation in the northern summer midlatitudes by 2060.

  11. Integrated Global Observation Strategy - Ozone and Atmospheric Chemistry Project

    NASA Technical Reports Server (NTRS)

    Hilsenrath, Ernest; Readings, C. J.; Kaye, J.; Mohnen, V.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The "Long Term Continuity of Stratospheric Ozone Measurements and Atmospheric Chemistry" project was one of six established by the Committee on Earth Observing Satellites (CEOS) in response to the Integrated Global Observing Strategy (IGOS) initiative. IGOS links satellite and ground based systems for global environmental observations. The strategy of this project is to develop a consensus of user requirements including the scientific (SPARC, IGAC, WCRP) and the applications community (WMO, UNEP) and to develop a long-term international plan for ozone and atmospheric chemistry measurements. The major components of the observing system include operational and research (meeting certain criteria) satellite platforms planned by the space faring nations which are integrated with a well supported and sustained ground, aircraft, and balloon measurements program for directed observations as well satellite validation. Highly integrated and continuous measurements of ozone, validation, and reanalysis efforts are essential to meet the international scientific and applications goals. In order to understand ozone trends, climate change, and air quality, it is essential to conduct long term measurements of certain other atmospheric species. These species include key source, radical, and reservoir constituents.

  12. HYDROXYL RADICAL/OZONE RATIOS DURING OZONATION PROCESSES. I. THE RCT CONCEPT

    EPA Science Inventory

    The ozonation of model systems and several natural waters was examined in bench-scale batch experiments. In addition to measuring the concentration of ozone (03), the rate of depletion of an in situ hydroxyl radical probe compound was monitored, thus providing information on the ...

  13. A Model of the Effect of Ozone Depletion on Lower-Stratospheric Structure

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Stolarski, Richard S.; Gupta, Mohan L.; Nielsen, J. Eric; Pawson, Steven

    2005-01-01

    We have run two twenty-year integrations of a global circulation model using 1978-1980 and 1998-2000 monthly mean ozone climatologies. The ozone climatology is used solely in the radiation scheme of the model. Several key differences between the model runs will be presented. The temperature and potential vorticity (PV) structure of the lower stratosphere, particularly in the Southern Hemisphere, is significantly changed using the 1998-2000 ozone climatology. In the Southern Hemisphere summer, the lapse rate and PV-defined polar tropopauses are both at altitudes on the order of several hundred meters greater than the 1978-1980 climatological run. The 380 K potential temperature surf= is likewise at a greater altitude. The mass of the extratropical lowermost stratosphere (between the tropopause and 380 K surface) remains unchanged. The altitude differences are not observed in the Northern Hemisphere. The different ozone fields do not produce a significant change in the annual extratropical stratosphere-troposphere exchange of mass although slight variations in the spatial distribution of the exchange exist. We are also investigating a delay in the breakup of the Southern Hemisphere polar vortex due to the differing ozone climatologies.

  14. Emergence of healing in the Antarctic ozone layer.

    PubMed

    Solomon, Susan; Ivy, Diane J; Kinnison, Doug; Mills, Michael J; Neely, Ryan R; Schmidt, Anja

    2016-07-15

    Industrial chlorofluorocarbons that cause ozone depletion have been phased out under the Montreal Protocol. A chemically driven increase in polar ozone (or "healing") is expected in response to this historic agreement. Observations and model calculations together indicate that healing of the Antarctic ozone layer has now begun to occur during the month of September. Fingerprints of September healing since 2000 include (i) increases in ozone column amounts, (ii) changes in the vertical profile of ozone concentration, and (iii) decreases in the areal extent of the ozone hole. Along with chemistry, dynamical and temperature changes have contributed to the healing but could represent feedbacks to chemistry. Volcanic eruptions have episodically interfered with healing, particularly during 2015, when a record October ozone hole occurred after the Calbuco eruption. Copyright © 2016, American Association for the Advancement of Science.

  15. Investigations of Stratosphere-Troposphere Exchange of Ozone Derived From MLS Observations

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Schoeberl, Mark R.; Ziemke, Jerry R.

    2006-01-01

    Daily high-resolution maps of stratospheric ozone have been constructed using observations by MLS combined with trajectory information. These fields are used to determine the extratropical stratosphere-troposphere exchange (STE) of ozone for the year 2005 using two diagnostic methods. The resulting two annual estimates compare well with past model- and observational-based estimates. Initial analyses of the seasonal characteristics indicate that significant STE of ozone in the polar regions occurs only during spring and early summer. We also examine evidence that the Antarctic ozone hole is responsible for a rapid decrease in the rate of ozone STE during the SH spring. Subtracting the high-resolution stratospheric ozone fiom OMI total column measurements creates a high-resolution tropospheric ozone residual (HTOR) product. The HTOR fields are compared to the spatial distribution of the ozone STE. We show that the mean tropospheric ozone maxima tend to occur near locations of significant ozone STE. This suggests that STE may be responsible for a significant fraction of many mean tropospheric ozone anomalies.

  16. Determination of oxidant exposure during ozonation of secondary effluent to predict contaminant removal.

    PubMed

    Zucker, Ines; Avisar, Dror; Mamane, Hadas; Jekel, Martin; Hübner, Uwe

    2016-09-01

    The use of kinetic models to predict oxidation performance in wastewater is limited due to fast ozone depletion during the first milliseconds of the reaction. This paper introduces the Quench Flow Module (QFM), a bench-scale experimental technique developed to measure the first 5-500 milliseconds of ozone depletion for accurate determination of ozone exposure in wastewater-ozonation processes. Calculated ozone exposure in QFM experiments was up to 24% lower than in standard batch experiments, strongly depending on the initial sampling point for measurement in batch experiments. However, oxidation rates of slowly- and moderately-reacting trace organic compounds (TrOCs) were accurately predicted from batch experiments based on integration of ozone depletion and removal of an ozone-resistant probe compound to calculate oxidant exposures. An alternative concept, where ozone and hydroxyl radical exposures are back-calculated from the removal of two probe compounds, was tested as well. Although the QFM was suggested to be an efficient mixing reactor, ozone exposure ranged over three orders of magnitude when different probe compounds reacting moderately with ozone were used for the calculation. These effects were beyond uncertainty ranges for apparent second order rate constants and consistently observed with different ozone-injection techniques, i.e. QFM, batch experiments, bubble columns and venturi injection. This indicates that previously suggested mixing effects are not responsible for the difference and other still unknown factors might be relevant. Results furthermore suggest that ozone exposure calculations from the relative residual concentration of a probe compound are not a promising option for evaluation of ozonation of secondary effluents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Relaxed Eddy Accumulation Measurements of Ozone Depleting Compounds from a Mesohaline Saltmarsh Invaded by Lepidium latifolium.

    NASA Astrophysics Data System (ADS)

    Deventer, M. J.; Jiao, Y.; Rhew, R. C.

    2017-12-01

    Natural emissions of methyl bromide (CH3Br) and methyl chloride (CH3Cl) from terrestrial ecosystems might explain the missing source of these compounds to the atmosphere. Methyl halides are a major source for stratospheric halogens, which catalyzing ozone depletion. Real-world measurements of their exchange fluxes are limited, typically occurring at coarse time scales using intrusive measurement techniques (e.g., laboratory incubations of soil and vegetation samples). To improve the current understanding of the net budget and to provide a more solid foundation for up-scaling purposes, the surface-atmosphere exchange for both methyl halides has been studied during 2016/2017 in a year-long field campaign at Rush Ranch (38.2004 °N, 122.0265 °W), a 4.6 km2 large (natural) brackish saltmarsh in the San Francisco Bay National Estuarine in Suisun Bay (CA, United States), using the non-intrusive micrometeorological Relaxed Eddy Accumulation (REA) technique. With REA flux measurements, a large area of the salt marsh (on the order of multiple acres) can be studied without disturbance. Concurrently, static flux chamber incubations were conducted over different vegetation species, to identify their relevance in terms of methyl halide emissions. Our results confirm substantial emissions of methyl halides from the studied saltmarsh. A rough global extrapolation of these results yields yearly emissions of 52 Gg yr-1 (CH3Cl) and 8 Gg yr-1 for CH3Br, respectively, which is close to estimates based on chamber based observations from southern California saltmarshes. Chamber incubations at Rush Ranch revealed that the invasive species Lepidium latifolium (perennial pepperweed) emits a significant amount of methyl halides, less than the native alkali heath (Frankenia salina) but much more than the native pickleweed (Salicornia spp.) Due to aggressive invasiveness and it's capability to form dense monospecific patches, L. latifolium is the main driver of halide emissions at Rush Ranch

  18. Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wu, S.; Huang, Y.; Wang, Y.

    2014-04-01

    There has been significant stratospheric ozone depletion since the late 1970s due to ozone-depleting substances (ODSs). With the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. In this study, we examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). With a full recovery of the stratospheric ozone, the projected increases in ozone column range from 1% over the low latitudes to more than 10% over the polar regions. The sensitivity factor of troposphere ozone photolysis rate, defined as the percentage changes in surface ozone photolysis rate for 1% increase in stratospheric ozone column, shows significant seasonal variation but is always negative with absolute value larger than one. The expected stratospheric ozone recovery is found to affect the tropospheric ozone destruction rates much more than the ozone production rates. Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. The global average tropospheric OH decreases by 1.7%, and the global average lifetime of tropospheric ozone increases by 1.5%. The perturbations to tropospheric ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 0.8 ppbv in the remote areas. Increases in ozone lifetime by up to 13% are found in the troposphere. The increased lifetimes of tropospheric ozone in response to stratospheric ozone recovery enhance the intercontinental transport of ozone and global pollution, in particular for the summertime. The global background ozone attributable to Asian emissions is calculated to increase by up to 15% or 0.3 ppbv in the Northern Hemisphere in response to the projected stratospheric ozone recovery.

  19. Ozone (Environmental Health Student Portal)

    MedlinePlus

    ... Environmental Protection Agency) - Describes ozone depletion effects on human health, plants, marine ecosystems, and biogeochemical cycles. Ozone (Tox ... Medicine National Institutes of Health U.S. Department of Health and Human Services

  20. Ozone and Interdisciplinary Science Teaching--Learning to Address the Things That Count Most.

    ERIC Educational Resources Information Center

    Hobson, Art

    1993-01-01

    Presents the ozone depletion story as an excellent case study for the integration of science-related social issues into the college science curriculum. Describes the history of ozone depletion and efforts to remedy the problem. Provides a lecture outline on ozone depletion. Discusses integrating other science-related interdisciplinary topics in…

  1. Achievements in Stratospheric Ozone Protection

    EPA Pesticide Factsheets

    This report describes achievements in protecting the ozone layer, the benefits of these achievements, and strategies involved (e.g., using alternatives to ozone-depleting substances, phasing out harmful substances, and creating partnerships).

  2. Ozone time scale decomposition and trend assessment from surface observations

    NASA Astrophysics Data System (ADS)

    Boleti, Eirini; Hueglin, Christoph; Takahama, Satoshi

    2017-04-01

    Emissions of ozone precursors have been regulated in Europe since around 1990 with control measures primarily targeting to industries and traffic. In order to understand how these measures have affected air quality, it is now important to investigate concentrations of tropospheric ozone in different types of environments, based on their NOx burden, and in different geographic regions. In this study, we analyze high quality data sets for Switzerland (NABEL network) and whole Europe (AirBase) for the last 25 years to calculate long-term trends of ozone concentrations. A sophisticated time scale decomposition method, called the Ensemble Empirical Mode Decomposition (EEMD) (Huang,1998;Wu,2009), is used for decomposition of the different time scales of the variation of ozone, namely the long-term trend, seasonal and short-term variability. This allows subtraction of the seasonal pattern of ozone from the observations and estimation of long-term changes of ozone concentrations with lower uncertainty ranges compared to typical methodologies used. We observe that, despite the implementation of regulations, for most of the measurement sites ozone daily mean values have been increasing until around mid-2000s. Afterwards, we observe a decline or a leveling off in the concentrations; certainly a late effect of limitations in ozone precursor emissions. On the other hand, the peak ozone concentrations have been decreasing for almost all regions. The evolution in the trend exhibits some differences between the different types of measurement. In addition, ozone is known to be strongly affected by meteorology. In the applied approach, some of the meteorological effects are already captured by the seasonal signal and already removed in the de-seasonalized ozone time series. For adjustment of the influence of meteorology on the higher frequency ozone variation, a statistical approach based on Generalized Additive Models (GAM) (Hastie,1990;Wood,2006), which corrects for meteorological

  3. Observations and theories related to Antarctic ozone changes

    NASA Technical Reports Server (NTRS)

    Hartmann, D.; Watson, R. T.; Cox, Richard A.; Kolb, C.; Mahlman, J.; Mcelroy, M.; Plumb, A.; Ramanathan, V.; Schoeberl, M.; Solomon, S.

    1989-01-01

    In 1985, there was a report of a large, sudden, and unanticipated decrease in the abundance of springtime Antarctic ozone over the last decade. By 1987, ozone decreases of more than 50 percent in the total column, and 95 percent locally between 15 and 20 km, had been observed. The scientific community quickly rose to the challenge of explaining this remarkable discovery; theoreticians soon developed a series of chemical and dynamical hypotheses to explain the ozone loss. Three basic theories were proposed to explain the springtime ozone hole. (1) The ozone hole is caused by the increasing atmospheric loadings of manmade chemicals containing chlorine (chlorofluorocarbons (CFC's) and bromine (halons)). These chemicals efficiently destroy ozone in the lower stratosphere in the Antarctic because of the special geophysical conditions, of an isolated air mass (polar vortex) with very cold temperatures, that exist there. (2) The circulation of the atmosphere in spring has changed from being predominantly downward over Antarctica to upward. This would mean that ozone poor air from the troposphere, instead of ozone rich air from the upper stratosphere, would be transported into the lower Antarctic stratosphere. (3) The abundance of the oxides of nitrogen in the lower Antarctic stratosphere is periodically enhanced by solar activity. Nitrogen oxides are produced in the upper mesosphere and thermosphere and then transported downward into the lower stratosphere in Antarctica, resulting in the chemical destruction of ozone. The climatology and trends of ozone, temperature, and polar stratospheric clouds are discussed. Also, the transport and chemical theories for the Antarctic ozone hole are presented.

  4. Not just about sunburn--the ozone hole's profound effect on climate has significant implications for Southern Hemisphere ecosystems.

    PubMed

    Robinson, Sharon A; Erickson, David J

    2015-02-01

    Climate scientists have concluded that stratospheric ozone depletion has been a major driver of Southern Hemisphere climate processes since about 1980. The implications of these observed and modelled changes in climate are likely to be far more pervasive for both terrestrial and marine ecosystems than the increase in ultraviolet-B radiation due to ozone depletion; however, they have been largely overlooked in the biological literature. Here, we synthesize the current understanding of how ozone depletion has impacted Southern Hemisphere climate and highlight the relatively few documented impacts on terrestrial and marine ecosystems. Reviewing the climate literature, we present examples of how ozone depletion changes atmospheric and oceanic circulation, with an emphasis on how these alterations in the physical climate system affect Southern Hemisphere weather, especially over the summer season (December-February). These potentially include increased incidence of extreme events, resulting in costly floods, drought, wildfires and serious environmental damage. The ecosystem impacts documented so far include changes to growth rates of South American and New Zealand trees, decreased growth of Antarctic mosses and changing biodiversity in Antarctic lakes. The objective of this synthesis was to stimulate the ecological community to look beyond ultraviolet-B radiation when considering the impacts of ozone depletion. Such widespread changes in Southern Hemisphere climate are likely to have had as much or more impact on natural ecosystems and food production over the past few decades, than the increased ultraviolet radiation due to ozone depletion. © 2014 John Wiley & Sons Ltd.

  5. Largest-ever Ozone Hole over Antarctica

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA instrument has detected an Antarctic ozone 'hole' (what scientists call an 'ozone depletion area') that is three times larger than the entire land mass of the United States-the largest such area ever observed. The 'hole' expanded to a record size of approximately 11 million square miles (28.3 million square kilometers) on Sept. 3, 2000. The previous record was approximately 10.5 million square miles (27.2 million square km) on Sept. 19, 1998. The ozone hole's size currently has stabilized, but the low levels in its interior continue to fall. The lowest readings in the ozone hole are typically observed in late September or early October each year. 'These observations reinforce concerns about the frailty of Earth's ozone layer. Although production of ozone-destroying gases has been curtailed under international agreements, concentrations of the gases in the stratosphere are only now reaching their peak. Due to their long persistence in the atmosphere, it will be many decades before the ozone hole is no longer an annual occurrence,' said Dr. Michael J. Kurylo, manager of the Upper Atmosphere Research Program, NASA Headquarters, Washington, DC. Ozone molecules, made up of three atoms of oxygen, comprise a thin layer of the atmosphere that absorbs harmful ultraviolet radiation from the Sun. Most atmospheric ozone is found between approximately six miles (9.5 km) and 18 miles (29 km) above the Earth's surface. Scientists continuing to investigate this enormous hole are somewhat surprised by its size. The reasons behind the dimensions involve both early-spring conditions, and an extremely intense Antarctic vortex. The Antarctic vortex is an upper-altitude stratospheric air current that sweeps around the Antarctic continent, confining the Antarctic ozone hole. 'Variations in the size of the ozone hole and of ozone depletion accompanying it from one year to the next are not unexpected,' said Dr. Jack Kaye, Office of Earth Sciences Research Director, NASA Headquarters

  6. Ozone Decline and Recovery: The Significance of Uncertainties

    NASA Astrophysics Data System (ADS)

    Harris, N. R. P.

    2017-12-01

    Stratospheric ozone depletion has been one of the leading environmental issues of the last 40 years. It has required research scientists, industry and government to work together to address it successfully. Steps have been taken to reduce the emissions of ozone depleting substances (ODS) under successive revisions of the measures in the 30 year old Montreal Protocol. These have led to a reduction in atmospheric ODS concentrations and so are expected over time to result in a reduction of chemical ozone depletion by ODS. This 'recovery' is being influenced by a number of other factors (natural variability, climate change, other changes in stratospheric chemistry) which makes it hard to provide good, quantitative estimates of the impact of the recent ODS reductions on stratospheric ozone. In this presentation, I discuss how ozone trends were linked to ODS during the period of ozone depletion and during the recent period of 'recovery', i.e. before and after the peak in atmospheric ODS. It is important to be as rigorous as possible in order to give public confidence in the advice provided through the scientific assessment process. We thus need to be as critical of our analyses of the recent data as possible, even though there is a strong expectation and hope from all sides that stratospheric ozone is recovering. I will describe in outline the main challenges that exist now and looking forward.

  7. Altitude-temporal behaviour of atmospheric ozone, temperature and wind velocity observed at Svalbard

    NASA Astrophysics Data System (ADS)

    Petkov, Boyan H.; Vitale, Vito; Svendby, Tove M.; Hansen, Georg H.; Sobolewski, Piotr S.; Láska, Kamil; Elster, Josef; Pavlova, Kseniya; Viola, Angelo; Mazzola, Mauro; Lupi, Angelo; Solomatnikova, Anna

    2018-07-01

    The vertical features of the variations in the atmospheric ozone density, temperature and wind velocity observed at Ny-Ålesund, Svalbard were studied by applying the principal component analysis to the ozonesounding data collected during the 1992-2016 period. Two data sets corresponding to intra-seasonal (IS) variations, which are composed by harmonics with lower than 1 year periods and inter-annual (IA) variations, characterised by larger periods, were extracted and analysed separately. The IS variations in all the three parameters were found to be composed mainly by harmonics typical for the Madden-Julian Oscillation (from 30- to 60-day periods) and, while the first four principal components (PCs) associated with the temperature and wind contributed about 90% to the IS variations, the ozone IS oscillations appeared to be a higher dimensional object for which the first 15 PCs presented almost the same extent of contribution. The IA variations in the three parameters were consisted of harmonics that correspond to widely registered over the globe Quasi-Biennial, El Niño-Southern, North Atlantic and Arctic Oscillations respectively, and the IA variations turned out to be negligible below the tropopause that characterises the Svalbard troposphere as comparatively closed system with respect to the long-period global variations. The behaviour of the first and second PCs associated with IS ozone variations in the time of particular events, like the strong ozone depletion over Arctic in the spring 2011 and solar eclipses was discussed and the changes in the amplitude-frequency features of these PCs were assumed as signs of the atmosphere response to the considered phenomena.

  8. Ozone Depletion Potential of CH3Br

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.; Ko, Malcolm K. W.; Sze, Nien Dak; Scott, Courtney; Rodriquez, Jose M.; Weisenstein, Debra K.

    1998-01-01

    The ozone depletion potential (ODP) of methyl bromide (CH3Br) can be determined by combining the model-calculated bromine efficiency factor (BEF) for CH3Br and its atmospheric lifetime. This paper examines how changes in several key kinetic data affect BEF. The key reactions highlighted in this study include the reaction of BrO + H02, the absorption cross section of HOBr, the absorption cross section and the photolysis products of BrON02, and the heterogeneous conversion of BrON02 to HOBR and HN03 on aerosol particles. By combining the calculated BEF with the latest estimate of 0.7 year for the atmospheric lifetime of CH3Br, the likely value of ODP for CH3Br is 0.39. The model-calculated concentration of HBr (approximately 0.3 pptv) in the lower stratosphere is substantially smaller than the reported measured value of about I pptv. Recent publications suggested models can reproduce the measured value if one assumes a yield for HBr from the reaction of BrO + OH or from the reaction of BrO + H02. Although the DeAlore et al. evaluation concluded any substantial yield of HBr from BrO + HO2 is unlikely, for completeness, we calculate the effects of these assumed yields on BEF for CH3Br. Our calculations show that the effects are minimal: practically no impact for an assumed 1.3% yield of HBr from BrO + OH and 10% smaller for an assumed 0.6% yield from BrO + H02.

  9. Polar Ozone Workshop. Abstracts

    NASA Technical Reports Server (NTRS)

    Aikin, Arthur C.

    1988-01-01

    Results of the proceedings of the Polar Ozone Workshop held in Snowmass, CO, on May 9 to 13, 1988 are given. Topics covered include ozone depletion, ozonometry, polar meteorology, polar stratospheric clouds, remote sensing of trace gases, atmospheric chemistry and dynamical simulations.

  10. A laboratory study of the UV Absorption Spectrum of the ClO Dimer (Cl2O2) and the Implications for Polar Stratospheric Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Papanastasiou, D. K.; Papadimitriou, V. C.; Fahey, D. W.; Burkholder, J. B.

    2009-12-01

    Chlorine containing species play an important role in catalytic ozone depleting cycles in the Antarctic and Arctic stratosphere. The ClO dimer (Cl2O2) catalytic ozone destruction cycle accounts for the majority of the observed polar ozone loss. A key step in this catalytic cycle is the UV photolysis of Cl2O2. The determination of the Cl2O2 UV absorption spectrum has been the subject of several studies since the late 1980’s. Recently, Pope et al. (J. Phys. Chem. A, 111, 4322, 2007) reported significantly lower absorption cross sections for Cl2O2 for the atmospherically relevant wavelength region, >300 nm, than currently recommended for use in atmospheric models. If correct, the Pope et al. results would alter our understanding of the chemistry of polar ozone depletion significantly. In this study, the UV absorption spectrum and absolute cross sections of gas-phase Cl2O2 are reported for the wavelength range 200 - 420 nm at ~200 K. Sequential pulsed laser photolysis of various precursors were used to produce the ClO radical and Cl2O2 via the subsequent ClO + ClO + M reaction under static conditions. UV absorption spectra of the reaction mixture were measured using a diode array spectrometer after completion of the gas-phase radical chemistry. The spectral analysis utilized the observed isosbestic points, reaction stoichiometry, and chlorine mass balance to determine the UV spectrum and absolute cross section of Cl2O2. A complementary experimental technique similar to that used by Pope et al. was also used in this study. We obtained consistent Cl2O2 UV absorption spectra using the two different techniques. The Cl2O2 absorption cross sections for wavelengths in the 300 - 420 nm range were found to be in very good agreement with the values reported previously by Burkholder et al. (J. Phys. Chem. A, 94, 687, 1990) and significantly greater than the Pope et al. values in this atmospherically important wavelength region. A possible explanation for the disagreement with

  11. Global Distribution and Trends of Tropospheric Ozone: An Observation-Based Review

    NASA Technical Reports Server (NTRS)

    Cooper, O. R.; Parrish, D. D.; Ziemke, J.; Cupeiro, M.; Galbally, I. E.; Gilge, S.; Horowitz, L.; Jensen, N. R.; Lamarque, J.-F.; Naik, V.; hide

    2014-01-01

    Tropospheric ozone plays a major role in Earth's atmospheric chemistry processes and also acts as an air pollutant and greenhouse gas. Due to its short lifetime, and dependence on sunlight and precursor emissions from natural and anthropogenic sources, tropospheric ozone's abundance is highly variable in space and time on seasonal, interannual and decadal time-scales. Recent, and sometimes rapid, changes in observed ozone mixing ratios and ozone precursor emissions inspired us to produce this up-to-date overview of tropospheric ozone's global distribution and trends. Much of the text is a synthesis of in situ and remotely sensed ozone observations reported in the peer-reviewed literature, but we also include some new and extended analyses using well-known and referenced datasets to draw connections between ozone trends and distributions in different regions of the world. In addition, we provide a brief evaluation of the accuracy of rural or remote surface ozone trends calculated by three state-of-the-science chemistry-climate models, the tools used by scientists to fill the gaps in our knowledge of global tropospheric ozone distribution and trends.

  12. Evidence for a Continuous Decline in Lower Stratospheric Ozone Offsetting Ozone Layer Recovery

    NASA Technical Reports Server (NTRS)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stuebi, Rene; Stenke, Andrea; Anderson, John; hide

    2018-01-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective "ozone layer" around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60degS and 60degN outside the polar regions (60-90deg). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60degS and 60degN has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60degS and 60degN. We find that total column ozone between 60degS and 60degN appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  13. Evidence for a continuous decline in lower stratospheric ozone offsetting ozone layer recovery

    NASA Astrophysics Data System (ADS)

    Ball, William T.; Alsing, Justin; Mortlock, Daniel J.; Staehelin, Johannes; Haigh, Joanna D.; Peter, Thomas; Tummon, Fiona; Stübi, Rene; Stenke, Andrea; Anderson, John; Bourassa, Adam; Davis, Sean M.; Degenstein, Doug; Frith, Stacey; Froidevaux, Lucien; Roth, Chris; Sofieva, Viktoria; Wang, Ray; Wild, Jeannette; Yu, Pengfei; Ziemke, Jerald R.; Rozanov, Eugene V.

    2018-02-01

    Ozone forms in the Earth's atmosphere from the photodissociation of molecular oxygen, primarily in the tropical stratosphere. It is then transported to the extratropics by the Brewer-Dobson circulation (BDC), forming a protective ozone layer around the globe. Human emissions of halogen-containing ozone-depleting substances (hODSs) led to a decline in stratospheric ozone until they were banned by the Montreal Protocol, and since 1998 ozone in the upper stratosphere is rising again, likely the recovery from halogen-induced losses. Total column measurements of ozone between the Earth's surface and the top of the atmosphere indicate that the ozone layer has stopped declining across the globe, but no clear increase has been observed at latitudes between 60° S and 60° N outside the polar regions (60-90°). Here we report evidence from multiple satellite measurements that ozone in the lower stratosphere between 60° S and 60° N has indeed continued to decline since 1998. We find that, even though upper stratospheric ozone is recovering, the continuing downward trend in the lower stratosphere prevails, resulting in a downward trend in stratospheric column ozone between 60° S and 60° N. We find that total column ozone between 60° S and 60° N appears not to have decreased only because of increases in tropospheric column ozone that compensate for the stratospheric decreases. The reasons for the continued reduction of lower stratospheric ozone are not clear; models do not reproduce these trends, and thus the causes now urgently need to be established.

  14. Comparing Model Ozone Loss during the SOLVE and SOLVE-2 Winters

    NASA Technical Reports Server (NTRS)

    Drdla, K.

    2003-01-01

    Model simulations have been used to analyze the factors influencing ozone loss during the 1999-2000 and 2002-2003 js. For both winters, the evolution of the Arctic vortex from November to April has been simulated using a trajectory-based microphysical and photochemical model. Extensive PSC formation and strong ozone depletion are evident in both winters. However, the ozone loss begins earlier in the 2002-2003 winter, with significant ozone depletion by early January. Analysis of the model results shows that during December 2002 not only cold temperatures but also the vortex structure was critical, allowing PSC-processed air parcels to experience significant solar exposure. The resultant ozone loss can be differentiated from ozone loss that occurs in the springtime, in particular because of the continued exposure to PSCs. For example, chlorine reactivation by the PSCs causes ozone loss to be insensitive to denitrification. Therefore, diagnosing the extent of ozone loss early in the winter is critical In understanding the overall winter-long ozone depletion.

  15. The Nature of Relationships among the Components of Pedagogical Content Knowledge of Preservice Science Teachers: "Ozone Layer Depletion" as an Example

    ERIC Educational Resources Information Center

    Kaya, Osman N.

    2009-01-01

    The purpose of this study was to explore the relationships among the components of preservice science teachers' (PSTs) pedagogical content knowledge (PCK) involving the topic "ozone layer depletion". An open-ended survey was first administered to 216 PSTs in their final year at the Faculty of Education to determine their subject matter…

  16. Ozone Lidar Observations for Air Quality Studies

    NASA Technical Reports Server (NTRS)

    Wang, Lihua; Newchurch, Mike; Kuang, Shi; Burris, John F.; Huang, Guanyu; Pour-Biazar, Arastoo; Koshak, William; Follette-Cook, Melanie B.; Pickering, Kenneth E.; McGee, Thomas J.; hide

    2015-01-01

    Tropospheric ozone lidars are well suited to measuring the high spatio-temporal variability of this important trace gas. Furthermore, lidar measurements in conjunction with balloon soundings, aircraft, and satellite observations provide substantial information about a variety of atmospheric chemical and physical processes. Examples of processes elucidated by ozone-lidar measurements are presented, and modeling studies using WRF-Chem, RAQMS, and DALES/LES models illustrate our current understanding and shortcomings of these processes.

  17. The Response of Ozone and Nitrogen Dioxide to the Eruption of Mount Pinatubo at Southern and Northern Midlatitudes

    NASA Technical Reports Server (NTRS)

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.; Douglass, Anne R.; Newman, Paul A.

    2013-01-01

    Observations have shown that the mass of nitrogen dioxide decreased at both southern and northern midlatitudes in the year following the eruption of Mt. Pinatubo, indicating that the volcanic aerosol had enhanced nitrogen dioxide depletion via heterogeneous chemistry. In contrast, the observed ozone response showed a northern midlatitude decrease and a small southern midlatitude increase. Previous simulations that included an enhancement of heterogeneous chemistry by the volcanic aerosol but no other effect of this aerosol produce ozone decreases in both hemispheres, contrary to observations. The authors simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and Southern Hemisphere extratropical downwelling. This enhanced extratropical downwelling, combined with the time of the eruption relative to the phase of the Brewer Dobson circulation, increased Southern Hemisphere ozone via advection, counteracting the ozone depletion due to heterogeneous chemistry on the Pinatubo aerosol.

  18. A reanalysis of ozone on Mars from assimilation of SPICAM observations

    NASA Astrophysics Data System (ADS)

    Holmes, James A.; Lewis, Stephen R.; Patel, Manish R.; Lefèvre, Franck

    2018-03-01

    We have assimilated for the first time SPICAM retrievals of total ozone into a Martian global circulation model to provide a global reanalysis of the ozone cycle. Disagreement in total ozone between model prediction and assimilation is observed between 45°S-10°S from LS = 135-180° and at northern polar (60°N-90°N) latitudes during northern fall (LS = 150-195°). Large percentage differences in total ozone at northern fall polar latitudes identified through the assimilation process are linked with excessive northward transport of water vapour west of Tharsis and over Arabia Terra. Modelling biases in water vapour can also explain the underestimation of total ozone between 45°S-10°S from LS = 135-180°. Heterogeneous uptake of odd hydrogen radicals are unable to explain the outstanding underestimation of northern polar total ozone in late northern fall. Assimilation of total ozone retrievals results in alterations of the modelled spatial distribution of ozone in the southern polar winter high altitude ozone layer. This illustrates the potential use of assimilation methods in constraining total ozone where SPICAM cannot observe, in a region where total ozone is especially important for potential investigations of the polar dynamics.

  19. Comparison of Recent Modeled and Observed Trends in Total Column Ozone

    NASA Technical Reports Server (NTRS)

    Andersen, S. B.; Weatherhead, E. C.; Stevermer, A.; Austin, J.; Bruehl, C.; Fleming, E. L.; deGrandpre, J.; Grewe, V.; Isaksen, I.; Pitari, G.; hide

    2006-01-01

    We present a comparison of trends in total column ozone from 10 two-dimensional and 4 three-dimensional models and solar backscatter ultraviolet-2 (SBUV/2) satellite observations from the period 1979-2003. Trends for the past (1979-2000), the recent 7 years (1996-2003), and the future (2000-2050) are compared. We have analyzed the data using both simple linear trends and linear trends derived with a hockey stick method including a turnaround point in 1996. If the last 7 years, 1996-2003, are analyzed in isolation, the SBUV/2 observations show no increase in ozone, and most of the models predict continued depletion, although at a lesser rate. In sharp contrast to this, the recent data show positive trends for the Northern and the Southern Hemispheres if the hockey stick method with a turnaround point in 1996 is employed for the models and observations. The analysis shows that the observed positive trends in both hemispheres in the recent 7-year period are much larger than what is predicted by the models. The trends derived with the hockey stick method are very dependent on the values just before the turnaround point. The analysis of the recent data therefore depends greatly on these years being representative of the overall trend. Most models underestimate the past trends at middle and high latitudes. This is particularly pronounced in the Northern Hemisphere. Quantitatively, there is much disagreement among the models concerning future trends. However, the models agree that future trends are expected to be positive and less than half the magnitude of the past downward trends. Examination of the model projections shows that there is virtually no correlation between the past and future trends from the individual models.

  20. Comparison of recent modeled and observed trends in total column ozone

    NASA Astrophysics Data System (ADS)

    Andersen, S. B.; Weatherhead, E. C.; Stevermer, A.; Austin, J.; Brühl, C.; Fleming, E. L.; de Grandpré, J.; Grewe, V.; Isaksen, I.; Pitari, G.; Portmann, R. W.; Rognerud, B.; Rosenfield, J. E.; Smyshlyaev, S.; Nagashima, T.; Velders, G. J. M.; Weisenstein, D. K.; Xia, J.

    2006-01-01

    We present a comparison of trends in total column ozone from 10 two-dimensional and 4 three-dimensional models and solar backscatter ultraviolet-2 (SBUV/2) satellite observations from the period 1979-2003. Trends for the past (1979-2000), the recent 7 years (1996-2003), and the future (2000-2050) are compared. We have analyzed the data using both simple linear trends and linear trends derived with a hockey stick method including a turnaround point in 1996. If the last 7 years, 1996-2003, are analyzed in isolation, the SBUV/2 observations show no increase in ozone, and most of the models predict continued depletion, although at a lesser rate. In sharp contrast to this, the recent data show positive trends for the Northern and the Southern Hemispheres if the hockey stick method with a turnaround point in 1996 is employed for the models and observations. The analysis shows that the observed positive trends in both hemispheres in the recent 7-year period are much larger than what is predicted by the models. The trends derived with the hockey stick method are very dependent on the values just before the turnaround point. The analysis of the recent data therefore depends greatly on these years being representative of the overall trend. Most models underestimate the past trends at middle and high latitudes. This is particularly pronounced in the Northern Hemisphere. Quantitatively, there is much disagreement among the models concerning future trends. However, the models agree that future trends are expected to be positive and less than half the magnitude of the past downward trends. Examination of the model projections shows that there is virtually no correlation between the past and future trends from the individual models.

  1. On the Identification of Ozone Recovery

    NASA Astrophysics Data System (ADS)

    Stone, Kane A.; Solomon, Susan; Kinnison, Douglas E.

    2018-05-01

    As ozone depleting substances decline, stratospheric ozone is displaying signs of healing in the Antarctic lower stratosphere. Here we focus on higher altitudes and the global stratosphere. Two key processes that can influence ozone recovery are evaluated: dynamical variability and solar proton events (SPEs). A nine-member ensemble of free-running simulations indicates that dynamical variability dominates the relatively small ozone recovery signal over 1998-2016 in the subpolar lower stratosphere, particularly near the tropical tropopause. The absence of observed recovery there to date is therefore not unexpected. For the upper stratosphere, high latitudes (50-80°N/S) during autumn and winter show the largest recovery. Large halogen-induced odd oxygen loss there provides a fingerprint of seasonal sensitivity to chlorine trends. However, we show that SPEs also have a profound effect on ozone trends within this region since 2000. Thus, accounting for SPEs is important for detection of recovery in the upper stratosphere.

  2. Ozone in the Atmosphere: I. The Upper Atmosphere.

    ERIC Educational Resources Information Center

    Phillips, Paul S.

    1990-01-01

    Research concerning the role of stratospheric ozone and the effect of chlorofluorocarbons on stratospheric ozone are discussed. The consequences of global ozone depletion are projected. The Montreal Protocol is reviewed. (CW)

  3. The TOAR database on observations of surface ozone (and more)

    NASA Astrophysics Data System (ADS)

    Schultz, M. G.; Schröder, S.; Cooper, O. R.; Galbally, I. E.; Petropavlovskikh, I. V.; von Schneidemesser, E.; Tanimoto, H.; Elshorbany, Y. F.; Naja, M. K.; Seguel, R. J.

    2017-12-01

    In support of the first Tropospheric Ozone Assessment Report (TOAR) a relational database of global surface ozone observations has been developed and populated with hourly measurement data and enhanced metadata. A comprehensive suite of ozone data products including standard statistics, health and vegetation impact metrics, and trend information, are made available through a common data portal and a web interface. These data form the basis of the TOAR analyses focusing on human health, vegetation, and climate relevant ozone issues. Cooperation among many data centers and individual researchers worldwide made it possible to build the world's largest collection of in-situ hourly surface ozone data covering the period from 1970 to 2015. By combining the data from almost 10,000 measurement sites around the world with global metadata information, new analyses of surface ozone have become possible, such as the first globally consistent characterisations of measurement sites as either urban or rural/remote. Exploitation of these global metadata allows for new insights into the global distribution, and seasonal and long-term changes of tropospheric ozone and they enable TOAR to perform the first, globally consistent analysis of present-day ozone concentrations and recent ozone changes with relevance to health, agriculture, and climate. This presentation will provide a summary of the TOAR surface observations database including recent additions of ozone precursor and meteorological data. We will demonstrate how the database can be accessed and the data can be used, and we will discuss its limitations and the potential for closing some of teh remaining data gaps.

  4. A Three-Tier Diagnostic Test to Assess Pre-Service Teachers' Misconceptions about Global Warming, Greenhouse Effect, Ozone Layer Depletion, and Acid Rain

    ERIC Educational Resources Information Center

    Arslan, Harika Ozge; Cigdemoglu, Ceyhan; Moseley, Christine

    2012-01-01

    This study describes the development and validation of a three-tier multiple-choice diagnostic test, the atmosphere-related environmental problems diagnostic test (AREPDiT), to reveal common misconceptions of global warming (GW), greenhouse effect (GE), ozone layer depletion (OLD), and acid rain (AR). The development of a two-tier diagnostic test…

  5. Lagrangian Transport Calculations Using UARS Data. Part 2; Ozone

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Zurek, R. W.; Froidevaux, L.; Waters, J. W.; ONeill, A.; Swinbank, R.

    1995-01-01

    Trajectory calculations are used to examine ozone transport in the polar winter stratosphere during periods of the Upper Atmosphere Research Satellite (UARS) observations. The value of these calculations for determining mass transport was demonstrated previously using UARS observations of long-lived tracers, In the middle stratosphere, the overall ozone behavior observed by the Microwave Limb Sounder in the polar vortex is reproduced by this purely dynamical model. Calculations show the evolution of ozone in the lower stratosphere during early winter to be dominated by dynamics in December 1992 in the Arctic. Calculations for June 1992 in the Antarctic show evidence of chemical ozone destruction and indicate that approx. 50% of the chemical destruction may be masked by dynamical effects, mainly diabatic descent, which bring higher ozone into the lower-stratospheric vortex. Estimating differences between calculated and observed fields suggests that dynamical changes masked approx. 20% - 35% of chemical ozone loss during late February and early March 1993 in the Arctic. In the Antarctic late winter, in late August and early September 1992, below approx. 520 K, the evolution of vortex-averaged ozone is entirely dominated by chemical effects; above this level, however, chemical ozone depletion can be partially or completely masked by dynamical effects. Our calculations for 1992 showed that chemical loss was nearly completely compensated by increases due to diabatic descent at 655 K.

  6. Nuclear weapons tests and short-term effects on atmospheric ozone

    NASA Technical Reports Server (NTRS)

    Miller, A. J.; Krueger, A. J.; Prabhakara, C.; Hilsenrath, E.

    1974-01-01

    Observations made when Nimbus 4 passed over a nuclear cloud about three hours after the bomb exploded are presented. Infrared and BUV measurements indicated that the atmospheric ozone level in the area of cloud was significantly less than in areas directly north and south of the cloud. It is noted, however, that it is not possible to state definitively that the ozone depletion was caused by nitrogen oxides released in the nuclear weapons test, and that further observations must be made to clarify the situation.

  7. Next Generation Refrigeration Lubricants for Low Global Warming Potential/Low Ozone Depleting Refrigeration and Air Conditioning Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hessell, Edward Thomas

    The goal of this project is to develop and test new synthetic lubricants that possess high compatibility with new low ozone depleting (LOD) and low global warming potential (LGWP) refrigerants and offer improved lubricity and wear protection over current lubricant technologies. The improved compatibility of the lubricants with the refrigerants, along with improved lubricating properties, will resulted in lower energy consumption and longer service life of the refrigeration systems used in residential, commercial and industrial heating, ventilating and air-conditioning (HVAC) and refrigeration equipment.

  8. Simulations and observations of plasma depletion, ion composition, and airglow emissions in two auroral ionospheric depletion experiments

    NASA Technical Reports Server (NTRS)

    Yau, A. W.; Whalen, B. A.; Harris, F. R.; Gattinger, R. L.; Pongratz, M. B.

    1985-01-01

    Observations of plasma depletion, ion composition modification, and airglow emissions in the Waterhole experiments are presented. The detailed ion chemistry and airglow emission processes related to the ionospheric hole formation in the experiment are examined, and observations are compared with computer simulation results. The latter indicate that the overall depletion rates in different parts of the depletion region are governed by different parameters.

  9. Ozone-Depleting Gases in the Atmosphere: Results From 28 Years of Measurements by the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL)

    NASA Astrophysics Data System (ADS)

    Hurst, D. F.; Elkins, J. W.; Montzka, S. A.; Butler, J. H.; Dutton, G. S.; Hall, B. D.; Mondeel, D. J.; Moore, F. L.; Nance, J. D.; Romashkin, P. A.; Thompson, T. M.

    2005-12-01

    Back in 1978, NOAA/CMDL initiated the weekly filling of flasks at CMDL observatories in Alaska, Hawaii, American Samoa, and Antarctica for analyses of CFC-11, CFC-12 and N2O in the home laboratory. A decade later, each observatory was outfitted with an automated gas chromatograph to make routine, in situ measurements of these three source gases plus methyl chloroform and carbon tetrachloride. Both measurement programs are ongoing, having expanded over the years to include methyl halides and substitutes for regulated halocarbons, to presently account for 95% of the total burden of long-lived Cl and Br believed to enter the stratosphere. These long-term monitoring data have been assimilated into temporal records of the global tropospheric burdens of ozone-depleting chlorine and bromine which are critical input to models that predict future trends in stratospheric ozone. Other information pivotal to ozone projections, such as the atmospheric lifetimes of source gases, stratospheric entry values for total chlorine and total bromine, and identification of the stratospheric sink regions for long-lived source gases, has been gained from in situ measurements by NOAA/CMDL instruments aboard NASA high-altitude aircraft (ER-2 and WB-57) and balloons since 1991. Though CMDL's routine monitoring activities provide important historical records of halogenated source gases in the atmosphere, significant inaccuracies in ozone projections may propagate from the uncertain estimates of impending emissions of ozone-depleting gases. Scenarios of future halocarbon emissions require substantial assumptions about past and pending compliance with the Montreal Protocol, and the sizes and release rates of existing global reservoirs (banks) of halocarbons. Recent work by CMDL has focused on quantifying halocarbon bank emission rates in Russia, the USA, and Canada through geographically extensive measurements aboard trains and low-altitude aircraft. The USA and Canada results indicate that

  10. Northern Hemisphere Winter Climate Response to Greenhouse Gas, Ozone, Solar and Volcanic Forcing

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Schmidt, Gavin A.; Miller, Ron L.; Rind, David; Hansen, James E. (Technical Monitor)

    2001-01-01

    The Goddard Institute for Space Studies (GISS) climate/middle atmosphere model has been used to study the impacts of increasing greenhouse gases, polar ozone depletion, volcanic eruptions, and solar cycle variability. We focus on the projection of the induced responses onto Northern Hemisphere winter surface climate. Changes in the model's surface climate take place largely through enhancement of existing variability patterns, with greenhouse gases, polar ozone depletion and volcanic eruptions primarily affecting the Arctic Oscillation (AO) pattern. Perturbations descend from the stratosphere to the surface in the model by altering the propagation of planetary waves coming up from the surface, in accord with observational evidence. Models lacking realistic stratospheric dynamics fail to capture these wave flux changes. The results support the conclusion that the stratosphere plays a crucial role in recent AO trends. We show that in our climate model, while ozone depletion has a significant effect, greenhouse gas forcing is the only one capable of causing the large, sustained increase in the AO observed over recent decades. This suggests that the AO trend, and a concurrent strengthening of the stratospheric vortex over the Arctic, are very likely anthropogenic in origin.

  11. Relationships between organic nitrates and surface ozone destruction during Polar Sunrise Experiment 1992

    NASA Astrophysics Data System (ADS)

    Muthuramu, K.; Shepson, P. B.; Bottenheim, J. W.; Jobson, B. T.; Niki, H.; Anlauf, K. G.

    1994-12-01

    Concurrent measurements of total reactive odd nitrogen species (i.e., NOy) and its major components, including organic nitrates, were carried out during 1992 Polar Sunrise Experiment (PSE92) at Alert, Northwest Territories, Canada, to investigate the episodic depletion of surface level ozone following polar sunrise. A series of C3-C7 alkyl nitrates formed from the atmospheric oxidation of hydrocarbons was measured daily during the 13-week study period (January 22 to April 22). In addition, a large number of gas chromatography/electron capture detector (GC/ECD) peaks with retention times greater than those of the hexyl nitrates were also identified as species containing -ONO2 group(s), using a nitrogen specific detector. The total concentrations of these organic nitrates ranged from 34 to 128 parts per trillion by volume and the distribution in the dark period was found to be similar to that found for rural lower-latitude air masses. In contrast to observations made at lower latitudes where alkyl nitrates make a relatively small contribution to NOy, the organic nitrates at Alert were found to contribute between 7 and 20% of the total odd nitrogen species. After polar sunrise the total concentrations of these organic nitrates decreased steadily, due primarily to the consumption of larger (>C4) alkyl nitrates. The C3 alkyl nitrate concentrations showed little variation during this study. During ozone depletion episodes in April there was a positive correlation between the concentration of the larger organic nitrates and ozone. Most surprisingly, the ratio of concentrations of isomeric alkyl nitrates with carbon numbers ≥5, and in particular those involving the C5 isomers, was found to show substantial variations coinciding with the O3 depletion events. This change in the isomeric alkyl nitrate ratios implies a substantial chemical processing of the air masses exhibiting ozone depletion. The possible mechanisms, which must involve consumption of the organic nitrates

  12. Stratospheric Cooling and Arctic Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.

    1998-01-01

    We present sensitivity studies using the AER( box model for an idealized parcel in the lower stratosphere at 70 N during winter/spring with different assumed stratospheric coolings and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  13. Stratospheric Cooling and Arctic Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriquez, Jose M.

    1998-01-01

    We present sensitivity studies using the AER box model for an idealized parcel in the lower stratosphere at 70 deg N during winter/spring with different assumed stratospheric cooling and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K Cooling could provide the same local ozone depletion as an increase of chlorine by 0.4-0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  14. What Controls the Size of the Antarctic Ozone Hole?

    NASA Technical Reports Server (NTRS)

    Bhartia, P. K. (Technical Monitor); Newman, Paul A.; Kawa, S. Randolph; Nash, Eric R.

    2002-01-01

    The Antarctic ozone hole is a region of extremely large ozone depletion that is roughly centered over the South Pole. Since 1979, the area coverage of the ozone hole has grown from near zero size to over 24 Million square kilometers. In the 8-year period from 1981 to 1989, the area expanded by 18 Million square kilometers. During the last 5 years, the hole has been observed to exceed 25 Million square kilometers over brief periods. We will review these size observations, the size trends, and the interannual variability of the size. The area is derived from the area enclosed by the 220 DU total ozone contour. We will discuss the rationale for the choice of 220 DU: 1) it is located near the steep gradient between southern mid-latitudes and the polar region, and 2) 220 DU is a value that is lower than the pre- 1979 ozone observations over Antarctica during the spring period. The phenomenal growth of the ozone hole was directly caused by the increases of chlorine and bromine compounds in the stratosphere. In this talk, we will show the relationship of the ozone hole's size to the interannual variability of Antarctic spring temperatures. In addition, we will show the relationship of these same temperatures to planetary-scale wave forcings.

  15. From LIMS to OMPS-LP: Limb Ozone Observations for Future Reanalyses

    NASA Technical Reports Server (NTRS)

    Wargan, K.; Kramarova, N.; Remsberg, E.; Coy, L.; Harvey, L.; Livesey, N.; Pawson, S.

    2017-01-01

    High vertical resolution and accuracy of ozone data from satellite-borne limb sounders has made them an invaluable tool in scientific studies of the middle and upper atmosphere. However, it was not until recently that these measurements were successfully incorporated in atmospheric reanalyses: of the major multidecadal reanalyses only ECMWF's (European Centre for Medium-Range Weather Forecasts') ERA (ECMWF Re-Analysis)-Interim/ERA5 and NASA's MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications-2) use limb ozone data. Validation and comparison studies have demonstrated that the addition of observations from the Microwave Limb Sounder (MLS) on EOS (Earth Observing System) Aura greatly improved the quality of ozone fields in MERRA-2 making these assimilated data sets useful for scientific research. In this presentation, we will show the results of test experiments assimilating retrieved ozone from the Limb Infrared Monitor of the Stratosphere (LIMS, 1978/1979) and Ozone Mapping Profiler Suite Limb Profiler (OMPS-LP, 2012 to present). Our approach builds on the established assimilation methodology used for MLS in MERRA-2 and, in the case of OMPS-LP, extends the excellent record of MLS ozone assimilation into the post-EOS era in Earth observations. We will show case studies, discuss comparisons of the new experiments with MERRA-2, strategies for bias correction and the potential for combined assimilation of multiple limb ozone data types in future reanalyses for studies of multidecadal stratospheric ozone changes including trends.

  16. Total ozone observation by sun photometry at Arosa, Switzerland

    NASA Astrophysics Data System (ADS)

    Staehelin, Johannes; Schill, Herbert; Hoegger, Bruno; Viatte, Pierre; Levrat, Gilbert; Gamma, Adrian

    1995-07-01

    The method used for ground-based total ozone observations and the design of two instruments used to monitor atmospheric total ozone at Arosa (Dobson spectrophotometer and Brewer spectrometer) are briefly described. Two different procedures of the calibration of the Dobson spectrometer, both based on the Langley plot method, are presented. Data quality problems that occured in recent years in the measurements of one Dobson instrument at Arosa are discussed, and two different methods to reassess total ozone observations are compared. Two partially automated Dobson spectrophotometers and two completely automated Brewer spectrometers are currently in operation at Arosa. Careful comparison of the results of the measurements of the different instruments yields valuable information of possible small long- term drifts of the instruments involved in the operational measurements.

  17. On the Size of the Antarctic Ozone Hole

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.; Nash, Eric R.; Kawa, S. Randolph

    2002-01-01

    The Antarctic ozone hole is a region of extremely large ozone depletion that is roughly centered over the South Pole. Since 1979, the area coverage of the ozone hole has grown from near zero size to over 24 Million sq km. In the 8-year period from 1981 to 1989, the area expanded by 18 Million sq km. During the last 5 years, the hole has been observed to exceed 25 Million sq km over brief periods. In the spring of 2002, the size of the ozone hole barely reached 20 Million sq km for only a couple of days. We will review these size observations, the size trends, and the interannual variability of the size. The area is derived from the area enclosed by the 220 DU total ozone contour. We will discuss the rationale for the choice of 220 DU: 1) it is located near the steep gradient between southern mid-latitudes and the polar region, and 2) 220 DU is a value that is lower than the pre-1979 ozone observations over Antarctica during the spring period. The phenomenal growth of the ozone hole was directly caused by the increases of chlorine and bromine compounds in the stratosphere. In this talk, we will show the relationship of the ozone hole's size to the interannual variability of Antarctic spring temperatures. In addition, we will show the relationship of these same temperatures to planetary-scale wave forcings.

  18. Observational Diagnoses of Extratropical Ozone STE from 2005-2010

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Douglass, Anne R.; Witte, Jacquie C.; Kaplan, Trevor B.

    2011-01-01

    The transport of ozone from the stratosphere to the extratropical troposphere is an important boundary condition to tropospheric chemistry. However, previous direct estimates from models and indirect estimates from observations have poorly constrained the magnitude of ozone stratosphere-troposphere exchange (STE). In this study we provide a direct diagnosis of the extratropical ozone STE using data from the Microwave Limb Sounder on Aura and output of the MERRA reanalysis over the time period from 2005 to the present. We find that the mean annual STE is about 275 Tg yr-1 and 205 Tg yr-1 in the NH and SH, respectively. The interannual variability of the magnitude is about twice as great in the NH than the SH. This variability is dominated by the seasonal variability during the late winter and spring. A comparison of the ozone flux to the mass flux reveals that there is not a simple relationship between the two quantities. This presentation will also examine the magnitude and distribution of ozone in the lower stratosphere relative to the years of maximum and minimum ozone STE

  19. Ozone destruction through heterogeneous chemistry following the eruption of El Chichon

    NASA Technical Reports Server (NTRS)

    Hofmann, David J.; Solomon, Susan

    1989-01-01

    The results of ozone observations at northern midlatitudes in late 1982 through 1983, following the eruption of El Chichon are discussed, together with the observations of other trace gases which may be linked to possible variations in ozone chemistry. These results are related to the in situ aerosol observations following the El Chicon eruption, with particular attention given to data relevant to heterogeneous reactions, such as the aerosol surface area and weight percent H2SO4. It is shown that, at midlatitudes, the observed volcanic-particle surface area reached a maximum of about 50 sq microns/cu m (above a typical background value of about 0.75) at an altitude of 18-20 km in early 1983; this enhancement of surface area is about the same as that encountered in stratospheric clouds in the Antarctic, suggesting a possible basis for ozone depletion through heterogeneous chemistry. The fraction of ozone reduction that may have occurred as a result of heterogeneous chemicl effects is estimated.

  20. Tropospheric ozone over the North Pacific from ozonesonde observations

    NASA Astrophysics Data System (ADS)

    Oltmans, S. J.; Johnson, B. J.; Harris, J. M.; Thompson, A. M.; Liu, H. Y.; Chan, C. Y.; VöMel, H.; Fujimoto, T.; Brackett, V. G.; Chang, W. L.; Chen, J.-P.; Kim, J. H.; Chan, L. Y.; Chang, H.-W.

    2004-08-01

    As part of the Transport and Chemical Evolution over the Pacific (TRACE-P) mission, ozonesondes were used to make ozone vertical profile measurements at nine locations in the North Pacific. At most of the sites there is a multiyear record of observations. From locations in the western Pacific (Hong Kong; Taipei; Jeju Island, Korea; and Naha, Kagoshima, Tsukuba, and Sapporo, Japan), a site in the central Pacific (Hilo, Hawaii), and a site on the west coast of the United States (Trinidad Head, California) both a seasonal and event specific picture of tropospheric ozone over the North Pacific emerges. Ozone profiles over the North Pacific generally show a prominent spring maximum throughout the troposphere. This maximum is tied to the location of the jet stream and its influence on stratosphere-troposphere exchange and the increase in photochemical ozone production through the spring. Prominent layers of enhanced ozone in the middle and upper troposphere north of about 30°N seem to be more closely tied to stratospheric intrusions while biomass burning leads to layers of enhanced ozone in the lower and upper troposphere at Hong Kong (22°N) and Taipei (25°N). The lower free tropospheric layers at Hong Kong are associated with burning in SE Asia, but the upper layer may be associated with either equatorial Northern Hemisphere burning in Africa or SE Asian biomass burning. In the boundary layer at Taipei very high mixing ratios of ozone were observed that result from pollution transport from China in the spring and local urban pollution during the summer. At the ozonesonde site near Tokyo (Tsukuba, 36°N) very large enhancements of ozone are seen in the boundary layer in the summer that are characteristic of urban air pollution. At sites in the mid and eastern Pacific the signature of transport of polluted air from Asia is not readily identifiable from the ozonesonde profile. This is likely due to the more subtle signal and the fact that from the ozone profile and

  1. The Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo

    NASA Technical Reports Server (NTRS)

    Aquila, Valentina; Oman, Luke D.; Stolarski, R.; Douglass, A. R.; Newman, P. A.

    2012-01-01

    Observations have shown that the global mass of nitrogen dioxide decreased in both hemispheres in the year following the eruption of Mt. Pinatubo. In contrast, the observed ozone response was largely asymmetrical with respect to the equator, with a decrease in the northern hemisphere and little change and even a small increase in the southern hemisphere. Simulations including enhanced heterogeneous chemistry due to the presence of the volcanic aerosol reproduce a decrease of ozone in the northern hemisphere, but also produce a comparable ozone decrease in the southern hemisphere, contrary to observations. Our simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and the extratropical downwelling. The enhanced extratropical downwelling, combined with the time of the eruption relative to the phase of the Brewer-Dobson circulation, increased the ozone in the southern hemisphere and counteracted the ozone depletion due to heterogeneous chemistry on volcanic aerosol.

  2. The Response of Ozone and Nitrogen Dioxide to the Eruption of Mount Pinatubo

    NASA Technical Reports Server (NTRS)

    Aquila. Valentina; Oman, Luke D.; Stolarsk, Richard S.; Douglass, Anne R.; Newman, Paul A.

    2012-01-01

    Observations have shown that the global mass of nitrogen dioxide decreased in both hemispheres in the year following the eruption of Mt. Pinatubo, indicating an enhanced heterogeneous chemistry. In contrast, the observed ozone response was largely asymmetrical with respect to the equator, with a decrease in the northern hemisphere and little change in the southern hemisphere. Simulations including enhanced heterogeneous chemistry due to the presence of the volcanic aerosol reproduce a decrease of ozone in the northern hemisphere, but also produce a comparable ozone decrease in the southern hemisphere, contrary to observations. Our simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and the extratropical downwelling. The enhanced extratropical downwelling, combined with the time of the eruption relative to the phase of the Brewer-Dobson circulation, increased the ozone in the southern hemisphere and counteracted the ozone depletion due to heterogeneous chemistry on volcanic aerosol.

  3. Have we underestimated the role of short-lived chlorine compounds in ozone depletion?

    NASA Astrophysics Data System (ADS)

    Oram, David; Laube, Johannes; Sturges, Bill; Gooch, Lauren; Leedham, Emma; Ashfold, Matthew; Pyle, John; Abu Samah, Azizan; Moi Phang, Siew; Ou-Yang, Chang-Feng; Lin, Neng-Huei; Wang, Jia-Lin; Brenninkmeijer, Carl

    2015-04-01

    In recent years much attention has been focussed on the potential of bromine-containing VSLS (very short lived substances) to contribute to stratospheric ozone depletion. This is primarily due to the large observed discrepancy between the measured inorganic bromine in the stratosphere and the amount of bromine available from known, longer lived sources gases (halons and CH3Br). In contrast, the role of very short-lived chlorine compounds (VSLS-CL) has been considered trivial because they contribute only a few percent to the total organic chlorine in the troposphere, the majority of which is supplied by long-lived compounds such as the CFCs, HCFCs, methyl chloroform and carbon tetrachloride. However recent evidence shows that one VSLS-Cl, dichloromethane (CH2Cl2) has increased by 60% over the past decade (WMO, 2014) and has already begun to offset the long-term decline in stratospheric chlorine loading caused by the reduction in emissions of substances controlled by the Montreal Protocol. We will present new VSLS-Cl measurements from recent ground-based and aircraft campaigns in SE Asia where we have observed dramatic enhancements in a number of VSLS-Cl, including CH2Cl2. Furthermore we will demonstrate how pollution from China and the surrounding region can rapidly, and regularly, be transported across the South China Sea and subsequently uplifted to altitudes of 11-12 km, the region close to the lower TTL. This process occurs frequently during the winter monsoon season and could represent a fast and efficient mechanism for transporting short-lived compounds, and other pollutants, to the lower stratosphere.

  4. Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century

    NASA Astrophysics Data System (ADS)

    Fernandez, Rafael Pedro; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Saiz-Lopez, Alfonso

    2017-04-01

    Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSLBr) enhances stratospheric ozone depletion. Based on a dual set of 1960-2100 coupled chemistry-climate simulations (i.e. with and without VSLBr), we show that the maximum Antarctic ozone hole depletion increases by up to 14% when natural VSLBr are considered, in better agreement with ozone observations. The impact of the additional 5 pptv VSLBr on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of 5 million km2, which is equivalent in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSLBr in CAM-Chem does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affect the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by year 2070, and indicates that natural VSLBr chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. This work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.

  5. Big Ozone Holes Headed For Extinction By 2040

    NASA Image and Video Library

    2015-05-06

    Caption: This is a conceptual animation showing ozone-depleting chemicals moving from the equator to the poles. The chemicals become trapped by the winds of the polar vortex, a ring of fast moving air that circles the South Pole. Watch full video: youtu.be/7n2km69jZu8 -- The next three decades will see an end of the era of big ozone holes. In a new study, scientists from NASA Goddard Space Flight Center say that the ozone hole will be consistently smaller than 12 million square miles by the year 2040. Ozone-depleting chemicals in the atmosphere cause an ozone hole to form over Antarctica during the winter months in the Southern Hemisphere. Since the Montreal Protocol agreement in 1987, emissions have been regulated and chemical levels have been declining. However, the ozone hole has still remained bigger than 12 million square miles since the early 1990s, with exact sizes varying from year to year. The size of the ozone hole varies due to both temperature and levels of ozone-depleting chemicals in the atmosphere. In order to get a more accurate picture of the future size of the ozone hole, scientists used NASA’s AURA satellite to determine how much the levels of these chemicals in the atmosphere varied each year. With this new knowledge, scientists can confidently say that the ozone hole will be consistently smaller than 12 million square miles by the year 2040. Scientists will continue to use satellites to monitor the recovery of the ozone hole and they hope to see its full recovery by the end of the century. Research: Inorganic chlorine variability in the Antarctic vortex and implications for ozone recovery. Journal: Geophysical Research: Atmospheres, December 18, 2014. Link to paper: onlinelibrary.wiley.com/doi/10.1002/2014JD022295/abstract.

  6. Ozone vertical profile changes over South Pole

    NASA Technical Reports Server (NTRS)

    Oltmans, S. J.; Hofmann, D. J.; Komhyr, W. D.; Lathrop, J. A.

    1994-01-01

    Important changes in the ozone vertical profile over South Pole, Antarctica have occurred both during the recent period of measurements, 1986-1991, and since an earlier set of soundings was carried out from 1967-1971. From the onset of the 'ozone hole' over Antarctica in the early 1980s, there has been a tendency for years with lower spring ozone amounts to alternate with years with somewhat higher (although still depleted) ozone amounts. Beginning in 1989 there have been three consecutive years of strong depletion although the timing of the breakdown of the vortex has varied from year to year. Comparison of the vertical profiles between the two periods of study reveals the dramatic decreases in the ozone amounts in the stratosphere between 15-21 km during the spring. In addition, it appears that summer values are also now much lower in this altitude region.

  7. Concept Formation in Environmental Education: 14-Year Olds' Work on the Intensified Greenhouse Effect and the Depletion of the Ozone Layer. Research Report

    ERIC Educational Resources Information Center

    Osterlind, Karolina

    2005-01-01

    A case study is presented describing the work of three pupils in the upper level of compulsory school. The pupils were learning about the intensified greenhouse effect and the depletion of the ozone layer. In their work, the need for certain domain-specific knowledge becomes apparent; for example, understanding such concepts as photosynthesis,…

  8. From LIMS to OMPS-LP: limb ozone observations for future reanalyses

    NASA Astrophysics Data System (ADS)

    Wargan, K.; Kramarova, N. A.; Remsberg, E. E.; Coy, L.; Harvey, L.; Livesey, N. J.; Pawson, S.

    2017-12-01

    High vertical resolution and accuracy of ozone data from satellite-borne limb sounders have made them an invaluable tool in scientific studies of the middle and upper atmosphere. However, it was not until recently that these measurements were successfully incorporated in atmospheric reanalyses: of the major multidecadal reanalyses only ECMWF's ERA-Interim/ERA5 and NASA's MERRA-2 use limb ozone data. Validation and comparison studies have demonstrated that the addition of observations from the Microwave Limb Sounder (MLS) on EOS Aura greatly improved the quality of ozone fields in MERRA-2 making these assimilated data sets useful for scientific research. In this presentation, we will show the results of test experiments assimilating retrieved ozone from the Limb Infrared Monitor of the Stratosphere (LIMS, 1978/1979) and Ozone Mapping Profiler Suite Limb Profiler (OMPS-LP, 2012 to present). Our approach builds on the established assimilation methodology used for MLS in MERRA-2 and, in the case of OMPS-LP, extends the excellent record of MLS ozone assimilation into the post-EOS era in Earth observations. We will show case studies, discuss comparisons of the new experiments with MERRA-2, strategies for bias correction and the potential for combined assimilation of multiple limb ozone data types in future reanalyses for studies of multidecadal stratospheric ozone changes including trends.

  9. Causes and effects of a hole. [in Antarctic ozone layer

    NASA Technical Reports Server (NTRS)

    Margitan, J. J.

    1987-01-01

    Preliminary results from the U.S. National Ozone Expedition (NOZE) to Antarctica are reviewed. The NOZE ozonesonde measurements showed significant vertical structure in the hole, with 80 percent depletion in some of the 1 km layers but only 20 percent in adjacent layers. The depletion was confined to the 12-20 km region, beginning first at higher altitude and progressing downward. This is strong evidence against the theory that the ozone hole is due to solar activity producing odd nitrogen at high altitudes which is transported downwards, leading to enhanced odd-nitrogen catalytic cycles that destroy ozone. Nitrous oxide data show unusually low concentrations within the polar vortex, which is evidence against the theory that the hole is caused by a purely dynamical mechanism in which rising air motions within the polar vortex lead to reduced column densities of ozone. It is tentatively concluded that a chemical mechanism involving man-made chlorofluorocarbons is the likely cause of ozone depletion in the hole.

  10. The effects of greenhouse gases on the Antarctic ozone hole in the past, present, and future

    NASA Astrophysics Data System (ADS)

    Newman, P. A.; Li, F.; Lait, L. R.; Oman, L.

    2017-12-01

    The Antarctic ozone hole is primarily caused by human-produced ozone depleting substances such as chlorine-containing chlorofluorocarbons (CFCs) and bromine-containing halons. The large ozone spring-time depletion relies on the very-cold conditions of the Antarctic lower stratosphere, and the general containment of air by the polar night jet over Antarctica. Here we show the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM) coupled ocean-atmosphere-chemistry model for exploring the impact of increasing greenhouse gases (GHGs). Model simulations covering the 1960-2010 period are shown for: 1) a control ensemble with observed levels of ODSs and GHGs, 2) an ensemble with fixed 1960 GHG concentrations, and 3) an ensemble with fixed 1960 ODS levels. We look at a similar set of simulations (control, 2005 fixed GHG levels, and 2005 fixed ODS levels) with a new version of GEOSCCM over the period 2005-2100. These future simulations show that the decrease of ODSs leads to similar ozone recovery for both the control run and the fixed GHG scenarios, in spite of GHG forced changes to stratospheric ozone levels. These simulations demonstrate that GHG levels will have major impacts on the stratosphere by 2100, but have only small impacts on the Antarctic ozone hole.

  11. How to most effectively expand the global surface ozone observing network

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.

    2016-02-01

    Surface ozone observations with modern instrumentation have been made around the world for more than 40 years. Some of these observations have been made as one-off activities with short-term, specific science objectives and some have been made as part of wider networks which have provided a foundational infrastructure of data collection, calibration, quality control, and dissemination. These observations provide a fundamental underpinning to our understanding of tropospheric chemistry, air quality policy, atmosphere-biosphere interactions, etc. brought together eight of these networks to provide a single data set of surface ozone observations. We investigate how representative this combined data set is of global surface ozone using the output from a global atmospheric chemistry model. We estimate that on an area basis, 25 % of the globe is observed (34 % land, 21 % ocean). Whereas Europe and North America have almost complete coverage, other continents, Africa, South America, Australia, and Asia (12-17 %) show significant gaps. Antarctica is surprisingly well observed (78 %). Little monitoring occurs over the oceans, with the tropical and southern oceans particularly poorly represented. The surface ozone over key biomes such as tropical forests and savanna is almost completely unmonitored. A chemical cluster analysis suggests that a significant number of observations are made of polluted air masses, but cleaner air masses whether over the land or ocean (especially again in the tropics) are significantly under-observed. The current network is unlikely to see the impact of the El Niño-Southern Oscillation (ENSO) but may be capable of detecting other planetary-scale signals. Model assessment and validation activities are hampered by a lack of observations in regions where the models differ substantially, as is the ability to monitor likely changes in surface ozone over the next century. Using our methodology we are able to suggest new sites which

  12. Satellite Observations of Enhanced Tropospheric Ozone Associated with Biomass Burning in Africa and Madagascar

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Ziemke, J. R.; Thorpe, A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Tropospheric ozone over Africa and Madagascar is enhanced by 10 to 15 DU in October. This maximum coincides with the time of maximum biomass area burning in Africa and Madagascar. Ozone observations were made from 1979 to 1999 using the TOMS tropospheric ozone convective cloud differential method. As a result of easterly trade winds, ozone originating on Madagascar is transported to the west over the Mozambique Channel. In El Nino years higher level westerly winds descend to transport low level ozone easterly. This results in African continental ozone being transported east of Madagascar. Long range transport of African ozone is observed during El Nino periods.

  13. Observed ozone response to variations in solar ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Gille, J. C.; Smythe, C. M.; Heath, D. F.

    1984-01-01

    During the winter of 1979, the solar ultraviolet irradiance varied with a period of 13.5 days and an amplitude of 1 percent. The zonal mean ozone values in the tropics varied with the solar irradiance, with an amplitude of 0.25 to 0.60 percent. This observation agrees with earlier calculations, although the response may be overestimated. These results imply changes in ozone at an altitude of 48 kilometers of up to 12 percent over an 11-year solar cycle. Interpretation of ozone changes in the upper stratosphere will require measurements of solar ultraviolet radiation at wavelengths near 200 nanometers.

  14. Massive global ozone loss predicted following regional nuclear conflict

    PubMed Central

    Mills, Michael J.; Toon, Owen B.; Turco, Richard P.; Kinnison, Douglas E.; Garcia, Rolando R.

    2008-01-01

    We use a chemistry-climate model and new estimates of smoke produced by fires in contemporary cities to calculate the impact on stratospheric ozone of a regional nuclear war between developing nuclear states involving 100 Hiroshima-size bombs exploded in cities in the northern subtropics. We find column ozone losses in excess of 20% globally, 25–45% at midlatitudes, and 50–70% at northern high latitudes persisting for 5 years, with substantial losses continuing for 5 additional years. Column ozone amounts remain near or <220 Dobson units at all latitudes even after three years, constituting an extratropical “ozone hole.” The resulting increases in UV radiation could impact the biota significantly, including serious consequences for human health. The primary cause for the dramatic and persistent ozone depletion is heating of the stratosphere by smoke, which strongly absorbs solar radiation. The smoke-laden air rises to the upper stratosphere, where removal mechanisms are slow, so that much of the stratosphere is ultimately heated by the localized smoke injections. Higher stratospheric temperatures accelerate catalytic reaction cycles, particularly those of odd-nitrogen, which destroy ozone. In addition, the strong convection created by rising smoke plumes alters the stratospheric circulation, redistributing ozone and the sources of ozone-depleting gases, including N2O and chlorofluorocarbons. The ozone losses predicted here are significantly greater than previous “nuclear winter/UV spring” calculations, which did not adequately represent stratospheric plume rise. Our results point to previously unrecognized mechanisms for stratospheric ozone depletion. PMID:18391218

  15. Snapshot of the Antarctic Ozone Hole 2010

    NASA Image and Video Library

    2017-12-08

    Image acquired September 12, 2010 The yearly depletion of stratospheric ozone over Antarctica – more commonly referred to as the “ozone hole” – started in early August 2010 and is now expanding toward its annual maximum. The hole in the ozone layer typically reaches its maximum area in late September or early October, though atmospheric scientists must wait a few weeks after the maximum to pinpoint when the trend of ozone depletion has slowed down and reversed. The hole isn’t literal; no part of the stratosphere — the second layer of the atmosphere, between 8 and 50 km (5 and 31 miles) — is empty of ozone. Scientists use "hole" as a metaphor for the area in which ozone concentrations drop below the historical threshold of 220 Dobson Units. Historical levels of ozone were much higher than 220 Dobson Units, according to NASA atmospheric scientist Paul Newman, so this value shows a very large ozone loss. Earth's ozone layer protects life by absorbing ultraviolet light, which damages DNA in plants and animals (including humans) and leads to skin cancer. The Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite acquired data for this map of ozone concentrations over Antarctica on September 12, 2010. OMI is a spectrometer that measures the amount of sunlight scattered by Earth’s atmosphere and surface, allowing scientists to assess how much ozone is present at various altitudes — particularly the stratosphere — and near the ground. So far in 2010, the size and depth of the ozone hole has been slightly below the average for 1979 to 2009, likely because of warmer temperatures in the stratosphere over the far southern hemisphere. However, even slight changes in the meteorology of the region this month could affect the rate of depletion of ozone and how large an area the ozone hole might span. You can follow the progress of the ozone hole by visiting NASA’s Ozone Hole Watch page. September 16 is the International Day for the Preservation of the

  16. Variation of mesospheric ozone during the highly relativistic electron event in May 1992 as measured by the High Resolution Doppler Imager instrument on UARS

    NASA Astrophysics Data System (ADS)

    Pesnell, W. Dean; Goldberg, Richard A.; Jackman, Charles H.; Chenette, D. L.; Gaines, E. E.

    2000-10-01

    Highly relativistic electron precipitation events (HREs) include long-lived enhancements of the flux of electrons with E>1MeV into the Earth's atmosphere. HREs also contain increased fluxes of electrons with energies above 100 keV that have been predicted to cause large depletions of mesospheric ozone. For some of the measured instantaneous values of the electron fluxes during the HRE of May 1992, relative depletions greater than 22% were predicted to occur between altitudes of 55 and 80 km, where HOx reactions cause local minima in both the ozone number density and mixing ratio altitude profiles. These ozone depletions should follow the horizontal distribution of the electron precipitation, having a distinct boundary equatorward of the L=3 magnetic shell. To search for these effects, we have analyzed ozone data from the High Resolution Doppler Imager (HRDI) instrument on UARS. Owing to the multiple, off-track viewing angles of HRDI, observations in the region affected by the electrons are taken at similar local solar times before, during, and after the electron flux increase. Our analysis limits the relative ozone depletion to values <10% during the very intense May 1992 HRE. We do observe decreases in the ozone mixing ratio at several points in the diurnal cycle that may be associated with the transport of water vapor into the mesosphere during May 1992. This masking of the precipitating electron effects by the seasonal variations in water vapor can complicate the detection of those effects.

  17. Ozone Measurements in the Mesosphere During a Solar Proton Event

    NASA Technical Reports Server (NTRS)

    Lippert, W.; Felske, D.

    1984-01-01

    Charged particle precipitation in the Earth's atmosphere produces odd nitrogen and odd hydrogen. These species take part in catalytic reactions which destroy atmospheric ozone in the stratosphere and mesosphere. Modeling efforts regarding the impact of these ionization events on the neutral atmosphere describe ozone depletions in good agreement with observations in the stratosphere and mesosphere. The photochemical effects of the solar proton event (SPE) of August 1972 are discussed, and calculations for higher altitudes (70 to 90 km) are presented that indicate after a brief reduction during and immediately following intense particle precipitation, ozone will later reach higher concentrations than those present before the event.

  18. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with changing climate: implications for human and environmental health.

    PubMed

    Madronich, S; Shao, M; Wilson, S R; Solomon, K R; Longstreth, J D; Tang, X Y

    2015-01-01

    local scale, ˙OH radicals respond rapidly to changes in UV radiation. However, on large (global) scales, models differ in their predictions by nearly a factor of two, with consequent uncertainties for estimating the atmospheric lifetime and concentrations of key greenhouse gases and air pollutants. Projections of future climate need to consider these uncertainties. No new negative environmental effects of substitutes for ozone depleting substances or their breakdown-products have been identified. However, some substitutes for the ozone depleting substances will continue to contribute to global climate change if concentrations rise above current levels.

  19. Observational Diagnoses of Extratropical Ozone STE During the Aura Era

    NASA Technical Reports Server (NTRS)

    Olsen, Mark A.; Douglass, Anne R.; Witte, Jacquie C.; Kaplan, Trevor B.

    2011-01-01

    The transport of ozone from the stratosphere to the extratropical troposphere is an important boundary condition to tropospheric chemistry. However, previous direct estimates from models and indirect estimates from observations have poorly constrained the magnitude of ozone stratosphere-troposphere exchange (STE). In this study we provide a direct diagnosis of the extratropical ozone STE using data from the Microwave Limb Sounder on Aura and output of the MERRA reanalysis over the time period from 2005 to the present. We find that the mean annual STE is about 275 Tg/yr and 205 Tg/yr in the NH and SH, respectively. The interannual variability of the magnitude is about twice as great in the NH than the SH. We find that this variability is dominated by the seasonal variability during the late winter and spring. A comparison of the ozone flux to the mass flux reveals that there is not a simple relationship between the two quantities. This presentation will also examine the magnitude and distribution of ozone in the lower stratosphere relative to the years of maximum and minimum ozone STE. Finally, we will examine any possible signature of increased ozone STE in the troposphere using sonde and tropospheric ozone residual (TOR) data, and output from the Global Modeling Initiative Chemistry Transport Model (GMI CTM).

  20. The influence of ozone forcing on blocking in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Dennison, Fraser W.; McDonald, Adrian; Morgenstern, Olaf

    2016-12-01

    We investigate the influence of ozone depletion and recovery on tropospheric blocking in the Southern Hemisphere. Blocking events are identified using a persistent positive anomaly method applied to 500 hPa geopotential height. Using the National Institute for Water and Atmospheric Research-United Kingdom Chemistry and Aerosols chemistry-climate model, we compare reference runs that include forcing due to greenhouse gases (GHGs) and ozone-depleting substances to sensitivity simulations in which ozone-depleting substances are fixed at their 1960 abundances and other sensitivity simulations with GHGs fixed at their 1960 abundances. Blocking events in the South Atlantic are shown to follow stratospheric positive anomalies in the Southern Annular Mode (SAM) index; this is not the case for South Pacific blocking events. This relationship means that summer ozone depletion, and corresponding positive SAM anomalies, leads to an increased frequency of blocking in the South Atlantic while having little effect in the South Pacific. Similarly, ozone recovery, having the opposite effect on the SAM, leads to a decline in blocking frequency in the South Atlantic, although this may be somewhat counteracted by the effect of increasing GHGs.

  1. Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century

    NASA Astrophysics Data System (ADS)

    Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean-Francois; Tilmes, Simone; Saiz-Lopez, Alfonso

    2017-02-01

    Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSLBr) enhances stratospheric ozone depletion. Based on a dual set of 1960-2100 coupled chemistry-climate simulations (i.e. with and without VSLBr), we show that the maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSLBr are considered, which is in better agreement with ozone observations. The impact of the additional 5 pptv VSLBr on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of ˜ 5 million km2, which is equivalent in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSLBr in CAM-Chem (Community Atmosphere Model with Chemistry, version 4.0) does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affects the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by the year 2070 and indicates that natural VSLBr chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. This work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.

  2. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015.

    PubMed

    2016-02-01

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, biogeochemistry, air quality, and materials. The Panels provide a detailed assessment report every four years. The most recent 2014 Quadrennial Assessment by the EEAP was published as a special issue of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). The next Quadrennial Assessment will be published in 2018/2019. In the interim, the EEAP generally produces an annual update or progress report of the relevant scientific findings. The present progress report for 2015 assesses some of the highlights and new insights with regard to the interactive nature of the effects of UV radiation, atmospheric processes, and climate change.

  3. Global implications of ozone loss in a space shuttle wake

    NASA Astrophysics Data System (ADS)

    Danilin, Michael Y.; Ko, Malcolm K. W.; Weisenstein, Debra K.

    2001-02-01

    Existing global model calculations of ozone depletion due to solid-fueled rocket motor (SRM) launches [Prather et al., 1990; Jackman et al., 1998] take into account the effect of globally dispersed chlorine emissions and ignore the ozone loss in the rocket wake. This ozone depletion in the wake could be substantial (up to 100% in the lower stratosphere during the first hour after exhaust [Ross et al., 1997a, 2000]). In this paper, we provide an estimate of whether wake ozone loss could accumulate after each SRM launch, leading to a larger ozone depletion on the global scale. To address this issue, we estimate an upper bound of the ozone loss in a space shuttle wake and use the Atmospheric and Environmental Research, Inc. two-dimensional model to simulate the global effect. For the scenarios considered, the global impact of the localized ozone loss in the wakes is at least an order of magnitude less than the effects from global dispersion of the SRM chlorine emissions alone (on the order of 10-3-10-4% versus 10-2% in the ozone column near 30°N). Additional sensitivity studies performed for different wake dilution rates, seasons, locations, and local times of the shuttle launches and accounting for chlorine activation via ClONO2 + HCl → Cl2 + HNO3 on alumina particles did not change this conclusion.

  4. Total Ozone Observations at Arosa (Switzerland) by Dobson and Brewer: Temperature and Ozone Slant Path Effect

    NASA Astrophysics Data System (ADS)

    Scarnato, B.; Staehelin, J.; Groebner, J.

    2008-12-01

    Dobson and Brewer spectrophotometers are the main ground based instruments used to monitor the ozone layer. Early total ozone (TOZ) measurements were made primarily with Dobson instruments; however, there has been a trend over the last years to replace them by the newer, more advanced Brewer spectrophotometer. Given this transition, it is of utmost importance to assure the homogeneity of the data taken with these two distinct instruments types if total ozone (TOZ) changes over long time periods are to be diagnosed accurately. Previous studies have identified a seasonal bias of few percentage from Brewer and Dobson spectrophotometers measurements at mid-latitudes. At Arosa (Switzerland), two Dobson and three Brewers instruments have been co-located since 1998, producing a unique dataset of quasi-simultaneous observations valuable for the study of systematic differences between these measurements. The differences can be at least partially attributed to seasonal variability in the atmospheric temperature and the ozone slant path. The effective temperature sensitivity of the ozone cross section has been calculated using different reference spectra, at high and low resolution, weighting of the slit functions for each operational Brewer and for the primary standard Dobson spectrophotometers. If one takes into account the temperature dependence of the [Bass, 1985] ozone absorption spectra (current remote sensing standard) and the ozone slant path effect, the seasonal bias between Dobson and Brewer TOZ measurements is reduced from an amplitude of about 2% to less than 0.5%. The use of different ozone laboratory spectra yields different results in retrieved TOZ, because of the sensitivity of the retrieval algorithms and uncertainties in the experimental ozone cross section measurements.

  5. Long-term tropospheric and lower stratospheric ozone variations from ozonesonde observations

    NASA Technical Reports Server (NTRS)

    London, J.; Liu, S. C.

    1992-01-01

    An analysis is presented of the long-term mean pressure-latitude seasonal distribution of tropospheric and lower stratospheric ozone for the four seasons covering, in part, over 20 years of ozonesonde data. The observed patterns show minimum ozone mixing ratios in the equatorial and tropical troposphere except in regions where net photochemical production is dominant. In the middle and upper troposphere, and low stratosphere to 50 mb, ozone increases from the tropics to subpolar latitudes of both hemispheres. In mid stratosphere, the ozone mixing ratio is a maximum over the tropics. The observed vertical ozone gradient is small in the troposphere but increases rapidly above the tropopause. The amplitude of the annual variation increases from a minimum in the tropics to a maximum in polar regions. Also, the amplitude increases with height at all latitudes up to about 30 mb where the phase of the annual variation changes abruptly. The phase of the annual variation is during spring in the boundary layer, summer in mid troposphere, and spring in the upper troposhere and lower stratosphere.

  6. The latitudinal distribution of ozone to 35 km altitude from ECC ozonesonde observations, 1982-1990

    NASA Technical Reports Server (NTRS)

    Komhyr, W. D.; Oltmans, S. J.; Lathrop, J. A.; Kerr, J. B.; Matthews, W. A.

    1994-01-01

    Electrochemical concentration cell (ECC) ozone-sonde observations, made in recent years at ten stations whose locations range from the Arctic to Antarctica, have yielded a self-consistent ozone data base from which mean seasonal and annual latitudinal ozone vertical distributions to 35 km have been derived. Ozone measurement uncertainties are estimated, and results are presented in the Bass-Paur (1985) ozone absorption coefficient scale adopted for use with Dobson ozone spectrophotometers January 1, 1992. The data should be useful for comparison with model calculations of the global distribution of atmospheric ozone, for serving as apriori statistical information in deriving ozone vertical distributions from satellite and Umkehr observations, and for improving the satellite and Umkehr ozone inversion algorithms. Attention is drawn to similar results based on a less comprehensive data set published in Ozone in the Atmosphere, Proceedings of the 1988 Quadrennial Ozone Symposium where errors in data tabulations occurred for three of the stations due to inadvertent transposition of ozone partial pressure and air temperature values.

  7. Constraining global dry deposition of ozone: observations and modeling

    NASA Astrophysics Data System (ADS)

    Silva, S. J.; Heald, C. L.

    2016-12-01

    Ozone loss through dry deposition to vegetation is a critically important process for both air quality and ecosystem health. Current estimates are that nearly 25% of all surface ozone is destroyed through dry deposition, and billions of dollars are lost annually due to losses of ecosystem services and agricultural yield associated with ozone damage. However there are still substantial uncertainties regarding the spatial distribution and magnitude of the global depositional flux. As land cover change continues throughout this century, dry deposition of ozone will change in ways that are yet still poorly understood. Nearly every major atmospheric chemistry model uses a variation of the "resistor in series parameterization" for the calculation of dry deposition. By far the most commonly implemented parameterization is of the form presented in Wesely (1989), and is dependent on many variables, including land type look up tables, solar radiation, leaf area index, temperature, and more. The uncertainties contained within the various parts of this parameterization have to date not been fully explored. A lack of understanding of these uncertainties, coupled with a dearth of routine measurements of ozone deposition, ultimately challenges our ability to understand the impacts of land cover change on surface ozone. In this work, we use a suite of globally-distributed observations from the past two decades and the GEOS-Chem chemical transport model to constrain global dry deposition, improve our understanding of these uncertainties, and contextualize the impact of land cover change on ozone concentrations.

  8. Stratospheric Cooling and Arctic Ozone Recovery. Appendix L

    NASA Technical Reports Server (NTRS)

    Danilin, Michael Y.; Sze, Nien-Dak; Ko, Malcolm K. W.; Rodriguez, Jose M.; Tabazadeh, Azadeh

    1998-01-01

    We present sensitivity studies using the AER box model for an idealized parcel in the lower stratosphere at 70 deg N during winter/spring with different assumed stratospheric cooling and chlorine loadings. Our calculations show that stratospheric cooling could further deplete ozone via increased polar stratospheric cloud (PSC) formation and retard its expected recovery even with the projected chlorine loading decrease. We introduce the concept of chlorine-cooling equivalent and show that a 1 K cooling could provide the same local ozone depletion as an increase of chlorine by 0.4 - 0.7 ppbv for the scenarios considered. Thus, sustained stratospheric cooling could further reduce Arctic ozone content and delay the anticipated ozone recovery in the Northern Hemisphere even with the realization of the Montreal Protocol and its Amendments.

  9. Observed and Modeled HOCl Profiles in the Midlatitude Stratosphere: Implication for Ozone Loss

    NASA Technical Reports Server (NTRS)

    Kovalenko, L. J.; Jucks, K. W.; Salawitch, R. J.; Toon, G. C.; Blavier, J. F.; Johnson, D. G.; Kleinbohl, A.; Livesey, N. J .; Margitan, J. J.; Pickett, H. M.; hide

    2007-01-01

    Vertical profiles of stratospheric HOCl calculated with a diurnal steady-state photochemical model that uses currently recommended reaction rates and photolysis cross sections underestimate observed profiles of HOCl obtained by two balloon-borne instruments, FIRS-2 (a far-infrared emission spectrometer) and MkIV (a mid-infrared, solar absorption spectrometer). Considerable uncertainty (a factor of two) persists in laboratory measurements of the rate constant (k(sub 1)) for the reaction ClO + HO2 yields HOCl + O2. Agreement between modeled and measured HOCl can be attained using a value of k(sub 1) from Stimpfle et al. (1979) that is about a factor-of-two faster than the currently recommended rate constant. Comparison of modeled and measured HOCl suggests that models using the currently recommended value for k(sub 1) may underestimate the role of the HOCl catalytic cycle for ozone depletion, important in the midlatitude lower stratosphere.

  10. Understanding the Laminar Distribution of Tropospheric Ozone from Ground-Based, Airborne, Spaceborne, and Modeling Perspectives

    NASA Technical Reports Server (NTRS)

    Newchurch, Mike; Johnson, Matthew S.; Huang, Guanyu; Kuang, Shi; Wang, Lihua; Chance, Kelly; Liu, Xiong

    2016-01-01

    Laminar ozone structure is a ubiquitous feature of tropospheric-ozone distributions resulting from dynamic and chemical atmospheric processes. Understanding the characteristics of these ozone laminae and the mechanisms responsible for producing them is important to outline the transport pathways of trace gases and to quantify the impact of different sources on tropospheric background ozone. In this study, we present a new method to detect ozone laminae to understand their climatological characteristics of occurrence frequency in terms of thickness and altitude. We employ both ground-based and airborne ozone lidar measurements and other synergistic observations and modeling to investigate the sources and mechanisms such as biomass burning transport, stratospheric intrusion, lightning-generated NOx, and nocturnal low-level jets that are responsible for depleted or enhanced tropospheric ozone layers. Spaceborne (e.g., OMI (Ozone Monitoring Instrument), TROPOMI (Tropospheric Monitoring Instrument), TEMPO (Tropospheric Emissions: Monitoring of Pollution)) measurements of these laminae will observe greater horizontal extent and lower vertical resolution than balloon-borne or lidar measurements will quantify. Using integrated ground-based, airborne, and spaceborne observations in a modeling framework affords insight into how to gain knowledge of both the vertical and horizontal evolution of these ubiquitous ozone laminae.

  11. Trends in Surface Level Ozone Observations from Human-health Relevant Metrics: Results from the Tropospheric Ozone Assessment Report (TOAR)

    NASA Astrophysics Data System (ADS)

    Fleming, Z. L.; von Schneidemesser, E.; Doherty, R. M.; Malley, C.; Cooper, O. R.; Pinto, J. P.; Colette, A.; Xu, X.; Simpson, D.; Schultz, M.; Hamad, S.; Moola, R.; Solberg, S.; Feng, Z.

    2017-12-01

    Ozone is an air pollutant formed in the atmosphere from precursor species (NOx, VOCs, CH4, CO) that is detrimental to human health and ecosystems. The global Tropospheric Ozone Assessment Report (TOAR) initiative has assembled a global database of surface ozone observations and generated ozone exposure metrics at thousands of measurement sites around the world. This talk will present results from the assessment focused on those indicators most relevant to human health. Specifically, the trends in ozone, comparing different time periods and patterns across regions and among metrics will be addressed. In addition, the fraction of population exposed to high ozone levels and how this has changed between 2000 and 2014 will also be discussed. The core time period analyzed for trends was 2000-2014, selected to include a greater number of sites in East Asia. Negative trends were most commonly observed at many US and some European sites, whereas many sites in East Asia showed positive trends, while sites in Japan showed more of a mix of positive and negative trends. More than half of the sites showed a common direction and significance in the trends for all five human-health relevant metrics. The peak ozone metrics indicate a reduction in exposure to peak levels of ozone related to photochemical episodes in Europe and the US. A considerable number of European countries and states within the US have shown a decrease in population-weighted ozone over time. The 2000-2014 results will be augmented and compared to the trend analysis for additional time periods that cover a greater number of years, but by necessity are based on fewer sites. Trends are found to be statistically significant at a larger fraction of sites with longer time series, compared to the shorter (2000-2014) time series.

  12. Impact of Stratospheric Ozone Zonal Asymmetries on the Tropospheric Circulation

    NASA Technical Reports Server (NTRS)

    Tweedy, Olga; Waugh, Darryn; Li, Feng; Oman, Luke

    2015-01-01

    The depletion and recovery of Antarctic ozone plays a major role in changes of Southern Hemisphere (SH) tropospheric climate. Recent studies indicate that the lack of polar ozone asymmetries in chemistry climate models (CCM) leads to a weaker and warmer Antarctic vortex, and smaller trends in the tropospheric mid-latitude jet and the surface pressure. However, the tropospheric response to ozone asymmetries is not well understood. In this study we report on a series of integrations of the Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) to further examine the effect of zonal asymmetries on the state of the stratosphere and troposphere. Integrations with the full, interactive stratospheric chemistry are compared against identical simulations using the same CCM except that (1) the monthly mean zonal mean stratospheric ozone from first simulation is prescribed and (2) ozone is relaxed to the monthly mean zonal mean ozone on a three day time scale. To analyze the tropospheric response to ozone asymmetries, we examine trends and quantify the differences in temperatures, zonal wind and surface pressure among the integrations.

  13. [Observation of ozone dry deposition in the field of winter wheat.

    PubMed

    Li, Shuo; Zheng, You Fei; Wu, Rong Jun; Yin, Ji Fu; Xu, Jing Xin; Zhao, Hui; Sun, Jian

    2016-06-01

    Ozone is one of the main atmospheric pollutants over surface layer, and its increasing surface ozone concentration and its impact on main crops have become the focus of the public. In order to explore ozone deposition law and environmental factors influencing ozone deposition process, this study used the micrometeorological methods and carried out the experiment under natural conditions. The results showed that during the observational period (the vigorously growing season of wheat), the mean value of ozone flux was -0.35 μg·m -2 ·s -1 (the negative sign indicated that the deposition direction was toward the ground). The mean rate of ozone deposition was 0.55 cm·s -1 . The mean value of aerodynamic resistance was 30 s·m -1 , the mean value of sub-layer resistance was 257 s·m -1 , and that of the canopy layer stomatic resistance was 163 s·m -1 . All the test parameters presented distinct diurnal fluctuation. The ozone deposition resistance was influenced by friction velocity, solar radiation velocity, temperature, relative humidity and other factors.

  14. Observations of ozone-poor air in the tropical tropopause layer

    NASA Astrophysics Data System (ADS)

    Newton, Richard; Vaughan, Geraint; Hintsa, Eric; Filus, Michal T.; Pan, Laura L.; Honomichl, Shawn; Atlas, Elliot; Andrews, Stephen J.; Carpenter, Lucy J.

    2018-04-01

    Ozonesondes reaching the tropical tropopause layer (TTL) over the west Pacific have occasionally measured layers of very low ozone concentrations - less than 15 ppbv - raising the question of how prevalent such layers are and how they are formed. In this paper, we examine aircraft measurements from the Airborne Tropical Tropopause Experiment (ATTREX), the Coordinated Airborne Studies in the Tropics (CAST) and the Convective Transport of Active Species in the Tropics (CONTRAST) experiment campaigns based in Guam in January-March 2014 for evidence of very low ozone concentrations and their relation to deep convection. The study builds on results from the ozonesonde campaign conducted from Manus Island, Papua New Guinea, as part of CAST, where ozone concentrations as low as 12 ppbv were observed between 100 and 150 hPa downwind of a deep convective complex. TTL measurements from the Global Hawk unmanned aircraft show a marked contrast between the hemispheres, with mean ozone concentrations in profiles in the Southern Hemisphere between 100 and 150 hPa of between 10.7 and 15.2 ppbv. By contrast, the mean ozone concentrations in profiles in the Northern Hemisphere were always above 15.4 ppbv and normally above 20 ppbv at these altitudes. The CAST and CONTRAST aircraft sampled the atmosphere between the surface and 120 hPa, finding very low ozone concentrations only between the surface and 700 hPa; mixing ratios as low as 7 ppbv were regularly measured in the boundary layer, whereas in the free troposphere above 200 hPa concentrations were generally well in excess of 15 ppbv. These results are consistent with uplift of almost-unmixed boundary-layer air to the TTL in deep convection. An interhemispheric difference was found in the TTL ozone concentrations, with values < 15 ppbv measured extensively in the Southern Hemisphere but seldom in the Northern Hemisphere. This is consistent with a similar contrast in the low-level ozone between the two hemispheres found by

  15. The Chemical and Dynamical Responses of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo

    NASA Technical Reports Server (NTRS)

    Aquila, V.; Oman, L. D.; Stolarski, R.; Douglass, A. R.

    2012-01-01

    Observations have shown that the concentration of nitrogen dioxide decreased in both hemispheres in the years following the eruption of Mt. Pinatubo. In contrast, the observed ozone response was largely asymmetrical with respect to the equator, with a decrease in the northern hemisphere and little or no change in the southern hemisphere. Simulations including enhanced heterogeneous chemistry due to the presence of the volcanic aerosol reproduce a decrease of ozone in the northern hemisphere, but also produce a comparable ozone decrease in the southern hemisphere contrary to observations. Our simulations show that the heating due to the volcanic aerosol enhanced both the tropical upwelling and the extratropical downwelling. The enhanced extratropical downwelling, combined with the time of the eruption relative to the seasonal phase of the Brewer-Dobson circulation, increased the ozone in the southern hemisphere and counteracted the ozone depletion due to heterogeneous chemistry on volcanic aerosol.

  16. Children's Models of Understanding of Two Major Global Environmental Issues (Ozone Layer and Greenhouse Effect).

    ERIC Educational Resources Information Center

    Boyes, Edward; Stanisstreet, Martin

    1997-01-01

    Aims to quantify the models that 13- and 14 year-old students hold about the causes of the greenhouse effect and ozone layer depletion. Assesses the prevalence of those ideas that link the two phenomena. Twice as many students think that holes in the ozone layer cause the greenhouse effect than think the greenhouse effect causes ozone depletion.…

  17. Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean -Francois

    Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSL Br) enhances stratospheric ozone depletion. Based on a dual set of 1960–2100 coupled chemistry–climate simulations (i.e. with and without VSL Br), we show that the maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSL Br are considered, which is in better agreement with ozone observations. The impact of the additional 5 pptv VSL Br on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of ~5 million km 2, which is equivalentmore » in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSL Br in CAM-Chem (Community Atmosphere Model with Chemistry, version 4.0) does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affects the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by the year 2070 and indicates that natural VSL Br chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. As a result, this work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.« less

  18. Impact of biogenic very short-lived bromine on the Antarctic ozone hole during the 21st century

    DOE PAGES

    Fernandez, Rafael P.; Kinnison, Douglas E.; Lamarque, Jean -Francois; ...

    2017-02-03

    Active bromine released from the photochemical decomposition of biogenic very short-lived bromocarbons (VSL Br) enhances stratospheric ozone depletion. Based on a dual set of 1960–2100 coupled chemistry–climate simulations (i.e. with and without VSL Br), we show that the maximum Antarctic ozone hole depletion increases by up to 14 % when natural VSL Br are considered, which is in better agreement with ozone observations. The impact of the additional 5 pptv VSL Br on Antarctic ozone is most evident in the periphery of the ozone hole, producing an expansion of the ozone hole area of ~5 million km 2, which is equivalentmore » in magnitude to the recently estimated Antarctic ozone healing due to the implementation of the Montreal Protocol. We find that the inclusion of VSL Br in CAM-Chem (Community Atmosphere Model with Chemistry, version 4.0) does not introduce a significant delay of the modelled ozone return date to 1980 October levels, but instead affects the depth and duration of the simulated ozone hole. Our analysis further shows that total bromine-catalysed ozone destruction in the lower stratosphere surpasses that of chlorine by the year 2070 and indicates that natural VSL Br chemistry would dominate Antarctic ozone seasonality before the end of the 21st century. As a result, this work suggests a large influence of biogenic bromine on the future Antarctic ozone layer.« less

  19. Lidar Observations of the Vertical Structure of Ozone and Aerosol during Wintertime High-Ozone Episodes Associated with Oil and Gas Exploration in the Uintah Basin

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Langford, A. O.; Banta, R. M.; Alvarez, R. J.; Weickmann, A.; Sandberg, S.; Marchbanks, R. D.; Brewer, A.; Hardesty, R. M.

    2013-12-01

    The Uintah Basin in northeast Utah has been experiencing extended periods of poor air quality in the winter months including very high levels of surface ozone. To investigate the causes of these wintertime ozone pollution episodes, two comprehensive studies were undertaken in January/February of 2012 and 2013. As part of these Uintah Basin Ozone Studies (UBOS), NOAA deployed its ground-based, scanning Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar to document the vertical structure of ozone and aerosol backscatter from near the surface up to about 3 km above ground level (AGL). TOPAZ, along with a comprehensive set of chemistry and meteorological measurements, was situated in both years at the Horse Pool site at the northern edge of a large concentration of gas producing wells in the eastern part of the Uintah Basin. The 2012 study was characterized by unusually warm and snow-free condition and the TOPAZ lidar observed deep boundary layers (BL) and mostly well-mixed vertical ozone profiles at or slightly above tropospheric background levels. During UBOS 2013, winter weather conditions in the Uintah Basin were more typical with snow-covered ground and a persistent, shallow cold-pool layer. The TOPAZ lidar characterized with great temporal and spatial detail the evolution of multiple high-ozone episodes as well as cleanout events caused by the passage of synoptic-scale storm systems. Despite the snow cover, the TOPAZ observations show well-mixed afternoon ozone and aerosol profiles up to about 100 m AGL. After several days of pollutant buildup, BL ozone values reached 120-150 ppbv. Above the mixed layer, ozone values gradually decreased to tropospheric background values of around 50 ppbv throughout the several-hundred-meter-deep cold-pool layer and then stayed constant above that up to about 3 km AGL. During the ozone episodes, the lidar observations show no indication of either vertical or horizontal transport of high ozone levels to the surface, thus

  20. Ozone Depletion Potential of CH3Br. Appendix H

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Sze, Nien Dak; Scott, Courtney; Rodriguez, Jose M.; Weisenstein, Debra K.; Sander, Stanley P.

    1998-01-01

    The ozone depletion potential (ODP) of methyl bromide (CH3Br) can be determined by combining the model-calculated bromine efficiency factor (BEF) for CH3Br and its atmospheric lifetime. This paper examines how changes in several key kinetic data affect BEF. The key reactions highlighted in this study include the reaction of BrO + HO2, the absorption cross section of HOBr, the absorption cross section and the photolysis products of BrONO2, and the heterogeneous conversion of BrONO2 to HOBr and HNO3 on aerosol particles. By combining the calculated BEF with the latest estimate of 0.7 year for the atmospheric lifetime of CH3Br, the likely value of ODP for CH3Br is 0.39. The model-calculated concentration of HBr (approx. 0.3 pptv) in the lower stratosphere is substantially smaller than the reported measured value of about 1 pptv. Recent publications suggested models can reproduce the measured value if one assumes a yield for HBr from the reaction of BrO + OH or from the reaction of BrO + HO2. Although the evaluation concluded any substantial yield of HBr from BrO + HO2 is unlikely, for completeness, we calculate the effects of these assumed yields on BEF for CH3Br. Our calculations show that the effects are minimal: practically no impact for an assumed 1.3% yield of HBr from BrO + OH and 10% smaller for an assumed 0.6% yield from BrO + HO2.

  1. Looking at Ozone From a New Angle: Shuttle Ozone Limb Sounding Experiment-2 (SOLSE-2)

    NASA Technical Reports Server (NTRS)

    McPeters, Richard; Hilsenrath, Ernest; Janz, Scott; Brown, Tammy (Technical Monitor)

    2002-01-01

    The ozone layer above Earth is our planet's fragile sunscreen, protecting people, vegetation, and wildlife. NASA has been measuring ozone for more than 20 years by looking down, but SOLSE-2 will show that more information is available by looking at ozone from the side, at Earth's limb or atmospheric boundary. When the ozone layer is compromised, increased ultraviolet (UV) levels from the sun cause health problems ranging from severe sunburns to skin cancer and cataracts. A concerted global effort has been made to reduce or eliminate the production of chemicals that deplete ozone, but the ozone layer is not expected to recover for many decades because these chemicals can remain active in the atmosphere for up to 100 years. We know now that ozone monitoring needs to be focused in the lower stratosphere. The discovery of the ozone hole in 1985 demonstrated that very large changes in ozone were occurring in the lower stratosphere near 20 km, instead of the upper stratosphere as first expected, and where current ozone instruments are focused. Measuring ozone from a tangential perspective that is centered at the limb provides ozone profiles concentrated in the lower stratosphere. The first flight of SOLSE proved that this technique achieves the accuracy and coverage of traditional measurements, and surpasses the altitude resolution and depth of retrieval of conventional techniques. Results from the first flight convinced the science community to design the next generation ozone monitoring satellite based on SOLSE. The Ozone Mapping and Profiling Suite (OMPS) is currently being built for the NPOESS satellite. The primary objective of SOLSE-2 is to confirm the promising results of the first flight over a wider range of viewing conditions and spectral wavelengths. Sometimes a really hard problem can be solved when you look at it from a different angle! While scientists conduct research, protect yourself by observing the UV index and spend less unprotected time outdoors.

  2. Evaluation of the Effect of Exhausts from Liquid and Solid Rockets on Ozone Layer

    NASA Astrophysics Data System (ADS)

    Yamagiwa, Yoshiki; Ishimaki, Tetsuya

    This paper reports the analytical results of the influences of solid rocket and liquid rocket exhausts on ozone layer. It is worried about that the exhausts from solid propellant rockets cause the ozone depletion in the ozone layer. Some researchers try to develop the analytical model of ozone depletion by rocket exhausts to understand its physical phenomena and to find the effective design of rocket to minimize its effect. However, these models do not include the exhausts from liquid rocket although there are many cases to use solid rocket boosters with a liquid rocket at the same time in practical situations. We constructed combined analytical model include the solid rocket exhausts and liquid rocket exhausts to analyze their effects. From the analytical results, we find that the exhausts from liquid rocket suppress the ozone depletion by solid rocket exhausts.

  3. The Response of Tropospheric Ozone to ENSO in Observations and a Chemistry-Climate Simulation

    NASA Technical Reports Server (NTRS)

    Oman, L. D.; Douglass, A. R.; Ziemke, J. R.; Waugh, D. W.; Rodriguez, J. M.; Nielsen, J. E.

    2012-01-01

    The El Nino-Southern Oscillation (ENSO) is the dominant mode of tropical variability on interannual time scales. ENSO appears to extend its influence into the chemical composition of the tropical troposphere. Recent results have revealed an ENSO induced wave-l anomaly in observed tropical tropospheric column ozone. This results in a dipole over the western and eastern tropical Pacific, whereby differencing the two regions produces an ozone anomaly with an extremely high correlation to the Nino 3.4 Index. We have successfully reproduced this result using the Goddard Earth Observing System Version 5 (GEOS-5) general circulation model coupled to a comprehensive stratospheric and tropospheric chemical mechanism forced with observed sea surface temperatures over the past 25 years. An examination of the modeled ozone field reveals the vertical contributions of tropospheric ozone to the column over the western and eastern Pacific region. We will show targeted comparisons with observations from NASA's Aura satellite Microwave Limb Sounder (MLS), and the Tropospheric Emissions Spectrometer (TES) to provide insight into the vertical structure of ozone changes. The tropospheric ozone response to ENSO could be a useful chemistry-climate model evaluation tool and should be considered in future modeling assessments.

  4. Evaluation of ACCMIP Outgoing Longwave Radiation from Tropospheric Ozone Using TES Satellite Observations.

    NASA Technical Reports Server (NTRS)

    Bowman, Kevin W.; Shindell, Drew Todd; Worden, H. M.; Lamarque, J. F.; Young, P. J.; Stevenson, D. S.; Qu, Z.; delaTorre, M.; Bergmann, D.; Cameron-Smith, P. J.; hide

    2013-01-01

    We use simultaneous observations of tropospheric ozone and outgoing longwave radiation (OLR) sensitivity to tropospheric ozone from the Tropospheric Emission Spectrometer (TES) to evaluate model tropospheric ozone and its effect on OLR simulated by a suite of chemistry-climate models that participated in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The ensemble mean of ACCMIP models show a persistent but modest tropospheric ozone low bias (5-20 ppb) in the Southern Hemisphere (SH) and modest high bias (5-10 ppb) in the Northern Hemisphere (NH) relative to TES ozone for 2005-2010. These ozone biases have a significant impact on the OLR. Using TES instantaneous radiative kernels (IRK), we show that the ACCMIP ensemble mean tropospheric ozone low bias leads up to 120mW/ sq. m OLR high bias locally but zonally compensating errors reduce the global OLR high bias to 39+/- 41mW/ sq. m relative to TES data. We show that there is a correlation (Sq. R = 0.59) between the magnitude of the ACCMIP OLR bias and the deviation of the ACCMIP preindustrial to present day (1750-2010) ozone radiative forcing (RF) from the ensemble ozone RF mean. However, this correlation is driven primarily by models whose absolute OLR bias from tropospheric ozone exceeds 100mW/ sq. m. Removing these models leads to a mean ozone radiative forcing of 394+/- 42mW/ sq. m. The mean is about the same and the standard deviation is about 30% lower than an ensemble ozone RF of 384 +/- 60mW/ sq. m derived from 14 of the 16 ACCMIP models reported in a companion ACCMIP study. These results point towards a profitable direction of combining satellite observations and chemistry-climate model simulations to reduce uncertainty in ozone radiative forcing.

  5. The GEOS Chemistry Climate Model: Implications of Climate Feedbacks on Ozone Depletion and Recovery

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Pawson, Steven; Douglass, Anne R.; Newman, Paul A.; Kawa, S. Randy; Nielsen, J. Eric; Rodriquez, Jose; Strahan, Susan; Oman, Luke; Waugh, Darryn

    2008-01-01

    The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. The first version of the model was used in the CCMVal intercomparison exercises that contributed to the 2006 WMO/UNEP Ozone Assessment. The second version incorporates the updated version of the GCM (GEOS 5) and will be used for the next round of CCMVal evaluations and the 2010 Ozone Assessment. The third version, now under development, incorporates the combined stratosphere and troposphere chemistry package developed under the Global Modeling Initiative (GMI). We will show comparison to past observations that indicate that we represent the ozone trends over the past 30 years. We will also show the basic temperature, composition, and dynamical structure of the simulations. We will further show projections into the future. We will show results from an ensemble of transient and time-slice simulations, including simulations with fixed 1960 chlorine, simulations with a best guess scenario (Al), and simulations with extremely high chlorine loadings. We will discuss planned extensions of the model to include emission-based boundary conditions for both anthropogenic and biogenic compounds.

  6. Improve observation-based ground-level ozone spatial distribution by compositing satellite and surface observations: A simulation experiment

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzhong; Wang, Yuhang; Crawford, James; Cheng, Ye; Li, Jianfeng

    2018-05-01

    Obtaining the full spatial coverage of daily surface ozone fields is challenging because of the sparsity of the surface monitoring network and the difficulty in direct satellite retrievals of surface ozone. We propose an indirect satellite retrieval framework to utilize the information from satellite-measured column densities of tropospheric NO2 and CH2O, which are sensitive to the lower troposphere, to derive surface ozone fields. The method is applicable to upcoming geostationary satellites with high-quality NO2 and CH2O measurements. To prove the concept, we conduct a simulation experiment using a 3-D chemical transport model for July 2011 over the eastern US. The results show that a second order regression using both NO2 and CH2O column densities can be an effective predictor for daily maximum 8-h average ozone. Furthermore, this indirect retrieval approach is shown to be complementary to spatial interpolation of surface observations, especially in regions where the surface sites are sparse. Combining column observations of NO2 and CH2O with surface site measurements leads to an improved representation of surface ozone over simple kriging, increasing the R2 value from 0.53 to 0.64 at a surface site distance of 252 km. The improvements are even more significant with larger surface site distances. The simulation experiment suggests that the indirect satellite retrieval technique can potentially be a useful tool to derive the full spatial coverage of daily surface ozone fields if satellite observation uncertainty is moderate.

  7. 1,2-Dichlorohexafluoro-cyclobutane (1,2-c-C4F6Cl2, R-316c) a potent ozone depleting substance and greenhouse gas: atmospheric loss processes, lifetimes, and ozone depletion and global warming potentials for the (E) and (Z) stereoisomers.

    PubMed

    Papadimitriou, Vassileios C; McGillen, Max R; Smith, Shona C; Jubb, Aaron M; Portmann, Robert W; Hall, Bradley D; Fleming, Eric L; Jackman, Charles H; Burkholder, James B

    2013-10-31

    The atmospheric processing of (E)- and (Z)-1,2-dichlorohexafluoro-cyclobutane (1,2-c-C4F6Cl2, R-316c) was examined in this work as the ozone depleting (ODP) and global warming (GWP) potentials of this proposed replacement compound are presently unknown. The predominant atmospheric loss processes and infrared absorption spectra of the R-316c isomers were measured to provide a basis to evaluate their atmospheric lifetimes and, thus, ODPs and GWPs. UV absorption spectra were measured between 184.95 to 230 nm at temperatures between 214 and 296 K and a parametrization for use in atmospheric modeling is presented. The Cl atom quantum yield in the 193 nm photolysis of R-316c was measured to be 1.90 ± 0.27. Hexafluorocyclobutene (c-C4F6) was determined to be a photolysis co-product with molar yields of 0.7 and 1.0 (±10%) for (E)- and (Z)-R-316c, respectively. The 296 K total rate coefficient for the O((1)D) + R-316c reaction, i.e., O((1)D) loss, was measured to be (1.56 ± 0.11) × 10(-10) cm(3) molecule(-1) s(-1) and the reactive rate coefficient, i.e., R-316c loss, was measured to be (1.36 ± 0.20) × 10(-10) cm(3) molecule(-1) s(-1) corresponding to a ~88% reactive yield. Rate coefficient upper-limits for the OH and O3 reaction with R-316c were determined to be <2.3 × 10(-17) and <2.0 × 10(-22) cm(3) molecule(-1) s(-1), respectively, at 296 K. The quoted uncertainty limits are 2σ and include estimated systematic errors. Local and global annually averaged lifetimes for the (E)- and (Z)-R-316c isomers were calculated using a 2-D atmospheric model to be 74.6 ± 3 and 114.1 ± 10 years, respectively, where the estimated uncertainties are due solely to the uncertainty in the UV absorption spectra. Stratospheric photolysis is the predominant atmospheric loss process for both isomers with the O((1)D) reaction making a minor, ~2% for the (E) isomer and 7% for the (Z) isomer, contribution to the total atmospheric loss. Ozone depletion potentials for (E)- and (Z)-R-316c

  8. 1,2-Dichlorohexafluoro-Cyclobutane (1,2-c-C4F6Cl2, R-316c) a Potent Ozone Depleting Substance and Greenhouse Gas: Atmospheric Loss Processes, Lifetimes, and Ozone Depletion and Global Warming Potentials for the (E) and (Z) stereoisomers

    NASA Technical Reports Server (NTRS)

    Papadimitriou, Vassileios C.; McGillen, Max R.; Smith, Shona C.; Jubb, Aaron M.; Portmann, Robert W.; Hall, Bradley D.; Fleming, Eric L.; Jackman, Charles H.; Burkholder, James B.

    2013-01-01

    The atmospheric processing of (E)- and (Z)-1,2-dichlorohexafluorocyclobutane (1,2-c-C4F6Cl2, R-316c) was examined in this work as the ozone depleting (ODP) and global warming (GWP) potentials of this proposed replacement compound are presently unknown. The predominant atmospheric loss processes and infrared absorption spectra of the R-316c isomers were measured to provide a basis to evaluate their atmospheric lifetimes and, thus, ODPs and GWPs. UV absorption spectra were measured between 184.95 to 230 nm at temperatures between 214 and 296 K and a parametrization for use in atmospheric modeling is presented. The Cl atom quantum yield in the 193 nm photolysis of R- 316c was measured to be 1.90 +/- 0.27. Hexafluorocyclobutene (c-C4F6) was determined to be a photolysis co-product with molar yields of 0.7 and 1.0 (+/-10%) for (E)- and (Z)-R-316c, respectively. The 296 K total rate coefficient for the O(1D) + R-316c reaction, i.e., O(1D) loss, was measured to be (1.56 +/- 0.11) × 10(exp -10)cu cm/ molecule/s and the reactive rate coefficient, i.e., R-316c loss, was measured to be (1.36 +/- 0.20) × 10(exp -10)cu cm/molecule/s corresponding to a approx. 88% reactive yield. Rate coefficient upper-limits for the OH and O3 reaction with R-316c were determined to be <2.3 × 10(exp -17) and <2.0 × 10(exp -22)cu cm/molecule/s, respectively, at 296 K. The quoted uncertainty limits are 2(sigma) and include estimated systematic errors. Local and global annually averaged lifetimes for the (E)- and (Z)-R-316c isomers were calculated using a 2-D atmospheric model to be 74.6 +/- 3 and 114.1 +/-10 years, respectively, where the estimated uncertainties are due solely to the uncertainty in the UV absorption spectra. Stratospheric photolysis is the predominant atmospheric loss process for both isomers with the O(1D) reaction making a minor, approx. 2% for the (E) isomer and 7% for the (Z) isomer, contribution to the total atmospheric loss. Ozone depletion potentials for (E)- and (Z

  9. Modeling and Observations of the Response of Tropical Tropospheric Ozone to ENSO

    NASA Technical Reports Server (NTRS)

    Oman, L. D.; Douglass, A. R.; Ziemke, J. R.; Waugh, D. W.; Lang, C.; Rodriquez, J. M.; Nielsen, J. E.

    2012-01-01

    The El Nino-Southern Oscillation (ENSO) is the dominant mode of tropical variability on interannual time scales. ENSO appears to extend its influence into the chemical composition of the tropical troposphere, Recent results have revealed an ENSO induced wave-1 anomaly in observed tropical tropospheric column ozone, This results in a dipole over the western and eastern tropical Pacific, whereby differencing the two regions produces an ozone anomaly with an extremely high correlation to the Nino 3.4 Index. We have successfully reproduced this result using the Goddard Earth Observing System Version 5 (GEOS-5) general circulation model coupled to a comprehensive stratospheric and tropospheric chemical mechanism forced with observed sea surface temperatures over the past 25 years, An examination of the modeled ozone field reveals the vertical contributions of tropospheric ozone to the column over the western and eastern Pacific region, We will show targeted comparisons with SHADOZ ozonesondes over these regions to provide insight into the vertical structure. Also, comparisons with NASA's Aura satellite Microwave Limb Sounder (MLS) and Tropospheric Emissions Spectrometer (TES) instruments and other appropriate data sets will be shown. In addition, the water vapor response to ENSO will be compared to help illuminate its role relative to dynamics in impacting ozone concentrations. These results indicate that the tropospheric ozone response to ENSO is potentially a very useful chemistry-climate diagnostic and should be considered in future modeling assessments.

  10. A Contribution Toward Understanding the Biospherical Significance of Antarctic Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Lubin, Dan; Mitchell, B. Greg; Frederick, John E.; Alberts, Amy D.; Booth, C. R.; Lucas, Timothy; Neuschuler, David

    1992-05-01

    Measurements of biologically active UV radiation made by the National Science Foundation (NSF) scanning spectroradiometer (UV-monitor) at Palmer Station, Antarctica, during the Austral springs of 1988, 1989, and 1990 are presented and compared. Column ozone abundance above Palmer Station is computed from these measurements using a multiple wavelength algorithm. Two contrasting action spectra (biological weighting functions) are used to estimate the biologically relevant dose from the spectral measurements: a standard weighting function for damage to DNA, and a new action spectrum representing the potential for photosynthesis inhibition in Antarctic phytoplankton. The former weights only UV-B wavelengths (280-320 nm) and gives the most weight to wavelengths shorter than 300 nm, while the latter includes large contributions out to 355 nm. The latter is the result of recent Antarctic field work and is relevant in that phytoplankton constitute the base of the Antarctic food web. The modest ozone hole of 1988, in which the ozone abundance above Palmer Station never fell below 200 Dobson units (DU), brought about summerlike doses of DNA-effective UV radiation 2 months early, but UV doses which could inhibit photosynthesis in phytoplankton did not exceed a clear-sky "maximum normal" dose for that time of year. The severe ozone holes of 1989 and 1990, in which the ozone abundance regularly fell below 200 DU, brought about increases in UV surface irradiance weighted by either action spectrum. Ozone abundances and dose-weighted irradiances provided by the NSF UV-monitor are used to derive the radiation amplification factors (RAFs) for both DNA-effective irradiance and phytoplankton-effective irradiance. The RAF for DNA-effective irradiance is nonlinear in ozone abundance and is in excess of the popular "two for one" rule, while the RAF for phytoplankton-effective irradiance approximately follows a "one for one" rule.

  11. Feasibility of Sensing Tropospheric Ozone with MODIS 9.6 Micron Observations

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Iacovazzi, R., Jr.; Moon-Yoo, Jung

    2004-01-01

    With the infrared observations made by the Moderate Resolution Imaging Spectrometer (MODIS) on board the EOS-Aqua satellite, which include the 9.73 micron channel, a method is developed to deduce horizontal patterns of tropospheric ozone in cloud free conditions on a scale of about 100 km. It is assumed that on such small scale, at a given instant, horizontal changes in stratospheric ozone are small compared to that in the troposphere. From theoretical simulations it is found that uncertainties in the land surface emissivity and the vertical thermal stratification in the troposphere can lead to significant errors in the inferred tropospheric ozone. Because of this reason in order to derive horizontal patterns of tropospheric ozone in a given geographic area a tuning of this method is necessary with the help of a few dependent cases. After tuning, this method is applied to independent cases of MODIS data taken over Los Angeles basin in cloud free conditions to derive horizontal distribution of ozone in the troposphere. Preliminary results indicate that the derived patterns of ozone resemble crudely the patterns of surface ozone reported by EPA.

  12. The Impact of Withholding Observations from TOMS or SBUV Instruments on the GEOS Ozone Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Stajner, Ovanka; Riishojgaard, Lars Peter; Rood, Richard B.

    2000-01-01

    In a data assimilation system (DAS), model forecast atmospheric fields, observations and their respective statistics are combined in an attempt to produce the best estimate of these fields. Ozone observations from two instruments are assimilated in the Goddard Earth Observing System (GEOS) ozone DAS: the Total Ozone Mapping Spectrometer (TOMS) and the Solar Backscatter Ultraviolet (SBUV) instrument. The assimilated observations are complementary; TOMS provides a global daily coverage of total column ozone, without profile information, while SBUV measures ozone profiles and total column ozone at nadir only. The purpose of this paper is to examine the performance of the ozone assimilation system in the absence of observations from one of the instruments as it can happen in the event of a failure of an instrument or when there are problems with an instrument for a limited time. Our primary concern is for the performance of the GEOS ozone DAS when it is used in the operational mode to provide near real time analyzed ozone fields in support of instruments on the Terra satellite. In addition, we are planning to produce a longer term ozone record by assimilating historical data. We want to quantify the differences in the assimilated ozone fields that are caused by the changes in the TOMS or SBUV observing network. Our primary interest is in long term and large scale features visible in global statistics of analysis fields, such as differences in the zonal mean of assimilated ozone fields or comparisons with independent observations, While some drifts in assimilated fields occur immediately, after assimilating just one day of different observations, the others develop slowly over several months. Thus, we are also interested in the length of time, which is determined from time series, that is needed for significant changes to take place.

  13. Scientific assessment of stratospheric ozone: 1989, volume 1

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A scientific review is presented of the current understanding of stratospheric ozone. There have been highly significant advances in the understanding of the impact of human activities on the Earth's protective ozone layer. There are four major findings that each heighten the concern that chlorine and bromine containing chemicals can lead to a significant depletion of stratospheric ozone: (1) Antarctic ozone hole (the weight of evidence indicates that chlorinated and brominated chemicals are responsible for the ozone hole; (2) Perturbed arctic chemistry (the same potentially ozone destroying processes were identified in the Arctic stratosphere); (3) Long term ozone decreases; and (4) Model limitations (gaps in theoretical models used for assessment studies).

  14. A two-dimensional photochemical model of the atmosphere. I Chlorocarbon emissions and their effect on stratospheric ozone

    NASA Technical Reports Server (NTRS)

    Gidel, L. T.; Crutzen, P. J.; Fishman, J.

    1983-01-01

    A two-dimensional photochemical model is used to examine changes to the ozone layer caused by emissions of CFCl3, CF2Cl2, CH3CCl3 and CCl4. The influence of a possible secular increase in tropospheric methane up to 2 percent per year was found to be small, although it acts to mask decreases in total ozone caused by the chlorocarbons. Increasing NO(x) emissions caused by industralization also tend to mask decreases in total ozone and may have caused total ozone to increase by about 1 percent. The model-calculated ozone decreases are estimated to be about 3 percent by 1980. This estimate is higher than estimates by similar models, although it is noted that CCl4 and CH3CCl3 emissions are included in the model in addition to CFCl3 and CF2Cl2. This is significant because the model indicates that CCl4 has dominated the ozone depletions so far, and knowledge of the historical emission rate of CCl4 to the atmosphere is incomplete. There remain sufficient significant disagreements between theoretical and observed concentrations and variabilities, particularly for odd nitrogen and ClO, to caution against assigning too much confidence in the calculated ozone depletion.

  15. Observation of ozone and aerosols in the Antarctic ozone hole of 1991 under the Polar Patrol Balloon (PPB) Project. Preliminary result

    NASA Technical Reports Server (NTRS)

    Hayashi, Masahiko; Murata, Isao; Iwasaka, Yasunobu; Kondo, Yutaka; Kanzawa, Hiroshi

    1994-01-01

    We present preliminary results for the PPB (Polar Patrol Balloon) experiment. The balloon was launched at 07:55 UT on 23 September and dropped at 21 UT on 28 September 1991. During the period, ozone and aerosol concentrations were measured correspondingly along the track. During the Lagrangian type observation, drastic change of ozone concentration in 'same air mass' and positive correlation between ozone concentration and sulfate aerosol amount were obtained at the level within 80-78 hPa. During the descent motion at 80 deg S active PSC's (type-1 and -2) were observed from 200 hPa to 80 hPa.

  16. The consequences for human health of stratospheric ozone depletion in association with other environmental factors.

    PubMed

    Lucas, R M; Norval, M; Neale, R E; Young, A R; de Gruijl, F R; Takizawa, Y; van der Leun, J C

    2015-01-01

    Due to the implementation of the Montreal Protocol, which has limited, and is now probably reversing, the depletion of the stratospheric ozone layer, only modest increases in solar UV-B radiation at the surface of the Earth have occurred. For many fair-skinned populations, changing behaviour with regard to exposure to the sun over the past half century - more time in the sun, less clothing cover (more skin exposed), and preference for a tan - has probably contributed more to greater levels of exposure to UV-B radiation than ozone depletion. Exposure to UV-B radiation has both adverse and beneficial effects on human health. This report focuses on an assessment of the evidence regarding these outcomes that has been published since our previous report in 2010. The skin and eyes are the organs exposed to solar UV radiation. Excessive solar irradiation causes skin cancer, including cutaneous malignant melanoma and the non-melanoma skin cancers, basal cell carcinoma and squamous cell carcinoma, and contributes to the development of other rare skin cancers such as Merkel cell carcinoma. Although the incidence of melanoma continues to increase in many countries, in some locations, primarily those with strong sun protection programmes, incidence has stabilised or decreased over the past 5 years, particularly in younger age-groups. However, the incidence of non-melanoma skin cancers is still increasing in most locations. Exposure of the skin to the sun also induces systemic immune suppression that may have adverse effects on health, such as through the reactivation of latent viral infections, but also beneficial effects through suppression of autoimmune reactivity. Solar UV-B radiation damages the eyes, causing cataracts and pterygium. UV-B irradiation of the skin is the main source of vitamin D in many geographic locations. Vitamin D plays a critical role in the maintenance of calcium homeostasis in the body; severe deficiency causes the bone diseases, rickets in children

  17. Attribution of Recovery in Lower-Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Yang, Eun-Su; Cunnold, Derek M.; Salawitch, Ross J.; McCormick, M. Patrick; Russell, James, III; Zawodny, Joseph M.; Oltmans, Samuel; Newchurch, Michael J.

    2005-01-01

    Multiple satellite and ground-based observations provide consistent evidence that the thickness of Earth's protective ozone layer has stopped declining since 1997, close to the time of peak stratospheric halogen loading. Regression analyses with Effective Equivalent Stratospheric Chlorine (EESC) in conjunction with further analyses using more sophisticated photochemical model calculations constrained by satellite data demonstrate that the cessation of ozone depletion between 18-25 km altitude is consistent with a leveling off of stratospheric abundances of chlorine and bromine, due to the Montreal Protocol and its amendments. However, ozone increases in the lowest part of the stratosphere, from the tropopause to 18 km, account for about half of the improvement in total column ozone during the past 9 years at northern hemisphere mid-latitudes. The increase in ozone for altitudes below 18 km is most likely driven by changes in transport, rather than driven by declining chlorine and bromine. Even with this evidence that the Montreal Protocol and its amendments are having the desired, positive effect on ozone above 18 km, total column ozone is recovering faster than expected due to the apparent transport driven changes at lower altitudes. Accurate prediction of future levels of stratospheric ozone will require comprehensive understanding of the factors that drive temporal changes at various altitudes, and partitioning of the recent transport-driven increases between natural variability and changes in atmospheric structure perhaps related to anthropogenic climate change.

  18. Attribution of Recovery in Lower-stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Yang, Eun-Su; Cunnold, Derek M.; Salawitch, Ross J.; McCormick, M. Patrick; Russell, James, III; Zawodny, Joseph M.; Oltmans, Samuel; Newchurch, Michael J.

    2006-01-01

    Multiple satellite and ground-based observations provide consistent evidence that the thickness of Earth's protective ozone layer has stopped declining since 1997, close to the time of peak stratospheric halogen loading. Regression analyses with Effective Equivalent Stratospheric Chlorine (EESC) in conjunction with further analyses using more sophisticated photochemical model calculations constrained by satellite data demonstrate that the cessation of ozone depletion between 18-25 km altitude is consistent with a leveling off of stratospheric abundances of chlorine and bromine, due to the Montreal Protocol and its amendments. However, ozone increases in the lowest part of the stratosphere, from the tropopause to 18 km, account for about half of the improvement in total column ozone during the past 9 years at northern hemisphere mid-latitudes. The increase in ozone for altitudes below 18 km is most likely driven by changes in transport, rather than driven by declining chlorine and bromine. Even with this evidence that the Montreal Protocol and its amendments are having the desired, positive effect on ozone above 18 km, total column ozone is recovering faster than expected due to the apparent transport driven changes at lower altitudes. Accurate prediction of future levels of stratospheric ozone will require comprehensive understanding of the factors that drive temporal changes at various altitudes, and partitioning of the recent transport-driven increases between natural variability and changes in atmospheric structure perhaps related to anthropogenic climate change.

  19. Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts.

    PubMed

    Tsai, Wen-Tien

    2017-09-21

    Among the halogenated hydrocarbons, chloromethanes (i.e., methyl chloride, CH₃Cl; methylene chloride, CH₂Cl₂; chloroform, CHCl₃; and carbon tetrachloride, CCl₄) play a vital role due to their extensive uses as solvents and chemical intermediates. This article aims to review their main chemical/physical properties and commercial/industrial uses, as well as the environment and health hazards posed by them and their toxic decomposition products. The environmental properties (including atmospheric lifetime, radiative efficiency, ozone depletion potential, global warming potential, photochemical ozone creation potential, and surface mixing ratio) of these chlorinated methanes are also reviewed. In addition, this paper further discusses their atmospheric fates and human health implications because they are apt to reside in the lower atmosphere when released into the environment. According to the atmospheric degradation mechanism, their toxic degradation products in the troposphere include hydrogen chloride (HCl), carbon monoxide (CO), chlorine (Cl₂), formyl chloride (HCOCl), carbonyl chloride (COCl₂), and hydrogen peroxide (H₂O₂). Among them, COCl₂ (also called phosgene) is a powerful irritating gas, which is easily hydrolyzed or thermally decomposed to form hydrogen chloride.

  20. Bayesian Maximum Entropy Integration of Ozone Observations and Model Predictions: A National Application.

    PubMed

    Xu, Yadong; Serre, Marc L; Reyes, Jeanette; Vizuete, William

    2016-04-19

    To improve ozone exposure estimates for ambient concentrations at a national scale, we introduce our novel Regionalized Air Quality Model Performance (RAMP) approach to integrate chemical transport model (CTM) predictions with the available ozone observations using the Bayesian Maximum Entropy (BME) framework. The framework models the nonlinear and nonhomoscedastic relation between air pollution observations and CTM predictions and for the first time accounts for variability in CTM model performance. A validation analysis using only noncollocated data outside of a validation radius rv was performed and the R(2) between observations and re-estimated values for two daily metrics, the daily maximum 8-h average (DM8A) and the daily 24-h average (D24A) ozone concentrations, were obtained with the OBS scenario using ozone observations only in contrast with the RAMP and a Constant Air Quality Model Performance (CAMP) scenarios. We show that, by accounting for the spatial and temporal variability in model performance, our novel RAMP approach is able to extract more information in terms of R(2) increase percentage, with over 12 times for the DM8A and over 3.5 times for the D24A ozone concentrations, from CTM predictions than the CAMP approach assuming that model performance does not change across space and time.

  1. Tropospheric Ozone Over the North Pacific from Ozonesdonde Observations

    NASA Technical Reports Server (NTRS)

    Oltmans, S. J.; Johnson, B. J.; Harris, J. M.; Thompson, A. M.; Liu, H. Y.; Voemel, H.; Chan, C. Y.; Fujimoto, T.; Brackett, V. G.; Chang, W. L.

    2003-01-01

    As part of the TRACE-P mission, ozone vertical profile measurements were made at a number of locations in the North Pacific. At most of the sites there is also a multi-year record of ozonesonde observations. From seven locations in the western Pacific (Hong Kong; Taipei; Jeju Island, Korea; and Naha, Kagoshima, Tsukuba, and Sapporo, Japan), a site in the central Pacific (Hilo, HI), and a site on the west coast of the U.S. (Trinidad Head, CA) both a seasonal and event specific picture of tropospheric ozone over the North Pacific emerges. At all of the sites there is a pronounced spring maximum through the troposphere. There are, however, differences in the timing and strength of this feature. Over Japan the northward movement of the jet during the spring and summer influences the timing of the seasonal maximum. The ozone profiles suggest that transport of ozone rich air from the stratosphere plays a strong role in the development of this maximum. During March and April at Hong Kong ozone is enhanced in a layer that extends from the lower free troposphere into the upper troposphere that likely has its origin in biomass burning in northern Southeast Asia and equatorial Africa. During the winter the Pacific subtropical sites (latitude -25N) are dominated by air with a low-latitude, marine source that gives low ozone amounts particularly in the upper troposphere. In the summer in the boundary layer at all of the sites marine air dominates and ozone amounts are generally quite low (less than 25 ppb). The exception is near large population centers (Tokyo and Taipei but not Hong Kong) where pollution events can give amounts in excess of 80 ppb. During the TRACE-P intensive campaign period (February-April 2001) tropospheric ozone amounts were rather typical of those seen in the long-term records of the stations with multi-year soundings.

  2. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.

    PubMed

    Moore, Christopher W; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M; Douglas, Thomas A; Richter, Andreas; Nghiem, Son V

    2014-02-06

    The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.

  3. Analysis of TES Satellite Ozone Observations from 2005 to 2013 to Understand Global Air Pollution Transport

    NASA Astrophysics Data System (ADS)

    Kladar, R. M.; Cooper, O. R.

    2015-12-01

    To better understand the causes of ozone formation and transport, we create and analyze global satellite ozone retrieval products for ground level to upper tropospheric ozone concentrations over the years 2005 to 2013 using the Tropospheric Emission Spectrometer (TES) that rides aboard the NASA Aura satellite. Many global and regional tropospheric ozone trends are not fully understood. Observing many different pressure levels between 1000 hPa to 215 hPa, we focus on the areas where model and other observation strategies disagree, namely the Arabian Peninsula, the Australian outback, and the southern Sahara. We observe (and these areas may be experiencing) unusually high ozone concentrations. We also comment on the historically high ozone areas such as China, Northern India, western Europe, and the western and southern United States and how known phenomena compare to our observations. Many observations confirm known mechanisms of ozone formation and transport, such as the effect of the yearly monsoon cycle in South, Southeast, and East Asia. Others, such as the surprisingly high monthly average concentrations on the Arabian Peninsula and Southern Sahara, deserve more thorough investigation. Several hypotheses for these disagreement areas are put forward here. Lastly, we comment on the usefulness of the TES instrument for trends analysis and future global observations.

  4. Ozone Pollution, Transport and Variability: Examples from Satellite and In-Situ Observations

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    2003-01-01

    Regional and intercontinental transport of ozone has been observed from satellite, aircraft and sounding data. Over the past several years, we have developed new tropospheric ozone retrieval techniques from the TOMS (Total Ozone Mapping Spectrometer) satellite instrument that are of sufficient resolution to follow pollution episodes. The modified-residual technique uses Level 2 total ozone and was used to follow the 1997 fires in the wake of the El-Nino-related fires in southeast Asia and the Indonesian maritime continent. The TOMS-direct method ('TDOT' = TOMS Direct Ozone in the Troposphere) is a newer algorithm that uses TOMS radiances directly to extract tropospheric ozone. Ozonesonde data that have been taken in campaigns (e.g. TRACE-P) and more consistently in the SHADOZ (Southern Hemisphere Additional Ozonesondes) project, reveal layers of pollution traceable with trajectories. Examples will be shown of long-range transport and recirculation over Africa during SAFARI-2000.

  5. Is Ozone Going Up Now?

    NASA Astrophysics Data System (ADS)

    Steinbrecht, W.; Froidevaux, L.; Davis, S. M.; Degenstein, D. A.; Wild, J.; Roth, C.; Kaempfer, N.; Leblanc, T.; Godin-Beekmann, S.; Vigouroux, C.; Swart, D. P. J.; Querel, R.; Harris, N.; Nedoluha, G. E.

    2016-12-01

    The last WMO ozone assessment (WMO, 2014) concluded that observations show significant ozone increase, 3% per decade (±2% per decade, 2σ), in the upper stratosphere since 2000. At other levels, or for total ozone, increases were not found or not significant. Overall, this is consistent with expectations from model simulations, (e.g. CCMVal2, Eyring et al., 2010). These simulations indicate that declining chlorine levels and stratospheric cooling due to CO2 increase should contribute roughly equal parts to ozone increase in the upper stratosphere. Shortly after the assessment, results from the SI2N initiative (Harris et al., 2015) confirmed increasing ozone in the upper stratosphere. However, the SI2N results indicated smaller increases (+1.5% per decade) than the WMO assessment, and substantially larger uncertainties (±5% per decade, 2σ). Differences can be attributed to time period, 1998 to 2012, compared to 2000 to 2013/14 for the assessment, and to larger assumed instrumental drift uncertainties, 6% per decade, (only 1 to 2% per decade in WMO 2014, see also Hubert et al., 2016). Here, we explore how additional ground-based and satellite data since 2013, as well as new and improved records, affect ozone trends and uncertainties. The focus will be on ozone in the upper stratosphere, because this is the region where the earliest signs of beginning ozone recovery are expected. ReferencesEyring, V., et al.: Multi-model assessment of stratospheric ozone return dates and ozone recovery in CCMVal-2 models, Atmos. Chem. Phys., 10, 9451-9472, doi:10.5194/acp-10-9451-2010, 2010. Harris, N. R. P., et al.: Past changes in the vertical distribution of ozone - Part 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 15, 9965-9982, doi:10.5194/acp-15-9965-2015, 2015. Hubert, D., et al.: Ground-based assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records, Atmos. Meas. Tech., 9, 2497-2534, doi:10.5194/amt-9

  6. TOLNet Data Format for Lidar Ozone Profile & Surface Observations

    NASA Astrophysics Data System (ADS)

    Chen, G.; Aknan, A. A.; Newchurch, M.; Leblanc, T.

    2015-12-01

    The Tropospheric Ozone Lidar Network (TOLNet) is an interagency initiative started by NASA, NOAA, and EPA in 2011. TOLNet currently has six Lidars and one ozonesonde station. TOLNet provides high-resolution spatio-temporal measurements of tropospheric (surface to tropopause) ozone and aerosol vertical profiles to address fundamental air-quality science questions. The TOLNet data format was developed by TOLNet members as a community standard for reporting ozone profile observations. The development of this new format was primarily based on the existing NDAAC (Network for the Detection of Atmospheric Composition Change) format and ICARTT (International Consortium for Atmospheric Research on Transport and Transformation) format. The main goal is to present the Lidar observations in self-describing and easy-to-use data files. The TOLNet format is an ASCII format containing a general file header, individual profile headers, and the profile data. The last two components repeat for all profiles recorded in the file. The TOLNet format is both human and machine readable as it adopts standard metadata entries and fixed variable names. In addition, software has been developed to check for format compliance. To be presented is a detailed description of the TOLNet format protocol and scanning software.

  7. Long-term total ozone observations at Arosa (Switzerland) with Dobson and Brewer instruments (1988-2007)

    NASA Astrophysics Data System (ADS)

    Scarnato, B.; Staehelin, J.; Stübi, R.; Schill, H.

    2010-07-01

    Dobson and Brewer spectrophotometers are the standard instruments for ground-based total ozone monitoring under the World Meteorological Organization's Global Atmosphere Watch program. Both types of instruments have been simultaneously used at Arosa station (Switzerland) since 1988; presently two Dobson and three Brewer instruments (one of which is type Mark III) are in operation. The large data set of quasi-simultaneous measurements (defined here as observations performed less than 10 min apart) allows for the determination of both inter- and intrainstrumental precision. The results for one standard deviation of total ozone are ±0.5% for Dobson standard wavelength pair observations and ±0.15% for Brewer total ozone measurements. To transform Dobson data into Brewer total ozone observations, empirical transfer functions are used to describe the observed difference in seasonal variations of total ozone data derived from the two types of instruments (amounting to a seasonal amplitude of approximately 2% with maximum deviation in winter). The statistical model (applied to quasi-simultaneous measurements) includes the ozone effective temperature and the air mass multiplied by total ozone (ozone slant path) as explanatory variables; it removes the seasonal cycle in the difference and it allows the significance of the proxies introduced and systematic errors in the data to be determined. However, even when these transfer functions are applied, a 3% drift over about a 10 year period (1988-1997) between Arosa's Dobson and Brewer derived total ozone data series remains unexplained, adding to the model an aerosol proxy for which only part of the drift can be removed (related to the period 1992-1996).

  8. Copernicus stratospheric ozone service, 2009-2012: validation, system intercomparison and roles of input data sets

    NASA Astrophysics Data System (ADS)

    Lefever, K.; van der A, R.; Baier, F.; Christophe, Y.; Errera, Q.; Eskes, H.; Flemming, J.; Inness, A.; Jones, L.; Lambert, J.-C.; Langerock, B.; Schultz, M. G.; Stein, O.; Wagner, A.; Chabrillat, S.

    2015-03-01

    This paper evaluates and discusses the quality of the stratospheric ozone analyses delivered in near real time by the MACC (Monitoring Atmospheric Composition and Climate) project during the 3-year period between September 2009 and September 2012. Ozone analyses produced by four different chemical data assimilation (CDA) systems are examined and compared: the Integrated Forecast System coupled to the Model for OZone And Related chemical Tracers (IFS-MOZART); the Belgian Assimilation System for Chemical ObsErvations (BASCOE); the Synoptic Analysis of Chemical Constituents by Advanced Data Assimilation (SACADA); and the Data Assimilation Model based on Transport Model version 3 (TM3DAM). The assimilated satellite ozone retrievals differed for each system; SACADA and TM3DAM assimilated only total ozone observations, BASCOE assimilated profiles for ozone and some related species, while IFS-MOZART assimilated both types of ozone observations. All analyses deliver total column values that agree well with ground-based observations (biases < 5%) and have a realistic seasonal cycle, except for BASCOE analyses, which underestimate total ozone in the tropics all year long by 7 to 10%, and SACADA analyses, which overestimate total ozone in polar night regions by up to 30%. The validation of the vertical distribution is based on independent observations from ozonesondes and the ACE-FTS (Atmospheric Chemistry Experiment - Fourier Transform Spectrometer) satellite instrument. It cannot be performed with TM3DAM, which is designed only to deliver analyses of total ozone columns. Vertically alternating positive and negative biases are found in the IFS-MOZART analyses as well as an overestimation of 30 to 60% in the polar lower stratosphere during polar ozone depletion events. SACADA underestimates lower stratospheric ozone by up to 50% during these events above the South Pole and overestimates it by approximately the same amount in the tropics. The three-dimensional (3-D) analyses

  9. Identifying water mass depletion in Northern Iraq observed by GRACE

    NASA Astrophysics Data System (ADS)

    Mulder, G.; Olsthoorn, T. N.; Al-Manmi, D. A. M. A.; Schrama, E. J. O.; Smidt, E. H.

    2014-10-01

    Observations acquired by Gravity Recovery And Climate Experiment (GRACE) mission indicate a mass loss of 31 ± 3 km3 or 130 ± 14 mm in Northern Iraq between 2007 and 2009. This data is used as an independent validation of a hydrologic model of the region including lake mass variations. We developed a rainfall-runoff model for five tributaries of the Tigris River, based on local geology and climate conditions. Model inputs are precipitation from Tropical Rainfall Measurement Mission (TRMM) observations, and potential evaporation from GLDAS model parameters. Our model includes a representation of the karstified aquifers that cause large natural groundwater variations in this region. Observed river discharges were used to calibrate our model. In order to get the total mass variations, we corrected for lake mass variations derived from Moderate Resolution Imaging Spectroradiometer (MODIS) in combination with satellite altimetry and some in-situ data. Our rainfall-runoff model confirms that Northern Iraq suffered a drought between 2007 and 2009 and is consistent with the mass loss observed by GRACE over that period. Also, GRACE observed the annual cycle predicted by the rainfall-runoff model. The total mass depletion seen by GRACE between 2007 and 2009 is mainly explained by a lake mass depletion of 74 ± 4 mm and a natural groundwater depletion of 37 ± 6 mm. Our findings indicate that man-made groundwater extraction has a minor influence in this region while depletion of lake mass and geology play a key role.

  10. Summary of the Impact of Launch Vehicle Exhaust and Deorbiting Space and Meteorite Debris on Stratospheric Ozone

    DTIC Science & Technology

    1999-09-30

    20 3 MODELING OBSERVATIONS OF SRM EXHAUST................................................... 21 3.1...2. MAIN EXHAUST PRODUCTS ........................................................................................ 19 TABLE 3 -1 EXAMPLES OF...23 TABLE 3 -2. OZONE DEPLETING CHEMICALS FROM LAUNCH VEHICLES ......................................... 28 TABLE 3 - 3 . WORLDWIDE

  11. Recent advances in satellite observations of solar variability and global atmospheric ozone

    NASA Technical Reports Server (NTRS)

    Heath, D. F.

    1974-01-01

    A description is given of the temporal behavior of the sun as an ultraviolet variable star in relation to daily zonal means of atmospheric ozone from the total amount to that above the 10-mb and 4-mb pressure levels. A significant correlation has been observed between enhancements in the ultraviolet solar irradiances and terrestrial passages of the solar magnetic field sector boundary structure. However, it has not yet been possible to separate solar from the dynamical effects on the variability in the zonal means of ozone. Attention is given to global changes in ozone which have been derived from the satellite observations in terms of season, solar variability, and major stratospheric disturbances such as stratospheric warmings.

  12. Identifying water mass depletion in northern Iraq observed by GRACE

    NASA Astrophysics Data System (ADS)

    Mulder, G.; Olsthoorn, T. N.; Al-Manmi, D. A. M. A.; Schrama, E. J. O.; Smidt, E. H.

    2015-03-01

    Observations acquired by Gravity Recovery And Climate Experiment (GRACE) mission indicate a mass loss of 146 ± 6 mm equivalent water height (EWH) in northern Iraq between 2007 and 2009. These data are used as an independent validation of lake mass variations and a rainfall-runoff model, which is based on local geology and climate conditions. Model inputs are precipitation from Tropical Rainfall Measurement Mission (TRMM) observations, and climatic parameters from Global Land Data Assimilation Systems (GLDAS) model parameters. The model is calibrated with observed river discharge and includes a representation of the karstified aquifers in the region to improve model realism. Lake mass variations were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) in combination with satellite altimetry and some in situ data. Our rainfall-runoff model confirms that northern Iraq suffered a drought between 2007 and 2009 and captures the annual cycle and longer trend of the observed GRACE data. The total mass depletion seen by GRACE between 2007 and 2009 is mainly explained by a lake mass depletion of 75 ± 3 mm EWH and a natural groundwater depletion of 39 ± 8 mm EWH. Our findings indicate that anthropogenic groundwater extraction has a minor influence in this region, while a decline in lake mass and natural depletion of groundwater play a key role.

  13. Observations and Simulations of Formation of Broad Plasma Depletions Through Merging Process

    NASA Technical Reports Server (NTRS)

    Huang, Chao-Song; Retterer, J. M.; Beaujardiere, O. De La; Roddy, P. A.; Hunton, D.E.; Ballenthin, J. O.; Pfaff, Robert F.

    2012-01-01

    Broad plasma depletions in the equatorial ionosphere near dawn are region in which the plasma density is reduced by 1-3 orders of magnitude over thousands of kilometers in longitude. This phenomenon is observed repeatedly by the Communication/Navigation Outage Forecasting System (C/NOFS) satellite during deep solar minimum. The plasma flow inside the depletion region can be strongly upward. The possible causal mechanism for the formation of broad plasma depletions is that the broad depletions result from merging of multiple equatorial plasma bubbles. The purpose of this study is to demonstrate the feasibility of the merging mechanism with new observations and simulations. We present C/NOFS observations for two cases. A series of plasma bubbles is first detected by C/NOFS over a longitudinal range of 3300-3800 km around midnight. Each of the individual bubbles has a typical width of approx 100 km in longitude, and the upward ion drift velocity inside the bubbles is 200-400 m/s. The plasma bubbles rotate with the Earth to the dawn sector and become broad plasma depletions. The observations clearly show the evolution from multiple plasma bubbles to broad depletions. Large upward plasma flow occurs inside the depletion region over 3800 km in longitude and exists for approx 5 h. We also present the numerical simulations of bubble merging with the physics-based low-latitude ionospheric model. It is found that two separate plasma bubbles join together and form a single, wider bubble. The simulations show that the merging process of plasma bubbles can indeed occur in incompressible ionospheric plasma. The simulation results support the merging mechanism for the formation of broad plasma depletions.

  14. Direct observation of ClO from chlorine nitrate photolysis. [as mechanism of polar ozone depletion

    NASA Technical Reports Server (NTRS)

    Minton, Timothy K.; Nelson, Christine M.; Moore, Teresa A.; Okumura, Mitchio

    1992-01-01

    Chlorine nitrate photolysis has been investigated with the use of a molecular beam technique. Excitation at both 248 and 193 nanometers led to photodissociation by two pathways, ClONO2 yields ClO + NO2 and ClONO2 yields Cl + NO3, with comparable yields. This experiment provides a direct measurement of the ClO product channel and consequently raises the possibility of an analogous channel in ClO dimer photolysis. Photodissociation of the ClO dimer is a critical step in the catalytic cycle that is presumed to dominate polar stratospheric ozone destruction. A substantial yield of ClO would reduce the efficiency of this cycle.

  15. Sources of Springtime Tropospheric Ozone Over North China: A Modeling Analysis of Ozonesonde and Satellite Observations

    NASA Astrophysics Data System (ADS)

    Liu, H.; Chan, C.; Huang, J.; Zhang, Y.; Choi, H.; Crawford, J. H.; Considine, D. B.; Zheng, X.; Oltmans, S. J.; Liu, S. C.; Zhang, L.; Liu, X.; Thouret, V.

    2012-12-01

    Tropospheric ozone concentrations and emissions of NOx have both increased significantly over China as a result of rapid industrialization during the past decade. These trends degrade local and regional air quality and have important effects on background tropospheric ozone and surface ozone over downwind North Pacific and North America. In-situ observations of tropospheric ozone over China are therefore essential to testing and improving our understanding of the impact of Asian anthropogenic (versus natural) emissions and various chemical, physical, and dynamical processes on both regional and global tropospheric ozone. Despite their critical importance, in-situ observations of tropospheric ozone profiles over China have been few and far between in most of the country. To investigate the ensemble of processes that control the distribution, variability, and sources of springtime tropospheric ozone over China and its surrounding regions, an intensive ozonesonde sounding campaign, called Transport of Air Pollutants and Tropospheric Ozone over China (TAPTO-China), was conducted at nine locations across China in the springs of 2004 (South China) and 2005 (North China). In this paper, we use a global 3-D model of tropospheric chemistry (GEOS-Chem) to examine the characteristics of distribution and variability and quantify various sources of tropospheric ozone over North China by analysis of intensive ozonesonde data obtained at four stations in North / Northwest China during the second phase of TAPTO-China (April-May 2005). These four stations include Xining (36.43N, 101.45E), Beijing (39.80N, 116.18E), Longfengshan (44.44N, 127.36E), and Aletai (47.73N, 88.08E). We drive GEOS-Chem with two sets of assimilated meteorological observations (GEOS-4 and GEOS-5) from the Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office (GAMO), allowing us to examine the impacts of variability in meteorology. We show that the observed tropospheric

  16. Present-day distribution and trends of global tropospheric ozone from satellite observations: Results from the Tropospheric Ozone Assessment Report (TOAR)

    NASA Astrophysics Data System (ADS)

    Gaudel, A.; Cooper, O. R.; Barret, B.; Boynard, A.; Clerbaux, C.; Pierre-Francois, C.; Huang, G.; Hurtmans, D.; Kerridge, B. J.; Latter, B.; Le Flochmoen, E.; Liu, X.; Neu, J. L.; Siddans, R.; Wespes, C.; Worden, H. M.; Ziemke, J. R.

    2017-12-01

    Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone have shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, has left scientists unable to answer the most basic questions: Is ozone continuing to decline in nations with strong emission controls? To what extent is ozone increasing in the developing world? IGAC's Tropospheric Ozone Assessment Report (TOAR) has been designed to answer these questions and this presentation will show the results from the TOAR-Climate initiative, focusing on the present-day distribution and trends of global tropospheric ozone from satellite observations. Five satellite products based on OMI (2 products using two different retrieval methods) and IASI (also 2 products using two different retrieval methods) and the OMI/MLS combined product were intercompared. An important result is the close agreement among the five products regarding the quantification of the total mass of all tropospheric ozone, the so called tropospheric ozone burden (TOB). The mean estimate for TOB between 60° N and 60° S is 296 Tg, with all products agreeing within ± 4%. However, on a regional basis the five satellite products have notable differences and there is no agreement in terms of ozone trends over the past decade. Continuing work is exploring the causes of these differences.

  17. Atmospheric soundings by SPICAM occultation observations: aerosol and ozone vertical profiles

    NASA Astrophysics Data System (ADS)

    Montmessin, F.

    2005-12-01

    The SPICAM instrument is a highly versatile, dual spectrometer probing both the UV and the NIR spectral region and is currently flying around Mars onboard Mars Express. Since the beginning of MEx operations, SPICAM has collected about thousand atmospheric profiles while observing in a solar or a stellar occultation mode. UV spectra bear the signatures of several species; i.e carbon dioxide, ozone and aerosols, while infrared spectra potentially bring information on atmospheric condensates and on water vapor. This presentation will focus on the measured aerosol, ozone and water vapor profiles. For the aerosol, we will emphasize the numerous observations made in the polar night and will also discuss some high altitude clouds discovered in the southern hemisphere. Ozone and water vapor profiles will be presented along with some General Circulation Model comparisons. This work has been supported by CNES.

  18. 50 years of monitoring of the ozone layer in the Czech Republic - results and challenges

    NASA Astrophysics Data System (ADS)

    Vanicek, Karel; Skrivankova, Pavla; Metelka, Ladislav; Stanek, Martin

    2010-05-01

    Long-term observations of total ozone (TOZ) and vertical ozone profiles, the basic parameters of the ozone layer, have been performed at the Solar and Ozone Observatory (SOO) Hradec Kralove and at the Aerological Department (AD) Praha of the Czech Hydrometeorological Institute (CHMI) since 1961 and 1992 respectively. The Dobson and Brewer spectrophotometers regularly calibrated towards the international references and electro-chemical ECC ozone sondes are used for the measurements. The observations contribute to the global GAW and NDACC ozone monitoring systems. Up to now analyses of the data give the basic findings given bellow and documented in the presentation. Some of them have important implication to the international ozone monitoring infrastructure, as well. - The decrease of TOZ by about 5-7 % in the winter-spring months towards the pre ozone-hole period have occurred since the mid eighties. This is in good agreement by the magnitude and time with depletion of the ozone layer due to chemical destruction of ozone in the NH mid-latitudes. - Significant depletion 3-5 % of TOZ has been identified also in the summer season since the early nineties. As this can not be attributed to the man-made chemical processes a change in the UT/LS dynamics over Central Europe is the most probable reason. - Aerological measurements taken at AD show that the summer reduction of TOZ very well coincides with a change of UT/LS temperature that persists for about two decades over the Czech territory. Therefore it has a long-term character that can be regarded as a climate shift in UT/LS and need to be further investigated. - 15 years of unique simultaneous Dobson/Brewer observations of TOZ performed at SOO show systematic seasonal deviations between both data sets that exceed instrumental accuracy of measurements. The differences are mostly caused by different wavelengths and their ozone absorption coefficients used by both instruments. As the Brewer observations are being

  19. Ozone response to enhanced heterogeneous processing after the eruption of Mt. Pinatubo

    NASA Technical Reports Server (NTRS)

    Rodriguez, Jose M.; Ko, M. K. W.; Sze, N. D.; Heisey, C. W.; Yue, G. K.; Mccormick, M. P.

    1994-01-01

    Increases in aerosol loading after the Pinatubo eruption are expected to cause additional ozone depletion. Even though aerosol loadings were highest in the winter of 1991-1992, recent analyses of satellite and ground-based ozone measurements indicate that ozone levels in the winter of 1992-1993 are the lowest recorded in recent years, raising the question of the mechanisms responsible for such behavior. We have incorporated aerosol surface areas derived from the Stratospheric Aerosol and Gas Experiment II (SAGE-II) measurements into our two-dimensional model. Inclusion of heterogeneous chemsitry on these enhanced aerosol surfaces yields maximum ozone reductions during the winter of 1992-1993 in the Northern Hemisphere, consistent with those derived from observations. This delayed behavior is due to the combination of the non-linear nature of the impact of heterogeneous reactions as a function of aerosol surface area, and the long time constants for ozone in the lower stratosphere. If heterogeneous mechanisms are primarily responsible for the low 1992-1993 ozone levels, we expect ozone concentrations to start recovering in 1994.

  20. Dynamical component of seasonal and year-to-year changes in Antarctic and global ozone

    NASA Technical Reports Server (NTRS)

    Tung, Ka Kit; Yang, HU

    1988-01-01

    The dynamics of the ozone concetration components of the Antarctic ozone hole as related to seasonal and year-to-year temperature changes in August, September, October, and November during the 1979-1985 period is studied using a zonally averaged model in which all transport fields are fixed by input temperature data. The results suggest that, prior to 1984, both the seasonal and year-to year variability of the zonal-mean Antarctic ozone minimum and the surrounding maximum can be accounted for by temperature dynamics without invoking changes in chemical composition (e.g., chlorine content) or special chemistry. The same dynamical mechanism also accounts for the good simulation of the observed seasonal and latitudinal structure of column ozone in other parts of the world. However, chemical depletion of ozone may have become more important after 1984. The model also appears to underpredict the September ozone decline in years, leading to an underprediction of the recent minimum values in the Antarctic ozone hole.

  1. Characteristics of ozone vertical profile observed in the boundary layer around Beijing in autumn.

    PubMed

    Ma, Zhiqiang; Zhang, Xiaoling; Xu, Jing; Zhao, Xiujuan; Meng, Wei

    2011-01-01

    In the autumn of 2008, the vertical profiles of ozone and meteorological parameters in the low troposphere (0-1000 m) were observed at two sites around Beijing, specifically urban Nanjiao and rural Shangdianzi. At night and early morning, the lower troposphere divided into two stratified layers due to temperature inversion. Ozone in the lower layer showed a large gradient due to the titration of NO. Air flow from the southwest brought ozone-rich air to Beijing, and the ozone profiles were marked by a continuous increase in the residual layer at night. The accumulated ozone in the upper layer played an important role in the next day's surface peak ozone concentration, and caused a rapid increase in surface ozone in the morning. Wind direction shear and wind speed shear exhibited different influences on ozone profiles and resulted in different surface ozone concentrations in Beijing.

  2. An Update on Ozone Profile Trends for the Period 2000 to 2016

    NASA Technical Reports Server (NTRS)

    Steinbrecht, Wolfgang; Froidevaux, Lucien; Fuller, Ryan; Wang, Ray; Anderson, John; Roth, Chris; Bourassa, Adam; Degenstein, Doug; Damadeo, Robert; Zawodny, Joe; hide

    2017-01-01

    Ozone profile trends over the period 2000 to 2016 from several merged satellite ozone data sets and from ground-based data measured by four techniques at stations of the Network for the Detection of Atmospheric Composition Change indicate significant ozone increases in the upper stratosphere, between 35 and 48 kilometers altitude (5 and 1 hectopascals). Near 2 hectopascals (42 kilometers), ozone has been increasing by about 1.5 percent per decade in the tropics (20 degrees S to 20 degrees N), and by 2 to 2.5 percent per decade in the 35 to 60 degree latitude bands of both hemispheres. At levels below 35 kilometers (5 hectopascals), 2000 to 2016 ozone trends are smaller and not statistically significant. The observed trend profiles are consistent with expectations from chemistry climate model simulations. This study confirms positive trends of upper stratospheric ozone already reported, e.g., in the WMO/UNEP (World Meteorological Organization/United Nations Environmental Programme) Ozone Assessment 2014 or by Harris et al. (2015). Compared to those studies, three to four additional years of observations, updated and improved data sets with reduced drift, and the fact that nearly all individual data sets indicate ozone increase in the upper stratosphere, all give enhanced confidence. Uncertainties have been reduced, for example for the trend near 2 hectopascals in the 35 to 60 degree latitude bands from about plus or minus 5 percent (2 sigma) in Harris et al. (2015) to less than plus or minus 2 percent (2 sigma). Nevertheless, a thorough analysis of possible drifts and differences between various data sources is still required, as is a detailed attribution of the observed increases to declining ozone-depleting substances and to stratospheric cooling. Ongoing quality observations from multiple independent platforms are key for verifying that recovery of the ozone layer continues as expected.

  3. Highly Relativistic Electrons from UARS and Their Effect on Atmospheric Ozone

    NASA Astrophysics Data System (ADS)

    Pesnell, W. D.; Goldberg, R. A.; Jackman, C. H.; Chenette, D. L.; Gaines, E. E.

    2001-12-01

    In a study involving 5 of the instruments on UARS, we have investigated how fluxes of high-energy electrons could modify the chemistry of the upper stratosphere and mesosphere. Fluxes of high-energy electrons (E > 100~keV) have been predicted to deplete mesospheric ozone by 20% or more, and stratospheric ozone to a lesser degree. Precipitating fluxes of these electrons can increase by 1--2 orders of magnitude during highly relativistic electron (HRE) events, and often contain significant contributions from electrons with E > 1~MeV. This research has produced a database of differential electron energy spectra obtained during the decline of solar cycle 22. We have used this database to understand the radiation environment of low-Earth orbit. We will show how the HEPS data provides energy-dependent lifetimes for the energetic electrons and that elevated electron fluxes should be expected on any satellite mission lasting more than 1 week. Once the electron fluxes are known, the atmospheric effects can be predicted by model calculations and those predictions compared with composition measurements. For the instantaneous electron fluxes measured during a large May 1992 HRE, relative depletions of ozone greater than 15% were predicted to occur between altitudes of 60--80~km, where HO{}x reactions cause a local minimum in the ozone concentration. The chemical signature of an HRE would be ozone depletions in the region of enhanced flux, particularly within the magnetic L-shell limits of 3 < L < 4. Data from HEPS, CLAES, HALOE, HRDI, and MLS were combined to search for such effects during the May 1992 HRE. Mesospheric ozone measurements from HRDI and stratospheric ozone measurements by CLAES and MLS were searched for the predicted depletions. The seasonal evolution of water vapor was monitored with HALOE. Our analysis shows that between altitudes of 65--75 km the ozone mixing ratio was relatively constant within the overlapping local solar time bands during May 1992. Above 80

  4. Report of a large depletion in the ozone layer over southern Brazil and Uruguay by using multi-instrumental data

    NASA Astrophysics Data System (ADS)

    Bresciani, Caroline; Dornelles Bittencourt, Gabriela; Valentin Bageston, José; Kirsch Pinheiro, Damaris; Schuch, Nelson Jorge; Bencherif, Hassan; Paes Leme, Neusa; Vaz Peres, Lucas

    2018-03-01

    Ozone is one of the chemical compounds that form part of the atmosphere. It plays a key role in the stratosphere where the ozone layer is located and absorbs large amounts of ultraviolet radiation. However, during austral spring (August-November), there is a massive destruction of the ozone layer, which is known as the Antarctic ozone hole. This phenomenon decreases ozone concentration in that region, which may affect other regions in addition to the polar one. This anomaly may also reach mid-latitudes; hence, it is called the secondary effect of the Antarctic ozone hole. Therefore, this study aims to identify the passage of an ozone secondary effect (OSE) event in the region of the city of Santa Maria - RS (29.68° S, 53.80° W) by means of a multi-instrumental analysis using the satellites TIMED/SABER, AURA/MLS, and OMI-ERS. Measurements were made in São Martinho da Serra/RS - Brazil (29.53° S, 53.85° W) using a sounding balloon and a Brewer Spectrophotometer. In addition, the present study aims to describe and analyse the influence that this stratospheric ozone reduction has on temperatures presented by these instruments, including data collected through the radio occultation technique. The event was first identified by the AURA/MLS satellite on 19 October 2016 over Uruguay. This reduction in ozone concentration was found by comparing the climatology for the years 1996-1998 for the state of Rio Grande do Sul, which is close to Uruguay. This event was already observed in Santa Maria/RS-Brazil on 20 October 2016 as presented by the OMI-ERS satellite and the Brewer Spectrophotometer. Moreover, a significant decrease was reported by the TIMED/SABER satellite in Uruguay. On 21 October, the poor ozone air mass was still over the region of interest, according to the OMI-ERS satellite, data from the sounding balloon launched in Santa Maria/RS-Brazil, and measurements made by the AURA/MLS satellite. Furthermore, the influence of ozone on the

  5. Long-term Ozone Changes and Associated Climate Impacts in CMIP5 Simulations

    NASA Technical Reports Server (NTRS)

    Eyring, V.; Arblaster, J. M.; Cionni, I.; Sedlacek, J.; Perlwitz, J.; Young, P. J.; Bekki, S.; Bergmann, D.; Cameron-Smith, P.; Collins, W. J.; hide

    2013-01-01

    Ozone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960-2005) and future (2006-2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long-term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen, but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (approximately 20 and 40 Dobson units (DU) by 2100, respectively). By 2050, these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to approximately 10DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future Southern Hemisphere summertime circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections.

  6. Mirrored changes in Antarctic ozone and stratospheric temperature in the late 20th versus early 21st centuries

    NASA Astrophysics Data System (ADS)

    Solomon, Susan; Ivy, Diane; Gupta, Mukund; Bandoro, Justin; Santer, Benjamin; Fu, Qiang; Lin, Pu; Garcia, Rolando R.; Kinnison, Doug; Mills, Michael

    2017-08-01

    Observed and modeled patterns of lower stratospheric seasonal trends in Antarctic ozone and temperature in the late 20th (1979-2000) and the early 21st (2000-2014) centuries are compared. Patterns of pre-2000 observed Antarctic ozone decreases and stratospheric cooling as a function of month and pressure are followed by opposite-signed (i.e., "mirrored") patterns of ozone increases and warming post-2000. An interactive chemistry-climate model forced by changes in anthropogenic ozone depleting substances produces broadly similar mirrored features. Statistical analysis of unforced model simulations (from long-term model control simulations of a few centuries up to 1000 years) suggests that internal and solar natural variability alone is unable to account for the pattern of observed ozone trend mirroring, implying that forcing is the dominant driver of this behavior. Radiative calculations indicate that ozone increases have contributed to Antarctic warming of the lower stratosphere over 2000-2014, but dynamical changes that are likely due to internal variability over this relatively short period also appear to be important. Overall, the results support the recent finding that the healing of the Antarctic ozone hole is underway and that coupling between dynamics, chemistry, and radiation is important for a full understanding of the causes of observed stratospheric temperature and ozone changes.

  7. ER-2 #809 awaits pilot entry for the third flight of the SAGE III Ozone Loss and Validation Experiment (SOLVE)

    NASA Image and Video Library

    2000-01-28

    ER-2 #809 awaiting pilot entry for the third flight of the SAGE III Ozone Loss and Validation Experiment (SOLVE). The ER-2, a civilian variant of Lockheed's U-2, and another NASA flying laboratory, Dryden's DC-8, were based north of the Arctic Circle in Kiruna, Sweden during the winter of 2000 to study ozone depletion as part of SOLVE. A large hangar built especially for research, "Arena Arctica" housed the instrumented aircraft and the scientists. Scientists have observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew sample collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. "The collaborative campaign will provide an immense new body of information about the Arctic stratosphere," said program scientist Dr. Michael Kurylo, NASA Headquarters. "Our understanding of the Earth's ozone will be greatly enhanced by this research."

  8. Trends of Rural Tropospheric Ozone at the Northwest of the Iberian Peninsula

    PubMed Central

    Saavedra, S.; Rodríguez, A.; Souto, J. A.; Casares, J. J.; Bermúdez, J. L.; Soto, B.

    2012-01-01

    Tropospheric ozone levels around urban and suburban areas at Europe and North America had increased during 80's–90's, until the application of NOx reduction strategies. However, as it was expected, this ozone depletion was not proportional to the emissions reduction. On the other hand, rural ozone levels show different trends, with peaks reduction and average increments; this different evolution could be explained by either emission changes or climate variability in a region. In this work, trends of tropospheric ozone episodes at rural sites in the northwest of the Iberian Peninsula were analyzed and compared to others observed in different regions of the Atlantic European coast. Special interest was focused on the air quality sites characterization, in order to guarantee their rural character in terms of air quality. Both episodic local meteorological and air quality measurements along five years were considered, in order to study possible meteorological influences in ozone levels, different to other European Atlantic regions. PMID:22649298

  9. Trends of rural tropospheric ozone at the northwest of the Iberian Peninsula.

    PubMed

    Saavedra, S; Rodríguez, A; Souto, J A; Casares, J J; Bermúdez, J L; Soto, B

    2012-01-01

    Tropospheric ozone levels around urban and suburban areas at Europe and North America had increased during 80's-90's, until the application of NO(x) reduction strategies. However, as it was expected, this ozone depletion was not proportional to the emissions reduction. On the other hand, rural ozone levels show different trends, with peaks reduction and average increments; this different evolution could be explained by either emission changes or climate variability in a region. In this work, trends of tropospheric ozone episodes at rural sites in the northwest of the Iberian Peninsula were analyzed and compared to others observed in different regions of the Atlantic European coast. Special interest was focused on the air quality sites characterization, in order to guarantee their rural character in terms of air quality. Both episodic local meteorological and air quality measurements along five years were considered, in order to study possible meteorological influences in ozone levels, different to other European Atlantic regions.

  10. Diverse policy implications for future ozone and surface UV in a changing climate

    NASA Astrophysics Data System (ADS)

    Butler, A. H.; Daniel, J. S.; Portmann, R. W.; Ravishankara, A. R.; Young, P. J.; Fahey, D. W.; Rosenlof, K. H.

    2016-06-01

    Due to the success of the Montreal Protocol in limiting emissions of ozone-depleting substances, concentrations of atmospheric carbon dioxide, nitrous oxide, and methane will control the evolution of total column and stratospheric ozone by the latter half of the 21st century. As the world proceeds down the path of reducing climate forcing set forth by the 2015 Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 21), a broad range of ozone changes are possible depending on future policies enacted. While decreases in tropical stratospheric ozone will likely persist regardless of the future emissions scenario, extratropical ozone could either remain weakly depleted or even increase well above historical levels, with diverse implication for ultraviolet (UV) radiation. The ozone layer’s dependence on future emissions of these gases creates a complex policy decision space for protecting humans and ecosystems, which includes unexpected options such as accepting nitrous oxide emissions in order to maintain historical column ozone and surface UV levels.

  11. Antarctic Ozone Hole, 2000

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Each spring the ozone layer over Antarctica nearly disappears, forming a 'hole' over the entire continent. The hole is created by the interaction of some man-made chemicals-freon, for example-with Antarctica's unique weather patterns and extremely cold temperatures. Ozone in the stratosphere absorbs ultraviolet radiation from the sun, thereby protecting living things. Since the ozone hole was discovered many of the chemicals that destroy ozone have been banned, but they will remain in the atmosphere for decades. In 2000, the ozone hole grew quicker than usual and exceptionally large. By the first week in September the hole was the largest ever-11.4 million square miles. The top image shows the average total column ozone values over Antarctica for September 2000. (Total column ozone is the amount of ozone from the ground to the top of the atmosphere. A relatively typical measurement of 300 Dobson Units is equivalent to a layer of ozone 0.12 inches thick on the Earth's surface. Levels below 220 Dobson Units are considered to be significant ozone depletion.) The record-breaking hole is likely the result of lower than average ozone levels during the Antarctic fall and winter, and exceptionally cold temperatures. In October, however (bottom image), the hole shrank dramatically, much more quickly than usual. By the end of October, the hole was only one-third of it's previous size. In a typical year, the ozone hole does not collapse until the end of November. NASA scientists were surprised by this early shrinking and speculate it is related to the region's weather. Global ozone levels are measured by the Total Ozone Mapping Spectrometer (TOMS). For more information about ozone, read the Earth Observatory's ozone fact sheet, view global ozone data and see these ozone images. Images by Greg Shirah, NASA GSFC Scientific Visualization Studio.

  12. Analysis and validation of ozone variability observed by lidar during the ESCOMPTE-2001 campaign

    NASA Astrophysics Data System (ADS)

    Ancellet, G.; Ravetta, F.

    2005-03-01

    An ozone lidar was successfully operated as a ground-based instrument during the ESCOMPTE experiment in June/July 2001. Ozone profiles were measured between 0.5 and 5 km. Moreover, simultaneous measurements of the lidar scattering ratio (SR) at 316 nm diagnosed the diurnal evolution of the PBL top. Comparison of this data set with in-situ measurements by ultralight aircraft (ULM) and balloon soundings supports the existence of well-defined layers over the whole altitude range. Differences between measurements techniques are not due to instrumental inaccuracies but point towards the existence of ozone plumes with sharp horizontal gradients. This is indeed supported by aircraft horizontal cross-section available twice a day at two different levels in the planetary boundary layer (PBL) and the free troposphere. Analysis of the ozone data set has shown a good correlation between surface meteorological conditions, surface ozone measurements and lidar ozone profiles in the PBL. Observed ozone maxima or minima are linked either to sea breeze circulation bringing polluted air masses over the lidar or synoptic flows bringing air with background O 3 values into the region. The observed variability of the ozone field is very large over the whole altitude range. Although it is the result of local temporal variability and advection of spatial inhomogenities, the latter proved to be an important contribution.

  13. In Brief: Monitoring ozone in Qatar

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-12-01

    Qatar is establishing an ozone and pollution monitoring ground station in West Asia, following discussions between the government, the Qatar Foundation, and the United Nations Environment Programme, according to a 19 November announcement. The station will assist in understanding whether the ozone layer is actually recovering after being damaged by ozone-depleting chemicals. Qatar also announced plans to establish a global center of excellence for research and development of ozone and climate-friendly technology, equipment, and appliances. UNEP executive director Achim Steiner said the announcements by Qatar ``will help plug key data gaps relating to information gathering in West Asia and the Gulf to the benefit of the region and the world.''

  14. The modeled latitudinal distribution of the ozone quasi-biennial oscillation using observed equatorial winds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, L.J.; Ruth, S.

    1993-04-15

    A simulation of precise years of the quasi-biennial oscillation (QBO) is achieved in a two-dimensional model by relaxing the modeled equatorial winds in the lower stratosphere toward radiosonde observations. The model has been run for the period 1971-90. A QBO signal in column ozone is produced in the model that agrees reasonably well with observational data from the BUV, TOMS, and SAGE II satellite datasets. The model results confirm previous indications of the importance of the interaction of the QBO with the annual cycle in the determination of the subtropical ozone anomaly. The low-frequency modulation of the subtropical ozone anomalymore » is now particularly clear. The low-frequency modulation of the subtropical ozone anomaly in the model arises as a result of the interaction of the QBO with the annual cycle in the vertical advection by the Hadley circulation. The possibility of a further, similar modulation arising from the interaction of the equatorial wind QBO and the annual cycle in midlatitude eddy activity is discussed, with particular emphasis on the implications for the eddy transfer of ozone to high latitudes and on the ability to predict the severity of the Antarctic ozone hole. A link is proposed between the QBO signal in the severity of the Antarctic ozone hole and the amount of ozone observed in the subtropical/midlatitude springtime maximum in the Southern Hemisphere. On the basis of this relationship, the reliability of the model as a predictor of the severity of the ozone hole is explored. A conclusion of the study is that a reliable predictor of the severity of the ozone hole must take into account the timing of the descent of the equatorial wind QBO at the equator with respect to the annual cycle and that the use, as in previous studies, of a single parameter, such as the sign of the 50-mb equatorial wind, will not be entirely reliable because it cannot do this. 31 refs., 11 figs.« less

  15. Satellite remote sensing and ozonesonde observation of ozone vertical profile and severe storm development

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Liu, J. M.

    1988-01-01

    Two year ozonesonde data, January 1981 to December 1982, observed at four Canadian stations, and two-and-a-half year backscattered ultraviolet experiment data on the Nimbus-4 satellite, April 1970 to August 1972, observed over five U.S. stations, were used to study the relationship between the total ozone, vertical distribution of the ozone mixing ratio, height of half the total ozone, and the variation of local tropopause height. In view of the correlation between the variation of the tropopause height and the possible development of severe storms, a better understanding of the effect of the vertical distribution of the local ozone profile on the variation of the tropopause height can give considerable insight into the development of severe storms.

  16. Decrease of summer tropospheric ozone concentrations in Antarctica

    NASA Technical Reports Server (NTRS)

    Schnell, R. C.; Stone, R. S.; Liu, S. C.; Oltmans, S. J.; Hofmann, D. J.

    1991-01-01

    It is shown here that surface ozone concentrations at the South Pole in the austral summer decreased by 17 percent over the period 1976-90. Over the same period, solar irradiance at the South Pole in January and February decreased by 7 percent as a result of a 25 percent increase in cloudiness. It is suggested that the trend in the summer ozone concentrations is caused by enhanced photochemical destruction of ozone in the lower troposphere caused by the increased penetration of UV radiation associated with stratospheric ozone depletion, coupled with enhanced transport of ozone-poor marine air from lower latitudes to the South Pole.

  17. Stratospheric ozone measurements at Arosa (Switzerland): history and scientific relevance

    NASA Astrophysics Data System (ADS)

    Staehelin, Johannes; Viatte, Pierre; Stübi, Rene; Tummon, Fiona; Peter, Thomas

    2018-05-01

    Climatic Observatory (LKO) in Arosa (Switzerland), marking the beginning of the world's longest series of total (or column) ozone measurements. They were driven by the recognition that atmospheric ozone is important for human health, as well as by scientific curiosity about what was, at the time, an ill characterised atmospheric trace gas. From around the mid-1950s to the beginning of the 1970s studies of high atmosphere circulation patterns that could improve weather forecasting was justification for studying stratospheric ozone. In the mid-1970s, a paradigm shift occurred when it became clear that the damaging effects of anthropogenic ozone-depleting substances (ODSs), such as long-lived chlorofluorocarbons, needed to be documented. This justified continuing the ground-based measurements of stratospheric ozone. Levels of ODSs peaked around the mid-1990s as a result of a global environmental policy to protect the ozone layer, implemented through the 1987 Montreal Protocol and its subsequent amendments and adjustments. Consequently, chemical destruction of stratospheric ozone started to slow around the mid-1990s. To some extent, this raises the question as to whether continued ozone observation is indeed necessary. In the last decade there has been a tendency to reduce the costs associated with making ozone measurements globally including at Arosa. However, the large natural variability in ozone on diurnal, seasonal, and interannual scales complicates the capacity for demonstrating the success of the Montreal Protocol. Chemistry-climate models also predict a super-recovery of the ozone layer at mid-latitudes in the second half of this century, i.e. an increase of ozone concentrations beyond pre-1970 levels, as a consequence of ongoing climate change. These factors, and identifying potentially unexpected stratospheric responses to climate change, support the continued need to document stratospheric ozone changes. This is particularly valuable at the Arosa

  18. Correlation of DIAL Ozone Observations with Lightning

    NASA Technical Reports Server (NTRS)

    Peterson, Harold; Kuang, Shi; Koshak, William; Newchurch, Michael

    2014-01-01

    The purpose of this project is to see whether ozone maxima measured by the DIfferential Absorption Lidar (DIAL) instrument in Huntsville, AL may be traced back to lightning events occurring 24-48 hours beforehand. The methodology is to start with lidar measurements of ozone from DIAL. The HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model is then used to determine the origin of these ozone maxima 24-48 hours prior. Data from the National Lightning Detection Network (NLDN) are used to examine the presence/absence of lightning along the trajectory. This type of analysis suggests that lightning-produced NOx may be responsible for some of the ozone maxima over Huntsville.

  19. Fate of Chloromethanes in the Atmospheric Environment: Implications for Human Health, Ozone Formation and Depletion, and Global Warming Impacts

    PubMed Central

    Tsai, Wen-Tien

    2017-01-01

    Among the halogenated hydrocarbons, chloromethanes (i.e., methyl chloride, CH3Cl; methylene chloride, CH2Cl2; chloroform, CHCl3; and carbon tetrachloride, CCl4) play a vital role due to their extensive uses as solvents and chemical intermediates. This article aims to review their main chemical/physical properties and commercial/industrial uses, as well as the environment and health hazards posed by them and their toxic decomposition products. The environmental properties (including atmospheric lifetime, radiative efficiency, ozone depletion potential, global warming potential, photochemical ozone creation potential, and surface mixing ratio) of these chlorinated methanes are also reviewed. In addition, this paper further discusses their atmospheric fates and human health implications because they are apt to reside in the lower atmosphere when released into the environment. According to the atmospheric degradation mechanism, their toxic degradation products in the troposphere include hydrogen chloride (HCl), carbon monoxide (CO), chlorine (Cl2), formyl chloride (HCOCl), carbonyl chloride (COCl2), and hydrogen peroxide (H2O2). Among them, COCl2 (also called phosgene) is a powerful irritating gas, which is easily hydrolyzed or thermally decomposed to form hydrogen chloride. PMID:29051455

  20. Climate and Ozone Response to Increased Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.

    2001-01-01

    Stratospheric water vapor abundance affects ozone, surface climate, and stratospheric temperatures. From 30-50 km altitude, temperatures show global decreases of 3-6 K over recent decades. These may be a proxy for water vapor increases, as the Goddard Institute for Space Studies (GISS) climate model reproduces these trends only when stratospheric water vapor is allowed to increase. Observations suggest that stratospheric water vapor is indeed increasing, however, measurements are extremely limited in either spatial coverage or duration. The model results suggest that the observed changes may be part of a global, long-term trend. Furthermore, the required water vapor change is too large to be accounted for by increased production within the stratosphere, suggesting that ongoing climate change may be altering tropospheric input. The calculated stratospheric water vapor increase contributes an additional approximately equals 24% (approximately equals 0.2 W/m(exp 2)) to the global warming from well-mixed greenhouse gases over the past two decades. Observed ozone depletion is also better reproduced when destruction due to increased water vapor is included. If the trend continues, it could increase future global warming and impede stratospheric ozone recovery.

  1. An intercomparison of multidecadal observational and reanalysis data sets for global total ozone trends and variability analysis

    NASA Astrophysics Data System (ADS)

    Bai, Kaixu; Chang, Ni-Bin; Shi, Runhe; Yu, Huijia; Gao, Wei

    2017-07-01

    A four-step adaptive ozone trend estimation scheme is proposed by integrating multivariate linear regression (MLR) and ensemble empirical mode decomposition (EEMD) to analyze the long-term variability of total column ozone from a set of four observational and reanalysis total ozone data sets, including the rarely explored ERA-Interim total ozone reanalysis, from 1979 to 2009. Consistency among the four data sets was first assessed, indicating a mean relative difference of 1% and root-mean-square error around 2% on average, with respect to collocated ground-based total ozone observations. Nevertheless, large drifts with significant spatiotemporal inhomogeneity were diagnosed in ERA-Interim after 1995. To emphasize long-term trends, natural ozone variations associated with the solar cycle, quasi-biennial oscillation, volcanic aerosols, and El Niño-Southern Oscillation were modeled with MLR and then removed from each total ozone record, respectively, before performing EEMD analyses. The resulting rates of change estimated from the proposed scheme captured the long-term ozone variability well, with an inflection time of 2000 clearly detected. The positive rates of change after 2000 suggest that the ozone layer seems to be on a healing path, but the results are still inadequate to conclude an actual recovery of the ozone layer, and more observational evidence is needed. Further investigations suggest that biases embedded in total ozone records may significantly impact ozone trend estimations by resulting in large uncertainty or even negative rates of change after 2000.

  2. Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column

    NASA Astrophysics Data System (ADS)

    Grytsai, Asen; Klekociuk, Andrew; Milinevsky, Gennadi; Evtushevsky, Oleksandr; Stone, Kane

    2017-02-01

    The quasi-stationary pattern of the Antarctic total ozone has changed during the last 4 decades, showing an eastward shift in the zonal ozone minimum. In this work, the association between the longitudinal shift of the zonal ozone minimum and changes in meteorological fields in austral spring (September-November) for 1979-2014 is analyzed using ERA-Interim and NCEP-NCAR reanalyses. Regressive, correlative and anomaly composite analyses are applied to reanalysis data. Patterns of the Southern Annular Mode and quasi-stationary zonal waves 1 and 3 in the meteorological fields show relationships with interannual variability in the longitude of the zonal ozone minimum. On decadal timescales, consistent longitudinal shifts of the zonal ozone minimum and zonal wave 3 pattern in the middle-troposphere temperature at the southern midlatitudes are shown. Attribution runs of the chemistry-climate version of the Australian Community Climate and Earth System Simulator (ACCESS-CCM) model suggest that long-term shifts of the zonal ozone minimum are separately contributed by changes in ozone-depleting substances and greenhouse gases. As is known, Antarctic ozone depletion in spring is strongly projected on the Southern Annular Mode in summer and impacts summertime surface climate across the Southern Hemisphere. The results of this study suggest that changes in zonal ozone asymmetry accompanying ozone depletion could be associated with regional climate changes in the Southern Hemisphere in spring.

  3. Ozone photochemical production in urban Shanghai, China: Analysis based on ground level observations

    NASA Astrophysics Data System (ADS)

    Ran, Liang; Zhao, Chunsheng; Geng, Fuhai; Tie, Xuexi; Tang, Xu; Peng, Li; Zhou, Guangqiang; Yu, Qiong; Xu, Jianmin; Guenther, Alex

    2009-08-01

    Ozone and its precursors were measured from 15 June 2006 to 14 June 2007 at an urban site in Shanghai and used to characterize photochemical oxidant production in this region. During the observation period, ozone displays a seasonal variation with a maximum in spring. Observed nitrogen oxides (NOx) and carbon monoxide (CO) reached a maximum in winter and a minimum in summer. NOx and CO has a similar double-peak diurnal cycle, implying that they are largely of motor vehicle origin. Total nonmethane organic compounds (NMOC) concentrations averaged over the morning, and the 24-hour periods have a large day-to-day variation with no apparent seasonal cycle. Aromatics play a dominant role in contributing to total NMOC reactivity and ozone-forming potential. Anthropogenic NMOC of diverse sources are major components of total NMOC and consist mainly of moderate and low reactivity species. In contrast, relatively low levels of biogenic NMOC concentrations were observed in urban Shanghai. The early morning NMOC/NOx ratios are typically below 8:1 with an average of around 4:1, indicating that the sampling location is situated in a NMOC-limited regime. Model simulations confirm that potential photochemical ozone production in Shanghai is NMOC-sensitive. It is presently difficult to predict the impact of future human activities, such as the increase of automobiles and vegetation-covered landscapes and the reduction of aerosol on ozone pollution in the fast developing megacities of China, and additional studies are needed to better understand the highly nonlinear ozone problem.

  4. What Could Be Causing Global Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Singer, S. Fred

    1990-01-01

    The reported decline trend in global ozone between 1970 and 1986 may be in part an artifact of the analysis; the trend value appears to depend on the time interval selected for analysis--in relation to the 11-year solar cycle. If so, then the decline should diminish as one approaches solar maximum and includes data from 1987 to 1990. If the decline is real, its cause could be the result of natural and human factors other than just chlorofluorocarbons.

  5. Retrieval of ozone profiles from OMPS limb scattering observations

    NASA Astrophysics Data System (ADS)

    Arosio, Carlo; Rozanov, Alexei; Malinina, Elizaveta; Eichmann, Kai-Uwe; von Clarmann, Thomas; Burrows, John P.

    2018-04-01

    This study describes a retrieval algorithm developed at the University of Bremen to obtain vertical profiles of ozone from limb observations performed by the Ozone Mapper and Profiler Suite (OMPS). This algorithm is based on the technique originally developed for use with data from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) instrument. As both instruments make limb measurements of the scattered solar radiation in the ultraviolet (UV) and visible (Vis) spectral ranges, an underlying objective of the study is to obtain consolidated and consistent ozone profiles from the two satellites and to produce a combined data set. The retrieval algorithm uses radiances in the UV and Vis wavelength ranges normalized to the radiance at an upper tangent height to obtain ozone concentrations in the altitude range of 12-60 km. Measurements at altitudes contaminated by clouds in the instrument field of view are identified and filtered out. An independent aerosol retrieval is performed beforehand and its results are used to account for the stratospheric aerosol load in the ozone inversion. The typical vertical resolution of the retrieved profiles varies from ˜ 2.5 km at lower altitudes ( < 30 km) to ˜ 1.5 km (about 45 km) and becomes coarser at upper altitudes. The retrieval errors resulting from the measurement noise are estimated to be 1-4 % above 25 km, increasing to 10-30 % in the upper troposphere. OMPS data are processed for the whole of 2016. The results are compared with the NASA product and validated against profiles derived from passive satellite observations or measured in situ by balloon-borne sondes. Between 20 and 60 km, OMPS ozone profiles typically agree with data from the Microwave Limb Sounder (MLS) v4.2 within 5-10 %, whereas in the lower altitude range the bias becomes larger, especially in the tropics. The comparison of OMPS profiles with ozonesonde measurements shows differences within ±5 % between 13 and 30 km at

  6. A Comparison of Observed and Simulated 1990 – 2010 U.S. Ozone Trends

    EPA Science Inventory

    In this study, we analyze ozone concentrations from long-term (1990 – 2010) WRF-CMAQ simulations driven by year specific meteorology and emissions. These simulations allow us to compare observed and simulated ozone trends in order to evaluate the model’s ability to pr...

  7. Identifying water mass depletion in Northern Iraq observed by GRACE

    NASA Astrophysics Data System (ADS)

    Mulder, Gert; Olsthoorn, Theo; Al-Manmi, Diary; Schrama, Ernst; Smidt, Ebel

    2014-05-01

    Observations acquired by Gravity Recovery And Climate Experiment (GRACE) mission indicates a mass loss of 31±3 km3 or 130±14 mm in Northern Iraq between 2006 and 2009. This data is used as an independent validation of a hydrologic model of the region including lake mass variations. We developed a rainfall-runoff model for five tributaries of the Tigris River, based on local geology and climate conditions. Model inputs are precipitation data from Tropical Rainfall Measurement Mission (TRMM) observations, and potential evaporation from GLDAS parameters. Our model includes an extensive network of karstified aquifers that causes large natural groundwater variations in this region. Observed river discharges have been used to calibrate our model. In order to get the total mass variations, we correct for lake mass variations derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data in combination with satellite altimetry and some in-situ data. Our rainfall-runoff model confirms that Northern Iraq suffered a drought between 2006 and 2009 and is consistent with the mass loss observed by GRACE in that period. Also, GRACE picks up the annual cycle predicted by the rainfall-runoff model. The total mass depletion seen by GRACE between 2006 and 2009 is 130±14 mm, which is mainly explained by a lake mass depletion of 74±4 mm and a natural groundwater depletion of approximately 50 mm. Our findings indicate that man-made groundwater extraction has a minor influence in this region while depletion of lake mass and geology play a key role.

  8. Tropospheric Ozone Lidar Network (TOLNet) Observations of Processes Controlling Spatio-Temporal Tropospheric-Ozone Distributions

    NASA Astrophysics Data System (ADS)

    Newchurch, M.; Johnson, M. S.; Leblanc, T.; Langford, A. O.; Senff, C. J.; Kuang, S.; Strawbridge, K. B.; McGee, T. J.; Berkoff, T.; Chen, G.

    2017-12-01

    The Tropospheric Ozone Lidar Network, TOLNet, has matured into a credible scientific group of six ozone lidars that are capable of accurate, high-spatio-temporal-resolution measurement of tropospheric ozone structures and morphology These lidars have demonstrated their 10% accuracy in several intercomparison campaigns and have participated in several scientific investigations both in small and large instrumentation groups. They have investigated many scientific phenomena including stratosphere-to-troposphere exchange, boundary-layer development, the interaction between the boundary layer and the free troposphere, Front-range-ozone morphology, urban outflow, land/sea interactions, et al. These processes determine the ozone distribution affecting large portions of the population. The TOLNet group is now making significant contributions to the innovation of ozone lidar instrumentation and retrieval techniques. The campaigns proposed over the next few years build on demonstrated capability to address more difficult scientific issues, especially the ozone production potential and distribution from wildfires and prescribed burns. Through scientific cooperation with other ground-based profiling instrumentation, TOLNet is also contributing to the validation of the new measurement capabilities of TEMPO.

  9. The Antarctic Ozone Hole: An Update

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Newman, Paul A.; Solomon, Susan

    2014-01-01

    The stratospheric ozone hole, an annual occurrence during austral spring, is caused by heterogeneous conversion of hydrogen chloride and chlorine nitrate to chlorine radicals. These reactions take place of polar stratospheric cloud particles in the cold, isolate Antarctic winter vortex. The chlorine radicals participate in chemical reactions that rapidly deplete ozone when sunlight returns at the end of polar night. International agreements eliminated production of the culprit anthropogenic chlorofluorocarbons in the late 1990s, but due to their long stratospheric lifetime (50-100 years), the ozone hole will continue its annual appearance for years to come.

  10. Correlation of DIAL Ozone Observations with Lightning

    NASA Technical Reports Server (NTRS)

    Peterson, Harold; Kuang, Shi; Koshak, William; Newchurch, Michael

    2013-01-01

    The purpose of this project is to see whether ozone maxima measured by the DIfferential Absorption Lidar (DIAL) instrument in Huntsville, AL may be traced back to lightning events occurring 24- 48 hours beforehand. The methodology is to start with lidar measurements of ozone from DIAL as well as ozonesonde measurements. The HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model is then used to determine the origin of these ozone maxima 24-48 hours prior. Data from the National Lightning Detection Network (NLDN) are used to examine the presence/absence of lightning along the trajectory. This type of analysis suggests that lightning-produced NOx may be responsible for some of the ozone maxima over Huntsville.

  11. Understanding Differences in Chemistry Climate Model Projections of Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change Delta Ozone/Delta inorganic chlorine is a near-linear function of partitioning of total inorganic chlorine into its reservoirs; both inorganic chlorine and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in Delta Ozone/Delta inorganic chlorine contribute little to the spread in CCM projections as the anthropogenic contribution to inorganic chlorine becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change Delta Ozone/Delta T due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.

  12. Ozone Observations using Ozonesonde over the Himalaya from Pokhara, Nepal.

    NASA Astrophysics Data System (ADS)

    Dhungel, S.; Cullis, P.; Johnson, B.; Thompson, A. M.; Witte, J. C.; Panday, A. K.

    2016-12-01

    be a result of longer residence times of the air mass resulting in photochemical build-up despite reduced insolation. Our observations are also essential to help infer ozone trends near the Himalaya, where there is currently inadequate spatial and temporal data coverage.

  13. Chemistry-Transport Modeling of the Satellite Observed Distribution of Tropical Tropospheric Ozone

    NASA Technical Reports Server (NTRS)

    Peters, Wouter; Krol, Maarten; Dentener, Frank; Thompson, Anne M.; Leloeveld, Jos; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    We have compared the 14-year record of satellite derived tropical tropospheric ozone columns (TTOC) from the NIMBUS-7 Total Ozone Mapping Spectrometer (TOMS) to TTOC calculated by a chemistry-transport model (CTM). An objective measure of error, based on the zonal distribution of TTOC in the tropics, is applied to perform this comparison systematically. In addition, the sensitivity of the model to several key processes in the tropics is quantified to select directions for future improvements. The comparisons indicate a widespread, systematic (20%) discrepancy over the tropical Atlantic Ocean, which maximizes during austral Spring. Although independent evidence from ozonesondes shows that some of the disagreement is due to satellite over-estimate of TTOC, the Atlantic mismatch is largely due to a misrepresentation of seasonally recurring processes in the model. Only minor differences between the model and observations over the Pacific occur, mostly due to interannual variability not captured by the model. Although chemical processes determine the TTOC extent, dynamical processes dominate the TTOC distribution, as the use of actual meteorology pertaining to the year of observations always leads to a better agreement with TTOC observations than using a random year or a climatology. The modeled TTOC is remarkably insensitive to many model parameters due to efficient feedbacks in the ozone budget. Nevertheless, the simulations would profit from an improved biomass burning calendar, as well as from an increase in NOX abundances in free tropospheric biomass burning plumes. The model showed the largest response to lightning NOX emissions, but systematic improvements could not be found. The use of multi-year satellite derived tropospheric data to systematically test and improve a CTM is a promising new addition to existing methods of model validation, and is a first step to integrating tropospheric satellite observations into global ozone modeling studies. Conversely

  14. Ozone in the Pacific Troposphere from Ozonesonde Observations

    NASA Technical Reports Server (NTRS)

    Oltmans, S. J.; Johnson, B. J.; Harris, J. M.; Voemel, H.; Koshy, K.; Simon, P.; Bendura, R.; Thompson, A. M.; Logan, J. A.; Hasebe, F.; hide

    2000-01-01

    Ozone vertical profile measurements obtained from ozonesondes flown at Fiji, Samoa, Tahiti and the Galapagos are used to characterize ozone in the troposphere over the tropical Pacific. There is a significant seasonal variation at each of these sites. At sites in both the eastern and western Pacific, ozone is highest at almost all levels in the troposphere during the September-November season and lowest during, March-May. There is a relative maximum at all of the sites in the mid-troposphere during all seasons of the year (the largest amounts are usually found near the tropopause). This maximum is particularly pronounced during, the September-November season. On average, throughout the troposphere at all seasons, the Galapagos has larger ozone amounts than the western Pacific sites. A trajectory climatology is used to identify the major flow regimes that are associated with the characteristic ozone behavior at various altitudes and seasons. The enhanced ozone seen in the mid-troposphere during September-November is associated with flow from the continents. In the western Pacific this flow is usually from southern Africa (although 10-day trajectories do not always reach the continent), but also may come from Australia and Indonesia. In the Galapagos the ozone peak in the mid-troposphere is seen in flow from the South American continent and particularly from northern Brazil. The time of year and flow characteristics associated with the ozone mixing ratio peaks seen in both the western and eastern Pacific suggest that these enhanced ozone values result from biomass burning. In the upper troposphere low ozone amounts are seen with flow that originates in the convective western Pacific.

  15. Total ozone trends over the USA during 1979-1991 from Dobson spectrophotometer observations

    NASA Technical Reports Server (NTRS)

    Komhyr, Walter D.; Grass, Robert D.; Koenig, Gloria L.; Quincy, Dorothy M.; Evans, Robert D.; Leonard, R. Kent

    1994-01-01

    Ozone trends for 1979-1991, determined from Dobson spectrophotometer observations made at eight stations in the United States, are augmented with trend data from four foreign cooperative stations operated by NOAA/CMDL. Results are based on provisional data archived routinely throughout the years at the World Ozone Data Center in Toronto, Canada, with calibration corrections applied to some of the data. Trends through 1990 exhibit values of minus 0.3 percent to minus 0.5 percent yr(exp -1) at mid-to-high latitudes in the northern hemisphere. With the addition of 1991 data, however, the trends become less negative, indicating that ozone increased in many parts of the world during 1991. Stations located within the plus or minus 20 deg N-S latitude band exhibit no ozone trends. Early 1992 data show decreased ozone values at some of the stations. At South Pole, Antarctica, October ozone values have remained low during the past 3 years.

  16. An Atlantic streamer in stratospheric ozone observations and SD-WACCM simulation data

    NASA Astrophysics Data System (ADS)

    Hocke, Klemens; Schranz, Franziska; Maillard Barras, Eliane; Moreira, Lorena; Kämpfer, Niklaus

    2017-03-01

    Observation and simulation of individual ozone streamers are important for the description and understanding of non-linear transport processes in the middle atmosphere. A sudden increase in mid-stratospheric ozone occurred above central Europe on 4 December 2015. The GROund-based Millimeter-wave Ozone Spectrometer (GROMOS) and the Stratospheric Ozone MOnitoring RAdiometer (SOMORA) in Switzerland measured an ozone enhancement of about 30 % at 34 km altitude (8.3 hPa) from 1 to 4 December. A similar ozone increase is simulated by the Specified Dynamics Whole Atmosphere Community Climate (SD-WACCM) model. Further, the global ozone fields at 34 km altitude (8.3 hPa) from SD-WACCM and the satellite experiment Aura/MLS show a remarkable agreement for the location and timing of an ozone streamer (large-scale tongue-like structure) extending from the subtropics in northern America over the Atlantic to central Europe. This agreement indicates that SD-WACCM can inform us about the wind inside the Atlantic ozone streamer. SD-WACCM shows an eastward wind of about 100 m s-1 inside the Atlantic streamer in the mid-stratosphere. SD-WACCM shows that the Atlantic streamer flows along the edge of the polar vortex. The Atlantic streamer turns southward at an erosion region of the polar vortex located above the Caspian Sea. The spatial distribution of stratospheric water vapour indicates a filament outgoing from this erosion region. The Atlantic streamer, the polar vortex erosion region and the water vapour filament belong to the process of planetary wave breaking in the so-called surf zone of the northern midlatitude winter stratosphere.

  17. An estimate of the Antarctic ozone modulation by the QBO. [Quasi-Biennial Oscillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mancini, E.; Visconti, G.; Pitari, G.

    1991-02-01

    The possible effects of the QBO on the ozone distribution have been studied including in a 2D model a parameterization of Kelvin and Rossby-gravity wave forcing in the lower equatorial stratosphere. A chemical code complete with heterogeneous reactions allows a simulation of the ozone depletion due to the increase of stratospheric chlorine. With this model, the authors study the possible modulation of the secular trend in the Antarctic ozone hole by the QBO. When heterogeneous chemistry is not included, the model shows a polar ozone oscillation ({plus minus}6 Dobson Units) comparable to that deduced from early measurements (1970-1975). When heterogeneousmore » reactions are taken into account, the model predicts a larger ozone oscillation in the Southern Hemisphere ({plus minus}12 Dobson Units) comparable to that obtained from recent observations. This behavior seems to point out a QBO induced temperature effect and its feedback on PSC with activation of heterogeneous chemistry.« less

  18. 20 Years of Total and Tropical Ozone Time Series Based on European Satellite Observations

    NASA Astrophysics Data System (ADS)

    Loyola, D. G.; Heue, K. P.; Coldewey-Egbers, M.

    2016-12-01

    Ozone is an important trace gas in the atmosphere, while the stratospheric ozone layer protects the earth surface from the incident UV radiation, the tropospheric ozone acts as green house gas and causes health damages as well as crop loss. The total ozone column is dominated by the stratospheric column, the tropospheric columns only contributes about 10% to the total column.The ozone column data from the European satellite instruments GOME, SCIAMACHY, OMI, GOME-2A and GOME-2B are available within the ESA Climate Change Initiative project with a high degree of inter-sensor consistency. The tropospheric ozone columns are based on the convective cloud differential algorithm. The datasets encompass a period of more than 20 years between 1995 and 2015, for the trend analysis the data sets were harmonized relative to one of the instruments. For the tropics we found an increase in the tropospheric ozone column of 0.75 ± 0.12 DU decade^{-1} with local variations between 1.8 and -0.8. The largest trends were observed over southern Africa and the Atlantic Ocean. A seasonal trend analysis led to the assumption that the increase is caused by additional forest fires.The trend for the total column was not that certain, based on model predicted trend data and the measurement uncertainty we estimated that another 10 to 15 years of observations will be required to observe a statistical significant trend. In the mid latitudes the trends are currently hidden in the large variability and for the tropics the modelled trends are low. Also the possibility of diverging trends at different altitudes must be considered; an increase in the tropospheric ozone might be accompanied by decreasing stratospheric ozone.The European satellite data record will be extended over the next two decades with the atmospheric satellite missions Sentinel 5 Precursor (launch end of 2016), Sentinel 4 and Sentinel 5.

  19. Arctic chemical Ozone Loss Observed by the AROTEL Instrument during the SOLVE Campaign, December 1999 - March 2000

    NASA Technical Reports Server (NTRS)

    McGee, Thomas J.; Burris, John F.; Hoegy, Walter; Newman, Paul; Heaps,William; Silbert, Donald; Lait, Leslie; Sumnicht, Grant; Twigg, Laurence

    2000-01-01

    During the winter of 1999-2000, the AROTEL instrument was deployed on the NASA DC-8 at Kiruna, Sweden for the SAGE III Ozone Loss Validation Experiment (SOLVE). Measurements of ozone, temperature and aerosols were made on 18 local science flights from December to March. Extremely low temperatures were observed throughout most of the Arctic vortex and polar stratospheric clouds were observed throughout the Arctic area during January. Significant ozone loss was measured after the sun began to rise on the vortex area in February. Ozone mixing ratios as low as 800 ppbv were observed during flights in March.

  20. Comparison and covalidation of ozone anomalies and variability observed in SBUV(/2) and Umkehr northern midlatitude ozone profile estimates

    NASA Astrophysics Data System (ADS)

    Petropavlovskikh, I.; Ahn, Changwoo; Bhartia, P. K.; Flynn, L. E.

    2005-03-01

    This analysis presents comparisons of upper-stratosphere ozone information observed by two independent systems: the Solar Backscatter UltraViolet (SBUV and SBUV/2) satellite instruments, and ground-based Dobson spectrophotometers. Both the new SBUV Version 8 and the new UMK04 profile retrieval algorithms are optimized for studying long-term variability and trends in ozone. Trend analyses of the ozone time series from the SBUV(/2) data set are complex because of the multiple instruments involved, changes in the instruments' geo-location, and short periods of overlaps for inter-calibrations among different instruments. Three northern middle latitudes Dobson ground stations (Arosa, Boulder, and Tateno) are used in this analysis to validate the trend quality of the combined 25-year SBUV/2 time series, 1979 to 2003. Generally, differences between the satellite and ground-based data do not suggest any significant time-dependent shifts or trends. The shared features confirm the value of these data sets for studies of ozone variability.

  1. Ozone profile measurements of McMurdo Station, Antarctica, during the spring of 1987

    NASA Technical Reports Server (NTRS)

    Hofmann, D. J.; Harder, J. W.; Rosen, J. M.; Hereford, J. V.; Carpenter, J. R.

    1989-01-01

    Ozone and temperature profiles were measured in 50 balloon flights at McMurdo Station (78 deg S) during the spring of 1987. Compared to similar data obtained in 1986, stratospheric temperatures were lower and the spring time Antarctic ozone reduction was greater in magnitude, extended to higher altitude, and proceeded at a higher rate in 1987. Ozone partial pressures reached values as low as 3 nbar (as compared to about 10 nbar in 1986) in the 16- to 18-km region in early and late October, down from about 150 nbar in late August. These low values suggest essentially complete removal of ozone in this region. The upper boundary of the depletion region was observed to be 2-3 km higher than in 1986, extending to altitudes as high as 24 km in mid-September. When averaged over September, the ozone mixing ratio at 18 km decayed with a half-life of only 12.4 days, as compared to about 28 days in 1986. Adiabatic vertical motions over 1- to 2-km intervals between 12 and 20 km with consequent ozone reductions were observed in association with the formation of nacreous clouds, indicating these to be rare events on a local scale probably associated with mountain lee waves.

  2. Total ozone trend over Cairo

    NASA Technical Reports Server (NTRS)

    Hassan, G. K. Y.

    1994-01-01

    A world wide interest in protecting ozone layer against manmade effects is now increasing. Assessment of the ozone depletion due to these activities depends on how successfully we can separate the natural variabilities from the data. The monthly mean values of total ozone over Cairo (30 05N) for the period 1968-1988, have been analyzed using the power spectral analysis technique. The technique used in this analysis does not depend on a pre-understanding of the natural fluctuations in the ozone data. The method depends on increasing the resolution of the spectral peaks in order to obtain the more accurate sinusoidal fluctuations with wavelength equal to or less than record length. Also it handles the possible sinusoidal fluctuations with wavelength equal to or less than record length. The results show that it is possible to detect some of the well known national fluctuations in the ozone record such as annual, semiannual, quasi-biennial and quasi-quadrennial oscillations. After separating the natural fluctuations from the ozone record, the trend analysis of total ozone over Cairo showed that a decrease of about -1.2% per decade has occurred since 1979.

  3. Reducing Uncertainty in Chemistry Climate Model Predictions of Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to predict the future evolution of stratospheric ozone as ozone-depleting substances decrease and greenhouse gases increase, cooling the stratosphere. CCM predictions exhibit many common features, but also a broad range of values for quantities such as year of ozone-return-to-1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to chlorine change from that due to climate change. We show that the sensitivity of lower atmosphere ozone to chlorine change deltaO3/deltaCly is a near linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are controlled by lower atmospheric transport. CCMs with realistic transport agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035 differences in response to chlorine contribute little to the spread in CCM results as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change deltaO3/deltaT due to different contributions from various ozone loss processes, each with their own temperature dependence. In the lower atmosphere, tropical ozone decreases caused by a predicted speed-up in the Brewer-Dobson circulation may or may not be balanced by middle and high latitude increases, contributing most to the spread in late 21st century predictions.

  4. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    NASA Astrophysics Data System (ADS)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  5. EOS CHEM: A Mission to Study Ozone and Climate

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark

    1998-01-01

    The Earth's stratosphere contains the ozone layer, which shields us from the Sun@ harmful ultraviolet (UV) radiation. Ozone is destroyed through chemical reactions involving natural and man-made nitrogen, hydrogen, bromine, and chlorine compounds. The release of chlorofluoro-carbons CFCs) has caused a dramatic decrease in the protective stratospheric ozone layer during the last two decades. Detection of stratospheric ozone depletion led to regulation and phase-out of CFC production worldwide. As a result, man-made chlorine levels in the atmosphere are slowly beginning to decrease. CHEM will be able to determine whether the stratospheric ozone layer is now recovering, as predicted by scientific models.

  6. Possible role of electric forces in bromine activation during polar boundary layer ozone depletion and aerosol formation events

    NASA Astrophysics Data System (ADS)

    Tkachenko, Ekaterina

    2017-11-01

    This work presents a hypothesis about the mechanism of bromine activation during polar boundary layer ozone depletion events (ODEs) as well as the mechanism of aerosol formation from the frost flowers. The author suggests that ODEs may be initiated by the electric-field gradients created at the sharp tips of ice formations as a result of the combined effect of various environmental conditions. According to the author's estimates, these electric-field gradients may be sufficient for the onset of point or corona discharges followed by generation of high local concentrations of the reactive oxygen species and initiation of free-radical and redox reactions. This process may be responsible for the formation of seed bromine which then undergoes further amplification by HOBr-driven bromine explosion. The proposed hypothesis may explain a variety of environmental conditions and substrates as well as poor reproducibility of ODE initiation observed by researchers in the field. According to the author's estimates, high wind can generate sufficient conditions for overcoming the Rayleigh limit and thus can initiate ;spraying; of charged aerosol nanoparticles. These charged aerosol nanoparticles can provoke formation of free radicals, turning the ODE on. One can also envision a possible emission of halogen ion as a result of the ;electrospray; process analogous to that of electrospray ionization mass-spectrometry.

  7. Interpretation of TOMS Observations of Tropical Tropospheric Ozone with a Global Model and In Situ Observations

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Jacob, Daniel J.; Logan, Jennifer A.; Bey, Isabelle; Yantosca, Robert M.; Staudt, Amanda C.; Fiore, Arlene M.; Duncan, Bryan N.; Liu, Hongyu; Ginoux, Paul

    2004-01-01

    We interpret the distribution of tropical tropospheric ozone columns (TTOCs) from the Total Ozone Mapping Spectrometer (TOMS) by using a global three-dimensional model of tropospheric chemistry (GEOS-CHEM) and additional information from in situ observations. The GEOS-CHEM TTOCs capture 44% of the variance of monthly mean TOMS TTOCs from the convective cloud differential method (CCD) with no global bias. Major discrepancies are found over northern Africa and south Asia where the TOMS TTOCs do not capture the seasonal enhancements from biomass burning found in the model and in aircraft observations. A characteristic feature of these northern topical enhancements, in contrast to southern tropical enhancements, is that they are driven by the lower troposphere where the sensitivity of TOMS is poor due to Rayleigh scattering. We develop an efficiency correction to the TOMS retrieval algorithm that accounts for the variability of ozone in the lower troposphere. This efficiency correction increases TTOC's over biomass burning regions by 3-5 Dobson units (DU) and decreases them by 2-5 DU over oceanic regions, improving the agreement between CCD TTOCs and in situ observations. Applying the correction to CCD TTOCs reduces by approximately DU the magnitude of the "tropical Atlantic paradox" [Thompson et al, 2000], i.e. the presence of a TTOC enhancement over the southern tropical Atlantic during the northern African biomass burning season in December-February. We reproduce the remainder of the paradox in the model and explain it by the combination of upper tropospheric ozone production from lightning NOx, peristent subsidence over the southern tropical Atlantic as part of the Walker circulation, and cross-equatorial transport of upper tropospheric ozone from northern midlatitudes in the African "westerly duct." These processes in the model can also account for the observed 13-17 DU persistent wave-1 pattern in TTOCs with a maximum above the tropical Atlantic and a minimum

  8. The chemistry and diffusion of aircraft exhausts in the lower stratosphere during the first few hours after fly-by. [with attention to ozone depletion by SST exhaust plumes

    NASA Technical Reports Server (NTRS)

    Hilst, G. R.

    1974-01-01

    An analysis of the hydrogen-nitrogen-oxygen reaction systems in the lower stratosphere as they are initially perturbed by individual aircraft engine exhaust plumes was conducted in order to determine whether any significant chemical reactions occur, either among exhaust chemical species, or between these species and the environmental ozone, while the exhaust products are confined to intact plume segments at relatively high concentrations. The joint effects of diffusive mixing and chemical kinetics on the reactions were also studied, using the techniques of second-order closure diffusion/chemistry models. The focus of the study was on the larger problem of the potential depletion of ozone by supersonic transport aircraft exhaust materials emitted into the lower stratosphere.

  9. Ozone Layer Educator's Guide.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This guide has been developed through a collaborative effort involving the U.S. Environmental Protection Agency (EPA), the National Oceanic and Atmospheric Administration (NOAA), and the National Aeronautics and Space Administration (NASA). It is part of an ongoing commitment to ensure that the results of scientific research on ozone depletion are…

  10. A Composite View of Ozone Evolution in the 1995-1996 Northern Winter Polar Vortex Developed from Airborne Lidar and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Schoeberl, M. R.; Kawa, S. R.; Browell, E. V.

    2000-01-01

    The processes which contribute to the ozone evolution in the high latitude northern lower stratosphere are evaluated using a three dimensional model simulation and ozone observations. The model uses winds and temperatures from the Goddard Earth Observing System Data Assimilation System. The simulation results are compared with ozone observations from three platforms: the differential absorption lidar (DIAL) which was flown on the NASA DC-8 as part of the Vortex Ozone Transport Experiment; the Microwave Limb Sounder (MLS); the Polar Ozone and Aerosol Measurement (POAM II) solar occultation instrument. Time series for the different data sets are consistent with each other, and diverge from model time series during December and January. The model ozone in December and January is shown to be much less sensitive to the model photochemistry than to the model vertical transport, which depends on the model vertical motion as well as the model vertical gradient. We evaluate the dependence of model ozone evolution on the model ozone gradient by comparing simulations with different initial conditions for ozone. The modeled ozone throughout December and January most closely resembles observed ozone when the vertical profiles between 12 and 20 km within the polar vortex closely match December DIAL observations. We make a quantitative estimate of the uncertainty in the vertical advection using diabatic trajectory calculations. The net transport uncertainty is significant, and should be accounted for when comparing observations with model ozone. The observed and modeled ozone time series during December and January are consistent when these transport uncertainties are taken into account.

  11. [Radiance Simulation of BUV Hyperspectral Sensor on Multi Angle Observation, and Improvement to Initial Total Ozone Estimating Model of TOMS V8 Total Ozone Algorithm].

    PubMed

    Lü, Chun-guang; Wang, Wei-he; Yang, Wen-bo; Tian, Qing-iju; Lu, Shan; Chen, Yun

    2015-11-01

    New hyperspectral sensor to detect total ozone is considered to be carried on geostationary orbit platform in the future, because local troposphere ozone pollution and diurnal variation of ozone receive more and more attention. Sensors carried on geostationary satellites frequently obtain images on the condition of larger observation angles so that it has higher requirements of total ozone retrieval on these observation geometries. TOMS V8 algorithm is developing and widely used in low orbit ozone detecting sensors, but it still lack of accuracy on big observation geometry, therefore, how to improve the accuracy of total ozone retrieval is still an urgent problem that demands immediate solution. Using moderate resolution atmospheric transmission, MODT-RAN, synthetic UV backscatter radiance in the spectra region from 305 to 360 nm is simulated, which refers to clear sky, multi angles (12 solar zenith angles and view zenith angles) and 26 standard profiles, moreover, the correlation and trends between atmospheric total ozone and backward scattering of the earth UV radiation are analyzed based on the result data. According to these result data, a new modified initial total ozone estimation model in TOMS V8 algorithm is considered to be constructed in order to improve the initial total ozone estimating accuracy on big observation geometries. The analysis results about total ozone and simulated UV backscatter radiance shows: Radiance in 317.5 nm (R₃₁₇.₅) decreased as the total ozone rise. Under the small solar zenith Angle (SZA) and the same total ozone, R₃₁₇.₅ decreased with the increase of view zenith Angle (VZA) but increased on the large SZA. Comparison of two fit models shows: without the condition that both SZA and VZA are large (> 80°), exponential fitting model and logarithm fitting model all show high fitting precision (R² > 0.90), and precision of the two decreased as the SZA and VZA rise. In most cases, the precision of logarithm fitting

  12. Ozone distributions over southern Lake Michigan: comparisons between ferry-based observations, shoreline-based DOAS observations and model forecasts

    NASA Astrophysics Data System (ADS)

    Cleary, P. A.; Fuhrman, N.; Schulz, L.; Schafer, J.; Fillingham, J.; Bootsma, H.; McQueen, J.; Tang, Y.; Langel, T.; McKeen, S.; Williams, E. J.; Brown, S. S.

    2015-05-01

    Air quality forecast models typically predict large summertime ozone abundances over water relative to land in the Great Lakes region. While each state bordering Lake Michigan has dedicated monitoring systems, offshore measurements have been sparse, mainly executed through specific short-term campaigns. This study examines ozone abundances over Lake Michigan as measured on the Lake Express ferry, by shoreline differential optical absorption spectroscopy (DOAS) observations in southeastern Wisconsin and as predicted by the Community Multiscale Air Quality (CMAQ) model. From 2008 to 2009 measurements of O3, SO2, NO2 and formaldehyde were made in the summertime by DOAS at a shoreline site in Kenosha, WI. From 2008 to 2010 measurements of ambient ozone were conducted on the Lake Express, a high-speed ferry that travels between Milwaukee, WI, and Muskegon, MI, up to six times daily from spring to fall. Ferry ozone observations over Lake Michigan were an average of 3.8 ppb higher than those measured at shoreline in Kenosha, with little dependence on position of the ferry or temperature and with greatest differences during evening and night. Concurrent 1-48 h forecasts from the CMAQ model in the upper Midwestern region surrounding Lake Michigan were compared to ferry ozone measurements, shoreline DOAS measurements and Environmental Protection Agency (EPA) station measurements. The bias of the model O3 forecast was computed and evaluated with respect to ferry-based measurements. Trends in the bias with respect to location and time of day were explored showing non-uniformity in model bias over the lake. Model ozone bias was consistently high over the lake in comparison to land-based measurements, with highest biases for 25-48 h after initialization.

  13. A Composite View of Ozone Evolution in the 1995-96 Northern Winter Polar Vortex Developed from Airborne Lidar and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Schoeberl, M. R.; Kawa, S. R.

    2000-01-01

    The processes which contribute to the ozone evolution in the high latitude lower stratosphere are evaluated using a three dimensional model simulation and ozone observations. The model uses winds and temperatures from the Goddard Earth Observing System Data Assimilation System. The simulation results are compared with ozone observations from three platforms: the differential absorption lidar (DIAL) which was flown on the NASA DC-8 as part of the Vortex Ozone Transport Experiment; the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite; and the Polar Ozone and Aerosol Measurement (POAM II) solar occulation instrument, on board the French Satellite Pour I'Observations de la Terre. Comparisons of the different data sets with the model simulation are shown to provide complementary information and a consistent view of the ozone evolution. The model ozone in December and January is shown to be sensitive to the ozone vertical gradient and the model vertical transport, and only weakly sensitive to the model photochemistry. The most consistent comparison between observed and modeled ozone evolution is found for a simulation where the vertical profiles between 12 and 20 km within the polar vortex closely match December DIAL observations. Diabatic trajectory calculations are used to estimate the uncertainty due to vertical advection quantitatively. The transport uncertainty is significant, and should be accounted for when comparing observations with model ozone. The model ozone evolution during December and January is broadly consistent with the observations when these transport uncertainties are taken into account.

  14. Ozone Variability and Anomalies Observed During SENEX and SEAC4RS Campaigns in 2013

    NASA Astrophysics Data System (ADS)

    Kuang, Shi; Newchurch, Michael J.; Thompson, Anne M.; Stauffer, Ryan M.; Johnson, Bryan J.; Wang, Lihua

    2017-10-01

    Tropospheric ozone variability occurs because of multiple forcing factors including surface emission of ozone precursors, stratosphere-to-troposphere transport (STT), and meteorological conditions. Analyses of ozonesonde observations made in Huntsville, AL, during the peak ozone season (May to September) in 2013 indicate that ozone in the planetary boundary layer was significantly lower than the climatological average, especially in July and August when the Southeastern United States (SEUS) experienced unusually cool and wet weather. Because of a large influence of the lower stratosphere, however, upper tropospheric ozone was mostly higher than climatology, especially from May to July. Tropospheric ozone anomalies were strongly anticorrelated (or correlated) with water vapor (or temperature) anomalies with a correlation coefficient mostly about 0.6 throughout the entire troposphere. The regression slopes between ozone and temperature anomalies for surface up to midtroposphere are within 3.0-4.1 ppbv K-1. The occurrence rates of tropospheric ozone laminae due to STT are ≥50% in May and June and about 30% in July, August, and September suggesting that the stratospheric influence on free-tropospheric ozone could be significant during early summer. These STT laminae have a mean maximum ozone enhancement over the climatology of 52 ± 33% (35 ± 24 ppbv) with a mean minimum relative humidity of 2.3 ± 1.7%.

  15. Total ozone trends from 1979 to 2016 derived from five merged observational datasets - the emergence into ozone recovery

    NASA Astrophysics Data System (ADS)

    Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Long, Craig S.; Loyola, Diego

    2018-02-01

    We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978-present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (˜ 1996 globally and ˜ 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 % decade-1 that are barely statistically significant at the 2σ uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 % decade-1, while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of ground-based data, are not accounted for in the trend

  16. Meteorologically-adjusted trend analysis of surface observed ozone at three monitoring sites in Delhi, India: 2007-2011

    NASA Astrophysics Data System (ADS)

    Biswas, J.; Farooqui, Z.; Guttikunda, S. K.

    2012-12-01

    It is well known that meteorological parameters have significant impact on surface ozone concentrations. Therefore it is important to remove the effects of meteorology on ozone concentrations to correctly estimate long-term trends in ozone levels due to the alterations in precursor emissions. This is important for the development of effectual control strategies. In this study surface observed ozone trends in New Delhi are analyzed using Komogorov-Zurbenko (KZ) filter, US EPA ozone adjustment due to weather approach and the classification and regression tree method. The statistical models are applied to the ozone data at three observational sites in New Delhi metropolitan areas, 1) Income Tax Office (ITO) 2) Sirifort and 3) Delhi College of Engineering (DCE). The ITO site is located adjacent to a traffic crossing, Sirifort is an urban site and the DCE site is located in a residential area. The ITO site is also influenced by local industrial emissions. DCE has higher ozone levels than the other two sites. It was found that ITO has lowest ozone concentrations amongst the three sites due to ozone titrating due to industrial and on-road mobile NOx emissions. The statistical methods employed can assess ozone trends at these sites with a high degree of confidence and the results can be used to gauge the effectiveness of control strategies on surface ozone levels in New Delhi.

  17. ER-2 #809 and DC-8 in Arena Arctica hangar in Kiruna, Sweden prior to the SAGE III Ozone Loss and Validation Experiment (SOLVE)

    NASA Image and Video Library

    2000-01-23

    NASA ER-2 # 809 and its DC-8 shown in Arena Arctica before the SAGE III Ozone Loss and Validation Experiment (SOLVE). The two airborne science platforms were based north of the Arctic Circle in Kiruna, Sweden, during the winter of 2000 to study ozone depletion as part of SOLVE. A large hangar built especially for research, "Arena Arctica" housed the instrumented aircraft and the scientists. Scientists have observed unusually low levels of ozone over the Arctic during recent winters, raising concerns that ozone depletion there could become more widespread as in the Antarctic ozone hole. The NASA-sponsored international mission took place between November 1999 and March 2000 and was divided into three phases. The DC-8 was involved in all three phases returning to Dryden between each phase. The ER-2 flew sample collection flights between January and March, remaining in Sweden from Jan. 9 through March 16. "The collaborative campaign will provide an immense new body of information about the Arctic stratosphere," said program scientist Dr. Michael Kurylo, NASA Headquarters. "Our understanding of the Earth's ozone will be greatly enhanced by this research."

  18. New Perspectives from Satellite and Profile Observations on Tropospheric Ozone over Africa and the Adjacent Oceans: An Indian-Atlantic Ocean Link to tbe "Ozone Paradox"

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Diab, Roseanne D.; Thouret, Valerie; Sauvage, Bastien; Chatfield, B.; Guan, Hong

    2004-01-01

    In the past few years, tropospheric ozone observations of Africa and its adjacent ocenas have been greatly enhanced by high resolution (spatial and temporal) satellite measurements and profile data from aircraft (MOZAIC) and balloon-borne (SHADOZ) soundings. These views have demonstrated for the first time the complexity of chemical-dynamical interactions over the African continent and the Indian and Atlantic Oceans. The tropical Atlantic "ozone paradax" refers to the observation that during the season of maximum biomass burning in west Africa north of the Intertropical Convergence Zone (ITCZ), the highest tropospheric ozone total column occurs south of the ITCZ over the tropical Atlantic. The longitudinal view of tropospheric ozone in the southern tropics from SHADOZ (Southern Hemisphere Additional Ozonesondes) soundings shown the persistence of a "zonal-wave one" pattern that reinforces the "ozone paradox". These ozone features interact with dynamics over southern and northern Africa where anthropogenic sources include the industrial regions of the South African Highveld and Mideastern-Mediterranean influences, respectively. Our newest studies with satellites and soundings show that up to half the ozone pollution over the Atlantic in the January-March "paradox" period may originate from south Asian pollution. Individual patches of pollurion over the Indian Ocean are transported upward by convective mixing and are enriched by pyrogenic, biogenic sources and lightning as they cross Africa and descend over the Atlantic. In summary, local sources, intercontinental import and export and unique regional transport patterns put Africa at a crossroads of troposheric ozone influences.

  19. Detection of ocean glint and ozone absorption using LCROSS Earth observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Tyler D.; Ennico, Kimberly; Meadows, Victoria S.

    The Lunar CRater Observation and Sensing Satellite (LCROSS) observed the distant Earth on three occasions in 2009. These data span a range of phase angles, including a rare crescent phase view. For each epoch, the satellite acquired near-infrared and mid-infrared full-disk images, and partial-disk spectra at 0.26-0.65 μm (λ/Δλ ∼ 500) and 1.17-2.48 μm (λ/Δλ ∼ 50). Spectra show strong absorption features due to water vapor and ozone, which is a biosignature gas. We perform a significant recalibration of the UV-visible spectra and provide the first comparison of high-resolution visible Earth spectra to the NASA Astrobiology Institute's Virtual Planetary Laboratorymore » three-dimensional spectral Earth model. We find good agreement with the observations, reproducing the absolute brightness and dynamic range at all wavelengths for all observation epochs, thus validating the model to within the ∼10% data calibration uncertainty. Data-model comparisons reveal a strong ocean glint signature in the crescent phase data set, which is well matched by our model predictions throughout the observed wavelength range. This provides the first observational test of a technique that could be used to determine exoplanet habitability from disk-integrated observations at visible and near-infrared wavelengths, where the glint signal is strongest. We examine the detection of the ozone 255 nm Hartley and 400-700 nm Chappuis bands. While the Hartley band is the strongest ozone feature in Earth's spectrum, false positives for its detection could exist. Finally, we discuss the implications of these findings for future exoplanet characterization missions.« less

  20. Column NO2-total ozone-stratospheric temperature relationships associated with the Arctic and Antarctic ozone holes

    NASA Astrophysics Data System (ADS)

    Aheyeva, Viktoryia; Gruzdev, Aleksandr; Grishaev, Mikhail

    Data of ground-based measurements of NO2 column contents are analyzed to study winter-spring NO2 anomalies associated with negative anomalies in column ozone and stratospheric temperature. Episodes of significant decrease in column NO2 contents in the winter-spring period of 2011 in the northern hemisphere (NH) were detected at European and Siberian stations of Zvenigorod (55.7°N, Moscow Region) and Tomsk (56.5°N, West Siberia) in the middle latitudes, Harestua (60.2°N), Sodankyla (67.4°N, both in North Europe), and Zhigansk (66.8°N, East Siberia) in the high latitudes, and at the Arctic station of Scoresbysund (70.5°N, Greenland). All the stations, except Tomsk, are a part of the Network of the Detection of Atmospheric Composition Change (NDACC), and the data are accesses at http://ndacc.org. The decrease in NO2 is generally accompanied by total ozone and stratospheric temperature decrease and is shown to be caused by the transport of stratospheric air from the region of the ozone hole observed that season in the Arctic. Overpass total ozone data from Giovanni service and radiosonde data were used for the analysis. Although negative NO2 anomalies due to the transport from the Arctic were also observed in some other years, the anomalies in 2011 reached record magnitudes. A significant positive correlation has been found between variations in NO2 and ozone columns as well as NO2 column and stratospheric temperature during the winter-spring period of 2011, whereas the correlation is much weaker in years without Arctic ozone depletion. The correlation becomes even stronger if only episodes with significant NO2 decrease are considered. For example the correlation coefficients between NO2 and ozone columns deviations are about 0.9 for Zvenigorod and Scoresbysund. Correlation coefficients between variations in column NO2 and total ozone and stratospheric temperature as well as coefficients of regression of NO2 on ozone and temperature in the winter-spring period of

  1. 3D analysis of high ozone production rates observed during the ESCOMPTE campaign

    NASA Astrophysics Data System (ADS)

    Coll, Isabelle; Pinceloup, Stéphanie; Perros, Pascal E.; Laverdet, Gérard; Le Bras, Georges

    2005-03-01

    The development of environmental policies to reduce the ozone levels around large agglomerations requires a good understanding of the development of ozone episodes. In particular, it is necessary to know the location and photochemical activity of the plume where ozone is formed. Measurement campaigns make it possible not only to characterize the concentration fields of ozone and its precursors but also to identify the zones of strong ozone production, by means of specific measurements and kinetic calculations. The combination of the observation-based data with numerical simulations allows to better characterize photochemical pollution. This paper presents a study carried out within the ESCOMPTE program and based on the determination of ozone production rates by experimental and numerical methods: ground measurements of peroxy radicals, NO x at a rural site, airborne measurements of NO X and O 3, Eulerian modeling. The reported case is of particular interest since it corresponds to an episode with very different photochemical situations. The diurnal variations of the peroxy radical concentration are analyzed in relation to those of ozone and its precursors. Ozone production rates— P(O 3)-are studied over one particular day. The results show particularly high concentrations of RO 2+HO 2 at ground level (up to 200 pptv) under the influence of the urban and industrial plume, but also highlight very high production rates of ozone (60 to 80 ppbv h -1) a few tens of kilometers from the sources. The results show satisfactory agreement between the various approaches. Modeling provides a four-dimensional (4D) description of the plumes, in particular the relation between the ozone precursor concentrations and P(O 3) on the ground.

  2. An unusual stratospheric ozone decrease in the Southern Hemisphere subtropics linked to isentropic air-mass transport as observed over Irene (25.5° S, 28.1° E) in mid-May 2002

    NASA Astrophysics Data System (ADS)

    Semane, N.; Bencherif, H.; Morel, B.; Hauchecorne, A.; Diab, R. D.

    2006-06-01

    A prominent ozone minimum of less than 240 Dobson Units (DU) was observed over Irene (25.5° S, 28.1° E), a subtropical site in the Southern Hemisphere, by the Total Ozone Mapping Spectrometer (TOMS) during May 2002 with an extremely low ozone value of less than 219 DU recorded on 12 May, as compared to the climatological mean value of 249 DU for May between 1999 and 2005. In this study, the vertical structure of this ozone minimum is examined using ozonesonde measurements performed over Irene on 15 May 2002, when the total ozone (as given by TOMS) was about 226 DU. It is shown that this ozone minimum is of Antarctic polar origin with a low-ozone layer in the middle stratosphere above 625 K (where the climatological ozone gradient points equatorward), and is of tropical origin with a low-ozone layer in the lower stratosphere between the 400-K and 450-K isentropic levels (where the climatological ozone gradient is reversed). The upper and lower depleted parts of the ozonesonde profile for 15 May are then respectively attributed to equatorward and poleward transport of low-ozone air toward the subtropics in the Southern Hemisphere. The tropical air moving over Irene and the polar one passing over the same area associated with enhanced planetary-wave activity are successfully simulated using the high-resolution advection contour model of Ertel's potential vorticity MIMOSA. The unusual distribution of ozone over Irene during May 2002 in the middle stratosphere is connected to the anomalously pre-conditioned structure of the polar vortex at that time of the year. The winter stratospheric wave driving leading to the ozone minimum is investigated by means of the Eliassen-Palm flux computed from the European Center for Medium-range Weather Forecasts (ECMWF) ERA40 re-analyses.

  3. Sources of tropospheric ozone along the Asian Pacific Rim: An analysis of ozonesonde observations

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu; Jacob, Daniel J.; Chan, Lo Yin; Oltmans, Samuel J.; Bey, Isabelle; Yantosca, Robert M.; Harris, Joyce M.; Duncan, Bryan N.; Martin, Randall V.

    2002-11-01

    The sources contributing to tropospheric ozone over the Asian Pacific Rim in different seasons are quantified by analysis of Hong Kong and Japanese ozonesonde observations with a global three-dimensional (3-D) chemical transport model (GEOS-CHEM) driven by assimilated meteorological observations. Particular focus is placed on the extensive observations available from Hong Kong in 1996. In the middle-upper troposphere (MT-UT), maximum Asian pollution influence along the Pacific Rim occurs in summer, reflecting rapid convective transport of surface pollution. In the lower troposphere (LT) the season of maximum Asian pollution influence shifts to summer at midlatitudes from fall at low latitudes due to monsoonal influence. The UT ozone minimum and high variability observed over Hong Kong in winter reflects frequent tropical intrusions alternating with stratospheric intrusions. Asian biomass burning makes a major contribution to ozone at <32°N in spring. Maximum European pollution influence (<5 ppbv) occurs in spring in the LT. North American pollution influence exceeds European influence in the UT-MT, reflecting the uplift from convection and the warm conveyor belts over the eastern seaboard of North America. African outflow makes a major contribution to ozone in the low-latitude MT-UT over the Pacific Rim during November-April. Lightning influence over the Pacific Rim is minimum in summer due to westward UT transport at low latitudes associated with the Tibetan anticyclone. The Asian outflow flux of ozone to the Pacific is maximum in spring and fall and includes a major contribution from Asian anthropogenic sources year-round.

  4. Sources of Tropospheric Ozone along the Asian Pacific Rim: An Analysis of Ozonesonde Observations

    NASA Technical Reports Server (NTRS)

    Liu, Hong-Yu; Jacob, Daniel J.; Chan, Lo Yin; Oltmans, Samuel J.; Bey, Isabelle; Yantosca, Robert M.; Harris, Joyce M.; Duncan, Bryan N.; Martin, Randall V.

    2002-01-01

    The sources contributing to tropospheric ozone over the Asian Pacific Rim in different seasons are quantified by analysis of Hong Kong and Japanese ozonesonde observations with a global three-dimensional (3-D) chemical transport model (GEOS-CHEM) driven by assimilated meteorological observations. Particular focus is placed on the extensive observations available from Hong Kong in 1996. In the middle-upper troposphere (MT- UT), maximum Asian pollution influence along the Pacific Rim occurs in summer, reflecting rapid convective transport of surface pollution. In the lower troposphere (LT) the season of maximum Asian pollution influence shifts to summer at midlatitudes from fall at low latitudes due to monsoonal influence. The UT ozone minimum and high variability observed over Hong Kong in winter reflects frequent tropical intrusions alternating with stratospheric intrusions. Asian biomass burning makes a major contribution to ozone at less than 32 deg.N in spring. Maximum European pollution influence (less than 5 ppbv) occurs in spring in the LT. North American pollution influence exceeds European influence in the UT-MT, reflecting the uplift from convection and the warm conveyor belts over the eastern seaboard of North America. African outflow makes a major contribution to ozone in the low-latitude MT-UT over the Pacific Rim during November- April. Lightning influence over the Pacific Rim is minimum in summer due to westward UT transport at low latitudes associated with the Tibetan anticyclone. The Asian outflow flux of ozone to the Pacific is maximum in spring and fall and includes a major contribution from Asian anthropogenic sources year-round.

  5. The key role of ozone depleting substances in weakening the Walker Circulation over the second half of the 20th Century

    NASA Astrophysics Data System (ADS)

    Bellomo, K.; Polvani, L. M.

    2017-12-01

    It is widely believed that the Walker Circulation will weaken in response to increasing greenhouse gases (GHG) by the end of the 21st century. But over the 20th century, the existence of a statistical significant weakening trends in the observations remains unclear. We here present new modelling evidence showing that Ozone Depleting Substances (ODS) may have significantly contributed to the weakening of the Walker Circulation over the years 1955-2005. While the primary impact of increasing ODS has been the formation of the ozone hole, it is perhaps not as widely appreciated that ODS are also powerful greenhouse gases. Using an ensemble of integrations with the the Whole Atmosphere Chemistry Climate Model, we show that the surface warming caused by increasing ODS over the second half of the 20th century causes a statistically significant weakening of the Walker Circulation in the model. In fact, we find that the increase of the other well-mixed GHG alone leads to a strengthening, not a weakening of the Walker Circulation, over that period in our model. When ODS concentrations are held fixed at 1950's levels, the effect of the other GHG is not sufficient, and a warming delay in the eastern tropical Pacific SST leads to an increase in the east-west SST gradient which is accompanied by a strengthening of the Walker Circulation. But, when the forcing from ODS is added in, the additional radiative forcing causes the eastern Pacific to warm faster, and the trend in the Walker Circulation reverses sign and becomes negative over the second half of the 20th century.

  6. Cosmic-Ray Reaction and Greenhouse Effect of Halogenated Molecules: Culprits for Atmospheric Ozone Depletion and Global Climate Change

    NASA Astrophysics Data System (ADS)

    Lu, Q.-B.

    2013-07-01

    This study is focused on the effects of cosmic rays (solar activity) and halogen-containing molecules (mainly chlorofluorocarbons — CFCs) on atmospheric ozone depletion and global climate change. Brief reviews are first given on the cosmic-ray-driven electron-induced-reaction (CRE) theory for O3 depletion and the warming theory of halogenated molecules for climate change. Then natural and anthropogenic contributions to these phenomena are examined in detail and separated well through in-depth statistical analyses of comprehensive measured datasets of quantities, including cosmic rays (CRs), total solar irradiance, sunspot number, halogenated gases (CFCs, CCl4 and HCFCs), CO2, total O3, lower stratospheric temperatures and global surface temperatures. For O3 depletion, it is shown that an analytical equation derived from the CRE theory reproduces well 11-year cyclic variations of both polar O3 loss and stratospheric cooling, and new statistical analyses of the CRE equation with observed data of total O3 and stratospheric temperature give high linear correlation coefficients ≥ 0.92. After the removal of the CR effect, a pronounced recovery by 20 25 % of the Antarctic O3 hole is found, while no recovery of O3 loss in mid-latitudes has been observed. These results show both the correctness and dominance of the CRE mechanism and the success of the Montreal Protocol. For global climate change, in-depth analyses of the observed data clearly show that the solar effect and human-made halogenated gases played the dominant role in Earth's climate change prior to and after 1970, respectively. Remarkably, a statistical analysis gives a nearly zero correlation coefficient (R = -0.05) between corrected global surface temperature data by removing the solar effect and CO2 concentration during 1850-1970. In striking contrast, a nearly perfect linear correlation with coefficients as high as 0.96-0.97 is found between corrected or uncorrected global surface temperature and total

  7. Modelling trends in tropical column ozone with the UKCA chemistry-climate model

    NASA Astrophysics Data System (ADS)

    Keeble, James; Bednarz, Ewa; Banerjee, Antara; Abraham, Luke; Harris, Neil; Maycock, Amanda; Pyle, John

    2016-04-01

    Trends in tropical column ozone under a number of different emissions scenarios are explored with the UM-UKCA coupled chemistry climate model. A transient 1960-2100 simulation was run following the RCP6 scenario. Tropical averaged (10S-10N) total column ozone values decrease from the 1970s, reaching a minimum around 2000, and return to their 1980 values around 2040, consistent with the use and emission of ozone depleting substances, and their later controls under the Montreal Protocol. However, when the total column is subdivided into three partial columns, extending from the surface to the tropopause, the tropopause to 30km, and 30km to 50km, significant differences to the total column trend are seen. Modelled tropospheric column values increase from 1960-2000 before remaining steady throughout the 21st Century. Lower stratospheric column values decrease rapidly from 1960-2000, remain steady until 2050 before slowly decreasing to 2100, never recovering to their 1980s values. Upper stratospheric values decrease from 1960-2000, before rapidly increasing throughout the 21st Century, recovering to 1980s values by ~2020 and are significantly increased above the 1980s values by 2100. Using a series of idealised model simulations with varying concentrations of greenhouse gases and ozone depleting substances, we assess the physical processes driving the partial column response in the troposphere, lower stratosphere and upper stratosphere, and assess how these processes change under different emissions scenarios. Finally, we present a simple, linearised model for predicting tropical column ozone values based on greenhouse gas and ozone depleting substance scenarios.

  8. Radio observations of a coronal mass ejection induced depletion in the outer solar corona

    NASA Astrophysics Data System (ADS)

    Ramesh, R.; Sastry, Ch. V.

    2000-06-01

    We report the first low frequency radio observations of a depletion that occurred in the outer solar corona in the aftermath of the CME event of 1986 June 5, with the large E-W one dimensional grating interferometer at the Gauribidanur radio observatory. We estimated the mass loss associated with the depletion and found that it agrees well with the value obtained through white light observations of the event. The radio brightness temperature at the location of the depletion was less by a factor of ~ 7 compared to the ambient. The angular extent over which the decrease in brightness took place was <= 3'. The electron density variation was found to be proportional to r-10. Since observations at different wavelength bands have different physical origins, the radio method might be useful in independently estimating the characteristics of CME induced coronal depletions.

  9. Urban Summertime Ozone of China: Peak Ozone Hour and Nighttime Mixing

    NASA Astrophysics Data System (ADS)

    Qu, H.; Wang, Y.; Zhang, R.

    2017-12-01

    We investigate the observed diurnal cycle of summertime ozone in the cities of China using a regional chemical transport model. The simulated daytime ozone is in general agreement with the observations. Model simulations suggest that the ozone peak time and peak concentration are a function of NOx (NO + NO2) and volatile organic compound (VOC) emissions. The differences between simulated and observed ozone peak time and peak concentration in some regions can be applied to understand biases in the emission inventories. For example, the VOCs emissions are underestimated over the Pearl River Delta (PRD) region, and either NOx emissions are underestimated or VOC emissions are overestimated over the Yangtze River Delta (YRD) regions. In contrast to the general good daytime ozone simulations, the simulated nighttime ozone has a large low bias of up to 40 ppbv. Nighttime ozone in urban areas is sensitive to the nocturnal boundary-layer mixing, and enhanced nighttime mixing (from the surface to 200-500 m) is necessary for the model to reproduce the observed level of ozone.

  10. A Lagrangian analysis of mid-latitude stratospheric ozone variability and long-term trends.

    NASA Astrophysics Data System (ADS)

    Koch, G.; Wernli, H.; Staehelin, J.; Peter, T.

    2002-05-01

    A systematic Lagrangian investigation is performed of wintertime high-resolution stratospheric ozone soundings at Payerne, Switzerland, from January 1970 to March 2001. For every ozone sounding, 10-day backward trajectories have been calculated on 16 isentropic levels using NCEP reanalysis data. Both the minimum/maximum latitude and potential vorticity (PV) averaged along the trajectories are used as indicators of the air parcels' ``origin''. The importance of transport for the understandin g of single ozone profiles is confirmed by a statistical analysis which shows that negative/positive ozone deviations gener ally coincide with transport from regions with climatologically low/high ozone values. The stable relationship between PV and ozone for the 32 year period indicates either no direct chemical impact or no temporal change of this impact. In the upper layer the PV-ozone relationship changes significantly after 1987 and a separate trend analysis for air masses transported from the polar, midlatitude and subtropical regions shows negative ozone trends in all three categories (with a maximum for the polar region). This is not direct evidence for, but would be in agreement with, an increased chemical ozone depletion in the Arctic since the late 1980s. The reasons for the negative trend in the mid-stratospheric air masses with subtropical origin that are in qualitative agreement with recent satellite observations are presently unknown.

  11. Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone.

    PubMed

    Allen, Robert J; Sherwood, Steven C; Norris, Joel R; Zender, Charles S

    2012-05-16

    Observational analyses have shown the width of the tropical belt increasing in recent decades as the world has warmed. This expansion is important because it is associated with shifts in large-scale atmospheric circulation and major climate zones. Although recent studies have attributed tropical expansion in the Southern Hemisphere to ozone depletion, the drivers of Northern Hemisphere expansion are not well known and the expansion has not so far been reproduced by climate models. Here we use a climate model with detailed aerosol physics to show that increases in heterogeneous warming agents--including black carbon aerosols and tropospheric ozone--are noticeably better than greenhouse gases at driving expansion, and can account for the observed summertime maximum in tropical expansion. Mechanistically, atmospheric heating from black carbon and tropospheric ozone has occurred at the mid-latitudes, generating a poleward shift of the tropospheric jet, thereby relocating the main division between tropical and temperate air masses. Although we still underestimate tropical expansion, the true aerosol forcing is poorly known and could also be underestimated. Thus, although the insensitivity of models needs further investigation, black carbon and tropospheric ozone, both of which are strongly influenced by human activities, are the most likely causes of observed Northern Hemisphere tropical expansion.

  12. Global ozone observations from the UARS MLS: An overview of zonal-mean results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Froidevaux, L.; Waters, J.W.; Read, W.G.

    1994-10-15

    Global ozone observations from the Microwave Limb Sounder (MLS) aboard the Upper Atmosphere Research Satellite (UARS) are presented, in both vertically resolved and column abundance formats. The authors review the zonal-mean ozone variations measured over the two and a half years since launch in September 1991. Well-known features such as the annual and semiannual variations are ubiquitous. In the equatorial regions, longer-term changes are believed to be related to the quasi-biennial oscillation (QBO), with a strong semiannual signal above 20 hPa. Ozone values near 50 hPa exhibit an equatorial low from October 1991 to June 1992, after which the lowmore » ozone pattern splits into two subtropical lows (possibly in connection with residual circulation changes tied to the QBO) and returns to an equatorial low in September 1993. The ozone hole development at high southern latitudes is apparent in MLS column data integrated down to 100 hPa, with a pattern generally consistent with Nimbus-7 Total Ozone Mapping Spectrometer (TOMS) measurements of total column; the MLS data reinforce current knowledge of this lower-stratospheric phenomenon by providing a height-dependent view of the variations. The region from 30{degrees}S to 30{degrees}N (an area equal to half the global area) shows very little change in the ozone column from year to year and within each year. Finally, residual ozone values extracted from TOMS-minus-MLS column data are briefly presented as a preliminary view into the potential usefulness of such studies, with information on tropospheric ozone as an ultimate goal. 99 refs., 13 figs.« less

  13. Growth of soybean at future tropospheric ozone concentrations decreases canopy evapotranspiration and soil water depletion.

    PubMed

    Bernacchi, Carl J; Leakey, Andrew D B; Kimball, Bruce A; Ort, Donald R

    2011-06-01

    Tropospheric ozone is increasing in many agricultural regions resulting in decreased stomatal conductance and overall biomass of sensitive crop species. These physiological effects of ozone forecast changes in evapotranspiration and thus in the terrestrial hydrological cycle, particularly in intercontinental interiors. Soybean plots were fumigated with ozone to achieve concentrations above ambient levels over five growing seasons in open-air field conditions. Mean season increases in ozone concentrations ([O₃]) varied between growing seasons from 22 to 37% above background concentrations. The objective of this experiment was to examine the effects of future [O₃] on crop ecosystem energy fluxes and water use. Elevated [O₃] caused decreases in canopy evapotranspiration resulting in decreased water use by as much as 15% in high ozone years and decreased soil water removal. In addition, ozone treatment resulted in increased sensible heat flux in all years indicative of day-time increase in canopy temperature of up to 0.7 °C. Published by Elsevier Ltd.

  14. An Evaluation of C1-C3 Hydrochlorofluorocarbon (HCFC) Metrics: Lifetimes, Ozone Depletion Potentials, Radiative Efficiencies, Global Warming and Global Temperature Potentials

    NASA Astrophysics Data System (ADS)

    Burkholder, J. B.; Papanastasiou, D. K.; Marshall, P.

    2017-12-01

    Hydrochlorofluorocarbons (HCFCs) have been used as chlorofluorocarbon (CFC) substitutes in a number of applications, e.g. refrigerator and air-conditioning systems. Although HCFCs have lower ozone-depletion potentials (ODPs) compared to CFCs, they are potent greenhouse gases. The twenty-eighth meeting of the parties to the Montreal Protocol on Substances that Deplete the Ozone Layer (Kigali, 2016) included a list of 274 HCFCs to be controlled under the Montreal Protocol. However, from this list, only 15 of the HCFCs have values for their atmospheric lifetime, ODP, global warming potential (GWP), and global temperature potential (GTP) that are based on fundamental experimental studies, while 48 are registered compounds. In this work, we present a comprehensive evaluation of the atmospheric lifetimes, ODPs, radiative efficiencies (REs), GWPs, and GTPs for all 274 HCFCs to be included in the Montreal Protocol. Atmospheric lifetimes were estimated based on HCFC reactivity with OH radicals and O(1D), as well as their removal by UV photolysis using structure activity relationships and reactivity trends. ODP values are based on the semi-empirical approach described in the WMO/UNEP ozone assessment. Radiative efficiencies were estimated, based on infrared spectra calculated using theoretical electronic structure methods (Gaussian 09). GWPs and GTPs were calculated relative to CO2 using our estimated atmospheric lifetimes and REs. The details of the methodology will be discussed as well as the associated uncertainties. This study has provided a consistent set of atmospheric metrics for a wide range of HCFCs that support future policy decisions. More accurate metrics for a specific HCFC, if desired, would require fundamental laboratory studies to better define the OH reactivity and infrared absorption spectrum of the compound of interest. Overall, HCFCs within the same family (isomers) show a large ODP, GWP, GTP dependence on the molecular geometry of the isomers. The

  15. Dehydration, denitrification and ozone loss during the Arctic winter 2015/2016: Simulations with the Chemistry-Climate Model EMAC and comparison to Aura/MLS and GLORIA observations

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Kirner, Oliver; Sinnhuber, Bjoern-Martin; Johansson, Sören; Höpfner, Michael; Santee, Michelle L.; Manney, Gloria; Froidevaux, Lucien; Ungermann, Jörn; Preusse, Peter; Friedl-Vallon, Felix; Ruhnke, Roland; Woiwode, Wolfgang; Oelhaf, Hermann; Braesicke, Peter

    2017-04-01

    The Arctic winter 2015/2016 has been one of the coldest stratospheric winters in recent years. A stable vortex formed already in early December and the early winter has been exceptionally cold. Cold pool temperatures dropped below the Nitric Acid Trihydrate (NAT) existence temperature, thus allowing Polar Stratospheric Clouds (PSCs) to form. The low temperatures in the polar stratosphere persisted until early March allowing chlorine activation and catalytic ozone destruction. Satellite observations indicate that sedimentation of PSC particles have led to denitrification as well as dehydration of stratospheric layers. Nudged model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) campaign. POLSTRACC was a HALO mission (High Altitude and LOng Range Research Aircraft) aiming on the investigation of the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS). The chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds were investigated. In this presentation, an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given. Chemical-dynamical processes such as denitrification, dehydration and ozone loss will be investigated. Comparisons to satellite observations by the Aura Microwave Limb Sounder (Aura/MLS) as well as to airborne measurements with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA) performed onboard of HALO during the POLSTRACC campaign show that the EMAC simulations are in good agreement with observations (differences generally within ±20%). However, larger differences between model and simulations are found e.g. in the areas of denitrification. Both

  16. Variability in Tropical Tropospheric Ozone as Observed by SHADOZ

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Coetzee, Geert J. R.; Chatfield, Robert B.; Hudson, Robert D.

    2004-01-01

    The SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone sounding network was initiated in 1998 to improve the coverage of tropical in-situ ozone measurements for satellite validation, algorithm development and related process studies. Over 2000 soundings have been archived at the central website, , for 12 stations: Ascension Island; Nairobi and Malindi, Kenya; Irene, South Africa; Reunion Island; Watukosek, Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil; Paramaribo, Surinam. Some results to date indicate reliability of the measurement and highly variable interactions between ozone and tropical meteorology. For example: 1. By using ECC sondes with similar procedures, 5-10% accuracy and precision (1-sigma) of the sonde total ozone measurement was achieved [Thompson et al., 2003al; 2. Week-to-week variability in tropospheric ozone is so great that statistics are frequently not Gaussian and most stations vary up to a factor of 3 in column amount over the course of a year [Thompson et al., 2002b]. 3. Longitudinal variability in tropospheric ozone profiles is a consistent feature, with a 10- 15 DU column-integrated difference between Atlantic and Pacific sites; this is the cause of the zonal wave-one feature in total ozone [Shiotani, 1992]. The ozone record from Paramaribo, Surinam (6N, 55W) is a marked contrast to southern tropical ozone because Surinam is often north of the Intertropical Convergence Zone. Interpretations of SHADOZ time-series and approaches to classification suggested by SHADOZ data over Africa and the Indian Ocean will be described.

  17. Global QBO in circulation and ozone. Part 1: Reexamination of observational evidence

    NASA Technical Reports Server (NTRS)

    Tung, K. K.; Yang, H.

    1994-01-01

    Observational evidence for a global quasi-biennial oscillation (QBO) pattern is reviewed. In particular, the presence of an extratropical, as well as an equatorial, component of the QBO signal in column ozone is established. It is found that the ozone interannual variability is such that as one moves away from the Tropics, the frequency spectrum of the anomaly changes from one that is dominated by the equatorial QBO frequency of 1/30 mo to a two-peak spectrum around the two frequencies: 1/30 mo and 1/20 mo. Instead of treating the 1/20 mo frequency as a separate phenomenon to be filtered away in extracting the QBO in the extratropics, as was previously done, the authors argue that both peaks are integral parts of the extratropical QBO phenomenon. The 1/20 mo frequency happens to be the difference combination of the QBO frequency 1/30 mo and the annual frequency 1/12 mo. Therefore, it can represent the result of the QBO modulating an annual cycle. The authors suggest that previous methods of extracting the extratropical QBO signal severely underestimated the contribution of the QBO to the interannual variability of ozone when data are filtered to pass only the component with the period of equatorial QBO. Further, it is argued that the transport of equatorial QBO ozone anomaly by a non-QBO circulation can at most account for 6-8 Dobson units (DU) of the observed interannual variability of column ozone in the extratropics. The remaining variability (up to 20 DU) probably cannot be produced without an anomaly in the transporting circulation in the extratropics.

  18. Global QBO in circulation and ozone. Part 1: Reexamination of observational evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tung, K.K.; Yang, H.

    1994-10-01

    Observational evidence for a global quasi-biennial oscillation (QBO) pattern is reviewed. In particular, the presence of an extratropical, as well as an equatorial, component of the QBO signal in column ozone is established. It is found that the ozone interannual variability is such that as one moves away from the Tropics, the frequency spectrum of the anomaly changes from one that is dominated by the equatorial QBO frequency of 1/30 mo to a two-peak spectrum around the two frequencies: 1/30 mo and 1/20 mo. Instead of treating the 1/20 mo frequency as a separate phenomenon to be filtered away inmore » extracting the QBO in the extratropics, as was previously done, the authors argue that both peaks are integral parts of the extratropical QBO phenomenon. The 1/20 mo frequency happens to be the difference combination of the QBO frequency 1/30 mo and the annual frequency 1/12 mo. Therefore, it can represent the result of the QBO modulating an annual cycle. The authors suggest that previous methods of extracting the extratropical QBO signal severely underestimated the contribution of the QBO to the interannual variability of ozone when data are filtered to pass only the component with the period of equatorial QBO. Further, it is argued that the transport of equatorial QBO ozone anomaly by a non-QBO circulation can at most account for 6-8 Dobson units (DU) of the observed interannual variability of column ozone in the extratropics. The remaining variability (up to 20 DU) probably cannot be produced without an anomaly in the transporting circulation in the extratropics.« less

  19. Newly divided eosinophils limit ozone-induced airway hyperreactivity in nonsensitized guinea pigs

    PubMed Central

    Jacoby, David B.

    2017-01-01

    Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals. PMID:28258108

  20. Newly divided eosinophils limit ozone-induced airway hyperreactivity in nonsensitized guinea pigs.

    PubMed

    Wicher, Sarah A; Jacoby, David B; Fryer, Allison D

    2017-06-01

    Ozone causes vagally mediated airway hyperreactivity and recruits inflammatory cells, including eosinophils, to lungs, where they mediate ozone-induced hyperreactivity 1 day after exposure but are paradoxically protective 3 days later. We aimed to test the role of newly divided eosinophils in ozone-induced airway hyperreactivity in sensitized and nonsensitized guinea pigs. Nonsensitized and sensitized guinea pigs were treated with 5-bromo-2-deoxyuridine (BrdU) to label newly divided cells and were exposed to air or ozone for 4 h. Later (1 or 3 days later), vagally induced bronchoconstriction was measured, and inflammatory cells were harvested from bone marrow, blood, and bronchoalveolar lavage. Ozone induced eosinophil hematopoiesis. One day after ozone, mature eosinophils dominate the inflammatory response and potentiate vagally induced bronchoconstriction. However, by 3 days, newly divided eosinophils have reached the lungs, where they inhibit ozone-induced airway hyperreactivity because depleting them with antibody to IL-5 or a TNF-α antagonist worsened vagally induced bronchoconstriction. In sensitized guinea pigs, both ozone-induced eosinophil hematopoiesis and subsequent recruitment of newly divided eosinophils to lungs 3 days later failed to occur. Thus mature eosinophils dominated the ozone-induced inflammatory response in sensitized guinea pigs. Depleting these mature eosinophils prevented ozone-induced airway hyperreactivity in sensitized animals. Ozone induces eosinophil hematopoiesis and recruitment to lungs, where 3 days later, newly divided eosinophils attenuate vagally mediated hyperreactivity. Ozone-induced hematopoiesis of beneficial eosinophils is blocked by a TNF-α antagonist or by prior sensitization. In these animals, mature eosinophils are associated with hyperreactivity. Thus interventions targeting eosinophils, although beneficial in atopic individuals, may delay resolution of airway hyperreactivity in nonatopic individuals. Copyright

  1. Changes in air quality and tropospheric composition due to depletion of stratospheric ozone and interactions with climate.

    PubMed

    Tang, X; Wilson, S R; Solomon, K R; Shao, M; Madronich, S

    2011-02-01

    , meteorological conditions, and anthropogenic emissions may be large, thus posing challenges for prediction and management of air quality. Aerosols composed of organic substances have a major role in both climate and air quality, and contribute a large uncertainty to the energy budget of the atmosphere. These aerosols are mostly formed via the UV-initiated oxidation of VOCs from anthropogenic and biogenic sources, although the details of the chemistry are still poorly understood and current models under-predict their abundance. A better understanding of their formation, chemical composition, and optical properties is required to assess their significance for air quality and to better quantify their direct and indirect radiative forcing of climate. Emissions of compounds containing fluorine will continue to have effects on the chemistry of the atmosphere and on climate change. The HCFCs and HFCs used as substitutes for ozone-depleting CFCs can break down into trifluoroacetic acid (TFA), which will accumulate in oceans, salt lakes, and playas. Based on historical use and projections of future uses, including new products entering the market, such as the fluoro-olefins, increased loadings of TFA in these environmental sinks will be small. Even when added to existing amounts from natural sources, risks to humans or the environment from the historical use of CFCs or continued use of their replacements is judged to be negligible.

  2. Stratospheric ozone, global warming, and the principle of unintended consequences--an ongoing science and policy success story.

    PubMed

    Andersen, Stephen O; Halberstadt, Marcel L; Borgford-Parnell, Nathan

    2013-06-01

    In 1974, Mario Molina and F. Sherwood Rowland warned that chlorofluorocarbons (CFCs) could destroy the stratospheric ozone layer that protects Earth from harmful ultraviolet radiation. In the decade after scientists documented the buildup and long lifetime of CFCs in the atmosphere; found the proof that CFCs chemically decomposed in the stratosphere and catalyzed the depletion of ozone; quantified the adverse effects; and motivated the public and policymakers to take action. In 1987, 24 nations plus the European Community signed the Montreal Protocol. Today, 25 years after the Montreal Protocol was agreed, every United Nations state is a party (universal ratification of 196 governments); all parties are in compliance with the stringent controls; 98% of almost 100 ozone-depleting chemicals have been phased out worldwide; and the stratospheric ozone layer is on its way to recovery by 2065. A growing coalition of nations supports using the Montreal Protocol to phase down hydrofluorocarbons, which are ozone safe but potent greenhouse gases. Without rigorous science and international consensus, emissions of CFCs and related ozone-depleting substances (ODSs) could have destroyed up to two-thirds of the ozone layer by 2065, increasing the risk of causing millions of cancer cases and the potential loss of half of global agricultural production. Furthermore, because most, ODSs are also greenhouse gases, CFCs and related ODSs could have had the effect of the equivalent of 24-76 gigatons per year of carbon dioxide. This critical review describes the history of the science of stratospheric ozone depletion, summarizes the evolution of control measures and compliance under the Montreal Protocol and national legislation, presents a review of six separate transformations over the last 100 years in refrigeration and air conditioning (A/C) technology, and illustrates government-industry cooperation in continually improving the environmental performance of motor vehicle A/C.

  3. Stratospheric ozone, global warming, and the principle of unintended consequences-An ongoing science and policy success story.

    PubMed

    Andersen, Stephen O; Halberstadt, Marcel L; Borgford-Parnell, Nathan

    2013-06-01

    In 1974, Mario Molina and F. Sherwood Rowland warned that chlorofluorocarbons (CFCs) could destroy the stratospheric ozone layer that protects Earth from harmful ultraviolet radiation. In the decade after, scientists documented the buildup and long lifetime of CFCs in the atmosphere; found the proof that CFCs chemically decomposed in the stratosphere and catalyzed the depletion of ozone; quantified the adverse effects; and motivated the public and policymakers to take action. In 1987, 24 nations plus the European Community signed the Montreal Protocol. Today, 25 years after the Montreal Protocol was agreed, every United Nations state is a party (universal ratification of 196 governments); all parties are in compliance with the stringent controls; 98% of almost 100 ozone-depleting chemicals have been phased out worldwide; and the stratospheric ozone layer is on its way to recovery by 2065. A growing coalition of nations supports using the Montreal Protocol to phase down hydrofluorocarbons, which are ozone safe but potent greenhouse gases. Without rigorous science and international consensus, emissions of CFCs and related ozone-depleting substances (ODSs) could have destroyed up to two-thirds of the ozone layer by 2065, increasing the risk of causing millions of cancer cases and the potential loss of half of global agricultural production. Furthermore, because most ODSs are also greenhouse gases, CFCs and related ODSs could have had the effect of the equivalent of 24-76 gigatons per year of carbon dioxide. This critical review describes the history of the science of stratospheric ozone depletion, summarizes the evolution of control measures and compliance under the Montreal Protocol and national legislation, presents a review of six separate transformations over the last 100 years in refrigeration and air conditioning (A/C) technology, and illustrates government-industry cooperation in continually improving the environmental performance of motor vehicle A/C. [Box

  4. Tropical Tropospheric Ozone Climatology: Approaches Based on SHADOZ Observations

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.; Witte, Jacquelyn C.; Chatfield, Robert B.; Hudson, Robert D.; Andrade, Marcos; Coetzee, Geert J. R.; Posny, Francoise

    2004-01-01

    The SHADOZ (Southern Hemisphere Additional Ozonesondes) ozone sounding network was initiated in 1998 to improve the coverage of tropical in-situ ozone measurements for satellite validation, algorithm development and related process studies. Over 2000 soundings have been archived at the central website, , for 12 stations that span the entire equatorial zone [Thompson et al., JGR, 108,8238, 2003]. The most striking features of tropospheric ozone profiles in SHADOZ are: (1) persistent longitudinal variability in tropospheric ozone profiles, with a 10-15 DU column-integrated difference between Atlantic and Pacific sites; (2) intense short-term variability triggered by changing meteorological conditions and advection of pollution. The implications of these results for profile climatologies and trends are described along with several approaches to classifying ozone profiles: 1) Seasonal means during MAM (March-April-May) and SON (September-October-November); 2) Maxima and minima, identified through correlation of TOMS-derived TTO (tropical tropospheric ozone) column depth with the sonde integrated tropospheric ozone column; and 3) Meteorological regimes, a technique that is effective in the subtropics where tropical and mid-latitude conditions alternate.

  5. Ozone production, nitrogen oxides, and radical budgets in Mexico City: observations from Pico de Tres Padres

    NASA Astrophysics Data System (ADS)

    Wood, E. C.; Herndon, S. C.; Onasch, T. B.; Kroll, J. H.; Canagaratna, M. R.; Kolb, C. E.; Worsnop, D. R.; Neuman, J. A.; Seila, R.; Zavala, M.; Knighton, W. B.

    2008-08-01

    Observations at a mountain-top site within the Mexico City basin are used to characterize ozone production and destruction, the nitrogen oxide budget, and the radical budget during the MILAGRO campaign. An ozone production rate of ~50 ppbv/h was observed in a stagnant air mass during the afternoon of 12 March 2006, which is among the highest observed anywhere in the world. Approximately half of the ozone destruction was due to the oxidation of NO2. During this time period ozone production was VOC-limited, deduced by a comparison of the radical production rates and the formation rate of NOx oxidation products (NOz) For [NOx]/[NOy] values between 0.2 and 0.8, gas-phase HNO3 typically accounted for less than 10% of NOz and accumulation-mode particulate nitrate (NO3-(PM)) accounted for 20% 70% of NOz, consistent with high ambient NH3 concentrations. The fraction of NOz accounted for by the sum of HNO3(g) and NO3-(PM) decreased with photochemical processing. This decrease is apparent even when dry deposition of HNO3 is accounted for, and indicates that HNO3 formation decreased relative to other NOx "sink" processes during the first 12 h of photochemistry and/or a significant fraction of the nitrate was associated with the coarse aerosol size mode. The ozone production efficiency of NOx on 11 and 12 March 2006 was approximately 7 on a time scale of one day. A new metric for ozone production efficiency that relates the dilution-adjusted ozone mixing ratio to cumulative OH exposure is proposed.

  6. Total Ozone Trends from 1979 to 2016 Derived from Five Merged Observational Datasets - The Emergence into Ozone Recovery

    NASA Technical Reports Server (NTRS)

    Weber, Mark; Coldewey-Egbers, Melanie; Fioletov, Vitali E.; Frith, Stacey M.; Wild, Jeannette D.; Burrows, John P.; Loyola, Diego

    2018-01-01

    We report on updated trends using different merged datasets from satellite and ground-based observations for the period from 1979 to 2016. Trends were determined by applying a multiple linear regression (MLR) to annual mean zonal mean data. Merged datasets used here include NASA MOD v8.6 and National Oceanic and Atmospheric Administration (NOAA) merge v8.6, both based on data from the series of Solar Backscatter UltraViolet (SBUV) and SBUV-2 satellite instruments (1978–present) as well as the Global Ozone Monitoring Experiment (GOME)-type Total Ozone (GTO) and GOME-SCIAMACHY-GOME-2 (GSG) merged datasets (1995-present), mainly comprising satellite data from GOME, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and GOME-2A. The fifth dataset consists of the monthly mean zonal mean data from ground-based measurements collected at World Ozone and UV Data Center (WOUDC). The addition of four more years of data since the last World Meteorological Organization (WMO) ozone assessment (2013-2016) shows that for most datasets and regions the trends since the stratospheric halogen reached its maximum (approximately 1996 globally and approximately 2000 in polar regions) are mostly not significantly different from zero. However, for some latitudes, in particular the Southern Hemisphere extratropics and Northern Hemisphere subtropics, several datasets show small positive trends of slightly below +1 percent decade(exp. -1) that are barely statistically significant at the 2 Sigma uncertainty level. In the tropics, only two datasets show significant trends of +0.5 to +0.8 percent(exp.-1), while the others show near-zero trends. Positive trends since 2000 have been observed over Antarctica in September, but near-zero trends are found in October as well as in March over the Arctic. Uncertainties due to possible drifts between the datasets, from the merging procedure used to combine satellite datasets and related to the low sampling of

  7. Dobson total ozone series of Oxford: Reevaluation and applications

    NASA Astrophysics Data System (ADS)

    Vogler, C.; BröNnimann, S.; Staehelin, J.; Griffin, R. E. M.

    2007-10-01

    We have reevaluated the original total ozone measurements made in Oxford between 1924 and 1957, with a view to extending backward in time the existing total ozone series from 1957 to 1975. The Oxford measurements are the oldest Dobson observations in the world. Their prime importance, when coupled with the series from Arosa (since 1926) and Tromsø (since 1935), is for increasing basic understanding of stratospheric ozone and dynamics, while in relation to studies of the recent ozone depletion they constitute a baseline of considerable (and unique) significance and value. However, the reevaluation was made difficult on account of changes to the instruments and wavelengths as the early data collection methods evolved, while unknowns due to the influence of aerosols and the possible presence of dioxides of sulphur and nitrogen created additional problems. Our reevaluation was based on statistical procedures (comparisons with meteorological upper air data and ozone series from Arosa) and also on corrections suggested by Dobson himself. The comparisons demonstrate that the data are internally consistent and of good quality. Nevertheless, as post-1957 data were not assessed in this study, the series cannot be recommended at present for trend analysis, though the series can be used for climatological studies. By supplementing the Oxford data with other existing series, we present a European total ozone climatology for 1924-1939, 1950-1965, and 1988-2000 and analyze the data with respect to variables measuring the strength and the temperature of the polar vortex.

  8. Therapeutic effect of ozone and rutin on adriamycin-induced testicular toxicity in an experimental rat model.

    PubMed

    Salem, E A; Salem, N A; Hellstrom, W J

    2017-02-01

    To evaluate the cytoprotective effects of rutin, ozone and their combination on adriamycin (ADR)-induced testicular toxicity, 50 male albino rats were classified into five groups of ten animals each as follows: placebo group; ADR group; ADR + rutin group; ADR + ozone group and ADR + rutin + ozone group. Sperm functions, testosterone (T), luteinising hormone (LH), follicle stimulating hormone (FSH), testicular enzymes, oxidant/antioxidant status, C-reactive protein, monocyte chemoattractant proteins-1 and leukotriene B4 were determined. After ADR injection, a decline in sperm functions was observed. FSH and LH levels were increased, T level and testicular enzymes were decreased, significant enhancement in oxidative stress with subsequent depletion in antioxidants was detected and inflammatory markers were significantly elevated. Treatment with rutin and/or ozone, however, improved the aforementioned parameters. Ozone therapy alone almost completely reversed the toxic effects of ADR and restored all parameters to normal levels. © 2016 Blackwell Verlag GmbH.

  9. Precipitation of salts in freezing seawater and ozone depletion events: a status report

    NASA Astrophysics Data System (ADS)

    Morin, S.; Marion, G. M.; von Glasow, R.; Voisin, D.; Bouchez, J.; Savarino, J.

    2008-12-01

    In springtime, the polar marine boundary layer exhibits drastic ozone depletion events (ODEs), associated with elevated bromine oxide (BrO) mixing ratios. The current interpretation of this peculiar chemistry requires the existence of acid and bromide-enriched surfaces to heterogeneously promote and sustain ODEs. Sander et al. (2006) have proposed that calcium carbonate (CaCO3) precipitation in any seawater-derived medium could potentially decrease its alkalinity, making it easier for atmospheric acids such as HNO3 and H2SO4 to acidify it. We performed simulations using the state-of-the-art FREZCHEM model, capable of handling the thermodynamics of concentrated electrolyte solutions, to try to reproduce their results, and found that when ikaite (CaCO3·6H2O) rather than calcite (CaCO3) precipitates, there is no such effect on alkalinity. Given that ikaite has recently been identified in Antarctic brines (Dieckmann et al., 2008), our results show that great caution should be exercised when using the results of Sander et al. (2006), and reveal the urgent need of laboratory investigations on the actual link(s) between bromine activation and the pH of the surfaces on which it is supposed to take place at subzero temperature. In addition, the evolution of the Cl/Br ratio in the brine during freezing was computed using FREZCHEM, taking into account Br substitutions in Cl-containing salts.

  10. Long-term changes in ozone mini-hole event frequency over the Northern Hemisphere derived from ground-based measurements

    NASA Astrophysics Data System (ADS)

    Krzycin, Janusz W.

    2002-10-01

    Decadal changes of ozone mini-hole event appearance over the Northern Hemisphere midlatitudes are examined based on daily total ozone data from seven stations having long records (four decades or more) of ozone observations. The various threshold methods for accepting and rejecting the ozone minima as mini-holes are examined. Mini-hole event activity is seen to be rather stable when averaged over a decadal time scale if the mini-holes are selected as large negative departures (exceeding 20%) relative to the moving long-term total ozone reference. The results are compared with a previous ozone mini-hole climatology derived from satellite data (TOMS measurements on board the Nimbus-7 satellite for the period 1978-93). A nonlinear statistical model (MARS), which takes into account various total ozone dynamical proxies (from NCEP-NCAR reanalysis), is used to study dynamical factors responsible for the ozone extremes over Arosa in the period 1950-99. The model explains as much as 95% of the total variance of the ozone extremes. The model-observation differences averaged over the decadal intervals are rather smooth throughout the whole period analysed. It is suggested that the short-term dynamical processes controlling the appearance of ozone extremes influenced the ozone field in a similar way before and after the onset of abrupt ozone depletion in the early 1980s. The analysis of the ozone profile and the tropopause pressure (from the ozonesondings over Hohenpeissenberg, 1966-99) during mini-hole events shows 60% ozone reduction in the lower stratosphere and an approximately 50 hPa upward shift of the thermal tropopause there.

  11. Extending the NOAA SBUV(/2) Ozone Profile Record

    NASA Astrophysics Data System (ADS)

    Frith, S. M.; Wild, J.; Long, C. S.

    2017-12-01

    Since the signing of the Montreal Protocol in 1987 and its subsequent agreements banning anthropogenic ozone depleting substances (ODS) the climate community has been anticipating the ability to detect the recovery of the ozone layer. This recovery is complicated by climate changes associated with the increase of CO2 in the both the troposphere and stratosphere. The Climate Prediction Center (CPC) has generated a long term total column and profile ozone climate data record (CDR) based on the SBUV and SBUV/2 on Nimbus 7 and the NOAA Polar Orbiting Environmental Satellites (POES): NOAA-9, -11, -14, -16, -17, -18 and -19 spanning 38 years from 1978 to 2016. This dataset uses observations from a single instrument for each time period and an adjustment scheme to remove inter-satellite differences. The last of these SBUV/2 instruments resides on NOAA-19 launched in 2009, and with drifting equatorial crossing time will soon loose latitudinal coverage, and be impacted by an increasing solar zenith angle. The Ozone Mapping and Profiler Suite (OMPS) instrument has replaced the SBUV/2 as the primary ozone monitoring instrument at NOAA. It is taking observations on the Suomi-NPOESS Preparatory Project (S-NPP) satellite which was launched in 2011 and will be on future JPSS satellites. JPSS-1 is expected to be launched in late 2017, and later JPSS satellites will additionally carry the OMPS instrument. Reprocessed OMPS Nadir Profile (NP) and Nadir Mapper (NM) level 2 data has been made available by NESDIS/STAR covering the period from 2012 through 2016. The OMPS NP has been characterized and calibrated to be very similar to the SBUV/2. Results of extending the SBUV(/2) dataset with ozone profile data from OMPS will be reviewed. Stability of ozone recovery trend estimates using these datasets will be explored using the Hockey Stick approach of Reinsel (2002) near-globally (50N-50S), tropically and at mid-latitudes. Seasonality of the trend results will be examined. Reinsel, G

  12. Model evaluation of the radiative and temperature effects of the ozone content changes in the global atmosphere of 1980's

    NASA Technical Reports Server (NTRS)

    Karol, Igor L.; Frolkis, Victor A.

    1994-01-01

    Radiative and temperature effects of the observed ozone and greenhouse gas atmospheric content changes in 1980 - 1990 are evaluated using the two-dimensional energy balance radiative-convective model of the zonally and annually averaged troposphere and stratosphere. Calculated radiative flux changes for standard conditions quantitatively agree with their estimates in WMO/UNEP 1991 review. Model estimates indicate rather small influence of ozone depletion in the lower stratosphere on the greenhouse tropospheric warming rate, being more significant in the non-tropical Southern Hemisphere. The calculated cooling of the lower stratosphere is close to the observed temperature trends there in the last decade.

  13. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    NASA Astrophysics Data System (ADS)

    Zavala, M.; Lei, W.; Molina, M. J.; Molina, L. T.

    2009-01-01

    The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA) have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies and improvements in fuel quality, among others. Along with these changes, concurrent non-linear changes in photochemical levels and criteria pollutants have been observed, providing a unique opportunity to understand the effects of perturbations of mobile emission levels on the photochemistry in the region using observational and modeling approaches. The observed historical trends of ozone (O3), carbon monoxide (CO) and nitrogen oxides (NOx) suggest that ozone production in the MCMA has changed from a low to a high VOC-sensitive regime over a period of 20 years. Comparison of the historical emission trends of CO, NOx and hydrocarbons derived from mobile-source emission studies in the MCMA from 1991 to 2006 with the trends of the concentrations of CO, NOx, and the CO/NOx ratio during peak traffic hours also indicates that fuel-based fleet average emission factors have significantly decreased for CO and VOCs during this period whereas NOx emission factors do not show any strong trend, effectively reducing the ambient VOC/NOx ratio. This study presents the results of model analyses on the sensitivity of the observed ozone levels to the estimated historical changes in its precursors. The model sensitivity analyses used a well-validated base case simulation of a high pollution episode in the MCMA with the mathematical Decoupled Direct Method (DDM) and the standard Brute Force Method (BFM) in the 3-D CAMx chemical transport model. The model reproduces adequately the observed historical trends and current photochemical levels. Comparison of the BFM and the DDM sensitivity techniques indicates that the model yields ozone values that increase linearly with NOx emission reductions and decrease linearly with VOC emission reductions only up to 30% from the

  14. Modeled and observed ozone sensitivity to mobile-source emissions in Mexico City

    NASA Astrophysics Data System (ADS)

    Zavala, M.; Lei, W. F.; Molina, M. J.; Molina, L. T.

    2008-08-01

    The emission characteristics of mobile sources in the Mexico City Metropolitan Area (MCMA) have changed significantly over the past few decades in response to emission control policies, advancements in vehicle technologies and improvements in fuel quality, among others. Along with these changes, concurrent non-linear changes in photochemical levels and criteria pollutants have been observed, providing a unique opportunity to understand the effects of perturbations of mobile emission levels on the photochemistry in the region using observational and modeling approaches. The observed historical trends of ozone (O3), carbon monoxide (CO) and nitrogen oxides (NOx) suggest that ozone production in the MCMA has changed from a low to a high VOC-sensitive regime over a period of 20 years. Comparison of the historical emission trends of CO, NOx and hydrocarbons derived from mobile-source emission studies in the MCMA from 1991 to 2006 with the trends of the concentrations of CO, NOx, and the CO/NOx ratio during peak traffic hours also indicates that fuel-based fleet average emission factors have significantly decreased for CO and VOCs during this period whereas NOx emission factors do not show any strong trend, effectively reducing the ambient VOC/NOx ratio. This study presents the results of model analyses on the sensitivity of the observed ozone levels to the estimated historical changes in its precursors. The model sensitivity analyses used a well-validated base case simulation of a high pollution episode in the MCMA with the mathematical Decoupled Direct Method (DDM) and the standard Brute Force Method (BFM) in the 3-D CAMx chemical transport model. The model reproduces adequately the observed historical trends and current photochemical levels. Comparison of the BFM and the DDM sensitivity techniques indicates that the model yields ozone values that increase linearly with NOx emission reductions and decrease linearly with VOC emission reductions only up to 30% from the

  15. Preliminary SEM Observations on the Surface of Elastomeric Impression Materials after Immersion or Ozone Disinfection

    PubMed Central

    Prombonas, Anthony; Yannikakis, Stavros; Karampotsos, Thanasis; Katsarou, Martha-Spyridoula; Drakoulis, Nikolaos

    2016-01-01

    Introduction Surface integrity of dental elastomeric impression materials that are subjected to disinfection is of major importance for the quality of the final prosthetic restorations. Aim The aim of this qualitative Scanning Electronic Microscopy (SEM) study was to reveal the effects of immersion or ozone disinfection on the surface of four dental elastomeric impression materials. Materials and Methods Four dental elastomeric impression material brands were used (two vinyl polysiloxane silicones, one polyether, and one vinyl polyether silicone). Total of 32 specimens were fabricated, eight from each impression material. Specimens were immersion (0.525% sodium hypochlorite solution or 0.3% benzalkonium chloride solution) or ozone disinfected or served as controls and examined with SEM. Results Surface degradation was observed on several speci-mens disinfected with 0.525% sodium hypochlorite solution. Similar wavy-wrinkling surface structures were observed in almost all specimens, when treated either with 0.3% benzalkonium chloride solution or ozone. Conclusion The SEM images obtained from this study revealed that both immersion disinfectants and ozone show similar impression material surface alterations. Ozone seems to be non-inferior as compared to immersion disinfectants, but superior as to environmental protection. PMID:28208993

  16. Does coupled ocean enhance ozone-hole-induced Southern Hemisphere circulation changes?

    NASA Astrophysics Data System (ADS)

    Son, S. W.; Han, B. R.; Kim, S. Y.; Park, R.

    2017-12-01

    The ozone-hole-induced Southern Hemisphere (SH) circulation changes, such as poleward shift of westerly jet and Hadley cell widening, have been typically explored with either coupled general circulation models (CGCMs) prescribing stratospheric ozone or chemistry-climate models (CCMs) prescribing surface boundary conditions. Only few studies have utilized ocean-coupled CCMs with a relatively coarse resolution. To better quantify the role of interactive chemistry and coupled ocean in the ozone-hole-induced SH circulation changes, the present study examines a set of CGCM and CCM simulations archived for the Coupled Model Intercomparison Project phase 5 (CMIP5) and CCM initiative (CCMI). Although inter-model spread of Antarctic ozone depletion is substantially large especially in the austral spring, both CGCMs with relatively simple ozone chemistry and CCMs with fully interactive comprehensive chemistry reasonably well reproduce long-term trends of Antarctic ozone and the associated polar-stratospheric temperature changes. Most models reproduce a poleward shift of SH jet and Hadley-cell widening in the austral summer in the late 20th century as identified in reanalysis datasets. These changes are quasi-linearly related with Antarctic ozone changes, confirming the critical role of Antarctic ozone depletion in the austral-summer zonal-mean circulation changes. The CGCMs with simple but still interactive ozone show slightly stronger circulation changes than those with prescribed ozone. However, the long-term circulation changes in CCMs are largely insensitive to the coupled ocean. While a few models show the enhanced circulation changes when ocean is coupled, others show essentially no changes or even weakened circulation changes. This result suggests that the ozone-hole-related stratosphere-troposphere coupling in the late 20th century may be only weakly sensitive to the coupled ocean.

  17. Multidecadal Changes in the UTLS Ozone from the MERRA-2 Reanalysis and the GMI Chemistry Model

    NASA Technical Reports Server (NTRS)

    Wargan, Krzysztof; Orbe, Clara; Pawson, Steven; Ziemke, Jerald R.; Oman, Luke; Olsen, Mark; Coy, Lawrence; Knowland, Emma

    2018-01-01

    Long-term changes of ozone in the UTLS (Upper Troposphere / Lower Stratosphere) reflect the response to decreases in the stratospheric concentrations of ozone-depleting substances as well as changes in the stratospheric circulation induced by climate change. To date, studies of UTLS ozone changes and variability have relied mainly on satellite and in-situ observations as well as chemistry-climate model simulations. By comparison, the potential of reanalysis ozone data remains relatively untapped. This is despite evidence from recent studies, including detailed analyses conducted under SPARC (Scalable Processor Architecture) Reanalysis Intercomparison Project (S-RIP), that demonstrate that stratospheric ozone fields from modern atmospheric reanalyses exhibit good agreement with independent data while delineating issues related to inhomogeneities in the assimilated observations. In this presentation, we will explore the possibility of inferring long-term geographically and vertically resolved behavior of the lower stratospheric (LS) ozone from NASA's MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications -2) reanalysis after accounting for the few known discontinuities and gaps in its assimilated input data. This work builds upon previous studies that have documented excellent agreement between MERRA-2 ozone and ozonesonde observations in the LS. Of particular importance is a relatively good vertical resolution of MERRA-2 allowing precise separation of tropospheric and stratospheric ozone contents. We also compare the MERRA-2 LS ozone results with the recently completed 37-year simulation produced using Goddard Earth Observing System in "replay"� mode coupled with the GMI (Global Modeling Initiative) chemistry mechanism. Replay mode dynamically constrains the model with the MERRA-2 reanalysis winds, temperature, and pressure. We will emphasize the areas of agreement of the reanalysis and replay and interpret differences between them in the context

  18. Mesospheric ozone destruction by high-energy electron precipitation associated with pulsating aurora

    NASA Astrophysics Data System (ADS)

    Turunen, Esa; Kero, Antti; Verronen, Pekka T.; Miyoshi, Yoshizumi; Oyama, Shin-Ichiro; Saito, Shinji

    2016-10-01

    Energetic particle precipitation into the upper atmosphere creates excess amounts of odd nitrogen and odd hydrogen. These destroy mesospheric and upper stratospheric ozone in catalytic reaction chains, either in situ at the altitude of the energy deposition or indirectly due to transport to other altitudes and latitudes. Recent statistical analysis of satellite data on mesospheric ozone reveals that the variations during energetic electron precipitation from Earth's radiation belts can be tens of percent. Here we report model calculations of ozone destruction due to a single event of pulsating aurora early in the morning on 17 November 2012. The presence of high-energy component in the precipitating electron flux (>200 keV) was detected as ionization down to 68 km altitude, by the VHF incoherent scatter radar of European Incoherent Scatter (EISCAT) Scientific Association (EISCAT VHF) in Tromsø, Norway. Observations by the Van Allen Probes satellite B showed the occurrence of rising tone lower band chorus waves, which cause the precipitation. We model the effect of high-energy electron precipitation on ozone concentration using a detailed coupled ion and neutral chemistry model. Due to a 30 min, recorded electron precipitation event we find 14% odd oxygen depletion at 75 km altitude. The uncertainty of the higher-energy electron fluxes leads to different possible energy deposition estimates during the pulsating aurora event. We find depletion of odd oxygen by several tens of percent, depending on the precipitation characteristics used in modeling. The effect is notably maximized at the sunset time following the occurrence of the precipitation.

  19. Atmospheric lifetimes and ozone depletion potentials of methyl bromide (CH3Br) and dibromomethane (CH2Br2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mellouki, A.; Talukdar, R.K.; Schmoltner, A.

    The rate coefficients for the reactions of OH radical with CH3Br and CH2Br2 were measured as functions of temperature using the laser photolysis - laser induced fluorescence method. This data was incorporated into a semiempirical model (Solomon et al., 1992) and a 2D model to calculate the steady-state ozone depletion potentials (ODP) and atmospheri lifetimes, tau, with greatly improved accuracy as compared to earlier studies. The calculated ODPs and tau are 0.65 and 1.7 years and 0.17 and 0.41 years for CH3Br and CH2Br2, respectively, using the semiempirical model. These lifetimes agree well with those calculated using a 2D model.more » This study better quantifies the ODPs and tau of these species which are needed inputs for discussion of possible regulation of human emissions currently under international considerations. 29 refs.« less

  20. Evaluation of a Multi-Decadal Simulation of Stratospheric Ozone by Comparison with Total Ozone Mapping Spectrometer (TOMS) Observations

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Stolarski, Richard S.; Steenrod, Steven; Pawson, Steven

    2003-01-01

    One key application of atmospheric chemistry and transport models is prediction of the response of ozone and other constituents to various natural and anthropogenic perturbations. These include changes in composition, such as the previous rise and recent decline in emission of man-made chlorofluorcarbons, changes in aerosol loading due to volcanic eruption, and changes in solar forcing. Comparisons of hindcast model results for the past few decades with observations are a key element of model evaluation and provide a sense of the reliability of model predictions. The 25 year data set from Total Ozone Mapping Spectrometers is a cornerstone of such model evaluation. Here we report evaluation of three-dimensional multi-decadal simulation of stratospheric composition. Meteorological fields for this off-line calculation are taken from a 50 year simulation of a general circulation model. Model fields are compared with observations from TOMS and also with observations from the Stratospheric Aerosol and Gas Experiment (SAGE), Microwave Limb Sounder (MLS), Cryogenic Limb Array Etalon Spectrometer (CLAES), and the Halogen Occultation Experiment (HALOE). This overall evaluation will emphasize the spatial, seasonal, and interannual variability of the simulation compared with observed atmospheric variability.

  1. Global long-term ozone trends derived from different observed and modelled data sets

    NASA Astrophysics Data System (ADS)

    Coldewey-Egbers, M.; Loyola, D.; Zimmer, W.; van Roozendael, M.; Lerot, C.; Dameris, M.; Garny, H.; Braesicke, P.; Koukouli, M.; Balis, D.

    2012-04-01

    The long-term behaviour of stratospheric ozone amounts during the past three decades is investigated on a global scale using different observed and modelled data sets. Three European satellite sensors GOME/ERS-2, SCIAMACHY/ENVISAT, and GOME-2/METOP are combined and a merged global monthly mean total ozone product has been prepared using an inter-satellite calibration approach. The data set covers the 16-years period from June 1995 to June 2011 and it exhibits an excellent long-term stability, which is required for such trend studies. A multiple linear least-squares regression algorithm using different explanatory variables is applied to the time series and statistically significant positive trends are detected in the northern mid latitudes and subtropics. Global trends are also estimated using a second satellite-based Merged Ozone Data set (MOD) provided by NASA. For few selected geographical regions ozone trends are additionally calculated using well-maintained measurements of individual Dobson/Brewer ground-based instruments. A reasonable agreement in the spatial patterns of the trends is found amongst the European satellite, the NASA satellite, and the ground-based observations. Furthermore, two long-term simulations obtained with the Chemistry-Climate Models E39C-A provided by German Aerospace Center and UMUKCA-UCAM provided by University of Cambridge are analysed.

  2. A New Connection Between Greenhouse Warming and Stratospheric Ozone Depletion

    NASA Technical Reports Server (NTRS)

    Salawitch, R.

    1998-01-01

    The direct radiative effects of the build-up of carbon dioxide and other greenhouse gases have led to a gradual cooling of the stratosphere with largest changes in temperature occurring in the upper stratosphere, well above the region of peak ozone concentration.

  3. Extreme events in total ozone over the Northern mid-latitudes: an analysis based on long-term data sets from five European ground-based stations

    NASA Astrophysics Data System (ADS)

    Rieder, Harald E.; Jancso, Leonhardt M.; Rocco, Stefania Di; Staehelin, Johannes; Maeder, Joerg A.; Peter, Thomas; Ribatet, Mathieu; Davison, Anthony C.; de Backer, Hugo; Koehler, Ulf; Krzyścin, Janusz; Vaníček, Karel

    2011-11-01

    We apply methods from extreme value theory to identify extreme events in high (termed EHOs) and low (termed ELOs) total ozone and to describe the distribution tails (i.e. very high and very low values) of five long-term European ground-based total ozone time series. The influence of these extreme events on observed mean values, long-term trends and changes is analysed. The results show a decrease in EHOs and an increase in ELOs during the last decades, and establish that the observed downward trend in column ozone during the 1970-1990s is strongly dominated by changes in the frequency of extreme events. Furthermore, it is shown that clear ‘fingerprints’ of atmospheric dynamics (NAO, ENSO) and chemistry [ozone depleting substances (ODSs), polar vortex ozone loss] can be found in the frequency distribution of ozone extremes, even if no attribution is possible from standard metrics (e.g. annual mean values). The analysis complements earlier analysis for the world's longest total ozone record at Arosa, Switzerland, confirming and revealing the strong influence of atmospheric dynamics on observed ozone changes. The results provide clear evidence that in addition to ODS, volcanic eruptions and strong/moderate ENSO and NAO events had significant influence on column ozone in the European sector.

  4. The effect of SST emissions on the earth's ozone layer

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Turco, R. P.

    1974-01-01

    The work presented here is directed toward assessment of environmental effects of the supersonic transport (SST). The model used for the purpose includes vertical eddy transport and the photochemistry of the O-H-N system. It is found that the flight altitude has a pronounced effect on ozone depletion. The largest ozone reduction occurs for NO deposition above an altitude of 20 km.

  5. 77 FR 16988 - Protection of Stratospheric Ozone: Amendment to HFO-1234yf SNAP Rule for Motor Vehicle Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-23

    ... Protection of Stratospheric Ozone: Amendment to HFO-1234yf SNAP Rule for Motor Vehicle Air Conditioning... hydrofluoroolefin (HFO)-1234yf (2,3,3,3-tetrafluoroprop-1-ene), a substitute for ozone- depleting substances (ODSs... EPA's Stratospheric Ozone Web site at http://www.epa.gov/ozone/snap/regs . The full list of SNAP...

  6. On the relevance of the methane oxidation cycle to ozone hole chemistry

    NASA Technical Reports Server (NTRS)

    Mueller, Rolf; Crutzen, Paul J.

    1994-01-01

    High concentrations of active chlorine are clearly responsible for the observed ozone depletion during the Antarctic polar spring. However, the mechanism behind the activation of chlorine from the reservoirs species HCl and ClONO2 and the maintenance of extremely high levels of active chlorine after polar sunrise is less well understood. Here, we focus on the influence of the methane oxidation cycle on 'ozone hole' chemistry through its effect on HOx and ClOx radicals. We demonstrate the great potential importance of the heterogeneous reaction HCl + HOCl yields Cl2 + H2O and the gasphase reaction ClO + CH3O2 yields ClOO + CH3O under sunlight conditions in polar spring. Under these conditions, the heterogeneous reaction is the main sink for HOx radicals. Through this channel, the HCl reservoir may be almost completely depleted. The gas phase reaction may control the levels of the CH3O2 radical, provided that high levels of ClO exist. Otherwise this radical initiates a sequence of reactions leading to a considerable loss of active chlorine. Moreover, the production of HOx radicals is reduced, and thereby the efficiency of the heterogeneous reaction limited. The two reactions together may accomplish the complete conversion of HCl into active chlorine, thereby leading to a rapid destruction of ozone.

  7. Ozone and nitrogen oxides in surface air in Russia: TROICA experiments.

    NASA Astrophysics Data System (ADS)

    Pankratova, N.; Elansky, N.; Belikov, I.; Shumskiy, R.

    2009-04-01

    The results of measurements of surface ozone and nitrogen oxides concentrations over the continental regions of Russia are discussed. The measurements were done during 10 TROICA experiments (Transcontinental Observations Into the Chemistry of the Atmosphere). The TROICA experiment started in 1995. By the present moment ten expeditions along the Trans-Siberian railroad from Moscow to Vladivostok (around 9300 km) are carried out. We separate data sets into unpolluted and polluted areas to study temporal and spatial features. Moreover we analyzed cities (more then 100 cities). About 50% of all data corresponds to unpolluted conditions. The data collected are used in an analysis of the physical and chemical processes occurring over continental Russia. In this work the estimations of seasonal and daily ozone and NOx distribution were made. The seasonal distribution of ozone for TROICA experiments concentration considerably differs from ozone distribution at Mace Head (Ireland) and Hohenpeissenberg (Germany) stations and well agrees with the ozone distribution at Zotino (Russia, East Siberia). The same concerns also a daily variability. The ozone concentration gradient is presented. Ozone concentration gradually increases in the eastward direction. Its result of the air transport from polluted regions of Europe and ozone depletions, oxidations of CH4 in Siberia, forest fires in Siberia and around Baikal Lake, regional transport of burning products from Northern China. Significant factor of ozone increasing is stratospheric-tropospheric exchange. It appears in TROICA-3 experiment. During several hours ozone concentration was more then 60 ppbv. The areas of photochemical ozone generation in polluted air are also detected. We estimate anthropogenic and natural factors, which are responsible for sharp ozone concentration increasing. Acknowledgments. The work was supported by International Science and Technology Center (ISTC) under contract No. 2770 and by Russian Basic

  8. Early work on the stratospheric ozone depletion-CFC issue

    NASA Astrophysics Data System (ADS)

    Molina, M.

    2012-12-01

    I became involved with the atmospheric chemistry of chlorofluorocarbons (CFCs) shortly after joining Sherry Rowland's research group at the University of California, Irvine, in 1973. CFCs had been detected in the troposphere by James Lovelock in 1971, and the question we set out to answer was the fate of these compounds of industrial origin in the environment, as well as possibly identifying any consequences of their accumulation in the atmosphere. After examining many potential sinks for these compounds we realized that because of their unusual stability the most likely destruction process was photolysis in the stratosphere. I carried out measurements of the absorption spectra of these compounds in the near ultraviolet; previous work involved only spectra in the far ultraviolet, not relevant for atmospheric chemistry. The results indicated that photolysis would take place in the upper stratosphere. I subsequently carried out calculations using one-dimensional atmospheric models to estimate their atmospheric residence times, which turned out to be many decades. We realized that the chlorine atoms generated by photolysis of the CFCs would participate in a catalytic chain reaction that would efficiently destroy ozone. Furthermore, we estimated that the amount of CFCs produced industrially was comparable to the amount of nitric oxide produced naturally in the stratosphere by the decomposition of nitrous oxide; work by Paul Crutzen and Harold Johnston had indicated that the abundance of ozone in the stratosphere was controlled by nitric oxide. We then formulated the hypothesis that the continued release of CFCs to the environment posed a threat to the stability of the ozone layer, and published our results in the journal Nature in 1974. The publication was noticed almost exclusively by the community of experts in stratospheric chemistry, and hence Sherry Rowland and I decided at that time that it was our responsibility to communicate this finding to society at large

  9. Stratospheric measurements of ozone-depleting substances and greenhouse gases using AirCores

    NASA Astrophysics Data System (ADS)

    Laube, Johannes; Leedham Elvidge, Emma; Kaiser, Jan; Sturges, Bill; Heikkinen, Pauli; Laurila, Tuomas; Hatakka, Juha; Kivi, Rigel; Chen, Huilin; Fraser, Paul; van der Veen, Carina; Röckmann, Thomas

    2017-04-01

    Retrieving air samples from the stratosphere has previously required aircraft or large balloons, both of which are expensive to operate. The novel "AirCore" technique (Karion et al., 2010) enables stratospheric sampling using weather balloons, which is much more cost effective. AirCores are long (up to 200 m) stainless steel tubes which are placed as a payload on a small balloon, can ascend to over 30 km and fill upon descent, collecting a vertical profile of the atmosphere. Retrieved volumes are much smaller though, which presents a challenge for trace gas analysis. To date, only the more abundant trace gases such as carnon dioxide (CO2) and methane (CH4) have been quantified in AirCores. Halogenated trace gases are also important greenhouse gases and many also deplete stratospheric ozone. Their concentrations are however much lower i.e. typically in the part per trillion (ppt) molar range. We here present the first stratospheric measurements of halocarbons in AirCores obtained using UEA's highly sensitive (detection limits of 0.01-0.1 ppt in 10 ml of air) gas chromatography mass spectrometry system. The analysed air originates from a Stratospheric Air Sub-sampler (Mrozek et al., 2016) which collects AirCore segments after the non-destructive CO2 and CH4 analysis. Successfully measured species include CFC-11, CFC-12, CFC-113, CFC-115, H-1211, H-1301, HCFC-22, HCFC-141b, HCFC-142b, HCFC-133a, and sulphur hexafluoride (SF6). We compare the observed mixing ratios and precisions with data obtained from samples collected during various high-altitude aircraft campaigns between 2009 and 2016 as well as with southern hemisphere tropospheric long-term trends. As part of the ERC-funded EXC3ITE (EXploring stratospheric Composition, Chemistry and Circulation with Innovative Techniques) project more than 40 AirCore flights are planned in the next 3 years with an expanded range of up to 30 gases in order to explore seasonal and interannual variability in the stratosphere

  10. Tropospheric Vertical Distribution of Tropical Atlantic Ozone Observed by TES during the Northern African Biomass Burning Season

    NASA Technical Reports Server (NTRS)

    Jourdain, L.; Worden, H. M.; Worden, J. R.; Bowman, K.; Li, Q.; Eldering, A.; Kulawik, S. S.; Osterman, G.; Boersma, K. F.; Fisher, B.; hide

    2007-01-01

    We present vertical distributions of ozone from the Tropospheric Emission Spectrometer (TES) over the tropical Atlantic Ocean during January 2005. Between 10N and 20S, TES ozone retrievals have Degrees of Freedom for signal (DOF) around 0.7 - 0.8 each for tropospheric altitudes above and below 500 hPa. As a result, TES is able to capture for the first time from space a distribution characterized by two maxima: one in the lower troposphere north of the ITCZ and one in the middle and upper troposphere south of the ITCZ. We focus our analysis on the north tropical Atlantic Ocean, where most of previous satellite observations showed discrepancies with in-situ ozone observations and models. Trajectory analyses and a sensitivity study using the GEOS-Chem model confirm the influence of northern Africa biomass burning on the elevated ozone mixing ratios observed by TES over this region.

  11. Mechanisms and Feedbacks Causing Changes in Upper Stratospheric Ozone in the 21st Century

    NASA Technical Reports Server (NTRS)

    Oman, Luke; Waugh, D. W.; Kawa, S. R.; Stolarski, R. S.; Douglass, A. R.; Newman, P. A.

    2009-01-01

    Stratospheric ozone is expected to increase during the 21st century as the abundance of halogenated ozone-depleting substances decrease to 1960 values. However, climate change will likely alter this "recovery" of stratospheric ozone by changing stratospheric temperatures, circulation, and abundance of reactive chemical species. Here we quantity the contribution of different mechanisms to changes in upper stratospheric ozone from 1960 to 2100 in the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM), using multiple linear regression analysis applied to simulations using either Alb or A2 greenhouse gas (GHG) scenarios. In both these scenarios upper stratospheric ozone has a secular increase over the 21st century. For the simulation using the Alb GHG scenario, this increase is determined by the decrease in halogen amounts and the greenhouse gas induced cooling, with roughly equal contributions from each mechanism. There is a larger cooling in the simulation using the A2 GHG scenario, but also enhanced loss from higher NOy and HOx concentrations, which nearly offsets the increase due to cooler temperatures. The resulting ozone evolutions are similar in the A2 and Alb simulations. The response of ozone due to feedbacks from temperature and HOx changes, related to changing halogen concentrations, are also quantified using simulations with fixed halogen concentrations.

  12. Evaluation of Non-Ozone-Depleting-Chemical Cleaning Methods for Space Mechanisms Using a Vacuum Spiral Orbit Rolling Contact Tribometer

    NASA Technical Reports Server (NTRS)

    Jansen, Mark J.; Jones, William R., Jr.; Wheeler, Donald R.; Keller, Dennis J.

    2000-01-01

    Because CFC 113, an ozone depleting chemical (ODC), can no longer be produced, alternative bearing cleaning methods must be studied. The objective of this work was to study the effect of the new cleaning methods on lubricant lifetime using a vacuum bearing simulator (spiral orbit rolling contact tribometer). Four alternative cleaning methods were studied: ultra-violet (UV) ozone, aqueous levigated alumina slurry (ALAS), super critical fluid (SCF) CO2 and aqueous Brulin 815GD. Baseline tests were done using CFC 113. Test conditions were the following: a vacuum of at least 1.3 x 10(exp -6) Pa, 440C steel components, a rotational speed of 10 RPM, a lubricant charge of between 60-75 micrograms, a perfluoropolyalkylether lubricant (Z-25), and a load of 200N (44.6 lbs., a mean Hertzian stress of 1.5 GPa). Normalized lubricant lifetime was determined by dividing the total number of ball orbits by the amount of lubricant. The failure condition was a friction coefficient of 0.38. Post-test XPS analysis was also performed, showing slight variations in post-cleaning surface chemistry. Statistical analysis of the resultant data was conducted and it was determined that the data sets were most directly comparable when subjected to a natural log transformation. The natural log life (NL-Life) data for each cleaning method were reasonably normally (statistically) distributed and yielded standard deviations that were not significantly different among the five cleaning methods investigated. This made comparison of their NL-Life means very straightforward using a Bonferroni multiple comparison of means procedure. This procedure showed that the ALAS, UV-ozone and CFC 113 methods were not statistically significantly different from one another with respect to mean NL-Life. It also found that the SCF CO2 method yielded a significantly higher mean NL-Life than the mean NL-Lives of the ALAS, UV-ozone and CFC 113 methods. It also determined that the aqueous Brulin 815GD method yielded a mean

  13. Small-Scale Tropopause Dynamics and TOMS Total Ozone

    NASA Technical Reports Server (NTRS)

    Stanford, John L.

    2002-01-01

    This project used Earth Probe Total Ozone Mapping Spectrometer (EP TOMS) along-track ozone retrievals, in conjunction with ancillary meteorological fields and modeling studies, for high resolution investigations of upper troposphere and lower stratosphere dynamics. Specifically, high resolution along-track (Level 2) EP TOMS data were used to investigate the beautiful fine-scale structure in constituent and meteorological fields prominent in the evolution of highly non-linear baroclinic storm systems. Comparison was made with high resolution meteorological models. The analyses provide internal consistency checks and validation of the EP TOMS data which are vital for monitoring ozone depletion in both polar and midlatitude regions.

  14. Ozonation of Canadian Athabasca asphaltene

    NASA Astrophysics Data System (ADS)

    Cha, Zhixiong

    Application of ozonation in the petrochemical industry for heavy hydrocarbon upgrading has not been sufficiently explored. Among heavy hydrocarbons, asphaltenes are the heaviest and the most difficult fractions for analysis and treatment. Therefore, ozonation of asphaltenes presents an interesting application in the petrochemical industry. Commercial application of ozonation in the petrochemical industry has three obstacles: availability of an ozone-resistant and environmentally friendly solvent, the precipitation of ozonation intermediates during reaction, and recovery of the solvent and separation of the ozonation products. Preliminary ozonation of Athabasca oil sands asphaltene in nonparticipating solvents encountered serious precipitation of the ozonation intermediates. The precipitated intermediates could be polymeric ozonides and intermolecular ozonides or polymeric peroxides. Because the inhomogeneous reaction medium caused low ozone efficiency, various participating solvents such as methanol and acetic acid were added to form more soluble hydroperoxides. The mass balance results showed that on average, one asphaltene molecule reacted with 12 ozone molecules through the electrophilic reaction and the subsequent decomposition of ozonation intermediates generated acetone extractable products. GC/MS analysis of these compounds indicated that the free radical reactions could be important for generation of volatile products. The extensively ozonated asphaltene in the presence of participating solvents were refluxed with methanol to generate more volatile products. GC/MS analysis of the methanol-esterified ozonation products indicated that most volatile products were aliphatic carboxylic acid esters generated through cleavage of substituents. Reaction kinetics study showed that asphaltene ozonation was initially a diffusion rate-controlled reaction and later developed to a chemical reaction rate-controlled reaction after depletion of the reactive aromatic sites

  15. Space observations of aerosols and ozone; Proceedings of the Topical Meeting, Ottawa, Canada, May 16-June 2, 1982

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P. (Editor); Lovill, J. E.

    1982-01-01

    The measurement of aerosols from space is discussed, taking into account the role of aerosols in climate, instrumentation and further measurement systems, retrieval procedures, measurements and observations, ground truth measurements, and effects on remote sensing and on climate. Aspects of ozone variability in the middle atmosphere are explored, giving attention to the quasi-biennial oscillation in equatorial stratospheric temperatures and total ozone, global pictures on the ozone field from high altitudes from DE-1, measurements of atmospheric ozone from aircraft and from balloons, a mesospheric ozone profile at sunset, periodic and aperiodic ozone variations in the middle and upper stratosphere, solar eclipse induced variations in mesospheric ozone concentrations, and solar UV and ozone balloon measurements. The determination of aerosol optical depth is considered along with a method for estimating cross radiance.

  16. Momentum-Resolved Observation of Thermal and Quantum Depletion in a Bose Gas

    NASA Astrophysics Data System (ADS)

    Chang, R.; Bouton, Q.; Cayla, H.; Qu, C.; Aspect, A.; Westbrook, C. I.; Clément, D.

    2016-12-01

    We report on the single-atom-resolved measurement of the distribution of momenta ℏk in a weakly interacting Bose gas after a 330 ms time of flight. We investigate it for various temperatures and clearly separate two contributions to the depletion of the condensate by their k dependence. The first one is the thermal depletion. The second contribution falls off as k-4, and its magnitude increases with the in-trap condensate density as predicted by the Bogoliubov theory at zero temperature. These observations suggest associating it with the quantum depletion. How this contribution can survive the expansion of the released interacting condensate is an intriguing open question.

  17. Validation of 10 years of SAO OMI Ozone Profiles with Ozonesonde and MLS Observations

    NASA Astrophysics Data System (ADS)

    Huang, G.; Liu, X.; Chance, K.; Bhartia, P. K.

    2015-12-01

    To evaluate the accuracy and long-term stability of the SAO OMI ozone profile product, we validate ~10 years of ozone profile product (Oct. 2004-Dec. 2014) against collocated ozonesonde and MLS data. Ozone profiles as well stratospheric, tropospheric, lower tropospheric ozone columns are compared with ozonesonde data for different latitude bands, and time periods (e.g., 2004-2008/2009-2014 for without/with row anomaly. The mean biases and their standard deviations are also assessed as a function of time to evaluate the long-term stability and bias trends. In the mid-latitude and tropical regions, OMI generally shows good agreement with ozonesonde observations. The mean ozone profile biases are generally within 6% with up to 30% standard deviations. The biases of stratospheric ozone columns (SOC) and tropospheric ozone columns (TOC) are -0.3%-2.2% and -0.2%-3%, while standard deviations are 3.9%-5.8% and 14.4%-16.0%, respectively. However, the retrievals during 2009-2014 show larger standard deviations and larger temporal variations; the standard deviations increase by ~5% in the troposphere and ~2% in the stratosphere. Retrieval biases at individual levels in the stratosphere and upper troposphere show statistically significant trends and different trends for 2004-2008 and 2009-2014 periods. The trends in integrated ozone partial columns are less significant due to cancellation from various layers, except for significant trend in tropical SOC. These results suggest the need to perform time dependent radiometric calibration to maintain the long-term stability of this product. Similarly, we are comparing the OMI stratospheric ozone profiles and SOC with collocated MLS data, and the results will be reported.

  18. The Total Ozone Series of Arosa: History, Homogenization and new results using statistical extreme value theory

    NASA Astrophysics Data System (ADS)

    Staehelin, J.; Rieder, H. E.; Maeder, J. A.; Ribatet, M.; Davison, A. C.; Stübi, R.

    2009-04-01

    Atmospheric ozone protects the biota living at the Earth's surface from harmful solar UV-B and UV-C radiation. The global ozone shield is expected to gradually recover from the anthropogenic disturbance of ozone depleting substances (ODS) in the coming decades. The stratospheric ozone layer at extratropics might significantly increase above the thickness of the chemically undisturbed atmosphere which might enhance ozone concentrations at the tropopause altitude where ozone is an important greenhouse gas. At Arosa, a resort village in the Swiss Alps, total ozone measurements started in 1926 leading to the longest total ozone series of the world. One Fery spectrograph and seven Dobson spectrophotometers were operated at Arosa and the method used to homogenize the series will be presented. Due to its unique length the series allows studying total ozone in the chemically undisturbed as well as in the ODS loaded stratosphere. The series is particularly valuable to study natural variability in the period prior to 1970, when ODS started to affect stratospheric ozone. Concepts developed by extreme value statistics allow objective definitions of "ozone extreme high" and "ozone extreme low" values by fitting the (daily mean) time series using the Generalized Pareto Distribution (GPD). Extreme high ozone events can be attributed to effects of ElNino and/or NAO, whereas in the chemically disturbed stratosphere high frequencies of extreme low total ozone values simultaneously occur with periods of strong polar ozone depletion (identified by statistical modeling with Equivalent Stratospheric Chlorine times Volume of Stratospheric Polar Clouds) and volcanic eruptions (such as El Chichon and Pinatubo).

  19. Antarctic ozone loss in 1989-2010: evidence for ozone recovery?

    NASA Astrophysics Data System (ADS)

    Kuttippurath, J.; Lefèvre, F.; Pommereau, J.-P.; Roscoe, H. K.; Goutail, F.; Pazmiño, A.; Shanklin, J. D.

    2012-04-01

    We present a detailed estimation of chemical ozone loss in the Antarctic polar vortex from 1989 to 2010. The analyses include ozone loss estimates for 12 Antarctic ground-based (GB) stations. All GB observations show minimum ozone in the late September-early October period. Among the stations, the lowest minimum ozone values are observed at South Pole and the highest at Dumont d'Urville. The ozone loss starts by mid-June at the vortex edge and then progresses towards the vortex core with time. The loss intensifies in August-September, peaks by the end of September-early October, and recovers thereafter. The average ozone loss in the Antarctic is revealed to be about 33-50% in 1989-1992 in agreement with the increase in halogens during this period, and then stayed at around 48% due to saturation of the loss. The ozone loss in the warmer winters (e.g. 2002, and 2004) is lower (37-46%) and in the colder winters (e.g. 2003, and 2006) is higher (52-55%). Because of small inter-annual variability, the correlation between ozone loss and the volume of polar stratospheric clouds yields ~0.51. The GB ozone and ozone loss values are in good agreement with those found from the space-based observations of the Total Ozone Mapping Spectrometer/Ozone Monitoring Instrument (TOMS/OMI), the Global Ozone Monitoring Experiment (GOME), the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY), and the Aura Microwave Limb Sounder (MLS), where the differences are within ±5% and are mostly within the error bars of the measurements. The piece-wise linear trends computed from the September-November vortex average GB and TOMS/OMI ozone show about -4 to -5.6 DU (Dobson Unit) yr-1 in 1989-1996 and about +1 DU yr-1 in 1997-2010. The trend during the former period is significant at 95% confidence intervals, but the trend in 1997-2010 is significant only at 85% confidence intervals. Our analyses suggest a period of about 9-10 yr to get the first detectable ozone

  20. Development of mass production type rigid polyurethane foam for LNG carrier using ozone depletion free blowing agent

    NASA Astrophysics Data System (ADS)

    Lee, Yeongbeom; Baek, Kye Hyun; Choe, Kunhyung; Han, Chonghun

    2016-12-01

    Nowadays the price of natural gas has become higher and the efficiency of propulsion system of liquefied natural gas (LNG) carriers has improved. Due to these trends, required boil-off rate (BOR) for LNG carrier has been lowered from 0.15%/day to 0.12%/day for conventional LNG carriers with sizes between 125,000 m3 and 170,000 m3. This requirement of BOR can be satisfied by using a rigid polyurethane foam (PUF) blown by 1,1-dichloro-1-fluoroethane (HCFC-141b) as an insulator. However, ozone depletion potential (ODP) of HCFC-141b requires alternative blowing agents with zero ODP such as hydroflurocarbons (HFCs) because of tougher environmental regulations. This paper introduces use of HFCs and additives to enhance properties of rigid PUFs under a mass production environment. Among the additives, perfluoroalkane (PFA) reduces thermal conductivity down to 12% and increases compressive strength up to 15% of a rigid PUF prepared in a laboratory scale. Based on this result, a mass production type rigid PUF is manufactured and is evaluated for BOR, mechanical strengths over operation temperature range, and thermal shock stability for LNG carriers. The BOR of the manufactured rigid PUF is below 0.12%/day, which satisfies the recent BOR specification for LNG carriers. The other required properties are also met the specifications for a conventional LNG carrier. Consequently, it is expected that the results in this paper will bring low BOR (<0.12%/day) LNG carries with rigid PUFs using ODP free blowing agents and contribute environmental protection through saving energy and preserving the ozone layer in the stratosphere.