Sample records for observed polar motion

  1. Polar motion interpretation using gravimetric observations

    NASA Astrophysics Data System (ADS)

    Seoane, L.; Bizouard, C.; Gambis, D.

    2008-04-01

    Polar motion is interpreted as the effect of i) the Earth’s inertia moment changes asso- ciated with the so-called mass term of the Earth’s angular momentum ii) the Earth’s relative angular momentum in the terrestrial frame. Thanks to the GRACE mission and in a lesser extent to LAGEOS missions, the mass term is determined since 2002, independently from any geophysical model. Besides the modeled excitations of the polar motion, i.e the atmospheric angular momentum (AAM), the Oceanic Angular Momentum (OAM), the Hydrological Angular Momentum (HAM), this gravimetric mass term is a new kind of information which can be matched to the observed excitation of the polar motion after removal of the effect of the relative angular momentum, mostly caused by the wind and the oceanic cur- rents. Such comparison, already performed by various authors, is updated for the last releases (RL04) of the gravity field changes i.e. those of the GFZ, CSR, JPL and explored for the mixed LAGEOS-GRACE solution of the GRGS. We confirm that a fair general agreement, especially for the y-component of the equatorial excitation. After removing the modeled oceanic and atmospheric excitations from the signals, we obtain the non-modeled excitation, mostly of hydrological nature; this allows us to compare them to the existing hydrological models, differences might comes from others Earth’s phenomena, for example, earthquakes.

  2. Conceptual Research of Lunar-based Earth Observation for Polar Glacier Motion

    NASA Astrophysics Data System (ADS)

    Ruan, Zhixing; Liu, Guang; Ding, Yixing

    2016-07-01

    The ice flow velocity of glaciers is important for estimating the polar ice sheet mass balance, and it is of great significance for studies into rising sea level under the background of global warming. However so far the long-term and global measurements of these macro-scale motion processes of the polar glaciers have hardly been achieved by Earth Observation (EO) technique from the ground, aircraft or satellites in space. This paper, facing the demand for space technology for large-scale global environmental change observation,especially the changes of polar glaciers, and proposes a new concept involving setting up sensors on the lunar surface and using the Moon as a platform for Earth observation, transmitting the data back to Earth. Lunar-based Earth observation, which enables the Earth's large-scale, continuous, long-term dynamic motions to be measured, is expected to provide a new solution to the problems mentioned above. According to the pattern and characteristics of polar glaciers motion, we will propose a comprehensive investigation of Lunar-based Earth observation with synthetic aperture radar (SAR). Via theoretical modeling and experimental simulation inversion, intensive studies of Lunar-based Earth observation for the glacier motions in the polar regions will be implemented, including the InSAR basics theory, observation modes of InSAR and optimization methods of their key parameters. It will be of a great help to creatively expand the EO technique system from space. In addition, they will contribute to establishing the theoretical foundation for the realization of the global, long-term and continuous observation for the glacier motion phenomena in the Antarctic and the Arctic.

  3. Diurnal polar motion

    NASA Technical Reports Server (NTRS)

    Mcclure, P.

    1973-01-01

    An analytical theory is developed to describe diurnal polar motion in the earth which arises as a forced response due to lunisolar torques and tidal deformation. Doodson's expansion of the tide generating potential is used to represent the lunisolar torques. Both the magnitudes and the rates of change of perturbations in the earth's inertia tensor are included in the dynamical equations for the polar motion so as to account for rotational and tidal deformation. It is found that in a deformable earth with Love's number k = 0.29, the angular momentum vector departs by as much as 20 cm from the rotation axis rather than remaining within 1 or 2 cm as it would in a rigid earth. This 20 cm separation is significant in the interpretation of submeter polar motion observations because it necessitates an additional coordinate transformation in order to remove what would otherwise be a 20 cm error source in the conversion between inertial and terrestrial reference systems.

  4. Climate-driven polar motion: 2003-2015.

    PubMed

    Adhikari, Surendra; Ivins, Erik R

    2016-04-01

    Earth's spin axis has been wandering along the Greenwich meridian since about 2000, representing a 75° eastward shift from its long-term drift direction. The past 115 years have seen unequivocal evidence for a quasi-decadal periodicity, and these motions persist throughout the recent record of pole position, in spite of the new drift direction. We analyze space geodetic and satellite gravimetric data for the period 2003-2015 to show that all of the main features of polar motion are explained by global-scale continent-ocean mass transport. The changes in terrestrial water storage (TWS) and global cryosphere together explain nearly the entire amplitude (83 ± 23%) and mean directional shift (within 5.9° ± 7.6°) of the observed motion. We also find that the TWS variability fully explains the decadal-like changes in polar motion observed during the study period, thus offering a clue to resolving the long-standing quest for determining the origins of decadal oscillations. This newly discovered link between polar motion and global-scale TWS variability has broad implications for the study of past and future climate.

  5. Broad-Band Analysis of Polar Motion Excitations

    NASA Astrophysics Data System (ADS)

    Chen, J.

    2016-12-01

    Earth rotational changes, i.e. polar motion and length-of-day (LOD), are driven by two types of geophysical excitations: 1) mass redistribution within the Earth system, and 2) angular momentum exchange between the solid Earth (more precisely the crust) and other components of the Earth system. Accurate quantification of Earth rotational excitations has been difficult, due to the lack of global-scale observations of mass redistribution and angular momentum exchange. The over 14-years time-variable gravity measurements from the Gravity Recovery and Climate Experiment (GRACE) have provided a unique means for quantifying Earth rotational excitations from mass redistribution in different components of the climate system. Comparisons between observed Earth rotational changes and geophysical excitations estimated from GRACE, satellite laser ranging (SLR) and climate models show that GRACE-derived excitations agree remarkably well with polar motion observations over a broad-band of frequencies. GRACE estimates also suggest that accelerated polar region ice melting in recent years and corresponding sea level rise have played an important role in driving long-term polar motion as well. With several estimates of polar motion excitations, it is possible to estimate broad-band noise variance and noise power spectra in each, given reasonable assumptions about noise independence. Results based on GRACE CSR RL05 solutions clearly outperform other estimates with the lowest noise levels over a broad band of frequencies.

  6. Inner core tilt and polar motion

    NASA Astrophysics Data System (ADS)

    Dumberry, Mathieu; Bloxham, Jeremy

    2002-11-01

    A tilted inner core permits exchange of angular momentum between the core and the mantle through gravitational and pressure torques and, as a result, changes in the direction of Earth's axis of rotation with respect to the mantle. We have developed a model to calculate the amplitude of the polar motion that results from an equatorial torque at the inner core boundary which tilts the inner core out of alignment with the mantle. We specifically address the issue of the role of the inner core tilt in the decade polar motion known as the Markowitz wobble. We show that a decade polar motion of the same amplitude as the observed Markowitz wobble requires a torque of 1020 N m which tilts the inner core by 0.07 degrees. This result critically depends on the viscosity of the inner core; for a viscosity less than 5 × 1017 Pa s, larger torques are required. We investigate the possibility that a torque of 1020 N m with decadal periodicity can be produced by electromagnetic coupling between the inner core and torsional oscillations of the flow in the outer core. We demonstrate that a radial magnetic field at the inner core boundary of 3 to 4 mT is required to obtain a torque of such amplitude. The resulting polar motion is eccentric and polarized, in agreement with the observations. Our model suggests that equatorial torques at the inner core boundary might also excite the Chandler wobble, provided there exists a physical mechanism that can generate a large torque at a 14 month period.

  7. Climate-driven polar motion: 2003–2015

    PubMed Central

    Adhikari, Surendra; Ivins, Erik R.

    2016-01-01

    Earth’s spin axis has been wandering along the Greenwich meridian since about 2000, representing a 75° eastward shift from its long-term drift direction. The past 115 years have seen unequivocal evidence for a quasi-decadal periodicity, and these motions persist throughout the recent record of pole position, in spite of the new drift direction. We analyze space geodetic and satellite gravimetric data for the period 2003–2015 to show that all of the main features of polar motion are explained by global-scale continent-ocean mass transport. The changes in terrestrial water storage (TWS) and global cryosphere together explain nearly the entire amplitude (83 ± 23%) and mean directional shift (within 5.9° ± 7.6°) of the observed motion. We also find that the TWS variability fully explains the decadal-like changes in polar motion observed during the study period, thus offering a clue to resolving the long-standing quest for determining the origins of decadal oscillations. This newly discovered link between polar motion and global-scale TWS variability has broad implications for the study of past and future climate. PMID:27152348

  8. Hydrological excitation of polar motion

    NASA Astrophysics Data System (ADS)

    Nastula, Y.; Kolaczek, B.

    2006-08-01

    Hydrological excitation of the polar motion (HAM) were computed from the available recently hydrological data series (NCEP, ECMWF, CPC water storage and LaD World simulations of global continental water) and compared. Time variable seasonal spectra of these hydrological excitation functions and of the geodetic excitation function of polar motion computed from the polar motion COMB03 data were compared showing big differences in their temporal characteristics and the necessity of the further improvement of the HAM models. Seasonal oscillations of the global geophysical excitation functions (AAM + OAM + HAM) and their time variations were compared also. These hydrological excitation functions do not close the budget of the global geophysical excitation function of polar motion.

  9. Gravitational torque on the inner core and decadal polar motion

    NASA Astrophysics Data System (ADS)

    Dumberry, Mathieu

    2008-03-01

    A decadal polar motion with an amplitude of approximately 25 milliarcsecs (mas) is observed over the last century, a motion known as the Markowitz wobble. The origin of this motion remains unknown. In this paper, we investigate the possibility that a time-dependent axial misalignment between the density structures of the inner core and mantle can explain this signal. The longitudinal displacement of the inner core density structure leads to a change in the global moment of inertia of the Earth. In addition, as a result of the density misalignment, a gravitational equatorial torque leads to a tilt of the oblate geometric figure of the inner core, causing a further change in the global moment of inertia. To conserve angular momentum, an adjustment of the rotation vector must occur, leading to a polar motion. We develop theoretical expressions for the change in the moment of inertia and the gravitational torque in terms of the angle of longitudinal misalignment and the density structure of the mantle. A model to compute the polar motion in response to time-dependent axial inner core rotations is also presented. We show that the polar motion produced by this mechanism can be polarized about a longitudinal axis and is expected to have decadal periodicities, two general characteristics of the Markowitz wobble. The amplitude of the polar motion depends primarily on the Y12 spherical harmonic component of mantle density, on the longitudinal misalignment between the inner core and mantle, and on the bulk viscosity of the inner core. We establish constraints on the first two of these quantities from considerations of the axial component of this gravitational torque and from observed changes in length of day. These constraints suggest that the maximum polar motion from this mechanism is smaller than 1 mas, and too small to explain the Markowitz wobble.

  10. Cellular Contraction and Polarization Drive Collective Cellular Motion.

    PubMed

    Notbohm, Jacob; Banerjee, Shiladitya; Utuje, Kazage J C; Gweon, Bomi; Jang, Hwanseok; Park, Yongdoo; Shin, Jennifer; Butler, James P; Fredberg, Jeffrey J; Marchetti, M Cristina

    2016-06-21

    Coordinated motions of close-packed multicellular systems typically generate cooperative packs, swirls, and clusters. These cooperative motions are driven by active cellular forces, but the physical nature of these forces and how they generate collective cellular motion remain poorly understood. Here, we study forces and motions in a confined epithelial monolayer and make two experimental observations: 1) the direction of local cellular motion deviates systematically from the direction of the local traction exerted by each cell upon its substrate; and 2) oscillating waves of cellular motion arise spontaneously. Based on these observations, we propose a theory that connects forces and motions using two internal state variables, one of which generates an effective cellular polarization, and the other, through contractile forces, an effective cellular inertia. In agreement with theoretical predictions, drugs that inhibit contractility reduce both the cellular effective elastic modulus and the frequency of oscillations. Together, theory and experiment provide evidence suggesting that collective cellular motion is driven by at least two internal variables that serve to sustain waves and to polarize local cellular traction in a direction that deviates systematically from local cellular velocity. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Seismic Excitation of the Polar Motion

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin Fong; Gross, Richard S.; Han, Yan-Ben

    1996-01-01

    The mass redistribution in the earth as a result of an earthquake faulting changes the earth's inertia tensor, and hence its rotation. Using the complete formulae developed by Chao and Gross (1987) based on the normal mode theory, we calculated the earthquake-induced polar motion excitation for the largest 11,015 earthquakes that occurred during 1977.0-1993.6. The seismic excitations in this period are found to be two orders of magnitude below the detection threshold even with today's high precision earth rotation measurements. However, it was calculated that an earthquake of only one tenth the size of the great 1960 Chile event, if happened today, could be comfortably detected in polar motion observations. Furthermore, collectively these seismic excitations have a strong statistical tendency to nudge the pole towards approx. 140 deg E, away from the actually observed polar drift direction. This non-random behavior, similarly found in other earthquake-induced changes in earth rotation and low-degree gravitational field by Chao and Gross (1987), manifests some geodynamic behavior yet to be explored.

  12. Electromagnetic torques in the core and resonant excitation of decadal polar motion

    NASA Astrophysics Data System (ADS)

    Mound, Jon E.

    2005-02-01

    Motion of the rotation axis of the Earth contains decadal variations with amplitudes on the order of 10 mas. The origin of these decadal polar motions is unknown. A class of rotational normal modes of the core-mantle system termed torsional oscillations are known to affect the length of day (LOD) at decadal periods and have also been suggested as a possible excitation source for the observed decadal polar motion. Torsional oscillations involve relative motion between the outer core and the surrounding solid bodies, producing electromagnetic torques at the inner-core boundary (ICB) and core-mantle boundary (CMB). It has been proposed that the ICB torque can explain the excitation of the approximately 30-yr-period polar motion termed the Markowitz wobble. This paper uses the results of a torsional oscillation model to calculate the torques generated at Markowitz and other decadal periods and finds, in contrast to previous results, that electromagnetic torques at the ICB can not explain the observed polar motion.

  13. Hydrological excitation of polar motion by different variables of the GLDAS models

    NASA Astrophysics Data System (ADS)

    Wińska, Małgorzata; Nastula, Jolanta

    Continental hydrological loading, by land water, snow, and ice, is an element that is strongly needed for a full understanding of the excitation of polar motion. In this study we compute different estimations of hydrological excitation functions of polar motion (Hydrological Angular Momentum - HAM) using various variables from the Global Land Data Assimilation System (GLDAS) models of land hydrosphere. The main aim of this study is to show the influence of different variables for example: total evapotranspiration, runoff, snowmelt, soil moisture to polar motion excitations in annual and short term scale. In our consideration we employ several realizations of the GLDAS model as: GLDAS Common Land Model (CLM), GLDAS Mosaic Model, GLDAS National Centers for Environmental Prediction/Oregon State University/Air Force/Hydrologic Research Lab Model (Noah), GLDAS Variable Infiltration Capacity (VIC) Model. Hydrological excitation functions of polar motion, both global and regional, are determined by using selected variables of these GLDAS realizations. First we compare a timing, spectra and phase diagrams of different regional and global HAMs with each other. Next, we estimate, the hydrological signal in geodetically observed polar motion excitation by subtracting the atmospheric -- AAM (pressure + wind) and oceanic -- OAM (bottom pressure + currents) contributions. Finally, the hydrological excitations are compared to these hydrological signal in observed polar motion excitation series. The results help us understand which variables of considered hydrological models are the most important for the polar motion excitation and how well we can close polar motion excitation budget in the seasonal and inter-annual spectral ranges.

  14. Variability in Terrestrial Water Storage and its effect on polar motion

    NASA Astrophysics Data System (ADS)

    Śliwińska, Justyna; Nastula, Jolanta

    2017-04-01

    Explaining the hydrological part of observed polar motion excitation has been a major challenge over a dozen years. The terrestrial water storage (TWS) excitation of polar motion - hydrological angular momentum (HAM), has been investigated widely using global hydrological models mainly at seasonal timescales. Unfortunately, the results from the models do not fully explain the role of hydrological signal in polar motion excitation. The determination of TWS from the Earth's gravity field observations represents an indirect approach for estimating land hydrology. Throughout the past decade, the Gravity Recovery and Climate Experiment (GRACE) has given an unprecedented view on global variations in Terrestrial Water Storage. Our investigations are focused on the influence of Terrestrial Water Storage (TWS) variations obtained from Gravity Recovery and Climate Experiment (GRACE) mission on polar motion excitation functions at decadal and inter-annual timescales. The global and regional trend, seasonal cycle as well as some extremes in TWS variations are considered here. Here TWS are obtained from the monthly mass grids land GRACE Tellus data: GRACE CSR RL05, GRACE GFZ RL05 and GRACE JPL RL05. As a comparative dataset, we also use TWS estimates determined from the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5). GRACE data and state-of-the-art CMIP5 climate models allow us to show the variability of hydrological part of polar motion under climate changes. Our studies include two steps: first, the determination and comparisons of regional patterns of TWS obtained from GRACE data and climate models, and second, comparison of the regional and global hydrological excitation functions of polar motion with a hydrological signal in the geodetic excitation functions of polar motion.

  15. Hydrological and oceanic excitations to polar motion andlength-of-day variation

    NASA Astrophysics Data System (ADS)

    Chen, J. L.; Wilson, C. R.; Chao, B. F.; Shum, C. K.; Tapley, B. D.

    2000-04-01

    Water mass redistributions in the global hydrosphere, including continental water storage change and non-steric sea level change, introduce variations in the hydrological angular momentum (HAM) and the oceanic angular momentum (OAM). Under the conservation of angular momentum, HAM and OAM variations are significant excitation sources of the Earth rotational variations at a wide range of timescales. In this paper, we estimate HAM and OAM variations and their excitations to polar motion and length-of-day variation using soil moisture and snow estimates andnon-steric sea level change determined by TOPEX/Poseidon satellite radar altimeter observations and a simplified steric sea level change model. The results are compared with the variations of polar motion and LOD that are not accounted for by the atmosphere. This study indicates that seasonal continental water storage change provides significant contributions to both polar motion and LOD variation, especially to polar motion X, and the non-steric sea level change is responsible for a major part of the remaining excitations at both seasonal scale and high frequencies, particularly in polar motion Y and LOD. The good correlation between OAM contributions and the remaining excitations shows that large-scale non-tidal mass variation exists in the oceans and can be detected by TOPEX/Poseidon altimeter observations.

  16. Comparison of hydrological and GRACE-based excitation functions of polar motion in the seasonal spectral band

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Kolaczek, B.; Salstein, D. A.

    2008-04-01

    Understanding changes in the global balance of the Earths angular momentum due to the mass redistribution of geophysical fluids is needed to explain the observed polar motion. The impact of continental hydrologic signals, from land water, snow, and ice, on polar motion excitation (hydrological angular momentum-HAM), is still inadequately known. Although estimates of HAM have been made from several models of global hydrology based upon the observed distribution of surface water, snow, and soil moisture, the relatively sparse observation network and the presence of errors in the data and the geophysical fluid models preclude a full understanding of the HAM influence on polar motion variations. Recently the GRACE mission monitoring Earths time variable gravity field has allowed us to determine the mass term of polar motion excitation functions and compare them with the mass term derivable as a residual from the geodetic excitation functions and geophysical fluid motion terms on seasonal time scales. Differences between these mass terms in the years 2004 - 2005.5 are still on the order of 20 mas. Besides the overall mass excitation of polar motion comparisons with GRACE (RL04-release), we also intercompare the non-atmospheric, non-oceanic signals in the mass term of geodetic polar motion excitation with hydrological excitation of polar motion.

  17. Seismic Excitation of the Polar Motion, 1977-1993

    NASA Technical Reports Server (NTRS)

    Chao, Benjamin Fong; Gross, Richard S.; Han, Yan-Ben

    1996-01-01

    The mass redistribution in the earth as a result of an earthquake faulting changes the earth's inertia tensor, and hence its rotation. Using the complete formulae developed by CHAO and GROSS (1987) based on the normal mode theory, we calculated the earthquake-induced polar motion excitation for the largest 11,015 earthquakes that occurred during 1977.0-1993.6. The seismic excitations in this period are found to be two orders of magnitude below the detection threshold even with today's high precision earth rotation measurements. However, it was calculated that an earthquake of only one tenth the size of the great 1960 Chile event, if happened today, could be comfortably detected in polar motion observations. Furthermore, collectively these seismic excitations have a strong statistical tendency to nudge the pole towards approximately 140deg E, away from the actual observed polar drift direction. This non-random behavior, similarly found in other earthquake-induced changes in earth rotation and low-degree gravitational field by CHAO and GROSS (1987), manifests some geodynamic behavior yet to be explored.

  18. Seismic excitation of the polar motion, 1977 1993

    NASA Astrophysics Data System (ADS)

    Chao, Benjamin Fong; Gross, Richard S.; Han, Yan-Ben

    1996-09-01

    The mass redistribution in the earth as a result of an earthquake faulting changes the earth's inertia tensor, and hence its rotation. Using the complete formulae developed by Chao and Gross (1987) based on the normal mode theory, we calculated the earthquake-induced polar motion excitation for the largest 11,015 earthquakes that occurred during 1977.0 1993.6. The seismic excitations in this period are found to be two orders of magnitude below the detection threshold even with today's high precision earth rotation measurements. However, it was calculated that an earthquake of only one tenth the size of the great 1960 Chile event, if happened today, could be comfortably detected in polar motion observations. Furthermore, collectively these seismic excitations have a strong statistical tendency to nudge the pole towards ˜140°E, away from the actually observed polar drift direction. This non-random behavior, similarly found in other earthquake-induced changes in earth rotation and low-degree gravitational field by Chao and Gross (1987), manifests some geodynamic behavior yet to be explored.

  19. Polar Motion Constraints on Models of the Fortnightly Tide

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, G. D.; Smith, David E. (Technical Monitor)

    2002-01-01

    Estimates of the near-fortnightly Mf ocean tide from Topex/Poseidon satellite altimetry and from numerical solutions to the shallow water equations agree reasonably well, at least in their basin-scale features. For example, both show that the Pacific Ocean tide lags the Atlantic tide by roughly 30 degrees. There are hints of finer scale agreements in the elevation fields, but noise levels are high. In contrast, estimates of Mf currents are only weakly constrained by the TP data, because high-wavenumber Rossby waves (with intense currents) are associated with relatively small perturbations in surface elevation. As a result, a wide range of Mf current fields are consistent with both the TP data and the hydrodynamic equations within a priori plausible misfit bounds. We find that a useful constraint on the Mf currents is provided by independent estimates of the Earth's polar motion. At the Mf period polar motion shows a weak signal (both prograde and retrograde) which must be almost entirely caused by the ocean tide. We have estimated this signal from the SPACE2000 time series, after applying a broad-band correction for atmospheric angular momentum. Although the polar motion estimates have relatively large uncertainties, they are sufficiently precise to fix optimum data weights in a global ocean inverse model of Mf. These weights control the tradeoff between fitting a prior hydrodynamic model of Mf and fitting the relatively noisy T/P measurements of Mf. The predicted polar motion from the final inverse model agrees remarkably well with the Mf polar motion observations. The preferred model is also consistent with noise levels suggested by island gauges, and it is marginally consistent with differences observed by subsetting the altimetry (to the small extent that this is possible). In turn, this new model of the Mf ocean tide allows the ocean component to be removed from Mf estimates of length of day, thus yielding estimates of complex Love numbers less contaminated by

  20. Very long baseline interferometry applied to polar motion, relativity, and geodesy. Ph. D. thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C.

    1978-01-01

    The causes and effects of diurnal polar motion are described. An algorithm was developed for modeling the effects on very long baseline interferometry observables. A selection was made between two three-station networks for monitoring polar motion. The effects of scheduling and the number of sources observed on estimated baseline errors are discussed. New hardware and software techniques in very long baseline interferometry are described.

  1. Comparison of regional hydrological excitation of polar motion derived from hydrological models and the GRACE gravity field data

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Kolaczek, B.; Salstein, D. A.

    2009-09-01

    Global geophysical excitation functions of polar motion do not explain fully the observed polar motion as determined by geodetic techniques. The impact of continental hydrologic signals, from land water, snow, and ice, on polar motion excitation HAM (Hydrological Angular Momentum), is still inadequately estimated and not known so well as atmospheric and oceanic ones. Recently the GRACE (Gravity Recovery and Climate Experiment) satellite mission monitoring Earth's time variable gravity field has allowed us to determine global mass term of the polar motion excitation functions, which inherently includes the atmospheric, oceanic and hydrological portions. We use these terms to make comparisons with the mass term of the geodetic and geophysical excitation functions of polar motion on seasonal scales. Global GRACE excitation function of polar motion and hydrological excitation function of polar motion have been determined and were studied earlier

  2. Evidence for Excitation of Polar Motion by Fortnightly Ocean Tides

    NASA Technical Reports Server (NTRS)

    Gross, Richard S.; Hamdan, Kamal H.; Boggs, Dale H.

    1996-01-01

    The second-degree zonal tide raising potential, which is responsible for tidal changes in the Earth's rotation rate and length-of-day, is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans. Ocean tidal excitation of polar motion in the diurnal and semidiurnal tidal bands has been previously detected and examined. Here, the detection of ocean tidal excitation of polar motion in the long-period tidal band, specifically at the Mf' (13.63-day) and Mf (13.66-day) tidal frequencies, is reported. Spectra of the SPACE94 polar motion excitation series exhibit peaks at the prograde and retrograde fortnightly tidal periods. After removing effects of atmospheric wind and pressure changes, an empirical model for the effect of the fortnightly ocean tides upon polar motion excitation is obtained by least-squares fitting periodic terms at the Mf and Mf' tidal frequencies to the residual polar motion excitation series. The resulting empirical model is then compared with the predictions of two hydrodynamic ocean tide models.

  3. Historical Variations in Inner Core Rotation and Polar Motion at Decade Timescales

    NASA Astrophysics Data System (ADS)

    Dumberry, M.

    2005-12-01

    Exchanges of angular momentum between the mantle, the fluid core and the solid inner core result in changes in the Earth's rotation. Torques in the axial direction produce changes in amplitude, or changes in length of day, while torques in the equatorial direction lead to changes in orientation of the rotation vector with respect to the mantle, or polar motion. In this work, we explore the possibility that a combination of electromagnetic and gravitational torques on the inner core can reproduce the observed decadal variations in polar motion known as the Markowitz wobble. Torsional oscillations, which involve azimuthal motions in the fluid core with typical periods of decades, entrain the inner core by electromagnetic traction. When the inner core is axially rotated, its surfaces of constant density are no longer aligned with the gravitational potential from mantle density heterogeneities, and this results in a gravitational torque between the two. The axial component of this torque has been previously described and is believed to be partly responsible for decadal changes in length of day. In this work, we show that it has also an equatorial component, which produces a tilt of the inner core and results in polar motion. The polar motion produced by this mechanism depends on the density structure in the mantle, the rheology of the inner core, and the time-history of the angle of axial misalignment between the inner core and the mantle. We reconstruct the latter using a model of torsional oscillations derived from geomagnetic secular variation. From this time-history, and by using published models of mantle density structure, we show that we can reproduce the salient characteristics of the Markowitz wobble: an eccentric decadal polar motion of 30-50 milliarcsecs oriented along a specific longitude. We discuss the implications of this result, noting that a match in both amplitude and phase of the observed Markowitz wobble allows the recovery of the historical

  4. Ferroelectric domain wall motion induced by polarized light

    PubMed Central

    Rubio-Marcos, Fernando; Del Campo, Adolfo; Marchet, Pascal; Fernández, Jose F.

    2015-01-01

    Ferroelectric materials exhibit spontaneous and stable polarization, which can usually be reoriented by an applied external electric field. The electrically switchable nature of this polarization is at the core of various ferroelectric devices. The motion of the associated domain walls provides the basis for ferroelectric memory, in which the storage of data bits is achieved by driving domain walls that separate regions with different polarization directions. Here we show the surprising ability to move ferroelectric domain walls of a BaTiO3 single crystal by varying the polarization angle of a coherent light source. This unexpected coupling between polarized light and ferroelectric polarization modifies the stress induced in the BaTiO3 at the domain wall, which is observed using in situ confocal Raman spectroscopy. This effect potentially leads to the non-contact remote control of ferroelectric domain walls by light. PMID:25779918

  5. Comparison of the hydrological excitation functions HAM of polar motion for the period 1980.0-2007.0

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Pasnicka, M.; Kolaczek, B.

    2011-10-01

    In this study we compared contributions of polar motion excitation determined from hydrological models and harmonic coefficients of the Earth gravity field obtained from Gravity Recovery and Climate Experiment (GRACE). Hydrological excitation function (hydrological angular momentum - HAM) has been estimated from models of global hydrology, based on the observed distribution of surface water, snow, ice and soil moisture. All of them were compared with observed Geodetic Angular Momentum (GAM), excitations of polar motion. The spectra of these excitation functions of polar motion and residual geodetic excitation function G-A-O obtained from GAM by elimination of atmospheric and oceanic excitation functions were computed too. Phasor diagrams of the seasonal components of the polar motion excitation functions of all HAM excitation functions as well as of two GRACE solutions: CSR, CNES were determined and discussed.

  6. Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models

    NASA Astrophysics Data System (ADS)

    Jin, S. G.; Hassan, A. A.; Feng, G. P.

    2012-12-01

    The hydrological contribution to polar motion is a major challenge in explaining the observed geodetic residual of non-atmospheric and non-oceanic excitations since hydrological models have limited input of comprehensive global direct observations. Although global terrestrial water storage (TWS) estimated from the Gravity Recovery and Climate Experiment (GRACE) provides a new opportunity to study the hydrological excitation of polar motion, the GRACE gridded data are subject to the post-processing de-striping algorithm, spatial gridded mapping and filter smoothing effects as well as aliasing errors. In this paper, the hydrological contributions to polar motion are investigated and evaluated at seasonal and intra-seasonal time scales using the recovered degree-2 harmonic coefficients from all GRACE spherical harmonic coefficients and hydrological models data with the same filter smoothing and recovering methods, including the Global Land Data Assimilation Systems (GLDAS) model, Climate Prediction Center (CPC) model, the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis products and European Center for Medium-Range Weather Forecasts (ECMWF) operational model (opECMWF). It is shown that GRACE is better in explaining the geodetic residual of non-atmospheric and non-oceanic polar motion excitations at the annual period, while the models give worse estimates with a larger phase shift or amplitude bias. At the semi-annual period, the GRACE estimates are also generally closer to the geodetic residual, but with some biases in phase or amplitude due mainly to some aliasing errors at near semi-annual period from geophysical models. For periods less than 1-year, the hydrological models and GRACE are generally worse in explaining the intraseasonal polar motion excitations.

  7. Intraseasonal variability in atmospheric surface pressure and relationship to polar motion

    NASA Technical Reports Server (NTRS)

    Salstein, David A.; Rosen, Richard D.

    1988-01-01

    Two techniques were used to validate the theoretical relationship between polar motion and P sub s variations. The first method, reproduced from Hide et al. (1984), compares the fluctuations in physical space of the polar spirals and the high frequencies about them. Although the agreement appears reasonable, the lack of a clear measure of closeness and the presence of the large Chandler signal itself makes a comparison at higher frequencies difficult. To overcome this difficulty, the authors present the X functions required to maintain the observed fluctuations at roughly 20 to 70 days and those calculated from the National Meteorological Center (NMC) P sub s data. These curves are in relatively good agreement, indicating that polar motions are indeed driven, at least in large part, by fluctuations in P sub s.

  8. Can GRACE Explain Some of the Main Interannual Polar Motion Signatures?

    NASA Astrophysics Data System (ADS)

    Adhikari, S.; Ivins, E. R.; Larour, E. Y.

    2016-12-01

    GRACE has provided a series of monthly solutions for water mass transport that now span a 14-year period. A natural question to ask is how much of this mass transport information might be used to reconstruct, theoretically, the non-tidal and non-Chandlerian polar motion at interannual time scales. Reconstruction of the pole position at interannual time scales since 2002 has been performed by Chen et al. (2013, GRL) and Adhikari and Ivins (2016, Science Advances). (The main feature of polar motion that has been evolving since the mid 1990's is the increasing dominance of Greenland ice mass loss.) Here we discuss this reconstruction and the level of error that occurs because of missing information about the spherical harmonic degree 1 and 2 terms and the lack of terms associated with angular momentum transfer in the Louiville equations. Using GRACE observations and complementary solutions of self-attraction/loading problem on an elastically compressible rotating earth, we show that ice mass losses from polar ice sheets, and when combined with changes in continental hydrology, explain nearly the entire amplitude (83±23%) and mean directional shift (within 5.9±7.6°) of recently observed eastward polar motion. We also show that decadal scale pole variations are directly linked to global changes in continental hydrology. The energy sources for such motions are likely to be associated with decadal scale ocean and atmospheric oscillations that also drive 20th century continental wet-dry variability. Interannual variability in pole position, therefore, offers a tool for assessing past stability of our climate, and for the future, now faced with an increased intensity in the water cycle and more vulnerable to ice sheet instability. Figure caption: Observed and reconstructed mean annual pole positions with respect to the 2003-2015 mean position. Blue error band is associated with the reconstructed solution; red signifies additional errors that are related to uncertainty in

  9. Comparison of hydrological signal in polar motion excitation with those based on the FGOALS-g2 climate model

    NASA Astrophysics Data System (ADS)

    Wińska, Małgorzata; Nastula, Jolanta; Salstein, David

    2016-04-01

    Our investigations are focused on the influence of different land hydrosphere surface parameters (precipitation, evaporation, total runoff, soil moisture, accumulated snow) on polar motion excitation functions at seasonal and nonseasonal timescales. Here these different variables are obtained from the Flexible Global Ocean-Atmosphere-Land System Model, Grid point Version 2 (FGOALS-g2), which is a climate model from the fifth phase of the Coupled Model Intercomparison Project (CMIP5); with CMIP5 being composed of separate component models of the atmosphere, ocean, sea ice, and land surface. In this study Terrestrial Water Storage TWS changes were determined as: differences between the precipitation, evaporation and total surface runoff content, and as the total soil moisture content being a sum of soil moisture and snowfall flux changes. We compare the model-based data with those from estimates of the Equivalent Water Thickness determined by GRACE satellite observations from the Center for Space Research (CSR). The transfer of angular momentum from global geophysical fluids to the solid Earth is described by the equatorial components χ1 and χ2 of the polar motion excitation functions. Observationally, these so-called geodetic excitation functions of polar motion can be determined on the basis of the equations of motion by using observed x, y components of the pole. The second-degree, first-order coefficients of the Earth gravity field are proportional to variations of the equatorial component χ1, χ2 of the series of the gravimetric excitation function of polar motion. This gravimetric function can be compared with the mass term of geodetic excitation of polar motion. Our analysis comprises (1) determinations and comparisons of regional patterns of hydrological excitation functions of polar motion, and (2) comparison of the global hydrological function determined from the FGOALS-g2 and GRACE data with a hydrological signal in the geodetic excitation function of

  10. Very Long Baseline Interferometry Applied to Polar Motion, Relativity and Geodesy. Ph.D. Thesis - Maryland Univ.

    NASA Technical Reports Server (NTRS)

    Ma, C.

    1978-01-01

    The causes and effects of diurnal polar motion are described. An algorithm is developed for modeling the effects on very long baseline interferometry observables. Five years of radio-frequency very long baseline interferometry data from stations in Massachusetts, California, and Sweden are analyzed for diurnal polar motion. It is found that the effect is larger than predicted by McClure. Corrections to the standard nutation series caused by the deformability of the earth have a significant effect on the estimated diurnal polar motion scaling factor and the post-fit residual scatter. Simulations of high precision very long baseline interferometry experiments taking into account both measurement uncertainty and modeled errors are described.

  11. Space/Time Statistics of Polar Ice Motion

    NASA Technical Reports Server (NTRS)

    Emery, William J.; Fowler, Charles; Maslanik, James A.

    2003-01-01

    Ice motions have been computed from passive microwave imagery (SMMR and SSM/I) on a daily basis for both Polar Regions. In the Arctic these daily motions have been merged with daily motions from AVHRR imagery and the Arctic buoy program. In the Antarctic motion only from the AVHRR were available for merging with the passive microwave vectors. Long-term means, monthly means and weekly means have all been computed from the resulting 22-year time series of polar ice motion. Papers are in preparation that present the long term (22 year) means, their variability and show animations of the monthly means over this time period for both Polar Regions. These papers will have links to "enhanced objects" that allow the reader to view the animations as part of the paper. The first paper presents the ice motion results from each of the Polar Regions. The second paper looks only at ice motion in the Arctic in order to develop a time series of ice age in the Arctic. Starting with the first full SMMR year in 1979 we keep track of each individual "ice element" (resolution of the sensor) and track it in the subsequent monthly time series. After a year we "age" each "particle" and we thus can keep track of the age of the ice starting in 1979. We keep track of ice age classes between one and five years and thus we can see the evolution of the ice as it ages after the initial 5-year period. This calculation shows how we are losing the older ice through Fram Strait at a rather alarming rate particularly in the past 15 years. This loss of older ice has resulted in an overall decrease in the thickest, oldest ice, which is now limited to a region just north of the Canadian Archipelago with tongues extending out across the pole towards the Siberian Shelf. This loss of old ice is consistent with the effects of global warming which provides the heat needed to melt, move and disperse this oldest ice through Fram Strait. This is the first step in a progression that may eventually open the Arctic

  12. Effects of translational and rotational motions and display polarity on visual performance.

    PubMed

    Feng, Wen-Yang; Tseng, Feng-Yi; Chao, Chin-Jung; Lin, Chiuhsiang Joe

    2008-10-01

    This study investigated effects of both translational and rotational motion and display polarity on a visual identification task. Three different motion types--heave, roll, and pitch--were compared with the static (no motion) condition. The visual task was presented on two display polarities, black-on-white and white-on-black. The experiment was a 4 (motion conditions) x 2 (display polarities) within-subjects design with eight subjects (six men and two women; M age = 25.6 yr., SD = 3.2). The dependent variables used to assess the performance on the visual task were accuracy and reaction time. Motion environments, especially the roll condition, had statistically significant effects on the decrement of accuracy and reaction time. The display polarity was significant only in the static condition.

  13. Separation of atmospheric, oceanic and hydrological polar motion excitation mechanisms based on a combination of geometric and gravimetric space observations

    NASA Astrophysics Data System (ADS)

    Göttl, F.; Schmidt, M.; Seitz, F.; Bloßfeld, M.

    2015-04-01

    The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems, Very Long Baseline Interferometry, Doppler Orbit determination and Radiopositioning Integrated on Satellite, satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.

  14. Inner Core Tilt and Polar Motion: Probing the Dynamics Deep Inside the Earth

    NASA Astrophysics Data System (ADS)

    Dumberry, M.; Bloxham, J.

    2003-12-01

    A tilted inner core permits exchange of angular momentum between the core and the mantle through gravitational and pressure torques and, as a result, changes in the direction of Earth's axis of rotation with respect to the mantle. Some of the observed variations in the direction of Earth's rotation could then be caused by equatorial torques on the inner core which tilt the latter out of its alignment with the mantle. In this work, we investigate whether such a scenario could explain the decade polar motion known as the Markowitz wobble. We show that a decade polar motion of the same amplitude as the observed Markowitz wobble requires a torque of 1020 N m which tilts the inner core by 0.07 degrees. This result critically depends on the viscosity of the inner core; for a viscosity less than 5 x 1017 Pa s, larger torques are required. A torque of 1020 N m with decadal periodicity can perhaps be produced by electromagnetic coupling between the inner core and a component of the flow in the outer core known as torsional oscillations, provided that the radial magnetic field at the inner core boundary is on the order of 3 to 4 mT and satisfies certain geometrical constraints. The resulting polar motion thus produced is eccentric and polarized, in agreement with the observations. Our model suggests that equatorial torques at the inner core boundary might also excite the Chandler wobble, provided shorter wavelength torsional oscillations with higher natural frequencies have enough power or provided there exists another physical mechanism that can generate a large torque at a 14 month period.

  15. A true polar wander model for Neoproterozoic plate motions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ripperdan, R.L.

    1992-01-01

    Recent paleogeographic reconstructions for the interval 750--500 Ma (Neoproterozoic to Late Cambrian) require rapid rates of plate motion and/or rotation around an equatorial Euler pole to accommodate reconstructions for the Early Paleozoic. Motions of this magnitude appear to be very uncommon during the Phanerozoic. A model for plate motions based on the hypothesis that discrete intervals of rapid true polar wander (RTPW) occurred during the Neoproterozoic can account for the paleogeographic changes with minimum amounts of plate motion. The model uses the paleogeographic reconstructions of Hoffman (1991). The following constraints were applied during derivation of the model: (1) relative motionsmore » between major continental units were restricted to be combinations of great circle or small circle translations with Euler poles of rotation = spin axis; (2) maximum rates of relative translational plate motion were 0.2 m/yr. Based on these constraints, two separate sets of synthetic plate motion trajectories were determined. The sequence of events in both can be summarized as: (1) A rapid true polar wander event of ca 90[degree] rafting a supercontinent to the spin axis; (2) breakup of the polar supercontinent into two fragments, one with the Congo, West Africa, Amazonia, and Baltica cratons, the other with the Laurentia, East Gondwana, and Kalahari cratons; (3) great circle motion of the blocks towards the equator; (4) small circle motion leading to amalgamation of Gondwana and separation of Laurentia and Baltica. In alternative 1, rifting initiates between East Antarctica and Laurentia and one episode of RTPW is required. Alternative 2 requires two episodes of RTPW; and that rifting occurred first along the eastern margin and later along the western margin of Laurentia. Synthetic plate motion trajectories are compared to existing paleomagnetic and geological data, and implications of the model for paleoclimatic changes during the Neoproterozoic are discussed.« less

  16. Climate-driven polar motion

    NASA Astrophysics Data System (ADS)

    Celaya, Michael A.; Wahr, John M.; Bryan, Frank O.

    1999-06-01

    The output of a coupled climate system model provides a synthetic climate record with temporal and spatial coverage not attainable with observational data, allowing evaluation of climatic excitation of polar motion on timescales of months to decades. Analysis of the geodetically inferred Chandler excitation power shows that it has fluctuated by up to 90% since 1900 and that it has characteristics representative of a stationary Gaussian process. Our model-predicted climate excitation of the Chandler wobble also exhibits variable power comparable to the observed. Ocean currents and bottom pressure shifts acting together can alone drive the 14-month wobble. The same is true of the excitation generated by the combined effects of barometric pressure and winds. The oceanic and atmospheric contributions are this large because of a relatively high degree of constructive interference between seafloor pressure and currents and between atmospheric pressure and winds. In contrast, excitation by the redistribution of water on land appears largely insignificant. Not surprisingly, the full climate effect is even more capable of driving the wobble than the effects of the oceans or atmosphere alone are. Our match to the observed annual excitation is also improved, by about 17%, over previous estimates made with historical climate data. Efforts to explain the 30-year Markowitz wobble meet with less success. Even so, at periods ranging from months to decades, excitation generated by a model of a coupled climate system makes a close approximation to the amplitude of what is geodetically observed.

  17. Analysis of Polar Motion Series Differences Between VLBI, GNSS, and SLR

    NASA Astrophysics Data System (ADS)

    MacMillan, Daniel; Pavlis, Erricos

    2017-04-01

    We have compared polar motion series from VLBI, GNSS, and SLR generated with a reference frame aligned to ITRF2008. Three objectives of the comparisons are 1) to determine biases between the techniques, 2) to determine the precision of each technique via a 3-corner hat analysis after removing the relative biases, and 3) to evaluate the long-term stability of polar motion series. Between VLBI, GNSS,and SLR, there are clear variations ranging from 20 to 60 µas in peak-to-peak amplitude. We investigate the possible causes of these variations. In addition, there are other apparent systematic biases and rate differences. There are VLBI network dependent effects that appear in the VLBI-GNSS and VLBI-SLR differences, specifically between the operational R1 and R4 weekly 24-hour sessions. We investigate the origins of these differences including network station changes in these networks over the period from 2002-present. The polar motion biases and precisions of the five IVS VLBI continuous observing CONT campaigns (since 2002) are also analyzed since these 2-week campaigns were each designed to provide the highest quality results that could be produced at the time. A possible source of bias between the three techniques is the underlying chosen sub-network used by each technique to realize the adopted reference frame. We also consider the technique differences when ITRF2014 is used instead of ITRF2008

  18. Improving Polar Motion Predictions Using AAM χ1 and χ2 Forecasts

    NASA Astrophysics Data System (ADS)

    Ratcliff, J. T.; Gross, R. S.

    2017-12-01

    The uncertainty in our knowledge of the Earth's changing orientation in space is a majorsource of error in tracking and navigating interplanetary spacecraft. Because the Earth'sorientation changes rapidly and unpredictably, measurements must be acquired frequentlyand processed rapidly in order to meet the near-real-time Earth orientation requirements ofthe interplanetary spacecraft navigation teams. The Kalman Earth Orientation Filter (KEOF)is used to combine GPS polar motion and LOD measurements, Very Long Baseline Interferometry(VLBI) polar motion and UT measurements, along with other publicly available Earth orientationmeasurements including proxy measurements such as atmospheric angular momentum (AAM),in order to generate and deliver the required polar motion and UT1 Earth orientation parametersto the spacecraft navigation teams. Short-term predictions of the EOPs are produced in order toprovide the navigation teams with an uninterrupted series of Earth orientation parameters. WhileAAM 𝜒3 forecasts are used as a proxy LOD forecast to improve UT1 predictions, Polar Motionpredictions had not been similarly treated. In order to evaluate the effectiveness off AAM 𝜒1 and 𝜒2forecasts on improving Polar Motion predictions we reprocessed one year (Jan.-Dec. 2015) of EOP measurementsto include the 𝜒1 and 𝜒2 components of National Centers for Environmental Prediction (NCEP)AAM daily 5-day forecasts. Inclusion of AAM 𝜒1 and 𝜒2 forecasts into EOP predictions was foundto improve the accuracy of the Polar Motion 5-day predictions by 33% in the X-component and 34% in the Y-component.

  19. Hydrological Excitations of Polar Motion Derived from Different Variables of Fgoals - g2 Climate Model

    NASA Astrophysics Data System (ADS)

    Winska, M.

    2016-12-01

    The hydrological contribution to decadal, inter-annual and multi-annual suppress polar motion derived from climate model as well as from GRACE (Gravity Recovery and Climate Experiment) data is discussed here for the period 2002.3-2016.0. The data set used here are Earth Orientation Parameters Combined 04 (EOP C04), Flexible Global Ocean-Atmosphere-Land System Model: Grid-point Version 2 (FGOAL-g2) and Global Land Data Assimilation System (GLDAS) climate models and GRACE CSR RL05 data for polar motion, hydrological and gravimetric excitation, respectively. Several Hydrological Angular Momentum (HAM) functions are calculated here from the selected variables: precipitation, evaporation, runoff, soil moisture, accumulated snow of the FGOALS and GLDAS climate models as well as from the global mass change fields from GRACE data provided by the International Earth Rotation and Reference System Service (IERS) Global Geophysical Fluids Center (GGFC). The contribution of different HAM excitation functions to achieve the full agreement between geodetic observations and geophysical excitation functions of polar motion is studied here.

  20. Earth orientation from lunar laser ranging and an error analysis of polar motion services

    NASA Technical Reports Server (NTRS)

    Dickey, J. O.; Newhall, X. X.; Williams, J. G.

    1985-01-01

    Lunar laser ranging (LLR) data are obtained on the basis of the timing of laser pulses travelling from observatories on earth to retroreflectors placed on the moon's surface during the Apollo program. The modeling and analysis of the LLR data can provide valuable insights into earth's dynamics. The feasibility to model accurately the lunar orbit over the full 13-year observation span makes it possible to conduct relatively long-term studies of variations in the earth's rotation. A description is provided of general analysis techniques, and the calculation of universal time (UT1) from LLR is discussed. Attention is also given to a summary of intercomparisons with different techniques, polar motion results and intercomparisons, and a polar motion error analysis.

  1. Effect of Long-Period Ocean Tides on the Earth's Polar Motion

    NASA Technical Reports Server (NTRS)

    Gross, R. S.; Chao, B. F.; Desai, S. D.

    1997-01-01

    The second-degree zonal tide raising potential is symmetric about the polar axis and hence can excite the Earth's polar motion only through its action upon nonaxisymmetric features of the Earth such as the oceans.

  2. Comparison of Polar Motion Excitation Series Derived from GRACE and from Analyses of Geophysical Fluids

    NASA Technical Reports Server (NTRS)

    Nastula, J.; Ponte, R. M.; Salstein, D. A.

    2007-01-01

    Three sets of degree-2, order-1 harmonics of the gravity field, derived from the Gravity Recovery and Climate Experiment (GRACE) data processed at the Center for Space Research (CSR), Jet Propulsion Laboratory (JPL) and GeoforschungsZentrum (GFZ), are used to compute polar motion excitation functions X1 and X2. The GFZ and JPL excitations and the CSR X2, excitation compare generally well with geodetically observed excitation after removal of effects of oceanic currents and atmospheric winds. The agreement considerably exceeds that from previous GRACE data releases. For the JPL series, levels of correlation with the geodetic observations and the variance explained are comparable to, but still lower than, those obtained independently from available models and analyses of the atmosphere, ocean, and land hydrology. Improvements in data quality of gravity missions are still needed to deliver even tighter constraints on mass-related excitation of polar motion.

  3. Comparison of polar motion excitation series derived from GRACE and from analyses of geophysical fluids

    NASA Astrophysics Data System (ADS)

    Nastula, J.; Ponte, R. M.; Salstein, D. A.

    2007-06-01

    Three sets of degree-2, order-1 harmonics of the gravity field, derived from the Gravity Recovery and Climate Experiment (GRACE) data processed at the Center for Space Research (CSR), Jet Propulsion Laboratory (JPL) and GeoforschungsZentrum (GFZ), are used to compute polar motion excitation functions χ 1 and χ 2. The GFZ and JPL excitations and the CSR χ 2 excitation compare generally well with geodetically observed excitation after removal of effects of oceanic currents and atmospheric winds. The agreement considerably exceeds that from previous GRACE data releases. For the JPL series, levels of correlation with the geodetic observations and the variance explained are comparable to, but still lower than, those obtained independently from available models and analyses of the atmosphere, ocean, and land hydrology. Improvements in data quality of gravity missions are still needed to deliver even tighter constraints on mass-related excitation of polar motion.

  4. A Modified LS+AR Model to Improve the Accuracy of the Short-term Polar Motion Prediction

    NASA Astrophysics Data System (ADS)

    Wang, Z. W.; Wang, Q. X.; Ding, Y. Q.; Zhang, J. J.; Liu, S. S.

    2017-03-01

    There are two problems of the LS (Least Squares)+AR (AutoRegressive) model in polar motion forecast: the inner residual value of LS fitting is reasonable, but the residual value of LS extrapolation is poor; and the LS fitting residual sequence is non-linear. It is unsuitable to establish an AR model for the residual sequence to be forecasted, based on the residual sequence before forecast epoch. In this paper, we make solution to those two problems with two steps. First, restrictions are added to the two endpoints of LS fitting data to fix them on the LS fitting curve. Therefore, the fitting values next to the two endpoints are very close to the observation values. Secondly, we select the interpolation residual sequence of an inward LS fitting curve, which has a similar variation trend as the LS extrapolation residual sequence, as the modeling object of AR for the residual forecast. Calculation examples show that this solution can effectively improve the short-term polar motion prediction accuracy by the LS+AR model. In addition, the comparison results of the forecast models of RLS (Robustified Least Squares)+AR, RLS+ARIMA (AutoRegressive Integrated Moving Average), and LS+ANN (Artificial Neural Network) confirm the feasibility and effectiveness of the solution for the polar motion forecast. The results, especially for the polar motion forecast in the 1-10 days, show that the forecast accuracy of the proposed model can reach the world level.

  5. Assessment of the Global and Regional Land Hydrosphere and Its Impact on the Balance of the Geophysical Excitation Function of Polar Motion

    NASA Astrophysics Data System (ADS)

    Wińska, Małgorzata; Nastula, Jolanta; Kołaczek, Barbara

    2016-02-01

    The impact of continental hydrological loading from land water, snow and ice on polar motion excitation, calculated as hydrological angular momentum (HAM), is difficult to estimate, and not as much is known about it as about atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). In this paper, regional hydrological excitations to polar motion are investigated using monthly terrestrial water storage data derived from the Gravity Recovery and Climate Experiment (GRACE) mission and from the five models of land hydrology. The results show that the areas where the variance shows large variability are similar for the different models of land hydrology and for the GRACE data. Areas which have a small amplitude on the maps make an important contribution to the global hydrological excitation function of polar motion. The comparison of geodetic residuals and global hydrological excitation functions of polar motion shows that none of the hydrological excitation has enough energy to significantly improve the agreement between the observed geodetic excitation and geophysical ones.

  6. Observations Of Polarized Dust Emission In Protostars: How To Reconstruct Magnetic Field Properties?

    NASA Astrophysics Data System (ADS)

    Maury, Anaëlle; Galametz, M.; Girart; Guillet; Hennebelle, P.; Houde; Rao; Valdivia, V.; Zhang, Q.

    2017-10-01

    I will present our ALMA Cycle 2 polarized dust continuum data towards the Class 0 protostar B335 where the absence of detected rotational motions in the inner envelope might suggest an efficient magnetic braking at work to inhibit the formation of a large disk. The Band 6 data we obtained shows an intriguing polarized vectors topology, which could either suggest (i) at least two different grain alignment mechanisms at work in B335 to produce the observed polarization pattern, or (ii) an interferometric bias leading to filtering of the polarized signal that is different from the filtering of Stokes I. I will discuss both options, proposing multi-wavelength and multi observatory (ALMA Band3 data in Cycle 5, NIKA2Pol camera on the IRAM-30m) strategies to lift the degeneracy when using polarization observations as a proxy of magnetic fields in dense astrophysical environments. This observational effort in the framework of the MagneticYSOs project, is also supported by our development of an end-to-end chain of ALMA synthetic observations of the polarization from non-ideal MHD simulations of protostellar collapse (see complementary contributions by V. Valdivia and M. Galametz).

  7. Cluster observations of ion dispersion discontinuities in the polar cusp

    NASA Astrophysics Data System (ADS)

    Escoubet, C. P.; Berchem, J.; Pitout, F.; Richard, R. L.; Trattner, K. J.; Grison, B.; Taylor, M. G.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.

    2009-12-01

    The reconnection between the interplanetary magnetic field (IMF) and the Earth’s magnetic field is taking place at the magnetopause on magnetic field lines threading through the polar cusp. When the IMF is southward, reconnection occurs near the subsolar point, which is magnetically connected to the equatorward boundary of the polar cusp. Subsequently the ions injected through the reconnection point precipitate in the cusp and are dispersed poleward. If reconnection is continuous and operates at constant rate, the ion dispersion is smooth and continuous. On the other hand if the reconnection rate varies, we expect interruption in the dispersion forming energy steps or staircase. Similarly, multiple entries near the magnetopause could also produce steps at low or mid-altitude when a spacecraft is crossing subsequently the field lines originating from these multiple sources. In addition, motion of the magnetopause induced by solar wind pressure changes or erosion due to reconnection can also induce a motion of the polar cusp and a disruption of the ions dispersion observed by a spacecraft. Cluster with four spacecraft following each other in the mid-altitude cusp can be used to distinguish between these “temporal” and “spatial” effects. We will present a cusp crossing with two spacecraft, separated by around two minutes. The two spacecraft observed a very similar dispersion with a step in energy in its centre and two other dispersions poleward. We will show that the steps could be temporal (assuming that the time between two reconnection bursts corresponds to the time delay between the two spacecraft) but it would be a fortuitous coincidence. On the other hand the steps and the two poleward dispersions could be explained by spatial effects if we take into account the motion of the open-closed boundary between the two spacecraft crossings.

  8. Climatic impact of glacial cycle polar motion: Coupled oscillations of ice sheet mass and rotation pole position

    USGS Publications Warehouse

    Bills, Bruce G.; James, Thomas S.; Mengel, John G.

    1999-01-01

    Precessional motion of Earth's rotation axis relative to its orbit is a well-known source of long-period climatic variation. It is less well appreciated that growth and decay of polar ice sheets perturb the symmetry of the global mass distribution enough that the geographic location of the rotation axis will change by at least 15 km and possibly as much as 100 km during a single glacial cycle. This motion of the pole will change the seasonal and latitudinal pattern of temperatures. We present calculations, based on a diurnal average energy balance, which compare the summer and winter temperature anomalies due to a 1° decrease in obliquity with those due to a 1° motion of the rotation pole toward Hudson Bay. Both effects result in peak temperature perturbations of about 1° Celsius. The obliquity change primarily influences the amplitude of the seasonal cycle, while the polar motion primarily changes the annual mean temperatures. The polar motion induced temperature anomaly is such that it will act as a powerful negative feedback on ice sheet growth. We also explore the evolution of the coupled system composed of ice sheet mass and pole position. Oscillatory solutions result from the conflicting constraints of rotational and thermal stability. A positive mass anomaly on an otherwise featureless Earth is in rotational equilibrium only at the poles or the equator. The two polar equilibria are rotationally unstable, and the equatorial equilibrium, though rotationally stable, is thermally unstable. We find that with a plausible choice for the strength of coupling between the thermal and rotational systems, relatively modest external forcing can produce significant response at periods of 104–106 years, but it strongly attenuates polar motion at longer periods. We suggest that these coupled oscillations may contribute to the observed dominance of 100 kyr glacial cycles since the mid-Pleistocene and will tend to stabilize geographic patterns that are suitable to

  9. Evaluation of Rigid-Body Motion Compensation in Cardiac Perfusion SPECT Employing Polar-Map Quantification

    PubMed Central

    Pretorius, P. Hendrik; Johnson, Karen L.; King, Michael A.

    2016-01-01

    We have recently been successful in the development and testing of rigid-body motion tracking, estimation and compensation for cardiac perfusion SPECT based on a visual tracking system (VTS). The goal of this study was to evaluate in patients the effectiveness of our rigid-body motion compensation strategy. Sixty-four patient volunteers were asked to remain motionless or execute some predefined body motion during an additional second stress perfusion acquisition. Acquisitions were performed using the standard clinical protocol with 64 projections acquired through 180 degrees. All data were reconstructed with an ordered-subsets expectation-maximization (OSEM) algorithm using 4 projections per subset and 5 iterations. All physical degradation factors were addressed (attenuation, scatter, and distance dependent resolution), while a 3-dimensional Gaussian rotator was used during reconstruction to correct for six-degree-of-freedom (6-DOF) rigid-body motion estimated by the VTS. Polar map quantification was employed to evaluate compensation techniques. In 54.7% of the uncorrected second stress studies there was a statistically significant difference in the polar maps, and in 45.3% this made a difference in the interpretation of segmental perfusion. Motion correction reduced the impact of motion such that with it 32.8 % of the polar maps were statistically significantly different, and in 14.1% this difference changed the interpretation of segmental perfusion. The improvement shown in polar map quantitation translated to visually improved uniformity of the SPECT slices. PMID:28042170

  10. Variations in rotation rate and polar motion of a non-hydrostatic Titan

    NASA Astrophysics Data System (ADS)

    Coyette, Alexis; Baland, Rose-Marie; Van Hoolst, Tim

    2018-06-01

    Observation of the rotation of synchronously rotating satellites can help to probe their interior. Previous studies mostly assume that these large icy satellites are in hydrostatic equilibrium, although several measurements indicate that they deviate from such a state. Here we investigate the effect of non-hydrostatic equilibrium and of flow in the subsurface ocean on the rotation of Titan. We consider the variations in rotation rate and the polar motion due to (1) the gravitational force exerted by Saturn at orbital period and (2) exchanges of angular momentum between the seasonally varying atmosphere and the solid surface. The deviation of the mass distribution from hydrostaticity can significantly increase the diurnal libration and decrease the amplitude of the seasonal libration. The effect of the non-hydrostatic mass distribution is less important for polar motion, which is more sensitive to flow in the subsurface ocean. By including a large spectrum of atmospheric perturbations, the smaller than synchronous rotation rate measured by Cassini in the 2004-2009 period (Meriggiola et al., 2016) could be explained by the atmospheric forcing. If our interpretation is correct, we predict a larger than synchronous rotation rate in the 2009-2014 period.

  11. Agreement in Polar Motion Measurements During the MERIT Campaign

    NASA Astrophysics Data System (ADS)

    Pâquet, P.; Djurovic, D.; Techy, C.

    From the original polar motion (PM) measurements performed during the MERIT campaign, the Chandler and the annual components are removed. The analysis of the residuals shows a high level of significant correlation between the various techniques mainly for phenomena ranging from 30 days to a few months.

  12. Analytical treatment of particle motion in circularly polarized slab-mode wave fields

    NASA Astrophysics Data System (ADS)

    Schreiner, Cedric; Vainio, Rami; Spanier, Felix

    2018-02-01

    Wave-particle interaction is a key process in particle diffusion in collisionless plasmas. We look into the interaction of single plasma waves with individual particles and discuss under which circumstances this is a chaotic process, leading to diffusion. We derive the equations of motion for a particle in the fields of a magnetostatic, circularly polarized, monochromatic wave and show that no chaotic particle motion can arise under such circumstances. A novel and exact analytic solution for the equations is presented. Additional plasma waves lead to a breakdown of the analytic solution and chaotic particle trajectories become possible. We demonstrate this effect by considering a linearly polarized, monochromatic wave, which can be seen as the superposition of two circularly polarized waves. Test particle simulations are provided to illustrate and expand our analytical considerations.

  13. Analysis of the geodetic residuals as differences between geodetic and sum of the atmospheric and ocean excitation of polar motion

    NASA Astrophysics Data System (ADS)

    Kolaczek, B.; Pasnicka, M.; Nastula, J.

    2012-12-01

    Up to now studies of geophysical excitation of polar motion containing AAM (Atmospheric Angular Momentum), OAM (Oceanic Angular Momentum) and HAM (Hydrological Angular Momentum) excitation functions of polar motion have not achieved the total agreement between geophysical and determined geodetic excitation (GAM, Geodetic AngularMomentum) functions of polar motion...

  14. Robust automated classification of first-motion polarities for focal mechanism determination with machine learning

    NASA Astrophysics Data System (ADS)

    Ross, Z. E.; Meier, M. A.; Hauksson, E.

    2017-12-01

    Accurate first-motion polarities are essential for determining earthquake focal mechanisms, but are difficult to measure automatically because of picking errors and signal to noise issues. Here we develop an algorithm for reliable automated classification of first-motion polarities using machine learning algorithms. A classifier is designed to identify whether the first-motion polarity is up, down, or undefined by examining the waveform data directly. We first improve the accuracy of automatic P-wave onset picks by maximizing a weighted signal/noise ratio for a suite of candidate picks around the automatic pick. We then use the waveform amplitudes before and after the optimized pick as features for the classification. We demonstrate the method's potential by training and testing the classifier on tens of thousands of hand-made first-motion picks by the Southern California Seismic Network. The classifier assigned the same polarity as chosen by an analyst in more than 94% of the records. We show that the method is generalizable to a variety of learning algorithms, including neural networks and random forest classifiers. The method is suitable for automated processing of large seismic waveform datasets, and can potentially be used in real-time applications, e.g. for improving the source characterizations of earthquake early warning algorithms.

  15. New observations and a photographic atlas of polar-ring galaxies

    NASA Technical Reports Server (NTRS)

    Whitmore, Bradley C.; Lucas, Ray A.; Mcelroy, Douglas B.; Steiman-Cameron, Thomas Y.; Sackett, Penny D.

    1990-01-01

    A photographic atlas of polar-ring galaxies and related objects is presented. The atlas includes kinematically confirmed polar-ring galaxies (category A), good candidates based on their morphological appearance (category B), possible candidates (category C), and possibly related objects (category D). New photometric and kinematic observations are reported for several galaxies in the catalog, including observations that show that UGC 7576 and UGC 9796 ( = II ZW 73) are S0 galaxies with polar rings. Roughly 0.5 percent of all nearby S0 galaxies appear to have polar rings. When corrected for various selection effects (e.g., nonoptimal viewing orientation, possible dimming, or limited lifetime of the ring) the percentage increases to about 5 percent of S0 galaxies which have, or have had a polar ring.

  16. Estimate of procession and polar motion errors from planetary encounter station location solutions

    NASA Technical Reports Server (NTRS)

    Pease, G. E.

    1978-01-01

    Jet Propulsion Laboratory Deep Space Station (DSS) location solutions based on two JPL planetary ephemerides, DE 84 and DE 96, at eight planetary encounters were used to obtain weighted least squares estimates of precession and polar motion errors. The solution for precession error in right ascension yields a value of 0.3 X 10 to the minus 5 power plus or minus 0.8 X 10 to the minus 6 power deg/year. This maps to a right ascension error of 1.3 X 10 to the minus 5 power plus or minus 0.4 X 10 to the minus 5 power deg at the first Voyager 1979 Jupiter encounter if the current JPL DSS location set is used. Solutions for precession and polar motion using station locations based on DE 84 agree well with the solution using station locations referenced to DE 96. The precession solution removes the apparent drift in station longitude and spin axis distance estimates, while the encounter polar motion solutions consistently decrease the scatter in station spin axis distance estimates.

  17. High Frequency Fluctuations of Polar Motion During IGS'92 Campaign

    NASA Astrophysics Data System (ADS)

    Huang, Chengli; Jin, Wenjin; Liao, Dechun; Zhu, Wenyao; Wang, Jiexian

    1994-09-01

    During IGS'92 Campaign seven PM(Polar Motion) series provided by GPS Processing Centers are analysed in this paper. Some similar high frequency fluctuations in these PM series are detected by using spectra! analyses, least square adjustment and F-test as follows: there are short periodic fluctuations of 27.0, 16.5, 13.4, 10.4 day in X direction; and of 10.0, 20.5, 15.8 day in Y direction. And there are similar systematic deviations derived from the comparison of each series with EOP(IERS) 92 C 04. The inain cause of these systematic deviations is that the rotation between the reference frames of these series and ITRF91 exists. As for the reason, the coordinates of stations are not fixed (or partly fixed only) when solving X and Y with GPS data. The high frequency fluctuations of polar motion are explained to some extent by the excitation of atmospheric angular momentum.

  18. Modelling strong seismic ground motion: three-dimensional loading path versus wavefield polarization

    NASA Astrophysics Data System (ADS)

    Santisi d'Avila, Maria Paola; Lenti, Luca; Semblat, Jean-François

    2012-09-01

    Seismic waves due to strong earthquakes propagating in surficial soil layers may both reduce soil stiffness and increase the energy dissipation into the soil. To investigate seismic wave amplification in such cases, past studies have been devoted to one-directional shear wave propagation in a soil column (1D-propagation) considering one motion component only (1C-polarization). Three independent purely 1C computations may be performed ('1D-1C' approach) and directly superimposed in the case of weak motions (linear behaviour). This research aims at studying local site effects by considering seismic wave propagation in a 1-D soil profile accounting for the influence of the 3-D loading path and non-linear hysteretic behaviour of the soil. In the proposed '1D-3C' approach, the three components (3C-polarization) of the incident wave are simultaneously propagated into a horizontal multilayered soil. A 3-D non-linear constitutive relation for the soil is implemented in the framework of the Finite Element Method in the time domain. The complex rheology of soils is modelled by mean of a multisurface cyclic plasticity model of the Masing-Prandtl-Ishlinskii-Iwan type. The great advantage of this choice is that the only data needed to describe the model is the modulus reduction curve. A parametric study is carried out to characterize the changes in the seismic motion of the surficial layers due to both incident wavefield properties and soil non-linearities. The numerical simulations show a seismic response depending on several parameters such as polarization of seismic waves, material elastic and dynamic properties, as well as on the impedance contrast between layers and frequency content and oscillatory character of the input motion. The 3-D loading path due to the 3C-polarization leads to multi-axial stress interaction that reduces soil strength and increases non-linear effects. The non-linear behaviour of the soil may have beneficial or detrimental effects on the seismic

  19. Hydrological signal in polar motion excitation from a combination of geophysical and gravimetric series

    NASA Astrophysics Data System (ADS)

    Nastula, Jolanta; Winska, Malgorzata; Salstein, David A.

    2015-08-01

    One can estimate the hydrological signal in polar motion excitation as a residual, namely the difference between observed geodetic excitation functions (Geodetic Angular Momentum, GAM) and the sum of Atmospheric Angular Momentum (AAM) and Oceanic Angular Momentum (OAM).The aim of this study is to find the optimal model and results for hydrological excitation functions in terms of their agreement with the computed difference between GAM and atmospheric and oceanic signals.The atmospheric and oceanic model-based data that we use in this study are the geophysical excitation functions of AAM, OAM available from the Special Bureaus for the Atmosphere and Oceans of the Geophysical Global Fluids Center (GGFC) of the International Earth Rotation and Reference Systems Service (IERS). For the atmosphere and ocean, these functions are based on the mass and motion fields of the fluids.Global models of land hydrology are used to estimate hydrological excitation functions of polar motion (Hydrological Angular Momentum - HAM). These HAM series are the mass of water substance determined from the various types of land-based hydrological reservoirs. In addition the HAM are estimated from spherical harmonic coefficients of the Earth’s gravity field. We use several sets of degree-2, order-1 harmonics of the Earth’s gravity field, derived from the Gravity Recovery and Climate Experiment (GRACE), Satellite Laser Ranging (SLR), and Global Navigation Satellite Systems (GNSS) data.Finally, these several different HAM series are used to determine the best model of hydrological excitation of polar motion. The model is found by looking for the combination of these series that fits the geodetic residuals using the least-square method.In addition, we will access model results from the Coupled Model Intercomparison Project, fifth experiment (CMIP-5) to examine atmospheric excitations from the twentieth century and estimates for the twenty-first century to see the possible signals and trends

  20. Impact of GFZ's Effective Angular Momentum Forecasts on Polar Motion Prediction

    NASA Astrophysics Data System (ADS)

    Dill, Robert; Dobslaw, Henryk

    2017-04-01

    The Earth System Modelling group at GeoForschungsZentrum (GFZ) Potsdam offers now 6-day forecasts of Earth rotation excitation due to atmospheric, oceanic, and hydrologic angular momentum changes that are consistent with its 40 years-long EAM series. Those EAM forecasts are characterized by an improved long-term consistency due to the introduction of a time-invariant high-resolution reference topography into the AAM processing that accounts for occasional NWP model changes. In addition, all tidal signals from both atmosphere and ocean have been separated, and the temporal resolution of both AAM and OAM has been increased to 3 hours. Analysis of an extended set of EAM short-term hindcasts revealed positive prediction skills for up to 6 days into the future when compared to a persistent forecast. Whereas UT1 predictions in particular rely on an accurate AAM forecast, skillfull polar motion prediction requires high-quality OAM forecasts as well. We will present in this contribution the results from a multi-year hindcast experiment, demonstrating that the polar motion prediction as currently available from Bulletin A can be improved in particular for lead-times between 2 and 5 days by incorporating OAM forecasts. We will also report about early results obtained at Observatoire de Paris to predict polar motion from the integration of GFZ's 6-day EAM forecasts into the Liouville equation in a routine setting, that fully takes into account the operational latencies of all required input products.

  1. Variations in Rotation Rate and Polar Motion of a Non-hydrostatic Titan

    NASA Astrophysics Data System (ADS)

    Van Hoolst, T.; Coyette, A.; Baland, R. M.

    2017-12-01

    Observations of the rotation of large synchronously rotating satellites such as Titan can help to probe their interior. Previous studies (Van Hoolst et al. 2013, Richard et al. 2014, Coyette et al. 2016) mostly assume that Titan is in hydrostatic equilibrium, although several measurements indicate that it deviates from such a state. Here we investigate the effect of non-hydrostatic equilibrium and of flow in the subsurface ocean on the rotation of Titan. We consider (1) the periodic changes in Titan's rotation rate with a period equal to Titan's orbital period (diurnal librations) as a result of the gravitational torque exerted by Saturn, (2) the periodic changes in Titan's rotation rate with a main period equal to half the orbital period of Saturn (seasonal librations) and due to the dynamic variations in the atmosphere of Titan and (3) the periodic changes of the axis of rotation with respect to the figure axis of Titan (polar motion) with a main period equal to the orbital period of Saturn and due to the dynamic variations in the atmosphere of Titan. The non-hydrostatic mass distribution significantly influences the amplitude of the diurnal and seasonal librations. It is less important for polar motion, which is sensitive to flow in the subsurface ocean. The smaller than synchronous rotation rate measured by Cassini (Meriggiola 2016) can be explained by the atmospheric forcing.

  2. Free polar motion of a triaxial and elastic body in Hamiltonian formalism: Application to the Earth and Mars

    NASA Astrophysics Data System (ADS)

    Folgueira, M.; Souchay, J.

    2005-03-01

    The purpose of this paper is to show how to solve in Hamiltonian formalism the equations of the polar motion of any arbitrarily shaped elastic celestial body, i.e. the motion of its rotation axis (or angular momentum) with respect to its figure axis. With this aim, we deduce from canonical equations related to the rotational Hamiltonian of the body, the analytical solution for its free polar motion which depends both on the elasticity and on its moments of inertia. In particular, we study the influence of the phase angle δ, responsible for the dissipation, on the damping of the polar motion. In order to validate our analytical equations, we show that, to first order, they are in complete agreement with those obtained from the classical Liouville equations. Then we adapt our calculations to the real data obtained from the polar motion of the Earth (polhody). For that purpose, we characterize precisely the differences in radius J-χ and in angle l-θ between the polar coordinates (χ,θ) and (J,l) representing respectively the motion of the axis of rotation of the Earth and the motion of its angular momentum axis, with respect to an Earth-fixed reference frame, after showing the influence of the choice of the origin on these coordinates, and on the determination of the Chandler period as well. Then we show that the phase lag δ responsible for the damping for the selected time interval, between Feb. 1982 and Apr. 1990, might be of the order of δ ≈ 6 °, according to a numerical integration starting from our analytical equations. Moreover, we emphasize the presence in our calculations for both χ and θ, of an oscillation with a period TChandler/2, due to the triaxial shape of our planet, and generally not taken into account. In a last step, we apply our analytical formulation to the polar motion of Mars, thus showing the high dependence of its damping on the poorly known value of its Love number k. Moreover we emphasize the large oscillations of Mars' polar

  3. Theoretical investigation of polarization effects in solution: Importance of solvent collective motions

    NASA Astrophysics Data System (ADS)

    Ishida, Tateki

    2015-01-01

    Recent theoretical studies on interesting topics related to polarization effects in solutions are presented. As one of interesting topics, ionic liquids (ILs) solvents are focused on. The collective dynamics of electronic polarizability through interionic dynamics and the effect of polarization in ILs, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]), are studied with molecular dynamics simulation. Also, the time-dependent polarization effect on the probe betaine dye molecule, pyridinium N-phenoxide, in water is investigated by a time-dependent reference interaction site model self-consistent field (time-dependent RISM-SCF) approach. The importance of considering polarization effects on solution systems related to solvent collective motions is shown.

  4. Theoretical investigation of polarization effects in solution: Importance of solvent collective motions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishida, Tateki

    2015-01-22

    Recent theoretical studies on interesting topics related to polarization effects in solutions are presented. As one of interesting topics, ionic liquids (ILs) solvents are focused on. The collective dynamics of electronic polarizability through interionic dynamics and the effect of polarization in ILs, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF{sub 6}]), are studied with molecular dynamics simulation. Also, the time-dependent polarization effect on the probe betaine dye molecule, pyridinium N-phenoxide, in water is investigated by a time-dependent reference interaction site model self-consistent field (time-dependent RISM-SCF) approach. The importance of considering polarization effects on solution systems related to solvent collective motions is shown.

  5. Contrasting accounts of direction and shape perception in short-range motion: Counterchange compared with motion energy detection.

    PubMed

    Norman, Joseph; Hock, Howard; Schöner, Gregor

    2014-07-01

    It has long been thought (e.g., Cavanagh & Mather, 1989) that first-order motion-energy extraction via space-time comparator-type models (e.g., the elaborated Reichardt detector) is sufficient to account for human performance in the short-range motion paradigm (Braddick, 1974), including the perception of reverse-phi motion when the luminance polarity of the visual elements is inverted during successive frames. Human observers' ability to discriminate motion direction and use coherent motion information to segregate a region of a random cinematogram and determine its shape was tested; they performed better in the same-, as compared with the inverted-, polarity condition. Computational analyses of short-range motion perception based on the elaborated Reichardt motion energy detector (van Santen & Sperling, 1985) predict, incorrectly, that symmetrical results will be obtained for the same- and inverted-polarity conditions. In contrast, the counterchange detector (Hock, Schöner, & Gilroy, 2009) predicts an asymmetry quite similar to that of human observers in both motion direction and shape discrimination. The further advantage of counterchange, as compared with motion energy, detection for the perception of spatial shape- and depth-from-motion is discussed.

  6. Low-Energy Electron Effects on the Polar Wind Observed by the POLAR Spacecraft

    NASA Technical Reports Server (NTRS)

    Horwitz, J. L.; Su, Y.-J.; Dors, E. E.; Moore, Thomas E.; Giles, Barbara L.; Chandler, Michael O.; Craven, Paul D.; Chang, S.-W.; Scudder, J.

    1998-01-01

    Large ion outflow velocity variation at POLAR apogee have been observed. The observed H+ flow velocities were in the range of 23-110 km/s and 0+ flow velocities were in the range of 5-25 km/s. These velocity ranges lie between those predicted by simulations of the photoelectron-driven polar wind and "baseline" polar wind. The electric current contributions of the photoelectrons and polar rain are expected to control the size and altitude of an electric potential drop which accelerates the polar wind at relatively high altitudes. In this presentation, we compare polar wind characteristics observed near 5000 km and 8 RE altitudes by the Thermal Ion Dynamics Experiment (TIDE) with measurements of low-energy electrons sampled by HYDRA, both from the POLAR spacecraft, to examine possible effects of the polar rain and photoelectrons on the polar wind. Both correlations and anti-correlations are found between the polar wind velocities and the polar rain fluxes at POLAR apogee during different polar cap crossings. Also, the low-altitude upward/downward photoelectron spectra are used to estimates the potential drops above the spacecraft. We interpret these observations in terms of the effects that both photoelectrons and polar rain may have on the electric potential and polar wind acceleration along polar cap magnetic field lines.

  7. The use of gravimetric data from GRACE mission in the understanding of polar motion variations

    NASA Astrophysics Data System (ADS)

    Seoane, L.; Nastula, J.; Bizouard, C.; Gambis, D.

    2009-08-01

    Tesseral coefficients C21 and S21 derived from Gravity Recovery and Climate Experiment (GRACE) observations allow to compute the mass term of the polar-motion excitation function. This independent estimation can improve the geophysical models and, in addition, determine the unmodelled phenomena. In this paper, we intend to validate the polar motion excitation derived from GRACE's last release (GRACE Release 4) computed by different institutes: GeoForschungsZentrum (GFZ), Postdam, Germany; Center for Space Research (CSR), Austin, USA; Jet Propulsion Laboratory (JPL), Pasadena, USA, and the Groupe de Recherche en Géodésie Spatiale (GRGS), Toulouse, France. For this purpose, we compare these excitations functions first to the mass term obtained from observed Earth's rotation variations free of the motion term and, second, to the mass term estimated from geophysical fluids models. We confirm the large improvement of the CSR solution, and we show that the GRGS estimate is also well correlated with the geodetic observations. Significant discrepancies exist between the solutions of each centre. The source of these differences is probably related to the data processing strategy. We also consider residuals computed after removing the geophysical models or the gravimetric solutions from the geodetic mass term. We show that the residual excitation based on models is smoother than the gravimetric data, which are still noisy. Still, they are comparable for the χ2 component. It appears that χ2 residual signals using GFZ and JPL data have less variability. Finally, for assessing the impact of the geophysical fluids models choice on our results, we checked two different oceanic excitation series. We show the significant differences in the residuals correlations, especially for the χ1 more sensitive to the oceanic signals.

  8. Lightning mapping and dual-polarization radar observations of electrified storms at Langmuir Laboratory

    NASA Astrophysics Data System (ADS)

    Krehbiel, P. R.; Hyland, P. T.; Edens, H. E.; Rison, W.

    2013-12-01

    Observations being made at Langmuir Laboratory with the NM Tech Lightning Mapping Array (LMA) and the University of Oklahoma ARRC PX-1000 dual polarization X-band radar strongly confirm and expand upon the normal polarity tripolar electrical structure of central New Mexico storms. This is in sharp contrast with the anomalously electrified storm structures observed in northern Colorado during and subsequent to the 2012 DC3 field campaign, as seen with North Colorado LMA and CSU CHILL dual-polarization radar observations. In this presentation we focus on the New Mexico observations, and several modes in which the tripolar structure appears initially to develop and evolve with time. Central New Mexico storms are often prolific producers of negative cloud-to-ground (CG) flashes, but rarely produce positive CGs. By contrast, many or most north Colorado storms are CG-deficient, with the relatively few CG discharges being of predominantly positive polarity. In addition, NM storms commonly produce bolt-from-the-blue (BFB) negative CGs, whereas anomalously electrified Colorado storms produce none. The occurrence of BFBs is indicative of a relatively weak lower positive charge region, while the occurrence of normal downward -CGs is indicative of a somewhat stronger lower positive charge. The lack of -CGs in Colorado storms results from lower positive charge being a dominant storm charge that is elevated in altitude. These and other basic features of the electrically activity of storms, coupled with dual polarization and Doppler radar observations of hydrometeor types and motions, are leading to a better understanding of the storm electrification processes.

  9. Polar motion spectra based upon Doppler IPMS and BIH data

    NASA Technical Reports Server (NTRS)

    Graber, M. A.

    1975-01-01

    In comparing polar motion spectra, an oscillation was found at 1.3 cpy which might be due to an Eulerian motion of the solid inner core. An extended 15-year data set was filtered and analyzed to yield a Chandler peak with a period 430.8 solar days and a full width at half-maximum of 0.7 days (Q-600). The data was reanalyzed in overlapping 3-year segments and indicates that the excitation of the Chandler wobble is a discrete process and that periods as long as three years occur in which the driving mechanism is essentially quiescent.

  10. ROTATING MOTIONS AND MODELING OF THE ERUPTING SOLAR POLAR-CROWN PROMINENCE ON 2010 DECEMBER 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Yingna; Van Ballegooijen, Adriaan, E-mail: ynsu@head.cfa.harvard.edu

    2013-02-10

    A large polar-crown prominence composed of different segments spanning nearly the entire solar disk erupted on 2010 December 6. Prior to the eruption, the filament in the active region part split into two layers: a lower layer and an elevated layer. The eruption occurs in several episodes. Around 14:12 UT, the lower layer of the active region filament breaks apart: One part ejects toward the west, while the other part ejects toward the east, which leads to the explosive eruption of the eastern quiescent filament. During the early rise phase, part of the quiescent filament sheet displays strong rolling motionmore » (observed by STEREO-B) in the clockwise direction (viewed from east to west) around the filament axis. This rolling motion appears to start from the border of the active region, then propagates toward the east. The Atmospheric Imaging Assembly (AIA) observes another type of rotating motion: In some other parts of the erupting quiescent prominence, the vertical threads turn horizontal, then turn upside down. The elevated active region filament does not erupt until 18:00 UT, when the erupting quiescent filament has already reached a very large height. We develop two simplified three-dimensional models that qualitatively reproduce the observed rolling and rotating motions. The prominence in the models is assumed to consist of a collection of discrete blobs that are tied to particular field lines of a helical flux rope. The observed rolling motion is reproduced by continuous twist injection into the flux rope in Model 1 from the active region side. Asymmetric reconnection induced by the asymmetric distribution of the magnetic fields on the two sides of the filament may cause the observed rolling motion. The rotating motion of the prominence threads observed by AIA is consistent with the removal of the field line dips in Model 2 from the top down during the eruption.« less

  11. Relationships of earthquakes (and earthquake-associated mass movements) and polar motion as determined by Kalman filtered, Very-Long-Baseline-Interferometry

    NASA Technical Reports Server (NTRS)

    Preisig, Joseph Richard Mark

    1988-01-01

    A Kalman filter was designed to yield optimal estimates of geophysical parameters from Very Long Baseline Interferometry (VLBI) group delay data. The geophysical parameters are the polar motion components, adjustments to nutation in obliquity and longitude, and a change in the length of day parameter. The VLBI clock (and clock rate) parameters and atmospheric zenith delay parameters are estimated simultaneously. Filter background is explained. The IRIS (International Radio Interferometric Surveying) VLBI data are Kalman filtered. The resulting polar motion estimates are examined. There are polar motion signatures at the times of three large earthquakes occurring in 1984 to 1986: Mexico, 19 September, 1985 (Magnitude M sub s = 8.1); Chile, 3 March, 1985 (M sub s = 7.8); and Taiwan, 14 November, 1986 (M sub s = 7.8). Breaks in polar motion occurring about 20 days after the earthquakes appear to correlate well with the onset of increased regional seismic activity and a return to more normal seismicity (respectively). While the contribution of these three earthquakes to polar motion excitations is small, the cumulative excitation due to earthquakes, or seismic phenomena over a Chandler wobble damping period may be significant. Mechanisms for polar motion excitation due to solid earth phenomena are examined. Excitation functions are computed, but the data spans are too short to draw conclusions based on these data.

  12. The enhanced nodal equilibrium ocean tide and polar motion

    NASA Technical Reports Server (NTRS)

    Sanchez, B. V.

    1979-01-01

    The tidal response of the ocean to long period forcing functions was investigated. The results indicate the possibility of excitation of a wobble component with the amplitude and frequency indicated by the data. An enhancement function for the equilibrium tide was postulated in the form of an expansion in zonal harmonics and the coefficients of such an expansion were estimated so as to obtain polar motion components of the required magnitude.

  13. Collective motion of active Brownian particles with polar alignment.

    PubMed

    Martín-Gómez, Aitor; Levis, Demian; Díaz-Guilera, Albert; Pagonabarraga, Ignacio

    2018-04-04

    We present a comprehensive computational study of the collective behavior emerging from the competition between self-propulsion, excluded volume interactions and velocity-alignment in a two-dimensional model of active particles. We consider an extension of the active brownian particles model where the self-propulsion direction of the particles aligns with the one of their neighbors. We analyze the onset of collective motion (flocking) in a low-density regime (10% surface area) and show that it is mainly controlled by the strength of velocity-alignment interactions: the competition between self-propulsion and crowding effects plays a minor role in the emergence of flocking. However, above the flocking threshold, the system presents a richer pattern formation scenario than analogous models without alignment interactions (active brownian particles) or excluded volume effects (Vicsek-like models). Depending on the parameter regime, the structure of the system is characterized by either a broad distribution of finite-sized polar clusters or the presence of an amorphous, highly fluctuating, large-scale traveling structure which can take a lane-like or band-like form (and usually a hybrid structure which is halfway in between both). We establish a phase diagram that summarizes collective behavior of polar active brownian particles and propose a generic mechanism to describe the complexity of the large-scale structures observed in systems of repulsive self-propelled particles.

  14. A demonstration of centimeter-level monitoring of polar motion with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Lindqwister, U. J.; Freedman, A. P.; Blewitt, G.

    1992-01-01

    Daily estimates of the Earth's pole position were obtained with the Global Positioning System (GPS) by using measurements obtained during the GPS IERS (International Earth Rotation Service) and Geodynamics (GIG'91) experiment from 22 Jan. to 13 Feb. 1991. Data from a globally distributed network consisting of 21 Rogue GPS receivers were chosen for the analysis. A comparison of the GPS polar motion series with nine 24-hour very long baseline interferometry (VLBI) estimates yielded agreement in the day-to-day pole position of about 1.5 cm for both X and Y polar motion. A similar comparison of GPS and satellite laser ranging (SLR) data showed agreement to about 1.0 cm. These preliminary results indicate that polar motion can be determined by GPS independent of, and at a level comparable to, that which is obtained from either VLBI or SLR. Furthermore, GPS can provide these data with a daily frequency that neither alternative technique can readily achieve. Thus, GPS promises to be a powerful tool for determining high-frequency platform parameter variation, essential for the ultraprecise spacecraft-tracking requirements of the coming years.

  15. Observation and theory of reorientation-induced spectral diffusion in polarization-selective 2D IR spectroscopy.

    PubMed

    Kramer, Patrick L; Nishida, Jun; Giammanco, Chiara H; Tamimi, Amr; Fayer, Michael D

    2015-05-14

    In nearly all applications of ultrafast multidimensional infrared spectroscopy, the spectral degrees of freedom (e.g., transition frequency) and the orientation of the transition dipole are assumed to be decoupled. We present experimental results which confirm that frequency fluctuations can be caused by rotational motion and observed under appropriate conditions. A theory of the frequency-frequency correlation function (FFCF) observable under various polarization conditions is introduced, and model calculations are found to reproduce the qualitative trends in FFCF rates. The FFCF determined with polarization-selective two-dimensional infrared (2D IR) spectroscopy is a direct reporter of the frequency-rotational coupling. For the solute methanol in a room temperature ionic liquid, the FFCF of the hydroxyl (O-D) stretch decays due to spectral diffusion with different rates depending on the polarization of the excitation pulses. The 2D IR vibrational echo pulse sequence consists of three excitation pulses that generate the vibrational echo, a fourth pulse. A faster FFCF decay is observed when the first two excitation pulses are polarized perpendicular to the third pulse and the echo, 〈XXY Y〉, than in the standard all parallel configuration, 〈XXXX〉, in which all four pulses have the same polarization. The 2D IR experiment with polarizations 〈XY XY〉 ("polarization grating" configuration) gives a FFCF that decays even more slowly than in the 〈XXXX〉 configuration. Polarization-selective 2D IR spectra of bulk water do not exhibit polarization-dependent FFCF decays; spectral diffusion is effectively decoupled from reorientation in the water system.

  16. Observation and theory of reorientation-induced spectral diffusion in polarization-selective 2D IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kramer, Patrick L.; Nishida, Jun; Giammanco, Chiara H.; Tamimi, Amr; Fayer, Michael D.

    2015-05-01

    In nearly all applications of ultrafast multidimensional infrared spectroscopy, the spectral degrees of freedom (e.g., transition frequency) and the orientation of the transition dipole are assumed to be decoupled. We present experimental results which confirm that frequency fluctuations can be caused by rotational motion and observed under appropriate conditions. A theory of the frequency-frequency correlation function (FFCF) observable under various polarization conditions is introduced, and model calculations are found to reproduce the qualitative trends in FFCF rates. The FFCF determined with polarization-selective two-dimensional infrared (2D IR) spectroscopy is a direct reporter of the frequency-rotational coupling. For the solute methanol in a room temperature ionic liquid, the FFCF of the hydroxyl (O-D) stretch decays due to spectral diffusion with different rates depending on the polarization of the excitation pulses. The 2D IR vibrational echo pulse sequence consists of three excitation pulses that generate the vibrational echo, a fourth pulse. A faster FFCF decay is observed when the first two excitation pulses are polarized perpendicular to the third pulse and the echo, , than in the standard all parallel configuration, , in which all four pulses have the same polarization. The 2D IR experiment with polarizations ("polarization grating" configuration) gives a FFCF that decays even more slowly than in the configuration. Polarization-selective 2D IR spectra of bulk water do not exhibit polarization-dependent FFCF decays; spectral diffusion is effectively decoupled from reorientation in the water system.

  17. Polarization Observations with the Cosmic Background Imager

    NASA Astrophysics Data System (ADS)

    Cartwright, J. K.; Padin, S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Taylor, G. B.

    2001-05-01

    We describe polarization observations of the CMBR with the Cosmic Background Imager, a 13 element interferometer which operates in the 26-36 GHz band from a site at 5000m in northern Chile. The array consists of 90-cm Cassegrain antennas mounted on a single, fully steerable platform; this platform can be rotated about the optical axis to facilitate polarization observations. The CBI employs single mode circularly polarized receivers, of which 12 are configured for LCP and one is configured for RCP. The 12 cross polarized baselines sample multipoles from l 600 to l 3500. The instrumental polarization of the CBI was calibrated with observations of 3C279, a bright polarized source which is unresolved by the CBI. Because the centimeter flux of 3C279 is variable, it was monitored twice per month for 8 months in 2000 with the VLA at 22 and 43 GHz. These observations also established the stability of the polarization characteristics of the CBI. This work was made possible by NSF grant AST-9802989

  18. Apparent Polar Wander of the Pacific Plate Since the Cretaeous and Implications for True Polar Wander and for the Plate Motion Circuit Through Antarctica

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Woodworth, D.

    2017-12-01

    In this presentation we review prior work on Pacific plate apparent polar wander and its implications (1) for true polar wander since ≈125 Ma and (2) for testing the global plate motion circuit through Antarctica. We furthermore update prior analyses using our recently improved and expanded apparent polar wander path for the Pacific plate [Woodworth et al., this meeting]. Three episodes of rapid motion of Pacific hotspots relative to the spin axis have occurred in the past ≈125 Ma: a ≈15° shift near 85 Ma [Gordon, 1983; Sager and Koppers, 2000], an ≈8° shift near the age of the Hawaiian-Emperor Bend [Petronotis et al., 1994; Woodworth et al., this meeting], and a 3°-°4 shift since 12 Ma [Woodworth et al., this meeting]. These shifts are in general agreement with the shifts of Indo-Atlantic hotspots relative to the spin axis. It has long been recognized that paleomagnetic poles from the continents, when rotated into the Pacific plate reference frame through plate motion circuits through Antarctica, are inconsistent with indigenous Pacific plate paleomagnetic poles and paleolatitudes [Suárez and Molnar, 1980; Gordon and Cox, 1980; Acton and Gordon, 1994]. We update such tests using our new and improved Pacific apparent polar wander path and show that the plate motion circuit through Antarctica still fails such paleomagnetic tests of consistency. Implications for global plate reconstructions and the hotspot reference frame will be discussed.

  19. Polarization Observations with the Cosmic Background Imager

    NASA Astrophysics Data System (ADS)

    Cartwright, J. K.; Padin, S.; Pearson, T. J.; Readhead, A. C. S.; Shepherd, M. C.; Taylor, G. B.

    2000-12-01

    The linear polarization of the Cosmic Microwave Background Radiation is a fundamental prediction of the standard model. We report a limit on the polarization of the CMBR for l ~660. This limit was obtained with the Cosmic Background Imager, a 13 element interferometer which operates in the 26-36 GHz band from a site at 5000m in northern Chile. The array consists of 90-cm Cassegrain antennas mounted on a single, fully steerable platform; this platform can be rotated about the optical axis to facilitate polarization observations. The CBI employs single mode circularly polarized receivers, of which 12 are configured for LCP and one is configured for RCP. The 12 cross polarized baselines sample multipoles from l ~600 to l ~3500. The instrumental polarization of the CBI was calibrated with observations of 3C279, a bright polarized source which is unresolved by the CBI. Because the centimeter flux of 3C279 is variable, it was monitored twice per month for 8 months in '00 with the VLA at 22 and 43 GHz. These observations also established the stability of the polarization characteristics of the CBI. This work was made possible by NSF grant AST-9802989

  20. A comparison of ITRF2014, DTRF2014 and JTRF2014 polar motion series with geophysical excitation data

    NASA Astrophysics Data System (ADS)

    Rebischung, Paul; Chen, Wei; Ray, Jim

    2017-04-01

    Three solutions were generated in response to the 2014 update by the IERS of the International Terrestrial Reference Frame: ITRF2014, the official solution from IGN; DTRF2014, from DGFI; JTRF2014, from JPL. Each incorporates essentially the same time series information of geocentric station positions + Earth rotation parameters + their associated variance-covariances from the four contributing space geodetic techniques (SLR, VLBI, DORIS, GNSS) plus local 3D vector ties (measured by conventional surveying methods) that relate a subset of co-located stations. Given the fact that measurements by all the techniques, as well as the local ties, suffer significant unmodeled systematic errors that are poorly understood, the covariance matrices are not reliable except for their geometrical aspect. So the three combination strategies differ not just in their mathematical procedures, but more importantly in how the systematic errors are handled (or not). Factors include the relative weighting of inputs, modeling of non-linear station motions, detection of time series discontinuities, etc. The final combination results therefore also differ, mostly in rather subtle ways. There are very few ways to make external evaluations of the quality of the various combinations as independent observations are generally not accurate enough. However, one approach has been shown to give useful insight by comparing the daily polar motions with geophysical excitations computed from global circulation models for atmosphere, ocean, and hydrology. J. Kouba (2010) did this for ITRF2008 and DTRF2008 and found an excess of high-frequency rotational scatter in the DGFI solution. After the development of the IGS in the 1990s, the ITRF daily polar motion accuracy has been about 30 uas or 1 mm of surface rotation. The corresponding geophysical models are not nearly so accurate but their independence does provide a valuable reference against which the geodetic results can be compared. Direct inter

  1. Spitzer Space Telescope Observations of Polars

    NASA Astrophysics Data System (ADS)

    Howell, S. B.; Brinkworth, C.; Chun, H.; Thomas, B.; Stefaniak, L.; Hoard, D. W.

    2005-12-01

    We have obtained the first Spitzer Space telescope observations of short orbital period polars. Using the Infrared Array Camera (IRAC), observations have been made in four broadband filters centered at 3.6, 4.5, 5.8, and 8.0 microns of the polars V347 Pav, GG Leo, RX J0154, and EF Eri. Spectral energy distributions have been produced for all four stars and in each case indicate excess emission in the longest wavebands. We examine our observations with respect to these binaries containing late M or brown dwarf type secondaries. We discuss the implications of the observed long wavelength emission excess in terms of the presence of dust and/or other possible emission mechanisms. The impact of this finding on the evolution of polars is also presented.

  2. Baryon spectroscopy with polarization observables from CLAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauch, Steffen

    The spectrum of nucleon excitations is dominated by broad and overlapping resonances. Polarization observables in photoproduction reactions are key in the study of these excitations. They give indispensable constraints to partial-wave analyses and help clarify the spectrum. A series of polarized photoproduction experiments have been performed at the Thomas Jefferson National Accelerator Facility with the CEBAF Large Acceptance Spectrometer (CLAS). These measurements include data with linearly and circularly polarized tagged-photon beams, longitudinally and transversely polarized proton and deuterium targets, and recoil polarizations through the observation of the weak decay of hyperons. An overview of these studies and recent results willmore » be given.« less

  3. Polarization observables using positron beams

    NASA Astrophysics Data System (ADS)

    Schmidt, Axel

    2018-05-01

    The discrepancy between polarized and unpolarized measurements of the proton's electromagnetic form factors is striking, and suggests that two-photon exchange (TPE) may be playing a larger role in elastic electron-proton scattering than is estimated in standard radiative corrections formulae. While TPE is difficult to calculate in a model-independent way, it can be determined experimentally from asymmetries between electron-proton and positron-proton scattering. The possibility of a polarized positron beam at Jefferson Lab would open the door to measurements of TPE using polarization observables. In these proceedings, I examine the feasibility of measuring three such observables with positron scattering. Polarization-transfer, specifically the ɛ-dependence for fixed Q2, is an excellent test of TPE, and the ability to compare electrons and positrons would lead to a drastic reduction of systematics. However, such a measurement would be severely statistically limited. Normal single-spin asymmetries (SSAs) probe the imaginary part of the TPE amplitude and can be improved by simultaneous measurements with electron and positron beams. Beam-normal SSAs are too small to be measured with the proposed polarized positron beam, but target-normal SSAs could be feasibly measured with unpolarized positrons in the spectrometer halls. This technique should be included in the physics case for developing a positron source for Jefferson Lab.

  4. Absolute plate motions and true polar wander in the absence of hotspot tracks.

    PubMed

    Steinberger, Bernhard; Torsvik, Trond H

    2008-04-03

    The motion of continents relative to the Earth's spin axis may be due either to rotation of the entire Earth relative to its spin axis--true polar wander--or to the motion of individual plates. In order to distinguish between these over the past 320 Myr (since the formation of the Pangaea supercontinent), we present here computations of the global average of continental motion and rotation through time in a palaeomagnetic reference frame. Two components are identified: a steady northward motion and, during certain time intervals, clockwise and anticlockwise rotations, interpreted as evidence for true polar wander. We find approximately 18 degrees anticlockwise rotation about 250-220 Myr ago and the same amount of clockwise rotation about 195-145 Myr ago. In both cases the rotation axis is located at about 10-20 degrees W, 0 degrees N, near the site that became the North American-South American-African triple junction at the break-up of Pangaea. This was followed by approximately 10 degrees clockwise rotation about 145-135 Myr ago, followed again by the same amount of anticlockwise rotation about 110-100 Myr ago, with a rotation axis in both cases approximately 25-50 degrees E in the reconstructed area of North Africa and Arabia. These rotation axes mark the maxima of the degree-two non-hydrostatic geoid during those time intervals, and the fact that the overall net rotation since 320 Myr ago is nearly zero is an indication of long-term stability of the degree-two geoid and related mantle structure. We propose a new reference frame, based on palaeomagnetism, but corrected for the true polar wander identified in this study, appropriate for relating surface to deep mantle processes from 320 Myr ago until hotspot tracks can be used (about 130 Myr ago).

  5. Effect of horizontal displacements due to ocean tide loading on the determination of polar motion and UT1

    NASA Astrophysics Data System (ADS)

    Scherneck, Hans-Georg; Haas, Rüdiger

    We show the influence of horizontal displacements due to ocean tide loading on the determination of polar motion and UT1 (PMU) on the daily and subdaily timescale. So called ‘virtual PMU variations’ due to modelling errors of ocean tide loading are predicted for geodetic Very Long Baseline Interferometry (VLBI) networks. This leads to errors of subdaily determination of PMU. The predicted effects are confirmed by the analysis of geodetic VLBI observations.

  6. ON THE PARALLEL AND PERPENDICULAR PROPAGATING MOTIONS VISIBLE IN POLAR PLUMES: AN INCUBATOR FOR (FAST) SOLAR WIND ACCELERATION?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jiajia; Wang, Yuming; McIntosh, Scott W.

    We combine observations of the Coronal Multi-channel Polarimeter and the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory to study the characteristic properties of (propagating) Alfvénic motions and quasi-periodic intensity disturbances in polar plumes. This unique combination of instruments highlights the physical richness of the processes taking place at the base of the (fast) solar wind. The (parallel) intensity perturbations with intensity enhancements around 1% have an apparent speed of 120 km s{sup −1} (in both the 171 and 193 Å passbands) and a periodicity of 15 minutes, while the (perpendicular) Alfvénic wave motions have a velocity amplitude ofmore » 0.5 km s{sup −1}, a phase speed of 830 km s{sup −1}, and a shorter period of 5 minutes on the same structures. These observations illustrate a scenario where the excited Alfvénic motions are propagating along an inhomogeneously loaded magnetic field structure such that the combination could be a potential progenitor of the magnetohydrodynamic turbulence required to accelerate the fast solar wind.« less

  7. Agreement in polar motion measurements during the MERIT campaign

    NASA Astrophysics Data System (ADS)

    Djurovic, D.; Techy, C.; Paquet, P.

    From the original polar motion (PM) measurements performed during the MERIT Campaign, the Chandler and the annual components are removed. The analysis of the residuals shows a high level of significant correlation between the various techniques mainly for phenomenon ranging from 30 days to a few months. For periods smaller than one month the series are not correlated except for the X component, deduced from laser and Doppler techniques, which remains significant at the 99 percent level. These results led to the belief for a new earth rotation service open to different sources of data.

  8. Observer-dependent sign inversions of polarization singularities.

    PubMed

    Freund, Isaac

    2014-10-15

    We describe observer-dependent sign inversions of the topological charges of vector field polarization singularities: C points (points of circular polarization), L points (points of linear polarization), and two virtually unknown singularities we call γ(C) and α(L) points. In all cases, the sign of the charge seen by an observer can change as she changes the direction from which she views the singularity. Analytic formulas are given for all C and all L point sign inversions.

  9. The Polar Cusp Observed by Cluster Under Constant Imf-Bz Southward

    NASA Astrophysics Data System (ADS)

    Escoubet, C. P.; Berchem, J.; Pitout, F.; Trattner, K. J.; Richard, R. L.; Taylor, M. G.; Soucek, J.; Grison, B.; Laakso, H. E.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.; Daly, P. W.

    2011-12-01

    The Earth's magnetic field is influenced by the interplanetary magnetic field (IMF), specially at the magnetopause where both magnetic fields enter in direct contact and magnetic reconnection can be initiated. In the polar regions, the polar cusp that extends from the magnetopause down to the ionosphere is also directly influenced. The reconnection not only allow ions and electrons from the solar wind to enter the polar cusp but also give an impulse to the magnetic field lines threading the polar cusp through the reconnection electric field. A dispersion in energy of the ions is subsequently produced by the motion of field lines and the time-of-flight effect on down-going ions. If reconnection is continuous and operates at constant rate, the ion dispersion is smooth and continuous. On the other hand if the reconnection rate varies, we expect interruption in the dispersion forming energy steps or staircase. Similarly, multiple entries near the magnetopause could also produce steps at low or mid-altitude when a spacecraft is crossing subsequently the field lines originating from these multiple sources. Cluster with four spacecraft following each other in the mid-altitude cusp can be used to distinguish between these "temporal" and "spatial" effects. We will show two Cluster cusp crossings where the spacecraft were separated by a few minutes. The energy dispersions observed in the first crossing were the same during the few minutes that separated the spacecraft. In the second crossing, two ion dispersions were observed on the first spacecraft and only one of the following spacecraft, about 10 min later. The detailed analysis indicates that these steps result from spatial structures.

  10. Motion-artifact-robust, polarization-resolved second-harmonic-generation microscopy based on rapid polarization switching with electro-optic Pockells cell and its application to in vivo visualization of collagen fiber orientation in human facial skin

    PubMed Central

    Tanaka, Yuji; Hase, Eiji; Fukushima, Shuichiro; Ogura, Yuki; Yamashita, Toyonobu; Hirao, Tetsuji; Araki, Tsutomu; Yasui, Takeshi

    2014-01-01

    Polarization-resolved second-harmonic-generation (PR-SHG) microscopy is a powerful tool for investigating collagen fiber orientation quantitatively with low invasiveness. However, the waiting time for the mechanical polarization rotation makes it too sensitive to motion artifacts and hence has hampered its use in various applications in vivo. In the work described in this article, we constructed a motion-artifact-robust, PR-SHG microscope based on rapid polarization switching at every pixel with an electro-optic Pockells cell (PC) in synchronization with step-wise raster scanning of the focus spot and alternate data acquisition of a vertical-polarization-resolved SHG signal and a horizontal-polarization-resolved one. The constructed PC-based PR-SHG microscope enabled us to visualize orientation mapping of dermal collagen fiber in human facial skin in vivo without the influence of motion artifacts. Furthermore, it implied the location and/or age dependence of the collagen fiber orientation in human facial skin. The robustness to motion artifacts in the collagen orientation measurement will expand the application scope of SHG microscopy in dermatology and collagen-related fields. PMID:24761292

  11. Quasi-periodic Reversals of Radio Polarization at 17 GHz Observed in the 2002 April 21 Solar Event

    NASA Astrophysics Data System (ADS)

    Huang, Guangli; Lin, Jun

    2006-03-01

    We investigate high spatial resolution radio polarization data obtained by the Nobeyama Radioheliograph (NoRH) and high time resolution data observed with the Nobeyama Radio Polarimeters (NoRP) during the well-studied flare/CME event of 2002 April 21. A 17 GHz radio source at the loop top was seen by NoRH to move upward together with the expanding flare loops at a speed of around 10 km s-1. In the 5 minutes before the source began its upward motion, the Stokes V of the radio signals at 17 GHz showed quasi-periodic reversals between left-circular polarization (LCP) and right-circular polarization (RCP). Following this interval, the polarizations gradually turned to LCP. During this period, the polarization of the corresponding footpoint source maintained the RCP sense. The reversal of Stokes V between RCP and LCP was also detected at lower frequencies (1-2 GHz) by NoRP, without spatial resolution. The observed reversals between RCP and LCP of the radio signals from the top of the flare loop system can be taken as evidence that magnetic energy is released or energetic particles are produced at the magnetic reconnection site in a quasi-periodic fashion.

  12. The polarization evolution of electromagnetic waves as a diagnostic method for a motional plasma

    NASA Astrophysics Data System (ADS)

    Shahrokhi, Alireza; Mehdian, Hassan; Hajisharifi, Kamal; Hasanbeigi, Ali

    2017-12-01

    The polarization evolution of electromagnetic (EM) radiation propagating through an electron beam-ion channel system is studied in the presence of self-magnetic field. Solving the fluid-Maxwell equations to obtain the medium dielectric tensor, the Stokes vector-Mueller matrix approach is employed to determine the polarization of the launched EM wave at any point in the propagation direction, applying the space-dependent Mueller matrix on the initial polarization vector of the wave at the plasma-vacuum interface. Results show that the polarization evolution of the wave is periodic in space along the beam axis with the specified polarization wavelength. Using the obtained results, a novel diagnostic method based on the polarization evolution of the EM waves is proposed to evaluate the electron beam density and velocity. Moreover, to use the mentioned plasma system as a polarizer, the fraction of the output radiation power transmitted through a motional plasma crossed with the input polarization is calculated. The results of the present investigation will greatly contribute to design a new EM amplifier with fixed polarization or EM polarizer, as well as a new diagnostic approach for the electron beam system where the polarimetric method is employed.

  13. Simultaneous observations of ice motion, calving and seismicity on the Yahtse Glacier, Alaska. (Invited)

    NASA Astrophysics Data System (ADS)

    Larsen, C. F.; Bartholomaus, T. C.; O'Neel, S.; West, M. E.

    2010-12-01

    We observe ice motion, calving and seismicity simultaneously and with high-resolution on an advancing tidewater glacier in Icy Bay, Alaska. Icy Bay’s tidewater glaciers dominate regional glacier-generated seismicity in Alaska. Yahtse emanates from the St. Elias Range near the Bering-Bagley-Seward-Malaspina Icefield system, the most extensive glacier cover outside the polar regions. Rapid rates of change and fast flow (>16 m/d near the terminus) at Yahtse Glacier provide a direct analog to the disintegrating outlet systems in Greenland. Our field experiment co-locates GPS and seismometers on the surface of the glacier, with a greater network of bedrock seismometers surrounding the glacier. Time-lapse photogrammetry, fjord wave height sensors, and optical survey methods monitor iceberg calving and ice velocity near the terminus. This suite of geophysical instrumentation enables us to characterize glacier motion and geometry changes while concurrently listening for seismic energy release. We are performing a close examination of calving as a seismic source, and the associated mechanisms of energy transfer to seismic waves. Detailed observations of ice motion (GPS and optical surveying), glacier geometry and iceberg calving (direct observations and timelapse photogrammetry) have been made in concert with a passive seismic network. Combined, the observations form the basis of a rigorous analysis exploring the relationship between glacier-generated seismic events and motion, glacier-fiord interactions, calving and hydraulics. Our work is designed to demonstrate the applicability and utility of seismology to study the impact of climate forcing on calving glaciers.

  14. Polar motion results from GEOS 3 laser ranging

    NASA Technical Reports Server (NTRS)

    Schutz, B. E.; Tapley, B. D.; Ries, J.; Eanes, R.

    1979-01-01

    The observability of polar motion from laser range data has been investigated, and the contributions from the dynamical and kinematical effects have been evaluated. Using 2-day arcs with GEOS 3 laser data, simultaneous solutions for pole position components and orbit elements have been obtained for a 2-week interval spanning August 27 to September 10, 1975, using three NASA Goddard Space Flight Center stations located at Washington, D.C., Bermuda, and Grand Turk. The results for the y-component of pole position from this limited data set differenced with the BIH linearly interpolated values yield a mean of 39 cm and a standard deviation of 1.07 m. Consideration of the variance associated with each estimate yields a mean of 20 cm and a standard deviation of 81 cm. The results for the x-component of pole position indicate that the mean value is in fair agreement with the BIH; however, the x-coordinate determination is weaker than the y-coordinate determination due to the distribution of laser sites (all three are between 77 deg W and 65 deg W) which results in greater sensitivity to the data distribution. In addition, the sensitivity of these results to various model parameters is discussed.

  15. The evolution of AAOE observed constituents with the polar vortex

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Lait, Leslie R.; Newman, P. A.; Martin, R.; Loewenstein, M.; Podolske, J. R.; Anderson, J.; Proffitt, M. H.

    1988-01-01

    One of the difficulties in determining constituent trends from the ER-2 flight data is the large amount of day to day variability generated by the motion of the polar vortex. To reduce this variability, the observations have been transformed into the conservative (Lagrangian) reference frames consisting of the coordinate pairs, potential temperature (PT) and potential vorticity (PV), or PT and N2O. The requirement of only two independent coordinates rests on the assumption that constituent distributions and their chemical processes are nearly zonal in that coordinate system. Flight data is used everywhere for these transformation except for potential vorticity. Potential vorticity is determined from level flight segments, and NMC PV values during flight dives and takeoffs are combined with flight data in a smooth fashion.

  16. Dynamical analysis of Jovian polar observations by Juno

    NASA Astrophysics Data System (ADS)

    Tabataba-Vakili, Fachreddin; Orton, Glenn S.; Adriani, Alberto; Eichstaedt, Gerald; Grassi, Davide; Ingersoll, Andrew P.; Li, Cheng; Hansen, Candice; Momary, Thomas W.; Moriconi, Maria Luisa; Mura, Alessandro; Read, Peter L.; Rogers, John; Young, Roland M. B.

    2017-10-01

    The JunoCAM and JIRAM instruments onboard the Juno spacecraft have generated unparalleled observations of the Jovian polar regions. These observations reveal a turbulent environment with an unexpected structure of cyclonic polar vortices. We measure the wind velocity in the polar region using correlation image velocimetry of consecutive images. From this data, we calculate the kinetic energy fluxes between different length scales. An analysis of the kinetic energy spectra and eddy-zonal flow interactions may improve our understanding of the mechanisms maintaining the polar macroturbulence in the Jovian atmosphere.

  17. Observations of polar aurora on Jupiter

    NASA Technical Reports Server (NTRS)

    Lane, A. L.; Clarke, J. T.; Moos, H. W.; Atreya, S. K.

    1981-01-01

    North-south spatial maps of Jupiter were obtained with the SWP camera in IUE observations of 10 December 1978, 19 May 1979, and 7 June 1979. Bright auroral emissions were detected from the north and south polar regions at H Ly alpha (1216 A) and in the H2 Lyman bands (1250-1608 A) on 19 May 1979; yet no enhanced polar emission was detected on the other days. The relationship between the IUE observing geometry and the geometry of the Jovian magnetosphere is discussed.

  18. Oceanic signals in rapid polar motion: results from a barotropic forward model with explicit consideration of self-attraction and loading effects

    NASA Astrophysics Data System (ADS)

    Schindelegger, Michael; Quinn, Katherine J.; Ponte, Rui M.

    2017-04-01

    Numerical modeling of non-tidal variations in ocean currents and bottom pressure has played a key role in closing the excitation budget of Earth's polar motion for a wide range of periodicities. Non-negligible discrepancies between observations and model accounts of pole position changes prevail, however, on sub-monthly time scales and call for examination of hydrodynamic effects usually omitted in general circulation models. Specifically, complete hydrodynamic cores must incorporate self-attraction and loading (SAL) feedbacks on redistributed water masses, effects that produces ocean bottom pressure perturbations of typically about 10% relative to the computed mass variations. Here, we report on a benchmark simulation with a near-global, barotropic forward model forced by wind stress, atmospheric pressure, and a properly calculated SAL term. The latter is obtained by decomposing ocean mass anomalies on a 30-minute grid into spherical harmonics at each time step and applying Love numbers to account for seafloor deformation and changed gravitational attraction. The increase in computational time at each time step is on the order of 50%. Preliminary results indicate that the explicit consideration of SAL in the forward runs increases the fidelity of modeled polar motion excitations, in particular on time scales shorter than 5 days as evident from cross spectral comparisons with geodetic excitation. Definite conclusions regarding the relevance of SAL in simulating rapid polar motion are, however, still hampered by the model's incomplete domain representation that excludes parts of the highly energetic Arctic Ocean.

  19. Polarity mechanisms such as contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on micropatterns

    PubMed Central

    Camley, Brian A.; Zhang, Yunsong; Zhao, Yanxiang; Li, Bo; Ben-Jacob, Eshel; Levine, Herbert; Rappel, Wouter-Jan

    2014-01-01

    Pairs of endothelial cells on adhesive micropatterns rotate persistently, but pairs of fibroblasts do not; coherent rotation is present in normal mammary acini and kidney cells but absent in cancerous cells. Why? To answer this question, we develop a computational model of pairs of mammalian cells on adhesive micropatterns using a phase field method and study the conditions under which persistent rotational motion (PRM) emerges. Our model couples the shape of the cell, the cell’s internal chemical polarity, and interactions between cells such as volume exclusion and adhesion. We show that PRM can emerge from this minimal model and that the cell-cell interface may be influenced by the nucleus. We study the effect of various cell polarity mechanisms on rotational motion, including contact inhibition of locomotion, neighbor alignment, and velocity alignment, where cells align their polarity to their velocity. These polarity mechanisms strongly regulate PRM: Small differences in polarity mechanisms can create significant differences in collective rotation. We argue that the existence or absence of rotation under confinement may lead to insight into the cell’s methods for coordinating collective cell motility. PMID:25258412

  20. Observation of Polarization Vortices in Momentum Space

    NASA Astrophysics Data System (ADS)

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-01

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  1. Observation of Polarization Vortices in Momentum Space.

    PubMed

    Zhang, Yiwen; Chen, Ang; Liu, Wenzhe; Hsu, Chia Wei; Wang, Bo; Guan, Fang; Liu, Xiaohan; Shi, Lei; Lu, Ling; Zi, Jian

    2018-05-04

    The vortex, a fundamental topological excitation featuring the in-plane winding of a vector field, is important in various areas such as fluid dynamics, liquid crystals, and superconductors. Although commonly existing in nature, vortices were observed exclusively in real space. Here, we experimentally observed momentum-space vortices as the winding of far-field polarization vectors in the first Brillouin zone of periodic plasmonic structures. Using homemade polarization-resolved momentum-space imaging spectroscopy, we mapped out the dispersion, lifetime, and polarization of all radiative states at the visible wavelengths. The momentum-space vortices were experimentally identified by their winding patterns in the polarization-resolved isofrequency contours and their diverging radiative quality factors. Such polarization vortices can exist robustly on any periodic systems of vectorial fields, while they are not captured by the existing topological band theory developed for scalar fields. Our work provides a new way for designing high-Q plasmonic resonances, generating vector beams, and studying topological photonics in the momentum space.

  2. Derivation of the horizontal wind field in the polar mesopause region by using successive images of noctilucent clouds observed by a color digital camera in Iceland

    NASA Astrophysics Data System (ADS)

    Suzuki, H.; Yamashita, R.

    2017-12-01

    It is important to quantify amplitude of turbulent motion to understand the energy and momentum budgets and distribution of minor constituents in the upper mesosphere. In particular, to know the eddy diffusion coefficient of minor constituents which are locally and impulsively produced by energetic particle precipitations in the polar mesopause is one of the most important subjects in the upper atmospheric science. One of the straight methods to know the amplitude of the eddy motion is to measure the wind field with both spatial and temporal domain. However, observation technique satisfying such requirements is limited in this region. In this study, derivation of the horizontal wind field in the polar mesopause region by tracking the motion of noctilucent clouds (NLCs) is performed. NLC is the highest cloud in the Earth which appears in a mesopause region during summer season in both polar regions. Since the vertical structure of the NLC is sufficiently thin ( within several hundred meters in typical), the apparent horizontal motion observed from ground can be regarded as the result of transportation by the horizontal winds at a single altitude. In this presentation, initial results of wind field derivation by tracking a motion of noctilucent clouds (NLC) observed by a ground-based color digital camera in Iceland is reported. The procedure for wind field estimation consists with 3 steps; (1) projects raw images to a geographical map (2) enhances NLC structures by using FFT method (3) determines horizontal velocity vectors by applying template matching method to two sequential images. In this talk, a result of the wind derivation by using successive images of NLC with 3 minutes interval and 1.5h duration observed on the night of Aug 1st, 2013 will be reported as a case study.

  3. Retrieval of Aerosol Phase Function and Polarized Phase Function from Polarization of Skylight for Different Observation Geometries

    NASA Astrophysics Data System (ADS)

    Li, L.; Qie, L. L.; Xu, H.; Li, Z. Q.

    2018-04-01

    The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar) are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun's positions (i.e. solar zenith angles are equal to 45° and 65°). Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm).

  4. Visual Target Tracking in the Presence of Unknown Observer Motion

    NASA Technical Reports Server (NTRS)

    Williams, Stephen; Lu, Thomas

    2009-01-01

    Much attention has been given to the visual tracking problem due to its obvious uses in military surveillance. However, visual tracking is complicated by the presence of motion of the observer in addition to the target motion, especially when the image changes caused by the observer motion are large compared to those caused by the target motion. Techniques for estimating the motion of the observer based on image registration techniques and Kalman filtering are presented and simulated. With the effects of the observer motion removed, an additional phase is implemented to track individual targets. This tracking method is demonstrated on an image stream from a buoy-mounted or periscope-mounted camera, where large inter-frame displacements are present due to the wave action on the camera. This system has been shown to be effective at tracking and predicting the global position of a planar vehicle (boat) being observed from a single, out-of-plane camera. Finally, the tracking system has been extended to a multi-target scenario.

  5. Angle-dependent rotation of calcite in elliptically polarized light

    NASA Astrophysics Data System (ADS)

    Herne, Catherine M.; Cartwright, Natalie A.; Cattani, Matthew T.; Tracy, Lucas A.

    2017-08-01

    Calcite crystals trapped in an elliptically polarized laser field exhibit intriguing rotational motion. In this paper, we show measurements of the angle-dependent motion, and discuss how the motion of birefringent calcite can be used to develop a reliable and efficient process for determining the polarization ellipticity and orientation of a laser mode. The crystals experience torque in two ways: from the transfer of spin angular momentum (SAM) from the circular polarization component of the light, and from a torque due to the linear polarization component of the light that acts to align the optic axis of the crystal with the polarization axis of the light. These torques alternatingly compete with and amplify each other, creating an oscillating rotational crystal velocity. We model the behavior as a rigid body in an angle-dependent torque. We experimentally demonstrate the dependence of the rotational velocity on the angular orientation of the crystal by placing the crystals in a sample solution in our trapping region, and observing their behavior under different polarization modes. Measurements are made by acquiring information simultaneously from a quadrant photodiode collecting the driving light after it passes through the sample region, and by imaging the crystal motion onto a camera. We finish by illustrating how to use this model to predict the ellipticity of a laser mode from rotational motion of birefringent crystals.

  6. Demonstration of precise estimation of polar motion parameters with the global positioning system: Initial results

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.

    1991-01-01

    Data from the Global Positioning System (GPS) were used to determine precise polar motion estimates. Conservatively calculated formal errors of the GPS least squares solution are approx. 10 cm. The GPS estimates agree with independently determined polar motion values from very long baseline interferometry (VLBI) at the 5 cm level. The data were obtained from a partial constellation of GPS satellites and from a sparse worldwide distribution of ground stations. The accuracy of the GPS estimates should continue to improve as more satellites and ground receivers become operational, and eventually a near real time GPS capability should be available. Because the GPS data are obtained and processed independently from the large radio antennas at the Deep Space Network (DSN), GPS estimation could provide very precise measurements of Earth orientation for calibration of deep space tracking data and could significantly relieve the ever growing burden on the DSN radio telescopes to provide Earth platform calibrations.

  7. New Observation of the Polar Wind in the Topside Ionosphere

    NASA Astrophysics Data System (ADS)

    Yau, Andrew W.; Howarth, Andrew

    2016-07-01

    The theoretical prediction of the "classical" polar wind dates back to the works of Banks et al., Lemaire et al., Marubashi, Nishida, and other authors in the late sixties and early seventies. Since then, direct in-situ observations of the polar wind have been made on a number of satellites above the topside ionosphere, notably ISIS-2, Akebono, and DE-1, at altitudes of 1400-50,000 km. In this paper, we present the first in-situ observation of the polar wind inside the topside ionosphere on the Enhanced Polar Outflow Probe (e-POP) down to 600 km, and we compare our low-altitude observation with earlier observations at higher altitudes as well as theoretical predictions.

  8. A photoelastic-modulator-based motional Stark effect polarimeter for ITER that is insensitive to polarized broadband background reflections.

    PubMed

    Thorman, A; Michael, C; De Bock, M; Howard, J

    2016-07-01

    A motional Stark effect polarimeter insensitive to polarized broadband light is proposed. Partially polarized background light is anticipated to be a significant source of systematic error for the ITER polarimeter. The proposed polarimeter is based on the standard dual photoelastic modulator approach, but with the introduction of a birefringent delay plate, it generates a sinusoidal spectral filter instead of the usual narrowband filter. The period of the filter is chosen to match the spacing of the orthogonally polarized Stark effect components, thereby increasing the effective signal level, but resulting in the destructive interference of the broadband polarized light. The theoretical response of the system to an ITER like spectrum is calculated and the broadband polarization tolerance is verified experimentally.

  9. The polar caps

    NASA Astrophysics Data System (ADS)

    Akasofu, S.-I.

    1985-12-01

    According to the most common definition, the 'polar cap' is the region bounded by the average or statistical auroral oval. Studies of the effects of the interplanetary magnetic field (IMF) on various upper atmospheric phenomena are reviewed. The Antarctic region and the Arctic region represent an area for such investigations. Particular attention is given in this paper to those observations in the highest latitude region which provide some information concerning corresponding changes of the internal structure of the magnetosphere. A definition and working definition of the polar cap are considered along with the IMF and magnetospheric models, the entry of solar energetic electrons, statistical studies regarding the aurora, individual events, polar cap arcs, the cusp aurora, auroral electron precipitation, convection, ionospheric currents and field-aligned currents, the ionosphere, the thermosphere, polar rain, polar wind, and hopping motions of heavy ions.

  10. Sustaining observations in the polar oceans.

    PubMed

    Abrahamsen, E P

    2014-09-28

    Polar oceans present a unique set of challenges to sustained observations. Sea ice cover restricts navigation for ships and autonomous measurement platforms alike, and icebergs present a hazard to instruments deployed in the upper ocean and in shelf seas. However, the important role of the poles in the global ocean circulation provides ample justification for sustained observations in these regions, both to monitor the rapid changes taking place, and to better understand climate processes in these traditionally poorly sampled areas. In the past, the vast majority of polar measurements took place in the summer. In recent years, novel techniques such as miniature CTD (conductivity-temperature-depth) tags carried by seals have provided an explosion in year-round measurements in areas largely inaccessible to ships, and, as ice avoidance is added to autonomous profiling floats and gliders, these promise to provide further enhancements to observing systems. In addition, remote sensing provides vital information about changes taking place in sea ice cover at both poles. To make these observations sustainable into the future, improved international coordination and collaboration is necessary to gain optimum utilization of observing networks. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Sustaining observations in the polar oceans

    PubMed Central

    Abrahamsen, E. P.

    2014-01-01

    Polar oceans present a unique set of challenges to sustained observations. Sea ice cover restricts navigation for ships and autonomous measurement platforms alike, and icebergs present a hazard to instruments deployed in the upper ocean and in shelf seas. However, the important role of the poles in the global ocean circulation provides ample justification for sustained observations in these regions, both to monitor the rapid changes taking place, and to better understand climate processes in these traditionally poorly sampled areas. In the past, the vast majority of polar measurements took place in the summer. In recent years, novel techniques such as miniature CTD (conductivity–temperature–depth) tags carried by seals have provided an explosion in year-round measurements in areas largely inaccessible to ships, and, as ice avoidance is added to autonomous profiling floats and gliders, these promise to provide further enhancements to observing systems. In addition, remote sensing provides vital information about changes taking place in sea ice cover at both poles. To make these observations sustainable into the future, improved international coordination and collaboration is necessary to gain optimum utilization of observing networks. PMID:25157189

  12. Optical polarization observations in Hogg 22 and NGC 6204

    NASA Astrophysics Data System (ADS)

    Martínez, R.; Vergne, M. M.; Feinstein, C.

    2004-06-01

    We present new (UBVRI) multicolor linear polarimetric data for 22 of the brightest stars in the area of the open clusters Hogg 22 and NGC 6204 to study the properties of the ISM (interstellar medium) toward these clusters and between them. The new data were incorporated in our data set of previous observations (Waldhausen et al. \\cite{waldhausen}), resulting in 28 observed stars in the region. Our data yield for NGC 6204 a mean polarization percentage of Pλ_max˜1.8%, close to the polarization value produced by the ISM with normal efficiency (Pλ_max ˜ 5 EB-V) with a color excess of EB-V =0.51. Meanwhile for Hogg 22, located behind NGC 6204, the mean polarization is Pλ_max˜ 2.15%, lower than the expected value for the observed color excess of EB-V =0.68 (Forbes et al. 1996) and the average efficiency of polarization for the interstellar dust. The mean angle of the polarization vectors of Hogg 22 is θ=44.9 °, which agrees with the expected angle produce by dust particles aligned in the direction of the Galactic Plane (θ=48°), while for NGC 6204 a lower value, θ=33.7 °, was found. Therefore, we believe that Hogg 22 is depolarized by the same dust that is polarizing NGC 6204, due to different orientations of the dust particles (and magnetic fields) that polarize the starlight. Based on observations obtanined at Complejo Astronómico El Leoncito (CASLEO), operated under agreement between the CONICET and the National Universities of La Plata, Córdoba, and San Juan, Argentina.

  13. [The Effect of Observation Geometry on Polarized Skylight Spectrum].

    PubMed

    Zhang, Ren-bin; Wang, Ling-mei; Gao, Jun; Wang, Chi

    2015-03-01

    Study on polarized skylight spectral characters while observation geometry changing in different solar zenith angles (SZA), viewing zenith angles (VZA) or relative azimuth angles (RAA). Simulation calculation of cloudless daylight polarimetric spectrum is realized based on the solver, vector discrete ordinate method, of radiative transfer equation. In the Sun's principal and perpendicular plane, the spectral irradiance data, varying at wavelengths in the range between 0.4 and 3 μm, are calculated to extend the atmospheric polarization spectral information under the conditions: the MODTRAN solar reference spectrur is the only illuminant source; the main influencing factors of polarized radiative transfer include underlying surface albedo, aerosol layers and components, and the absorption of trace gases. Simulation analysis results: (1) While the relative azimuth angle is zero, the magnitude of spectrum U/I is lower than 10(-7) and V/I is negligible, the degree of polarization and the spectrum Q/I are shaped like the letter V or mirror-writing U. (2) In twilight, when the Sun is not in FOV of the detector, the polarization of the daytime sky has two maximum near 0.51 and 2.75 μm, and a minimum near 1.5 μm. For arbitrary observation geometry, the spectral signal of V/I may be ignored. According to observation geometry, choosing different spectral bands or polarized signal will be propitious to targets detection.

  14. Real-time observation of valence electron motion.

    PubMed

    Goulielmakis, Eleftherios; Loh, Zhi-Heng; Wirth, Adrian; Santra, Robin; Rohringer, Nina; Yakovlev, Vladislav S; Zherebtsov, Sergey; Pfeifer, Thomas; Azzeer, Abdallah M; Kling, Matthias F; Leone, Stephen R; Krausz, Ferenc

    2010-08-05

    The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10(-15) s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump-probe measurement of the density matrix of valence electrons in atomic krypton ions. We generate the ions with a controlled few-cycle laser field and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse, which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes.

  15. Improvement of Accuracy of Proper Motions of Hipparcos Catalogue Stars Using Optical Latitude Observations

    NASA Astrophysics Data System (ADS)

    Damljanovic, G.

    2009-09-01

    ), Mizusawa (MZL FZT), Tuorla -- Turku (TT VZT), Mizusawa (MZP and MZQ PZT), Mount Stromlo (MS PZT), Ondřejov (OJP PZT), Punta Indio (PIP PZT), Richmond (RCP and RCQ PZT) and Washington (WA, W and WGQ PZT). The task is to improve the proper motions in declination of the observed Hipparcos stars. The original method was developed, and it consists of removing from the instantaneous observed latitudes all known effects (polar motion and some local instrumental errors). The corrected latitudes are then used to calculate the corrections of the Hipparcos proper motions in declination (Damljanović 2005). The Least Squares Method (LSM) is used with the linear model. We compared the calculated results with ARIHIP and EOC-2 data, and found a good agreement. The newly obtained values of proper motions in declination are substantially more precise than those of the Hipparcos Catalogue. It is because the time interval covered by the latitude observations (tens of years) is much longer than the Hipparcos one (less than four years), and because of the great number of observations made during this interval (Damljanović et al. 2006). Our method is completely different from the one used to compute the EOC-2 catalogue (Vondrák 2004). It was also an almost independent check of the proper motions of EOC-2. The catalogue EOC-2 is used in this thesis to distinguish the corrections of the two stars of a pair observed by using the Horrebow -- Talcott method. The difference between the two proper motions is constrained by the difference in the EOC-2 and Hipparcos catalogues (Damljanović and Pejović 2006). The main result of the thesis is the catalogue of proper motions in declination of 2347 Hipparcos stars.

  16. Measurement of polarization observables in vector meson photoproduction using a transversely-polarized frozen-spin target and polarized photons at CLAS, Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Priyashree

    The study of baryon resonances provides a deeper understanding of the strong interaction because the dynamics and relevant degrees of freedom hidden within them are re ected by the properties of the excited states of baryons. Higher-lying excited states at and above 1.7 GeV/c 2 are generally predicted to have strong couplings to final states involving a heavier meson, e. g. one of the vector mesons, ρ, ω φ, as compared to a lighter pseudoscalar meson, e. g. π and η. Decays to the ππΝ final states via πΔ also become more important through the population of intermediate resonances. We observe that nature invests in mass rather than momentum. The excited states of the nucleon are usually found as broadly overlapping resonances which may decay into a multitude of final states involving mesons and baryons. Polarization observables make it possible to isolate single resonance contributions from other interference terms. The CLAS g9 (FROST) experiment, as part of the N* spectroscopy program at Jefferson Laboratory, accumulated photoproduction data using circularly- & linearly-polarized photons incident on a transversely-polarized butanol target (g9b experiment) in the photon energy range 0:3-2:4 GeV & 0:7-2:1 GeV, respectively. In this work, the analysis of reactions and polarization observables which involve two charged pions, either in the fully exclusive reaction γρ -> ρπ+π- or in the semi-exclusive reaction with a missing neutral pion, γρ -> ρπ +π -(π 0) will be presented. For the reaction ρπ +π -, eight polarization observables (I s, I c, P x, P y,more » $$P^s_{x;y}$$, $$P^c_{x; y}$$) have been extracted. The high statistics data rendered it possible to extract these observables in three dimensions. All of them are first-time measurements. The fairly good agreement of Is, Ic obtained from this analysis with the experimental results from a previous CLAS experiment provides support for the first-time measurements. For the reaction γρ ->

  17. Theory of the polarization of highly charged ions in storage rings: Production, preservation, observation and application to the search for a violation of the fundamental symmetries

    NASA Astrophysics Data System (ADS)

    Bondarevskaya, A.; Prozorov, A.; Labzowsky, L.; Plunien, G.; Liesen, D.; Bosch, F.

    2011-10-01

    Theoretical concepts for the production, preservation and control of polarized highly charged ion beams in storage rings are investigated. It is argued that hydrogen-like ions can be polarized efficiently by optical pumping of the Zeeman sublevels of ground state hyperfine levels and that the maximum achievable nuclear polarization exceeds 90%. In order to study the preservation of the polarization during the ion motion through the magnetic system of the ring, the concept of the instantaneous quantization axis is introduced. It is suggested that the employment of “Siberian snakes” may help to preserve the ion beam polarization in the ring. The control of the beam polarization can be achieved by different methods: by measuring the Stokes parameters for the emitted photons or by observing the angular dependence of the transition rates for polarized ions. The important motivation for the production of polarized ion beams is the possibility to observe parity nonconservation effects in the hyperfine-quenched transitions in helium-like highly charged ions, where these effects can reach an unprecedented high value for atomic physics. The possible observation of parity nonconservation effects connected with the nuclear anapole moment is also discussed. A method for the observation of the electric dipole moment of an electron in a storage ring with a polarized highly charged ion beam is proposed. This method allows, in principle, to improve the existing boundaries for the electric dipole moment of an electron. However, the requirements of the corresponding experiment are very stringent.

  18. Plate motion and the secular shift of the mean pole

    NASA Technical Reports Server (NTRS)

    Liu, H.; Carpenter, L.; Agreen, R. W.

    1973-01-01

    The global plate motion indicates that changes in the products of inertia of the earth due to tectonic plate movement may provide a secular shift of the mean pole. A mathematical procedure for calculating this shift based on the plate theory is presented. Explicit expressions were obtained for the dependence of the secular polar shift on the dimensions and locations of the plate boundaries. Numerical results show that the secular motion of the mean pole is 0.0002 sec/year in the direction of 67 W. Hence, it is deduced that the influence of the plate motion on the secular polar shift may account for 10% of the observed value.

  19. Radial polar histogram: obstacle avoidance and path planning for robotic cognition and motion control

    NASA Astrophysics Data System (ADS)

    Wang, Po-Jen; Keyawa, Nicholas R.; Euler, Craig

    2012-01-01

    In order to achieve highly accurate motion control and path planning for a mobile robot, an obstacle avoidance algorithm that provided a desired instantaneous turning radius and velocity was generated. This type of obstacle avoidance algorithm, which has been implemented in California State University Northridge's Intelligent Ground Vehicle (IGV), is known as Radial Polar Histogram (RPH). The RPH algorithm utilizes raw data in the form of a polar histogram that is read from a Laser Range Finder (LRF) and a camera. A desired open block is determined from the raw data utilizing a navigational heading and an elliptical approximation. The left and right most radii are determined from the calculated edges of the open block and provide the range of possible radial paths the IGV can travel through. In addition, the calculated obstacle edge positions allow the IGV to recognize complex obstacle arrangements and to slow down accordingly. A radial path optimization function calculates the best radial path between the left and right most radii and is sent to motion control for speed determination. Overall, the RPH algorithm allows the IGV to autonomously travel at average speeds of 3mph while avoiding all obstacles, with a processing time of approximately 10ms.

  20. Extending Counter-Streaming Motion from an Active Region Filament to Sunspot Light Bridge

    NASA Astrophysics Data System (ADS)

    Wang, Haimin; Liu, Rui; Deng, Na; Liu, Chang; Xu, Yan; Jing, Ju; Wang, Yuming; Cao, Wenda

    2017-08-01

    In this study, we analyze the high-resolution observations from the 1.6 m New Solar Telescope at Big Bear Solar Observatory that cover an entire active region filament. The southern end of the filament is well defined by a narrow lane situated in the negative magnetic polarity, while the northern end lies in the positive polarity, extending to a much larger area. Counter-streaming motions are clearly seen in the filament. The northern end of the counter-streaming motions extends to a light bridge, forming a spectacular circulation pattern around a sunspot, with clockwise motion in the blue wing and counterclockwise motion in the red wing as observed in H-alpha off-band. The apparent speed of the flow is around 10 km/s. We show that the southern end of the filament is consistent with that of a flux rope in a NLFFF extrapolation model, but the northern ends of the modeled flux rope and observed H-alpha footpoints have a significant spatial mismatch. The most intriguing results are the magnetic structure and the counter-streaming motions in the light bridge. Similar to those in the filament, magnetic fields show a dominant transverse component in the light bridge. However, the filament is located between opposite magnetic polarities, while the light bridge is between strong fields of the same polarity. We studied the correlation coefficients of image sequences of constructed Dopplergrams, and found that the filament and the section of light bridge next to it do not show oscillation motions, while a small section of light bridge shows a prominent oscillation pattern. Therefore, we conclude that the observed circulating counter-streaming motions are largely collections of physical mass flows in the transverse direction from the filament extending to a large section of the light bridge, rather than a form of periodic oscillatory mass motions in line-of-sight direction generated by perturbations omnipresent in the chromosphere.

  1. Polarization Observations of the Total Solar Eclipse of August 21, 2017

    NASA Astrophysics Data System (ADS)

    Burkepile, J.; Boll, A.; Casini, R.; de Toma, G.; Elmore, D. F.; Gibson, K. L.; Judge, P. G.; Mitchell, A. M.; Penn, M.; Sewell, S. D.; Tomczyk, S.; Yanamandra-Fisher, P. A.

    2017-12-01

    A total solar eclipse offers ideal sky conditions for viewing the solar corona. Light from the corona is composed of three components: the E-corona, made up of spectral emission lines produced by ionized elements in the corona; the K-corona, produced by photospheric light that is Thomson scattered by coronal electrons; and the F-corona, produced by sunlight scattered from dust particles in the near Sun environment and in interplanetary space. Polarized white light observations of the corona provide a way of isolating the K-corona to determine its structure, brightness, and density. This work focuses on broadband white light polarization observations of the corona during the upcoming solar eclipse from three different instruments. We compare coronal polarization brightness observations of the August 21, 2017 total solar eclipse from the NCAR/High Altitude Observatory (HAO) Rosetta Stone experiment using the 4-D Technology PolarCam camera with the two Citizen PACA_CATE17Pol telescopes that will acquire linear polarization observations of the eclipse and the NCAR/HAO K-Cor white light coronagraph observations from the Mauna Loa Solar Observatory in Hawaii. This comparison includes a discussion of the cross-calibration of the different instruments and reports the results of the coronal polarization brightness and electron density of the corona. These observations will be compared with results from previous coronal measurements taken at different phases of the solar cycle. In addition, we report on the performance of the three different polarimeters. The 4-D PolarCam uses a linear polarizer array, PACA_CATE17Pol uses a nematic liquid crystal retarder in a single beam configuration and K-Cor uses a pair of ferroelectric liquid crystal retarders in a dual-beam configuration. The use of the 4-D PolarCam camera in the Rosetta Stone experiment is to demonstrate the technology for acquiring high cadence polarization measurements. The Rosetta Stone experiment is funded through

  2. South Polar Cryptic Region Revisited: THEMIS Observations

    NASA Technical Reports Server (NTRS)

    Titus, T. N.; Kieffer, H. H.; Plaut, J. J.; Christensen, P. R.; Ivanov, A. B.

    2003-01-01

    The early part of the Mars Global Surveyor mission provided good TES coverage of the Mars south polar region. These data allow mapping of the polar cap recession, surface and atmospheric temperatures, and albedo features found within the seasonal cap itself over Ls = 180 - 270 deg. During this period, the seasonal south polar cap retreated continuously and asymmetrically around the geographic pole, similar to the observations of Viking in 1976- 1977 [3]. A prominent albedo feature on the seasonal cap is a region that appears almost as dark as bare ground, yet remains cold. We refer to this region, generally located between latitudes 85 deg. S and 75 deg. S and longitudes 150 deg. W and 310 deg. W, as the Cryptic region.

  3. HST NICMOS Observations of the Polarization of NGC 1068

    NASA Technical Reports Server (NTRS)

    Simpson, Janet P.; Colgan, Sean W. J.; Erickson, Edwin F.; Hines, Dean C.; Schultz, A. S. B.; Trammell, Susan R.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    We have observed the polarized light at 2 microns in the center of NGC 1068 with HST (Hubble Space Telescope) NICMOS (Near Infrared Camera Multi Object Spectrometer) Camera 2. The nucleus is dominated by a bright, unresolved source, polarized at a level of 6.0 +/- 1.2% with a position angle of 122 degrees +/- 1.5 degrees. There are two polarized lobes extending tip to 8" northeast and southwest of the nucleus. The polarized flux in both lobes is quite clumpy, with the maximum polarization occurring in the southwest lobe at a level of 17% when smoothed to 0.23" resolution. The perpendiculars to the polarization vectors in these two lobes point back to the intense unresolved nuclear source to within one 0.076" Camera 2 pixel, thereby confirming that this source is the origin of the scattered light and therefore the probable AGN (Active Galactic Nuclei) central engine. Whereas the polarization of the nucleus is probably caused by dichroic absorption, the polarization in the lobes is almost certainly caused by scattering, with very little contribution from dichroic absorption. Features in the polarized lobes include a gap at a distance of about 1" from the nucleus toward the southwest lobe and a "knot" of emission about 5" northwest of the nucleus. Both features had been discussed by groundbased observers, but they are much better defined with the high spatial resolution of NICMOS. The northeast knot may be the side of a molecular cloud that is facing the nucleus, which cloud may be preventing the expansion of the northeast radio lobe at the head of the radio synchrotron-radiation-emitting jet. We also report the presence of two ghosts in the Camera 2 polarizers.

  4. Symmetry breaking and electrical frustration during tip-induced polarization switching in the non-polar cut of lithium niobate single crystals

    DOE PAGES

    Ievlev, Anton; Alikin, Denis O.; Morozovska, A. N.; ...

    2014-12-15

    Polarization switching in ferroelectric materials is governed by a delicate interplay between bulk polarization dynamics and screening processes at surfaces and domain walls. Here we explore the mechanism of tip-induced polarization switching in the non-polar cuts of uniaxial ferroelectrics. In this case, in-plane component of polarization vector switches, allowing for detailed observations of resultant domain morphologies. We observe surprising variability of resultant domain morphologies stemming from fundamental instability of formed charged domain wall and associated electric frustration. In particular, we demonstrate that controlling vertical tip position allows the polarity of the switching to be controlled. This represents very unusual formmore » of symmetry breaking where mechanical motion in vertical direction controls the lateral domain growth. The implication of these studies for ferroelectric devices and domain wall electronics are discussed.« less

  5. Generalized Doppler and aberration kernel for frequency-dependent cosmological observables

    NASA Astrophysics Data System (ADS)

    Yasini, Siavash; Pierpaoli, Elena

    2017-11-01

    We introduce a frequency-dependent Doppler and aberration transformation kernel for the harmonic multipoles of a general cosmological observable with spin weight s , Doppler weight d and arbitrary frequency spectrum. In the context of cosmic microwave background (CMB) studies, the frequency-dependent formalism allows to correct for the motion-induced aberration and Doppler effects on individual frequency maps with different masks. It also permits to deboost background radiations with non-blackbody frequency spectra, like extragalactic foregrounds and CMB spectra with primordial spectral distortions. The formalism can also be used to correct individual E and B polarization modes and account for motion-induced E/B mixing of polarized observables with d ≠1 at different frequencies. We apply the generalized aberration kernel on polarized and unpolarized specific intensity at 100 and 217 GHz and show that the motion-induced effects typically increase with the frequency of observation. In all-sky CMB experiments, the frequency-dependence of the motion-induced effects for a blackbody spectrum are overall negligible. However in a cut-sky analysis, ignoring the frequency dependence can lead to percent level error in the polarized and unpolarized power spectra over all angular scales. In the specific cut-sky used in our analysis (b >4 5 ° ,fsky≃14 % ), and for the dipole-inferred velocity β =0.00123 typically attributed to our peculiar motion, the Doppler and aberration effects can change polarized and unpolarized power spectra of specific intensity in the CMB rest frame by 1 - 2 % , but we find the polarization cross-leakage between E and B modes to be negligible.

  6. Flocking and Turning: a New Model for Self-organized Collective Motion

    NASA Astrophysics Data System (ADS)

    Cavagna, Andrea; Del Castello, Lorenzo; Giardina, Irene; Grigera, Tomas; Jelic, Asja; Melillo, Stefania; Mora, Thierry; Parisi, Leonardo; Silvestri, Edmondo; Viale, Massimiliano; Walczak, Aleksandra M.

    2015-02-01

    Birds in a flock move in a correlated way, resulting in large polarization of velocities. A good understanding of this collective behavior exists for linear motion of the flock. Yet observing actual birds, the center of mass of the group often turns giving rise to more complicated dynamics, still keeping strong polarization of the flock. Here we propose novel dynamical equations for the collective motion of polarized animal groups that account for correlated turning including solely social forces. We exploit rotational symmetries and conservation laws of the problem to formulate a theory in terms of generalized coordinates of motion for the velocity directions akin to a Hamiltonian formulation for rotations. We explicitly derive the correspondence between this formulation and the dynamics of the individual velocities, thus obtaining a new model of collective motion. In the appropriate overdamped limit we recover the well-known Vicsek model, which dissipates rotational information and does not allow for polarized turns. Although the new model has its most vivid success in describing turning groups, its dynamics is intrinsically different from previous ones in a wide dynamical regime, while reducing to the hydrodynamic description of Toner and Tu at very large length-scales. The derived framework is therefore general and it may describe the collective motion of any strongly polarized active matter system.

  7. Titan South Polar Vortex in Motion

    NASA Image and Video Library

    2012-07-10

    This image from a movie captured by NASAS Cassini spacecraft shows a south polar vortex, or shows a south polar vortex, or a swirling mass of gas around the pole in the atmosphere, at Saturn moon Titan.

  8. Dust Polarization toward Embedded Protostars in Ophiuchus with ALMA. I. VLA 1623

    NASA Astrophysics Data System (ADS)

    Sadavoy, Sarah I.; Myers, Philip C.; Stephens, Ian W.; Tobin, John; Commerçon, Benoît; Henning, Thomas; Looney, Leslie; Kwon, Woojin; Segura-Cox, Dominique; Harris, Robert

    2018-06-01

    We present high-resolution (∼30 au) ALMA Band 6 dust polarization observations of VLA 1623. The VLA 1623 data resolve compact ∼40 au inner disks around the two protobinary sources, VLA 1623-A and VLA 1623-B, and also an extended ∼180 au ring of dust around VLA 1623-A. This dust ring was previously identified as a large disk in lower-resolution observations. We detect highly structured dust polarization toward the inner disks and the extended ring with typical polarization fractions ≈1.7% and ≈2.4%, respectively. The two components also show distinct polarization morphologies. The inner disks have uniform polarization angles aligned with their minor axes. This morphology is consistent with expectations from dust scattering. By contrast, the extended dust ring has an azimuthal polarization morphology not previously seen in lower-resolution observations. We find that our observations are well-fit by a static, oblate spheroid model with a flux-frozen, poloidal magnetic field. We propose that the polarization traces magnetic grain alignment likely from flux freezing on large scales and magnetic diffusion on small scales. Alternatively, the azimuthal polarization may be attributed to grain alignment by the anisotropic radiation field. If the grains are radiatively aligned, then our observations indicate that large (∼100 μm) dust grains grow quickly at large angular extents. Finally, we identify significant proper motion of VLA 1623 using our observations and those in the literature. This result indicates that the proper motion of nearby systems must be corrected for when combining ALMA data from different epochs.

  9. Transient polar motions and the nature of the asthenosphere for short time scales

    NASA Technical Reports Server (NTRS)

    Boschi, E.; Sabadini, R.; Yuen, D. A.

    1985-01-01

    A uniformly valid mathematical formalism is developed to study the secular motions of the rotational axis of a layered viscoelastic earth due to seismic excitation. The changes required for implementing the formulation within the framework of the faulting problem. The rationale of adopting the chosen nrheological model, which contains a low-viscosity zone beneath the lithosphere and is based on linear Maxell constitutive relationship, is discussed. The impact of this low-viscosity channel on thhe two families of relaxation time, governing both isostatic readjustment and rotational processes, is considered. It is found that the polar motions depend sensitively on the viscosity structure of the asthenosphere and not at all on the underlying mantle. A gloal low-velocity zone with short-term asthenospheric viscosities less than about 5 x 10 to the 18th Pa-s and widths greater than 50 km is ruled out.

  10. International Polar Year Observations From the International Space Station

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Runco, Susan; Byrne, Gregory; Willis, Kim; Heydorn, James; Stefanov, William L.; Wilkinson, M. Justin; Trenchard, Michael

    2006-01-01

    Astronauts aboard the International Space Station (ISS) have several opportunities each day to observe and document high-latitude phenomena. Although lighting conditions, ground track and other viewing parameters change with orbital precessions and season, the 51.6 degree orbital inclination and 400 km altitude of the ISS provide the crew an excellent vantage point for collecting image-based data for IPY investigators. To date, the database of imagery acquired by the Crew Earth Observations (CEO) experiment aboard the ISS (http://eol.jsc.nasa.gov) contains more than 12,000 images of high latitude (above 50 degrees) events such as aurora, mesospheric clouds, sea-ice, high-latitude plankton blooms, volcanic eruptions, and snow cover. The ISS Program will formally participate in IPY through an activity coordinated through CEO entitled Synchronized Observations of Polar Mesospheric Clouds, Aurora and Other Large-scale Polar Phenomena from the ISS and Ground Sites. The activity will augment the existing collection of Earth images taken from the ISS by focusing astronaut observations on polar phenomena. NASA s CEO experiment will solicit requests by IPY investigators for ISS observations that are coordinated with or complement ground-based polar studies. The CEO imagery website (http://eol.jsc.nasa.gov) will provide an on-line form for IPY investigators to interact with CEO scientists and define their imagery requests. This information will be integrated into daily communications with the ISS crews about their Earth Observations targets. All data collected will be cataloged and posted on the website for downloading and assimilation into IPY projects.

  11. Directional Statistics for Polarization Observations of Individual Pulses from Radio Pulsars

    NASA Astrophysics Data System (ADS)

    McKinnon, M. M.

    2010-10-01

    Radio polarimetry is a three-dimensional statistical problem. The three-dimensional aspect of the problem arises from the Stokes parameters Q, U, and V, which completely describe the polarization of electromagnetic radiation and conceptually define the orientation of a polarization vector in the Poincaré sphere. The statistical aspect of the problem arises from the random fluctuations in the source-intrinsic polarization and the instrumental noise. A simple model for the polarization of pulsar radio emission has been used to derive the three-dimensional statistics of radio polarimetry. The model is based upon the proposition that the observed polarization is due to the incoherent superposition of two, highly polarized, orthogonal modes. The directional statistics derived from the model follow the Bingham-Mardia and Fisher family of distributions. The model assumptions are supported by the qualitative agreement between the statistics derived from it and those measured with polarization observations of the individual pulses from pulsars. The orthogonal modes are thought to be the natural modes of radio wave propagation in the pulsar magnetosphere. The intensities of the modes become statistically independent when generalized Faraday rotation (GFR) in the magnetosphere causes the difference in their phases to be large. A stochastic version of GFR occurs when fluctuations in the phase difference are also large, and may be responsible for the more complicated polarization patterns observed in pulsar radio emission.

  12. A Kinematic, Flexure-based Mechanism for Precise, Parallel Motion for the Hertz Variable-delay Polarization Modulator (VPM)

    NASA Technical Reports Server (NTRS)

    Voellmer, G. M.; Chuss, D. T.; Jackson, M.; Krejny, M.; Moseley, S. H.; Novak, G.; Wollack, E. J.

    2008-01-01

    We describe the design of the linear motion stage for a Variable-delay Polarization Modulator (VPM) and of a grid flattener that has been built and integrated into the Hertz ground-based, submillimeter polarimeter. VPMs allow the modulation of a polarized source by controlling the phase difference between two linear, orthogonal polarizations. The size of the gap between a mirror and a very flat polarizing grid determines the amount of the phase difference. This gap must be parallel to better than 1% of the wavelength. A novel, kinematic, flexure-based mechanism is described that passively maintains the parallelism of the mirror and the grid to 1.5 pm over a 150 mm diameter, with a 400 pm throw. A single piezoceramic actuator is used to modulate the gap, and a capacitive sensor provides position feedback for closed-loop control. A simple device that ensures the planarity of the polarizing grid is also described. Engineering results from the deployment of this device in the Hertz instrument April 2006 at the Submillimeter Telescope Observatory (SMTO) in Arizona are presented.

  13. Double-polarization observable G in neutral-pion photoproduction off the proton

    NASA Astrophysics Data System (ADS)

    Thiel, A.; Eberhardt, H.; Lang, M.; Afzal, F.; Anisovich, A. V.; Bantes, B.; Bayadilov, D.; Beck, R.; Bichow, M.; Brinkmann, K.-T.; Böse, S.; Crede, V.; Dieterle, M.; Dutz, H.; Elsner, D.; Ewald, R.; Fornet-Ponse, K.; Friedrich, St.; Frommberger, F.; Funke, Ch.; Goertz, St.; Gottschall, M.; Gridnev, A.; Grüner, M.; Gutz, E.; Hammann, D.; Hammann, Ch.; Hannappel, J.; Hartmann, J.; Hillert, W.; Hoffmeister, Ph.; Honisch, Ch.; Jude, T.; Kaiser, D.; Kalinowsky, H.; Kalischewski, F.; Kammer, S.; Keshelashvili, I.; Klassen, P.; Kleber, V.; Klein, F.; Klempt, E.; Koop, K.; Krusche, B.; Kube, M.; Lopatin, I.; Mahlberg, Ph.; Makonyi, K.; Metag, V.; Meyer, W.; Müller, J.; Müllers, J.; Nanova, M.; Nikonov, V.; Piontek, D.; Reeve, S.; Reicherz, G.; Runkel, S.; Sarantsev, A.; Schmidt, Ch.; Schmieden, H.; Seifen, T.; Sokhoyan, V.; Spieker, K.; Thoma, U.; Urban, M.; van Pee, H.; Walther, D.; Wendel, Ch.; Wilson, A.; Winnebeck, A.; Witthauer, L.

    2017-01-01

    This paper reports on a measurement of the double-polarization observable G in π^0 photoproduction off the proton using the CBELSA/TAPS experiment at the ELSA accelerator in Bonn. The observable G is determined from reactions of linearly polarized photons with longitudinally polarized protons. The polarized photons are produced by bremsstrahlung off a diamond radiator of well-defined orientation. A frozen spin butanol target provides the polarized protons. The data cover the photon energy range from 617 to 1325 MeV and a wide angular range. The experimental results for G are compared to predictions by the Bonn-Gatchina (BnGa), Jülich-Bonn (JüBo), MAID and SAID partial wave analyses. Implications of the new data for the pion photoproduction multipoles are discussed.

  14. Synoptic Observations of The Terrestrial Polar Wind

    NASA Astrophysics Data System (ADS)

    Pollock, C. J.; Jahn, J.-M.; Moore, T. E.; Valek, P.; Wiig, J.

    High altitude passes of NASA"s Polar spacecraft, during intevals when the Plasma Source Investigation (PSI) was operating to neutralize the spacecraft charge, are uti- lized to study the relatively low energy outflow of plasma from Earth's polar iono- sphere into the magnetosphere. Four years (1996 - 2000) of data from the Themal Ion Dynamics Experiment (TIDE) are analyzed to determine typical polar wind outflow parameters and their variability. These outflows, which are typically but not always present, are usually of high mach number, are strongly collimated along the outgoing field aligned direction and display significant temporal variability. Multi-species out- flows are distinguished from those of a single-species based on the energy signature. Preliminary results show that single species outflow is the rule and that observation of multi-species outflow is often associated with geomagnetic storms.

  15. Can earthquake source inversion benefit from rotational ground motion observations?

    NASA Astrophysics Data System (ADS)

    Igel, H.; Donner, S.; Reinwald, M.; Bernauer, M.; Wassermann, J. M.; Fichtner, A.

    2015-12-01

    With the prospects of instruments to observe rotational ground motions in a wide frequency and amplitude range in the near future we engage in the question how this type of ground motion observation can be used to solve seismic inverse problems. Here, we focus on the question, whether point or finite source inversions can benefit from additional observations of rotational motions. In an attempt to be fair we compare observations from a surface seismic network with N 3-component translational sensors (classic seismometers) with those obtained with N/2 6-component sensors (with additional colocated 3-component rotational motions). Thus we keep the overall number of traces constant. Synthetic seismograms are calculated for known point- or finite-source properties. The corresponding inverse problem is posed in a probabilistic way using the Shannon information content as a measure how the observations constrain the seismic source properties. The results show that with the 6-C subnetworks the source properties are not only equally well recovered (even that would be benefitial because of the substantially reduced logistics installing N/2 sensors) but statistically significant some source properties are almost always better resolved. We assume that this can be attributed to the fact the (in particular vertical) gradient information is contained in the additional rotational motion components. We compare these effects for strike-slip and normal-faulting type sources. Thus the answer to the question raised is a definite "yes". The challenge now is to demonstrate these effects on real data.

  16. Investigating circular patterns in linear polarization observations of Venus

    NASA Astrophysics Data System (ADS)

    Mahapatra, Gourav; Stam, Daphne; Rossi, Loic; Rodenhuis, Michiel; Snik, Frans

    2017-04-01

    ESA's Venus Express mission has revealed our neighbouring planet to be a highly dynamic world, with ever-changing cloud properties and structures, wind speeds that increase in time, and variable concentrations of atmospheric trace gases such as SO2. The SPICAV-IR instrument on Venus Express has provided us with close-up linear polarization data of sunlight reflected by Venus's clouds and hazes, that allows a characterisation of their composition and particle sizes. Here, we analyse linear polarization data of the planet at a distance, obtained with the Extreme Polarimeter (ExPo) on the William Herschel Telescope on La Palma. These spatially resolved, high-accuracy polarization observations of Venus show faint circular patterns centered on the sub-solar point that are absent in the flux observations. So far, careful analyses have ruled out instrumental effects which leaves us to wonder about atmospheric properties as the cause of the circular patterns. Using numerical simulations of the flux and polarization of sunlight that is reflected by Venus, we have investigated the relation between the observed patterns and several atmospheric properties, such as variations in particle sizes, composition, density and altitude. We discuss the plausibility of the possible causes in the view of the current knowledge of the composition and dynamical processes in Venus's atmosphere.

  17. Polarization observations of broadband VHF signals by the FORTE satellite

    NASA Astrophysics Data System (ADS)

    Shao, Xuan-Min; Jacobson, Abram R.

    2001-01-01

    Coherent very high frequency (VHF) radio observations with the pair of orthogonal log-periodic array antennas of the FORTE satellite allow us to study thoroughly the polarization properties for a received signal. Eighty-one broadband VHF pulses that were generated by the Los Alamos Portable Pulser (LAPP) have been analyzed. The data are analyzed by computing the Stokes parameters in the time-frequency domain. We first examine the LAPP pulses at high time resolution so as to separate the ordinary and extraordinary ionospheric modes. The two modes have been found to be mirror images of each other in terms of polarization, as would be expected. For each mode the polarization degrades from circular toward elliptical as the nadir angle increases. Antenna pattern effects on this observation are discussed. The tilt of the detected polarization ellipse is found to be tightly associated with the azimuthal direction of the pulse source. The same set of data are then examined with much lower time resolution to intentionally mix together the two split modes, so that the ionospheric Faraday rotation can be detected. With the known geomagnetic field the total electron content (TEC) is computed, which shows good agreement with the TEC computed by dechirping the signal. A case study of an impulsive lightning emission shows that it is highly polarized, indicating that the associated breakdown processes are highly coherent and organized. Finally, we discuss the potential use of the polarization observations for locating terrestrial radio signals.

  18. First Observation of the Submillimeter Polarization Spectrum in a Translucent Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Ashton, Peter C.; Ade, Peter A. R.; Angilè, Francesco E.; Benton, Steven J.; Devlin, Mark J.; Dober, Bradley; Fissel, Laura M.; Fukui, Yasuo; Galitzki, Nicholas; Gandilo, Natalie N.; Klein, Jeffrey; Korotkov, Andrei L.; Li, Zhi-Yun; Martin, Peter G.; Matthews, Tristan G.; Moncelsi, Lorenzo; Nakamura, Fumitaka; Netterfield, Calvin B.; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Santos, Fabio P.; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A.; Soler, Juan D.; Thomas, Nicholas E.; Tucker, Carole E.; Tucker, Gregory S.; Ward-Thompson, Derek

    2018-04-01

    Polarized emission from aligned dust is a crucial tool for studies of magnetism in the ISM, but a troublesome contaminant for studies of cosmic microwave background polarization. In each case, an understanding of the significance of the polarization signal requires well-calibrated physical models of dust grains. Despite decades of progress in theory and observation, polarized dust models remain largely underconstrained. During its 2012 flight, the balloon-borne telescope BLASTPol obtained simultaneous broadband polarimetric maps of a translucent molecular cloud at 250, 350, and 500 μm. Combining these data with polarimetry from the Planck 850 μm band, we have produced a submillimeter polarization spectrum, the first for a cloud of this type. We find the polarization degree to be largely constant across the four bands. This result introduces a new observable with the potential to place strong empirical constraints on ISM dust polarization models in a previously inaccessible density regime. Compared to models by Draine & Fraisse, our result disfavors two of their models for which all polarization arises due only to aligned silicate grains. By creating simple models for polarized emission in a translucent cloud, we verify that extinction within the cloud should have only a small effect on the polarization spectrum shape, compared to the diffuse ISM. Thus, we expect the measured polarization spectrum to be a valid check on diffuse ISM dust models. The general flatness of the observed polarization spectrum suggests a challenge to models where temperature and alignment degree are strongly correlated across major dust components.

  19. Polarization analysis of VLF/ELF waves observed at subauroral latitudes during the VLF-CHAIN campaign

    NASA Astrophysics Data System (ADS)

    Martinez-Calderon, Claudia; Shiokawa, Kazuo; Miyoshi, Yoshizumi; Ozaki, Mitsunori; Schofield, Ian; Connors, Martin

    2015-02-01

    Chorus wave emissions are one of the most intense naturally occurring phenomena in the very low (VLF) and extremely low frequency (ELF) ranges. They are believed to be one of the major contributors to acceleration and loss of electrons in the radiation belts. During the VLF Campaign observation with High-resolution Aurora Imaging Network (VLF-CHAIN) from 17 to 25 February 2012, several types of VLF/ELF emissions, including chorus, were observed at subauroral latitudes in Athabasca, Canada. To our knowledge, there has not been any comprehensive study of the physical properties of such emissions at these latitudes. In this study, we calculate spectral and polarization parameters of VLF/ELF waves with high temporal resolution. We found that the polarization angle of several emissions depended on both frequency and time. We suggest that the frequency-dependent events, which usually last several tens of minutes, might be the consequence of the broadening of the ray path that the waves follow from their generation region to the ground. Furthermore, time-dependent events, also lasting tens of minutes, have a polarization angle that changes from negative to positive values (or vice versa) every few minutes. We suggest that this could be due to variations of the wave duct, either near the generation region or along the wave propagation path. Using another ground station in Fort Vermillion, Canada, about 450 km northwest of Athabasca, we tracked the movements of the ionospheric exit point of three chorus emissions observed simultaneously at both stations. Although we found that movement of the ionospheric exit point does not follow a general direction, it is subject to hovering motion, suggesting that the exit point can be affected by small-scale plasma processes.

  20. The polar cusp: Cluster observations and simulations

    NASA Astrophysics Data System (ADS)

    Escoubet, C. Philippe; Berchem, Jean; Pitout, Frederic; Richard, Robert; Trattner, Karlheinz; Grison, Benjamin; Taylor, Matthew; Laakso, Harri; Masson, Arnaud; Dunlop, Malcolm; Dandouras, Iannis; Reme, Henri; Fazakerley, Andrew N.

    The polar cusp, together with the magnetopause, are the magnetospheric regions in direct contact with the shocked solar wind flowing continuously from the Sun. Therefore any changes in the solar wind plasma reaching the magnetopause induce changes in the polar cusp with a delay of a few minutes to a few tens of minutes. For instance a change of the interplanetary magnetic field (IMF) direction from South to North will displace the polar cusp poleward and at the same time will change the injection of ions from the subsolar magnetopause to the magnetotail lobes. In the mid and low-altitude cusp a spacecraft will then observe a reversal of the dispersion in energy of the ions. We will use Cluster string of pearl configuration in the mid-altitude polar cusp to investigate the temporal variations of ion injections in the polar cusp. In the period from July to September, the Cluster spacecraft follow each other in the mid-altitude cusp with a delay of few minutes up to one hour. A few examples of cusp crossings will be presented to illustrate the influence of solar wind changes in the polar cusp. We will show that a sudden change in the IMF direction from South to North produces a double cusp crossing. By opposition, a change of the IMF from North to South produces a temporal injection on the equatorward side of the cusp and an erosion of the magnetosphere. Finally, we will show that when the interplanetary conditions are stable with the IMF pointing Northward or Southward for more than 10 min the polar cusp ion dispersion stays constant. MHD and large-scale particle simulations will also be used to complement the Cluster data.

  1. Atmospheric effects on earth rotation and polar motion

    NASA Technical Reports Server (NTRS)

    Salstein, David A.

    1988-01-01

    The variability in the earth's rotation rate not due to known solid body tides is dominated on time scales of about four years and less by variations in global atmospheric angular momentum (M) as derived from the zonal wind distribution. Among features seen in the length of day record produced by atmospheric forcing are the strong seasonal cycle, quasi-periodic fluctuations around 40-50 days, and an interannual signal forced by a strong Pacific warming event known as the El Nino. Momentum variations associated with these time scales arise in different latitudinal regions. Furthermore, winds in the stratosphere make a particularly important contribution to seasonal variability. Other related topics discussed here are: (1) comparisons of the M series from wind fields produced at different weather centers; (2) the torques that dynamically link the atmosphere and earth; and (3) longer-term nonatmospheric effects that can be seen upon removal of the atmospheric signal.an interestigapplication for climatological purposes is the use of the historical earth rotation series as a proxy for atmospheric wind variability prior to the era of upper-air data. Lastly, results pertaining to the role of atmospheric pressure systems in exciting rapid polar motion are presented.

  2. Nonvolcanic tremor locations and mechanisms in Guerrero, Mexico, from energy-based and particle motion polarization analysis

    NASA Astrophysics Data System (ADS)

    Cruz-Atienza, Víctor M.; Husker, Allen; Legrand, Denis; Caballero, Emmanuel; Kostoglodov, Vladimir

    2015-01-01

    We introduce the Tremor Energy and Polarization (TREP) method, which jointly determines the source location and focal mechanism of sustained nonvolcanic tremor (NVT) signals. The method minimizes a compound cost function by means of a grid search over a three-dimensional hypocentral lattice. Inverted metrics are derived from three NVT observables: (1) the energy spatial distribution, (2) the energy spatial derivatives, and (3) the azimuthal direction of the particle motion polarization ellipsoid. To assess the tremor sources, TREP assumes double-couple point dislocations with frequency-dependent quality factors (Q) in a layered medium. Performance and resolution of the method is thoroughly assessed via synthetic inversion tests with random noise, where the "observed" data correspond to an NVT-like finite difference (FD) model we introduce. The FD tremor source is composed of hundreds of quasi-dynamic penny-shaped cracks governed by a time-weakening friction law. In agreement with previous works, epicentral locations of 26 NVTs in Guerrero are separated in two main groups, one between 200 and 230 km from the trench, and another at about 170 km. However, unlike earlier investigations, most NVT hypocenters concentrate at 43 km depth near the plate interface and have subparallel rake angles to the Cocos plate convergence direction. These locations have uncertainties of ~5 km in the three components and are consistent with independent results for low-frequency earthquakes in the region, supporting their common origin related to slip transients in the plate interface. Our results also suggest the occurrence of NVT sources within the slab, ~5 km below the interface.

  3. Observation of ozone and aerosols in the Antarctic ozone hole of 1991 under the Polar Patrol Balloon (PPB) Project. Preliminary result

    NASA Technical Reports Server (NTRS)

    Hayashi, Masahiko; Murata, Isao; Iwasaka, Yasunobu; Kondo, Yutaka; Kanzawa, Hiroshi

    1994-01-01

    We present preliminary results for the PPB (Polar Patrol Balloon) experiment. The balloon was launched at 07:55 UT on 23 September and dropped at 21 UT on 28 September 1991. During the period, ozone and aerosol concentrations were measured correspondingly along the track. During the Lagrangian type observation, drastic change of ozone concentration in 'same air mass' and positive correlation between ozone concentration and sulfate aerosol amount were obtained at the level within 80-78 hPa. During the descent motion at 80 deg S active PSC's (type-1 and -2) were observed from 200 hPa to 80 hPa.

  4. Spatial and spectral interpolation of ground-motion intensity measure observations

    USGS Publications Warehouse

    Worden, Charles; Thompson, Eric M.; Baker, Jack W.; Bradley, Brendon A.; Luco, Nicolas; Wilson, David

    2018-01-01

    Following a significant earthquake, ground‐motion observations are available for a limited set of locations and intensity measures (IMs). Typically, however, it is desirable to know the ground motions for additional IMs and at locations where observations are unavailable. Various interpolation methods are available, but because IMs or their logarithms are normally distributed, spatially correlated, and correlated with each other at a given location, it is possible to apply the conditional multivariate normal (MVN) distribution to the problem of estimating unobserved IMs. In this article, we review the MVN and its application to general estimation problems, and then apply the MVN to the specific problem of ground‐motion IM interpolation. In particular, we present (1) a formulation of the MVN for the simultaneous interpolation of IMs across space and IM type (most commonly, spectral response at different oscillator periods) and (2) the inclusion of uncertain observation data in the MVN formulation. These techniques, in combination with modern empirical ground‐motion models and correlation functions, provide a flexible framework for estimating a variety of IMs at arbitrary locations.

  5. Optical observation of correlated motions in dihydrofolate reductase

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2015-03-01

    Enzyme function relies on its structural flexibility to make conformational changes for substrate binding and product release. An example of a metabolic enzyme where such structural changes are vital is dihydrofolate reductase (DHFR). DHFR is essential in both prokaryotes and eukaryotes for the nucleotide biosynthesis by catalyzing the reduction of dihydrofolate to tetrahydrofolate. NMR dynamical measurements found large amplitude fast dynamics that could indicate rigid-body, twisting-hinge motion for ecDHFR that may mediate flux. The role of such long-range correlated motions in function was suggested by the observed sharp decrease in enzyme activity for the single point mutation G121V, which is remote from active sites. This decrease in activity may be caused by the mutation interfering with the long-range intramolecular vibrations necessary for rapid access to functional configurations. We use our new technique of crystal anisotropy terahertz microscopy (CATM), to observe correlated motions in ecDHFR crystals with the bonding of NADPH and methotrexate. We compare the measured intramolecular vibrational spectrum with calculations using normal mode analysis.

  6. Motion based parsing for video from observational psychology

    NASA Astrophysics Data System (ADS)

    Kokaram, Anil; Doyle, Erika; Lennon, Daire; Joyeux, Laurent; Fuller, Ray

    2006-01-01

    In Psychology it is common to conduct studies involving the observation of humans undertaking some task. The sessions are typically recorded on video and used for subjective visual analysis. The subjective analysis is tedious and time consuming, not only because much useless video material is recorded but also because subjective measures of human behaviour are not necessarily repeatable. This paper presents tools using content based video analysis that allow automated parsing of video from one such study involving Dyslexia. The tools rely on implicit measures of human motion that can be generalised to other applications in the domain of human observation. Results comparing quantitative assessment of human motion with subjective assessment are also presented, illustrating that the system is a useful scientific tool.

  7. Polarization observables in hard rescattering mechanism of deuteron photodisintegration

    NASA Astrophysics Data System (ADS)

    Sargsian, Misak M.

    2004-05-01

    Polarization properties of high energy photodisintegration of the deuteron are studied within the framework of the hard rescattering mechanism (HRM). In HRM, a quark of one nucleon knocked-out by the incoming photon rescatters with a quark of the other nucleon leading to the production of two nucleons with high relative momentum. Summation of all relevant quark rescattering amplitudes allows us to express the scattering amplitude of the reaction through the convolution of a hard photon-quark interaction vertex, the large angle p-n scattering amplitude and the low momentum deuteron wave function. Within HRM, it is demonstrated that the polarization observables in hard photodisintegration of the deuteron can be expressed through the five helicity amplitudes of NN scattering at high momentum transfer. At 90° CM scattering HRM predicts the dominance of the isovector channel of hard pn rescattering, and it explains the observed smallness of induced, Py and transfered, Cx polarizations without invoking the argument of helicity conservation. Namely, HRM predicts that Py and Cx are proportional to the φ5 helicity amplitude which vanishes at θcm=90° due to symmetry reasons. HRM predicts also a nonzero value for Cz in the helicity-conserving regime and a positive Σ asymmetry which is related to the dominance of the isovector channel in the hard reinteraction. We extend our calculations to the region where large polarization effects are observed in pp scattering as well as give predictions for angular dependences.

  8. Simultaneous dynamic characterization of charge and structural motion during ferroelectric switching

    NASA Astrophysics Data System (ADS)

    Kwamen, C.; Rössle, M.; Reinhardt, M.; Leitenberger, W.; Zamponi, F.; Alexe, M.; Bargheer, M.

    2017-10-01

    Monitoring structural changes in ferroelectric thin films during electric field induced polarization switching is important for a full microscopic understanding of the coupled motion of charges, atoms, and domain walls in ferroelectric nanostructures. We combine standard ferroelectric test sequences of switching and nonswitching electrical pulses with time-resolved x-ray diffraction to investigate the structural response of a nanoscale Pb (Zr0.2Ti0.8) O3 ferroelectric oxide capacitor upon charging, discharging, and polarization reversal. We observe that a nonlinear piezoelectric response of the ferroelectric layer develops on a much longer time scale than the R C time constant of the device. The complex atomic motion during the ferroelectric polarization reversal starts with a contraction of the lattice, whereas the expansive piezoelectric response sets in after considerable charge flow due to the applied voltage pulses on the electrodes of the capacitor. Our simultaneous measurements on a working device elucidate and visualize the complex interplay of charge flow and structural motion and challenges theoretical modeling.

  9. Observations of Near-Earth Asteroids in Polarized Light

    NASA Astrophysics Data System (ADS)

    Afanasiev, V. L.; Ipatov, A. V.

    2018-04-01

    We report the results of position, photometric, and polarimetric observations of two near-Earth asteroids made with the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences. 1.2-hour measurements of the photometric variations of the asteroid 2009 DL46 made onMarch 8, 2016 (approximately 20m at a distance of about 0.23 AU from the Earth) showed a 0.m2-amplitude flash with a duration of about 20 minutes. During this time the polarization degree increased from the average level of 2-3% to 14%. The angle of the polarization plane and the phase angle were equal to 113° ± 1° and 43°, respectively. Our result indicates that the surface of the rotating asteroid (the rotation period of about 2.5 hours) must be non-uniformly rough. Observations of another asteroid—1994 UG—whose brightness was of about 17m and which was located at a geocentric distance of 0.077 AU, were carried out during the night of March 6/7, 2016 in two modes: photometric and spectropolarimetric. According to the results of photometric observations in Johnson's B-, V-, and R-band filters, over one hour the brightness of the asteroid remained unchanged within the measurement errors (about 0.m02). Spectropolarimetric observations in the 420-800 nm wavelength interval showed the polarization degree to decrease from 8% in the blue part of the spectrum to 2% in the red part with the phase angle equal to 44°, which is typical for S-type near-Earth asteroids.

  10. Polarized Transmission Spectrum of Earth as Observed during a Lunar Eclipse

    NASA Astrophysics Data System (ADS)

    Takahashi, Jun; Itoh, Yoichi; Hosoya, Kensuke; Yanamandra-Fisher, Padma A.; Hattori, Takashi

    2017-12-01

    Polarization during a lunar eclipse is a forgotten mystery. Coyne & Pellicori reported the detection of significant polarization during the lunar eclipse on 1968 April 13. Multiple scattering during the first transmission through Earth’s atmosphere was suggested as a possible cause of the polarization, but no conclusive determination was made. No further investigations on polarization during a lunar eclipse are known. We revisit this mystery with an interest in possible application to extrasolar planets; if planetary transmitted light is indeed polarized, it may be possible to investigate an exoplanet atmosphere using “transit polarimetry.” Here we report results of the first spectropolarimetry for the Moon during a lunar eclipse on 2015 April 4. We observed polarization degrees of 2%-3% at wavelengths of 500-600 nm; in addition, an enhanced feature was detected at the O2 A band near 760 nm. The observed time variation and wavelength dependence are consistent with an explanation of polarization caused by double scattering during the first transmission through Earth’s atmosphere, accompanied by latitudinal atmospheric inhomogeneity. Transit polarimetry for exoplanets may be useful to detect O2 gas and to probe the latitudinal atmospheric inhomogeneity, and it is thus worthy of serious consideration.

  11. Paleomagnetic Euler Poles and the Apparent Polar Wander and Absolute Motion of North America Since the Carboniferous

    NASA Astrophysics Data System (ADS)

    Gordon, Richard G.; Cox, Allan; O'Hare, Scott

    1984-10-01

    The apparent polar wander path for a plate is determined from paleomagnetic data by plotting a time sequence of paleomagnetic poles, each representing the location of the earth's spin axis as seen from the plate. Apparent polar wander paths consist of long, gently curved segments termed tracks linked by short segments with sharp curvature termed cusps. The tracks correspond to time intervals when the direction of plate motion was constant, and the cusps correspond to time intervals when the direction of plate motion was changing. Apparent polar wander tracks, like hot spot tracks, tend to lie along small circles. The center of a circle is called a hot spot Euler pole in the case of hot spot tracks and a paleomagnetic Euler pole in the case of paleomagnetic apparent polar wander paths. Both types of tracks mark the motion of a plate with respect to a point, a rising mantle plume in the case of hot spot tracks and the earth's paleomagnetic axis in the case of apparent polar wander paths. Unlike approaches uced in previous studies, paleomagnetic Euler pole analysis yields all three components of motion—including the east-west motion—of a plate with respect to the paleomagnetic axis. A new method for analyzing paleomagnetic poles along a track by using a maximum likelihood criterion gives the best fit paleomagnetic Euler pole and an ellipsoid of 95% confidence about the paleomagnetic Euler pole. In analyzing synthetic and real data, we found that the ellipsoids are elongate, the long axes being aligned with a great circle drawn from the paleomagnetic Euler pole to the center of the apparent polar wander track. This elongation is caused by the azimuths of circular tracks being better defined than their radii of curvature. A Jurassic-Cretaceous paleomagnetic Euler pole for North America was determined from 13 paleomagnetic poles. This track begins with the Wingate and Kayenta formations (about 200 Ma) and ends with the Niobrara Formation (about 87 Ma). Morgan's hot

  12. The CAMEO barium release - E/parallel/ fields over the polar cap

    NASA Technical Reports Server (NTRS)

    Heppner, J. P.; Miller, M. L.; Pongratz, M. B.; Smith, G. M.; Smith, L. L.; Mende, S. B.; Nath, N. R.

    1981-01-01

    Four successive thermite barium releases at an altitude of 965 km over polar cap invariant latitudes 84 to 76 deg near magnetic midnight were conducted from the orbiting second stage of the vehicle that launched Nimbus 7; the releases were made as part of the CAMEO (Chemically Active Material Ejected in Orbit) program. This was the first opportunity to observe the behavior of conventional barium release when conducted at orbital velocity in the near-earth magnetic field. The principal unexpected characteristic in the release dynamics was the high, 1.4 to 2.6 km/s, initial Ba(+) expansion velocity relative to an expected velocity of 0.9 km/s. Attention is also given to neutral cloud expansion, initial ion cloud expansion, convective motion, and the characteristics of field-aligned motion. The possibility of measuring parallel electric fields over the polar cap by observing perturbations in the motion of the visible ions is assessed.

  13. 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications

    NASA Astrophysics Data System (ADS)

    Sollberger, David; Greenhalgh, Stewart A.; Schmelzbach, Cedric; Van Renterghem, Cédéric; Robertsson, Johan O. A.

    2018-04-01

    We provide a six-component (6-C) polarization model for P-, SV-, SH-, Rayleigh-, and Love-waves both inside an elastic medium as well as at the free surface. It is shown that single-station 6-C data comprised of three components of rotational motion and three components of translational motion provide the opportunity to unambiguously identify the wave type, propagation direction, and local P- and S-wave velocities at the receiver location by use of polarization analysis. To extract such information by conventional processing of three-component (3-C) translational data would require large and dense receiver arrays. The additional rotational components allow the extension of the rank of the coherency matrix used for polarization analysis. This enables us to accurately determine the wave type and wave parameters (propagation direction and velocity) of seismic phases, even if more than one wave is present in the analysis time window. This is not possible with standard, pure-translational 3-C recordings. In order to identify modes of vibration and to extract the accompanying wave parameters, we adapt the multiple signal classification algorithm (MUSIC). Due to the strong nonlinearity of the MUSIC estimator function, it can be used to detect the presence of specific wave types within the analysis time window at very high resolution. We show how the extracted wavefield properties can be used, in a fully automated way, to separate the wavefield into its different wave modes using only a single 6-C recording station. As an example, we apply the method to remove surface wave energy while preserving the underlying reflection signal and to suppress energy originating from undesired directions, such as side-scattered waves.

  14. Solar Polar Imager: Observing Coronal Transients from a New Perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Liewer, P. C.

    2013-12-01

    The heliophysics community has long recognized the need for a mission to observe the Sun and corona from a polar perspective. One mission concept, the Solar Polar Imager (SPI), has been studied extensively (Liewer et al in NASA Space Science Vision Missions, 2008). In this concept, a solar sail is used to place a spacecraft in a circular 0.48-AU heliocentric orbit with an inclination of ~75 degrees. This orbit enables crucial observations not possible from lower latitude perspectives. Magnetograph and Doppler observations from a polar vantage point would revolutionize our understanding of the mechanism of solar activity cycles, polar magnetic field reversals, the internal structure and dynamics of the Sun and its atmosphere. The rapid 4-month polar orbit combined with both in situ and remote sensing instrumentation further enables unprecedented studies of the physical connection between the Sun, the solar wind, and solar energetic particles. From the polar perspective, white light imagers could be used to track CMEs and predict their arrival at Earth (as demonstrated by STEREO). SPI is also well suited to study the relative roles of CME-driven shock versus flare-associated processes in solar energetic particle acceleration. With the circular 0.48 AU orbit, solar energetic particles could be more easily traced to their sources and their variation with latitude can be studied at a constant radius. This talk will discuss the science objectives, instrumentation and mission design for the SPI mission.

  15. Long term observation of low altitude atmosphere by high precision polarization lidar

    NASA Astrophysics Data System (ADS)

    Shiina, Tatsuo; Noguchi, Kazuo; Fukuchi, Tetsuo

    2011-11-01

    Prediction of weather disaster such as heavy rain and light strike is an earnest desire. Successive monitoring of the low altitude atmosphere is important to predict it. The weather disaster often befalls with a steep change in a local area. It is hard for usual meteorological equipments to capture and alert it speedily. We have been developed the near range lidar to capture and analyze the low altitude atmosphere. In this study, high precision polarization lidar was developed to observe the low altitude atmosphere. This lidar has the high extinction ratio of polarization of >30dB to detect the small polarization change of the atmosphere. The change of the polarization in the atmosphere leads to the detection of the depolarization effect and the Faraday effect, which are caused by ice-crystals and lightning discharge, respectively. As the lidar optics is "inline" type, which means common use of optics for transmitter and receiver, it can observe the near range echo with the narrow field of view. The long-term observation was accomplished at low elevation angle. It aims to monitor the low altitude atmosphere under the cloud base and capture its spatial distribution and convection process. In the viewpoint of polarization, the ice-crystals' flow and concentration change of the aerosols are monitored. The observation has been continued in the cloudy and rainy days. The thunder cloud is also a target. In this report, the system specification is explained to clear the potential and the aims. The several observation data including the long-term observation will be shown with the consideration of polarization analysis.

  16. High-resolution observations of the polar magnetic fields of the sun

    NASA Technical Reports Server (NTRS)

    Lin, H.; Varsik, J.; Zirin, H.

    1994-01-01

    High-resolution magnetograms of the solar polar region were used for the study of the polar magnetic field. In contrast to low-resolution magnetograph observations which measure the polar magnetic field averaged over a large area, we focused our efforts on the properties of the small magnetic elements in the polar region. Evolution of the filling factor (the ratio of the area occupied by the magnetic elements to the total area) of these magnetic elements, as well as the average magnetic field strength, were studied during the maximum and declining phase of solar cycle 22, from early 1991 to mid-1993. We found that during the sunspot maximum period, the polar regions were occupied by about equal numbers of positive and negative magnetic elements, with equal average field strength. As the solar cycle progresses toward sunspot minimum, the magnetic field elements in the polar region become predominantly of one polarity. The average magnetic field of the dominant polarity elements also increases with the filling factor. In the meanwhile, both the filling factor and the average field strength of the non-dominant polarity elements decrease. The combined effects of the changing filling factors and average field strength produce the observed evolution of the integrated polar flux over the solar cycle. We compared the evolutionary histories of both filling factor and average field strength, for regions of high (70-80 deg) and low (60-70 deg) latitudes. For the south pole, we found no significant evidence of difference in the time of reversal. However, the low-latitude region of the north pole did reverse polarity much earlier than the high-latitude region. It later showed an oscillatory behavior. We suggest this may be caused by the poleward migration of flux from a large active region in 1989 with highly imbalanced flux.

  17. Polarization observations of four southern pulsars at 1560 MHz

    NASA Astrophysics Data System (ADS)

    Wu, Xin-Ji; Manchester, R. N.; Lyne, A. G.

    1991-12-01

    Some interesting results from the mean pulse polarization observations of four southern pulsars made at the Australian National Radio Astronomy Observatory, Parkes, using the 64-m telescope in June and July, 1988, are presented. The 2 x 16 x 5 MHz filter system from Jodrell Bank has proved excellent in dedispersing the pulse signals and measuring their polarization properties. Data for the four pulsars are given in some detail, and their spectral behavior is discussed.

  18. Observing planar cell polarity in multiciliated mouse airway epithelial cells.

    PubMed

    Vladar, Eszter K; Lee, Yin Loon; Stearns, Tim; Axelrod, Jeffrey D

    2015-01-01

    The concerted movement of cilia propels inhaled contaminants out of the lungs, safeguarding the respiratory system from toxins, pathogens, pollutants, and allergens. Motile cilia on the multiciliated cells (MCCs) of the airway epithelium are physically oriented along the tissue axis for directional motility, which depends on the planar cell polarity (PCP) signaling pathway. The MCCs of the mouse respiratory epithelium have emerged as an important model for the study of motile ciliogenesis and the PCP signaling mechanism. Unlike other motile ciliated or planar polarized tissues, airway epithelial cells are relatively easily accessible and primary cultures faithfully model many of the essential features of the in vivo tissue. There is growing interest in understanding how cells acquire and polarize motile cilia due to the impact of mucociliary clearance on respiratory health. Here, we present methods for observing and quantifying the planar polarized orientation of motile cilia both in vivo and in primary culture airway epithelial cells. We describe how to acquire and evaluate electron and light microscopy images of ciliary ultrastructural features that reveal planar polarized orientation. Furthermore, we describe the immunofluorescence localization of PCP pathway components as a simple readout for airway epithelial planar polarization and ciliary orientation. These methods can be adapted to observe ciliary orientation in other multi- and monociliated cells and to detect PCP pathway activity in any tissue or cell type. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Signatures of the Martian rotation parameters in the Doppler and range observables

    NASA Astrophysics Data System (ADS)

    Yseboodt, Marie; Dehant, Véronique; Péters, Marie-Julie

    2017-09-01

    The position of a Martian lander is affected by different aspects of Mars' rotational motions: the nutations, the precession, the length-of-day variations and the polar motion. These various motions have a different signature in a Doppler observable between the Earth and a lander on Mars' surface. Knowing the correlations between these signatures and the moments when these signatures are not null during one day or on a longer timescale is important to identify strategies that maximize the geophysical return of observations with a geodesy experiment, in particular for the ones on-board the future NASA InSight or ESA-Roscosmos ExoMars2020 missions. We provide first-order formulations of the signature of the rotation parameters in the Doppler and range observables. These expressions are functions of the diurnal rotation of Mars, the lander position, the planet radius and the rotation parameter. Additionally, the nutation signature in the Doppler observable is proportional to the Earth declination with respect to Mars. For a lander on Mars close to the equator, the motions with the largest signature in the Doppler observable are due to the length-of-day variations, the precession rate and the rigid nutations. The polar motion and the liquid core signatures have a much smaller amplitude. For a lander closer to the pole, the polar motion signature is enhanced while the other signatures decrease. We also numerically evaluate the amplitudes of the rotation parameters signature in the Doppler observable for landers on other planets or moons.

  20. Hotspot motion caused the Hawaiian-Emperor Bend and LLSVPs are not fixed

    NASA Astrophysics Data System (ADS)

    Tarduno, J. A.; Bono, R. K.

    2017-12-01

    Paleomagnetic study of volcanic rocks remains the gold standard on which to assess hotspot motion, true polar wander and plate motion recorded by oceanic plates. There is remarkable consistency between paleomagnetic results from basaltic lavas recovered by ocean drilling of the Emperor seamounts, and independent predictions of plate circuits. Both reveal greater than 40 mm/yr of southward hotspot motion; thus the dominant reason for the distinct bend morphology the Hawaiian-Emperor track is hotspot motion rather than plate motion. These findings provide the motivation for moving beyond hotspot fixity to understand mantle processes responsible for the observed motions. Global analyses as well as comparisons between the Hawaiian-Emperor and Louisville tracks indicate only a minor (if any) role for true polar wander. Two viable, non-mutually exclusive processes to explain the observed Hawaiian plume motion are: i. plume-ridge and ii plume-LLSVP interaction. Here we further explore these issues by paleomagnetic analyses of basalts from the Cenozoic Hawaiian chain and Late Cretaceous basalts of the southernmost Pacific Plate. The latter yield paleolatitudes consistent with those from the northern Pacific, indicating that long-standing non-dipole fields cannot have been large enough to affect conclusions on hotspot drift. Data from the former suggest some relative motions between the LLSVPs on tens-of-millions of year time scales, which probably record the continual reshaping of these provinces by plume motion in the lower mantle.

  1. Polar clouds and radiation in satellite observations, reanalyses, and climate models

    NASA Astrophysics Data System (ADS)

    Lenaerts, Jan T. M.; Van Tricht, Kristof; Lhermitte, Stef; L'Ecuyer, Tristan S.

    2017-04-01

    Clouds play a pivotal role in the surface energy budget of the polar regions. Here we use two largely independent data sets of cloud and surface downwelling radiation observations derived by satellite remote sensing (2007-2010) to evaluate simulated clouds and radiation over both polar ice sheets and oceans in state-of-the-art atmospheric reanalyses (ERA-Interim and Modern Era Retrospective-Analysis for Research and Applications-2) and the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model ensemble. First, we show that, compared to Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled, CloudSat-CALIPSO better represents cloud liquid and ice water path over high latitudes, owing to its recent explicit determination of cloud phase that will be part of its new R05 release. The reanalyses and climate models disagree widely on the amount of cloud liquid and ice in the polar regions. Compared to the observations, we find significant but inconsistent biases in the model simulations of cloud liquid and ice water, as well as in the downwelling radiation components. The CMIP5 models display a wide range of cloud characteristics of the polar regions, especially with regard to cloud liquid water, limiting the representativeness of the multimodel mean. A few CMIP5 models (CNRM, GISS, GFDL, and IPSL_CM5b) clearly outperform the others, which enhances credibility in their projected future cloud and radiation changes over high latitudes. Given the rapid changes in polar regions and global feedbacks involved, future climate model developments should target improved representation of polar clouds. To that end, remote sensing observations are crucial, in spite of large remaining observational uncertainties, which is evidenced by the substantial differences between the two data sets.

  2. Observation of non-classical correlations in sequential measurements of photon polarization

    NASA Astrophysics Data System (ADS)

    Suzuki, Yutaro; Iinuma, Masataka; Hofmann, Holger F.

    2016-10-01

    A sequential measurement of two non-commuting quantum observables results in a joint probability distribution for all output combinations that can be explained in terms of an initial joint quasi-probability of the non-commuting observables, modified by the resolution errors and back-action of the initial measurement. Here, we show that the error statistics of a sequential measurement of photon polarization performed at different measurement strengths can be described consistently by an imaginary correlation between the statistics of resolution and back-action. The experimental setup was designed to realize variable strength measurements with well-controlled imaginary correlation between the statistical errors caused by the initial measurement of diagonal polarizations, followed by a precise measurement of the horizontal/vertical polarization. We perform the experimental characterization of an elliptically polarized input state and show that the same complex joint probability distribution is obtained at any measurement strength.

  3. Characteristics of polar coronal hole jets

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, K.; Bemporad, A.; Banerjee, D.; Gupta, G. R.; Teriaca, L.

    2014-01-01

    Context. High spatial- and temporal-resolution images of coronal hole regions show a dynamical environment where mass flows and jets are frequently observed. These jets are believed to be important for the coronal heating and the acceleration of the fast solar wind. Aims: We studied the dynamics of two jets seen in a polar coronal hole with a combination of imaging from EIS and XRT onboard Hinode. We observed drift motions related to the evolution and formation of these small-scale jets, which we tried to model as well. Methods: Stack plots were used to find the drift and flow speeds of the jets. A toymodel was developed by assuming that the observed jet is generated by a sequence of single reconnection events where single unresolved blobs of plasma are ejected along open field lines, then expand and fall back along the same path, following a simple ballistic motion. Results: We found observational evidence that supports the idea that polar jets are very likely produced by multiple small-scale reconnections occurring at different times in different locations. These eject plasma blobs that flow up and down with a motion very similar to a simple ballistic motion. The associated drift speed of the first jet is estimated to be ≈27 km s-1. The average outward speed of the first jet is ≈171 km s-1, well below the escape speed, hence if simple ballistic motion is considered, the plasma will not escape the Sun. The second jet was observed in the south polar coronal hole with three XRT filters, namely, C-poly, Al-poly, and Al-mesh filters. Many small-scale (≈3″-5″) fast (≈200-300 km s-1) ejections of plasma were observed on the same day; they propagated outwards. We observed that the stronger jet drifted at all altitudes along the jet with the same drift speed of ≃7 km s-1. We also observed that the bright point associated with the first jet is a part of sigmoid structure. The time of appearance of the sigmoid and that of the ejection of plasma from the bright

  4. Polarized vortices in optical speckle field: observation of rare polarization singularities.

    PubMed

    Dupont, Jan; Orlik, Xavier

    2015-03-09

    Using a recent method able to characterize the polarimetry of a random field with high polarimetric and spatial accuracy even near places of destructive interference, we study polarized optical vortices at a scale below the transverse correlation width of a speckle field. We perform high accuracy polarimetric measurements of known singularities described with an half-integer topological index and we study rare integer index singularities which have, to our knowledge, never been observed in a speckle field.

  5. Observation of macroscopic valley-polarized monolayer exciton-polaritons at room temperature

    NASA Astrophysics Data System (ADS)

    Lundt, N.; Stoll, S.; Nagler, P.; Nalitov, A.; Klembt, S.; Betzold, S.; Goddard, J.; Frieling, E.; Kavokin, A. V.; Schüller, C.; Korn, T.; Höfling, S.; Schneider, C.

    2017-12-01

    In this Rapid Communication, we address the chiral properties of valley exciton-polaritons in a monolayer of W S2 in the regime of strong light-matter coupling with a Tamm-plasmon resonance. We observe that the effect of valley polarization, which manifests in the circular polarization of the emitted photoluminescence as the sample is driven by a circularly polarized laser, is strongly enhanced in comparison to bare W S2 monolayers and can even be observed under strongly nonresonant excitation at ambient conditions. In order to explain this effect in more detail, we study the relaxation and decay dynamics of exciton-polaritons in our device, elaborate the role of the dark state, and present a microscopic model to explain the wave-vector-dependent valley depolarization by the linear polarization splitting inherent to the microcavity. We believe that our findings are crucial for designing novel polariton-valleytronic devices which can be operated at room temperature.

  6. Cluster observations of two separated cusp populations: double cusp or motion of the cusp?

    NASA Astrophysics Data System (ADS)

    Escoubet, C.-Philippe; Berchem, Jean; Trattner, Karlheinz; Pitout, Frederic; Richard, Robert; Taylor, Matt; Soucek, Jan; Grison, Benjamin; Laakso, Harri; Masson, Arnaud; Dunlop, Malcolm; Dandouras, Iannis; Reme, Henri; Fazakerley, Andrew; Daly, Patrick

    2013-04-01

    Modelling plasma entry in the polar cusp has been successful in reproducing ion dispersions observed in the cusp at low and mid-altitudes. The use of a realistic convection pattern allowed Wing et al. (2001) to predict double cusp signatures that were subsequently observed by the DMSP spacecraft. In this paper, we present a cusp crossing where two cusp populations are observed, separated by a gap around 1° ILAT wide. Cluster 1 (C1) and Cluster 2 (C2) observed these two cusp populations with a time delay of three minutes and about 15 and 42 minutes later, Cluster 4 (C4) and Cluster 3 (C3) observed, respectively, a single cusp population. A peculiarity of this event is the fact that the second cusp population seen on C1 and C2 was observed at the same time as the first cusp population on C4. This would tend to suggest that the two cusp populations were spatial features similar to the double cusp. Due to the nested crossing of C1 and C2 through the gap between the two cusp encounters, C2 being first to leave the cusp and last to re-enter it, these observations cannot be explained by two stable cusps with a gap of precipitation in between. On the other hand these observations are in agreement with a motion of the cusp first dawnward and then back duskward due to the effect of the IMF-By component.

  7. THEMIS Observations of Unusual Bow Shock Motion, Attending a Transient Magnetospheric Event

    NASA Technical Reports Server (NTRS)

    Korotova, Galina; Sibeck, David; Omidi, N.; Angelopoulos, V.

    2013-01-01

    We present a multipoint case study of solar wind and magnetospheric observations during a transient magnetospheric compression at 2319 UT on October 15, 2008. We use high-time resolution magnetic field and plasma data from the THEMIS and GOES-11/12 spacecraft to show that this transient event corresponded to an abrupt rotation in the IMF orientation, a change in the location of the foreshock, and transient outward bow shock motion. We employ results from a global hybrid code model to reconcile the observations indicating transient inward magnetopause motion with the outward bow shock motion.

  8. Strong motion observations and recordings from the great Wenchuan Earthquake

    USGS Publications Warehouse

    Li, X.; Zhou, Z.; Yu, H.; Wen, R.; Lu, D.; Huang, M.; Zhou, Y.; Cu, J.

    2008-01-01

    The National Strong Motion Observation Network System (NSMONS) of China is briefly introduced in this paper. The NSMONS consists of permanent free-field stations, special observation arrays, mobile observatories and a network management system. During the Wenchuan Earthquake, over 1,400 components of acceleration records were obtained from 460 permanent free-field stations and three arrays for topographical effect and structural response observation in the network system from the main shock, and over 20,000 components of acceleration records from strong aftershocks occurred before August 1, 2008 were also obtained by permanent free-field stations of the NSMONS and 59 mobile instruments quickly deployed after the main shock. The strong motion recordings from the main shock and strong aftershocks are summarized in this paper. In the ground motion recordings, there are over 560 components with peak ground acceleration (PGA) over 10 Gal, the largest being 957.7 Gal. The largest PGA recorded during the aftershock exceeds 300 Gal. ?? 2008 Institute of Engineering Mechanics, China Earthquake Administration and Springer-Verlag GmbH.

  9. Tordo 1 polar cusp barium plasma injection experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wescott, E.M.; Stenbaek-Nielsen, H.C.; Davis, T.N.

    1978-04-01

    In January 1975, two barium plasma injection experiments were carried out with rockets launched from Cape Parry, Northwest Territories, Canada, into the upper atmosphere where field lines from the dayside cusp region intersect the ionosphere. One experiment, Tordo 1, took place near the beginning of a worldwide magnetic storm. It became a polar cap experiment almost immediately as convection perpendicular to B moved the fluorescent plasma jet away from the cusp across the polar cap in an antisunward direction. Convection across the polar cap with an average velocity of more than 1 km/s was observed for nearly 40 min untilmore » the barium flux tubes encountered large E fields associated with a poleward bulge of the auroral oval near Greenland. Prior to the encounter with the aurora near Greenland there is evidence of upward acceleration of the barium ions while they were in the polar cap. The three-dimensional observations of the plasma orientation and motion give an insight into convection from the cusp region across the polar cap, the orientation of the polar cap magnetic field lines out to several earth radii, the causes of polar cap magnetic perturbations, and parallel acceleration processes.« less

  10. Decoding the origins of vertical land motions observed today at coasts

    NASA Astrophysics Data System (ADS)

    Pfeffer, J.; Spada, G.; Mémin, A.; Boy, J.-P.; Allemand, P.

    2017-07-01

    In recent decades, geodetic techniques have allowed detecting vertical land motions and sea-level changes of a few millimetres per year, based on measurements taken at the coast (tide gauges), on board of satellite platforms (satellite altimetry) or both (Global Navigation Satellite System). Here, contemporary vertical land motions are analysed from January 1993 to July 2013 at 849 globally distributed coastal sites. The vertical displacement of the coastal platform due to surface mass changes is modelled using elastic and viscoelastic Green's functions. Special attention is paid to the effects of glacial isostatic adjustment induced by past and present-day ice melting. Various rheological and loading parameters are explored to provide a set of scenarios that could explain the coastal observations of vertical land motions globally. In well-instrumented regions, predicted vertical land motions explain more than 80 per cent of the variance observed at scales larger than a few hundred kilometres. Residual vertical land motions show a strong local variability, especially in the vicinity of plate boundaries due to the earthquake cycle. Significant residual signals are also observed at scales of a few hundred kilometres over nine well-instrumented regions forming observation windows on unmodelled geophysical processes. This study highlights the potential of our multitechnique database to detect geodynamical processes, driven by anthropogenic influence, surface mass changes (surface loading and glacial isostatic adjustment) and tectonic activity (including the earthquake cycle, sediment and volcanic loading, as well as regional tectonic constraints). Future improvements should be aimed at densifying the instrumental network and at investigating more thoroughly the uncertainties associated with glacial isostatic adjustment models.

  11. Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander

    NASA Astrophysics Data System (ADS)

    Fu, R. R.; Kent, D.

    2017-12-01

    True polar wander, or TPW, is the rotation of the entire mantle-crust system that results in simultaneous change in latitude and orientation for all lithospheric plates. One of the most recent candidate TPW events consists of a 30˚ rotation during Late Jurassic time (160 - 145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continental studies. Because all major landmasses except China were connected directly or via spreading centers in the Late Jurassic, the velocities of these continents were mutually constrained and their motion as a group over the underlying mantle would be indistinguishable from TPW using only continental data. On the other hand, plates of the Pacific Basin constituted a kinematically independent domain, interfacing with continents at subduction zones and slip-strike boundaries. Coherent motion of both Pacific Basin and continental plates would therefore indicate uniform motion of virtually the entire lithosphere, providing a means to distinguish TPW from continental drift. We performed thermal demagnetization on remaining samples from Ocean Drilling Program (ODP) Site 801B, which were cored from the oldest sampled oceanic crust in the Western Pacific, to determine its change in paleolatitude during the Late Jurassic and Early Cretaceous (167 - 134 Ma). We find that the Pacific Plate likely underwent a steady southward drift during this time period, consistent with previous results from magnetic anomalies, except for an episode of northward motion between Oxfordian and Tithonian time (161 - 147 Ma). Although the amplitude of this northward shift is subject to significant uncertainty due to the sparse recovery of core samples, the trajectory of the Pacific Plate is most simply explained by TPW in the 160 - 145 Ma interval as inferred from continental data. Furthermore, such an interpretation is consistent with the sense of shear inferred at the Farallon-North American Plate boundary, whereas uniform

  12. Cassini/CIRS Observations of Saturn’s Polar Vortices from Proximal Orbit Observations

    NASA Astrophysics Data System (ADS)

    Achterberg, Richard; Bjoraker, Gordon L.; Hesman, Brigette E.; Flasar, F. Michael

    2017-10-01

    The proximal orbit phase of the Cassini mission, with periapses inside the inner edge of the rings, has allowed observations of Saturn’s atmosphere with unprecedented spatial resolution. During the periapse periods on 26 April and 29 June 2017, the Composite Infrared Spectrometer (CIRS) performed scans over both the north and south poles with a spatial resolution better than 0.2° of latitude, over a factor of 4 better resolution than previous observations. A further observation of the south pole is planned on 20 Aug 2017.Previous thermal infrared observations of Saturn’s poles [1,2] showed a compact hot spot in the upper troposphere at each pole, roughly coincident with the hurricane-like polar vortex seen in visible imaging [3]. Preliminary results from the proximal orbit scans of the north pole, near summer solstice, show that in the upper troposphere, the meridional temperature gradient increases sharply at about 89°N, with the temperature increasing by ~5K between 89°N and the pole, with the temperature gradient persisting all the way to the pole within the spatial resolution of the observation. In the northern stratosphere, the polar hot spot is broader than in the troposphere, extending to ~86°N at 4 mbar, and disappearing into the general meridional gradient at 1 mbar.[1] G. S. Orton and P. A. Yanamadra-Fisher, Science 307, 696[2] L. N. Fletcher et al., Science, 319, 79[3] U. A. Dyudina et al., Icarus, 202, 240.

  13. Autoregressive harmonic analysis of the earth's polar motion using homogeneous International Latitude Service data

    NASA Technical Reports Server (NTRS)

    Chao, B. F.

    1983-01-01

    The homogeneous set of 80-year-long (1900-1979) International Latitude Service (ILS) polar motion data is analyzed using the autoregressive method (Chao and Gilbert, 1980), which resolves and produces estimates for the complex frequency (or frequency and Q) and complex amplitude (or amplitude and phase) of each harmonic component in the data. The ILS data support the multiple-component hypothesis of the Chandler wobble. It is found that the Chandler wobble can be adequately modeled as a linear combination of four (coherent) harmonic components, each of which represents a steady, nearly circular, prograde motion. The four-component Chandler wobble model 'explains' the apparent phase reversal during 1920-1940 and the pre-1950 empirical period-amplitude relation. The annual wobble is shown to be rather stationary over the years both in amplitude and in phase, and no evidence is found to support the large variations reported by earlier investigations. The Markowitz wobble is found to be marginally retrograde and appears to have a complicated behavior which cannot be resolved because of the shortness of the data set.

  14. Autoregressive harmonic analysis of the earth's polar motion using homogeneous International Latitude Service data

    NASA Astrophysics Data System (ADS)

    Chao, B. F.

    1983-12-01

    The homogeneous set of 80-year-long (1900-1979) International Latitude Service (ILS) polar motion data is analyzed using the autoregressive method (Chao and Gilbert, 1980), which resolves and produces estimates for the complex frequency (or frequency and Q) and complex amplitude (or amplitude and phase) of each harmonic component in the data. The ILS data support the multiple-component hypothesis of the Chandler wobble. It is found that the Chandler wobble can be adequately modeled as a linear combination of four (coherent) harmonic components, each of which represents a steady, nearly circular, prograde motion. The four-component Chandler wobble model 'explains' the apparent phase reversal during 1920-1940 and the pre-1950 empirical period-amplitude relation. The annual wobble is shown to be rather stationary over the years both in amplitude and in phase, and no evidence is found to support the large variations reported by earlier investigations. The Markowitz wobble is found to be marginally retrograde and appears to have a complicated behavior which cannot be resolved because of the shortness of the data set.

  15. SUBMILLIMETER POLARIZATION OBSERVATION OF THE PROTOPLANETARY DISK AROUND HD 142527

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, Akimasa; Dullemond, Cornelis P.; Pohl, Adriana

    We present the polarization observations toward the circumstellar disk around HD 142527 by using Atacama Large Millimeter/submillimeter Array at the frequency of 343 GHz. The beam size is 0.″51 × 0.″44, which corresponds to the spatial resolution of ∼71 × 62 au. The polarized intensity displays a ring-like structure with a peak located on the east side with a polarization fraction of P = 3.26 ± 0.02%, which is different from the peak of the continuum emission from the northeast region. The polarized intensity is significantly weaker at the peak of the continuum where P = 0.220 ± 0.010%. Themore » polarization vectors are in the radial direction in the main ring of the polarized intensity, while there are two regions outside at the northwest and northeast areas where the vectors are in the azimuthal direction. If the polarization vectors represent the magnetic field morphology, the polarization vectors indicate the toroidal magnetic field configuration on the main ring and the poloidal fields outside. On the other hand, the flip of the polarization vectors is predicted by the self-scattering of thermal dust emission due to the change of the direction of thermal radiation flux. Therefore, we conclude that self-scattering of thermal dust emission plays a major role in producing polarization at millimeter wavelengths in this protoplanetary disk. Also, this puts a constraint on the maximum grain size to be approximately 150 μ m if we assume compact spherical dust grains.« less

  16. Polar motion excitation analysis due to global continental water redistribution

    NASA Astrophysics Data System (ADS)

    Fernandez, L.; Schuh, H.

    2006-10-01

    We present the results obtained when studying the hydrological excitation of the Earth‘s wobble due to global redistribution of continental water storage. This work was performed in two steps. First, we computed the hydrological angular momentum (HAM) time series based on the global hydrological model LaD (Land Dynamics model) for the period 1980 till 2004. Then, we compared the effectiveness of this excitation by analysing the residuals of the geodetic time series after removing atmospheric and oceanic contributions with the respective hydrological ones. The emphasis was put on low frequency variations. We also present a comparison of HAM time series from LaD with respect to that one from a global model based on the assimilated soil moisture and snow accumulation data from NCEP/NCAR (The National Center for Environmental Prediction/The National Center for Atmospheric Research) reanalysis. Finally, we evaluate the performance of LaD model in closing the polar motion budget at seasonal periods in comparison with the NCEP and the Land Data Assimilation System (LDAS) models.

  17. Upper mantle anisotropy from long-period P polarization

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, Vera; Masters, Guy; Shearer, Peter M.

    2001-10-01

    We introduce a method to infer upper mantle azimuthal anisotropy from the polarization, i.e., the direction of particle motion, of teleseismic long-period P onsets. The horizontal polarization of the initial P particle motion can deviate by >10° from the great circle azimuth from station to source despite a high degree of linearity of motion. Recent global isotropic three-dimensional mantle models predict effects that are an order of magnitude smaller than our observations. Stations within regional distances of each other show consistent azimuthal deviation patterns, while the deviations seem to be independent of source depth and near-source structure. We demonstrate that despite this receiver-side spatial coherence, our polarization data cannot be fit by a large-scale joint inversion for whole mantle structure. However, they can be reproduced by azimuthal anisotropy in the upper mantle and crust. Modeling with an anisotropic reflectivity code provides bounds on the magnitude and depth range of the anisotropy manifested in our data. Our method senses anisotropy within one wavelength (250 km) under the receiver. We compare our inferred fast directions of anisotropy to those obtained from Pn travel times and SKS splitting. The results of the comparison are consistent with azimuthal anisotropy situated in the uppermost mantle, with SKS results deviating from Pn and Ppol in some regions with probable additional deeper anisotropy. Generally, our fast directions are consistent with anisotropic alignment due to lithospheric deformation in tectonically active regions and to absolute plate motion in shield areas. Our data provide valuable additional constraints in regions where discrepancies between results from different methods exist since the effect we observe is local rather than cumulative as in the case of travel time anisotropy and shear wave splitting. Additionally, our measurements allow us to identify stations with incorrectly oriented horizontal components.

  18. The case for 6-component ground motion observations in planetary seismology

    NASA Astrophysics Data System (ADS)

    Joshi, Rakshit; van Driel, Martin; Donner, Stefanie; Nunn, Ceri; Wassermann, Joachim; Igel, Heiner

    2017-04-01

    The imminent INSIGHT mission will place a single seismic station on Mars to learn more about the structure of the Martian interior. Due to cost and difficulty, only single stations are currently feasible for planetary missions. We show that future single station missions should also measure rotational ground motions, in addition to the classic 3 components of translational motion. The joint, collocated, 6 component (6C) observations offer access to additional information that can otherwise only be obtained through seismic array measurements or are associated with large uncertainties. An example is the access to local phase velocity information from measurements of amplitude ratios of translations and rotations. When surface waves are available, this implies (in principle) that 1D velocity models can be estimated from Love wave dispersion curves. In addition, rotational ground motion observations can distinguish between Love and Rayleigh waves as well as S and P type motions. Wave propagation directions can be estimated by maximizing (or minimizing) coherence between translational and rotational motions. In combination with velocity-depth estimates, locations of seismic sources can be determined from a single station with little or no prior knowledge of the velocity structure. We demonstrate these points with both theoretical and real data examples using the vertical component of motion from ring laser recordings at Wettzell and all components of motion from the ROMY ring near Munich. Finally, we present the current state of technology concerning portable rotation sensors and discuss the relevance to planetary seismology.

  19. Observing the Cosmic Microwave Background Polarization with Variable-delay Polarization Modulators for the Cosmology Large Angular Scale Surveyor

    NASA Astrophysics Data System (ADS)

    Harrington, Kathleen; CLASS Collaboration

    2018-01-01

    The search for inflationary primordial gravitational waves and the optical depth to reionization, both through their imprint on the large angular scale correlations in the polarization of the cosmic microwave background (CMB), has created the need for high sensitivity measurements of polarization across large fractions of the sky at millimeter wavelengths. These measurements are subjected to instrumental and atmospheric 1/f noise, which has motivated the development of polarization modulators to facilitate the rejection of these large systematic effects.Variable-delay polarization modulators (VPMs) are used in the Cosmology Large Angular Scale Surveyor (CLASS) telescopes as the first element in the optical chain to rapidly modulate the incoming polarization. VPMs consist of a linearly polarizing wire grid in front of a moveable flat mirror; varying the distance between the grid and the mirror produces a changing phase shift between polarization states parallel and perpendicular to the grid which modulates Stokes U (linear polarization at 45°) and Stokes V (circular polarization). The reflective and scalable nature of the VPM enables its placement as the first optical element in a reflecting telescope. This simultaneously allows a lock-in style polarization measurement and the separation of sky polarization from any instrumental polarization farther along in the optical chain.The Q-Band CLASS VPM was the first VPM to begin observing the CMB full time in 2016. I will be presenting its design and characterization as well as demonstrating how modulating polarization significantly rejects atmospheric and instrumental long time scale noise.

  20. Modelling dust polarization observations of molecular clouds through MHD simulations

    NASA Astrophysics Data System (ADS)

    King, Patrick K.; Fissel, Laura M.; Chen, Che-Yu; Li, Zhi-Yun

    2018-03-01

    The BLASTPol observations of Vela C have provided the most detailed characterization of the polarization fraction p and dispersion in polarization angles S for a molecular cloud. We compare the observed distributions of p and S with those obtained in synthetic observations of simulations of molecular clouds, assuming homogeneous grain alignment. We find that the orientation of the mean magnetic field relative to the observer has a significant effect on the p and S distributions. These distributions for Vela C are most consistent with synthetic observations where the mean magnetic field is close to the line of sight. Our results point to apparent magnetic disorder in the Vela C molecular cloud, although it can be due to either an inclination effect (i.e. observing close to the mean field direction) or significant field tangling from strong turbulence/low magnetization. The joint correlations of p with column density and of S with column density for the synthetic observations generally agree poorly with the Vela C joint correlations, suggesting that understanding these correlations requires a more sophisticated treatment of grain alignment physics.

  1. Interplanetary magnetic field dependency of stable Sun-aligned polar cap arcs

    NASA Technical Reports Server (NTRS)

    Valladares, C. E.; Carlson, H. C., Jr.; Fukui, K.

    1994-01-01

    This is the first analysis, using a statistically significant data set, of the morphological dependence of the presence, orientation, and motion of stable sun-aligned polar cap arcs upon the vector interplanetary magnetic field (IMF). For the one winter season analyzed we had 1392 all-sky 630.0-nm images of 2-min resolution containing a total of 150 polar cap arcs, all with corresponding values of the IMF as measured by International Monitoring Platform (IMP) 8 or International Sun Earth Explorer (ISEE) 2. After demonstrating an unbiased data set with smooth normal distributions of events versus the dimensions of time, space, and IMF component, we examine IMF dependencies of the properties of the optical arcs. A well-defined dependence for B(sub z) is found for the presence/absence of stable Sun-aligned polar cap arcs. Consistent with previous statistical studies, the probability of observing polar cap aurora steadily increases for larger positive values of B(sub z), and linearly decreases when B(sub z) becomes more negative. The probability of observing Sun-aligned arcs within the polar cap is determined to vary sharply as a function of the arc location; arcs were observed 40% of the time on the dawnside and only 10% on the duskside. This implies an overall probability of at least 40% for the whole polar cap. 20% of the arcs were observed during 'southward IMF conditions,' but in fact under closer inspection were found to have been formed under northward IMF conditions; these 'residual' positive B(sub z) arcs ha d a delayed residence time in the polar cap of about what would be expected after a north to south transition of B(sub z). A firm dependence on B(sub y) is also found for both the orientation and the dawn-dusk direction of motion of the arcs. All the arcs are Sun-aligned to a first approximation, but present deviations from this orientation, depending primarily upon the location of the arc in corrected geomagnetic (CG) coordinates. The arcs populating the

  2. Extending Counter-streaming Motion from an Active Region Filament to a Sunspot Light Bridge

    NASA Astrophysics Data System (ADS)

    Wang, Haimin; Liu, Rui; Li, Qin; Liu, Chang; Deng, Na; Xu, Yan; Jing, Ju; Wang, Yuming; Cao, Wenda

    2018-01-01

    We analyze high-resolution observations from the 1.6 m telescope at Big Bear Solar Observatory that cover an active region filament. Counter-streaming motions are clearly observed in the filament. The northern end of the counter-streaming motions extends to a light bridge, forming a spectacular circulation pattern around a sunspot, with clockwise motion in the blue wing and counterclockwise motion in the red wing, as observed in the Hα off-bands. The apparent speed of the flow is around 10–60 km s‑1 in the filament, decreasing to 5–20 km s‑1 in the light bridge. The most intriguing results are the magnetic structure and the counter-streaming motions in the light bridge. Similar to those in the filament, the magnetic fields show a dominant transverse component in the light bridge. However, the filament is located between opposed magnetic polarities, while the light bridge is between strong fields of the same polarity. We analyze the power of oscillations with the image sequences of constructed Dopplergrams, and find that the filament’s counter-streaming motion is due to physical mass motion along fibrils, while the light bridge’s counter-streaming motion is due to oscillation in the direction along the line-of-sight. The oscillation power peaks around 4 minutes. However, the section of the light bridge next to the filament also contains a component of the extension of the filament in combination with the oscillation, indicating that some strands of the filament are extended to and rooted in that part of the light bridge.

  3. Active motion on curved surfaces

    NASA Astrophysics Data System (ADS)

    Castro-Villarreal, Pavel; Sevilla, Francisco J.

    2018-05-01

    A theoretical analysis of active motion on curved surfaces is presented in terms of a generalization of the telegrapher equation. Such a generalized equation is explicitly derived as the polar approximation of the hierarchy of equations obtained from the corresponding Fokker-Planck equation of active particles diffusing on curved surfaces. The general solution to the generalized telegrapher equation is given for a pulse with vanishing current as initial data. Expressions for the probability density and the mean squared geodesic displacement are given in the limit of weak curvature. As an explicit example of the formulated theory, the case of active motion on the sphere is presented, where oscillations observed in the mean squared geodesic displacement are explained.

  4. Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications.

    PubMed

    Soumya, S S; Gupta, Animesh; Cugno, Andrea; Deseri, Luca; Dayal, Kaushik; Das, Dibyendu; Sen, Shamik; Inamdar, Mandar M

    2015-12-01

    Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements.

  5. Coherent Motion of Monolayer Sheets under Confinement and Its Pathological Implications

    PubMed Central

    Soumya, S S; Gupta, Animesh; Cugno, Andrea; Deseri, Luca; Dayal, Kaushik; Das, Dibyendu; Sen, Shamik; Inamdar, Mandar M.

    2015-01-01

    Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements. PMID:26691341

  6. Observing tectonic plate motions and deformations from satellite laser ranging

    NASA Technical Reports Server (NTRS)

    Christodoulidis, D. C.; Smith, D. E.; Kolenkiewicz, R.; Klosko, S. M.; Torrence, M. H.

    1985-01-01

    The scope of geodesy has been greatly affected by the advent of artificial near-earth satellites. The present paper provides a description of the results obtained from the reduction of data collected with the aid of satellite laser ranging. It is pointed out that dynamic reduction of satellite laser ranging (SLR) data provides very precise positions in three dimensions for the laser tracking network. The vertical components of the stations, through the tracking geometry provided by the global network and the accurate knowledge of orbital dynamics, are uniquely related to the center of mass of the earth. Attention is given to the observations, the methodologies for reducing satellite observations to estimate station positions, Lageos-observed tectonic plate motions, an improved temporal resolution of SLR plate motions, and the SLR vertical datum.

  7. The Tordo 1 polar cusp barium plasma injection experiment

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Davis, T. N.; Jeffries, R. A.; Roach, W. H.

    1978-01-01

    In January 1975, two barium plasma injection experiments were carried out with rockets launched into the upper atmosphere where field lines from the dayside cusp region intersect the ionosphere. The Tordo 1 experiment took place near the beginning of a worldwide magnetic storm. It became a polar cap experiment almost immediately as convection perpendicular to the magnetic field moved the fluorescent plasma jet away from the cusp across the polar cap in an antisunward direction. Convection across the polar cap with an average velocity of more than 1 km/s was observed for nearly 40 min until the barium flux tubes encountered large electron fields associated with a poleward bulge of the auroral oval near Greenland. Prior to the encounter with the aurora near Greenland there is evidence of upward acceleration of the barium ions while they were in the polar cap. The three-dimensional observations of the plasma orientation and motion give an insight into convection from the cusp region across the polar cap, the orientation of the polar cap magnetic field lines out to several earth radii, the causes of polar cap magnetic perturbations, and parallel acceleration processes.

  8. Planetary surface characterization from dual-polarization radar observations

    NASA Astrophysics Data System (ADS)

    Virkki, Anne; Planetary Radar Team of the Arecibo Observatory

    2017-10-01

    We present a new method to investigate the physical properties of planetary surfaces using dual-polarization radar measurements. The number of radar observations has increased radically during the last five years, allowing us to compare the radar scattering properties of different small-body populations and compositional types. There has also been progress in the laboratory studies of the materials that are relevant to asteroids and comets.In a typical planetary radar measurement a circularly polarized signal is transmitted using a frequency of 2380 MHz (wavelength of 12.6 cm) or 8560 MHz (3.5 cm). The echo is received simultaneously in the same circular (SC) and the opposite circular (OC) polarization as the transmitted signal. The delay and doppler frequency of the signal give highly accurate astrometric information, and the intensity and the polarization are suggestive of the physical properties of the target's near-surface.The radar albedo describes the radar reflectivity of the target. If the effective near-surface is smooth and homogeneous in the wavelength-scale, the echo is received fully in the OC polarization. Wavelength-scale surface roughness or boulders within the effective near-surface volume increase the received echo power in both polarizations. However, there is a lack in the literature describing exactly how the physical properties of the target affect the radar albedo in each polarization, or how they can be derived from the radar measurements.To resolve this problem, we utilize the information that the diffuse components of the OC and SC parts are correlated when the near-surface contains wavelength-scale scatterers such as boulders. A linear least-squares fit to the detected values of OC and SC radar albedos allows us to separate the diffusely scattering part from the quasi-specular part. Combined with the spectro-photometric information of the target and laboratory studies of the permittivity-density dependence, the method provides us with a

  9. Sub-daily sea ice motion and deformation from RADARSAT observations

    NASA Technical Reports Server (NTRS)

    Kwok, R.; Cunningham, G. F.

    2003-01-01

    We find a persistent level of oscillatory sea ice motion and deformation, superimposed on the large-scale wind-driven field, in May 2002 (spring) and February 2003 (mid-winter), in the high Arctic over a region centered at approx.(85degreeN, 135degreeW). At this latitude, the RADARSAT wide-swath SAR coverage provides 4??equential observations every day, for ice motion retrieval, with a sampling interval at the orbital period of approx. 101 minutes.

  10. Wideband Motion Control by Position and Acceleration Input Based Disturbance Observer

    NASA Astrophysics Data System (ADS)

    Irie, Kouhei; Katsura, Seiichiro; Ohishi, Kiyoshi

    The disturbance observer can observe and suppress the disturbance torque within its bandwidth. Recent motion systems begin to spread in the society and they are required to have ability to contact with unknown environment. Such a haptic motion requires much wider bandwidth. However, since the conventional disturbance observer attains the acceleration response by the second order derivative of position response, the bandwidth is limited due to the derivative noise. This paper proposes a novel structure of a disturbance observer. The proposed disturbance observer uses an acceleration sensor for enlargement of bandwidth. Generally, the bandwidth of an acceleration sensor is from 1Hz to more than 1kHz. To cover DC range, the conventional position sensor based disturbance observer is integrated. Thus, the performance of the proposed Position and Acceleration input based disturbance observer (PADO) is superior to the conventional one. The PADO is applied to position control (infinity stiffness) and force control (zero stiffness). The numerical and experimental results show viability of the proposed method.

  11. Spectral and Polarization Sensitivity of the Dipteran Visual System

    PubMed Central

    McCann, Gilbert D.; Arnett, David W.

    1972-01-01

    Spectral and polarization sensitivity measurements were made at several levels (retina, first and third optic ganglion, cervical connective, behavior) of the dipteran visual nervous system. At all levels, it was possible to reveal contributions from the retinular cell subsystem cells 1 to 6 or the retinular cell subsystem cells 7 and 8 or both. Only retinular cells 1 to 6 were directly studied, and all possessed the same spectral sensitivity characterized by two approximately equal sensitivity peaks at 350 and 480 nm. All units of both the sustaining and on-off variety in the first optic ganglion exhibited the same spectral sensitivity as that of retinular cells 1 to 6. It was possible to demonstrate for motion detection and optomotor responses two different spectral sensitivities depending upon the spatial wavelength of the stimulus. For long spatial wavelengths, the spectral sensitivity agreed with retinular cells 1 to 6; however, the spectral sensitivity at short spatial wavelengths was characterized by a single peak at 465 nm reflecting contributions from the (7, 8) subsystem. Although the two subsystems exhibited different spectral sensitivities, the difference was small and no indication of color discrimination mechanisms was observed. Although all retinular cells 1 to 6 exhibited a preferred polarization plane, sustaining and on-off units did not. Likewise, motion detection and optomotor responses were insensitive to the polarization plane for long spatial wavelength stimuli; however, sensitivity to select polarization planes was observed for short spatial wavelengths. PMID:5027759

  12. As time passes by: Observed motion-speed and psychological time during video playback.

    PubMed

    Nyman, Thomas Jonathan; Karlsson, Eric Per Anders; Antfolk, Jan

    2017-01-01

    Research shows that psychological time (i.e., the subjective experience and assessment of the passage of time) is malleable and that the central nervous system re-calibrates temporal information in accordance with situational factors so that psychological time flows slower or faster. Observed motion-speed (e.g., the visual perception of a rolling ball) is an important situational factor which influences the production of time estimates. The present study examines previous findings showing that observed slow and fast motion-speed during video playback respectively results in over- and underproductions of intervals of time. Here, we investigated through three separate experiments: a) the main effect of observed motion-speed during video playback on a time production task and b) the interactive effect of the frame rate (frames per second; fps) and motion-speed during video playback on a time production task. No main effect of video playback-speed or interactive effect between video playback-speed and frame rate was found on time production.

  13. As time passes by: Observed motion-speed and psychological time during video playback

    PubMed Central

    Karlsson, Eric Per Anders; Antfolk, Jan

    2017-01-01

    Research shows that psychological time (i.e., the subjective experience and assessment of the passage of time) is malleable and that the central nervous system re-calibrates temporal information in accordance with situational factors so that psychological time flows slower or faster. Observed motion-speed (e.g., the visual perception of a rolling ball) is an important situational factor which influences the production of time estimates. The present study examines previous findings showing that observed slow and fast motion-speed during video playback respectively results in over- and underproductions of intervals of time. Here, we investigated through three separate experiments: a) the main effect of observed motion-speed during video playback on a time production task and b) the interactive effect of the frame rate (frames per second; fps) and motion-speed during video playback on a time production task. No main effect of video playback-speed or interactive effect between video playback-speed and frame rate was found on time production. PMID:28614353

  14. Microwave Polarized Signatures Generated within Cloud Systems: SSM/I Observations Interpreted with Radiative Transfer Simulations

    NASA Technical Reports Server (NTRS)

    Prigent, Catherine; Pardo, Juan R.; Mishchenko, Michael I.; Rossow, Willaim B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Special Sensor Microwave /Imager (SSM/I) observations in cloud systems are studied over the tropics. Over optically thick cloud systems, presence of polarized signatures at 37 and 85 GHz is evidenced and analyzed with the help of cloud top temperature and optical thickness extracted from visible and IR satellite observations. Scattering signatures at 85 GHz (TbV(85) less than or = 250 K) are associated with polarization differences greater than or = 6 K, approx. 50%, of the time over ocean and approx. 40% over land. In addition. over thick clouds the polarization difference at 37 GHz is rarely negligible. The polarization differences at 37 and 85 GHz do not stem from the surface but are generated in regions of relatively homogeneous clouds having high liquid water content. To interpret the observations, a radiative transfer model that includes the scattering by non-spherical particles is developed. based on the T-matrix approach and using the doubling and adding method. In addition to handling randomly and perfectly oriented particles, this model can also simulate the effect of partial orientation of the hydrometeors. Microwave brightness temperatures are simulated at SSM/I frequencies and are compared with the observations. Polarization differences of approx. 2 K can be simulated at 37 GHz over a rain layer, even using spherical drops. The polarization difference is larger for oriented non-spherical particles. The 85 GHz simulations are very sensitive to the ice phase of the cloud. Simulations with spherical particles or with randomly oriented non-spherical ice particles cannot replicate the observed polarization differences. However, with partially oriented non-spherical particles, the observed polarized signatures at 85 GHz are explained, and the sensitivity of the scattering characteristics to the particle size, asphericity, and orientation is analyzed. Implications on rain and ice retrievals are discussed.

  15. Optical polarization observations of epsilon Aurigae during the 2009-2011 eclipse

    NASA Astrophysics Data System (ADS)

    Henson, Gary D.; Burdette, John; Gray, Sharon

    2012-05-01

    Polarization observations of the unique eclipsing binary, Epsilon Aurigae, are being carried out using a new dual beam imaging polarimeter on the 0.36m telescope of the Harry D. Powell Observatory. This bright binary system has a 27.1 year period with an eclipse duration of nearly two years. The primary is known to be a pulsating F0 supergiant with the secondary a large and essentially opaque disk. We report here on the characteristics of the polarimeter and on the status of V-band observations that are being obtained to better understand the system's geometry and the nature of its two components. In particular, the characteristics of the secondary disk remain a puzzle. Results are compared to polarization observations from the 1982-1984 eclipse.

  16. Climate-driven seasonal geocenter motion during the GRACE period

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyue; Sun, Yu

    2018-03-01

    Annual cycles in the geocenter motion time series are primarily driven by mass changes in the Earth's hydrologic system, which includes land hydrology, atmosphere, and oceans. Seasonal variations of the geocenter motion have been reliably determined according to Sun et al. (J Geophys Res Solid Earth 121(11):8352-8370, 2016) by combining the Gravity Recovery And Climate Experiment (GRACE) data with an ocean model output. In this study, we reconstructed the observed seasonal geocenter motion with geophysical model predictions of mass variations in the polar ice sheets, continental glaciers, terrestrial water storage (TWS), and atmosphere and dynamic ocean (AO). The reconstructed geocenter motion time series is shown to be in close agreement with the solution based on GRACE data supporting with an ocean bottom pressure model. Over 85% of the observed geocenter motion time series, variance can be explained by the reconstructed solution, which allows a further investigation of the driving mechanisms. We then demonstrated that AO component accounts for 54, 62, and 25% of the observed geocenter motion variances in the X, Y, and Z directions, respectively. The TWS component alone explains 42, 32, and 39% of the observed variances. The net mass changes over oceans together with self-attraction and loading effects also contribute significantly (about 30%) to the seasonal geocenter motion in the X and Z directions. Other contributing sources, on the other hand, have marginal (less than 10%) impact on the seasonal variations but introduce a linear trend in the time series.

  17. Measurement of axial spin observables in the polarized deuteron-polarized proton breakup at 270MeV

    NASA Astrophysics Data System (ADS)

    Whitaker, Thomas Jenkins

    We report the measurement of "axial" spin observables in the dp breakup reaction at 270MeV. These measurements were made using a stored polarized "cooled" deuteron beam and a polarized internal hydrogen target at the Indiana University Cyclotron Facility (IUCF). Given our beam and target spin-alignment directions we were able to measure the axial spin observables Apz , Cy,x - Cx,y, and Czz,z. Axial spin observables are the subset of observables which are antisymmetric under the parity operation and are thus forbidden in reactions where the outgoing momenta are coplanar with the beam momentum. It has been argued that axial observables may be more sensitive to a three-body force than other spin observables. We compare our measurements to theoretical predictions based on the CD-Bonn nucleon-nucleon potential and the TM ' three-nucleon force, using a new method to correctly take into account the experimental constraints. The only previous measurement of Apz for pd breakup was carried out at 9MeV and yielded a result consistent with zero. In contrast, at Tp = 135 MeV, the present experiment reports a sizeable value for Apz , Cy,x - Cx,y, and Czz,z. To our knowledge, this is the first time axial correlation coefficients have been measured in a nuclear reaction. The expected sensitivity of axial observables to the three-nucleon force is not confirmed by our measurement.

  18. Transitions between homogeneous phases of polar active liquids

    NASA Astrophysics Data System (ADS)

    Dauchot, Olivier; Nguyen Thu Lam, Khanh Dang; Schindler, Michael; EC2M Team; PCT Team

    2015-03-01

    Polar active liquids, composed of aligning self-propelled particle exhibit large scale collective motion. Simulations of Vicsek-like models of constant-speed point particles, aligning with their neighbors in the presence of noise, have revealed the existence of a transition towards a true long range order polar-motion phase. Generically, the homogenous polar state is unstable; non-linear propagative structures develop; and the transition is discontinuous. The long range dynamics of these systems has been successfully captured using various scheme of kinetic theories. However the complexity of the dynamics close to the transition has somewhat hindered more basics questions. Is there a simple way to predict the existence and the order of a transition to collective motion for a given microscopic dynamics? What would be the physically meaningful and relevant quantity to answer this question? Here, we tackle these questions, restricting ourselves to the study of the homogeneous phases of polar active liquids in the low density limit and obtain a very intuitive understanding of the conditions which particle interaction must satisfy to induce a transition towards collective motion.

  19. Comparison of PARASOL Observations with Polarized Reflectances Simulated Using Different Ice Habit Mixtures

    NASA Technical Reports Server (NTRS)

    Cole, Benjamin H.; Yang, Ping; Baum, Bryan A.; Riedi, Jerome; Labonnote, Laurent C.; Thieuleux, Francois; Platnick, Steven

    2012-01-01

    Insufficient knowledge of the habit distribution and the degree of surface roughness of ice crystals within ice clouds is a source of uncertainty in the forward light scattering and radiative transfer simulations required in downstream applications involving these clouds. The widely used MODerate Resolution Imaging Spectroradiometer (MODIS) Collection 5 ice microphysical model assumes a mixture of various ice crystal shapes with smooth-facets except aggregates of columns for which a moderately rough condition is assumed. When compared with PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) polarized reflection data, simulations of polarized reflectance using smooth particles show a poor fit to the measurements, whereas very rough-faceted particles provide an improved fit to the polarized reflectance. In this study a new microphysical model based on a mixture of 9 different ice crystal habits with severely roughened facets is developed. Simulated polarized reflectance using the new ice habit distribution is calculated using a vector adding-doubling radiative transfer model, and the simulations closely agree with the polarized reflectance observed by PARASOL. The new general habit mixture is also tested using a spherical albedo differences analysis, and surface roughening is found to improve the consistency of multi-angular observations. It is suggested that an ice model incorporating an ensemble of different habits with severely roughened surfaces would potentially be an adequate choice for global ice cloud retrievals.

  20. Forecasting the Contribution of Polarized Extragalactic Radio Sources in CMB Observations

    NASA Astrophysics Data System (ADS)

    Puglisi, G.; Galluzzi, V.; Bonavera, L.; Gonzalez-Nuevo, J.; Lapi, A.; Massardi, M.; Perrotta, F.; Baccigalupi, C.; Celotti, A.; Danese, L.

    2018-05-01

    We combine the latest data sets obtained with different surveys to study the frequency dependence of polarized emission coming from extragalactic radio sources (ERS). We consider data over a very wide frequency range starting from 1.4 GHz up to 217 GHz. This range is particularly interesting since it overlaps the frequencies of the current and forthcoming cosmic microwave background (CMB) experiments. Current data suggest that at high radio frequencies (ν ≥ 20 GHz) the fractional polarization of ERS does not depend on the total flux density. Conversely, recent data sets indicate a moderate increase of polarization fraction as a function of frequency, physically motivated by the fact that Faraday depolarization is expected to be less relevant at high radio frequencies. We compute ERS number counts using updated models based on recent data, and we forecast the contribution of unresolved ERS in CMB polarization spectra. Given the expected sensitivities and the observational patch sizes of forthcoming CMB experiments, about ∼200 (up to ∼2000) polarized ERS are expected to be detected. Finally, we assess that polarized ERS can contaminate the cosmological B-mode polarization if the tensor-to-scalar ratio is <0.05 and they have to be robustly controlled to de-lens CMB B-modes at the arcminute angular scales.

  1. Local Polar Fluctuations in Lead Halide Perovskite Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.

    2017-03-01

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH3NH3PbBr3) and all-inorganic (CsPbBr3) leadhalide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. MD simulations indicate that head-tohead Cs motion coupledmore » to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr3.« less

  2. Greenland Network (GNET) observations of Polar cap Patches and Arcs

    NASA Astrophysics Data System (ADS)

    Cesar, V. E.; Pradipta, R.; Pedersen, T.

    2017-12-01

    TEC values collected with the Greenland Network (GNET) of GPS/GNSS receivers and 630.0 nm airglow emissions recorded with an all-sky imager located at Qaanaaq in Greenland are used to investigate the relationship between the appearance and evolution of polar cap patches (PCP) and Sun-aligned arcs (S-AA) and the characteristics of the solar wind. Both PCP and S-AA produce TEC enhancements, but the PCP velocity is 10 times larger than the S-AA's drift. In addition, PCP move anti-sunwardly and the S-AA move in the dawn-dusk direction. We use these properties of PCPs and S-AAs and calculate the velocity of the TEC enhancements to identify and discriminate between patches and arcs. The physical location of the boundary of the polar cap is based on DMSP observations of particle precipitation. The IMF and other solar wind parameters are gathered with the ACE satellite that is positioned at the L1 point. Our observations indicate that during December 2009, TEC enhancements occur in the polar cap almost every day, but only when the solar wind velocity exceeds 290 km/s. PCPs appear almost immediately after the Bz turns southward; however, the S-AAs develop a few hours after Bz points northward. These conclusions demonstrate the ability of GNET continuous measurements over Greenland to conduct investigations of the formation and evolution of polar cap patches and arcs.

  3. Observing the overall rocking motion of a protein in a crystal

    NASA Astrophysics Data System (ADS)

    Ma, Peixiang; Xue, Yi; Coquelle, Nicolas; Haller, Jens D.; Yuwen, Tairan; Ayala, Isabel; Mikhailovskii, Oleg; Willbold, Dieter; Colletier, Jacques-Philippe; Skrynnikov, Nikolai R.; Schanda, Paul

    2015-10-01

    The large majority of three-dimensional structures of biological macromolecules have been determined by X-ray diffraction of crystalline samples. High-resolution structure determination crucially depends on the homogeneity of the protein crystal. Overall `rocking' motion of molecules in the crystal is expected to influence diffraction quality, and such motion may therefore affect the process of solving crystal structures. Yet, so far overall molecular motion has not directly been observed in protein crystals, and the timescale of such dynamics remains unclear. Here we use solid-state NMR, X-ray diffraction methods and μs-long molecular dynamics simulations to directly characterize the rigid-body motion of a protein in different crystal forms. For ubiquitin crystals investigated in this study we determine the range of possible correlation times of rocking motion, 0.1-100 μs. The amplitude of rocking varies from one crystal form to another and is correlated with the resolution obtainable in X-ray diffraction experiments.

  4. Motor facilitation during observation of implied motion: Evidence for a role of the left dorsolateral prefrontal cortex.

    PubMed

    Mineo, Ludovico; Fetterman, Alexander; Concerto, Carmen; Warren, Michael; Infortuna, Carmenrita; Freedberg, David; Chusid, Eileen; Aguglia, Eugenio; Battaglia, Fortunato

    2018-06-01

    The phenomenon of motor resonance (the increase in motor cortex excitability during observation of actions) has been previously described. Transcranial magnetic stimulation (TMS) studies have demonstrated a similar effect during perception of implied motion (IM). The left dorsolateral prefrontal cortex (DLPFC) seems to be activated during action observation. Furthermore, the role of this brain area in motor resonance to IM is yet to be investigated. Fourteen healthy volunteers were enrolled into the study. We used transcranial direct current stimulation (tDCS) to stimulate DLPFC aiming to investigate whether stimulation with different polarities would affect the amplitude of motor evoked potential collected during observation of images with and without IM. The results of our experiment indicated that Cathodal tDCS over the left DLPFC prevented motor resonance during observation of IM. On the contrary, anodal and sham tDCS did not significantly modulate motor resonance to IM. The current study expands the understanding of the neural circuits engaged during observation of IM. Our results are consistent with the hypothesis that action understanding requires the interaction of large networks and that the left DLPFC plays a crucial role in generating motor resonance to IM. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Sensory conflict in motion sickness: An observer theory approach

    NASA Technical Reports Server (NTRS)

    Oman, Charles M.

    1989-01-01

    Motion sickness is the general term describing a group of common nausea syndromes originally attributed to motion-induced cerebral ischemia, stimulation of abdominal organ afferent, or overstimulation of the vestibular organs of the inner ear. Sea-, car-, and airsicknesses are the most commonly experienced examples. However, the discovery of other variants such as Cinerama-, flight simulator-, spectacle-, and space sickness in which the physical motion of the head and body is normal or absent has led to a succession of sensory conflict theories which offer a more comprehensive etiologic perspective. Implicit in the conflict theory is the hypothesis that neutral and/or humoral signals originate in regions of the brain subversing spatial orientation, and that these signals somehow traverse to other centers mediating sickness symptoms. Unfortunately, the present understanding of the neurophysiological basis of motion sickness is far from complete. No sensory conflict neuron or process has yet been physiologically identified. To what extent can the existing theory be reconciled with current knowledge of the physiology and pharmacology of nausea and vomiting. The stimuli which causes sickness, synthesizes a contemporary Observer Theory view of the Sensory Conflict hypothesis are reviewed, and a revised model for the dynamic coupling between the putative conflict signals and nausea magnitude estimates is presented. The use of quantitative models for sensory conflict offers a possible new approach to improving the design of visual and motion systems for flight simulators and other virtual environment display systems.

  6. RADIO POLARIZATION OBSERVATIONS OF G319.9-0.7: A BOW-SHOCK NEBULA WITH AN AZIMUTHAL MAGNETIC FIELD POWERED BY PULSAR J1509-5850

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, C.-Y.; Gaensler, B. M.; Chatterjee, S.

    2010-03-20

    We report radio polarization observations of G319.9-0.7 (MSC 319.9-0.7) at 3 and 6 cm obtained with the Australia Telescope Compact Array. The source shows a highly elongated morphology with the energetic pulsar J1509-5850 located at the tip. We found a flat radio spectrum of index alpha = -0.26 +- 0.04 and a high degree of linear polarization. These results confirm G319.9-0.7 as a bow-shock pulsar wind nebula. The polarization maps suggest a helical magnetic field trailing the pulsar, with the symmetry axis parallel to the system's inferred direction of motion. This is the first time such a field geometry hasmore » been seen in a bow-shock nebula, and it may be the result of an alignment between the pulsar spin axis and its space velocity. Compared to other bow-shock examples, G319.9-0.7 exhibits very different properties in the field structure and surface brightness distribution, illustrating the large diversity of the population.« less

  7. A Composite View of Ozone Evolution in the 1995-1996 Northern Winter Polar Vortex Developed from Airborne Lidar and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Schoeberl, M. R.; Kawa, S. R.; Browell, E. V.

    2000-01-01

    The processes which contribute to the ozone evolution in the high latitude northern lower stratosphere are evaluated using a three dimensional model simulation and ozone observations. The model uses winds and temperatures from the Goddard Earth Observing System Data Assimilation System. The simulation results are compared with ozone observations from three platforms: the differential absorption lidar (DIAL) which was flown on the NASA DC-8 as part of the Vortex Ozone Transport Experiment; the Microwave Limb Sounder (MLS); the Polar Ozone and Aerosol Measurement (POAM II) solar occultation instrument. Time series for the different data sets are consistent with each other, and diverge from model time series during December and January. The model ozone in December and January is shown to be much less sensitive to the model photochemistry than to the model vertical transport, which depends on the model vertical motion as well as the model vertical gradient. We evaluate the dependence of model ozone evolution on the model ozone gradient by comparing simulations with different initial conditions for ozone. The modeled ozone throughout December and January most closely resembles observed ozone when the vertical profiles between 12 and 20 km within the polar vortex closely match December DIAL observations. We make a quantitative estimate of the uncertainty in the vertical advection using diabatic trajectory calculations. The net transport uncertainty is significant, and should be accounted for when comparing observations with model ozone. The observed and modeled ozone time series during December and January are consistent when these transport uncertainties are taken into account.

  8. Analysis of the polarization observables H and P for γ-> p -> ->π+ n

    NASA Astrophysics Data System (ADS)

    Lee, Robert J.; Ritchie, B. G.; Dugger, M.; CLAS Collaboration

    2017-09-01

    A search is underway to find baryon resonances that have been predicted, but yet remain unobserved. Nucleon resonances, due to their broad energy widths, overlap and must be disentangled in order to be identified. Meson photoproduction observables related to the orientation of the spin of the incoming photon and the spin of the target proton are useful tools to deconvolute the nucleon resonance spectrum. These observables are particularly sensitive to interference between phases of the complex amplitudes. A set of these observables has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab with linearly-polarized photons having energies from 725 to 2100 MeV with polar angle values of cos (θC . M .) between 1 and -0.8 and transversely-polarized protons in the Jefferson Lab FRozen Spin Target (FROST). By fitting π+ yields over azimuthal scattering angle, the observables H and P have been extracted. Preliminary results for these observables will be presented and compared with predictions provided by SAID Partial-Wave Analysis Facility. Work at ASU is supported by the U.S. National Science Foundation.

  9. X-ray and optical observations of four polars

    NASA Astrophysics Data System (ADS)

    Worpel, H.; Schwope, A. D.; Granzer, T.; Reinsch, K.; Schwarz, R.; Traulsen, I.

    2016-08-01

    Aims: We investigate the temporal and spectral behaviour of four polar cataclysmic variables from the infrared to X-ray regimes, refine our knowledge of the physical parameters of these systems at different accretion rates, and search for a possible excess of soft X-ray photons. Methods: We obtained and analysed four XMM-Newton X-ray observations of three of the sources, two of them discovered with the SDSS and one in the RASS. The X-ray data were complemented by optical photometric and spectroscopic observations and, for two sources, archival Swift observations. Results: SDSSJ032855.00+052254.2 was X-ray bright in two XMM-Newton and two Swift observations, and shows transitions from high and low accretion states on a timescale of a few months. The source shows no significant soft excess. We measured the magnetic field strength at the main accreting pole to be 39 MG and the inclination to be 45° ≤ I ≤ 77°, and we refined the long-term ephemeris. SDSSJ133309.20+143706.9 was X-ray faint. We measured a faint phase X-ray flux and plasma temperature for this source, which seems to spend almost all of its time accreting at a low level. Its inclination is less than about 76°. 1RXSJ173006.4+033813 was X-ray bright in the XMM-Newton observation. Its spectrum contained a modest soft blackbody component, not luminous enough to be considered a significant soft excess. We inferred a magnetic field strength at the main accreting pole of 20 to 25 MG, and that the inclination is less than 77° and probably less than 63°. V808 Aur, also known as CSS081231:J071126+440405, was X-ray faint in the Swift observation, but there is nonetheless strong evidence for bright and faint phases in X-rays and perhaps in UV. Residual X-ray flux from the faint phase is difficult to explain by thermal emission from the white dwarf surface, or by accretion onto the second pole. We present a revised distance estimate of 250 pc. Conclusions: The three systems we were able to study in detail

  10. Polarization Observables T and F in the yp -> pi p Reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao

    The theory that describes the interaction of quarks is Quantum Chromodynamics (QCD), but how quarks are bound inside a nucleon is not yet well understood. Pion photoproduction experiments reveal important information about the nucleon excited states and the dynamics of the quarks within it and thus provide a useful tool to study QCD. Detailed information about this reaction can be obtained in experiments that utilize polarized photon beams and polarized targets. Pion photoproduction in the γρ -> π0ρ reaction has been measured in the FROST experiment at the Thomas Jefferson National Accelerator Facility. In this experiment circularly polarized photons withmore » electron-beam energies up to 3.082 GeV impinged on a transversely polarized frozen-spin target. Final-state protons were detected in the CEBAF Large Acceptance Spectrometer. Results of the polarization observables T and F have been extracted. The data generally agree with predictions of present partial wave analyses, but also show marked differences. The data will constrain further partial wave analyses and improve the extraction of proton resonance properties.« less

  11. PEGASO . Polar Explorer for Geomagnetic And other Scientific Observation

    NASA Astrophysics Data System (ADS)

    Romeo, G.; Di Stefano, G.; Di Felice, F.; Caprara, F.; Iarocci, A.; Peterzen, S.; Masi, S.; Spoto, D.; Ibba, R.; Musso, I.; Dragoy, P.

    PEGASO (Polar Explorer for Geomagnetic And other Scientific Observation) program has been created to conduct small experiments in as many disciplines on-board of small stratospheric balloons. PEGASO uses the very low expensive pathfinder balloons. Stratospheric pathfinders are small balloons commonly used to explore the atmospheric circumpolar upper winds and to predict the trajectory for big LDBs (Long Duration Balloons). Installing scientific instruments on pathfinder and using solar energy to power supply the system, we have the opportunity to explorer the Polar Regions, during the polar summer, following circular trajectory. These stratospheric small payload have flown for 14 up to 40 days, measuring the magnetic field of polar region, by means of 3-axis-fluxgate magnetometer. PEGASO payload uses IRIDIUM satellite telemetry (TM). A ground station communicates with one or more payloads to download scientific and house-keeping data and to send commands for ballast releasing, for system resetting and for operating on the separator system at the flight end. The PEGASO missions have been performed from the Svalbard islands with the logistic collaboration of the Andoya Rocket Range and from the Antarctic Italian base. Continuous trajectory predictions, elaborated by Institute of Information Science and Technology (ISTI-CNR), were necessary for the flight safety requirements in the north hemisphere. This light payloads (<10 Kg) are realized by the cooperation between the INGV and the Physics department "La Sapienza" University and it has operated five times in polar areas with the sponsorship of Italian Antarctic Program (PNRA), Italian Space Agency (ASI). This paper summarizes important results about stratospheric missions.

  12. Simulations of Galactic polarized synchrotron emission for Epoch of Reionization observations

    NASA Astrophysics Data System (ADS)

    Spinelli, M.; Bernardi, G.; Santos, M. G.

    2018-06-01

    The detection of the redshifted cosmological 21 cm line signal requires the removal of the Galactic and extragalactic foreground emission, which is orders of magnitude brighter anywhere in the sky. Foreground cleaning methods currently used are efficient in removing spectrally smooth components. However, they struggle in the presence of not spectrally smooth contamination that is, therefore, potentially the most dangerous one. An example of this is the polarized synchrotron emission, which is Faraday rotated by the interstellar medium and leaks into total intensity due to instrumental imperfections. In this work we present new full-sky simulations of this polarized synchrotron emission in the 50 - 200 MHz range, obtained from the observed properties of diffuse polarized emission at low frequencies. The simulated polarized maps are made publicly available, aiming to provide more realistic templates to simulate the effect of instrumental leakage and the effectiveness of foreground separation techniques.

  13. A Model for Solar Polar Jets

    NASA Technical Reports Server (NTRS)

    Pariat, E.; Antiochos, S. K.; DeVore, C. R.

    2008-01-01

    We propose a model for the jetting activity that is commonly observed in the Sun's corona, especially in the open-field regions of polar coronal holes. Magnetic reconnection is the process driving the jets and a relevant magnetic configuration is the well-known null point and fan separatrix topology. The primary challenge in explaining the observations is that reconnection must occur in a short-duration energetic burst rather than quasi-continuously as is implied by the observations of long-lived structures in coronal holes, such as polar plumes, for example. The key idea underlying our model for jets is that reconnection is forbidden for an axisymmetric null-point topology. Consequently, by imposing a twisting motion that maintains the axisymmetry, magnetic stress can be built up to large levels until an ideal instability breaks the symmetry and leads to an explosive release of energy via reconnection. Using 3D MHD simulations we demonstrate that this mechanism does produce jets with high speed and mass, driven by nonlinear Alfven waves. We discuss the implications of our results for observations of the solar corona.

  14. Simulation of Venus polar vortices with the non-hydrostatic general circulation model

    NASA Astrophysics Data System (ADS)

    Rodin, Alexander V.; Mingalev, Oleg; Orlov, Konstantin

    2012-07-01

    The dynamics of Venus atmosphere in the polar regions presents a challenge for general circulation models. Numerous images and hyperspectral data from Venus Express mission shows that above 60 degrees latitude atmospheric motion is substantially different from that of the tropical and extratropical atmosphere. In particular, extended polar hoods composed presumably of fine haze particles, as well as polar vortices revealing mesoscale wave perturbations with variable zonal wavenumbers, imply the significance of vertical motion in these circulation elements. On these scales, however, hydrostatic balance commonly used in the general circulation models is no longer valid, and vertical forces have to be taken into account to obtain correct wind field. We present the first non-hydrostatic general circulation model of the Venus atmosphere based on the full set of gas dynamics equations. The model uses uniform grid with the resolution of 1.2 degrees in horizontal and 200 m in the vertical direction. Thermal forcing is simulated by means of relaxation approximation with specified thermal profile and time scale. The model takes advantage of hybrid calculations on graphical processors using CUDA technology in order to increase performance. Simulations show that vorticity is concentrated at high latitudes within planetary scale, off-axis vortices, precessing with a period of 30 to 40 days. The scale and position of these vortices coincides with polar hoods observed in the UV images. The regions characterized with high vorticity are surrounded by series of small vortices which may be caused by shear instability of the zonal flow. Vertical velocity component implies that in the central part of high vorticity areas atmospheric flow is downwelling and perturbed by mesoscale waves with zonal wavenumbers 1-4, resembling observed wave structures in the polar vortices. Simulations also show the existence of areas with strong vertical flow, concentrated in spiral branches extending

  15. 24/7 Solar Minimum Polar Cap and Auroral Ion Temperature Observations

    NASA Technical Reports Server (NTRS)

    Sojka, Jan J.; Nicolls, Michael; van Eyken, Anthony; Heinselman, Craig; Bilitza, Dieter

    2011-01-01

    During the International Polar Year (IPY) two Incoherent Scatter Radars (ISRs) achieved close to 24/7 continuous observations. This presentation describes their data sets and specifically how they can provide the International Reference Ionosphere (IRI) a fiduciary E- and F-region ionosphere description for solar minimum conditions in both the auroral and polar cap regions. The ionospheric description being electron density, ion temperature and electron temperature profiles from as low as 90 km extending to several scale heights above the F-layer peak. The auroral location is Poker Flat in Alaska at 65.1 N latitude, 212.5 E longitude where the NSF s new Poker Flat Incoherent Scatter Radar (PFISR) is located. This location during solar minimum conditions is in the auroral region for most of the day but is at midlatitudes, equator ward of the cusp, for about 4-8 h per day dependent upon geomagnetic activity. In contrast the polar location is Svalbard, at 78.2 N latitude, 16.0 E longitude where the EISCAT Svalbard Radar (ESR) is located. For most of the day the ESR is in the Northern Polar Cap with a noon sector passage often through the dayside cusp. Of unique relevance to IRI is that these extended observations have enabled the ionospheric morphology to be distinguished between quiet and disturbed geomagnetic conditions. During the IPY year, 1 March 2007 - 29 February 2008, about 50 solar wind Corotating Interaction Regions (CIRs) impacted geospace. Each CIR has a two to five day geomagnetic disturbance that is observed in the ESR and PFISR observations. Hence, this data set also enables the quiet-background ionospheric climatology to be established as a function of season and local time. These two separate climatologies for the ion temperature at an altitude of 300 km are presented and compared with IRI ion temperatures. The IRI ion temperatures are about 200-300 K hotter than the observed values. However, the MSIS neutral temperature at 300 km compares favorably

  16. Simulations to study the static polarization limit for RHIC lattice

    NASA Astrophysics Data System (ADS)

    Duan, Zhe; Qin, Qing

    2016-01-01

    A study of spin dynamics based on simulations with the Polymorphic Tracking Code (PTC) is reported, exploring the dependence of the static polarization limit on various beam parameters and lattice settings for a practical RHIC lattice. It is shown that the behavior of the static polarization limit is dominantly affected by the vertical motion, while the effect of beam-beam interaction is small. In addition, the “nonresonant beam polarization” observed and studied in the lattice-independent model is also observed in this lattice-dependent model. Therefore, this simulation study gives insights of polarization evolution at fixed beam energies, that are not available in simple spin tracking. Supported by the U.S. Department of Energy (DE-AC02-98CH10886), Hundred-Talent Program (Chinese Academy of Sciences), and National Natural Science Foundation of China (11105164)

  17. First measurement of the polarization observable E and helicity-dependent cross sections in single π 0 photoproduction from quasi-free nucleons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dieterle, M.; Witthauer, L.; Cividini, F.

    The double-polarization observable Eand the helicity-dependent cross sections σ 1/2 and σ 3/2have been measured for the first time for single π0photoproduction from protons and neutrons bound in the deuteron at the electron accelerator facility MAMI in Mainz, Germany. The experiment used a circularly polarized photon beam and a longitudinally polarized deuterated butanol target. The reaction products, recoil nucleons and decay photons from the π0meson were detected with the Crystal Ball and TAPS electromagnetic calorimeters. Effects from nuclear Fermi motion were removed by a kinematic reconstruction of the π 0N final state. A comparison to data measured with a freemore » proton target showed that the absolute scale of the cross sections is significantly modified by nuclear final-state interaction (FSI) effects. However, there is no significant effect on the asymmetry E since the σ 1/2 and σ 3/2components appear to be influenced in a similar way. Thus, the best approximation of the two helicity-dependent cross sections for the free neutron is obtained by combining the asymmetry E measured with quasi-free neutrons and the unpolarized cross section corrected for FSI effects under the assumption that the FSI effects are similar for neutrons and protons.« less

  18. First measurement of the polarization observable E and helicity-dependent cross sections in single π 0 photoproduction from quasi-free nucleons

    DOE PAGES

    Dieterle, M.; Witthauer, L.; Cividini, F.; ...

    2017-05-10

    The double-polarization observable Eand the helicity-dependent cross sections σ 1/2 and σ 3/2have been measured for the first time for single π0photoproduction from protons and neutrons bound in the deuteron at the electron accelerator facility MAMI in Mainz, Germany. The experiment used a circularly polarized photon beam and a longitudinally polarized deuterated butanol target. The reaction products, recoil nucleons and decay photons from the π0meson were detected with the Crystal Ball and TAPS electromagnetic calorimeters. Effects from nuclear Fermi motion were removed by a kinematic reconstruction of the π 0N final state. A comparison to data measured with a freemore » proton target showed that the absolute scale of the cross sections is significantly modified by nuclear final-state interaction (FSI) effects. However, there is no significant effect on the asymmetry E since the σ 1/2 and σ 3/2components appear to be influenced in a similar way. Thus, the best approximation of the two helicity-dependent cross sections for the free neutron is obtained by combining the asymmetry E measured with quasi-free neutrons and the unpolarized cross section corrected for FSI effects under the assumption that the FSI effects are similar for neutrons and protons.« less

  19. Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss.

    PubMed

    Kheifets, Simon; Simha, Akarsh; Melin, Kevin; Li, Tongcang; Raizen, Mark G

    2014-03-28

    Measurement of the instantaneous velocity of Brownian motion of suspended particles in liquid probes the microscopic foundations of statistical mechanics in soft condensed matter. However, instantaneous velocity has eluded experimental observation for more than a century since Einstein's prediction of the small length and time scales involved. We report shot-noise-limited, high-bandwidth measurements of Brownian motion of micrometer-sized beads suspended in water and acetone by an optical tweezer. We observe the hydrodynamic instantaneous velocity of Brownian motion in a liquid, which follows a modified energy equipartition theorem that accounts for the kinetic energy of the fluid displaced by the moving bead. We also observe an anticorrelated thermal force, which is conventionally assumed to be uncorrelated.

  20. Simultaneous linear and circular polarization observations of blazars 3C 66A, OJ 287 and Markarian 421

    NASA Astrophysics Data System (ADS)

    Takalo, Leo O.; Sillanpaa, Aimo

    1993-08-01

    We present the first ever simultaneous optical linear and circular polarization observations of blazars. These polarizations have been measured simultaneously in UBVRI-bands in three blazars; 3C 66A, OJ 287 and Markarian 421. Measured linear polarization in 3C 66A was the largest ever observed, at PR equals 33.1 plus/minus .5%. In 3C 66A we detected small circular polarization on the other bands, except U. In OJ 287 we detected variable circular polarization in the U-band.

  1. Local polar fluctuations in lead halide perovskite crystals

    DOE PAGES

    Yaffe, Omer; Guo, Yinsheng; Tan, Liang Z.; ...

    2017-03-28

    Hybrid lead-halide perovskites have emerged as an excellent class of photovoltaic materials. Recent reports suggest that the organic molecular cation is responsible for local polar fluctuations that inhibit carrier recombination. We combine low-frequency Raman scattering with first-principles molecular dynamics (MD) to study the fundamental nature of these local polar fluctuations. Our observations of a strong central peak in the cubic phase of both hybrid (CH 3NH 3PbBr 3) and all-inorganic (CsPbBr 3) lead-halide perovskites show that anharmonic, local polar fluctuations are intrinsic to the general lead-halide perovskite structure, and not unique to the dipolar organic cation. Furthermore, MD simulations indicatemore » that head-to-head Cs motion coupled to Br face expansion, occurring on a few hundred femtosecond time scale, drives the local polar fluctuations in CsPbBr 3.« less

  2. HiRISE Observations of the Polar Regions of Mars

    NASA Astrophysics Data System (ADS)

    Herkenhoff, K. E.; Byrne, S.; Fishbaugh, K.; Russell, P.; Fortezzo, C.; McEwen, A.

    2008-12-01

    Digital elevation models (DEMs) derived from MRO HiRISE stereo images allow meter-scale topographic measurements in the north polar layered deposits (NPLD) and distinction of slope vs. albedo effects on apparent brightness of individual layers. HiRISE images do not show thin layers at the limit of resolution. Rather, fine layering, if it exists, appears to have been obscured by a more dust-rich mantling deposit which shows signs of eolian erosion and slumping. Stratigraphic sequences within the NPLD appear to be repeated within exposures observed by HiRISE, indicative of a record of periodic climate changes. Granular flows sourced from within the dark, basal unit are suggestive of, but do not require, the presence of water during their formation. Active mass wasting of frost and dust has been observed on steep NPLD scarps in early spring, similar to dry, loose snow avalanches on terrestrial slopes. Bright and dark streaks are seen to evolve during the northern summer, evidence for active eolian redistribution of frost and perhaps dark (non- volatile) material. Relatively dark reddish patches observed within the north polar residual cap during the summer indicate that the cap is very thin (<1 m) or more transparent in places. HiRISE images of exposures of the south polar layered deposits (SPLD) show rectilinear fractures that are continuous across several layers and whose orientation is not affected by the topography of the exposure, suggesting that they were formed before erosion of the SPLD. They appear to extend laterally and vertically through the SPLD, like a joint set. While NPLD tectonism appears limited to isolated grabens, several faults have been observed by HiRISE in the SPLD, showing structural details including reverse fault splays that merge into bedding planes and possible evidence for thrust duplication. The faults may be the result of basal sliding (decollements) ramping into thrust faults near the margin of the SPLD.

  3. CALIPSO Polar Stratospheric Cloud Observations from 2006-2015

    NASA Technical Reports Server (NTRS)

    Pitts, Michael C.; Poole, Lamont R.

    2015-01-01

    Polar stratospheric clouds (PSCs) play a crucial role in the springtime chemical depletion of ozone at high latitudes. PSC particles (primarily supercooled ternary solution, or STS droplets) provide sites for heterogeneous chemical reactions that transform stable chlorine and bromine reservoir species into highly reactive ozone-destructive forms. Furthermore, large nitric acid trihydrate (NAT) PSC particles can irreversibly redistribute odd nitrogen through gravitational sedimentation (a process commonly known as denitrification), which prolongs the ozone depletion process by slowing the reformation of the stable chlorine reservoirs. Spaceborne observations from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar on the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite are providing a rich new dataset for studying PSCs. CALIPSO is an excellent platform for studying polar processes with CALIOP acquiring, on average, over 300,000 backscatter profiles daily at latitudes between 55o and 82o in both hemispheres. PSCs are detected in the CALIOP backscatter profiles using a successive horizontal averaging scheme that enables detection of strongly scattering PSCs (e.g., ice) at the finest possible spatial resolution (5 km), while enhancing the detection of very tenuous PSCs (e.g., low number density NAT) at larger spatial scales (up to 135 km). CALIOP PSCs are separated into composition classes (STS; liquid/NAT mixtures; and ice) based on the ensemble 532-nm scattering ratio (the ratio of total-to-molecular backscatter) and 532-nm particulate depolarization ratio (which is sensitive to the presence of non-spherical, i.e. NAT and ice particles). In this paper, we will provide an overview of the CALIOP PSC detection and composition classification algorithm and then examine the vertical and spatial distribution of PSCs in the Arctic and Antarctic on vortex-wide scales for entire PSC seasons over the more than nine-year data

  4. Motion Tree Delineates Hierarchical Structure of Protein Dynamics Observed in Molecular Dynamics Simulation

    PubMed Central

    Moritsugu, Kei; Koike, Ryotaro; Yamada, Kouki; Kato, Hiroaki; Kidera, Akinori

    2015-01-01

    Molecular dynamics (MD) simulations of proteins provide important information to understand their functional mechanisms, which are, however, likely to be hidden behind their complicated motions with a wide range of spatial and temporal scales. A straightforward and intuitive analysis of protein dynamics observed in MD simulation trajectories is therefore of growing significance with the large increase in both the simulation time and system size. In this study, we propose a novel description of protein motions based on the hierarchical clustering of fluctuations in the inter-atomic distances calculated from an MD trajectory, which constructs a single tree diagram, named a “Motion Tree”, to determine a set of rigid-domain pairs hierarchically along with associated inter-domain fluctuations. The method was first applied to the MD trajectory of substrate-free adenylate kinase to clarify the usefulness of the Motion Tree, which illustrated a clear-cut dynamics picture of the inter-domain motions involving the ATP/AMP lid and the core domain together with the associated amplitudes and correlations. The comparison of two Motion Trees calculated from MD simulations of ligand-free and -bound glutamine binding proteins clarified changes in inherent dynamics upon ligand binding appeared in both large domains and a small loop that stabilized ligand molecule. Another application to a huge protein, a multidrug ATP binding cassette (ABC) transporter, captured significant increases of fluctuations upon binding a drug molecule observed in both large scale inter-subunit motions and a motion localized at a transmembrane helix, which may be a trigger to the subsequent structural change from inward-open to outward-open states to transport the drug molecule. These applications demonstrated the capabilities of Motion Trees to provide an at-a-glance view of various sizes of functional motions inherent in the complicated MD trajectory. PMID:26148295

  5. Experimental observation of polarized electroluminescence from edge-emission organic light emitting devices

    NASA Astrophysics Data System (ADS)

    Ran, G. Z.; Jiang, D. F.; Kan, Q.; Chen, H. D.

    2010-12-01

    We have observed a strongly polarized edge-emission from an organic light emitting device (OLED) with a silicon anode and a stacked Sm/Au (or Ag) cathode. For the OLED with a Sm/Au cathode, the transverse magnetic (TM) mode is stronger than the transverse electric (TE) mode by a factor of 2, while the polarization ratio of TM:TE is close to 300 for that with a Sm/Ag cathode. The polarization results from the scattering of surface plasmon polaritons at the device boundary. Such a silicon-based OLED is potentially an electrically excited SPP source in plasmonics.

  6. Auroral Observations from the POLAR Ultraviolet Imager (UVI)

    NASA Technical Reports Server (NTRS)

    Germany, G. A.; Spann, J. F.; Parks, G. K.; Brittnacher, M. J.; Elsen, R.; Chen, L.; Lummerzheim, D.; Rees, M. H.

    1998-01-01

    Because of the importance of the auroral regions as a remote diagnostic of near-Earth plasma processes and magnetospheric structure, spacebased instrumentation for imaging the auroral regions have been designed and operated for the last twenty-five years. The latest generation of imagers, including those flown on the POLAR satellite, extends this quest for multispectral resolution by providing three separate imagers for the visible, ultraviolet, and X ray images of the aurora. The ability to observe extended regions allows imaging missions to significantly extend the observations available from in situ or groundbased instrumentation. The complementary nature of imaging and other observations is illustrated below using results from tile GGS Ultraviolet Imager (UVI). Details of the requisite energy and intensity analysis are also presented.

  7. Alfven Waves observed in Polar Jets

    NASA Astrophysics Data System (ADS)

    Cirtain, J.

    2007-12-01

    Data collected on X-ray jets during a polar coronal hole observation campaign has revealed that some events have two distinct velocity components, one near the Alfv\\acute{e}n speed (~ 800 km sec-1) and the other near the sound speed (200 km sec-1). Previous reports indicate the incidence of jet formation to be only a few per day, with average radial speeds of 200 km sec-1. With the X-Ray Telescope (XRT) we detect an average of 10 events per hour. These jets are approximately 2 × 103 - 2 × 104 km wide and than 1 × 105 km long. The jet lifetimes range from 100 - 2500 secs. A large percentage of these jets are associated with small footpoint flares (1). The large number of events, coupled with the high velocities of the apparent outflows, indicate that these jets may contribute significantly to the high-speed solar wind from coronal holes. These observations provide unique and important evidence for the generation of Alfvén waves during reconnection and are possibly the first evidence of Alfv´n wave observations driving the high speed solar wind.

  8. Anomalous Late Jurassic motion of the Pacific Plate with implications for true polar wander

    NASA Astrophysics Data System (ADS)

    Fu, Roger R.; Kent, Dennis V.

    2018-05-01

    True polar wander, or TPW, is the rotation of the entire mantle-crust system about an equatorial axis that results in a coherent velocity contribution for all lithospheric plates. One of the most recent candidate TPW events consists of a ∼30° rotation during Late Jurassic time (160-145 Ma). However, existing paleomagnetic documentation of this event derives exclusively from continents, which compose less than 50% of the Earth's surface area and may not reflect motion of the entire mantle-crust system. Additional paleopositional information from the Pacific Basin would significantly enhance coverage of the Earth's surface and allow more rigorous testing for the occurrence of TPW. We perform paleomagnetic analyses on core samples from Ocean Drilling Program (ODP) Site 801B, which were taken from the oldest available Pacific crust, to determine its paleolatitude during the Late Jurassic and Early Cretaceous (167-133 Ma). We find that the Pacific Plate underwent a steady southward drift of 0.49°-0.74° My-1 except for an interval between Kimmeridgian and Tithonian time (157-147 Ma), during which it underwent northward motion at 1.45° ± 0.76° My-1 (1σ). This trajectory indicates that the plates of the Pacific Basin participated in the same large-amplitude (∼30°) rotation as continental lithosphere in the 160-145 Ma interval. Such coherent motion of a large majority of the Earth's surface strongly supports the occurrence of TPW, suggesting that a combination of subducting slabs and rising mantle plumes was sufficient to significantly perturb the Earth's inertia tensor in the Late Jurassic.

  9. Thunder-induced ground motions: 1. Observations

    NASA Astrophysics Data System (ADS)

    Lin, Ting-L.; Langston, Charles A.

    2009-04-01

    Acoustic pressure from thunder and its induced ground motions were investigated using a small array consisting of five three-component short-period surface seismometers, a three-component borehole seismometer, and five infrasound microphones. We used the array to constrain wave parameters of the incident acoustic and seismic waves. The incident slowness differences between acoustic pressure and ground motions suggest that ground reverberations were first initiated somewhat away from the array. Using slowness inferred from ground motions is preferable to obtain the seismic source parameters. We propose a source equalization procedure for acoustic/seismic deconvolution to generate the time domain transfer function, a procedure similar to that of obtaining teleseismic earthquake receiver functions. The time domain transfer function removes the incident pressure time history from the seismogram. An additional vertical-to-radial ground motion transfer function was used to identify the Rayleigh wave propagation mode of induced seismic waves complementing that found using the particle motions and amplitude variations in the borehole. The initial motions obtained by the time domain transfer functions suggest a low Poisson's ratio for the near-surface layer. The acoustic-to-seismic transfer functions show a consistent reverberation series at frequencies near 5 Hz. This gives an empirical measure of site resonance that depends on the ratio of the layer velocity to layer thickness for earthquake P and S waves. The time domain transfer function approach by transferring a spectral division into the time domain provides an alternative method for studying acoustic-to-seismic coupling.

  10. Neutral points of skylight polarization observed during the total eclipse on 11 August 1999.

    PubMed

    Horváth, Gábor; Pomozi, István; Gál, József

    2003-01-20

    We report here on the observation of unpolarized (neutral) points in the sky during the total solar eclipse on 11 August 1999. Near the zenith a neutral point was observed at 450 nm at two different points of time during totality. Around this celestial point the distribution of the angle of polarization was heterogeneous: The electric field vectors on the one side were approximately perpendicular to those on the other side. At another moment of totality, near the zenith a local minimum of the degree of linear polarization occurred at 550 nm. Near the antisolar meridian, at a low elevation another two neutral points occurred at 450 nm at a certain moment during totality. Approximately at the position of these neutral points, at another moment of totality a local minimum of the degree of polarization occurred at 550 nm, whereas at 450 nm a neutral point was observed, around which the angle-of-polarization pattern was homogeneous: The electric field vectors were approximately horizontal on both sides of the neutral point.

  11. Titan’s High Altitude South Polar (HASP) Stratospheric Ice Cloud as observed by Cassini CIRS

    NASA Astrophysics Data System (ADS)

    Anderson, Carrie; Nna-Mvondo, Delphine; Samuelson, Robert E.; Achterberg, Richard K.; Flasar, F. Michael; Jennings, Donald E.; Raulin, Francois

    2017-10-01

    During Cassini’s T112 flyby of Titan in the late southern fall season (July 2015), the Composite InfraRed Spectrometer (CIRS) made a startling discovery - a massive cloud system had developed throughout Titan’s mid stratosphere (~200 km) at high southern latitudes. The vertical distributions of intensity of this High-Altitude South Polar (HASP) stratospheric ice cloud system are at least an order of magnitude stronger than the CIRS-observed northern winter polar stratospheric cloud system [1]. The chemical composition of the HASP cloud is not identical to its northern winter counterpart, in that it exhibits different spectral characteristics. The HASP cloud is just one illustrative example demonstrating the rapidly changing conditions occurring in Titan’s south polar stratospheric region as Titan began its journey into southern winter. Such observed changes are contrary to the observed configuration as Titan’s northern polar stratosphere transitioned out of northern winter, which revealed a relatively slow decay of: 1) the cold polar stratospheric temperatures, 2) the strength of the polar vortex, and 3) the abundances in stratospheric organic gases and ices. We will discuss the physical and chemical characteristics of the CIRS-observed HASP mid stratospheric ice cloud system. Potential ice analog candidates obtained from thin film transmission spectra of co-condensed nitrile/hydrocarbon ice mixtures obtained with our SPECtroscopy of Titan-Related ice AnaLogs (SPECTRAL) chamber are used to support these analyses. [1] Anderson C. M. and Samuelson R. E. (2011) Icarus, 212, 762-778.

  12. Re-arrangements of Global Plate Motion: Role of True Polar Wander (TPW)

    NASA Astrophysics Data System (ADS)

    Bostrom, R. C.

    2004-12-01

    Plate-motion models constructed by R.G. Gordon and D.M. Jurdy (1986) and at Harvard by R.J. O'Connell et al. (1991), further developed by O. Cadek and V. Ricard (1992), show that in sum Cenozoic plate motion has been concentrated around the degree 1 harmonic spectral component, representing net lithosphere rotation (NLR) about the contemporary Pole. Participants allowed for uncertainties in using hotspots as benchmarks. In the absence of an alternative to tidal action to account for perennial convection asymmetry, otherwise enigmatic (D. Bercovici 2003), plate motion under the observed degree 1 system is here compared with the regime to be expected under geocentric plus external gravity. Mantle convection takes place under a minute westward tilt in globally-averaged g, contributed by a tidal component having the value -2.16° identified by G.J.R. MacDonald (1964). Previously impossible, R.D. Ray et al. (2001) recently have combined satellite tracking data and Topex/Poseidon altimetry to separate the solid-earth fraction of the associated dissipation, 110 +/- 25 GW, from the obscuring marine signal. Hitherto, in model construction it has been necessary to assume almost perfect elasticity. Surprisingly large in terms of earlier estimates of the dissipation factor 1/Q, the value obtained conforms notably with supposition as per Cadek and Ricard, that the upper mantle remains constantly at the point of failure representing advance, in precisely this mode, of the internally driven convection basically responsible for global tectonics. The regime is self-reinforcing and prone to be stable. How might it be interrupted? Some 25 years ago P.A. Rona and E.S. Richardson (1978) identified the global plate reorganization which took place in the Lower Cenozoic. Essentially, reorganization was directional in nature, characterized by supplantation of basic geotectonic features such as seafloor spreading and subduction having a N-S orientation, by similar features oriented E-W. It

  13. Effects of finite coverage on global polarization observables in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Lan, Shaowei; Lin, Zi-Wei; Shi, Shusu; Sun, Xu

    2018-05-01

    In non-central relativistic heavy ion collisions, the created matter possesses a large initial orbital angular momentum. Particles produced in the collisions could be polarized globally in the direction of the orbital angular momentum due to spin-orbit coupling. Recently, the STAR experiment has presented polarization signals for Λ hyperons and possible spin alignment signals for ϕ mesons. Here we discuss the effects of finite coverage on these observables. The results from a multi-phase transport and a toy model both indicate that a pseudorapidity coverage narrower than | η | < ∼ 1 will generate a larger value for the extracted ϕ-meson ρ00 parameter; thus a finite coverage can lead to an artificial deviation of ρ00 from 1/3. We also show that a finite η and pT coverage affect the extracted pH parameter for Λ hyperons when the real pH value is non-zero. Therefore proper corrections are necessary to reliably quantify the global polarization with experimental observables.

  14. STEREO/SECCHI Stereoscopic Observations Constraining the Initiation of Polar Coronal Jets

    NASA Technical Reports Server (NTRS)

    Patsourakos, S.; Pariat, E.; Vourlidas, A.; Antiochos, S. K.; Wuelser, J. P.

    2008-01-01

    We report on the first stereoscopic observations of polar coronal jets made by the EUVI/SECCHI imagers on board the twin STEREO spacecraft. The significantly separated viewpoints (approximately 11 degrees ) allowed us to infer the 3D dynamics and morphology of a well-defined EUV coronal jet for the first time. Triangulations of the jet's location in simultaneous image pairs led to the true 3D position and thereby its kinematics. Initially the jet ascends slowly at approximately equal to 10-20 kilometers per second and then, after an apparent 'jump' takes place, it accelerates impulsively to velocities exceeding 300 kilometers per second with accelerations exceeding the solar gravity. Helical structure is the most important geometrical feature of the jet which shows evidence of untwisting. The jet structure appears strikingly different from each of the two STEREO viewpoints: face-on in the one viewpoint and edge-on in the other. This provides conclusive evidence that the observed helical structure is real and is not resulting from possible projection effects of single viewpoint observations. The clear demonstration of twisted structure in polar jets compares favorably with synthetic images from a recent MHD simulation of jets invoking magnetic untwisting as their driving mechanism. Therefore, the latter can be considered as a viable mechanism for the initiation of polar jets.

  15. Dielectric Constant of Titan's South Polar Region from Cassini Radio Science Bistatic Scattering Observations

    NASA Astrophysics Data System (ADS)

    Marouf, E.; Rappaport, N.; French, R.; Simpson, R.; Kliore, A.; McGhee, C.; Schinder, P.; Anabtawi, A.

    2008-12-01

    Four out of six Radio Science bistatic scattering (bistatic-radar) observations of Titan's surface completed during the Cassini nominal mission yielded detectable quasi-specular 3.6 cm-λ (X-band) surface echoes, making Titan the most distant solar system object for which bistatic echoes have been successfully detected. Right circularly polarized sinusoidal signal was transmitted by Cassini and both the right and left circularly polarized (RCP and LCP) surface reflected components were observed at the 70-m stations of NASA Deep Space Network. Cassini was maneuvered continuously to track the region of Titan's surface where mirror-like (quasi-specular) reflected signals may be observed. The experiments were designed for incidence angles θ close to the Brewster, or polarization, angle of likely surface compositions. Careful measurement of the system noise temperature allowed determination of the absolute power in each polarized echo component and hence their ratio. The polarization ratio, the known observation geometry, and Fresnel reflection theory were then used to determine the dielectric constant ɛ. Three near-equatorial (~ 5 to 15° S) observations on flyby T14 inbound and outbound and on flyby T34 inbound yielded weak but clearly detectable echoes. The echoes were intermittent along the ground track, indicating mostly rough terrain occasionally interrupted by patches of relatively flat areas. For the two observations on T14, polarization ratio measurements for two localized but widely separated surface regions (~ 15° S, ~ 14 and 140° W) conducted at angles θ ~ 56° and 64°, close to the Brewster angle for ices, imply ɛ ~ 1.6 for both regions, suggesting liquid hydrocarbons although alternative interpretations are possible (Marouf et al., 2006 Fall AGU, P11A- 07). In sharp contrast, a single high latitude (~81-86° S, ~ 45-155° W) observation on T27 inbound yielded much stronger surface echoes that lasted for almost the full duration of the experiment

  16. The north polar lakes of Titan as observed by Cassini Radar

    NASA Astrophysics Data System (ADS)

    Mitchell, K. L.; Paillou, P.; Kirk, R. L.; Lunine, J. I.; Stofan, E. R.; Radebaugh, J.; Wall, S. D.; Hayes, A. G.; Lopes, R. M.; Stiles, B. W.; Ostro, S. J.; Lorenz, R. D.; Wood, C. A.; Cassini RADAR Team

    2007-12-01

    Over the course of a year, Cassini RADAR obtained Synthetic Aperture Radar images covering 69 percent of Titan's polar region north of 65 degrees; the region being 1.4E6 km3 in extent, greater than double the land area of the USA. We observe several hundred lakes with a range of morphological expression, including areally massive and morphologically distinctive "seas", covering ~15% of the polar region. Lakes are extremely radar dark, consistent with a lossy liquid hydrocarbon. Preliminary laboratory estimates suggest that loss tangents in the range 10E4 to 2x10E3 are reasonable, which implies that one can see through at least a few to many tens of m of liquids before the noise floor is reached, consistent with observed brightening towards many lake shores. North polar lake volumes are most likely in the 8E3 - 1.4E6 km3 range. Uncertainties will be reduced as more data, both image-based and experimental, are obtained but we can conclude with a high degree of confidence that hydrocarbon lakes on Titan are more voluminous than known terrestrial oil reserves; current estimates range from 2248 - 3896 billion barrels of oil (J. Hakes, 2000, Long Term World Oil Supply, Meeting of the Am. Ass. Pet. Geol., 18th April 2000, New Orleans, LA, http://www.eia.doe.gov/pub/oil_gas/petroleum/presentations/2000/long_term_supply.), hence 357 - 619 km3 . Small lakes often occupy steep-sided depressions, and although thermal and cryovolcanic origins cannot be completely ruled out, we are seeing growing geomorphologic evidence for dissolution chemistry, indicative of karst-like geology. The dichotomy between small lakes over slightly more than one half of the region, and seas on the other half, may be best explained by a topographic anomaly causing sub-surface flow of materials from the lakes to the seas. This may also explain observations by the Cassini ISS team (E. Turtle et al., in prep.) of a putative massive sea extending considerably further south than other observed north polar

  17. Review: Progress in rotational ground-motion observations from explosions and local earthquakes in Taiwan

    USGS Publications Warehouse

    Lee, William H K.; Huang, Bor-Shouh; Langston, Charles A.; Lin, Chin-Jen; Liu, Chun-Chi; Shin, Tzay-Chyn; Teng, Ta-Liang; Wu, Chien-Fu

    2009-01-01

    Rotational motions generated by large earthquakes in the far field have been successfully measured, and observations agree well with the classical elasticity theory. However, recent rotational measurements in the near field of earthquakes in Japan and in Taiwan indicate that rotational ground motions are 10 to 100 times larger than expected from the classical elasticity theory. The near-field strong-motion records of the 1999 Mw 7.6 Chi-Chi, Taiwan, earthquake suggest that the ground motions along the 100 km rupture are complex. Some rather arbitrary baseline corrections are necessary in order to obtain reasonable displacement values from double integration of the acceleration data. Because rotational motions can contaminate acceleration observations due to the induced perturbation of the Earth’s gravitational field, we started a modest program to observe rotational ground motions in Taiwan.Three papers have reported the rotational observations in Taiwan: (1) at the HGSD station (Liu et al., 2009), (2) at the N3 site from two TAiwan Integrated GEodynamics Research (TAIGER) explosions (Lin et al., 2009), and (3) at the Taiwan campus of the National Chung-Cheng University (NCCU) (Wu et al., 2009). In addition, Langston et al. (2009) reported the results of analyzing the TAIGER explosion data. As noted by several authors before, we found a linear relationship between peak rotational rate (PRR in mrad/sec) and peak ground acceleration (PGA in m/sec2) from local earthquakes in Taiwan, PRR=0.002+1.301 PGA, with a correlation coefficient of 0.988.

  18. Autoregressive harmonic analysis of the earth's polar motion using homogeneous international latitude service data

    NASA Astrophysics Data System (ADS)

    Fong Chao, B.

    1983-12-01

    The homogeneous set of 80-year-long (1900-1979) International Latitude Service (ILS) polar motion data is analyzed using the autoregressive method (Chao and Gilbert, 1980) which resolves and produces estimates for the complex frequency (or frequency and Q) and complex amplitude (or amplitude and phase) of each harmonic component in the data. Principal conclusion of this analysis are that (1) the ILS data support the multiple-component hypothesis of the Chandler wobble (it is found that the Chandler wobble can be adequately modeled as a linear combination of four (coherent) harmonic components, each of which represents a steady, nearly circular, prograte motion, a behavior that is inconsistent with the hypothesis of a single Chandler period excited in a temporally and/or spatially random fashion). (2) the four-component Chandler wobble model ``explains'' the apparent phase reversal during 1920-1940 and the pre-1950 empirical period-amplitude relation, (3) the annual wobble is shown to be rather stationary over the years both in amplitude and in phase and no evidence is found to support the large variations reported by earlier investigations. (4) the Markowitz wobble is found to support the large variations reported by earlier investigations. (4) the Markowitz wobble is found to be marginally retrograde and appears to have a complicated behavior which cannot be resolved because of the shortness of the data set.

  19. Rotational Motions from Teleseismic Events - Modelling and Observations

    NASA Astrophysics Data System (ADS)

    Schuberth, B.; Igel, H.; Wassermann, J.; Cochard, A.; Schreiber, U.

    2004-12-01

    Currently only ring lasers technology is capable of recording rotational motions resulting from earthquakes with a sensitivity and frequency band that are interesting for broadband seismology. One of those instruments is located at the Geodetic observatory in Wettzell/Germany. Here we present theoretical studies of rotational motions simulated with different Earth models and comparisons with several observations at the Wettzell ring laser. The 3-D global simulations were performed with the Spectral Element Method (Komatitsch and Tromp 2002a,b), that was modified to also allow the output of rotational seismograms. The Earth models used in these simulations range from simple radially symmetric ones, such as PREM, to more complex models including 3D velocity structures, attenuation and geometric effects like topography and bathymetry. Thus, by comparison of the theoretical rotation rates with the ring laser data we show how the results converge to the observed rotation rates when using more realistic Earth models. In a second step we compare rotation rates to the transverse component of translational acceleration both obtained from simulations with 3D velocity structures in crust and mantle. As expected from theory - under the assumption of plane wave propagation - those two signals should be in phase and scale linearly with the phase velocity. Using this relation, it is possible to determine the local phase velocity of transverse signals from collocated measurments of rotations and transverse accelerations. We compare the estimated phase velocities with those observed in a temporary seismic array installed around the ring laser.

  20. Deformations and Rotational Ground Motions Inferred from Downhole Vertical Array Observations

    NASA Astrophysics Data System (ADS)

    Graizer, V.

    2017-12-01

    Only few direct reliable measurements of rotational component of strong earthquake ground motions are obtained so far. In the meantime, high quality data recorded at downhole vertical arrays during a number of earthquakes provide an opportunity to calculate deformations based on the differences in ground motions recorded simultaneously at different depths. More than twenty high resolution strong motion downhole vertical arrays were installed in California with primary goal to study site response of different geologic structures to strong motion. Deformation or simple shear strain with the rate γ is the combination of pure shear strain with the rate γ/2 and rotation with the rate of α=γ/2. Deformations and rotations were inferred from downhole array records of the Mw 6.0 Parkfield 2004, the Mw 7.2 Sierra El Mayor (Mexico) 2010, the Mw 6.5 Ferndale area in N. California 2010 and the two smaller earthquakes in California. Highest amplitude of rotation of 0.60E-03 rad was observed at the Eureka array corresponding to ground velocity of 35 cm/s, and highest rotation rate of 0.55E-02 rad/s associated with the S-wave was observed at a close epicentral distance of 4.3 km from the ML 4.2 event in Southern California at the La Cienega array. Large magnitude Sierra El Mayor earthquake produced long duration rotational motions of up to 1.5E-04 rad and 2.05E-03 rad/s associated with shear and surface waves at the El Centro array at closest fault distance of 33.4km. Rotational motions of such levels, especially tilting can have significant effect on structures. High dynamic range well synchronized and properly oriented instrumentation is necessary for reliable calculation of rotations from vertical array data. Data from the dense Treasure Island array near San Francisco demonstrate consistent change of shape of rotational motion with depth and material. In the frequency range of 1-15 Hz Fourier amplitude spectrum of vertical ground velocity is similar to the scaled tilt

  1. Polar cap arcs from the magnetosphere to the ionosphere: kinetic modelling and observations by Cluster and TIMED

    NASA Astrophysics Data System (ADS)

    Maggiolo, R.; Echim, M.; Wedlund, C. Simon; Zhang, Y.; Fontaine, D.; Lointier, G.; Trotignon, J.-G.

    2012-02-01

    On 1 April 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. About 20 min later, the Cluster satellites detect an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 700 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 500 eV. The magnetic footpoints of the ion outflows observed by Cluster are situated in the prolongation of the polar cap arc observed by TIMED GUVI. The upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI) coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at the top of the ionosphere corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The computed energy spectrum of the precipitating electrons is used as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes such as photoionization and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are compared to the optical observations by TIMED. They are similar in size and intensity. Data and modelling results are consistent with the scenario of quasi-static acceleration of

  2. Statistical description of tectonic motions

    NASA Technical Reports Server (NTRS)

    Agnew, Duncan Carr

    1993-01-01

    This report summarizes investigations regarding tectonic motions. The topics discussed include statistics of crustal deformation, Earth rotation studies, using multitaper spectrum analysis techniques applied to both space-geodetic data and conventional astrometric estimates of the Earth's polar motion, and the development, design, and installation of high-stability geodetic monuments for use with the global positioning system.

  3. ALMA Dust Polarization Observations of Two Young Edge-on Protostellar Disks

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Fei; Li, Zhi-Yun; Ching, Tao-Chung; Lai, Shih-Ping; Yang, Haifeng

    2018-02-01

    Polarized emission is detected in two young nearly edge-on protostellar disks in 343 GHz continuum at ∼50 au (∼0.″12) resolution with Atacama Large Millimeter/submillimeter Array. One disk is in HH 212 (Class 0) and the other in the HH 111 (early Class I) protostellar system. The polarization fraction is ∼1%. The disk in HH 212 has a radius of ∼60 au. The emission is mainly detected from the nearside of the disk. The polarization orientations are almost perpendicular to the disk major axis, consistent with either self-scattering or emission by grains aligned with a poloidal field around the outer edge of the disk because of the optical depth effect and temperature gradient; the presence of a poloidal field would facilitate the launching of a disk wind, for which there is already tentative evidence in the same source. The disk of HH 111 VLA 1 has a larger radius of ∼220 au and is thus more resolved. The polarization orientations are almost perpendicular to the disk major axis in the nearside, but more along the major axis in the farside, forming roughly half of an elliptical pattern there. It appears that toroidal and poloidal magnetic field may explain the polarization on the near and far sides of the disk, respectively. However, it is also possible that the polarization is due to self-scattering. In addition, alignment of dust grains by radiation flux may play a role in the farside. Our observations reveal a diversity of disk polarization patterns that should be taken into account in future modeling efforts.

  4. Motions in Prominence Barbs Observed on the Solar Limb

    NASA Astrophysics Data System (ADS)

    Kucera, T. A.; Ofman, L.; Tarbell, T. D.

    2018-06-01

    We analyze and discuss an example of prominence barbs observed on the limb on 2016 January 7 by the Hinode/Solar Optical Telescope in Ca II and Hα, the Interface Region Imaging Spectrograph, with slit jaw images and Mg II spectral data, and the Solar Dynamics Observatory’s Atmospheric Imaging Assembly. In the recent literature there has been a debate concerning whether these features, sometimes referred to as “tornadoes,” are rotating. Our data analysis provides no evidence for systematic rotation in the barbs. We do find line-of-sight motions in the barbs that vary with location and time. We also discuss observations of features moving along the barbs. These moving features are elongated parallel to the solar limb and tend to come in clusters of features moving along the same or similar paths in the plane of the sky during a period of 10 minutes to an hour, moving toward or away from the limb. The motion may have a component along the line of sight as well. The spectral data indicate that the features are Doppler shifted. We discuss possible explanations for these features.

  5. Observation of Polarization-Locked Vector Solitons in an Optical Fiber

    NASA Astrophysics Data System (ADS)

    Cundiff, S. T.; Collings, B. C.; Akhmediev, N. N.; Soto-Crespo, J. M.; Bergman, K.; Knox, W. H.

    1999-05-01

    We observe polarization-locked vector solitons in a mode-locked fiber laser. Temporal vector solitons have components along both birefringent axes. Despite different phase velocities due to linear birefringence, the relative phase of the components is locked at +/-π/2. The value of +/-π/2 and component magnitudes agree with a simple analysis of the Kerr nonlinearity. These fragile phase-locked vector solitons have been the subject of much theoretical conjecture, but have previously eluded experimental observation.

  6. Measurement of Polarization Observables in 2π0 Photoproduction off the Proton with the CBELSA/TAPS Experiment

    NASA Astrophysics Data System (ADS)

    Mahlberg, Philipp; Seifen, Tobias

    The reaction γp → pπ0π0 has been investigated with the Crystal-Barrel/TAPS experiment at ELSA. The analyzed dataset has been taken using a linear polarized photon beam impinging on a transversely polarized target, thus providing access to polarization observables. Preliminary results for the observables are shown along with predictions from partial wave analyses groups, indicating that double neutral pion photoproduction is not yet completely understood.

  7. Plasma sheet dynamics observed by the Polar spacecraft in association with substorm onsets

    NASA Astrophysics Data System (ADS)

    Toivanen, P. K.; Baker, D. N.; Peterson, W. K.; Li, X.; Donovan, E. F.; Viljanen, A.; Keiling, A.; Wygant, J. R.; Kletzing, C. A.

    2001-09-01

    We present observations of the Polar spacecraft of magnetospheric substorm signatures in the plasma sheet midway along auroral field lines between the ionosphere and the equatorial plasma sheet. On October 17, 1997, Polar was located in the onset meridian in conjunction with the Scandinavian magnetometer chain (International Monitor for Auroral Geomagnetic Effects; IMAGE). In addition, a geostationary spacecraft, LANL-97A, was located near the onset meridian. On August 29, 1997, Polar was magnetically conjugate to the Canadian magnetometer chain (Canadian Auroral Network for the OPEN Program Unified Study; CANOPUS) ~5 hours east of the onset meridian. In both cases, substorm activity was manifested as strong magnetic (20 nT) and electric (40 mVm-1) field variations with bursts of parallel Poynting flux (~1 ergcm-2s-1), predominantly directed toward the ionosphere. In the first event Polar was located in the plasma sheet near the plasma sheet boundary, and the field variations were initiated at the ground onset. In the second event, Polar crossed the plasma sheet boundary to the tail lobes a few minutes prior to a local plasma sheet expansion. As Polar was engulfed by the plasma sheet, the field variations occurred in the previously quiet plasma sheet boundary. This coincided with the auroral bulge reaching the CANOPUS stations. We compare these two events and argue that the field variations were most probably signatures of the reconnection of open field lines and the subsequent enhanced earthward flows. Furthermore, weak flow bursts were observed at Polar in both events ~9 min before the onset. In the first event, a gradual development toward a negative bay and a burst of Pi2 pulsations were associated with the flow bursts. We anticipate that these signatures, often described in terms of pseudobreakups, were a precursor of the substorm onset, the initiation of the reconnection of closed field lines.

  8. Constraints on vertical transport near the polar summer mesopause from PMC observations and modelling

    NASA Astrophysics Data System (ADS)

    Wilms, H.; Rapp, M.; Kirsch, A.

    2016-12-01

    The comparison of microphysical simulations of polar mesospheric cloud properties with ground based and satellite borne observations suggests that vertical wind variance imposed by gravity waves is an important prerequisite to realistically model PMC properties. This paper reviews the available observational evidence of vertical wind measurements at the polar summer mesopause (including their frequency content). Corresponding results are compared to vertical wind variance from several global models and implications for the transport of trace constituents in this altitude region are discussed.

  9. HELICAL MOTIONS OF FINE-STRUCTURE PROMINENCE THREADS OBSERVED BY HINODE AND IRIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okamoto, Takenori J.; Liu, Wei; Tsuneta, Saku, E-mail: joten.okamoto@nao.ac.jp

    Fine-structure dynamics in solar prominences holds critical clues to understanding their physical nature of significant space-weather implications. We report evidence of rotational motions of horizontal helical threads in two active-region prominences observed by the Hinode and/or Interface Region Imaging Spectrograph satellites at high resolution. In the first event, we found transverse motions of brightening threads at speeds up to 55 km s{sup -1} seen in the plane of the sky. Such motions appeared as sinusoidal space–time trajectories with a typical period of ∼390 s, which is consistent with plane-of-sky projections of rotational motions. Phase delays at different locations suggest themore » propagation of twists along the threads at phase speeds of 90–270 km s{sup -1}. At least 15 episodes of such motions occurred in two days, none associated with an eruption. For these episodes, the plane-of-sky speed is linearly correlated with the vertical travel distance, suggestive of a constant angular speed. In the second event, we found Doppler velocities of 30–40 km s{sup -1} in opposite directions in the top and bottom portions of the prominence, comparable to the plane-of-sky speed. The moving threads have about twice broader line widths than stationary threads. These observations, when taken together, provide strong evidence for rotations of helical prominence threads, which were likely driven by unwinding twists triggered by magnetic reconnection between twisted prominence magnetic fields and ambient coronal fields.« less

  10. Airborne geophysics for mesoscale observations of polar sea ice in a changing climate

    NASA Astrophysics Data System (ADS)

    Hendricks, S.; Haas, C.; Krumpen, T.; Eicken, H.; Mahoney, A. R.

    2016-12-01

    Sea ice thickness is an important geophysical parameter with a significant impact on various processes of the polar energy balance. It is classified as Essential Climate Variable (ECV), however the direct observations of the large ice-covered oceans are limited due to the harsh environmental conditions and logistical constraints. Sea-ice thickness retrieval by the means of satellite remote sensing is an active field of research, but current observational capabilities are not able to capture the small scale variability of sea ice thickness and its evolution in the presence of surface melt. We present an airborne observation system based on a towed electromagnetic induction sensor that delivers long range measurements of sea ice thickness for a wide range of sea ice conditions. The purpose-built sensor equipment can be utilized from helicopters and polar research aircraft in multi-role science missions. While airborne EM induction sounding is used in sea ice research for decades, the future challenge is the development of unmanned aerial vehicle (UAV) platform that meet the requirements for low-level EM sea ice surveys in terms of range and altitude of operations. The use of UAV's could enable repeated sea ice surveys during the the polar night, when manned operations are too dangerous and the observational data base is presently very sparse.

  11. Model and observation comparison of the universal time and IMF by dependence of the ionospheric polar hole

    NASA Technical Reports Server (NTRS)

    Sojka, J. J.; Schunk, R. W.; Hoegy, W. R.; Grebowsky, J. M.

    1991-01-01

    The polar ionospheric F-region often exhibits regions of marked density depletion. These depletions have been observed by a variety of polar orbiting ionospheric satellites over a full range of solar cycle, season, magnetic activity, and universal time (UT). An empirical model of these observations has recently been developed to describe the polar depletion dependence on these parameters. Specifically, the dependence has been defined as a function of F10.7 (solar), summer or winter, Kp (magnetic), and UT. Polar cap depletions have also been predicted /1, 2/ and are, hence, present in physical models of the high latitude ionosphere. Using the Utah State University Time Dependent Ionospheric Model (TDIM) the predicted polar depletion characteristics are compared with those described by the above empirical model. In addition, the TDIM is used to predict the IMF By dependence of the polar hole feature.

  12. Observation of ionization enhancement in two-color circularly polarized laser fields

    NASA Astrophysics Data System (ADS)

    Mancuso, Christopher A.; Dorney, Kevin M.; Hickstein, Daniel D.; Chaloupka, Jan L.; Tong, Xiao-Min; Ellis, Jennifer L.; Kapteyn, Henry C.; Murnane, Margaret M.

    2017-08-01

    When atoms are irradiated by two-color circularly polarized laser fields the resulting strong-field processes are dramatically different than when the same atoms are irradiated by a single-color ultrafast laser. For example, electrons can be driven in complex two-dimensional trajectories before rescattering or circularly polarized high harmonics can be generated, which was once thought impossible. Here, we show that two-color circularly polarized lasers also enable control over the ionization process itself and make a surprising finding: the ionization rate can be enhanced by up to 700 % simply by switching the relative helicity of the two-color circularly polarized laser field. This enhancement is experimentally observed in helium, argon, and krypton over a wide range of intensity ratios of the two-color field. We use a combination of advanced quantum and fully classical calculations to explain this ionization enhancement as resulting in part due to the increased density of excited states available for resonance-enhanced ionization in counter-rotating fields compared with co-rotating fields. In the future, this effect could be used to probe the excited state manifold of complex molecules.

  13. Exploring cosmic origins with CORE: Effects of observer peculiar motion

    NASA Astrophysics Data System (ADS)

    Burigana, C.; Carvalho, C. S.; Trombetti, T.; Notari, A.; Quartin, M.; Gasperis, G. D.; Buzzelli, A.; Vittorio, N.; De Zotti, G.; de Bernardis, P.; Chluba, J.; Bilicki, M.; Danese, L.; Delabrouille, J.; Toffolatti, L.; Lapi, A.; Negrello, M.; Mazzotta, P.; Scott, D.; Contreras, D.; Achúcarro, A.; Ade, P.; Allison, R.; Ashdown, M.; Ballardini, M.; Banday, A. J.; Banerji, R.; Bartlett, J.; Bartolo, N.; Basak, S.; Bersanelli, M.; Bonaldi, A.; Bonato, M.; Borrill, J.; Bouchet, F.; Boulanger, F.; Brinckmann, T.; Bucher, M.; Cabella, P.; Cai, Z.-Y.; Calvo, M.; Castellano, M. G.; Challinor, A.; Clesse, S.; Colantoni, I.; Coppolecchia, A.; Crook, M.; D'Alessandro, G.; Diego, J.-M.; Di Marco, A.; Di Valentino, E.; Errard, J.; Feeney, S.; Fernández-Cobos, R.; Ferraro, S.; Finelli, F.; Forastieri, F.; Galli, S.; Génova-Santos, R.; Gerbino, M.; González-Nuevo, J.; Grandis, S.; Greenslade, J.; Hagstotz, S.; Hanany, S.; Handley, W.; Hernández-Monteagudo, C.; Hervias-Caimapo, C.; Hills, M.; Hivon, E.; Kiiveri, K.; Kisner, T.; Kitching, T.; Kunz, M.; Kurki-Suonio, H.; Lamagna, L.; Lasenby, A.; Lattanzi, M.; Lesgourgues, J.; Liguori, M.; Lindholm, V.; Lopez-Caniego, M.; Luzzi, G.; Maffei, B.; Mandolesi, N.; Martinez-Gonzalez, E.; Martins, C. J. A. P.; Masi, S.; Matarrese, S.; McCarthy, D.; Melchiorri, A.; Melin, J.-B.; Molinari, D.; Monfardini, A.; Natoli, P.; Paiella, A.; Paoletti, D.; Patanchon, G.; Piat, M.; Pisano, G.; Polastri, L.; Polenta, G.; Pollo, A.; Poulin, V.; Remazeilles, M.; Roman, M.; Rubiño-Martín, J.-A.; Salvati, L.; Tartari, A.; Tomasi, M.; Tramonte, D.; Trappe, N.; Tucker, C.; Väliviita, J.; Van de Weijgaert, R.; van Tent, B.; Vennin, V.; Vielva, P.; Young, K.; Zannoni, M.

    2018-04-01

    We discuss the effects on the cosmic microwave background (CMB), cosmic infrared background (CIB), and thermal Sunyaev-Zeldovich effect due to the peculiar motion of an observer with respect to the CMB rest frame, which induces boosting effects. After a brief review of the current observational and theoretical status, we investigate the scientific perspectives opened by future CMB space missions, focussing on the Cosmic Origins Explorer (CORE) proposal. The improvements in sensitivity offered by a mission like CORE, together with its high resolution over a wide frequency range, will provide a more accurate estimate of the CMB dipole. The extension of boosting effects to polarization and cross-correlations will enable a more robust determination of purely velocity-driven effects that are not degenerate with the intrinsic CMB dipole, allowing us to achieve an overall signal-to-noise ratio of 13; this improves on the Planck detection and essentially equals that of an ideal cosmic-variance-limited experiment up to a multipole lsimeq2000. Precise inter-frequency calibration will offer the opportunity to constrain or even detect CMB spectral distortions, particularly from the cosmological reionization epoch, because of the frequency dependence of the dipole spectrum, without resorting to precise absolute calibration. The expected improvement with respect to COBE-FIRAS in the recovery of distortion parameters (which could in principle be a factor of several hundred for an ideal experiment with the CORE configuration) ranges from a factor of several up to about 50, depending on the quality of foreground removal and relative calibration. Even in the case of simeq1 % accuracy in both foreground removal and relative calibration at an angular scale of 1o, we find that dipole analyses for a mission like CORE will be able to improve the recovery of the CIB spectrum amplitude by a factor simeq 17 in comparison with current results based on COBE-FIRAS. In addition to the

  14. Renewal of K-NET (National Strong-motion Observation Network of Japan)

    NASA Astrophysics Data System (ADS)

    Kunugi, T.; Fujiwara, H.; Aoi, S.; Adachi, S.

    2004-12-01

    The National Research Institute for Earth Science and Disaster Prevention (NIED) operates K-NET (Kyoshin Network), the national strong-motion observation network, which evenly covers the whole of Japan at intervals of 25 km on average. K-NET was constructed after the Hyogoken-Nambu (Kobe) earthquake in January 1995, and began operation in June 1996. Thus, eight years have passed since K-NET started, and large amounts of strong-motion records have been obtained. As technology has progressed and new technologies have become available, NIED has developed a new K-NET with improved functionality. New seismographs have been installed at 443 observatories mainly in southwestern Japan where there is a risk of strong-motion due to the Nankai and Tonankai earthquakes. The new system went into operation in June 2004, although seismographs have still to be replaced in other areas. The new seismograph (K-NET02) consists of a sensor module, a measurement module and a communication module. A UPS, a GPS antenna and a dial-up router are also installed together with a K-NET02. A triaxial accelerometer, FBA-ES-DECK (Kinemetrics Inc.) is built into the sensor module. The measurement module functions as a conventional strong-motion seismograph for high-precision observation. The communication module can perform sophisticated processes, such as calculation of the Japan Meteorological Agency (JMA) seismic intensity, continuous recording of data and near real-time data transmission. It connects to the Data Management Center (DMC) using an ISDN line. In case of a power failure, the measurement module can control the power supply to the router and the communication module to conserve battery power. One of the main features of K-NET02 is a function for processing JMA seismic intensity. K-NET02 functions as a proper seismic intensity meter that complies with the official requirements of JMA, although the old strong-motion seismograph (K-NET95) does not calculate seismic intensity. Another

  15. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft.

    PubMed

    Wang, Xingjian; Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-10-25

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA.

  16. Linear Extended State Observer-Based Motion Synchronization Control for Hybrid Actuation System of More Electric Aircraft

    PubMed Central

    Liao, Rui; Shi, Cun; Wang, Shaoping

    2017-01-01

    Moving towards the more electric aircraft (MEA), a hybrid actuator configuration provides an opportunity to introduce electromechanical actuator (EMA) into primary flight control. In the hybrid actuation system (HAS), an electro-hydraulic servo actuator (EHSA) and an EMA operate on the same control surface. In order to solve force fighting problem in HAS, this paper proposes a novel linear extended state observer (LESO)-based motion synchronization control method. To cope with the problem of unavailability of the state signals required by the motion synchronization controller, LESO is designed for EHSA and EMA to observe the state variables. Based on the observed states of LESO, motion synchronization controllers could enable EHSA and EMA to simultaneously track the desired motion trajectories. Additionally, nonlinearities, uncertainties and unknown disturbances as well as the coupling term between EHSA and EMA can be estimated and compensated by using the extended state of the proposed LESO. Finally, comparative simulation results indicate that the proposed LESO-based motion synchronization controller could reduce significant force fighting between EHSA and EMA. PMID:29068392

  17. Validating Pseudo-dynamic Source Models against Observed Ground Motion Data at the SCEC Broadband Platform, Ver 16.5

    NASA Astrophysics Data System (ADS)

    Song, S. G.

    2016-12-01

    Simulation-based ground motion prediction approaches have several benefits over empirical ground motion prediction equations (GMPEs). For instance, full 3-component waveforms can be produced and site-specific hazard analysis is also possible. However, it is important to validate them against observed ground motion data to confirm their efficiency and validity before practical uses. There have been community efforts for these purposes, which are supported by the Broadband Platform (BBP) project at the Southern California Earthquake Center (SCEC). In the simulation-based ground motion prediction approaches, it is a critical element to prepare a possible range of scenario rupture models. I developed a pseudo-dynamic source model for Mw 6.5-7.0 by analyzing a number of dynamic rupture models, based on 1-point and 2-point statistics of earthquake source parameters (Song et al. 2014; Song 2016). In this study, the developed pseudo-dynamic source models were tested against observed ground motion data at the SCEC BBP, Ver 16.5. The validation was performed at two stages. At the first stage, simulated ground motions were validated against observed ground motion data for past events such as the 1992 Landers and 1994 Northridge, California, earthquakes. At the second stage, they were validated against the latest version of empirical GMPEs, i.e., NGA-West2. The validation results show that the simulated ground motions produce ground motion intensities compatible with observed ground motion data at both stages. The compatibility of the pseudo-dynamic source models with the omega-square spectral decay and the standard deviation of the simulated ground motion intensities are also discussed in the study

  18. Broadband Ground Motion Observation and Simulation for the 2016 Kumamoto Earthquake

    NASA Astrophysics Data System (ADS)

    Miyake, H.; Chimoto, K.; Yamanaka, H.; Tsuno, S.; Korenaga, M.; Yamada, N.; Matsushima, T.; Miyakawa, K.

    2016-12-01

    During the 2016 Kumamoto earthquake, strong motion data were widely recorded by the permanent dense triggered strong motion network of K-NET/KiK-net and seismic intensity meters installed by local government and JMA. Seismic intensities close to the MMI 9-10 are recorded twice at the Mashiki town, and once at the Nishihara village and KiK-net Mashiki (KMMH16 ground surface). Near-fault records indicate extreme ground motion exceeding 400 cm/s in 5% pSv at a period of 1 s for the Mashiki town and 3-4 s for the Nishihara village. Fault parallel velocity components are larger between the Mashiki town and the Nishihara village, on the other hand, fault normal velocity components are larger inside the caldera of the Aso volcano. The former indicates rupture passed through along-strike stations, and the latter stations located at the forward rupture direction (e.g., Miyatake, 1999). In addition to the permanent observation, temporary continuous strong motion stations were installed just after the earthquake in the Kumamoto city, Mashiki town, Nishihara village, Minami-Aso village, and Aso town, (e.g., Chimoto et al., 2016; Tsuno et al., 2016; Yamanaka et al. 2016). This study performs to estimate strong motion generation areas for the 2016 Kumamoto earthquake sequence using the empirical Green's function method, then to simulate broadband ground motions for both the permanent and temporary strong motion stations. Currently the target period range is between 0.1 s to 5-10 s due to the signal-to-noise ratio of element earthquakes used for the empirical Green's functions. We also care fault dimension parameters N within 4 to 10 to avoid spectral sags and artificial periodicity. The simulated seismic intensities as well as fault normal and parallel velocity components will be discussed.

  19. A new look at a polar crown cavity as observed by SDO/AIA. Structure and dynamics

    NASA Astrophysics Data System (ADS)

    Régnier, S.; Walsh, R. W.; Alexander, C. E.

    2011-09-01

    Context. The Solar Dynamics Observatory (SDO) was launched in February 2010 and is now providing an unprecedented view of the solar activity at high spatial resolution and high cadence covering a broad range of temperature layers of the atmosphere. Aims: We aim at defining the structure of a polar crown cavity and describing its evolution during the erupting process. Methods: We use the high-cadence time series of SDO/AIA observations at 304 Å (50 000 K) and 171 Å (0.6 MK) to determine the structure of the polar crown cavity and its associated plasma, as well as the evolution of the cavity during the different phases of the eruption. We report on the observations recorded on 13 June 2010 located on the north-west limb. Results: We observe coronal plasma shaped by magnetic field lines with a negative curvature (U-shape) sitting at the bottom of a cavity. The cavity is located just above the polar crown filament material. We thus observe the inner part of the cavity above the filament as depicted in the classical three part coronal mass ejection (CME) model composed of a filament, a cavity, and a CME front. The filament (in this case a polar crown filament) is part of the cavity, and it makes a continuous structuring from the filament to the CME front depicted by concentric ellipses (in a 2D cartoon). Conclusions: We propose to define a polar crown cavity as a density depletion sitting above denser polar crown filament plasma drained down the cavity by gravity. As part of the polar crown filament, plasma at different temperatures (ranging from 50 000 K to 0.6 MK) is observed at the same location on the cavity dips and sustained by a competition between the gravity and the curvature of magnetic field lines. The eruption of the polar crown cavity as a solid body can be decomposed into two phases: a slow rise at a speed of 0.6 km s-1 and an acceleration phase at a mean speed of 25 km s-1. Two movies are only available at http://www.aanda.org

  20. Comprehensive Ionospheric Polar and Auroral Observations for Solar Minimum of Cycle 23/24

    NASA Astrophysics Data System (ADS)

    Sojka, Jan J.; Nicolls, Michael; van Eyken, Anthony; Heinselman, Craig

    Only the incoherent scatter radar (ISR) is able to simultaneously measure full profiles of elec-tron density, ion temperature, and electron temperatures through the E-and F-layers of the terrestrial ionosphere. Historically ISR's have been operated for periods much less than a month. Hence, their measurements do not constitute a continuous sequence from which quiet, disturbed, and storm periods can reliably be discerned. This is particularly true in the auroral and polar regions. During the International Polar Year (IPY) two ISRs achieved close to 24/7 continuous observations. This presentation describes their data sets and specifically how they can provide the IRI with a fiduciary E-and F-region ionosphere descriptions for solar minimum conditions at auroral and polar cap locations. The ionospheric description being electron den-sity, ion temperature, electron temperature, and even molecular ion composition profiles from as low as 90 km extending several scale heights above the F-layer peak. The auroral location is Poker Flat in Alaska at 65.4° N, 147.5° W where the NSF's new Poker Flat Incoherent Scatter Radar (PFISR) is located. During solar minimum conditions this location is in the auroral region for most of the day and is at mid-latitudes, equatorward of the cusp, for about 4 to 8 hours per day dependent upon geomagnetic activity. In contrast the polar location is Svalbard, at 78° N, 16° E where the EISCAT Svalbard Radar (ESR) is located. For most of the day the ESR is in the Northern Polar Cap often with a noon sector passage through the dayside cusp. Of unique relevance to IRI is that these extended observations have enabled the ionospheric morphology to be demarked between quiet and disturbed. During the IPY year, 1 March 2007 to 29 February 2008, a total of 50 solar wind corotating interaction regions (CIRs) impacted geospace. Each CIR has a one-to-three day geomagnetic disturbance that is observed in the ISR auroral and polar observations. Hence

  1. Multiwaveband Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Correlated Polarization Behavior

    NASA Astrophysics Data System (ADS)

    Jorstad, Svetlana G.; Marscher, Alan P.; Stevens, Jason A.; Smith, Paul S.; Forster, James R.; Gear, Walter K.; Cawthorne, Timothy V.; Lister, Matthew L.; Stirling, Alastair M.; Gómez, José L.; Greaves, Jane S.; Robson, E. Ian

    2007-08-01

    We report on multifrequency linear polarization monitoring of 15 active galactic nuclei containing highly relativistic jets with apparent speeds from ~4c to >40c. The measurements were obtained at optical, 1 mm, and 3 mm wavelengths, and at 7 mm with the Very Long Baseline Array. The data show a wide range in degree of linear polarization among the sources, from <1% to >30%, and interday polarization variability in individual sources. The polarization properties suggest separation of the sample into three groups with low, intermediate, and high variability of polarization in the core at 7 mm (LVP, IVP, and HVP, respectively). The groups are partially associated with the common classification of active galactic nuclei as radio galaxies and quasars with low optical polarization (LVP), BL Lacertae objects (IVP), and highly optically polarized quasars (HVP). Our study investigates correlations between total flux, fractional polarization, and polarization position angle at the different wavelengths. We interpret the polarization properties of the sources in the sample through models in which weak shocks compress turbulent plasma in the jet. The differences in the orientation of sources with respect to the observer, jet kinematics, and abundance of thermal matter external to the jet near the core can account for the diversity in the polarization properties. The results provide strong evidence that the optical polarized emission originates in shocks, most likely situated between the 3 and 7 mm VLBI cores. They also support the idea that the 1 mm core lies at the edge of the transition zone between electromagnetically dominated and turbulent hydrodynamic sections of the jet.

  2. Coseismic Excitation of the Earth's Polar Motion

    NASA Technical Reports Server (NTRS)

    Chao, B. F.; Gross, R. S.

    2000-01-01

    Apart from the "shaking" near the epicenter that is the earthquake, a seismic event creates a permanent field of dislocation in the entire Earth. This redistribution of mass changes (slightly) the Earth's inertia tensor; and the Earth's rotation will change in accordance with the conservation of angular momentum. Similar to this seismic excitation of Earth rotation variations, the same mass redistribution causes (slight) changes in the Earth's gravitational field expressible in terms of changes in the Stokes coefficients of its harmonic expansion. In this paper, we give a historical background of the subject and discuss the related physics; we then compute the geodynamic effects caused by earthquakes based on normal-mode summation scheme. The effects are computed using the centroid moment tensor (CMT) solutions for 15,814 major earthquakes from Jan., 1977, through Feb., 1999, as provided in the Harvard CMT catalog. The computational results further strengthens these findings and conclusions: (i) the strong tendency for earthquakes to make the Earth rounder and more compact (however slightly) continues; (ii) so does the trend in the seismic "nudging" of the rotation pole toward the general direction of approx. 140 E, roughly opposite to that of the observed polar drift, but two orders of magnitude smaller in drift speed.

  3. Observation of High-Order Polarization-Locked Vector Solitons in a Fiber Laser

    NASA Astrophysics Data System (ADS)

    Tang, D. Y.; Zhang, H.; Zhao, L. M.; Wu, X.

    2008-10-01

    We report on the experimental observation of a new type of polarization-locked vector soliton in a passively mode-locked fiber laser. The vector soliton is characterized by the fact that not only are the two orthogonally polarized soliton components phase-locked, but also one of the components has a double-humped intensity profile. Multiple phase-locked high-order vector solitons with identical soliton parameters and harmonic mode locking of the vector solitons were also obtained in the laser. Numerical simulations confirmed the existence of stable high-order vector solitons in the fiber laser.

  4. Observation of high-order polarization-locked vector solitons in a fiber laser.

    PubMed

    Tang, D Y; Zhang, H; Zhao, L M; Wu, X

    2008-10-10

    We report on the experimental observation of a new type of polarization-locked vector soliton in a passively mode-locked fiber laser. The vector soliton is characterized by the fact that not only are the two orthogonally polarized soliton components phase-locked, but also one of the components has a double-humped intensity profile. Multiple phase-locked high-order vector solitons with identical soliton parameters and harmonic mode locking of the vector solitons were also obtained in the laser. Numerical simulations confirmed the existence of stable high-order vector solitons in the fiber laser.

  5. ERP-Variations on Time Scales Between Hours and Months Derived From GNSS Observations

    NASA Astrophysics Data System (ADS)

    Weber, R.; Englich, S.; Mendes Cerveira, P.

    2007-05-01

    Current observations gained by the space geodetic techniques, especially VLBI, GPS and SLR, allow for the determination of Earth Rotation Parameters (ERPs - polar motion, UT1/LOD) with unprecedented accuracy and temporal resolution. This presentation focuses on contributions to the ERP recovery provided by satellite navigation systems (primarily GPS). The IGS (International GNSS Service), for example, currently provides daily polar motion with an accuracy of less than 0.1mas and LOD estimates with an accuracy of a few microseconds. To study more rapid variations in polar motion and LOD we established in a first step a high resolution (hourly resolution) ERP-time series from GPS observation data of the IGS network covering the year 2005. The calculations were carried out by means of the Bernese GPS Software V5.0 considering observations from a subset of 113 fairly stable stations out of the IGS05 reference frame sites. From these ERP time series the amplitudes of the major diurnal and semidiurnal variations caused by ocean tides are estimated. After correcting the series for ocean tides the remaining geodetic observed excitation is compared with variations of atmospheric excitation (AAM). To study the sensitivity of the estimates with respect to the applied mapping function we applied both the widely used NMF (Niell Mapping Function) and the VMF1 (Vienna Mapping Function 1). In addition, based on computations covering two months in 2005, the potential improvement due to the use of additional GLONASS data will be discussed.

  6. PHOTOSPHERIC ABUNDANCES OF POLAR JETS ON THE SUN OBSERVED BY HINODE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kyoung-Sun; Brooks, David H.; Imada, Shinsuke, E-mail: lksun@solar.isas.jaxa.jp

    2015-08-20

    Many jets are detected at X-ray wavelengths in the Sun's polar regions, and the ejected plasma along the jets has been suggested to contribute mass to the fast solar wind. From in situ measurements in the magnetosphere, it has been found that the fast solar wind has photospheric abundances while the slow solar wind has coronal abundances. Therefore, we investigated the abundances of polar jets to determine whether they are the same as that of the fast solar wind. For this study, we selected 22 jets in the polar region observed by Hinode/EUV Imaging Spectroscopy (EIS) and X-ray Telescope (XRT)more » simultaneously on 2007 November 1–3. We calculated the First Ionization Potential (FIP) bias factor from the ratio of the intensity between high (S) and low (Si, Fe) FIP elements using the EIS spectra. The values of the FIP bias factors for the polar jets are around 0.7–1.9, and 75% of the values are in the range of 0.7–1.5, which indicates that they have photospheric abundances similar to the fast solar wind. The results are consistent with the reconnection jet model where photospheric plasma emerges and is rapidly ejected into the fast wind.« less

  7. Deblurring for spatial and temporal varying motion with optical computing

    NASA Astrophysics Data System (ADS)

    Xiao, Xiao; Xue, Dongfeng; Hui, Zhao

    2016-05-01

    A way to estimate and remove spatially and temporally varying motion blur is proposed, which is based on an optical computing system. The translation and rotation motion can be independently estimated from the joint transform correlator (JTC) system without iterative optimization. The inspiration comes from the fact that the JTC system is immune to rotation motion in a Cartesian coordinate system. The work scheme of the JTC system is designed to keep switching between the Cartesian coordinate system and polar coordinate system in different time intervals with the ping-pang handover. In the ping interval, the JTC system works in the Cartesian coordinate system to obtain a translation motion vector with optical computing speed. In the pang interval, the JTC system works in the polar coordinate system. The rotation motion is transformed to the translation motion through coordinate transformation. Then the rotation motion vector can also be obtained from JTC instantaneously. To deal with continuous spatially variant motion blur, submotion vectors based on the projective motion path blur model are proposed. The submotion vectors model is more effective and accurate at modeling spatially variant motion blur than conventional methods. The simulation and real experiment results demonstrate its overall effectiveness.

  8. Dynamic properties along the neutral line of a delta spot inferred from high-resolution observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cristaldi, A.; Guglielmino, S. L.; Zuccarello, F.

    2014-07-10

    Delta (δ) spots are complex magnetic configurations of sunspots characterized by umbrae of opposite polarity sharing a common penumbra. In order to investigate the fine structure of the region separating the two magnetic polarities of a δ spot, we studied the morphology, the magnetic configuration, and the velocity field in such a region using observations of active region (AR) NOAA 11267 obtained with the CRisp Imaging SpectroPolarimeter (CRISP) at the Swedish Solar Telescope on 2011 August 6. The analysis of CRISP data shows upflows and downflows of ∼ ± 3 km s{sup –1} in proximity of the δ spot polaritymore » inversion line (PIL), and horizontal motions along the PIL of the order of ∼1 km s{sup –1}. The results obtained from the SIR inversion of CRISP data also indicate that the transverse magnetic field in the brighter region separating the two opposite magnetic polarities of the δ spot is tilted about ∼45° with respect to the PIL. Solar Dynamics Observatory/Helioseismic and Magnetic Imager observations confirm the presence of motions of ∼ ± 3 km s{sup –1} in proximity of the PIL, which were observed to last 15 hr. From the data analyzed, we conclude that the steady, persistent, and subsonic motions observed along the δ spot PIL can be interpreted as being due to Evershed flows occurring in the penumbral filaments that show a curved, wrapped configuration. The fluting of the penumbral filaments and their bending, continuously increased by the approaching motion of the negative umbra toward the positive one, give rise to the complex line-of-sight velocity maps that we observed.« less

  9. Conjugate Observations of Optical Aurora with POLAR Satellite and Ground Based Imagers in Antarctica

    NASA Technical Reports Server (NTRS)

    Mende, S. H.; Frey, H.; Vo, H.; Geller, S. P.; Doolittle, J. H.; Spann, J. F., Jr.

    1998-01-01

    Operation of the ultraviolet imager on the POLAR satellite permits the observation of Aurora Borealis in daylight during northern summer. With optical imagers in the Automatic Geophysical Observatories (AGO-s) large regions of the oval of Aurora Australis can be observed simultaneously during the southern winter polar night. This opportunity permits conducting a systematic study of the properties of auroras on opposite ends of the same field line. It is expected that simultaneously observed conjugate auroras occurring on closed field lines should be similar to each other in appearance because of the close connection between the two hemispheres through particle scattering and mirroring processes. On open or greatly distorted field lines there is no a priori expectation of similarity between conjugate auroras. To investigate the influence of different IMF conditions on auroral behavior we have examined conjugate data for periods of southward IMF. Sudden brightening and subsequent poleward expansions are observed to occur simultaneously in both hemispheres. The POLAR data show that sudden brightening are initiated at various local time regions. When the local time of this region is in the field of view of the AGO station network then corresponding brightening is also found to occur in the southern hemisphere. Large features such as substorm induced westward propagation and resulting auroral brightening seem to occur simultaneously on conjugate hemispheres. The widely different view scales make it difficult to make unique identification of individual auroral forms in the POLAR and in the ground based data but in a general sense the data is consistent with conjugate behavior.

  10. Observation of redshifting and harmonic radiation in inverse Compton scattering

    DOE PAGES

    Sakai, Y.; Pogorelsky, I.; Williams, O.; ...

    2015-06-17

    Inverse Compton scattering of laser photons by ultrarelativistic electron beam provides polarized x- to γ-ray pulses due to the Doppler blueshifting. Nonlinear electrodynamics in the relativistically intense linearly polarized laser field changes the radiation kinetics established during the Compton interaction. These are due to the induced figure-8 motion, which introduces an overall redshift in the radiation spectrum, with the concomitant emission of higher order harmonics. To experimentally analyze the strong field physics associated with the nonlinear electron-laser interaction, clear modifications to the angular and wavelength distributions of x rays are observed. The relativistic photon wave field is provided by themore » ps CO 2 laser of peak normalized vector potential of 0.5L<0.7, which due to the quadratic dependence of the strength of nonlinear phenomena on aL permits sufficient effects not observed in past 2 nd harmonic study with a L ≈ 0.3 laser [M. Babzien et al., Phys. Rev. Lett. 96, 054802 (2006)]. The angular spectral characteristics are revealed using K-, L-edge, and high energy attenuation filters. The observation indicates existence of the electrons’ longitudinal motion through frequency redshifting understood as the mass shift effect. The 3 rd harmonic radiation has been observed containing on-axis x-ray component that is directly associated with the induced figure-8 motion. These are further supported by an initial evidence of off-axis 2 nd harmonic radiation produced in a circularly polarized laser wave field. Total x-ray photon number per pulse, scattered by 65 MeV electron beam of 0.3 nC, at the interaction point is measured to be approximately 10 9.« less

  11. Mass motion in upper solar chromosphere detected from solar eclipse observation

    NASA Astrophysics Data System (ADS)

    Li, Zhi; Qu, Zhongquan; Yan, Xiaoli; Dun, Guangtao; Chang, Liang

    2016-05-01

    The eclipse-observed emission lines formed in the upper solar atmosphere can be used to diagnose the atmosphere dynamics which provides an insight to the energy balance of the outer atmosphere. In this paper, we analyze the spectra formed in the upper chromospheric region by a new instrument called Fiber Arrayed Solar Optic Telescope (FASOT) around the Gabon total solar eclipse on November 3, 2013. The double Gaussian fits of the observed profiles are adopted to show enhanced emission in line wings, while red-blue (RB) asymmetry analysis informs that the cool line (about 104 K) profiles can be decomposed into two components and the secondary component is revealed to have a relative velocity of about 16-45 km s^{-1}. The other profiles can be reproduced approximately with single Gaussian fits. From these fittings, it is found that the matter in the upper solar chromosphere is highly dynamic. The motion component along the line-of-sight has a pattern asymmetric about the local solar radius. Most materials undergo significant red shift motions while a little matter show blue shift. Despite the discrepancy of the motion in different lines, we find that the width and the Doppler shifts both are function of the wavelength. These results may help us to understand the complex mass cycle between chromosphere and corona.

  12. ALMA Observations of Polarization from Dust Scattering in the IM Lup Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Hull, Charles L. H.; Yang, Haifeng; Li, Zhi-Yun; Kataoka, Akimasa; Stephens, Ian W.; Andrews, Sean; Bai, Xuening; Cleeves, L. Ilsedore; Hughes, A. Meredith; Looney, Leslie; Pérez, Laura M.; Wilner, David

    2018-06-01

    We present 870 μm ALMA observations of polarized dust emission toward the Class II protoplanetary disk IM Lup. We find that the orientation of the polarized emission is along the minor axis of the disk, and that the value of the polarization fraction increases steadily toward the center of the disk, reaching a peak value of ∼1.1%. All of these characteristics are consistent with models of self-scattering of submillimeter-wave emission from an optically thin inclined disk. The distribution of the polarization position angles across the disk reveals that, while the average orientation is along the minor axis, the polarization orientations show a significant spread in angles; this can also be explained by models of pure scattering. We compare the polarization with that of the Class I/II source HL Tau. A comparison of cuts of the polarization fraction across the major and minor axes of both sources reveals that IM Lup has a substantially higher polarization fraction than HL Tau toward the center of the disk. This enhanced polarization fraction could be due a number of factors, including higher optical depth in HL Tau, or scattering by larger dust grains in the more evolved IM Lup disk. However, models yield similar maximum grain sizes for both HL Tau (72 μm) and IM Lup (61 μm, this work). This reveals continued tension between grain-size estimates from scattering models and from models of the dust emission spectrum, which find that the bulk of the (unpolarized) emission in disks is most likely due to millimeter-sized (or even centimeter-sized) grains.

  13. The statistical properties and possible causes of polar motion prediction errors

    NASA Astrophysics Data System (ADS)

    Kosek, Wieslaw; Kalarus, Maciej; Wnek, Agnieszka; Zbylut-Gorska, Maria

    2015-08-01

    The pole coordinate data predictions from different prediction contributors of the Earth Orientation Parameters Combination of Prediction Pilot Project (EOPCPPP) were studied to determine the statistical properties of polar motion forecasts by looking at the time series of differences between them and the future IERS pole coordinates data. The mean absolute errors, standard deviations as well as the skewness and kurtosis of these differences were computed together with their error bars as a function of prediction length. The ensemble predictions show a little smaller mean absolute errors or standard deviations however their skewness and kurtosis values are similar as the for predictions from different contributors. The skewness and kurtosis enable to check whether these prediction differences satisfy normal distribution. The kurtosis values diminish with the prediction length which means that the probability distribution of these prediction differences is becoming more platykurtic than letptokurtic. Non zero skewness values result from oscillating character of these differences for particular prediction lengths which can be due to the irregular change of the annual oscillation phase in the joint fluid (atmospheric + ocean + land hydrology) excitation functions. The variations of the annual oscillation phase computed by the combination of the Fourier transform band pass filter and the Hilbert transform from pole coordinates data as well as from pole coordinates model data obtained from fluid excitations are in a good agreement.

  14. Mars observer radio science (MORS) observations in polar regions

    NASA Technical Reports Server (NTRS)

    Simpson, Richard A.

    1992-01-01

    MORS observations will focus on two major areas of study: (1) the gravity field of Mars and its interpretation in terms of internal structure and history and (2) the structure of the atmosphere, with emphasis on both temperature-pressure profiles of the background atmosphere and small scale inhomogeneities resulting from turbulence. Scattering of cm wavelength radio signals from Mars' surface at highly oblique angles will also be studied during the primary mission; nongrazing scattering experiments may be possible during an extended mission. During the MORS primary mission, measurements of the spacecraft distance and velocity with respect to Earth based tracking stations will be used to develop models of the global gravity field. The improvement in knowledge of the gravity field will be especially evident in polar regions. The spatial and temporal coverage of atmospheric radio occultation measurements are determined by the geometry of the spacecraft orbit and the direction to the Earth. Profiles of atmospheric temperature and pressure will extend from the surface to altitudes of 50 to 70 km.

  15. Extended state observer-based motion synchronisation control for hybrid actuation system of large civil aircraft

    NASA Astrophysics Data System (ADS)

    Wang, Xingjian; Shi, Cun; Wang, Shaoping

    2017-07-01

    Hybrid actuation system with dissimilar redundant actuators, which is composed of a hydraulic actuator (HA) and an electro-hydrostatic actuator (EHA), has been applied on modern civil aircraft to improve the reliability. However, the force fighting problem arises due to different dynamic performances between HA and EHA. This paper proposes an extended state observer (ESO)-based motion synchronisation control method. To cope with the problem of unavailability of the state signals, the well-designed ESO is utilised to observe the HA and EHA state variables which are unmeasured. In particular, the extended state of ESO can estimate the lumped effect of the unknown external disturbances acting on the control surface, the nonlinear dynamics, uncertainties, and the coupling term between HA and EHA. Based on the observed states of ESO, motion synchronisation controllers are presented to make HA and EHA to simultaneously track the desired motion trajectories, which are generated by a trajectory generator. Additionally, the unknown disturbances and the coupling terms can be compensated by using the extended state of the proposed ESO. Finally, comparative simulation results indicate that the proposed ESO-based motion synchronisation controller can achieve great force fighting reduction between HA and EHA.

  16. Predicted Attenuation Relation and Observed Ground Motion of Gorkha Nepal Earthquake of 25 April 2015

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Ahmad, R.

    2015-12-01

    A comparison of recent observed ground motion parameters of recent Gorkha Nepal earthquake of 25 April 2015 (Mw 7.8) with the predicted ground motion parameters using exitsing attenuation relation of the Himalayan region will be presented. The recent earthquake took about 8000 lives and destroyed thousands of poor quality of buildings and the earthquake was felt by millions of people living in Nepal, China, India, Bangladesh, and Bhutan. The knowledge of ground parameters are very important in developing seismic code of seismic prone regions like Himalaya for better design of buildings. The ground parameters recorded in recent earthquake event and aftershocks are compared with attenuation relations for the Himalayan region, the predicted ground motion parameters show good correlation with the observed ground parameters. The results will be of great use to Civil engineers in updating existing building codes in the Himlayan and surrounding regions and also for the evaluation of seismic hazards. The results clearly show that the attenuation relation developed for the Himalayan region should be only used, other attenuation relations based on other regions fail to provide good estimate of observed ground motion parameters.

  17. Low-Frequency Amplitudes Observed in a Set of the Strongest Recorded Ground Motions (Invited)

    NASA Astrophysics Data System (ADS)

    Anderson, J. G.; Koketsu, K.; Miyake, H.

    2010-12-01

    Anderson (2010) compiled a set of “exceptional” ground motion characterized by peak acceleration that exceeds 500 gal on at least one component or peak velocity that exceeds 50 cm/s on at least one component. With the addition of more recent data, there are now over 280 openly available records that meet these criteria. These data are examined to find to the empirical upper bound of observed pseudo-acceleration (PSA) response spectra and smoothed Fourier amplitude spectra. Statistics of amplitudes of PSA and of low-pass filtered acceleration and velocity have also been determined. Amplitudes recorded at the Kawaguchi-cho station (40 km) at 5-6 second period from the 1964 Niigata earthquake (Mw=8.3) are within ~20% of the current empirical limit of ground motions observed from all earthquakes in the data set including those from the near field. An even more impressive example is that amplitudes recorded at the SCT station (~300 km from the fault) with period of about 2 seconds, during the 1985 Michoacan, Mexico, earthquake (Mw=8.0), are about the same as the current empirical limit of ground motions observed from near field records. These examples support the idea that the hazard caused by long-period ground motions, amplified by basins and site conditions, is not sufficiently appreciated. Reference: Anderson, J. G. (2010), Bull. Seism. Soc. Am. 100, 1-36.

  18. Estimation of Source and Attenuation Parameters from Ground Motion Observations for Induced Seismicity in Alberta

    NASA Astrophysics Data System (ADS)

    Novakovic, M.; Atkinson, G. M.

    2015-12-01

    We use a generalized inversion to solve for site response, regional source and attenuation parameters, in order to define a region-specific ground-motion prediction equation (GMPE) from ground motion observations in Alberta, following the method of Atkinson et al. (2015 BSSA). The database is compiled from over 200 small to moderate seismic events (M 1 to 4.2) recorded at ~50 regional stations (distances from 30 to 500 km), over the last few years; almost all of the events have been identified as being induced by oil and gas activity. We remove magnitude scaling and geometric spreading functions from observed ground motions and invert for stress parameter, regional attenuation and site amplification. Resolving these parameters allows for the derivation of a regionally-calibrated GMPE that can be used to accurately predict amplitudes across the region in real time, which is useful for ground-motion-based alerting systems and traffic light protocols. The derived GMPE has further applications for the evaluation of hazards from induced seismicity.

  19. Summer polar chemistry observations in the stratosphere made by HALOE

    NASA Technical Reports Server (NTRS)

    Park, Jae H.; Russell, James M., III

    1994-01-01

    Regions of low stratospheric ozone that are anticorrelated with HCl, NO, and NO2 levels have been observed in the Arctic and Antarctic summers of 1992 and 1993 by the Halogen Occultation Experiment on the UARS platform. The low ozone areas are confined to the approximately 8-45 mb (approximately 33-21 km) region and poleward of approximately 60 deg in each hemisphere. While low polar summer ozone has been observed before, this is the first time simultaneous observations of relevant nitrogen and chlorine chemical species have been made. The phenomenon appears to be a recurring geophysical feature, and the satellite data should provide an excellent opportunity to improve our understanding of the chemistry causing these conditions.

  20. Observation of polarization domain wall solitons in weakly birefringent cavity fiber lasers

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Tang, D. Y.; Zhao, L. M.; Wu, X.

    2009-08-01

    We report on the experimental observation of two types of phase-locked vector soliton in weakly birefringent cavity erbium-doped fiber lasers. While a phase-locked dark-dark vector soliton was only observed in fiber lasers of positive dispersion, a phase-locked dark-bright vector soliton was obtained in fiber lasers of either positive or negative dispersion. Numerical simulations confirmed the experimental observations and further showed that the observed vector solitons are the two types of phase-locked polarization domain wall solitons theoretically predicted.

  1. High-harmonic generation in graphene enhanced by elliptically polarized light excitation

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Naotaka; Tamaya, Tomohiro; Tanaka, Koichiro

    2017-05-01

    The electronic properties of graphene can give rise to a range of nonlinear optical responses. One of the most desirable nonlinear optical processes is high-harmonic generation (HHG) originating from coherent electron motion induced by an intense light field. Here, we report on the observation of up to ninth-order harmonics in graphene excited by mid-infrared laser pulses at room temperature. The HHG in graphene is enhanced by an elliptically polarized laser excitation, and the resultant harmonic radiation has a particular polarization. The observed ellipticity dependence is reproduced by a fully quantum mechanical treatment of HHG in solids. The zero-gap nature causes the unique properties of HHG in graphene, and our findings open up the possibility of investigating strong-field and ultrafast dynamics and nonlinear behavior of massless Dirac fermions.

  2. Studies of Polar Mesospheric Clouds from Observations by the Student Nitric Oxide Explorer

    NASA Technical Reports Server (NTRS)

    Bailey, Scott M.

    2005-01-01

    The Geospace Sciences SR&T award NAG5-12648 "Studies of polar mesospheric clouds from observations by the Student Nitric Oxide Explorer" has been completed. The project was very successful in completing the proposed objectives and brought forth unexpected results in the study of Polar Mesospheric Clouds (PMCs). This work has provided key results to the community, provided valuable experience to two students, and inspired new research and collaborations with other research groups. Here we briefly summarize the progress and the scientific results.

  3. Crustal origin of trench-parallel shear-wave fast polarizations in the Central Andes

    NASA Astrophysics Data System (ADS)

    Wölbern, I.; Löbl, U.; Rümpker, G.

    2014-04-01

    In this study, SKS and local S phases are analyzed to investigate variations of shear-wave splitting parameters along two dense seismic profiles across the central Andean Altiplano and Puna plateaus. In contrast to previous observations, the vast majority of the measurements reveal fast polarizations sub-parallel to the subduction direction of the Nazca plate with delay times between 0.3 and 1.2 s. Local phases show larger variations of fast polarizations and exhibit delay times ranging between 0.1 and 1.1 s. Two 70 km and 100 km wide sections along the Altiplano profile exhibit larger delay times and are characterized by fast polarizations oriented sub-parallel to major fault zones. Based on finite-difference wavefield calculations for anisotropic subduction zone models we demonstrate that the observations are best explained by fossil slab anisotropy with fast symmetry axes oriented sub-parallel to the slab movement in combination with a significant component of crustal anisotropy of nearly trench-parallel fast-axis orientation. From the modeling we exclude a sub-lithospheric origin of the observed strong anomalies due to the short-scale variations of the fast polarizations. Instead, our results indicate that anisotropy in the Central Andes generally reflects the direction of plate motion while the observed trench-parallel fast polarizations likely originate in the continental crust above the subducting slab.

  4. QSAT: The Satellite for Polar Plasma Observation

    NASA Astrophysics Data System (ADS)

    Tsuruda, Yoshihiro; Fujimoto, Akiko; Kurahara, Naomi; Hanada, Toshiya; Yumoto, Kiyohumi; Cho, Mengu

    2009-04-01

    This paper introduces QSAT, the satellite for polar plasma observation. The QSAT project began in 2006 as an initiative by graduate students of Kyushu University, and has the potential to contribute greatly to IHY (International Heliophysical Year) by showing to the world the beauty, importance, and relevance of space science. The primary objectives of the QSAT mission are (1) to investigate plasma physics in the Earth’s aurora zone in order to better understand spacecraft charging, and (2) to conduct a comparison of the field-aligned current observed in orbit with ground-based observations. The QSAT project can provide education and research opportunities for students in an activity combining space sciences and satellite engineering. The QSAT satellite is designed to be launched in a piggyback fashion with the Japanese launch vehicle H-IIA. The spacecraft bus is being developed at the Department of Aeronautics and Astronautics of Kyushu University with collaboration of Fukuoka Institute of Technology. Regarding the payload instruments, the Space Environment Research Center of Kyushu University is developing the magnetometers, whereas the Laboratory of Spacecraft Environment Interaction Engineering of Kyushu Institute of Technology is developing the plasma probes. We aim to be ready for launch in 2009 or later.

  5. Theories of Notation and Polar Motion I,

    DTIC Science & Technology

    1980-12-01

    relative motions such as ocean currents and winds, as we shall do. For the consideration of such effects see (Munk and Macdonald, 1960, p. 123; Lambeck...n)e ,uite general and niot irestricted to a solid body. In Fact, we na~it also in toe Poi ncar model . The equation K 12-1:: no;s the exponencial

  6. Conjugate Magnetic Observations in the Polar Environments by PRIMO and AUTUMNX

    NASA Astrophysics Data System (ADS)

    Chi, P. J.; Russell, C. T.; Strangeway, R. J.; Raymond, C. A.; Connors, M. G.; Wilson, T. J.; Boteler, D. H.; Rowe, K.; Schofield, I.

    2014-12-01

    While magnetically conjugate observations by ground-based magnetometers are available at both high and low magnetic latitudes, few have been established at auroral latitudes to monitor the hemispheric asymmetry of auroral electric currents and its impact to geospace dynamics. Due to the limitations of global land areas, the only regions where conjugate ground-based magnetic observations can cover the full range of auroral latitudes are between Quebec, Canada and West Antarctica. Funded by the Canadian Space Agency, the AUTUMNX project is currently emplacing 10 ground-based magnetometers in Quebec, Canada, and will provide the magnetic field observations in the Northern Hemisphere. The proposed U.S. Polar Region Interhemispheric Magnetic Observatories (PRIMO) project plans to establish six new ground-based magnetometers in West Antarctica at L-values between 3.9 and 10.1. The instrument is based on the new low-power fluxgate magnetometer system recently developed at UCLA for operation in the polar environments. The PRIMO magnetometers will operate on the power and communications platform well proven by the POLENET project, and the six PRIMO systems will co-locate with existing ANET stations in the region for synergy in logistic support. Focusing on the American longitudinal sector and leveraging infrastructure through international collaborations, PRIMO and AUTUMNX can monitor the intensity and location of auroral electrojets in both hemispheres simultaneously, enabling the first systematic interhemispheric magnetic observations at auroral latitudes.

  7. SYSTEMATIC EFFECTS IN POLARIZING FOURIER TRANSFORM SPECTROMETERS FOR COSMIC MICROWAVE BACKGROUND OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagler, Peter C.; Tucker, Gregory S.; Fixsen, Dale J.

    The detection of the primordial B-mode polarization signal of the cosmic microwave background (CMB) would provide evidence for inflation. Yet as has become increasingly clear, the detection of a such a faint signal requires an instrument with both wide frequency coverage to reject foregrounds and excellent control over instrumental systematic effects. Using a polarizing Fourier transform spectrometer (FTS) for CMB observations meets both of these requirements. In this work, we present an analysis of instrumental systematic effects in polarizing FTSs, using the Primordial Inflation Explorer (PIXIE) as a worked example. We analytically solve for the most important systematic effects inherentmore » to the FTS—emissive optical components, misaligned optical components, sampling and phase errors, and spin synchronous effects—and demonstrate that residual systematic error terms after corrections will all be at the sub-nK level, well below the predicted 100 nK B-mode signal.« less

  8. On interstellar light polarization by diamagnetic silicate and carbon dust in the infrared

    NASA Astrophysics Data System (ADS)

    Papoular, R.

    2018-04-01

    The motion of diamagnetic dust particles in interstellar magnetic fields is studied numerically with several different sets of parameters. Two types of behaviour are observed, depending on the value of the critical number R, which is a function of the grain inertia, the magnetic susceptibility of the material and of the strength of rotation braking. If R ≤ 10, the grain ends up in a static state and perfectly aligned with the magnetic field, after a few braking times. If not, it goes on precessing and nutating about the field vector for a much longer time. Usual parameters are such that the first situation can hardly be observed. Fortunately, in the second and more likely situation, there remains a persistent partial alignment that is far from negligible, although it decreases as the field decreases and as R increases. The solution of the complete equations of motion of grains in a field helps understanding the details of this behaviour. One particular case of an ellipsoidal forsterite silicate grain is studied in detail and shown to polarize light in agreement with astronomical measurements of absolute polarization in the infrared. Phonons are shown to contribute to the progressive flattening of extinction and polarization towards long wavelengths. The measured dielectric properties of forsterite qualitatively fit the Serkowski peak in the visible.

  9. Effects of the Observed Meridional Flow Variations since 1996 on the Sun's Polar Fields

    NASA Technical Reports Server (NTRS)

    Hathaway, David; Upton, Lisa

    2013-01-01

    The cause of the low and extended minimum in solar activity between Sunspot Cycles 23 and 24 was the small size of Sunspot Cycle 24 itself - small cycles start late and leave behind low minima. Cycle 24 is small because the polar fields produced during Cycle 23 were substantially weaker than those produced during the previous cycles and those (weak) polar fields are the seeds for the activity of the following cycle. The polar fields are produced by the latitudinal transport of magnetic flux that emerged in low-latitude active regions. The polar fields thus depend upon the details of both the flux emergence and the flux transport. We have measured the flux transport flows (differential rotation, meridional flow, and supergranules) since 1996 and find systematic and substantial variation in the meridional flow alone. Here we present experiments using a Surface Flux Transport Model in which magnetic field data from SOHO/MDI and SDO/HMI are assimilated into the model only at latitudes between 45-degrees north and south of the equator (this assures that the details of the active region flux emergence are well represented). This flux is then transported in both longitude and latitude by the observed flows. In one experiment the meridional flow is given by the time averaged (and north-south symmetric) meridional flow profile. In the second experiment the time-varying and north-south asymmetric meridional flow is used. Differences between the observed polar fields and those produced in these two experiments allow us to ascertain the effects of these meridional flow variations on the Sun s polar fields.

  10. Observation of spin-polarized photoconductivity in (Ga,Mn)As/GaAs heterojunction without magnetic field

    PubMed Central

    Wu, Qing; Liu, Yu; Wang, Hailong; Li, Yuan; Huang, Wei; Zhao, Jianhua; Chen, Yonghai

    2017-01-01

    In the absent of magnetic field, we have observed the anisotropic spin polarization degree of photoconduction (SPD-PC) in (Ga,Mn)As/GaAs heterojunction. We think three kinds of mechanisms contribute to the magnetic related signal, (i) (Ga,Mn)As self-producing due to the valence band polarization, (ii) unequal intensity of left and right circularly polarized light reaching to GaAs layer to excite unequal spin polarized carriers in GaAs layer, and (iii) (Ga,Mn)As as the spin filter layer for spin transport from GaAs to (Ga,Mn)As. Different from the previous experiments, the influence coming from the Zeeman splitting induced by an external magnetic field can be avoided here. While temperature dependence experiment indicates that the SPD-PC is mixed with the magnetic uncorrelated signals, which may come from current induced spin polarization. PMID:28084437

  11. Polarization Observations of Giant Radio Pulses from the Millisecond Pulsar B1937+21 at a Frequency of 600 MHz

    NASA Astrophysics Data System (ADS)

    Popov, M. V.; Soglasnov, V. A.; Kondrat'ev, V. I.; Kostyuk, S. V.

    2004-02-01

    We performed polarization observations of giant radio pulses from the millisecond pulsar B1937+21. The observations were carried out in July 2002 with the 64-m Kalyazin radio telescope at a frequency of 600 MHz in two polarization channels with left- and right-hand circular polarizations (RCP and LCP). We used the S2 data acquisition system with a time resolution of 125 ns. The duration of an observing session was 20 min. We detected twelve giant radio pulses with peak flux densities higher than 1000 Jy; five and seven of these pulses appeared in the RCP and LCP channels, respectively. We found no event that exceeded the established detection threshold simultaneously in the two polarization channels. Thus, we may conclude that the detected giant pulses have a high degree of circular polarization, with the frequency of occurrence of RCP and LCP pulses being the same.

  12. Optics. Observation of optical polarization Möbius strips.

    PubMed

    Bauer, Thomas; Banzer, Peter; Karimi, Ebrahim; Orlov, Sergej; Rubano, Andrea; Marrucci, Lorenzo; Santamato, Enrico; Boyd, Robert W; Leuchs, Gerd

    2015-02-27

    Möbius strips are three-dimensional geometrical structures, fascinating for their peculiar property of being surfaces with only one "side"—or, more technically, being "nonorientable" surfaces. Despite being easily realized artificially, the spontaneous emergence of these structures in nature is exceedingly rare. Here, we generate Möbius strips of optical polarization by tightly focusing the light beam emerging from a q-plate, a liquid crystal device that modifies the polarization of light in a space-variant manner. Using a recently developed method for the three-dimensional nanotomography of optical vector fields, we fully reconstruct the light polarization structure in the focal region, confirming the appearance of Möbius polarization structures. The preparation of such structured light modes may be important for complex light beam engineering and optical micro- and nanofabrication. Copyright © 2015, American Association for the Advancement of Science.

  13. Spatiotemporal change of sky polarization during the total solar eclipse on 29 March 2006 in Turkey: polarization patterns of the eclipsed sky observed by full-sky imaging polarimetry.

    PubMed

    Sipocz, Brigitta; Hegedüs, Ramón; Kriska, György; Horváth, Gábor

    2008-12-01

    Using 180 degrees field-of-view (full-sky) imaging polarimetry, we measured the spatiotemporal change of the polarization of skylight during the total solar eclipse on 29 March 2006 in Turkey. We present our observations here on the temporal variation of the celestial patterns of the degree p and angle alpha of linear polarization of the eclipsed sky measured in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We also report on the temporal and spectral change of the positions of neutral (unpolarized, p = 0) points, and points with local minima or maxima of p of the eclipsed sky. Our results are compared with the observations performed by the same polarimetric technique during the total solar eclipse on 11 August 1999 in Hungary. Practically the same characteristics of celestial polarization were encountered during both eclipses. This shows that the observed polarization phenomena of the eclipsed sky may be general.

  14. New Observations and Studies of Saturn's Long-Lived North Polar SPOT

    NASA Astrophysics Data System (ADS)

    Sanchez-Lavega, Agustin; Rojas, Jose Félix; Acarreta, Juan Ramón; Lecacheux, Jean; Colas, François; Sada, Pedro V.

    1997-08-01

    We report on a new series of ground-based CCD observations at visual wavelengths, covering a period of 1255 days between May 1992 and November 1995, of the longest-lived asymmetric feature known in Saturn's atmosphere: the north polar spot (NPS). This completes our previous analysis of this feature during the period 1990-1991 (A. Sanchez-Lavega, J. Lecacheux, F. Colas, and P. Lagues, 1993,Science260,329-332). Longitude measurements of the NPS indicate an averaged longitudinal drift of -0.030 deg/day for the whole period 1990-1995 corresponding to a zonal velocity of 0.11 msec-1. These data, when combined with previous and new measurements of the NPS position on Voyager 1 and 2 images obtained in 1980 and 1981, indicate a long-term drift in longitude of the NPS with a constant angular acceleration of 1.1 × 10-5deg/(day)2. High-resolution Voyager 2 violet, blue, green, and orange images were used to measure the size and reflectivity of the NPS. Its structure is characterized by a bright elliptical core surrounded by a dark ring and a large uniform area. The contrast between all these features changes appreciably from violet to orange: the spot is dark in violet but bright in orange relative to its surroundings. The spot is embedded within a region seeded by a “field of bright clouds” with characteristic size 1000 km reminiscent of a cellular convection pattern. The NPS's east-west apparent size is shorter at violet-blue (about 7000 km as limited by a dark ring at these wavelengths) than at green-orange (about 11,000 km corresponding to the large uniform area). Green processed images show apparent spiral patterns within the NPS consistent with anticyclonic vorticity. The results of ground-based photometry of the north polar region (NPR) and the NPS in the red methane absorption bands and their adjacent continuum are consistent with a radiative transfer model of the cloud vertical structure consisting of a clear gas layer, a haze layer, and a semi-infinite cloud

  15. Watching the electronic motions driven by a conical intersection

    NASA Astrophysics Data System (ADS)

    Jonas, David

    2007-03-01

    In chemistry, the fastest electronic rearrangements proceed through ``conical intersections'' between electronic potential energy surfaces. With sufficiently short pulses, the electronic motion can be isolated by polarized excitation of aligned electronic wavepackets at a conical intersection. Polarized femtosecond probing reveals signatures of electronic wavepacket motion (due to the energy gaps) and of electron transfer between orbitals (due to the couplings) driven by the conical intersection. After exciting a D4h symmetry silicon naphthalocyanine molecule onto a Jahn-Teller conical intersection in the first excited state, electronic motions cause a ˜100 fs drop in the pump-probe polarization anisotropy. The polarized vibrational modulations of the signal can be used to deduce the symmetry and stabilization energies for each vibration. The initial decay of the polarization anisotropy can be quantitatively predicted from these vibrational parameters. Both coupling and energy gap variations are important on the ˜100 fs timescale. A 1 meV stabilization drives electrons from orbital to orbital in 100 fs, and the theory indicates that a chemically reactive conical intersection with 1000x greater stabilization energy could cause electronic equilibration within 2 fs. We have recently carried out experiments on a nominally D2h symmetry free-base naphthalocyanine for which the splitting between x and y polarized transitions is not resolved in the linear spectrum. For this molecule, the anisotropy also decays on a similar timescale and exhibits damped modulations whose origin (vibrational or electronic) has not yet been determined. The role of the central protons and nominal D2h symmetry in the electronic dynamics will be discussed.

  16. THE KEY ROLE OF SOLAR DYNAMICS IN THE CHROMOSPHERIC HANLE POLARIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, E. S.; Bianda, M., E-mail: escarlin@irsol.ch

    The quantum theory of polarized light allows one to model scattering in the solar atmosphere for inferring its properties. This powerful approach has revealed two key long-standing problems in solar physics: the puzzling dilemmas between theory and observations in several anomalously polarized spectral lines and the need for inferring the ubiquitous weak chromospheric magnetic fields, which requires discriminating the Hanle effect in dynamic optically thick plasmas. However, the ever-present dynamics, i.e., the temporal evolution of heatings and macroscopic motions, has been widely disregarded when modeling and interpreting the scattering polarization. This has hindered a consistent theoretical solution to the puzzlemore » while falsifying the Hanle diagnosis. Here, we show that the dynamical evolution is a keystone for solving both problems because its systematic impact allows an explanation of the observations from “anomalous” instantaneous polarization signals. Evolution accounted for, we reproduce amplitudes and (spectral and spatial) shapes of the Ca i 4227 Å polarization at solar disk center, identifying a restrictive arrangement of magnetic fields, kinematics, heatings, and spatio-temporal resolution. We find that the joint action of dynamics, Hanle effect, and low temporal resolutions mimics Zeeman linear polarization profiles, the true weak-field Zeeman signals being negligible. Our results allow reinterpretation of many polarization signals of the solar spectra and support time-dependent scattering polarization as a powerful tool for deciphering the spatio-temporal distribution of chromospheric heatings and fields. This approach may be a key aid in developing the Hanle diagnosis for the solar atmosphere.« less

  17. Electric polarization observed in single crystals of multiferroic Lu 2 MnCoO 6

    DOE PAGES

    Chikara, Shalinee; Singleton, John; Bowlan, John M.; ...

    2016-05-17

    We report electric polarization and magnetization measurements in single crystals of double perovskite Lu 2MnCoO 6 using pulsed magnetic fields and optical second harmonic generation in dc magnetic fields. We observe well-resolved magnetic field-induced changes in the electric polarization in single crystals and thereby resolve the question about whether multiferroic behavior is intrinsic to these materials or is an extrinsic feature of polycrystals. We find electric polarization along the crystalline b axis, that is suppressed by applying a magnetic fields along the c axis, and advance a model for the origin of magnetoelectric coupling. We furthermore map the phase diagrammore » using both capacitance and electric polarization to identify regions of ordering and regions of magnetoelectric hysteresis. This compound is a rare example of coupled hysteretic behavior in the magnetic and electric properties. Furthermore, the ferromagneticlike magnetic hysteresis loop that couples to hysteretic electric polarization can be attributed not to ordinary ferromagnetic domains, but to the rich physics of magnetic frustration of Ising-like spins in the axial next-nearest-neighbor interaction model.« less

  18. Observation of motion of colloidal particles undergoing flowing Brownian motion using self-mixing laser velocimetry with a thin-slice solid-state laser.

    PubMed

    Sudo, S; Ohtomo, T; Otsuka, K

    2015-08-01

    We achieved a highly sensitive method for observing the motion of colloidal particles in a flowing suspension using a self-mixing laser Doppler velocimeter (LDV) comprising a laser-diode-pumped thin-slice solid-state laser and a simple photodiode. We describe the measurement method and the optical system of the self-mixing LDV for real-time measurements of the motion of colloidal particles. For a condensed solution, when the light scattered from the particles is reinjected into the solid-state laser, the laser output is modulated in intensity by the reinjected laser light. Thus, we can capture the motion of colloidal particles from the spectrum of the modulated laser output. For a diluted solution, when the relaxation oscillation frequency coincides with the Doppler shift frequency, fd, which is related to the average velocity of the particles, the spectrum reflecting the motion of the colloidal particles is enhanced by the resonant excitation of relaxation oscillations. Then, the spectral peak reflecting the motion of colloidal particles appears at 2×fd. The spectrum reflecting the motion of colloidal particles in a flowing diluted solution can be measured with high sensitivity, owing to the enhancement of the spectrum by the thin-slice solid-state laser.

  19. Investigating Mercury's South Polar Deposits: Arecibo Radar Observations and High-Resolution Determination of Illumination Conditions

    NASA Astrophysics Data System (ADS)

    Chabot, Nancy L.; Shread, Evangela E.; Harmon, John K.

    2018-02-01

    There is strong evidence that Mercury's polar deposits are water ice hosted in permanently shadowed regions. In this study, we present new Arecibo radar observations of Mercury's south pole, which reveal numerous radar-bright deposits and substantially increase the radar imaging coverage. We also use images from MESSENGER's full mission to determine the illumination conditions of Mercury's south polar region at the same spatial resolution as the north polar region, enabling comparisons between the two poles. The area of radar-bright deposits in Mercury's south is roughly double that found in the north, consistent with the larger permanently shadowed area in the older, cratered terrain at the south relative to the younger smooth plains at the north. Radar-bright features are strongly associated with regions of permanent shadow at both poles, consistent with water ice being the dominant component of the deposits. However, both of Mercury's polar regions show that roughly 50% of permanently shadowed regions lack radar-bright deposits, despite some of these locations having thermal environments that are conducive to the presence of water ice. The observed uneven distribution of water ice among Mercury's polar cold traps may suggest that the source of Mercury's water ice was not a steady, regular process but rather that the source was an episodic event, such as a recent, large impact on the innermost planet.

  20. Wavelet based comparison of high frequency oscillations in the geodetic and fluid excitation functions of polar motion

    NASA Astrophysics Data System (ADS)

    Kosek, W.; Popinski, W.; Niedzielski, T.

    2011-10-01

    It has been already shown that short period oscillations in polar motion, with periods less than 100 days, are very chaotic and are responsible for increase in short-term prediction errors of pole coordinates data. The wavelet technique enables to compare the geodetic and fluid excitation functions in the high frequency band in many different ways, e.g. by looking at the semblance function. The waveletbased semblance filtering enables determination the common signal in both geodetic and fluid excitation time series. In this paper the considered fluid excitation functions consist of the atmospheric, oceanic and land hydrology excitation functions from ECMWF atmospheric data produced by IERS Associated Product Centre Deutsches GeoForschungsZentrum, Potsdam. The geodetic excitation functions have been computed from the combined IERS pole coordinates data.

  1. Effects of walker gender and observer gender on biological motion walking direction discrimination.

    PubMed

    Yang, Xiaoying; Cai, Peng; Jiang, Yi

    2014-09-01

    The ability to recognize the movements of other biological entities, such as whether a person is walking toward you, is essential for survival and social interaction. Previous studies have shown that the visual system is particularly sensitive to approaching biological motion. In this study, we examined whether the gender of walkers and observers influenced the walking direction discrimination of approaching point-light walkers in fine granularity. The observers were presented a walker who walked in different directions and were asked to quickly judge the walking direction (left or right). The results showed that the observers demonstrated worse direction discrimination when the walker was depicted as male than when the walker was depicted as female, probably because the observers tended to perceive the male walkers as walking straight ahead. Intriguingly, male observers performed better than female observers at judging the walking directions of female walkers but not those of male walkers, a result indicating perceptual advantage with evolutionary significance. These findings provide strong evidence that the gender of walkers and observers modulates biological motion perception and that an adaptive perceptual mechanism exists in the visual system to facilitate the survival of social organisms. © 2014 The Institute of Psychology, Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  2. Velocity Memory Effect for polarized gravitational waves

    NASA Astrophysics Data System (ADS)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2018-05-01

    Circularly polarized gravitational sandwich waves exhibit, as do their linearly polarized counterparts, the Velocity Memory Effect: freely falling test particles in the flat after-zone fly apart along straight lines with constant velocity. In the inside zone their trajectories combine oscillatory and rotational motions in a complicated way. For circularly polarized periodic gravitational waves some trajectories remain bounded, while others spiral outward. These waves admit an additional "screw" isometry beyond the usual five. The consequences of this extra symmetry are explored.

  3. Esr Observations of Tid In The Polar Cusp/cap Ionosphere

    NASA Astrophysics Data System (ADS)

    Yin, F.; Ma, S. Y.; Schlegel, K.

    EISCAT-Svalbard radar provides new opportunity to study TIDs in the polar cusp/cap ionosphere. Propagation characteristics of AGW-caused TIDs in quiet days are stud- ied by means of maximum entropy cross-spectral analysis of ESR CP1 and CP2 data. Apparent vertical wave-number of the TIDs as a function of height and the horizontal wave-number vector are obtained for main period of disturbances. It is observed as the first time that some of TIDs in the polar cap/cusp ionosphere can propagate vertically from the height lower than 200 km up to as high as about 700 km with little attenu- ation. In the auroral ionosphere, however, they usually fade away below 500 km. In the region from about 100 to 180 km height, downward propagating mode is seen ob- viously. The possible relations of the TIDs with cusp particle precipitation and upper E-region heating are discussed.

  4. Investigation on the real-time prediction of ground motions using seismic records observed in deep boreholes

    NASA Astrophysics Data System (ADS)

    Miyakoshi, H.; Tsuno, S.

    2013-12-01

    The present method of the EEW system installed in the railway field of Japan predicts seismic ground motions based on the estimated earthquake information about epicentral distances and magnitudes using initial P-waves observed on the surface. In the case of local earthquakes beneath the Tokyo Metropolitan Area, however, a method to directly predict seismic ground motions using P-waves observed in deep boreholes could issue EEWs more simply and surely. Besides, a method to predict seismic ground motions, using S-waves observed in deep boreholes and S-wave velocity structures beneath seismic stations, could show planar distributions of ground motions for train operation control areas in the aftermath of earthquakes. This information is available to decide areas in which the emergency inspection of railway structures should be performed. To develop those two methods, we investigated relationships between peak amplitudes on the surface and those in deep boreholes, using seismic records of KiK-net stations in the Kanto Basin. In this study, we used earthquake accelerograms observed in boreholes whose depths are deeper than the top face of Pre-Neogene basement and those on the surface at 12 seismic stations of KiK-net. We selected 243 local earthquakes whose epicenters are located around the Kanto Region. Those JMA magnitudes are in the range from 4.5 to 7.0. We picked the on-set of P-waves and S-waves using a vertical component and two horizontal components, respectively. Peak amplitudes of P-waves and S-waves were obtained using vertical components and vector sums of two horizontal components, respectively. We estimated parameters which represent site amplification factors beneath seismic stations, using peak amplitudes of S-waves observed in the deep borehole and those on the surface, to minimize the residuals between calculations by the theoretical equation and observations. Correlation coefficients between calculations and observations are high values in the range

  5. Collective atomic scattering and motional effects in a dense coherent medium

    PubMed Central

    Bromley, S. L.; Zhu, B.; Bishof, M.; Zhang, X.; Bothwell, T.; Schachenmayer, J.; Nicholson, T. L.; Kaiser, R.; Yelin, S. F.; Lukin, M. D.; Rey, A. M.; Ye, J.

    2016-01-01

    We investigate collective emission from coherently driven ultracold 88Sr atoms. We perform two sets of experiments using a strong and weak transition that are insensitive and sensitive, respectively, to atomic motion at 1 μK. We observe highly directional forward emission with a peak intensity that is enhanced, for the strong transition, by >103 compared with that in the transverse direction. This is accompanied by substantial broadening of spectral lines. For the weak transition, the forward enhancement is substantially reduced due to motion. Meanwhile, a density-dependent frequency shift of the weak transition (∼10% of the natural linewidth) is observed. In contrast, this shift is suppressed to <1% of the natural linewidth for the strong transition. Along the transverse direction, we observe strong polarization dependences of the fluorescence intensity and line broadening for both transitions. The measurements are reproduced with a theoretical model treating the atoms as coherent, interacting radiating dipoles. PMID:26984643

  6. Horizontal supergranule-scale motions inferred from TRACE ultraviolet observations of the chromosphere

    NASA Astrophysics Data System (ADS)

    Tian, H.; Potts, H. E.; Marsch, E.; Attie, R.; He, J.-S.

    2010-09-01

    Aims: We study horizontal supergranule-scale motions revealed by TRACE observation of the chromospheric emission, and investigate the coupling between the chromosphere and the underlying photosphere. Methods: A highly efficient feature-tracking technique called balltracking has been applied for the first time to the image sequences obtained by TRACE (transition region and coronal explorer) in the passband of white light and the three ultraviolet passbands centered at 1700 Å, 1600 Å, and 1550 Å. The resulting velocity fields have been spatially smoothed and temporally averaged in order to reveal horizontal supergranule-scale motions that may exist at the emission heights of these passbands. Results: We find indeed a high correlation between the horizontal velocities derived in the white-light and ultraviolet passbands. The horizontal velocities derived from the chromospheric and photospheric emission are comparable in magnitude. Conclusions: The horizontal motions derived in the UV passbands might indicate the existence of a supergranule-scale magneto-convection in the chromosphere, which may shed new light on the study of mass and energy supply to the corona and solar wind at the height of the chromosphere. However, it is also possible that the apparent motions reflect the chromospheric brightness evolution as produced by acoustic shocks which might be modulated by the photospheric granular motions in their excitation process, or advected partly by the supergranule-scale flow towards the network while propagating upward from the photosphere. To reach a firm conclusion, it is necessary to investigate the role of granular motions in the excitation of shocks through numerical modeling, and future high-cadence chromospheric magnetograms must be scrutinized.

  7. EUVE and IR observations of the Polars HU Aqr and AR UMa

    NASA Astrophysics Data System (ADS)

    Howell, S.; Ciardi, D.

    1999-12-01

    Simultaneous EUVE and ground-based near-infrared J and K observations of the magnetic CV HU Aqr were performed. The observations occurred during a super-high state never before observed in HU Aqr. The average EUVE count-rate was 30-60 times higher than had been measured previously, allowing us to present the first ever EUV spectra of HU Aqr. The near-infrared observations show a corresponding flux increase of 2-3 times over previous J and K observations. However, the near-infrared eclipse minimum during this super-high state are the same as seen in previous observations, indicating that the eclipse in the near-infrared is total. We present a detailed comparison of the EUV and near-infrared emission of HU Aqr as a function of orbital phase and discuss the geometry and physical properties of the high energy and infrared emitting regions. AR UMa is the brightest EUV source yet observed with the EUVE satellite and is also the polar with the largest magnetic field, 250 MG. EUVE observations of the polar AR UMa have allowed, for the first time, EUV time-resolved spectral analysis and radial velocity measurements. We present EUV phase-resolved photometry and spectroscopy and show that the He 304 emission line is not produced on the heated face of the secondary star, but emanates from the inner illuminated regions of the coupling region and accretion stream. We comment on the overall structure of the accretion geometry as well. The authors acknowledge partial support of the research by NASA cooperative agreement NCC5-138 via an EUVE guest Observer mini-grant.

  8. Observations of infragravity motions for reef fringed islands and atolls

    NASA Astrophysics Data System (ADS)

    Becker, J. M.; Merrifield, M. A.; Ford, M.

    2012-12-01

    The frequency of flooding events that affect low lying islands and atolls in the Pacific is expected to increase under current sea level rise projections. Infragravity (IG) motions, with periods ranging from approximately 25 to 400 seconds, are an important component of wave driven flooding events for reef fringed islands and atolls. The IG variability during wave events is analyzed and interpreted dynamically from pressure and current observations at four cross-reef transects in the North Pacific Ocean that include sites in the Republic of the Marshall Islands and Guam. The IG motions are shown to depend upon the spectral properties of the incident wave forcing and reef flat characteristics that include reef flat length (ranging from 100m to 450m at the four sites) and total water level due to setup and tides. A small inundation event at one of the sites is shown to occur due to large shoreline infragravity energy.

  9. A multi-point perspective on the formation of polar cap arcs: kinetic modeling and observations by Cluster and TIMED

    NASA Astrophysics Data System (ADS)

    de Keyser, J. M.; Maggiolo, R.; Echim, M.; Simon, C.; Zhang, Y.; Trotignon, J.

    2010-12-01

    On April 1st, 2004 the GUVI imager onboard the TIMED spacecraft spots an isolated and elongated polar cap arc. Simultaneously, the Cluster spacecraft detects an isolated upflowing ion beam above the polar cap. Cluster observations show that the ions are accelerated upward by a quasi-stationary electric field. The field-aligned potential drop is estimated to about 600 V and the upflowing ions are accompanied by a tenuous population of isotropic protons with a temperature of about 300eV. The footprint of the magnetic field line on which the Cluster spacecraft are situated, is located just outside the GUVI field of view in the prolongation of the polar cap arc. This suggests that the upflowing ion beam and the polar cap arc may be different signatures of the same phenomenon, as suggested by a recent statistical study of polar cap ion beams using Cluster data. We use Cluster observations at high altitude as input to a quasi-stationary magnetosphere-ionosphere (MI) coupling model. Using a Knight-type current-voltage relationship and the current continuity at the topside ionosphere, the model computes the energy spectrum of precipitating electrons at ionospheric altitudes corresponding to the generator electric field observed by Cluster. The MI coupling model provides a field-aligned potential drop in agreement with Cluster observations of upflowing ions and a spatial scale of the polar cap arc consistent with the optical observations by TIMED. The energy spectrum of the precipitating electrons provided by the model is introduced as input to the Trans4 ionospheric transport code. This 1-D model, based on Boltzmann's kinetic formalism, takes into account ionospheric processes like photoionisation and electron/proton precipitation, and computes the optical and UV emissions due to precipitating electrons. The emission rates provided by the Trans4 code are then compared to the optical observations by TIMED. Data and modeling results are consistent with quasi

  10. Global Plate Motions Relative to the Hotspots since 48 Ma B.P. from Simultaneous Inversion of Hotspot Tracks in the Pacific, Indian, and Atlantic Oceans Constrained to Consistency with Known Relative Plate Motions

    NASA Astrophysics Data System (ADS)

    Gordon, R. G.; Koivisto, E. A. L.

    2016-12-01

    A fundamental problem of global tectonics and paleomagnetism is determining what part of apparent polar wander is due to plate motion and what part is due to true polar wander. One approach for separating these is available if global hotspots can be used as a reference frame approximately fixed with respect to the deep mantle. Some other workers have used a hotspot reference based only on tracks in the Atlantic and Indian Oceans, and some have used reference frames with moving hotspots and many adjustable parameters. In sharp contrast to the assumptions made in these other works, our recent results demonstrate that there is no significant motion between the Pacific and Indo-Atlantic hotspots since 48 Ma B.P. (lower bound of zero and upper bound of 8-13 mm/yr [Koivisto et al., 2014]). Corrected methodologies combined with cumulative improvements in the age progression along the hotspot tracks, the geomagnetic reversal time scale, and relative plate reconstructions lead to significantly lower rates of motion between hotspots than found in prior studies. Building on our prior results, here we present a globally self-consistent estimate of plate motions relative to the hotspots for the past 48 million years from inversions to fit simultaneously the tracks of the Hawaiian, Louisville, Tristan da Cunha, Réunion, and Iceland hotspots constrained to consistency with known relative plate motions. Each finite rotation is estimated for an age corresponding to a key magnetic anomaly used in plate reconstructions. The new set of plate reconstructions presented here provides a firm basis for estimating absolute plate motions for the past 48 million years and, in particular, can be used to separate paleomagnetically determined apparent polar wander into the part due to plate motion and the part due to true polar wander. Implications for true polar wander since the age of the Hawaiian-Emperor Bend will be discussed.

  11. Estimation of current plate motions in Papua New Guinea from Global Positioning System observations

    NASA Astrophysics Data System (ADS)

    Tregoning, Paul; Lambeck, Kurt; Stolz, Art; Morgan, Peter; McClusky, Simon C.; van der Beek, Peter; McQueen, Herbert; Jackson, Russell J.; Little, Rodney P.; Laing, Alex; Murphy, Brian

    1998-06-01

    Plate tectonic motions have been estimated in Papua New Guinea from a 20 station network of Global Positioning System sites that has been observed over five campaigns from 1990 to 1996. The present velocities of the sites are consistent with geological models in which the South Bismarck, Woodlark, and Solomon Sea Plates form the principal tectonic elements between the Pacific and Australian Plates in this region. Active spreading is observed on the Woodlark Basin Spreading Centre but at a rate that is about half the rate determined from magnetic reversals. The other major motions observed are subduction on the New Britain Trench, seafloor spreading across the Bismarck Sea Seismic Lineation, convergence across the Ramu-Markham Fault and left-lateral strike slip across the Papuan Peninsula. These motions are consistent with a 8.2° Myr-1 clockwise rotation of the South Bismarck Plate about a pole in the Huon Gulf and a rotation of the Woodlark Plate away from the Australian Plate. Second order deformation may also be occurring; in particular, Manus Island and northern New Ireland may be moving northward relative to the Pacific Plate at ˜5-8 mm yr-1 (significant at the 95% but not at the 99% confidence level) which may suggest the existence of a North Bismarck Plate.

  12. A motion picture presentation of magnetic pulsations

    NASA Technical Reports Server (NTRS)

    Suzuki, A.; Kim, J. S.; Sugura, M.; Nagano, H.

    1981-01-01

    Using the data obtained from the IMS North American magnetometer network stations at high latitudes, a motion picture was made by a computer technique, describing time changes of Pc5 and Pi3 magnetic pulsation vectors. Examples of pulsation characteristics derived from this presentation are regional polarization changes including shifts of polarization demarcation lines, changes in the extent of an active region and its movement with time.

  13. The Role of Quasi-Transverse Propagation in Observed Polarization of Flare Loop Microwave Radiation

    NASA Astrophysics Data System (ADS)

    Shain, A. V.; Melnikov, V. F.; Morgachev, A. S.

    2017-12-01

    The ordinary mode of gyrosynchrotron radiation was identified to be predominant in some segments of flare loops in solar flares of July 19, 2012, and October 22, 2014. These events were studied by investigation of the quasi-transverse propagation effect on the observed polarization. The analysis involved reconstruction of the magnetic field topology at the linear force-free approximation based on the data of the SDO HMI space telescope and the subsequent simulation of radio emission of flare loops with the GX Simulator software package. The quasi-transverse propagation effect was established to be characteristic for both events, but its influence on the radio emission polarization at a frequency of 17 GHz was observed only in the October 22, 2014 flare.

  14. Dynamic MRI of Grid-Tagged Hyperpolarized Helium-3 for the Assessment of Lung Motion During Breathing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Jing; Sheng Ke; Benedict, Stanley H.

    2009-09-01

    Purpose: To develop a dynamic magnetic resonance imaging (MRI) tagging technique using hyperpolarized helium-3 (HP He-3) to track lung motion. Methods and Materials: An accelerated non-Cartesian k-space trajectory was used to gain acquisition speed, at the cost of introducing image artifacts, providing a viable strategy for obtaining whole-lung coverage with adequate temporal resolution. Multiple-slice two-dimensional dynamic images of the lung were obtained in three healthy subjects after inhaling He-3 gas polarized to 35%-40%. Displacement, strain, and ventilation maps were computed from the observed motion of the grid peaks. Results: Both temporal and spatial variations of pulmonary mechanics were observed inmore » normal subjects, including shear motion between different lobes of the same lung. Conclusion: These initial results suggest that dynamic imaging of grid-tagged hyperpolarized magnetization may potentially be a powerful tool for observing and quantifying pulmonary biomechanics on a regional basis and for assessing, validating, and improving lung deformable image registration algorithms.« less

  15. Mariner 9 observations of the south polar cap of Mars - Evidence for residual CO2 frost

    NASA Technical Reports Server (NTRS)

    Paige, D. A.; Herkenhoff, K. E.; Murray, B. C.

    1990-01-01

    The first spacecraft observations of the south residual polar cap of Mars were obtained by the Mariner 9 orbiter during the Martian southern summer season, 1971-1972. Analyses of Viking orbiter observations obtained 3 Mars years later have shown that residual carbon dioxide frost was present at the south polar cap in 1977. In this study, Mariner 9 infrared interferometer spectrometer spectra and television camera images are used in conjuction with multispectral thermal emission models to constrain the temperatures of dark bare ground and bright frost regions within the south residual cap. The results provide strong evidence that carbon dioxide frost was present throughout the summer season despite the fact that the residual frost deposits observed by Mariner 9 were less extensive than those observed by Viking.

  16. Cloud morphology and dynamics in Saturn's northern polar region

    NASA Astrophysics Data System (ADS)

    Antuñano, Arrate; del Río-Gaztelurrutia, Teresa; Sánchez-Lavega, Agustín; Rodríguez-Aseguinolaza, Javier

    2018-01-01

    We present a study of the cloud morphology and motions in the north polar region of Saturn, from latitude ∼ 70°N to the pole based on Cassini ISS images obtained between January 2009 and November 2014. This region shows a variety of dynamical structures: the permanent hexagon wave and its intense eastward jet, a large field of permanent ;puffy; clouds with scales from 10 - 500 km, probably of convective origin, local cyclone and anticyclones vortices with sizes of ∼1,000 km embedded in this field, and finally the intense cyclonic polar vortex. We report changes in the albedo of the clouds that delineate rings of circulation around the polar vortex and the presence of ;plume-like; activity in the hexagon jet, in both cases not accompanied with significant variations in the corresponding jets. No meridional migration is observed in the clouds forming and merging in the field of puffy clouds, suggesting that their mergers do not contribute to the maintenance of the polar vortex. Finally, we analyze the dominant growing modes for barotropic and baroclinic instabilities in the hexagon jet, showing that a mode 6 barotropic instability is dominant at the latitude of the hexagon.

  17. Exploring the effect of East Antarctic ice mass loss on GIA-induced horizontal bedrock motions

    NASA Astrophysics Data System (ADS)

    Konfal, S. A.; Whitehouse, P. L.; Hermans, T.; van der Wal, W.; Wilson, T. J.; Bevis, M. G.; Kendrick, E. C.; Dalziel, I.; Smalley, R., Jr.

    2017-12-01

    Ice history inputs used in Antarctic models of GIA include major centers of ice mass loss in West Antarctica. In the Transantarctic Mountains (TAM) region spanning the boundary between East and West Antarctica, horizontal crustal motions derived from GPS observations from the Antarctic Network (ANET) component of the Polar Earth Observing Network (POLENET) are towards these West Antarctic ice mass centers, opposite to the pattern of radial crustal motion expected in an unloading scenario. We investigate alternative ice history and earth structure inputs to GIA models in an attempt to reproduce observed crustal motions in the region. The W12 ice history model is altered to create scenarios including ice unloading in the Wilkes Subglacial Basin based on available glaciological records. These altered ice history models, along with the unmodified W12 ice history model, are coupled with 60 radially varying (1D) earth model combinations, including approximations of optimal earth profiles identified in published GIA models. The resulting model-predicted motions utilizing both the modified and unmodified ice history models fit ANET GPS-derived crustal motions in the northern TAM region for a suite of earth model combinations. Further south, where the influence of simulated Wilkes unloading is weakest and West Antarctic unloading is strongest, observed and predicted motions do not agree. The influence of simulated Wilkes ice unloading coupled with laterally heterogeneous earth models is also investigated. The resulting model-predicted motions do not differ significantly between the original W12 and W12 with simulated Wilkes unloading ice histories.

  18. Crustal block motion model and interplate coupling along Ecuador-Colombia trench based on GNSS observation network

    NASA Astrophysics Data System (ADS)

    Ito, T.; Mora-Páez, H.; Peláez-Gaviria, J. R.; Kimura, H.; Sagiya, T.

    2017-12-01

    IntroductionEcuador-Colombia trench is located at the boundary between South-America plate, Nazca Plate and Caribrian plate. This region is very complexes such as subducting Caribrian plate and Nazca plate, and collision between Panama and northern part of the Andes mountains. The previous large earthquakes occurred along the subducting boundary of Nazca plate, such as 1906 (M8.8) and 1979 (M8.2). And also, earthquakes occurred inland, too. So, it is important to evaluate earthquake potentials for preparing huge damage due to large earthquake in near future. GNSS observation In the last decade, the GNSS observation was established in Columbia. The GNSS observation is called by GEORED, which is operated by servicing Geologico Colomiano. The purpose of GEORED is research of crustal deformation. The number of GNSS site of GEORED is consist of 60 continuous GNSS observation site at 2017 (Mora et al., 2017). The sampling interval of almost GNSS site is 30 seconds. These GNSS data were processed by PPP processing using GIPSY-OASYS II software. GEORED can obtain the detailed crustal deformation map in whole Colombia. In addition, we use 100 GNSS data at Ecuador-Peru region (Nocquet et al. 2014). Method We developed a crustal block movements model based on crustal deformation derived from GNSS observation. Our model considers to the block motion with pole location and angular velocity and the interplate coupling between each block boundaries, including subduction between the South-American plate and the Nazca plate. And also, our approach of estimation of crustal block motion and coefficient of interplate coupling are based on MCMC method. The estimated each parameter is obtained probably density function (PDF). Result We tested 11 crustal block models based on geological data, such as active fault trace at surface. The optimal number of crustal blocks is 11 for based on geological and geodetic data using AIC. We use optimal block motion model. And also, we estimate

  19. Application of data assimilation methods for analysis and integration of observed and modeled Arctic Sea ice motions

    NASA Astrophysics Data System (ADS)

    Meier, Walter Neil

    This thesis demonstrates the applicability of data assimilation methods to improve observed and modeled ice motion fields and to demonstrate the effects of assimilated motion on Arctic processes important to the global climate and of practical concern to human activities. Ice motions derived from 85 GHz and 37 GHz SSM/I imagery and estimated from two-dimensional dynamic-thermodynamic sea ice models are compared to buoy observations. Mean error, error standard deviation, and correlation with buoys are computed for the model domain. SSM/I motions generally have a lower bias, but higher error standard deviations and lower correlation with buoys than model motions. There are notable variations in the statistics depending on the region of the Arctic, season, and ice characteristics. Assimilation methods are investigated and blending and optimal interpolation strategies are implemented. Blending assimilation improves error statistics slightly, but the effect of the assimilation is reduced due to noise in the SSM/I motions and is thus not an effective method to improve ice motion estimates. However, optimal interpolation assimilation reduces motion errors by 25--30% over modeled motions and 40--45% over SSM/I motions. Optimal interpolation assimilation is beneficial in all regions, seasons and ice conditions, and is particularly effective in regimes where modeled and SSM/I errors are high. Assimilation alters annual average motion fields. Modeled ice products of ice thickness, ice divergence, Fram Strait ice volume export, transport across the Arctic and interannual basin averages are also influenced by assimilated motions. Assimilation improves estimates of pollutant transport and corrects synoptic-scale errors in the motion fields caused by incorrect forcings or errors in model physics. The portability of the optimal interpolation assimilation method is demonstrated by implementing the strategy in an ice thickness distribution (ITD) model. This research presents an

  20. POLARIZED LINE FORMATION IN NON-MONOTONIC VELOCITY FIELDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampoorna, M.; Nagendra, K. N., E-mail: sampoorna@iiap.res.in, E-mail: knn@iiap.res.in

    2016-12-10

    For a correct interpretation of the observed spectro-polarimetric data from astrophysical objects such as the Sun, it is necessary to solve the polarized line transfer problems taking into account a realistic temperature structure, the dynamical state of the atmosphere, a realistic scattering mechanism (namely, the partial frequency redistribution—PRD), and the magnetic fields. In a recent paper, we studied the effects of monotonic vertical velocity fields on linearly polarized line profiles formed in isothermal atmospheres with and without magnetic fields. However, in general the velocity fields that prevail in dynamical atmospheres of astrophysical objects are non-monotonic. Stellar atmospheres with shocks, multi-componentmore » supernova atmospheres, and various kinds of wave motions in solar and stellar atmospheres are examples of non-monotonic velocity fields. Here we present studies on the effect of non-relativistic non-monotonic vertical velocity fields on the linearly polarized line profiles formed in semi-empirical atmospheres. We consider a two-level atom model and PRD scattering mechanism. We solve the polarized transfer equation in the comoving frame (CMF) of the fluid using a polarized accelerated lambda iteration method that has been appropriately modified for the problem at hand. We present numerical tests to validate the CMF method and also discuss the accuracy and numerical instabilities associated with it.« less

  1. Stimulated electromagnetic emission polarization under different polarizations of pump waves

    NASA Astrophysics Data System (ADS)

    Tereshchenko, E. D.; Yurik, R. Y.; Baddeley, L.

    2015-03-01

    The results of investigations into the stimulated electromagnetic emission (SEE) polarization under different modes of the pump wave polarization are presented. The present results were obtained in November 2012 during a heating campaign utilizing the SPEAR (Space Plasma Exploration by Active Radar) heating facility, transmitting in both O- and X-mode polarization, and a PGI (Polar Geophysical Institute) radio interferometer capable of recording the polarization of the received radiation. The polarization ellipse parameters of the SEE DM (downshifted maximum) components were determined under both O-mode and X-mode polarization of the pump waves. The polarization direction of the SEE DM component was preserved under different polarizations of the pump waves. Different polarizations of the pump waves have a different SEE generation efficiency. The intensity of the DM component is observed to be greater during O-mode pumping. In addition, the numbers of observed SEE features are also greater during O-mode pumping.

  2. Do centrioles generate a polar ejection force?

    PubMed

    Wells, Jonathan

    2005-01-01

    A microtubule-dependent polar ejection force that pushes chromosomes away from spindle poles during prometaphase is observed in animal cells but not in the cells of higher plants. Elongating microtubules and kinesin-like motor molecules have been proposed as possible causes, but neither accounts for all the data. In the hypothesis proposed here a polar ejection force is generated by centrioles, which are found in animals but not in higher plants. Centrioles consist of nine microtubule triplets arranged like the blades of a tiny turbine. Instead of viewing centrioles through the spectacles of molecular reductionism and neo-Darwinism, this hypothesis assumes that they are holistically designed to be turbines. Orthogonally oriented centriolar turbines could generate oscillations in spindle microtubules that resemble the motion produced by a laboratory vortexer. The result would be a microtubule-mediated ejection force tending to move chromosomes away from the spindle axis and the poles. A rise in intracellular calcium at the onset of anaphase could regulate the polar ejection force by shutting down the centriolar turbines, but defective regulation could result in an excessive force that contributes to the chromosomal instability characteristic of most cancer cells.

  3. High Frequency Variations in Earth Orientation Derived From GNSS Observations

    NASA Astrophysics Data System (ADS)

    Weber, R.; Englich, S.; Snajdrova, K.; Boehm, J.

    2006-12-01

    Current observations gained by the space geodetic techniques, especially VLBI, GPS and SLR, allow for the determination of Earth Orientation Parameters (EOPs - polar motion, UT1/LOD, nutation offsets) with unprecedented accuracy and temporal resolution. This presentation focuses on contributions to the EOP recovery provided by satellite navigation systems (primarily GPS). The IGS (International GNSS Service), for example, currently provides daily polar motion with an accuracy of less than 0.1mas and LOD estimates with an accuracy of a few microseconds. To study more rapid variations in polar motion and LOD we established in a first step a high resolution (hourly resolution) ERP-time series from GPS observation data of the IGS network covering the period from begin of 2005 till March 2006. The calculations were carried out by means of the Bernese GPS Software V5.0 considering observations from a subset of 79 fairly stable stations out of the IGb00 reference frame sites. From these ERP time series the amplitudes of the major diurnal and semidiurnal variations caused by ocean tides are estimated. After correcting the series for ocean tides the remaining geodetic observed excitation is compared with variations of atmospheric excitation (AAM). To study the sensitivity of the estimates with respect to the applied mapping function we applied both the widely used NMF (Niell Mapping Function) and the VMF1 (Vienna Mapping Function 1). In addition, based on computations covering two months in 2005, the potential improvement due to the use of additional GLONASS data will be discussed. Finally, satellite techniques are also able to provide nutation offset rates with respect to the most recent nutation model. Based on GPS observations from 2005 we established nutation rate time series and subsequently derived the amplitudes of several nutation waves with periods less than 30 days. The results are compared to VLBI estimates processed by means of the OCCAM 6.1 software.

  4. MERLIN observations of water maser proper motions in VY Canis Majoris

    NASA Astrophysics Data System (ADS)

    Richards, A. M. S.; Yates, J. A.; Cohen, R. J.

    1998-09-01

    MERLIN observations of the 22-GHz water masers in the circumstellar envelope of the supergiant VY CMa show an ellipsoidal distribution with a maximum extent of 700 mas east-west and 400 mas north-south. Comparison with observations made nine years earlier shows that the majority of maser features have survived and show proper motions throughout the region. The mean change in position is 28 mas and the proper motions are generally directed away from the assumed stellar position, and tend to be larger for features at greater projected distances. If the H_2O maser region is modelled as a partially filled thick spherical shell, and VY CMa is at a distance of 1.5 kpc, then the proper motion velocities in the direction of expansion are between 8kms^-1 at a distance of 75 mas from the assumed stellar position and 32kms^-1 at 360 mas. These velocities are consistent with the H_2O maser spectral line velocities which correspond to a maximum expansion velocity of 36kms^-1 at 400 mas from the assumed stellar position. These observations are consistent with radiation pressure on dust providing the force to accelerate the stellar wind as it passes through the H_2O maser shell. The H_2O maser region is elongated in the same direction as the dusty nebula around VY CMa. The water masers illuminate the small-scale dynamics and clumpiness which show the role of dust in driving the outflow. The overall ellipsoidal shape may be due to properties of the dust, such as its behaviour in the stellar magnetic field, or to interaction between the wind and circumstellar material. Maser monitoring also shows the difference between changes on the time-scale of stellar variability (a few years) and possible stages in the evolution of VY CMa to its likely fate as a supernova.

  5. Polarization and photometric observations of the gamma-ray blazar PG 1553+113

    NASA Astrophysics Data System (ADS)

    Andruchow, I.; Combi, J. A.; Muñoz-Arjonilla, A. J.; Romero, G. E.; Cellone, S. A.; Martí, J.

    2011-07-01

    We present the results of an observational photo-polarimetry campaign of the blazar PG 1553+113 at optical wavelengths. The blazar was recently detected at very high energies (>100 GeV) by the HESS and MAGIC γ-ray Cherenkov telescopes. Our high-temporal resolution data show significant variations in the linear polarization percentage and position angle at inter-night time-scales, while at shorter (intra-night) time-scales both parameters varied less significantly, if at all. Changes in the polarization angle seem to be common in γ-ray emitting blazars. Simultaneous differential photometry (through the B and R bands) shows no significant variability in the total optical flux. We provide B and R magnitudes, along with a finding chart, for a set of field stars suitable for differential photometry. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck Institut für Astronomie and the Instituto de Astrofísica de Andalucía (CSIC).

  6. Strong motions observed by K-NET and KiK-net during the 2016 Kumamoto earthquake sequence

    NASA Astrophysics Data System (ADS)

    Suzuki, Wataru; Aoi, Shin; Kunugi, Takashi; Kubo, Hisahiko; Morikawa, Nobuyuki; Nakamura, Hiromitsu; Kimura, Takeshi; Fujiwara, Hiroyuki

    2017-01-01

    The nationwide strong-motion seismograph network of K-NET and KiK-net in Japan successfully recorded the strong ground motions of the 2016 Kumamoto earthquake sequence, which show the several notable characteristics. For the first large earthquake with a JMA magnitude of 6.5 (21:26, April 14, 2016, JST), the large strong motions are concentrated near the epicenter and the strong-motion attenuations are well predicted by the empirical relation for crustal earthquakes with a moment magnitude of 6.1. For the largest earthquake of the sequence with a JMA magnitude of 7.3 (01:25, April 16, 2016, JST), the large peak ground accelerations and velocities extend from the epicentral area to the northeast direction. The attenuation feature of peak ground accelerations generally follows the empirical relation, whereas that for velocities deviates from the empirical relation for stations with the epicentral distance of greater than 200 km, which can be attributed to the large Love wave having a dominant period around 10 s. The large accelerations were observed at stations even in Oita region, more than 70 km northeast from the epicenter. They are attributed to the local induced earthquake in Oita region, whose moment magnitude is estimated to be 5.5 by matching the amplitudes of the corresponding phases with the empirical attenuation relation. The real-time strong-motion observation has a potential for contributing to the mitigation of the ongoing earthquake disasters. We test a methodology to forecast the regions to be exposed to the large shaking in real time, which has been developed based on the fact that the neighboring stations are already shaken, for the largest event of the Kumamoto earthquakes, and demonstrate that it is simple but effective to quickly make warning. We also shows that the interpolation of the strong motions in real time is feasible, which will be utilized for the real-time forecast of ground motions based on the observed shakings.[Figure not available

  7. An Improved Perturb and Observe Algorithm for Photovoltaic Motion Carriers

    NASA Astrophysics Data System (ADS)

    Peng, Lele; Xu, Wei; Li, Liming; Zheng, Shubin

    2018-03-01

    An improved perturbation and observation algorithm for photovoltaic motion carriers is proposed in this paper. The model of the proposed algorithm is given by using Lambert W function and tangent error method. Moreover, by using matlab and experiment of photovoltaic system, the tracking performance of the proposed algorithm is tested. And the results demonstrate that the improved algorithm has fast tracking speed and high efficiency. Furthermore, the energy conversion efficiency by the improved method has increased by nearly 8.2%.

  8. Polarization Catastrophe Contributing to Rotation and Tornadic Motion in Cumulo-Nimbus Clouds

    NASA Astrophysics Data System (ADS)

    Handel, P. H.

    2007-05-01

    When the concentration of sub-micron ice particles in a cloud exceeds 2.5E21 per cubic cm, divided by the squared average number of water molecules per crystallite, the polarization catastrophe occurs. Then all ice crystallites nucleated on aerosol dust particles align their dipole moments in the same direction, and a large polarization vector field is generated in the cloud. Often this vector field has a radial component directed away from the vertical axis of the cloud. It is induced by the pre-existing electric field caused by the charged screening layers at the cloud surface, the screening shell of the cloud. The presence of a vertical component of the magnetic field of the earth creates a density of linear momentum G=DxB in the azimuthal direction, where D=eE+P is the electric displacement vector and e is the vacuum permittivity. This linear momentum density yields an angular momentum density vector directed upward in the nordic hemisphere, if the polarization vector points away from the vertical axis of the cloud. When the cloud becomes colloidally unstable, the crystallites grow beyond the size limit at which they still could carry a large ferroelectric saturation dipole moment, and the polarization vector quickly disappears. Then the cloud begins to rotate with an angular momentum that has the same direction. Due to the large average number of water molecules in a crystallite, the polarization catastrophe (PC) is present in practically all clouds, and is compensated by masking charges. In cumulo-nimbus (thunder-) clouds the collapse of the PC is rapid, and the masking charges lead to lightning, and in the upper atmosphere also to sprites, elves, and blue jets. In stratus clouds, however, the collapse is slow, and only leads to reverse polarity in dissipating clouds (minus on the bottom), as compared with growing clouds (plus on the bottom, because of the excess polarization charge). References: P.H. Handel: "Polarization Catastrophe Theory of Cloud

  9. Brownian motion of graphene.

    PubMed

    Maragó, Onofrio M; Bonaccorso, Francesco; Saija, Rosalba; Privitera, Giulia; Gucciardi, Pietro G; Iatì, Maria Antonia; Calogero, Giuseppe; Jones, Philip H; Borghese, Ferdinando; Denti, Paolo; Nicolosi, Valeria; Ferrari, Andrea C

    2010-12-28

    Brownian motion is a manifestation of the fluctuation-dissipation theorem of statistical mechanics. It regulates systems in physics, biology, chemistry, and finance. We use graphene as prototype material to unravel the consequences of the fluctuation-dissipation theorem in two dimensions, by studying the Brownian motion of optically trapped graphene flakes. These orient orthogonal to the light polarization, due to the optical constants anisotropy. We explain the flake dynamics in the optical trap and measure force and torque constants from the correlation functions of the tracking signals, as well as comparing experiments with a full electromagnetic theory of optical trapping. The understanding of optical trapping of two-dimensional nanostructures gained through our Brownian motion analysis paves the way to light-controlled manipulation and all-optical sorting of biological membranes and anisotropic macromolecules.

  10. Design of a TW-SLIM Module for Dual Polarity Confinement, Transport, and Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Sandilya V. B.; Webb, Ian K.; Prabhakaran, Aneesh

    2017-05-30

    Here we describe instrumental approaches for performing dual polarity ion confinement, transport, ion mobility separations and reactions in Structures for Lossless Ion Manipulations (SLIM). Previous means of ion confinement in SLIM based upon rf- generated pseudopotentials and dc fields for lateral confinement cannot trap ions of opposite polarity simultaneously. Here we explore alternative approaches to provide lateral confinement of both ion polarities. Traveling wave ion mobility (IM) separations experienced by both polarities in such SLIM cause ions of both polarities migrate in the same directions and exhibit similar separations. The ion motion (and relative motion of the two polarities) undermore » both surfing and IM separation conditions are discussed. Strategies to separate the two populations to minimize reactive losses during transport are presented. A theoretical treatment of the time scales over which two populations (injected into a dc field-free region of the dual polarity SLIM device) interact is considered, and SLIM designs for allowing ion/ion interactions and other manipulations with dual polarities at 4 torr are presented.« less

  11. Applications of AVHRR-Derived Ice Motions for the Arctic and Antarctic

    NASA Technical Reports Server (NTRS)

    Maslanik, James; Emery, William

    1998-01-01

    Characterization and diagnosis of sea ice/atmosphere/ocean interactions require a synthesis of observations and modeling to identify the key mechanisms controlling the ice/climate system. In this project, we combined product generation, observational analyses, and modeling to define and interpret variability in ice motion in conjunction with thermodynamic factors such as surface temperature and albedo. The goals of this work were twofold: (1) to develop and test procedures to produce an integrated set of polar products from remotely-sensed and supporting data; and (2) to apply these data to understand processes at work in controlling sea ice distribution.

  12. TESTING MODELS FOR THE SHALLOW DECAY PHASE OF GAMMA-RAY BURST AFTERGLOWS WITH POLARIZATION OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Mi-Xiang; Dai, Zi-Gao; Wu, Xue-Feng, E-mail: dzg@nju.edu.cn

    2016-08-01

    The X-ray afterglows of almost one-half of gamma-ray bursts have been discovered by the Swift satellite to have a shallow decay phase of which the origin remains mysterious. Two main models have been proposed to explain this phase: relativistic wind bubbles (RWBs) and structured ejecta, which could originate from millisecond magnetars and rapidly rotating black holes, respectively. Based on these models, we investigate polarization evolution in the shallow decay phase of X-ray and optical afterglows. We find that in the RWB model, a significant bump of the polarization degree evolution curve appears during the shallow decay phase of both opticalmore » and X-ray afterglows, while the polarization position angle abruptly changes its direction by 90°. In the structured ejecta model, however, the polarization degree does not evolve significantly during the shallow decay phase of afterglows whether the magnetic field configuration in the ejecta is random or globally large-scale. Therefore, we conclude that these two models for the shallow decay phase and relevant central engines would be testable with future polarization observations.« less

  13. Polar Wind Measurements with TIDE/PSI and HYDRA on the Polar Spacecraft

    NASA Technical Reports Server (NTRS)

    Su, Y. J.; Horwitz, J. L.; Moore, Thomas E.; Giles, Barbara L.; Chandler, Michael O.; Craven, Paul D.; Chang, S.-W.; Scudder, J.

    1998-01-01

    The Thermal Ion Dynamics Experiment (TIDE) on the POLAR spacecraft has allowed sampling of the three-dimensional ion distributions with excellent energy, angular, and mass resolution. The companion Plasma Source Instrument, when operated, allows sufficient diminution of the electric potential to observe the polar wind at very high altitudes. In this presentation, we will describe the results of polar wind characteristics H+, He+, and 0+ as observed by TIDE at 5000 km and 8 RE altitudes. The relationship of the polar wind parameters with the solar zenith angle and with the day-night distance in the Solar Magnetic coordinate system will also be presented. We will compare these measurements with recent simulations of the photoelectron-driven polar wind using a couple fluid-semikinetic model. In addition, we will compare these polar wind observations with low-energy electrons sampled by the HYDRA experiment on POLAR to examine possible effects of the polar rain and photoelectrons and hopefully explain the large ion outflow velocity variations at POLAR apogee.

  14. The First Deep WSRT 150~MHz Full Polarization Observations

    NASA Astrophysics Data System (ADS)

    de Bruyn, A. G.; Bernardi, G.; Lofar Eor-Team

    2009-09-01

    We present the first deep total intensity and full polarization observations with the WSRT at frequencies from 116-162 MHz. Under stable ionospheric conditions we can image regions as large as 20°diameter with a single direction independent selfcalibration without detectable non-isoplanaticity effects. Deep imaging at low frequencies, however, requires removal of the brightest northern hemisphere radio sources (the A-team). A noise level of about 3 mJy, limited by classical confusion, can be achieved in Stokes I with the WSRT within a single 12 h synthesis in this frequency band. Thermal noise levels of 0.5 mJy have been reached in 6×12 h syntheses. These images have dynamic range in excess of about 20,000:1. In one such deep synthesis of the FAN region we have detected strong linear polarization over a range of Faraday depths from -6 to +2 rad m-2. The properties of a 3°diameter ring-like structure, first studied in detail by \\citeauthor{hav2003} (\\citeyear{hav2003}), suggest that we are dealing with a spherical `Faraday bubble', a region with strongly enhanced Faraday rotation. We have also detected, for the first time, structure on a scale of about 10 arcmin in the diffuse Galactic synchrotron foreground.

  15. Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel

    Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less

  16. Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd

    DOE PAGES

    Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel; ...

    2016-11-07

    Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less

  17. Preliminary study of first motion from nuclear explosions recorded on seismograms in the first zone

    USGS Publications Warehouse

    Healy, J.H.; Mangan, G.B.

    1963-01-01

    The U.S. Geological Survey has recorded more than 300 seismograms from more than 50 underground nuclear explosions. Most were recorded at distances of less than 1,000 km. These seismograms have been studied to obtain travel times and amplitudes which have been presented in reports on crustal structure and in a new series of nuclear shot reports. This report describes preliminary studies of first motion of seismic waves generated by underground nuclear explosions. Visual inspection of all seismograms was made in an attempt to identify the direction of first motion, and to estimate the probability of recording detectable first motion at various distances for various charge sizes and in different geologic environments. In this study, a characteristic pattern of the first phase became apparent on seismograms where first motion was clearly recorded. When an interpreter became familiar with this pattern, he was frequently able to identify the polarity of the first arrival even though the direction of first motion could not be seen clearly on the seismogram. In addition, it was sometimes possible to recognize this pattern for secondary arrivals of larger amplitude. These qualitative visual observations suggest that it might be possible to define a simple criterion that could be used in a digital computer to identify polarity, not only of the first phase, but of secondary phases as well. A short segment of recordings near the first motion on 56 seismograms was digitized on an optical digitizer. Spectral analyses of these digitized recordings were made to determine the range of frequencies present, and studies were made with various simple digital filters to explore the nature of polarity as a function of frequency. These studies have not yet led to conclusive results, partly because of inaccuracies resulting from optical digitization. The work is continuing, using an electronic digitizer that will allow study of a much larger sample of more accurately digitized data.

  18. Measurement of the Double Polarization Observable E in π0 and η Photoproduction off Protons with the Cbelsa/taps Experiment

    NASA Astrophysics Data System (ADS)

    Gottschall, M.; Müller, J.

    2014-01-01

    Double polarization experiments using a longitudinally or transversely polarized frozen-spin-butanol target and a linearly or circularly polarized photon beam were performed with the CBELSA/TAPS experiment at the electron accelerator ELSA. With its nearly 4π angular coverage, this setup is very well suited to study neutral meson photoproduction off the nucleon up to beam energies of 3.2 GeV. Results obtained for the double polarization observable E in neutral pion and eta photoproduction show the large sensitivity of the data on the contributing resonances. If the data are compared to the predictions of state of the art partial wave analyses, large discrepancies are observed.

  19. Emergence of macroscopic directed motion in populations of motile colloids

    NASA Astrophysics Data System (ADS)

    Bricard, Antoine; Caussin, Jean-Baptiste; Desreumaux, Nicolas; Dauchot, Olivier; Bartolo, Denis

    2013-11-01

    From the formation of animal flocks to the emergence of coordinated motion in bacterial swarms, populations of motile organisms at all scales display coherent collective motion. This consistent behaviour strongly contrasts with the difference in communication abilities between the individuals. On the basis of this universal feature, it has been proposed that alignment rules at the individual level could solely account for the emergence of unidirectional motion at the group level. This hypothesis has been supported by agent-based simulations. However, more complex collective behaviours have been systematically found in experiments, including the formation of vortices, fluctuating swarms, clustering and swirling. All these (living and man-made) model systems (bacteria, biofilaments and molecular motors, shaken grains and reactive colloids) predominantly rely on actual collisions to generate collective motion. As a result, the potential local alignment rules are entangled with more complex, and often unknown, interactions. The large-scale behaviour of the populations therefore strongly depends on these uncontrolled microscopic couplings, which are extremely challenging to measure and describe theoretically. Here we report that dilute populations of millions of colloidal rolling particles self-organize to achieve coherent motion in a unique direction, with very few density and velocity fluctuations. Quantitatively identifying the microscopic interactions between the rollers allows a theoretical description of this polar-liquid state. Comparison of the theory with experiment suggests that hydrodynamic interactions promote the emergence of collective motion either in the form of a single macroscopic `flock', at low densities, or in that of a homogenous polar phase, at higher densities. Furthermore, hydrodynamics protects the polar-liquid state from the giant density fluctuations that were hitherto considered the hallmark of populations of self-propelled particles. Our

  20. Polar Mesospheric Clouds (PMCs) Observed by the Ozone Monitoring Instrument (OMI) on Aura

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Shettle, Eric P.; Levelt, Pieternel F.; Kowalewski, Matthew G.

    2010-01-01

    Backscattered ultraviolet (BUV) instruments designed for measuring stratospheric ozone profiles have proven to be robust tools for observing polar mesospheric clouds (PMCs). These measurements are available for more than 30 years, and have been used to demonstrate the existence of long-term variations in PMC occurrence frequency and brightness. The Ozone Monitoring Instrument (OMI) on the EOS Aura satellite provides new and improved capabilities for PMC characterization. OMI uses smaller pixels than previous BUV instruments, which increases its ability to identify PMCs and discern more spatial structure, and its wide cross-track viewing swath provides full polar coverage up to 90 latitude every day in both hemispheres. This cross-track coverage allows the evolution of PMC regions to be followed over several consecutive orbits. Localized PMC variations determined from OMI measurements are consistent with coincident SBUV/2 measurements. Nine seasons of PMC observations from OMI are now available, and clearly demonstrate the advantages of these measurements for PMC analysis.

  1. Evaluation and Improvement of Polar WRF simulations using the observed atmospheric profiles in the Arctic seasonal ice zone

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Schweiger, A. J. B.

    2016-12-01

    We use the Polar Weather Research and Forecasting (WRF) model to simulate atmospheric conditions during the Seasonal Ice Zone Reconnaissance Survey (SIZRS) over the Beaufort Sea in the summer since 2013. With the 119 SIZRS dropsondes in the18 cross sections along the 150W and 140W longitude lines, we evaluate the performance of WRF simulations and two forcing data sets, the ERA-Interim reanalysis and the Global Forecast System (GFS) analysis, and explore the improvement of the Polar WRF performance when the dropsonde data are assimilated using observation nudging. Polar WRF, ERA-Interim, and GFS can reproduce the general features of the observed mean atmospheric profiles, such as low-level temperature inversion, low-level jet (LLJ) and specific humidity inversion. The Polar WRF significantly improves the mean LLJ, with a lower and stronger jet and a larger turning angle than the forcing, which is likely related to the lower values of the boundary layer diffusion in WRF than in the global models such as ECMWF and GFS. The Polar WRF simulated relative humidity closely resembles the forcing datasets while having large biases compared to observations. This suggests that the performance of Polar WRF and its forecasts in this region are limited by the quality of the forcing dataset and that the assimilation of more and better-calibrated observations, such as humidity data, is critical for their improvement. We investigate the potential of assimilating the SIZRS dropsonde dataset in improving the weather forecast over the Beaufort Sea. A simple local nudging approach is adopted. Along SIZRS flight cross sections, a set of Polar WRF simulations are performed with varying number of variables and dropsonde profiles assimilated. Different model physics are tested to examine the sensitivity of different aspects of model physics, such as boundary layer schemes, cloud microphysics, and radiation parameterization, to data assimilation. The comparison of the Polar WRF runs with

  2. Modeling optical and UV polarization of AGNs. IV. Polarization timing

    NASA Astrophysics Data System (ADS)

    Rojas Lobos, P. A.; Goosmann, R. W.; Marin, F.; Savić, D.

    2018-03-01

    Context. Optical observations cannot resolve the structure of active galactic nuclei (AGN), and a unified model for AGN was inferred mostly from indirect methods, such as spectroscopy and variability studies. Optical reverberation mapping allowed us to constrain the spatial dimension of the broad emission line region and thereby to measure the mass of supermassive black holes. Recently, reverberation was also applied to the polarized signal emerging from different AGN components. In principle, this should allow us to measure the spatial dimensions of the sub-parsec reprocessing media. Aim. We conduct numerical modeling of polarization reverberation and provide theoretical predictions for the polarization time lag induced by different AGN components. The model parameters are adjusted to the observational appearance of the Seyfert 1 galaxy NGC 4151. Methods: We modeled scattering-induced polarization and tested different geometries for the circumnuclear dust component. Our tests included the effects of clumpiness and different dust prescriptions. To further extend the model, we also explored the effects of additional ionized winds stretched along the polar direction, and of an equatorial scattering ring that is responsible for the polarization angle observed in pole-on AGN. The simulations were run using a time-dependent version of the STOKES code. Results: Our modeling confirms the previously found polarization characteristics as a function of the observer`s viewing angle. When the dust adopts a flared-disk geometry, the lags reveal a clear difference between type 1 and type 2 AGN. This distinction is less clear for a torus geometry where the time lag is more sensitive to the geometry and optical depth of the inner surface layers of the funnel. The presence of a scattering equatorial ring and ionized outflows increased the recorded polarization time lags, and the polar outflows smooths out dependence on viewing angle, especially for the higher optical depth of the

  3. Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus.

    PubMed

    Kim, So Yeon; Gitai, Zemer; Kinkhabwala, Anika; Shapiro, Lucy; Moerner, W E

    2006-07-18

    The actin cytoskeleton represents a key regulator of multiple essential cellular functions in both eukaryotes and prokaryotes. In eukaryotes, these functions depend on the orchestrated dynamics of actin filament assembly and disassembly. However, the dynamics of the bacterial actin homolog MreB have yet to be examined in vivo. In this study, we observed the motion of single fluorescent MreB-yellow fluorescent protein fusions in living Caulobacter cells in a background of unlabeled MreB. With time-lapse imaging, polymerized MreB [filamentous MreB (fMreB)] and unpolymerized MreB [globular MreB (gMreB)] monomers could be distinguished: gMreB showed fast motion that was characteristic of Brownian diffusion, whereas the labeled molecules in fMreB displayed slow, directed motion. This directional movement of labeled MreB in the growing polymer provides an indication that, like actin, MreB monomers treadmill through MreB filaments by preferential polymerization at one filament end and depolymerization at the other filament end. From these data, we extract several characteristics of single MreB filaments, including that they are, on average, much shorter than the cell length and that the direction of their polarized assembly seems to be independent of the overall cellular polarity. Thus, MreB, like actin, exhibits treadmilling behavior in vivo, and the long MreB structures that have been visualized in multiple bacterial species seem to represent bundles of short filaments that lack a uniform global polarity.

  4. Recession of the Northern polar cap from the PFS Mars Express observations

    NASA Astrophysics Data System (ADS)

    Zasova, L. V.; Formisano, V.; Moroz, V. I.; Giuranna, M.; Grassi, D.; Hansen, G.; Ignatiev, N. I.; Maturilli, A.; Pfs Team

    Planetary Fourier Spectrometer (PFS) has two spectral channels, devoted to the thermal and solar reflected spectral range investigations. The first observations by PFS of the Northern hemisphere ,which includes the North pole, occurred at Ls= 342 (northern winter). Surface temperature alone the orbit shows that the CO2 ice polar cap, where the surface temperature is found around 150K and below, is extended down to about 62 N. The spectra at latitudes above 80 N are obtained at polar darkness and at latitudes below 80 at illumination by the low Sun. Retrieved temperature profiles of the atmosphere at darkness show that temperature of the atmosphere is low enough to allow the CO2 condensation up to about 25 km. Between 70 and 80 latitude the upper levels of the atmosphere are heated by the Sun, but condensation of the CO2 may occur in the near surface layer below 5 km. The water ice clouds exist at lower latitudes with maximum opacity at the edge of the polar cap. More detailed investigation of the data obtained in winter as well as of the measurements in the northern spring will be presented.

  5. Origin of Polar Order in Dense Suspensions of Phototactic Micro-Swimmers

    PubMed Central

    Furlan, Silvano; Comparini, Diego; Ciszak, Marzena; Beccai, Lucia; Mancuso, Stefano; Mazzolai, Barbara

    2012-01-01

    A main question for the study of collective motion in living organisms is the origin of orientational polar order, i.e., how organisms align and what are the benefits of such collective behaviour. In the case of micro-organisms swimming at a low Reynolds number, steric repulsion and long-range hydrodynamic interactions are not sufficient to explain a homogeneous polar order state in which the direction of motion is aligned. An external symmetry-breaking guiding field such as a mechanism of taxis appears necessary to understand this phonemonon. We have investigated the onset of polar order in the velocity field induced by phototaxis in a suspension of a motile micro-organism, the algae Chlamydomonas reinhardtii, for density values above the limit provided by the hydrodynamic approximation of a force dipole model. We show that polar order originates from a combination of both the external guiding field intensity and the population density. In particular, we show evidence for a linear dependence of a phototactic guiding field on cell density to determine the polar order for dense suspensions and demonstrate the existence of a density threshold for the origin of polar order. This threshold represents the density value below which cells undergoing phototaxis are not able to maintain a homogeneous polar order state and marks the transition to ordered collective motion. Such a transition is driven by a noise dominated phototactic reorientation where the noise is modelled as a normal distribution with a variance that is inversely proportional to the guiding field strength. Finally, we discuss the role of density in dense suspensions of phototactic micro-swimmers. PMID:22723904

  6. Geomagnetic polarity transitions

    NASA Astrophysics Data System (ADS)

    Merrill, Ronald T.; McFadden, Phillip L.

    1999-05-01

    The top of Earth's liquid outer core is nearly 2900 km beneath Earth's surface, so we will never be able to observe it directly. This hot, dense, molten iron-rich body is continuously in motion and is the source of Earth's magnetic field. One of the most dynamic manifestations at Earth's surface of this fluid body is, perhaps, a reversal of the geomagnetic field. Unfortunately, the most recent polarity transition occurred at about 780 ka, so we have never observed a transition directly. It seems that a polarity transition spans many human lifetimes, so no human will ever witness the phenomenon in its entirety. Thus we are left with the tantalizing prospect that paleomagnetic records of polarity transitions may betray some of the secrets of the deep Earth. Certainly, if there are systematics in the reversal process and they can be documented, then this will reveal substantial information about the nature of the lowermost mantle and of the outer core. Despite their slowness on a human timescale, polarity transitions occur almost instantaneously on a geological timescale. This rapidity, together with limitations in the paleomagnetic recording process, prohibits a comprehensive description of any reversal transition both now and into the foreseeable future, which limits the questions that may at this stage be sensibly asked. The natural model for the geomagnetic field is a set of spherical harmonic components, and we are not able to obtain a reliable model for even the first few harmonic terms during a transition. Nevertheless, it is possible, in principle, to make statements about the harmonic character of a geomagnetic polarity transition without having a rigorous spherical harmonic description of one. For example, harmonic descriptions of recent geomagnetic polarity transitions that are purely zonal can be ruled out (a zonal harmonic does not change along a line of latitude). Gleaning information about transitions has proven to be difficult, but it does seem

  7. Development of dual-polarization LEKIDs for CMB observations

    NASA Astrophysics Data System (ADS)

    McCarrick, Heather; Abitbol, Maximilian H.; Ade, Peter A. R.; Barry, Peter; Bryan, Sean; Che, George; Day, Peter; Doyle, Simon; Flanigan, Daniel; Johnson, Bradley R.; Jones, Glenn; LeDuc, Henry G.; Limon, Michele; Mauskopf, Philip; Miller, Amber; Tucker, Carole; Zmuidzinas, Jonas

    2016-07-01

    We discuss the design considerations and initial measurements from arrays of dual-polarization, lumped-element kinetic inductance detectors (LEKIDs) nominally designed for cosmic microwave background (CMB) studies. The detectors are horn-coupled, and each array element contains two single-polarization LEKIDs, which are made from thin-film aluminum and optimized for a single spectral band centered on 150 GHz. We are developing two array architectures, one based on 160 micron thick silicon wafers and the other based on silicon-on-insulator (SOI) wafers with a 30 micron thick device layer. The 20-element test arrays (40 LEKIDs) are characterized with both a linearly-polarized electronic millimeter wave source and a thermal source. We present initial measurements including the noise spectra, noise-equivalent temperature, and responsivity. We discuss future testing and further design optimizations to be implemented.

  8. Satellite Observation Systems for Polar Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2012-01-01

    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  9. Photoelectrons in the Quiet Polar Wind

    NASA Technical Reports Server (NTRS)

    Glocer, A.; Khazanov, G.; Liemohn, M.

    2017-01-01

    This study presents a newly coupled model capable of treating the superthermal electron population in the global polar wind solution. The model combines the hydrodynamic Polar Wind Outflow Model (PWOM) with the kinetic SuperThermal Electron Transport (STET) code. The resulting PWOM-STET coupled model is described and then used to investigate the role of photoelectrons in the polar wind. We present polar wind results along single stationary field lines under dayside and nightside conditions, as well as the global solution reconstructed from nearly 1000 moving field lines. The model results show significant day-night asymmetries in the polar wind solution owing to the higher ionization and photoelectron fluxes on the dayside compared to the nightside. Field line motion is found to modify this dependence and create global structure by transporting field lines through different conditions of illumination and through the localized effects of Joule heating.

  10. HAWC+/SOFIA observations of Rho Oph A: far-infrared polarization spectrum

    NASA Astrophysics Data System (ADS)

    Santos, Fabio; Dowell, Charles D.; Houde, Martin; Looney, Leslie; Lopez-Rodriguez, Enrique; Novak, Giles; Ward-Thompson, Derek; HAWC+ Science Team

    2018-01-01

    In this work, we present preliminary results from the HAWC+ far-infrared polarimeter that operates on the SOFIA airborne observatory. The densest portions of the Rho Ophiuchi molecular complex, known as Rho Oph A, have been mapped using HAWC+ bands C (89 microns) and D (155 microns). Rho Oph A is a well known nearby star forming region. At the target's distance of approximately 130 pc, our observations provide excellent spatial resolution (~5 mpc in band C).The magnetic field map suggests a compressed and distorted field morphology around Oph S1, a massive B3 star that is the main heat source of Rho Oph A. We compute the ratio p(D)/p(C), where p(C) and p(D) are the polarization degree maps at bands C and D, respectively. This ratio estimates the slope of the polarization spectrum in the far-infrared. Although the slope is predicted to be positive by dust grain models, previous observations of other molecular clouds have revealed that negative slopes are common. In Rho Oph A, we find that there is a smooth gradient of p(D)/p(C) across the mapped field. The change in p(D)/p(C) is well correlated with the integrated NH3 (1,1) emission. A positive slope dominates the lower density and well illuminated portions of the cloud, whereas a transition to a negative slope is observed at the denser and less evenly illuminated cloud core.We interpret the positive to negative slope transition as being consistent with the radiative torques (RATs) grain alignment theory. For the sight lines of higher column density, polarized emission from the warmer outer cloud layers is added to emission from the colder inner well-shielded layers lying along the same line-of-sight. Given that the outer layers receive more radiation from Oph S1, their grain alignment efficiency is expected to be higher according to RATs. The combination of warmer, well aligned grains with cooler, poorly aligned grains is what causes the negative slope. This effect is not present in the sight lines of lower column

  11. Light effects in the atomic-motion-induced Ramsey narrowing of dark resonances in wall-coated cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breschi, E.; Schori, C.; Di Domenico, G.

    2010-12-15

    We report on light shift and broadening in the atomic-motion-induced Ramsey narrowing of dark resonances prepared in alkali-metal vapors contained in wall-coated cells without buffer gas. The atomic-motion-induced Ramsey narrowing is due to the free motion of the polarized atomic spins in and out of the optical interaction region before spin relaxation. As a consequence of this effect, we observe a narrowing of the dark resonance linewidth as well as a reduction of the ground states' light shift when the volume of the interaction region decreases at constant optical intensity. The results can be intuitively interpreted as a dilution ofmore » the intensity effect similar to a pulsed interrogation due to the atomic motion. Finally the influence of this effect on the performance of compact atomic clocks is discussed.« less

  12. Applied teaching concepts of animated motion slides in otolaryngology.

    PubMed

    Duberstein, L E; Josephs, J A; Kilgo, J

    1978-01-01

    Motion is an essential part of otolaryngologic function, and an understanding of concepts of motion is critical in teaching otolaryngology. Standard movie projection devices have intrinsic defects, such as considerable expense to make, complexity of operation, and a lack of flexibility. Slide projection transparencies (2X2) offer instructional flexibility but could not be used to project motion until recently. Using applications of gelatin films of images with polarizing light, we have been able to produce an illusion of motion similar to that used in creating the motion in cartoons. We have produced a series of slides for instructional purposes to show concepts in otolaryngology.

  13. Comparison of full-sky polarization and radiance observations to radiative transfer simulations which employ AERONET products.

    PubMed

    Pust, Nathan J; Dahlberg, Andrew R; Thomas, Michael J; Shaw, Joseph A

    2011-09-12

    Visible-band and near infrared polarization and radiance images measured with a ground-based full-sky polarimeter are compared against a successive orders of scattering (SOS) radiative transfer model for 2009 summer cloud-free days in Bozeman, Montana, USA. The polarimeter measures radiance and polarization in 10-nm bands centered at 450 nm, 490 nm, 530 nm, 630 nm, and 700 nm. AERONET products are used to represent aerosols in the SOS model, while MISR satellite BRF products are used for the surface reflectance. While model results generally agree well with observation, the simulated degree of polarization is typically higher than observed data. Potential sources of this difference may include cloud contamination and/or underestimation of the AERONET-retrieved aerosol real refractive index. Problems with the retrieved parameters are not unexpected given the low aerosol optical depth range (0.025 to 0.17 at 500 nm) during the study and the corresponding difficulties that these conditions pose to the AERONET inversion algorithm.

  14. Experimental investigation of shaping disturbance observer design for motion control of precision mechatronic stages with resonances

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Hu, Chuxiong; Zhu, Yu; Wang, Ze; Zhang, Ming

    2017-08-01

    In this paper, shaping disturbance observer (SDOB) is investigated for precision mechatronic stages with middle-frequency zero/pole type resonance to achieve good motion control performance in practical manufacturing situations. Compared with traditional standard disturbance observer (DOB), in SDOB a pole-zero cancellation based shaping filter is cascaded to the mechatronic stage plant to meet the challenge of motion control performance deterioration caused by actual resonance. Noting that pole-zero cancellation is inevitably imperfect and the controller may even consequently become unstable in practice, frequency domain stability analysis is conducted to find out how each parameter of the shaping filter affects the control stability. Moreover, the robust design criterion of the shaping filter, and the design procedure of SDOB, are both proposed to guide the actual design and facilitate practical implementation. The SDOB with the proposed design criterion is applied to a linear motor driven stage and a voice motor driven stage, respectively. Experimental results consistently validate the effectiveness nature of the proposed SDOB scheme in practical mechatronics motion applications. The proposed SDOB design actually could be an effective unit in the controller design for motion stages of mechanical manufacture equipments.

  15. The polarization observables T, P, and H and their impact on γp → pπ0 multipoles

    NASA Astrophysics Data System (ADS)

    Hartmann, J.; Dutz, H.; Anisovich, A. V.; Bayadilov, D.; Beck, R.; Becker, M.; Beloglazov, Y.; Berlin, A.; Bichow, M.; Böse, S.; Brinkmann, K.-Th.; Crede, V.; Dieterle, M.; Eberhardt, H.; Elsner, D.; Fornet-Ponse, K.; Friedrich, St.; Frommberger, F.; Funke, Ch.; Gottschall, M.; Gridnev, A.; Grüner, M.; Goertz, St.; Gutz, E.; Hammann, Ch.; Hannappel, J.; Hannen, V.; Herick, J.; Hillert, W.; Hoffmeister, Ph.; Honisch, Ch.; Jahn, O.; Jude, T.; Käser, A.; Kaiser, D.; Kalinowsky, H.; Kalischewski, F.; Klassen, P.; Keshelashvili, I.; Klein, F.; Klempt, E.; Koop, K.; Krusche, B.; Kube, M.; Lang, M.; Lopatin, I.; Makonyi, K.; Messi, F.; Metag, V.; Meyer, W.; Müller, J.; Nanova, M.; Nikonov, V.; Novinski, D.; Novotny, R.; Piontek, D.; Reeve, S.; Rosenbaum, Ch.; Roth, B.; Reicherz, G.; Rostomyan, T.; Runkel, St.; Sarantsev, A.; Schmidt, Ch.; Schmieden, H.; Schmitz, R.; Seifen, T.; Sokhoyan, V.; Thämer, Ph.; Thiel, A.; Thoma, U.; Urban, M.; van Pee, H.; Walther, D.; Wendel, Ch.; Wiedner, U.; Wilson, A.; Winnebeck, A.; Witthauer, L.

    2015-09-01

    Data on the polarization observables T, P, and H for the reaction γp → pπ0 are reported. Compared to earlier data from other experiments, our data are more precise and extend the covered range in energy and angle substantially. The results were extracted from azimuthal asymmetries measured using a transversely polarized target and linearly polarized photons. The data were taken at the Bonn electron stretcher accelerator ELSA with the CBELSA/TAPS detector. Within the Bonn-Gatchina partial wave analysis, the new polarization data lead to a significant narrowing of the error band for the multipoles for neutral-pion photoproduction.

  16. Constraints on Solar Wind Acceleration Mechanisms from Ulysses Plasma Observations: The First Polar Pass

    NASA Technical Reports Server (NTRS)

    Barnes, Aaron; Gazis, Paul R.; Phillips, John L.

    1995-01-01

    The mass flux density and velocity of the solar wind at polar latitudes can provide strong constraints on solar wind acceleration mechanisms. We use plasma observations from the first polar passage of the Ulysses spacecraft to investigate this question. We find that the mass flux density and velocity are too high to reconcile with acceleration of the solar wind by classical thermal conduction alone. Therefore acceleration of the high-speed must involve extended deposition of energy by some other mechanism, either as heat or as a direct effective pressure, due possibly to waves and/or turbulence, or completely non-classical heat transport.

  17. Investigating Mercury’s South Polar Deposits: Arecibo Radar Observations and High-resolution Determination of Illumination Conditions

    PubMed Central

    Chabot, Nancy L.; Shread, Evangela E.; Harmon, John K.

    2018-01-01

    There is strong evidence that Mercury’s polar deposits are water ice hosted in permanently shadowed regions. In this study, we present new Arecibo radar observations of Mercury’s south pole, which reveal numerous radar-bright deposits and substantially increase the radar imaging coverage. We also use images from MESSENGER’s full mission to determine the illumination conditions of Mercury’s south polar region at the same spatial resolution as the north polar region, enabling comparisons between the two poles. The area of radar-bright deposits in Mercury’s south is roughly double that found in the north, consistent with the larger permanently shadowed area in the older, cratered terrain at the south relative to the younger smooth plains at the north. Radar-bright features are strongly associated with regions of permanent shadow at both poles, consistent with water ice being the dominant component of the deposits. However, both of Mercury’s polar regions show that roughly 50% of permanently shadowed regions lack radar-bright deposits, despite some of these locations having thermal environments that are conducive to the presence of water ice. The observed uneven distribution of water ice among Mercury’s polar cold traps may suggest that the source of Mercury’s water ice was not a steady, regular process but rather that the source was an episodic event, such as a recent, large impact on the innermost planet. PMID:29552436

  18. Recent observations of intraspecific predation and cannibalism among polar bears in the southern Beaufort Sea

    USGS Publications Warehouse

    Amstrup, Steven C.; Stirling, I.; Smith, T.S.; Perham, C.; Thiemann, G.W.

    2006-01-01

    Intraspecific killing has been reported among polar bears (Ursus maritimus), brown bears (U. arctos), and black bears (U. americanus). Although cannibalism is one motivation for such killings, the ecological factors mediating such events are poorly understood. Between 24 January and 10 April 2004, we confirmed three instances of intraspecific predation and cannibalism in the Beaufort Sea. One of these, the first of this type ever reported for polar bears, was a parturient female killed at her maternal den. The predating bear was hunting in a known maternal denning area and apparently discovered the den by scent. A second predation event involved an adult female and cub recently emerged from their den, and the third involved a yearling male. During 24 years of research on polar bears in the southern Beaufort Sea region of northern Alaska and 34 years in northwestern Canada, we have not seen other incidents of polar bears stalking, killing, and eating other polar bears. We hypothesize that nutritional stresses related to the longer ice-free seasons that have occurred in the Beaufort Sea in recent years may have led to the cannibalism incidents we observed in 2004. ?? Springer-Verlag 2006.

  19. Ultraviolet observations of the Saturnian north aurora and polar haze distribution with the HST-FOC

    NASA Technical Reports Server (NTRS)

    Gerard, J. C.; Dols, V.; Grodent, D.; Waite, J. H.; Gladstone, G. R.; Prange, R.

    1995-01-01

    Near simultaneous observations of the Saturnian H2 north ultraviolet aurora and the polar haze were made at 153 nm and 210 nm respectively with the Faint Object Camera on board the Hubble Space Telescope. The auroral observations cover a complete rotation of the planet and, when co-added, reveal the presence of an auroral emission near 80 deg N with a peak brightness of about 150 kR of total H2 emission. The maximum optical depth of the polar haze layer is found to be located approximately 5 deg equatorward of the auroral emission zone. The haze particles are presumably formed by hydrocarbon aerosols initiated by H2+ auroral production. In this case, the observed haze optical depth requires an efficiency of aerosol formation of about 6 percent, indicating that auroral production of hydrocarbon aerosols is a viable source of high-latitude haze.

  20. IRIS-S - Extending geodetic very long baseline interferometry observations to the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Robertson, D. S.; Nothnagel, A.; Nicolson, G. D.; Schuh, H.

    1988-12-01

    High-accuracy geodetic very long baseline interferometry measurements between the African, Eurasian, and North American plates have been analyzed to determine the terrestrial coordinates of the Hartebeesthoek observatory to better than 10 cm, to determine the celestial coordinates of eight Southern Hemisphere radio sources with milliarc second (mas) accuracy, and to derive quasi-independent polar motion, UTI, and nutation time series. Comparison of the earth orientation time series with ongoing International Radio Interferometric Surveying project values shows agreement at about the 1 mas of arc level in polar motion and nutation and 0.1 ms of time in UTI. Given the independence of the observing sessions and the unlikeliness of common systematic error sources, this level of agreement serves to bound the total errors in both measurement series.

  1. DE-1 observations of polar O(+) stream bulk parameters and comparison with a model of the centrifugally-accelerated polar wind

    NASA Technical Reports Server (NTRS)

    Ho, C. Wing; Horwitz, J. L.

    1995-01-01

    A survey of bulk parameters of analyzable O(+) outward streams in the mid-altitude (3-4.7 R(sub E) geocentric distance) polar cap magnetosphere is obtained from measurements by the Retarding Ion Mass Spectrometer (RIMS) aboard the Dynamics Explorer-1 (DE-1) spacecraft. There is wide scatter in the obtained densities, but they do display discernible trends: the average O(+) density in these streams decreases from about 60 ions/cc at 3.5 R(sub E) to about 1 ion/cc at 4.6 R(sub E). The streaming velocities are somewhat more defined, and their average increases from about 8 km/s at 3.5 R(sub E) to about 12 km/s at 4.6 R(sub E). The densities and bulk velocities are inversely correlated. We have further compared these observational trends with model profiles for the centrifugally-accelerated polar wind as recently described by Horwitz et al. (1994). The large outflow velocities observed can be understood in part as centrifugally-driven by convection with ionospheric electric field magnitudes of the order 50-70 mV/m, perhaps including plasma expansion effects.

  2. Observations of Antarctic Polar Stratospheric Clouds by Geoscience Laser Altimeter System (GLAS)

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Fromm, Michael; Spinhirne, James

    2005-01-01

    Polar Stratospheric Clouds (PSCs) frequently occur in the polar regions during winter and are important because they play a role in the destruction of stratospheric ozone. During late September and early October 2003, GLAS frequently observed PSCs over western Antarctica. At the peak of this activity on September 29 and 30 we investigate the vertical structure and extent, horizontal coverage and backscatter characteristics of the PSCs using the GLAS data. The PSCs were found to cover an area approximately 10 to 15 % of the size of Antarctica in a region where enhanced PSC frequency has been noted by previous PSC climatology studies. The area of PSC formation was found to coincide with the coldest temperatures in the lower stratosphere. In addition, extensive cloudiness was seen within the troposphere below the PSCs indicating that tropospheric disturbances might have played a role in their formation.

  3. Observability/Identifiability of Rigid Motion under Perspective Projection

    DTIC Science & Technology

    1994-03-08

    Faugeras and S. Maybank . Motion from point mathces: multiplicity of solutions. Int. J, of Computer Vision, 1990. [16] D.B. Gennery. Tracking known...sequences. Int. 9. of computer vision, 1989. [37] S. Maybank . Theory of reconstruction from image motion. Springer Verlag, 1992. [38] Andrea 6...defined in section 5; in this appendix we show a simple characterization which is due to Faugeras and Maybank [15, 371. Theorem B.l . Let Q = UCVT

  4. Anisotropic polarization π -molecular skeleton coupled dynamics in proton-displacive organic ferroelectrics

    NASA Astrophysics Data System (ADS)

    Fujioka, J.; Horiuchi, S.; Kida, N.; Shimano, R.; Tokura, Y.

    2009-09-01

    We have investigated the polarization π -molecular skeleton coupled dynamics for the proton-displacive organic ferroelectrics, cocrystal of phenazine with the 2,5-dihalo-3,6-dihydroxy-p-benzoquinones by measurements of the terahertz/infrared spectroscopy. In the course of the ferroelectric-to-paraelectric transition, the ferroelectric soft phonon mode originating from the intermolecular dynamical displacement is observed in the imaginary part of dielectric spectra γ2 , when the electric field of the light (E) is parallel to the spontaneous polarization (P) . The soft phonon mode is isolated from the intramolecular vibrational mode and hence the intramolecular skeleton dynamics is almost decoupled from the polarization fluctuation. In the spectra for E parallel to the hydrogen-bonded supramolecular chain, by contrast, the vibrational mode mainly originating from the oxygen atom motion within the π -molecular plane is anomalously blurred and amalgamated into the polarization relaxation mode concomitantly with the dynamical proton disorder. This indicates that the dynamical disorder of the intramolecular skeleton structure, specifically that of oxygen atom, is strongly enhanced by the proton fluctuation and is significantly coupled to the polarization fluctuation along the hydrogen-bonded supramolecular chain. The results are discussed in terms of the proton-mediated anisotropic polarization π -molecular skeleton interaction, which characterizes these emerging proton-displacive ferroelectrics.

  5. Observations of the freeze/thaw performance of lithium fluoride by motion picture photography

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Perry, W. D.

    1991-01-01

    To gain direct observation of the molten salt phase change, a novel containerless technique was developed where the high surface tension of lithium fluoride was used to suspend a bead of the molten salt inside a specially designed wire cage. By varying the current passing through the wire, the cage also served as a variable heat source. In this way, the freeze/thaw performance of the lithium fluoride could be photographed by motion picture photography without the influence of container walls. The motion picture photography of the lithium fluoride sample revealed several zones during the phase change, a solid zone and a liquid zone, as expected, and a slush zone that was predicted by thermal analysis modeling.

  6. Dual-polarized light-field imaging micro-system via a liquid-crystal microlens array for direct three-dimensional observation.

    PubMed

    Xin, Zhaowei; Wei, Dong; Xie, Xingwang; Chen, Mingce; Zhang, Xinyu; Liao, Jing; Wang, Haiwei; Xie, Changsheng

    2018-02-19

    Light-field imaging is a crucial and straightforward way of measuring and analyzing surrounding light worlds. In this paper, a dual-polarized light-field imaging micro-system based on a twisted nematic liquid-crystal microlens array (TN-LCMLA) for direct three-dimensional (3D) observation is fabricated and demonstrated. The prototyped camera has been constructed by integrating a TN-LCMLA with a common CMOS sensor array. By switching the working state of the TN-LCMLA, two orthogonally polarized light-field images can be remapped through the functioned imaging sensors. The imaging micro-system in conjunction with the electric-optical microstructure can be used to perform polarization and light-field imaging, simultaneously. Compared with conventional plenoptic cameras using liquid-crystal microlens array, the polarization-independent light-field images with a high image quality can be obtained in the arbitrary polarization state selected. We experimentally demonstrate characters including a relatively wide operation range in the manipulation of incident beams and the multiple imaging modes, such as conventional two-dimensional imaging, light-field imaging, and polarization imaging. Considering the obvious features of the TN-LCMLA, such as very low power consumption, providing multiple imaging modes mentioned, simple and low-cost manufacturing, the imaging micro-system integrated with this kind of liquid-crystal microstructure driven electrically presents the potential capability of directly observing a 3D object in typical scattering media.

  7. Data acquisition system and ground calibration of polarized gamma-ray observer (PoGOLite)

    NASA Astrophysics Data System (ADS)

    Takahashi, Hiromitsu; Chauvin, Maxime; Fukazawa, Yasushi; Jackson, Miranda; Kamae, Tuneyoshi; Kawano, Takafumi; Kiss, Mozsi; Kole, Merlin; Mikhalev, Victor; Mizuno, Tsunefumi; Moretti, Elena; Pearce, Mark; Rydström, Stefan

    2014-07-01

    The Polarized Gamma-ray Observer, PoGOLite, is a balloon experiment with the capability of detecting 10% polarization from a 200 mCrab celestial object between the energy-range 25-80 keV in one 6 hour flight. Polarization measurements in soft gamma-rays are expected to provide a powerful probe into high-energy emission mechanisms in/around neutron stars, black holes, supernova remnants, active-galactic nuclei etc. The "pathfinder" flight was performed in July 2013 for 14 days from Sweden to Russia. The polarization is measured using Compton scattering and photoelectric absorption in an array of 61 well-type phoswich detector cells (PDCs) for the pathfinder instrument. The PDCs are surrounded by 30 BGO crystals which form a side anti-coincidence shield (SAS) and passive polyethylene neutron shield. There is a neutron detector consisting of LiCaAlF6 (LiCAF) scintillator covered with BGOs to measure the background contribution of atmospheric neutrons. The data acquisition system treats 92 PMT signals from 61 PDCs + 30 SASs + 1 neutron detector, and it is developed based on SpaceWire spacecraft communication network. Most of the signal processing is done by digital circuits in Field Programmable Gate Arrays (FPGAs). This enables the reduction of the mass, the space and the power consumption. The performance was calibrated before the launch.

  8. Polarized object detection in crabs: a two-channel system.

    PubMed

    Basnak, Melanie Ailín; Pérez-Schuster, Verónica; Hermitte, Gabriela; Berón de Astrada, Martín

    2018-05-25

    Many animal species take advantage of polarization vision for vital tasks such as orientation, communication and contrast enhancement. Previous studies have suggested that decapod crustaceans use a two-channel polarization system for contrast enhancement. Here, we characterize the polarization contrast sensitivity in a grapsid crab . We estimated the polarization contrast sensitivity of the animals by quantifying both their escape response and changes in heart rate when presented with polarized motion stimuli. The motion stimulus consisted of an expanding disk with an 82 deg polarization difference between the object and the background. More than 90% of animals responded by freezing or trying to avoid the polarized stimulus. In addition, we co-rotated the electric vector (e-vector) orientation of the light from the object and background by increments of 30 deg and found that the animals' escape response varied periodically with a 90 deg period. Maximum escape responses were obtained for object and background e-vectors near the vertical and horizontal orientations. Changes in cardiac response showed parallel results but also a minimum response when e-vectors of object and background were shifted by 45 deg with respect to the maxima. These results are consistent with an orthogonal receptor arrangement for the detection of polarized light, in which two channels are aligned with the vertical and horizontal orientations. It has been hypothesized that animals with object-based polarization vision rely on a two-channel detection system analogous to that of color processing in dichromats. Our results, obtained by systematically varying the e-vectors of object and background, provide strong empirical support for this theoretical model of polarized object detection. © 2018. Published by The Company of Biologists Ltd.

  9. Pitch Angle Scattering of Upgoing Electron Beams in Jupiter's Polar Regions by Whistler Mode Waves

    NASA Astrophysics Data System (ADS)

    Elliott, S. S.; Gurnett, D. A.; Kurth, W. S.; Clark, G.; Mauk, B. H.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.

    2018-02-01

    The Juno spacecraft's Jupiter Energetic-particle Detector Instrument has observed field-aligned, unidirectional (upgoing) electron beams throughout most of Jupiter's entire polar cap region. The Waves instrument detected intense broadband whistler mode emissions occurring in the same region. In this paper, we investigate the pitch angle scattering of the upgoing electron beams due to interactions with the whistler mode waves. Profiles of intensity versus pitch angle for electron beams ranging from 2.53 to 7.22 Jovian radii show inconsistencies with the expected adiabatic invariant motion of the electrons. It is believed that the observed whistler mode waves perturb the electron motion and scatter them away from the magnetic field line. The diffusion equation has been solved by using diffusion coefficients which depend on the magnetic intensity of the whistler mode waves.

  10. Connections between collinear and transverse-momentum-dependent polarized observables within the Collins-Soper-Sterman formalism

    NASA Astrophysics Data System (ADS)

    Gamberg, Leonard; Metz, Andreas; Pitonyak, Daniel; Prokudin, Alexei

    2018-06-01

    We extend the improved Collins-Soper-Sterman (iCSS) W + Y construction recently presented in [1] to the case of polarized observables, where we focus in particular on the Sivers effect in semi-inclusive deep-inelastic scattering. We further show how one recovers the expected leading-order collinear twist-3 result from a (weighted) qT-integral of the differential cross section. We are also able to demonstrate the validity of the well-known relation between the (TMD) Sivers function and the (collinear twist-3) Qiu-Sterman function within the iCSS framework. This relation allows for their interpretation as functions yielding the average transverse momentum of unpolarized quarks in a transversely polarized spin-1/2 target. We further outline how this study can be generalized to other polarized quantities.

  11. Design of a TW-SLIM Module for Dual Polarity Confinement, Transport, and Reactions

    NASA Astrophysics Data System (ADS)

    Garimella, Sandilya V. B.; Webb, Ian K.; Prabhakaran, Aneesh; Attah, Isaac K.; Ibrahim, Yehia M.; Smith, Richard D.

    2017-07-01

    Here we describe instrumental approaches for performing dual polarity ion confinement, transport, ion mobility separations, and reactions in structures for lossless ion manipulations (SLIM). Previous means of ion confinement in SLIM, based upon rf-generated pseudopotentials and DC fields for lateral confinement, cannot trap ions of opposite polarity simultaneously. Here we explore alternative approaches to provide simultaneous lateral confinement of both ion polarities. Traveling wave ion mobility (IM) separations experienced in such SLIM cause ions of both polarities to migrate in the same directions and exhibit similar separations. The ion motion (and relative motion of the two polarities) under both surfing and IM separation conditions are discussed. In surfing conditions the two polarities are transported losslessly and non-reactively in their respective potential minima (higher absolute voltage regions confine negative polarities, and lower absolute potential regions are populated by positive polarities). In separation mode, where ions roll over an overtaking traveling wave, the two polarities can interact during the rollovers. Strategies to minimize overlap of the two ion populations to prevent reactive losses during separations are presented. A theoretical treatment of the time scales over which two populations (injected into a DC field-free region of the dual polarity SLIM device) interact is considered, and SLIM designs for allowing ion/ion interactions and other manipulations with dual polarities at 4 Torr are presented.

  12. Observations of field-aligned currents, particles, and plasma drift in the polar cusps near solstice

    NASA Technical Reports Server (NTRS)

    Bythrow, P. F.; Potemra, T. A.; Hoffman, R. A.

    1982-01-01

    Magnetic perturbations observed by the TRIAD magnetometer within two hours of an AE-C spacecraft pass provide field-aligned current data, from the same local time in the northern hemisphere, for a study of the polar cusp. The AE-C spinning mode has allowed the use of the Z-axis magnetometer for Birkeland current observations, in conjunction with particle and drift measurements. The average B(z) were found to be 1.9 nT and -1.1 nT during the first two hourly intervals on January 15, 1977. Measurements from the low energy electron experiment revealed intense fluxes of soft, cusp-like 100 eV Maxwellian electrons throughout the prenoon polar cap. The upward directed current can be identified as the dominant cusp current appropriate for B(y) values lower than zero, while the downward directed current, which has the appropriate sign of a dayside region 1 current, is observed to lie entirely within a westerly, antisunward-convecting plasma.

  13. Asymmetric Reconnection With A Shear Flow and Applications to X-line Motion at the Polar Cusps

    NASA Astrophysics Data System (ADS)

    Doss, C.; Komar, C. M.; Beidler, M.; Cassak, P.; Wilder, F. D.; Eriksson, S.

    2014-12-01

    Magnetic reconnection at the polar cusps of the magnetosphere is marked by strong asymmetries in plasma density and magnetic field strength in addition to a potentially strong bulk flow shear parallel to the reconnecting magnetic field caused by the solar wind. Much has been learned about the effect of either asymmetries or shear flow on reconnection, but only a handful of studies have addressed systems with both. We perform a careful theoretical, numerical, and observational study of such systems. It is known that an asymmetry in magnetic field offsets the X-line from the center of the diffusion region in the inflow direction toward the weaker magnetic field. A key finding is that this alters the flow profile seen at the X-line relative to expectations from symmetric reconnection results. This causes the X-line to drift in the outflow direction due to the shear flow. We calculate a prediction for the X-line drift speed for arbitrary asymmetric magnetic field strengths and show the result is consistent with two-fluid numerical simulations. These predictions are also shown to be consistent with recent observations of a tailward moving X-line in Cluster observations of reconnection at the polar cusp. The reconnection rate with a shear flow is observed to drop as in symmetric reconnection, and the behavior of the reconnection qualitatively changes when the shear flow speed exceeds the hybrid Alfven speed of the outflow known from asymmetric reconnection theory.

  14. Precise Orbital and Geodetic Parameter Estimation using SLR Observations for ILRS AAC

    NASA Astrophysics Data System (ADS)

    Kim, Young-Rok; Park, Eunseo; Oh, Hyungjik Jay; Park, Sang-Young; Lim, Hyung-Chul; Park, Chandeok

    2013-12-01

    In this study, we present results of precise orbital geodetic parameter estimation using satellite laser ranging (SLR) observations for the International Laser Ranging Service (ILRS) associate analysis center (AAC). Using normal point observations of LAGEOS-1, LAGEOS-2, ETALON-1, and ETALON-2 in SLR consolidated laser ranging data format, the NASA/ GSFC GEODYN II and SOLVE software programs were utilized for precise orbit determination (POD) and finding solutions of a terrestrial reference frame (TRF) and Earth orientation parameters (EOPs). For POD, a weekly-based orbit determination strategy was employed to process SLR observations taken from 20 weeks in 2013. For solutions of TRF and EOPs, loosely constrained scheme was used to integrate POD results of four geodetic SLR satellites. The coordinates of 11 ILRS core sites were determined and daily polar motion and polar motion rates were estimated. The root mean square (RMS) value of post-fit residuals was used for orbit quality assessment, and both the stability of TRF and the precision of EOPs by external comparison were analyzed for verification of our solutions. Results of post-fit residuals show that the RMS of the orbits of LAGEOS-1 and LAGEOS-2 are 1.20 and 1.12 cm, and those of ETALON-1 and ETALON-2 are 1.02 and 1.11 cm, respectively. The stability analysis of TRF shows that the mean value of 3D stability of the coordinates of 11 ILRS core sites is 7.0 mm. An external comparison, with respect to International Earth rotation and Reference systems Service (IERS) 08 C04 results, shows that standard deviations of polar motion XP and YP are 0.754 milliarcseconds (mas) and 0.576 mas, respectively. Our results of precise orbital and geodetic parameter estimation are reasonable and help advance research at ILRS AAC.

  15. Effect of observed micropolar motions on wave propagation in deep Earth minerals

    NASA Astrophysics Data System (ADS)

    Abreu, Rafael; Thomas, Christine; Durand, Stephanie

    2018-03-01

    We provide a method to compute the Cosserat couple modulus for a bridgmanite (MgSiO3 silicate perovskite) solid from frequency gaps observed in Raman experiments. To this aim, we apply micropolar theory which is a generalization of the classical linear elastic theory, where each particle has an intrinsic rotational degree of freedom, called micro-rotation and/or spin, and which depends on the so-called Cosserat couple modulus μc that characterizes the micropolar medium. We investigate both wave propagation and dispersion. The wave propagation simulations in both potassium nitrate (KNO3) and bridgmanite crystal leads to a faster elastic wave propagation as well as to an independent rotational field of motion, called optic mode, which is smaller in amplitude compared to the conventional rotational field. The dispersion analysis predicts that the optic mode only appears above a cutoff frequency, ωr , which has been observed in Raman experiments done at high pressures and temperatures on bridgmanite crystal. The comparison of the cutoff frequency observed in experiments and the micropolar theory enables us to compute for the first time the temperature and pressure dependency of the Cosserat couple modulus μc of bridgmanite. This study thus shows that the micropolar theory can explain particle motions observed in laboratory experiments that were before neglected and that can now be used to constrain the micropolar elastic constants of Earth's mantle like material. This pioneer work aims at encouraging the use of micropolar theory in future works on deep Earth's mantle material by providing Cosserat couple modulus that were not available before.

  16. Observations of the north polar region of Mars from the Mars orbiter laser altimeter.

    PubMed

    Zuber, M T; Smith, D E; Solomon, S C; Abshire, J B; Afzal, R S; Aharonson, O; Fishbaugh, K; Ford, P G; Frey, H V; Garvin, J B; Head, J W; Ivanov, A B; Johnson, C L; Muhleman, D O; Neumann, G A; Pettengill, G H; Phillips, R J; Sun, X; Zwally, H J; Banerdt, W B; Duxbury, T C

    1998-12-11

    Elevations from the Mars Orbiter Laser Altimeter (MOLA) have been used to construct a precise topographic map of the martian north polar region. The northern ice cap has a maximum elevation of 3 kilometers above its surroundings but lies within a 5-kilometer-deep hemispheric depression that is contiguous with the area into which most outflow channels emptied. Polar cap topography displays evidence of modification by ablation, flow, and wind and is consistent with a primarily H2O composition. Correlation of topography with images suggests that the cap was more spatially extensive in the past. The cap volume of 1.2 x 10(6) to 1.7 x 10(6) cubic kilometers is about half that of the Greenland ice cap. Clouds observed over the polar cap are likely composed of CO2 that condensed out of the atmosphere during northern hemisphere winter. Many clouds exhibit dynamical structure likely caused by the interaction of propagating wave fronts with surface topography.

  17. Polar Motion Studies and NOAA's Legacy of International Scientific Cooperation: Ukiah and Gaithersburg Latitude Observatories

    NASA Astrophysics Data System (ADS)

    Caccamise, D. J., II; Stone, W. A.

    2017-12-01

    In 1895, the International Geodetic Association invited the United States Coast and Geodetic Survey (USC&GS) to join in an unprecedented international effort to observe and measure the earth's polar motion. This effort was in response to the American astronomer Seth C. Chandler Jr. announcing his 1891 discovery that the earth's axis of rotation—and hence the direction of true north—wobbles within the earth with a period of about 14 months, varying latitude everywhere on the globe. In 1899, two astro-geodetic observatories were built in Gaithersburg, Maryland and Ukiah, California with three others in Caloforte, Italy; Kitab, Russia (now Uzbekistan); and Mizusawa, Japan. (A sixth station was located and operated at an astronomical observatory in Cincinnati, Ohio until 1916 using instruments loaned by USC&GS). All five observatories were located along the same parallel - approximately 35 degrees - 8 minutes. The observatories were decommissioned in 1982, and subsequently, NOAA deeded the two remaining U.S. observatories to the cities of Gaithersburg and Ukiah. The observatories and adjacent property were to be used as parkland. Both cities have restored the observatories and opened public parks. Recently, Gaithersburg (Ukiah in progress) has had its latitude observatory dedicated as a National Historic Landmark. In 2014-15, the National Geodetic Survey (NGS, the present-day NOAA successor to the USC&GS) loaned the original zenith telescopes to the communities, returning the observatories to their original configuration. The contribution of NOAA observers and the data collected is still important to astronomers and geophysicists and has practical applications in spacecraft navigation and geospatial positioning. This poster will bring to fruition this multiyear effort among partners by providing examples of NOAA's mission and contribution to science, service, and stewardship at both geodetic observatories, through programs and historic exhibits for students and the

  18. Update of the Polar SWIFT model for polar stratospheric ozone loss (Polar SWIFT version 2)

    NASA Astrophysics Data System (ADS)

    Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2017-07-01

    The Polar SWIFT model is a fast scheme for calculating the chemistry of stratospheric ozone depletion in polar winter. It is intended for use in global climate models (GCMs) and Earth system models (ESMs) to enable the simulation of mutual interactions between the ozone layer and climate. To date, climate models often use prescribed ozone fields, since a full stratospheric chemistry scheme is computationally very expensive. Polar SWIFT is based on a set of coupled differential equations, which simulate the polar vortex-averaged mixing ratios of the key species involved in polar ozone depletion on a given vertical level. These species are O3, chemically active chlorine (ClOx), HCl, ClONO2 and HNO3. The only external input parameters that drive the model are the fraction of the polar vortex in sunlight and the fraction of the polar vortex below the temperatures necessary for the formation of polar stratospheric clouds. Here, we present an update of the Polar SWIFT model introducing several improvements over the original model formulation. In particular, the model is now trained on vortex-averaged reaction rates of the ATLAS Chemistry and Transport Model, which enables a detailed look at individual processes and an independent validation of the different parameterizations contained in the differential equations. The training of the original Polar SWIFT model was based on fitting complete model runs to satellite observations and did not allow for this. A revised formulation of the system of differential equations is developed, which closely fits vortex-averaged reaction rates from ATLAS that represent the main chemical processes influencing ozone. In addition, a parameterization for the HNO3 change by denitrification is included. The rates of change of the concentrations of the chemical species of the Polar SWIFT model are purely chemical rates of change in the new version, whereas in the original Polar SWIFT model, they included a transport effect caused by the

  19. Investigating Type I Polar Stratospheric Cloud Formation Mechanisms with POAM Satellite Observations

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Drdla, K.; Fromm, M.; Hoppel, K.; Browell, E.; Hamill, P.; Dempsey, D.; Gore, Warren J. (Technical Monitor)

    2001-01-01

    Type Ia PSCs are believed to be composed of nitric acid hydrate particles. Recent results from the SOLVE/THESEO 2000 campaign showed evidence that this type of PSC was composed of a small number of very large particles capable of sedimentary denitrification of regions of the stratosphere. It is unknown whether homogeneous or heterogeneous nucleation is responsible for the formation of these PSCs. Arctic winters are tending to be colder in response to global tropospheric warming. The degree to which this influences ozone depletion will depend on the freezing mechanism of nitric acid hydrate particles. If nucleation is homogeneous it implies that the freezing process is an inherent property of the particle, while heterogeneous freezing means that the extent of PSCs will depend in part on the number of nuclei available. The Polar Ozone and Aerosol Measurement (POAM)II and III satellites have been making observations of stratospheric aerosols and Polar Stratospheric Clouds (PSCs) since 1994. Recently, we have developed a technique that can discriminate between Type Ia and Ib PSCs using these observations. A statistical approach is employed to demonstrate the robustness of this approach and results are compared with lidar measurements. The technique is used to analyze observations from POAM II and II during Northern Hemisphere winters where significant PSC formation occurred with the objective of exploring Type I PSC formation mechanisms. The different PSCs identified using this method exhibit different growth curve as expressed as extinction versus temperature.

  20. Multiple-Station Observation of Frequency Dependence and Polarization Characteristics of ELF/VLF waves generated via Ionospheric Modification

    NASA Astrophysics Data System (ADS)

    Maxworth, A. S.; Golkowski, M.; Cohen, M.; Moore, R. C.

    2014-12-01

    Generation of Extremely Low Frequency (ELF) and Very Low Frequency (VLF) signals through ionospheric modification has been practiced for many years. Heating the lower ionosphere with high power HF waves allows for modulation of natural current systems. Our experiments were carried out at the High Frequency Active Auroral Research Program (HAARP) facility in Alaska, USA. In this experiment, the ionosphere was heated with a vertical amplitude modulating signal and the modulation frequency was changed sequentially within an array of 40 frequencies followed by a frequency ramp. The observed magnetic field amplitude and polarization of the generated ELF/VLF signals were analyzed for multiple sites and as a function of modulation frequency. Our three observation sites: Chistochina, Paxson and Paradise are located within 36km (azimuth 47.7°), 50.2km (azimuth -20°) and 99km (azimuth 80.3°) respectively. We show that the peak amplitudes observed as a function of frequency result from vertical resonance in the Earth-ionosphere waveguide and can be used to diagnose the D-region profile. Polarization analysis showed that out of the three sites Paxson shows the highest circularity in the magnetic field polarization, compared to Chistochina and Paradise which show highly linear polarizations. The experimental results were compared with a theoretical simulation model results and it was clear that in both cases, the modulated Hall current dominates the observed signals at Chistochina and Paradise sites and at Paxson there is an equal contribution from Hall and Pedersen currents. The Chistochina site shows the highest magnetic field amplitudes in both experimental and simulation environments. Depending upon the experimental and simulation observations at the three sites, a radiation pattern for the HAARP ionospheric heater can be mapped

  1. Software package for modeling spin-orbit motion in storage rings

    NASA Astrophysics Data System (ADS)

    Zyuzin, D. V.

    2015-12-01

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 106-109 particles in a beam during 109 turns in an accelerator (about 1012-1015 integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin-orbit dynamics.

  2. Derivation of the Boltzmann Equation for Financial Brownian Motion: Direct Observation of the Collective Motion of High-Frequency Traders.

    PubMed

    Kanazawa, Kiyoshi; Sueshige, Takumi; Takayasu, Hideki; Takayasu, Misako

    2018-03-30

    A microscopic model is established for financial Brownian motion from the direct observation of the dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical framework parallel to molecular kinetic theory is developed for the systematic description of the financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of traders' trend-following behavior by tracking the trajectories of all individuals, which quantifies the collective motion of HFTs but has not been captured in conventional order-book models. We next introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling molecular kinetic theory: Boltzmann-like and Langevin-like equations are derived from the microscopic dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic model that has been directly validated through data analysis of the microscopic dynamics, exhibiting quantitative agreements with mesoscopic and macroscopic empirical results.

  3. Derivation of the Boltzmann Equation for Financial Brownian Motion: Direct Observation of the Collective Motion of High-Frequency Traders

    NASA Astrophysics Data System (ADS)

    Kanazawa, Kiyoshi; Sueshige, Takumi; Takayasu, Hideki; Takayasu, Misako

    2018-03-01

    A microscopic model is established for financial Brownian motion from the direct observation of the dynamics of high-frequency traders (HFTs) in a foreign exchange market. Furthermore, a theoretical framework parallel to molecular kinetic theory is developed for the systematic description of the financial market from microscopic dynamics of HFTs. We report first on a microscopic empirical law of traders' trend-following behavior by tracking the trajectories of all individuals, which quantifies the collective motion of HFTs but has not been captured in conventional order-book models. We next introduce the corresponding microscopic model of HFTs and present its theoretical solution paralleling molecular kinetic theory: Boltzmann-like and Langevin-like equations are derived from the microscopic dynamics via the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy. Our model is the first microscopic model that has been directly validated through data analysis of the microscopic dynamics, exhibiting quantitative agreements with mesoscopic and macroscopic empirical results.

  4. Uranus' post-equinox north polar brightening characterized with 2013 and 2016 IRTF SpeX observation

    NASA Astrophysics Data System (ADS)

    Fry, Patrick M.; Sromovsky, Lawrence A.

    2017-10-01

    Since its 2007 equinox, the atmosphere of Uranus, as seen in the near infrared (~800-1600 nm) has exhibited dramatic changes. Its southern polar cap, prominent prior to equinox, has faded and a similar polar cap has begun developing in the north. Karkoschka and Tomasko (2009, Icarus 202:287) demonstrated that in 2002 the south polar region, brighter than lower latitude regions when viewed at wavelengths of intermediate methane absorption, was depleted in methane compared to darker regions. Tice et al. (2013, Icarus 223:684) and Sromovsky et al. (2014, Icarus 238:137) concluded that the northern polar regions were similarly depleted. The north polar region (45N-90N) has continued to brighten; modeling of 2015 HST STIS observations (Fry et al. 2016, AAS DPS #48 421.03) suggested that the latitudinal methane distribution has remained essentially unchanged since equinox, but brightening from 2012 to 2015 was due to changes in aerosol scattering. We acquired 0.8-2.5 μm SpeX spectra in 2013 (central meridian) and 2016 (pole-aligned spectra at 0, 0.4, 0.8, and 1.2 arcsec. distant from the CM) under similar seeing conditions (0.4-0.5 arcsec.). The SpeX wavelength range gives us an additional wavelength region where H2 absorption competes with or exceeds CH4 absorption, and a wider wavelength range to characterize aerosol particle properties, compared to STIS. The multiple spectra in 2016 allow us to compare specific latitudes to 2013 at the same view angles (and to use center-to-limb constraints in modeling 2016 spectra). We will present observations, reduction procedures, comparative (2013 vs 2016) modeling of latitudinal methane abundance and vertical aerosol profiles, and compare to 2012/2015 STIS analysis. Preliminary analysis shows that lower latitudes (~30N) have not changed since 2013, but higher latitudes (~70N) have undergone continued significant brightening at pseudo-continuum wavelengths dominated by both H2 (1080 nm, up ~50%) and CH4 (1290 nm, also up ~50

  5. Twilight Limb Observations of the Martian North Polar Hood by MAVEN IUVS

    NASA Astrophysics Data System (ADS)

    Lo, Daniel; Yelle, Roger; Schneider, Nicholas M.; Jain, Sonal Kumar; Stewart, Ian; Deighan, Justin; Stiepen, Arnaud; Evans, Scott; Stevens, Michael H.; Chaffin, Michael S.; Crismani, Matteo; McClintock, William; Clarke, John T.; Holsclaw, Gregory; Lefevre, Franck; Jacosky, Bruce

    2016-10-01

    In northern winter, a broad distribution of ice aerosols appears in the north polar atmosphere of Mars, commonly referred to as the North Polar Hood (NPH). The NPH is thought to be formed as a result of condensation from lowered temperatures associated with both seasonal and diurnal variations in solar heating. The spatial extent and density of the NPH is highly variable, with a maximum latitudinal extent spanning 30-80°N, and a maximum density at 10-30 km altitude.The NPH has been extensively observed by both ground-based telescopes and instruments in orbit around Mars. However, the majority of these observations are nadir-pointing. This observation geometry has two significant limitations. Firstly, they poorly probe the vertical structure of the NPH. Secondly, column densities are determined by monitoring the intensity of various spectral features associated with the ice composing the NPH, against a strong background with similar features from the frost that has condensed on the surface in the winter season, resulting in low sensitivities. Limb observations removes both limitations, allowing us to study the vertical distribution of the aerosols that make up the NPH at high sensitivities.We present new limb observations of the NPH by IUVS (Imaging Ultraviolet Spectrograph) on the MAVEN (Mars Atmospheric and Volatile Evolution) spacecraft. These observations represent the first ultraviolet limb observations of the NPH, opening a new window for understanding the structure and composition of the NPH. The observations are also of the twilight limb, with sunlight being scattered from the dayside into the nightside over large solar zenith angles. This illumination geometry allows us to avoid the high dayside intensities that would drown out the signal from the thinner sections of the NPH. We determine the latitudinal extent of the NPH to be 30-60°N. We also find that an exponential altitude distribution of aerosols is able to reproduce the observed intensities, with a

  6. Observations from earth orbit and variability of the polar aurora on Jupiter

    NASA Technical Reports Server (NTRS)

    Clarke, J. T.; Moos, H. W.; Atreya, S. K.; Lane, A. L.

    1980-01-01

    Spatially resolved spectra of Jupiter taken with the International Ultraviolet Explorer satellite show enhanced emissions from the polar regions at H L-alpha (1216 A) and in the Lyman and Werner bands of H2 (1175-1650 A). Two types of variability in emission brightness have been observed in these aurorae: an increase in the observed emission as the auroral oval rotates with Jupiter's magnetic pole to face toward the earth and a general variation in brightness of more than an order of magnitude under nearly identical observing conditions. In addition, the spectral character of these aurorae (determined by the ratio of H L-alpha to H2 brightnesses) appears variable, indicating that the depth of penetration of the auroral particles is not constant.

  7. Focal Mechanisms From Moment Tensor Solutions and First Motion Polarities of Shallow to Deep Local Earthquakes in Eastern Nepal and Southern Tibet

    NASA Astrophysics Data System (ADS)

    de La Torre, T. L.; Sheehan, A. F.; Monsalve, G.; Wu, F.

    2004-12-01

    We determined focal mechanisms using waveforms and first motion polarities from local earthquakes recorded during the Himalayan Nepal Tibet Seismic Experiment (HIMNT). The HIMNT experiment included the deployment of 28 broad band seismometers in eastern Nepal and southern Tibet from September 2001 to April 2003. Using a regional moment tensor method (Ammon and Randall, 2001) and first motion polarities for displaying double-couple focal mechanisms (Snokes, 2003), we analyzed the fault plane solutions at three distinct zones of seismicity. Characteristic focal mechanisms in seismically concentrated areas may indicate the presence of fault ramps or a decollement in the Himalayan collision zone. Previous studies of focal mechanisms on the Tibetan Plateau predominantly indicate east-west extension and shallow thrusting at the Himalayan collision zone for shallow to intermediate earthquakes (Ni and Barazangi, 1984; Molnar and Lyon-Caen, 1989; Randall et al., 1995) and east-west extension for intermediate to deep earthquakes (Zhu and Helmberger, 1996; Chen and Yang, 2004). The first zone in southeast Nepal between the Main Boundary and Main Frontal faults consist of earthquakes < Mw 4.0 at depths 40 - 60 km near the epicenter of the 1988 Udaypur earthquake, Mb 6.1, depth 57 km. The second zone north of the Main Central Thrust outcrop in eastern Nepal consists of 14 earthquakes 3.0 - 5.0 Mw at depths < 30 km that indicate north-south strike normal faulting and east-west strike thrust faulting. The third zone is an arc parallel to the Himalayas in southern Tibet and a cluster in northeast Nepal. This zone consists of 45 earthquakes < 4.0 Mw at depths > 50 km. Four earthquakes indicate northwest-southeast compression resulting in northeast strike strike-slip faulting while one earthquake in the northeast cluster indicates east-west compression at a source depth below the crust-mantle boundary. Focal mechanisms from full waveform moment tensor inversions are cross checked

  8. Observation instrument of dynamic frictional interface of gel engineering materials with polarized optical microscopic

    NASA Astrophysics Data System (ADS)

    Yamada, Naoya; Wada, Masato; Kabir, M. Hasnat; Gong, Jin; Furukawa, Hidemitsu

    2013-03-01

    Gels are soft and wet materials that differ from hard and dry materials like metals, plastics and ceramics. These have some unique characteristic such as low frictional properties, high water content and materials permeability. A decade earlier, DN gels having a mechanical strength of 30MPa of the maximum breaking stress in compression was developed and it is a prospective material as the biomaterial of the human body. Indeed it frictional coefficient and mechanical strength are comparable to our cartilages. In this study, we focus on the dynamic frictional interface of hydrogels and aim to develop a new apparatus with a polarization microscope for observation. The dynamical interface is observed by the friction of gel and glass with hudroxypropylcellulose (HPC) polymer solution sandwiching. At the beginning, we rubbed hydrogel and glass with HPC solution sandwiching on stage of polarization microscope. Second step, we designed a new system which combined microscope with friction measuring machine. The comparison between direct observation with this instrument and measurement of friction coefficient will become a foothold to elucidate distinctive frictional phenomena that can be seen in soft and wet materials.

  9. Lunar true polar wander inferred from polar hydrogen.

    PubMed

    Siegler, M A; Miller, R S; Keane, J T; Laneuville, M; Paige, D A; Matsuyama, I; Lawrence, D J; Crotts, A; Poston, M J

    2016-03-24

    The earliest dynamic and thermal history of the Moon is not well understood. The hydrogen content of deposits near the lunar poles may yield insight into this history, because these deposits (which are probably composed of water ice) survive only if they remain in permanent shadow. If the orientation of the Moon has changed, then the locations of the shadowed regions will also have changed. The polar hydrogen deposits have been mapped by orbiting neutron spectrometers, and their observed spatial distribution does not match the expected distribution of water ice inferred from present-day lunar temperatures. This finding is in contrast to the distribution of volatiles observed in similar thermal environments at Mercury's poles. Here we show that polar hydrogen preserves evidence that the spin axis of the Moon has shifted: the hydrogen deposits are antipodal and displaced equally from each pole along opposite longitudes. From the direction and magnitude of the inferred reorientation, and from analysis of the moments of inertia of the Moon, we hypothesize that this change in the spin axis, known as true polar wander, was caused by a low-density thermal anomaly beneath the Procellarum region. Radiogenic heating within this region resulted in the bulk of lunar mare volcanism and altered the density structure of the Moon, changing its moments of inertia. This resulted in true polar wander consistent with the observed remnant polar hydrogen. This thermal anomaly still exists and, in part, controls the current orientation of the Moon. The Procellarum region was most geologically active early in lunar history, which implies that polar wander initiated billions of years ago and that a large portion of the measured polar hydrogen is ancient, recording early delivery of water to the inner Solar System. Our hypothesis provides an explanation for the antipodal distribution of lunar polar hydrogen, and connects polar volatiles to the geologic and geophysical evolution of the Moon

  10. Rotational and Translational Components of Motion Parallax: Observers' Sensitivity and Implications for Three-Dimensional Computer Graphics

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Montegut, Michael J.; Proffitt, Dennis R.

    1995-01-01

    The motion of objects during motion parallax can be decomposed into 2 observer-relative components: translation and rotation. The depth ratio of objects in the visual field is specified by the inverse ratio of their angular displacement (from translation) or equivalently by the inverse ratio of their rotations. Despite the equal mathematical status of these 2 information sources, it was predicted that observers would be far more sensitive to the translational than rotational component. Such a differential sensitivity is implicitly assumed by the computer graphics technique billboarding, in which 3-dimensional (3-D) objects are drawn as planar forms (i.e., billboards) maintained normal to the line of sight. In 3 experiments, observers were found to be consistently less sensitive to rotational anomalies. The implications of these findings for kinetic depth effect displays and billboarding techniques are discussed.

  11. IRTM brightness temperature maps of the Martian south polar region during the polar night: The cold spots don't move

    NASA Technical Reports Server (NTRS)

    Paige, D. A.; Crisp, D.; Santee, M. L.; Richardson, M. I.

    1993-01-01

    A series of infrared thermal mapper (IRTM) south polar brightness temperature maps obtained by Viking Orbiter 2 during a 35-day period during the southern fall season in 1978 was examined. The maps show a number of phenomena that have been identified in previous studies, including day to day brightness temperature variations in individual low temperature regions and the tendency for IRTM 11-micron channel brightness temperatures to also decrease in regions where low 20-micron channel brightness temperatures are observed. The maps also show new phenomena, the most striking of which is a clear tendency for the low brightness temperature regions to occur at fixed geographic regions. During this season, the coldest low brightness temperatures appear to be concentrated in distinct regions, with spatial scales ranging from 50 to 300 km. There are approximately a dozen of these concentrations, with the largest centered near the location of the south residual polar cap. Other concentrations are located at Cavi Angusti and close to the craters Main, South, Lau, and Dana. Broader, less intense regions appear to be well correlated with the boundaries of the south polar layered deposits and the Mountains of Mitchell. No evidence for horizontal motion of any of these regions has been detected.

  12. Strong-motion observations of the M 7.8 Gorkha, Nepal, earthquake sequence and development of the N-shake strong-motion network

    USGS Publications Warehouse

    Dixit, Amod; Ringler, Adam; Sumy, Danielle F.; Cochran, Elizabeth S.; Hough, Susan E.; Martin, Stacey; Gibbons, Steven; Luetgert, James H.; Galetzka, John; Shrestha, Surya; Rajaure, Sudhir; McNamara, Daniel E.

    2015-01-01

    We present and describe strong-motion data observations from the 2015 M 7.8 Gorkha, Nepal, earthquake sequence collected using existing and new Quake-Catcher Network (QCN) and U.S. Geological Survey NetQuakes sensors located in the Kathmandu Valley. A comparison of QCN data with waveforms recorded by a conventional strong-motion (NetQuakes) instrument validates the QCN data. We present preliminary analysis of spectral accelerations, and peak ground acceleration and velocity for earthquakes up to M 7.3 from the QCN stations, as well as preliminary analysis of the mainshock recording from the NetQuakes station. We show that mainshock peak accelerations were lower than expected and conclude the Kathmandu Valley experienced a pervasively nonlinear response during the mainshock. Phase picks from the QCN and NetQuakes data are also used to improve aftershock locations. This study confirms the utility of QCN instruments to contribute to ground-motion investigations and aftershock response in regions where conventional instrumentation and open-access seismic data are limited. Initial pilot installations of QCN instruments in 2014 are now being expanded to create the Nepal–Shaking Hazard Assessment for Kathmandu and its Environment (N-SHAKE) network.

  13. Successive X-class Flares and Coronal Mass Ejections Driven by Shearing Motion and Sunspot Rotation in Active Region NOAA 12673

    NASA Astrophysics Data System (ADS)

    Yan, X. L.; Wang, J. C.; Pan, G. M.; Kong, D. F.; Xue, Z. K.; Yang, L. H.; Li, Q. L.; Feng, X. S.

    2018-03-01

    We present a clear case study on the occurrence of two successive X-class flares, including a decade-class flare (X9.3) and two coronal mass ejections (CMEs) triggered by shearing motion and sunspot rotation in active region NOAA 12673 on 2017 September 6. A shearing motion between the main sunspots with opposite polarities began on September 5 and lasted even after the second X-class flare on September 6. Moreover, the main sunspot with negative polarity rotated around its umbral center, and another main sunspot with positive polarity also exhibited a slow rotation. The sunspot with negative polarity at the northwest of the active region also began to rotate counterclockwise before the onset of the first X-class flare, which is related to the formation of the second S-shaped structure. The successive formation and eruption of two S-shaped structures were closely related to the counterclockwise rotation of the three sunspots. The existence of a flux rope is found prior to the onset of two flares by using nonlinear force-free field extrapolation based on the vector magnetograms observed by Solar Dynamics Observatory/Helioseismic and Magnetic Image. The first flux rope corresponds to the first S-shaped structures mentioned above. The second S-shaped structure was formed after the eruption of the first flux rope. These results suggest that a shearing motion and sunspot rotation play an important role in the buildup of the free energy and the formation of flux ropes in the corona that produces solar flares and CMEs.

  14. Software package for modeling spin–orbit motion in storage rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zyuzin, D. V., E-mail: d.zyuzin@fz-juelich.de

    2015-12-15

    A software package providing a graphical user interface for computer experiments on the motion of charged particle beams in accelerators, as well as analysis of obtained data, is presented. The software package was tested in the framework of the international project on electric dipole moment measurement JEDI (Jülich Electric Dipole moment Investigations). The specific features of particle spin motion imply the requirement to use a cyclic accelerator (storage ring) consisting of electrostatic elements, which makes it possible to preserve horizontal polarization for a long time. Computer experiments study the dynamics of 10{sup 6}–10{sup 9} particles in a beam during 10{supmore » 9} turns in an accelerator (about 10{sup 12}–10{sup 15} integration steps for the equations of motion). For designing an optimal accelerator structure, a large number of computer experiments on polarized beam dynamics are required. The numerical core of the package is COSY Infinity, a program for modeling spin–orbit dynamics.« less

  15. Experimental observation of left polarized wave absorption near electron cyclotron resonance frequency in helicon antenna produced plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barada, Kshitish K.; Chattopadhyay, P. K.; Ghosh, J.

    2013-01-15

    Asymmetry in density peaks on either side of an m = +1 half helical antenna is observed both in terms of peak position and its magnitude with respect to magnetic field variation in a linear helicon plasma device [Barada et al., Rev. Sci. Instrum. 83, 063501 (2012)]. The plasma is produced by powering the m = +1 half helical antenna with a 2.5 kW, 13.56 MHz radio frequency source. During low magnetic field (B < 100 G) operation, plasma density peaks are observed at critical magnetic fields on either side of the antenna. However, the density peaks occurred at differentmore » critical magnetic fields on both sides of antenna. Depending upon the direction of the magnetic field, in the m = +1 propagation side, the main density peak has been observed around 30 G of magnetic field. On this side, the density peak around 5 G corresponding to electron cyclotron resonance (ECR) is not very pronounced, whereas in the m = -1 propagation side, very pronounced ECR peak has been observed around 5 G. Another prominent density peak around 12 G has also been observed in m = -1 side. However, no peak has been observed around 30 G on this m = -1 side. This asymmetry in the results on both sides is explained on the basis of polarization reversal of left hand polarized waves to right hand polarized waves and vice versa in a bounded plasma system. The density peaking phenomena are likely to be caused by obliquely propagating helicon waves at the resonance cone boundary.« less

  16. A slowly moving foreground can capture an observer's self-motion--a report of a new motion illusion: inverted vection.

    PubMed

    Nakamura, S; Shimojo, S

    2000-01-01

    We investigated interactions between foreground and background stimuli during visually induced perception of self-motion (vection) by using a stimulus composed of orthogonally moving random-dot patterns. The results indicated that, when the foreground moves with a slower speed, a self-motion sensation with a component in the same direction as the foreground is induced. We named this novel component of self-motion perception 'inverted vection'. The robustness of inverted vection was confirmed using various measures of self-motion sensation and under different stimulus conditions. The mechanism underlying inverted vection is discussed with regard to potentially relevant factors, such as relative motion between the foreground and background, and the interaction between the mis-registration of eye-movement information and self-motion perception.

  17. Physical Conditions in the Solar Corona Derived from the Total Solar Eclipse Observations obtained on 2017 August 21 Using a Polarization Camera

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Yashiro, Seiji; Reginald, Nelson; Thakur, Neeharika; Thompson, Barbara J.; Gong, Qian

    2018-01-01

    We present preliminary results obtained by observing the solar corona during the 2017 August 21 total solar eclipse using a polarization camera mounted on an eight-inch Schmidt-Cassegrain telescope. The observations were made from Madras Oregon during 17:19 to 17:21 UT. Total and polarized brightness images were obtained at four wavelengths (385, 398.5, 410, and 423 nm). The polarization camera had a polarization mask mounted on a 2048x2048 pixel CCD with a pixel size of 7.4 microns. The resulting images had a size of 975x975 pixels because four neighboring pixels were summed to yield the polarization and total brightness images. The ratio of 410 and 385 nm images is a measure of the coronal temperature, while that at 423 and 398.5 nm images is a measure of the coronal flow speed. We compared the temperature map from the eclipse observations with that obtained from the Solar Dynamics Observatory’s Atmospheric Imaging Assembly images at six EUV wavelengths, yielding consistent temperature information of the corona.

  18. EOP and scale from continuous VLBI observing: CONT campaigns to future VGOS networks

    NASA Astrophysics Data System (ADS)

    MacMillan, D. S.

    2017-07-01

    Continuous (CONT) VLBI campaigns have been carried out about every 3 years since 2002. The basic idea of these campaigns is to acquire state-of-the-art VLBI data over a continuous time period of about 2 weeks to demonstrate the highest accuracy of which the current VLBI system is capable. In addition, these campaigns support scientific studies such as investigations of high-resolution Earth rotation, reference frame stability, and daily to sub-daily site motions. The size of the CONT networks and the observing data rate have increased steadily since 1994. Performance of these networks based on reference frame scale precision and polar motion/LOD comparison with global navigation satellite system (GNSS) earth orientation parameters (EOP) has been substantially better than the weekly operational R1 and R4 series. The precisions of CONT EOP and scale have improved by more than a factor of two since 2002. Polar motion precision based on the WRMS difference between VLBI and GNSS for the most recent CONT campaigns is at the 30 μas level, which is comparable to that of GNSS. The CONT campaigns are a natural precursor to the planned future VLBI observing networks, which are expected to observe continuously. We compare the performance of the most recent CONT campaigns in 2011 and 2014 with the expected performance of the future VLBI global observing system network using simulations. These simulations indicate that the expected future precision of scale and EOP will be at least 3 times better than the current CONT precision.

  19. Optic Flow Dominates Visual Scene Polarity in Causing Adaptive Modification of Locomotor Trajectory

    NASA Technical Reports Server (NTRS)

    Nomura, Y.; Mulavara, A. P.; Richards, J. T.; Brady, R.; Bloomberg, Jacob J.

    2005-01-01

    Locomotion and posture are influenced and controlled by vestibular, visual and somatosensory information. Optic flow and scene polarity are two characteristics of a visual scene that have been identified as being critical in how they affect perceived body orientation and self-motion. The goal of this study was to determine the role of optic flow and visual scene polarity on adaptive modification in locomotor trajectory. Two computer-generated virtual reality scenes were shown to subjects during 20 minutes of treadmill walking. One scene was a highly polarized scene while the other was composed of objects displayed in a non-polarized fashion. Both virtual scenes depicted constant rate self-motion equivalent to walking counterclockwise around the perimeter of a room. Subjects performed Stepping Tests blindfolded before and after scene exposure to assess adaptive changes in locomotor trajectory. Subjects showed a significant difference in heading direction, between pre and post adaptation stepping tests, when exposed to either scene during treadmill walking. However, there was no significant difference in the subjects heading direction between the two visual scene polarity conditions. Therefore, it was inferred from these data that optic flow has a greater role than visual polarity in influencing adaptive locomotor function.

  20. Reconstruction of the IMF polarity using midlatitude geomagnetic observations in the nineteenth century

    NASA Astrophysics Data System (ADS)

    Vokhmyanin, M. V.; Ponyavin, D. I.

    2016-12-01

    The interplanetary magnetic field (IMF) By component affects the configuration of field-aligned currents (FAC) whose geomagnetic response is observed from high to low latitudes. The ground magnetic perturbations induced by FACs are opposite on the dawnside and duskside and depend upon the IMF By polarity. Based on the multilinear regression analysis, we show that this effect is presented at the midlatitude observatories, Niemegk and Arti, in the X and Y components of the geomagnetic field. This allows us to infer the IMF sector structure from the old geomagnetic records made at Ekaterinburg and Potsdam since 1850 and 1890, respectively. Geomagnetic data from various stations provide proxies of the IMF polarity which coincide for the most part of the nineteenth and twentieth centuries. This supports their reliabilities and makes them suitable for studying the large-scale IMF sector structure in the past.

  1. The structure and phase of cloud tops as observed by polarization lidar

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Hansen, M. Z.; Simpson, J.

    1983-01-01

    High-resolution observations of the structure of cloud tops have been obtained with polarization lidar operated from a high altitude aircraft. Case studies of measurements acquired from cumuliform cloud systems are presented, two from September 1979 observations in the area of Florida and adjacent waters and a third during the May 1981 CCOPE experiment in southeast Montana. Accurate cloud top height structure and relative density of hydrometers are obtained from the lidar return signal intensity. Correlation between the signal return intensity and active updrafts was noted. Thin cirrus overlying developing turrets was observed in some cases. Typical values of the observed backscatter cross section were 0.1-5 (km/sr) for cumulonimbus tops. The depolarization ratio of the lidar signals was a function of the thermodynamic phase of cloud top areas. An increase of the cloud top depolarization with decreasing temperature was found for temperatures above and below -40 C.

  2. Applications of PTTI to new techniques for determining crustal movements, polar motion, and the rotation of the earth

    NASA Technical Reports Server (NTRS)

    Bender, P. L.

    1974-01-01

    New extra-terrestrial techniques are discussed for geodesy and geodynamics include laser range measurements to the moon or to artificial satellites, Doppler measurements with the Transit satellite system, and both independent-clock and linked-antenna microwave interferometry. The ways in which PTTI measurements are used in these techniques will be reviewed, and the accuracies expected during the latter half of the 1970's will be discussed. At least 3 of the techniques appear capable of giving accuracies of 5 cm or better in each coordinate for many points on the earth's surface, and comparable accuracies for the earth's rotation and polar motion. For fixed stations or for sites a few hundred km apart, baseline lengths accurate to 1 cm may be achieved. Ways in which the complementary aspects of the different techniques can be exploited will be discussed, as well as how they tie in with improved ground techniques for determining crustal movements. Some recent results from the extra-terrestrial methods will be mentioned.

  3. Cooling a magnetic nanoisland by spin-polarized currents.

    PubMed

    Brüggemann, J; Weiss, S; Nalbach, P; Thorwart, M

    2014-08-15

    We investigate cooling of a vibrational mode of a magnetic quantum dot by a spin-polarized tunneling charge current exploiting the magnetomechanical coupling. The spin-polarized current polarizes the magnetic nanoisland, thereby lowering its magnetic energy. At the same time, Ohmic heating increases the vibrational energy. A small magnetomechanical coupling then permits us to remove energy from the vibrational motion and cooling is possible. We find a reduction of the vibrational energy below 50% of its equilibrium value. The lowest vibration temperature is achieved for a weak electron-vibration coupling and a comparable magnetomechanical coupling. The cooling rate increases at first with the magnetomechanical coupling and then saturates.

  4. Observations on Polar Coding with CRC-Aided List Decoding

    DTIC Science & Technology

    2016-09-01

    9 v 1. INTRODUCTION Polar codes are a new type of forward error correction (FEC) codes, introduced by Arikan in [1], in which he...error correction (FEC) currently used and planned for use in Navy wireless communication systems. The project’s results from FY14 and FY15 are...good error- correction per- formance. We used the Tal/Vardy method of [5]. The polar encoder uses a row vector u of length N . Let uA be the subvector

  5. Directional topographic site response at Tarzana observed in aftershocks of the 1994 Northridge, California, earthquake: Implications for mainshock motions

    USGS Publications Warehouse

    Spudich, P.; Hellweg, M.; Lee, W.H.K.

    1996-01-01

    The Northridge earthquake caused 1.78 g acceleration in the east-west direction at a site in Tarzana, California, located about 6 km south of the mainshock epicenter. The accelerograph was located atop a hill about 15-m high, 500-m long, and 130-m wide, striking about N78??E. During the aftershock sequence, a temporary array of 21 three-component geophones was deployed in six radial lines centered on the accelerograph, with an average sensor spacing of 35 m. Station COO was located about 2 m from the accelerograph. We inverted aftershock spectra to obtain average relative site response at each station as a function of direction of ground motion. We identified a 3.2-Hz resonance that is a transverse oscillation of the hill (a directional topographic effect). The top/base amplification ratio at 3.2 Hz is about 4.5 for horizontal ground motions oriented approximately perpendicular to the long axis of the hill and about 2 for motions parallel to the hill. This resonance is seen most strongly within 50 m of COO. Other resonant frequencies were also observed. A strong lateral variation in attenuation, probably associated with a fault, caused substantially lower motion at frequencies above 6 Hz at the east end of the hill. There may be some additional scattered waves associated with the fault zone and seen at both the base and top of the hill, causing particle motions (not spectral ratios) at the top of the hill to be rotated about 20?? away from the direction transverse to the hill. The resonant frequency, but not the amplitude, of our observed topographic resonance agrees well with theory, even for such a low hill. Comparisons of our observations with theoretical results indicate that the 3D shape of the hill and its internal structure are important factors affecting its response. The strong transverse resonance of the hill does not account for the large east-west mainshock motions. Assuming linear soil response, mainshock east-west motions at the Tarzana accelerograph

  6. Determination of Focal Mechanisms of Non-Volcanic Tremors Based on S-Wave Polarization Data Corrected for the Effects of Anisotropy

    NASA Astrophysics Data System (ADS)

    Imanishi, K.; Uchide, T.; Takeda, N.

    2014-12-01

    We propose a method to determine focal mechanisms of non-volcanic tremors (NVTs) based on S-wave polarization angles. The successful retrieval of polarization angles in low S/N tremor signals owes much to the observation that NVTs propagate slowly and therefore they do not change their location immediately. This feature of NVTs enables us to use a longer window to compute a polarization angle (e.g., one minute or longer), resulting in a stack of particle motions. Following Zhang and Schwartz (1994), we first correct for the splitting effect to recover the source polarization angle (anisotropy-corrected angle). This is a key step, because shear-wave splitting distorts the particle motion excited by a seismic source. We then determine the best double-couple solution using anisotropy-corrected angles of multiple stations. The present method was applied to a tremor sequence at Kii Peninsula, southwest Japan, which occurred at the beginning of April 2013. A standard splitting and polarization analysis were subject to a one-minute-long moving window to determine the splitting parameters as well as anisotropy-corrected angles. A grid search approach was performed at each hour to determine the best double-couple solution satisfying one-hour average polarization angles. Most solutions show NW-dipping low-angle planes consistent with the plate boundary or SE-dipping high-angle planes. Because of 180 degrees ambiguity in polarization angles, the present method alone cannot distinguish compressional quadrant from dilatational one. Together with the observation of very low-frequency earthquakes near the present study area (Ito et al., 2007), it is reasonable to consider that they represent shear slip on low-angle thrust faults. It is also noted that some of solutions contain strike-slip component. Acknowledgements: Seismograph stations used in this study include permanent stations operated by NIED (Hi-net), JMA, Earthquake Research Institute, together with Geological Survey of

  7. Advancing Environmental Prediction Capabilities for the Polar Regions and Beyond during The Year of Polar Prediction

    NASA Astrophysics Data System (ADS)

    Werner, Kirstin; Goessling, Helge; Hoke, Winfried; Kirchhoff, Katharina; Jung, Thomas

    2017-04-01

    Environmental changes in polar regions open up new opportunities for economic and societal operations such as vessel traffic related to scientific, fishery and tourism activities, and in the case of the Arctic also enhanced resource development. The availability of current and accurate weather and environmental information and forecasts will therefore play an increasingly important role in aiding risk reduction and safety management around the poles. The Year of Polar Prediction (YOPP) has been established by the World Meteorological Organization's World Weather Research Programme as the key activity of the ten-year Polar Prediction Project (PPP; see more on www.polarprediction.net). YOPP is an internationally coordinated initiative to significantly advance our environmental prediction capabilities for the polar regions and beyond, supporting improved weather and climate services. Scheduled to take place from mid-2017 to mid-2019, the YOPP core phase covers an extended period of intensive observing, modelling, prediction, verification, user-engagement and education activities in the Arctic and Antarctic, on a wide range of time scales from hours to seasons. The Year of Polar Prediction will entail periods of enhanced observational and modelling campaigns in both polar regions. With the purpose to close the gaps in the conventional polar observing systems in regions where the observation network is sparse, routine observations will be enhanced during Special Observing Periods for an extended period of time (several weeks) during YOPP. This will allow carrying out subsequent forecasting system experiments aimed at optimizing observing systems in the polar regions and providing insight into the impact of better polar observations on forecast skills in lower latitudes. With various activities and the involvement of a wide range of stakeholders, YOPP will contribute to the knowledge base needed to managing the opportunities and risks that come with polar climate change.

  8. Helicity-dependent cross sections and double-polarization observable E in η photoproduction from quasifree protons and neutrons

    NASA Astrophysics Data System (ADS)

    Witthauer, L.; Dieterle, M.; Abt, S.; Achenbach, P.; Afzal, F.; Ahmed, Z.; Akondi, C. S.; Annand, J. R. M.; Arends, H. J.; Bashkanov, M.; Beck, R.; Biroth, M.; Borisov, N. S.; Braghieri, A.; Briscoe, W. J.; Cividini, F.; Costanza, S.; Collicott, C.; Denig, A.; Downie, E. J.; Drexler, P.; Ferretti-Bondy, M. I.; Gardner, S.; Garni, S.; Glazier, D. I.; Glowa, D.; Gradl, W.; Günther, M.; Gurevich, G. M.; Hamilton, D.; Hornidge, D.; Huber, G. M.; Käser, A.; Kashevarov, V. L.; Kay, S.; Keshelashvili, I.; Kondratiev, R.; Korolija, M.; Krusche, B.; Lazarev, A. B.; Linturi, J. M.; Lisin, V.; Livingston, K.; Lutterer, S.; MacGregor, I. J. D.; Mancell, J.; Manley, D. M.; Martel, P. P.; Metag, V.; Meyer, W.; Miskimen, R.; Mornacchi, E.; Mushkarenkov, A.; Neganov, A. B.; Neiser, A.; Oberle, M.; Ostrick, M.; Otte, P. B.; Paudyal, D.; Pedroni, P.; Polonski, A.; Prakhov, S. N.; Rajabi, A.; Reicherz, G.; Ron, G.; Rostomyan, T.; Sarty, A.; Sfienti, C.; Sikora, M. H.; Sokhoyan, V.; Spieker, K.; Steffen, O.; Strakovsky, I. I.; Strub, Th.; Supek, I.; Thiel, A.; Thiel, M.; Thomas, A.; Unverzagt, M.; Usov, Yu. A.; Wagner, S.; Walford, N. K.; Watts, D. P.; Werthmüller, D.; Wettig, J.; Wolfes, M.; Zana, L.; A2 Collaboration at MAMI

    2017-05-01

    Precise helicity-dependent cross sections and the double-polarization observable E were measured for η photoproduction from quasifree protons and neutrons bound in the deuteron. The η →2 γ and η →3 π0→6 γ decay modes were used to optimize the statistical quality of the data and to estimate systematic uncertainties. The measurement used the A2 detector setup at the tagged photon beam of the electron accelerator MAMI in Mainz. A longitudinally polarized deuterated butanol target was used in combination with a circularly polarized photon beam from bremsstrahlung of a longitudinally polarized electron beam. The reaction products were detected with the electromagnetic calorimeters Crystal Ball and TAPS, which covered 98% of the full solid angle. The results show that the narrow structure observed earlier in the unpolarized excitation function of η photoproduction off the neutron appears only in reactions with antiparallel photon and nucleon spin (σ1 /2). It is absent for reactions with parallel spin orientation (σ3 /2) and thus very probably related to partial waves with total spin 1/2. The behavior of the angular distributions of the helicity-dependent cross sections was analyzed by fitting them withLegendre polynomials. The results are in good agreement with a model from the Bonn-Gatchina group, which uses an interference of P11 and S11 partial waves to explain the narrow structure.

  9. Valley-polarized edge pseudomagnetoplasmons in graphene: A two-component hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Zhang, Ya; Guo, Bin; Zhai, Feng; Jiang, Wei

    2018-03-01

    By means of a nonlinear two-component hydrodynamic model, we study the valley-polarized collective motion of electrons in a strained graphene sheet. The self-consistent numerical solution in real space indicates the existence of valley-polarized edge plasmons due to a strain-induced pseudomagnetic field. The valley polarization of the edge pseudomagnetoplasmon can occur in a specific valley, depending on the pseudomagnetic field and the electron density in equilibrium. A full valley polarization is achieved at the edge of the graphene sheet for a pseudomagnetic field of tens of Tesla, which is a realistic value in current experimental technologies.

  10. Motion of single wandering diblock-macromolecules directed by a PTFE nano-fence: real time SFM observations.

    PubMed

    Gallyamov, Marat O; Qin, Shuhui; Matyjaszewski, Krzysztof; Khokhlov, Alexei; Möller, Martin

    2009-07-21

    Using SFM we have observed a peculiar twisting motion of diblock macromolecules pre-collapsed in ethanol vapour during their subsequent spreading in water vapour. The intrinsic asymmetry of the diblock macromolecules has been considered to be the reason for such twisting. Further, friction-deposited PTFE nano-stripes have been employed as nano-trails with the purpose of inducing lateral directed motion of the asymmetric diblock macromolecules under cyclic impact from the changing vapour surroundings. Indeed, some of the macromolecules have demonstrated a certain tendency to orient along the PTFE stripes, and some of the oriented ones have moved occasionally in a directed manner along the trail. However, it has been difficult to reliably record such directed motion at the single molecule level due to some mobility of the PTFE nano-trails themselves in the changing vapour environment. In vapours, the PTFE stripes have demonstrated a distinct tendency towards conjunction. This tendency has manifested itself in efficient expelling of groups of the mobile brush-like molecules from the areas between two PTFE stripes joining in a zip-fastener manner. This different kind of vapour-induced cooperative macromolecular motion has been reliably observed as being directed. The PTFE nano-frame experiences some deformation when constraining the spreading macromolecules. We have estimated the possible force causing such deformation of the PTFE fence. The force has been found to be a few pN as calculated by a partial contribution from every single molecule of the constrained group.

  11. 8 March 2010 Elazığ-Kovancilar (Turkey) Earthquake: observations on ground motions and building damage

    USGS Publications Warehouse

    Akkar, Sinan; Aldemir, A.; Askan, A.; Bakir, S.; Canbay, E.; Demirel, I.O.; Erberik, M.A.; Gulerce, Z.; Gulkan, Polat; Kalkan, Erol; Prakash, S.; Sandikkaya, M.A.; Sevilgen, V.; Ugurhan, B.; Yenier, E.

    2011-01-01

    An earthquake of MW = 6.1 occurred in the Elazığ region of eastern Turkey on 8 March 2010 at 02:32:34 UTC. The United States Geological Survey (USGS) reported the epicenter of the earthquake as 38.873°N-39.981°E with a focal depth of 12 km. Forty-two people lost their lives and 137 were injured during the event. The earthquake was reported to be on the left-lateral strike-slip east Anatolian fault (EAF), which is one of the two major active fault systems in Turkey. Teams from the Earthquake Engineering Research Center of the Middle East Technical University (EERC-METU) visited the earthquake area in the aftermath of the mainshock. Their reconnaissance observations were combined with interpretations of recorded ground motions for completeness. This article summarizes observations on building and ground damage in the area and provides a discussion of the recorded motions. No significant observations in terms of geotechnical engineering were made.

  12. Polarization simulations of stellar wind bow-shock nebulae - I. The case of electron scattering

    NASA Astrophysics Data System (ADS)

    Shrestha, Manisha; Neilson, Hilding R.; Hoffman, Jennifer L.; Ignace, Richard

    2018-06-01

    Bow shocks and related density enhancements produced by the winds of massive stars moving through the interstellar medium provide important information regarding the motions of the stars, the properties of their stellar winds, and the characteristics of the local medium. Since bow-shock nebulae are aspherical structures, light scattering within them produces a net polarization signal even if the region is spatially unresolved. Scattering opacity arising from free electrons and dust leads to a distribution of polarized intensity across the bow-shock structure. That polarization encodes information about the shape, composition, opacity, density, and ionization state of the material within the structure. In this paper, we use the Monte Carlo radiative transfer code SLIP to investigate the polarization created when photons scatter in a bow-shock-shaped region of enhanced density surrounding a stellar source. We present results for electron scattering, and investigate the polarization behaviour as a function of optical depth, temperature, and source of photons for two different cases: pure scattering and scattering with absorption. In both regimes, we consider resolved and unresolved cases. We discuss the implications of these results as well as their possible use along with observational data to constrain the properties of observed bow-shock systems. In different situations and under certain assumptions, our simulations can constrain viewing angle, optical depth and temperature of the scattering region, and the relative luminosities of the star and shock.

  13. Polarization of cells and soft objects driven by mechanical interactions: consequences for migration and chemotaxis.

    PubMed

    Leoni, M; Sens, P

    2015-02-01

    We study a generic model for the polarization and motility of self-propelled soft objects, biological cells, or biomimetic systems, interacting with a viscous substrate. The active forces generated by the cell on the substrate are modeled by means of oscillating force multipoles at the cell-substrate interface. Symmetry breaking and cell polarization for a range of cell sizes naturally "emerge" from long range mechanical interactions between oscillating units, mediated both by the intracellular medium and the substrate. However, the harnessing of cell polarization for motility requires substrate-mediated interactions. Motility can be optimized by adapting the oscillation frequency to the relaxation time of the system or when the substrate and cell viscosities match. Cellular noise can destroy mechanical coordination between force-generating elements within the cell, resulting in sudden changes of polarization. The persistence of the cell's motion is found to depend on the cell size and the substrate viscosity. Within such a model, chemotactic guidance of cell motion is obtained by directionally modulating the persistence of motion, rather than by modulating the instantaneous cell velocity, in a way that resembles the run and tumble chemotaxis of bacteria.

  14. [Polarized microscopic observation of the collagen change in bone healing during bone lengthening].

    PubMed

    Zou, Pei; Li, Junhui; Li, Zhuyi

    2006-01-01

    To investigate the feature and regularity of the collagen change in bone healing during bone lengthening. Bone lengthening model was made in the middle segment of the rabbit tibia. Five days after the model was established, the bone was lengthened 1.5 mm per day for 14 days. The rabbits were put to death after elongation, 7, 14, 21, 30, 40, 50, 60 and 70 days after elongation. The distracted area of the bone was imbedded with paraffin. After being stained by the picric acid-sirius red staining, the slice was observed under polarized microscope. The features of the collagen change in the distracted bone were as follows: (1) In the fibrous tissue of the distracted area during lengthening period and the early stage after lengthening, there was not only collagen III but also much collagen I. (2) Collagen I , II and III were observed in the cartilage. (3) Collagen I, II and III were also observed in the pseudo-growth plate. (4) Collagen I took the dominance during lengthening period and the late stage after lengthening. New bone formation in bone lengthening is under the distracted force, so the collagen changes have different features compared with that in fracture healing. Collagen I, II and III can be identified by picric acid-sirius red staining and polarized microscope, so a new method for studying the collagen typing in bone repairing is provided.

  15. Polarization-difference imaging: a biologically inspired technique for observation through scattering media

    NASA Astrophysics Data System (ADS)

    Rowe, M. P.; Pugh, E. N., Jr.; Tyo, J. S.; Engheta, N.

    1995-03-01

    Many animals have visual systems that exploit the polarization of light, and some of these systems are thought to compute difference signals in parallel from arrays of photoreceptors optimally tuned to orthogonal polarizations. We hypothesize that such polarization-difference systems can improve the visibility of objects in scattering media by serving as common-mode rejection amplifiers that reduce the effects of background scattering and amplify the signal from targets whose polarization-difference magnitude is distinct from the background. We present experimental results obtained with a target in a highly scattering medium, demonstrating that a manmade polarization-difference system can render readily visible surface features invisible to conventional imaging.

  16. Studies of $$\\Lambda n$$ interaction through polarization observables for final-state interactions in exclusive $$\\Lambda$$ photoproduction off the deuteron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilieva, Yordanka; Cao, Tongtong; Zachariou, Nicholas

    2016-06-01

    Theoretical studies suggest that experimental observables for hyperon production reactions can place stringent constraints on the free parameters of hyperon-nucleon potentials, which are critical for the understanding of hypernuclear matter and neutron stars. Here we present preliminary experimental results for the polarization observables S, Py, Ox, Oz, Cx, and Cz for final-state interactions (FSI) in exclusive L photoproduction off the deuteron. The observables were obtained from data collected during the E06-103 (g13) experiment with the CEBAF Large Acceptance Spectrometer (CLAS) in Hall B at Jefferson Lab. The g13 experiment ran with unpolarized deuteron target and circularly- and linearly-polarized photon beamsmore » with energies between 0.5 GeV and 2.5 GeV and collected about 51010 events with multiple charged particles in the final state. To select the reaction of interest, the K+ and the L decay products, a proton and a negative pion, were detected in the CLAS. The missing-mass technique was used to identify exclusive hyperon photoproduction events. Final-state interaction events were selected by requesting that the reconstructed neutron has a momentum larger than 200 MeV/c. The large statistics of E06-103 provided statistically meaningful FSI event samples, which allow for the extraction of one- and two-fold differential single- and double-polarization observables. Here we present preliminary results for a set of six observables for photon energies between 0.9 GeV and 2.3 GeV and for several kinematic variables in the Ln center-of-mass frame. Our results are the very first estimates of polarization observables for FSI in hyperon photoproduction and will be used to constrain the free parameters of hyperon-nucleon potentials.« less

  17. Improving the lifetime in optical microtraps by using elliptically polarized dipole light

    NASA Astrophysics Data System (ADS)

    Garcia, Sébastien; Reichel, Jakob; Long, Romain

    2018-02-01

    Tightly focused optical dipole traps induce vector light shifts ("fictitious magnetic fields") which complicate their use for single-atom trapping and manipulation. The problem can be mitigated by adding a larger, real magnetic field, but this solution is not always applicable; in particular, it precludes fast switching to a field-free configuration. Here we show that this issue can be addressed elegantly by deliberately adding a small elliptical polarization component to the dipole trap beam. In our experiments with single 87Rb atoms laser-cooled in a chopped trap, we observe improvements up to a factor of 11 of the trap lifetime compared to the standard, seemingly ideal linear polarization. This effect results from a modification of heating processes via spin-state diffusion in state-dependent trapping potentials. We develop Monte Carlo simulations of the evolution of the atom's internal and motional states and find that they agree quantitatively with the experimental data. The method is general and can be applied in all experiments where the longitudinal polarization component is non-negligible.

  18. What do data used to develop ground-motion prediction equations tell us about motions near faults?

    USGS Publications Warehouse

    Boore, David M.

    2014-01-01

    A large database of ground motions from shallow earthquakes occurring in active tectonic regions around the world, recently developed in the Pacific Earthquake Engineering Center’s NGA-West2 project, has been used to investigate what such a database can say about the properties and processes of crustal fault zones. There are a relatively small number of near-rupture records, implying that few recordings in the database are within crustal fault zones, but the records that do exist emphasize the complexity of ground-motion amplitudes and polarization close to individual faults. On average over the whole data set, however, the scaling of ground motions with magnitude at a fixed distance, and the distance dependence of the ground motions, seem to be largely consistent with simple seismological models of source scaling, path propagation effects, and local site amplification. The data show that ground motions close to large faults, as measured by elastic response spectra, tend to saturate and become essentially constant for short periods. This saturation seems to be primarily a geometrical effect, due to the increasing size of the rupture surface with magnitude, and not due to a breakdown in self similarity.

  19. What Do Data Used to Develop Ground-Motion Prediction Equations Tell Us About Motions Near Faults?

    NASA Astrophysics Data System (ADS)

    Boore, David M.

    2014-11-01

    A large database of ground motions from shallow earthquakes occurring in active tectonic regions around the world, recently developed in the Pacific Earthquake Engineering Center's NGA-West2 project, has been used to investigate what such a database can say about the properties and processes of crustal fault zones. There are a relatively small number of near-rupture records, implying that few recordings in the database are within crustal fault zones, but the records that do exist emphasize the complexity of ground-motion amplitudes and polarization close to individual faults. On average over the whole data set, however, the scaling of ground motions with magnitude at a fixed distance, and the distance dependence of the ground motions, seem to be largely consistent with simple seismological models of source scaling, path propagation effects, and local site amplification. The data show that ground motions close to large faults, as measured by elastic response spectra, tend to saturate and become essentially constant for short periods. This saturation seems to be primarily a geometrical effect, due to the increasing size of the rupture surface with magnitude, and not due to a breakdown in self similarity.

  20. Estimation of polar stratospheric cloud infrared extinction climatology using visible satellite observations

    NASA Technical Reports Server (NTRS)

    Pitts, Michael C.; Thomason, Larry W.

    1995-01-01

    Polar stratospheric clouds (PSC's) provide surfaces for heterogeneous processes which can dramatically alter the normal partitioning of odd nitrogen and chlorine families in the winter polar stratospheres, setting up conditions for significant ozone depletion as manifested in the springtime Antarctic ozone hole. The spatial and temporal distribution of PSC's is important for parameterizing PSC occurrence in multidimensional photochemical models whose use is essential for fully understanding observed Antarctic ozone losses as well as for accessing the possibility of a similar phemonenon occurring in the future in the Arctic. The Stratospheric Aerosol Measurement (SAM) 2 sensor, a single-channel (1mu m) photometer launched into a Sun-synchronous orbit aboard the Nimbus 7 satellite in October 1978, provided a unique database to establish the climatology of PSC's. Poole and Pitts (1994) used the record of high-latitude aerosol extinction obtained by SAM II from 1979-1989 to establish the climatology of PSC occurrences in the Arctic and Antarctic. Unfortunately, little information about PSC composition or type was detectable from the single-wavelength SAM II data.

  1. Early Improper Motion Detection in Golf Swings Using Wearable Motion Sensors: The First Approach

    PubMed Central

    Stančin, Sara; Tomažič, Sašo

    2013-01-01

    This paper presents an analysis of a golf swing to detect improper motion in the early phase of the swing. Led by the desire to achieve a consistent shot outcome, a particular golfer would (in multiple trials) prefer to perform completely identical golf swings. In reality, some deviations from the desired motion are always present due to the comprehensive nature of the swing motion. Swing motion deviations that are not detrimental to performance are acceptable. This analysis is conducted using a golfer's leading arm kinematic data, which are obtained from a golfer wearing a motion sensor that is comprised of gyroscopes and accelerometers. Applying the principal component analysis (PCA) to the reference observations of properly performed swings, the PCA components of acceptable swing motion deviations are established. Using these components, the motion deviations in the observations of other swings are examined. Any unacceptable deviations that are detected indicate an improper swing motion. Arbitrarily long observations of an individual player's swing sequences can be included in the analysis. The results obtained for the considered example show an improper swing motion in early phase of the swing, i.e., the first part of the backswing. An early detection method for improper swing motions that is conducted on an individual basis provides assistance for performance improvement. PMID:23752563

  2. Early improper motion detection in golf swings using wearable motion sensors: the first approach.

    PubMed

    Stančin, Sara; Tomažič, Sašo

    2013-06-10

    This paper presents an analysis of a golf swing to detect improper motion in the early phase of the swing. Led by the desire to achieve a consistent shot outcome, a particular golfer would (in multiple trials) prefer to perform completely identical golf swings. In reality, some deviations from the desired motion are always present due to the comprehensive nature of the swing motion. Swing motion deviations that are not detrimental to performance are acceptable. This analysis is conducted using a golfer's leading arm kinematic data, which are obtained from a golfer wearing a motion sensor that is comprised of gyroscopes and accelerometers. Applying the principal component analysis (PCA) to the reference observations of properly performed swings, the PCA components of acceptable swing motion deviations are established. Using these components, the motion deviations in the observations of other swings are examined. Any unacceptable deviations that are detected indicate an improper swing motion. Arbitrarily long observations of an individual player's swing sequences can be included in the analysis. The results obtained for the considered example show an improper swing motion in early phase of the swing, i.e., the first part of the backswing. An early detection method for improper swing motions that is conducted on an individual basis provides assistance for performance improvement.

  3. MODIS polarization performance and anomalous four-cycle polarization phenomenon

    NASA Astrophysics Data System (ADS)

    Young, James B.; Knight, Ed; Merrow, Cindy

    1998-10-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) will be one of the primary instruments observing the earth on the Earth Observing System (EOS) scheduled for launch in 1999. MODIS polarization performance characterization was required for the 0.4 to 0.6 micrometers (VIS), 0.6 micrometers to 1.0 micrometers (NIR), and 1.0 micrometers to 2.3 micrometers (SWIR) regions. A polarized source assembly (PSA) consisting of a collimator with a rotatable Ahrens polarizer was used to illuminate MODIS with a linearly polarized beam. MODIS signal function having two-cycles per 360 degrees prism rotation signal function was expected. However, some spectral bands had a distinct four-cycle anomalous signal. The expected two-cycle function was present in all regions with the four-cycle anomaly being limited to the NIR region. Fourier analysis was very useful tooling determining the cause of the anomaly. A simplified polarization model of the PSA and MODIS was generated using Mueller matrices-Stokes vector formalism. Parametric modeling illustrated that this anomaly could be produced by energy having multiple passes between PSA Ahrens prism and the MODIS focal plane filters. Furthermore, the model gave NIR four-cycle magnitudes that were consistent with observations. The IVS and SWIR optical trans had birefringent elements that served to scramble the multiple pass anomaly. The model validity was demonstrated with an experimental setup that had partial aperture illumination which eliminated the possibility of multiple passes. The four-cycle response was eliminated while producing the same two-cycle polarization response. Data will be shown to illustrate the four-cycle phenomenon.

  4. Photoproduction of η mesons from the neutron: Cross sections and double polarization observable E

    NASA Astrophysics Data System (ADS)

    Witthauer, L.; Dieterle, M.; Afzal, F.; Anisovich, A. V.; Bantes, B.; Bayadilov, D.; Beck, R.; Bichow, M.; Brinkmann, K.-T.; Böse, S.; Challand, Th.; Crede, V.; Dutz, H.; Eberhardt, H.; Elsner, D.; Ewald, R.; Fornet-Ponse, K.; Friedrich, St.; Frommberger, F.; Funke, Ch.; Goertz, St.; Gottschall, M.; Gridnev, A.; Grüner, M.; Gutz, E.; Hammann, D.; Hammann, Ch.; Hannappel, J.; Hartmann, J.; Hillert, W.; Hoffmeister, Ph.; Honisch, Ch.; Jude, T.; Kaiser, D.; Kalinowsky, H.; Kalischewski, F.; Kammer, S.; Käser, A.; Keshelashvili, I.; Klassen, P.; Kleber, V.; Klein, F.; Koop, K.; Krusche, B.; Lang, M.; Lopatin, I.; Mahlberg, Ph.; Makonyi, K.; Metag, V.; Meyer, W.; Müller, J.; Müllers, J.; Nanova, M.; Nikonov, V.; Piontek, D.; Reicherz, G.; Rostomyan, T.; Sarantsev, A.; Schmidt, Ch.; Schmieden, H.; Seifen, T.; Sokhoyan, V.; Spieker, K.; Thiel, A.; Thoma, U.; Urban, M.; van Pee, H.; Walford, N. K.; Walther, D.; Wendel, Ch.; Werthmüller, D.; Wilson, A.; Winnebeck, A.

    2017-03-01

    Results from measurements of the photoproduction of η mesons from quasifree protons and neutrons are summarized. The experiments were performed with the CBELSA/TAPS detector at the electron accelerator ELSA in Bonn using the η→ 3π0→ 6γ decay. A liquid deuterium target was used for the measurement of total cross sections and angular distributions. The results confirm earlier measurements from Bonn and the MAMI facility in Mainz about the existence of a narrow structure in the excitation function of γ n→ nη. The current angular distributions show a forward-backward asymmetry, which was previously not seen, but was predicted by model calculations including an additional narrow P_{11} state. Furthermore, data obtained with a longitudinally polarized, deuterated butanol target and a circularly polarized photon beam were analyzed to determine the double polarization observable E. Both data sets together were also used to extract the helicity-dependent cross sections σ_{1/2} and σ_{3/2}. The narrow structure in the excitation function of γ n→ nη appears associated with the helicity-1/2 component of the reaction.

  5. In-situ observation of bubble trapping in polar firn

    NASA Astrophysics Data System (ADS)

    Florian Schaller, Christoph; Freitag, Johannes; Sowers, Todd; Vinther, Bo; Weinhart, Alexander; Eisen, Olaf

    2017-04-01

    The air trapped in polar ice cores is not a direct record of past atmospheric composition but is strongly influenced by the process of firnification as bubbles are only sealed at a certain point, when the respective horizontal layer reaches a so called "critical" porosity. In order to investigate this process, we performed high-resolution (approximately 25 μm) 3D-XCT measurements of the complete lock-in zone for two polar ice cores representing opposite extremes of the temperature and accumulation rate range: B53, close to Dome Fuji, East Antarctica and RECAP_S2, Renland, Greenland. For every 1m core segment, we scanned a minimum number of five sections of approximately 3.5cm height of the full core diameter with a focus on homogenous layers. This allows us to non-destructively deduce detailed profiles of open and closed porosity on a solid statistical basis. For each of the cores individually, we find that the trapping of bubbles in a single layer is solely determined by its total porosity and thereby independent of depth. We can confirm the existence of a distinct Schwander-type relation of closed and total porosity. Even though the two cores deviate from each other significantly in critical porosity, 0.0907 for B53 compared to 0.1025 for RECAP_S2, we observe many similarities. We hypothesize, that the determining factors of bubble trapping are the average size and variability of pore space structures. This could potentially allow the reconstruction of past close-off porosities from the remaining pore structures in deep ice, e.g. from bubble number densities.

  6. Proper Motions of Dwarf Spheroidal Galaxies from Hubble Space Telescope Imaging. II. Measurement for Carina

    NASA Astrophysics Data System (ADS)

    Piatek, Slawomir; Pryor, Carlton; Olszewski, Edward W.; Harris, Hugh C.; Mateo, Mario; Minniti, Dante; Tinney, Christopher G.

    2003-11-01

    This article presents and discusses a measurement of the proper motion for the Carina dwarf spheroidal galaxy (dSph) from images in two distinct fields in the direction of Carina taken with the Hubble Space Telescope, at three epochs. Each field contains a confirmed quasi-stellar object that is the reference point for measuring the proper motion of the dSph. The consecutive epochs are 1-2 yr apart. The components of the measured proper motion for Carina, expressed in the equatorial coordinate system, are μα=22+/-9 mas century-1 and μδ=15+/-9 mas century-1. The quoted proper motion is a weighted mean of two independent measurements and has not been corrected for the motions of the Sun and of the local standard of rest. Given the proper motion and its uncertainty, integrating the family of possible orbits of Carina in a realistic gravitational potential for the Milky Way indicates that Carina is bound gravitationally to the Milky Way and is close to apogalacticon. The best estimate of, and the 95% confidence interval for, the apogalacticon of the orbit is 102 kpc and (102,113) kpc, for the perigalacticon is 20 kpc and (3.0,63) kpc, and for the orbital period is 1.4 Gyr and (1.3,2.0) Gyr. Carina does not seem to be on a polar orbit. The best estimate of the inclination of the orbit with respect to the Galactic plane is 39°, but the 95% confidence interval is so wide, (23°,102°), that it includes a polar orbit. We are unable to confirm or to rule out the membership of Carina in a ``stream'' of galaxies in the Galactic halo because the difference between the observed and predicted directions of the proper motion is 1.6 times the uncertainty of the difference. Carina must contain dark matter to have survived the tidal interaction with the Milky Way until the present. The triggering of star formation by perigalacticon passages and crossings of the Galactic disk do not explain the history of star formation in Carina. Based on observations with NASA/ESA Hubble Space

  7. Observation of long-lived persistent spin polarization in a topological insulator

    NASA Astrophysics Data System (ADS)

    Tian, Jifa; Hong, Seokmin; Miotkowski, Ireneusz; Datta, Supriyo; Chen, Yong P.

    3D Topological insulators (TI), featuring helically spin-momentum-locked topological surface states (TSS), are considered promising for spintronics applications. Several recent experiments in TIs have demonstrated a current induced electronic spin polarization that may be used for all electrical spin generation and injection. Here, we report spin potentiometric measurements in TIs that have revealed a long-lived persistent electron spin polarization even at zero current. Unaffected by a small bias current and persisting for several days at low temperature, the spin polarization can be induced and reversed by a large ``writing'' current applied for an extended time. Such an electrically controlled persistent spin polarization with unprecedented long lifetime could enable a rechargeable spin battery and rewritable spin memory for potential applications in spintronics and quantum information.

  8. Singular observation of the polarization-conversion effect for a gammadion-shaped metasurface

    PubMed Central

    Lin, Chu-En; Yen, Ta-Jen; Yu, Chih-Jen; Hsieh, Cheng-Min; Lee, Min-Han; Chen, Chii-Chang; Chang, Cheng-Wei

    2016-01-01

    In this article, the polarization-conversion effects of a gammadion-shaped metasurface in transmission and reflection modes are discussed. In our experiment, the polarization-conversion effect of a gammadion-shaped metasurface is investigated because of the contribution of the phase and amplitude anisotropies. According to our experimental and simulated results, the polarization property of the first-order transmitted diffraction is dominated by linear anisotropy and has weak depolarization; the first-order reflected diffraction exhibits both linear and circular anisotropies and has stronger depolarization than the transmission mode. These results are different from previously published research. The Mueller matrix ellipsometer and polar decomposition method will aid in the investigation of the polarization properties of other nanostructures. PMID:26915332

  9. GCM studies on Jovian polar dynamics

    NASA Astrophysics Data System (ADS)

    Tabataba-Vakili, F.; Orton, G.; Li, C.; Young, R. M.; Read, P. L.; Ingersoll, A. P.

    2017-12-01

    The Juno spacecraft has produced unparalleled measurements of the polar regions of Jupiter. Observations from JunoCAM and JIRAM (Jupiter Infrared Auroral Mapper) have revealed a structure of cyclonic vortices near the poles. We report simulations of the observed polar dynamics using a hierarchy of models from shallow-water to general circulation models with increasing detail. An initialized, unforced shallow-water model of the polar region results in merging cyclones, producing a Saturn-like polar vortex. Further investigations with more detailed models aim to recreate the observed polar structures on Jupiter and investigate the difference between vortical structures on Saturn and Jupiter. Identifying this difference may shed light on the formation and maintenance mechanisms of the observed vortices.

  10. Simultaneous Observations fo Polar Stratospheric Clouds and HNO3 over Scandinavia in January, 1992

    NASA Technical Reports Server (NTRS)

    Massie, S. T.; Santee, M. L.; Read, W. G.; Grainger, R. G.; Lambert, A.; Mergenthaler, J. L.; Dye, J. E.; Baumbardner, D.; Randel, W. J.; Tabazadeh, A.; hide

    1996-01-01

    Simultaneous observations of Polar Stratospheric Cloud aerosol extinction and HNO3 mixing ratios over Scandinavia are examined for January 9-10, 1992. Data measured by the Microwave Limb Sounder (MLS), Cryogenic Limb Array Etalon, Spectrometer (CLAES), and Improved Stratospheric and Mesospheric Sounder (ISAMA) experiments on the Upper Atmosphere Research Satellite (UARS) are examined at locations adjacent to parcel trajectory positions.

  11. Thermal and albedo mapping of the polar regions of Mars using Viking thermal mapper observations: 2. South polar region

    NASA Technical Reports Server (NTRS)

    Paige, David A.; Keegan, Kenneth D.

    1994-01-01

    We present the first maps of the apparent thermal inertia and albedo of the south polar region of Mars. The observations used to create these maps were acquired by the infrared thermal mapper (IRTM) instruments on the two Viking Orbiters over a 30-day period in 1977 during the Martian late southern summer season. The maps cover the region from 60 deg S to the south pole at a spatial resolution of 1 deg of latitude, thus completing the initial thermal mapping of the entire planet. The analysis and interpretation of these maps is aided by the results of a one-dimensional radiative convective model, which is used to calculate diurnal variations in surface and atmospheric temperatures, and brightness temperatures at the top of the atmosphere for a range of assumptions concerning dust optical properties and dust optical depths. The maps show that apparent thermal inertias of bare ground regions decrease systematically from 60 deg S to the south pole. In unfrosted regions close to the south pole, apparent thermal inertias are among the lowest observed anywhere on the planet. On the south residual cap, apparent thermal inertias are very high due to the presence of CO2 frost. In most other regions of Mars, best fit apparent albedos based on thermal emission measurements are generally in good agreement with actual surface albedos based on broadband solar reflectance measurements. The one-dimensional atmospheric model calculations also predict anomalously cold brightness temperatures close to the pole during late summer, and after considering a number of alternatives, it is concluded that the net surface cooling due to atmospheric dust is the best explanation for this phenomenon. The region of lowest apparent thermal inertia close to the pole, which includes the south polar layered deposits, is interpreted to be mantled by a continuous layer of aeolian material that must be at least a few millimeters thick. The low thermal inertias mapped in the south polar region imply an

  12. Monitoring arid lands using AVHRR-observed visible reflectance and SMMR37-GHz polarization difference

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1990-01-01

    Visible reflectance along a transect through the Sahel and Sudan zones of Africa has been derived from observations by the AVHRR on the NOAA-7 and NOAA-9 satellites and compared with concurrent observations of the 37-GHz polarization difference by the SMMR on the Nimbus-7 satellite. The study period was January 1982 to December 1986, which included an unprecedented drought during 1984 over the Sahel zone. While spatial and temporal patterns of these two data sets are found to be highly correlated, there are also quantitative differences which need to be understood.

  13. Weekly Gridded Aquarius L-band Radiometer-scatterometer Observations and Salinity Retrievals over the Polar Regions - Part 1: Product Description

    NASA Technical Reports Server (NTRS)

    Brucker, Ludovic; Dinnat, Emmanuel Phillippe; Koenig, Lora S.

    2014-01-01

    Passive and active observations at L band (frequency (is) approximately 1.4 GHz) from the Aquarius/SAC-D mission offer new capabilities to study the polar regions. Due to the lack of polar-gridded products, however, applications over the cryosphere have been limited. We present three weekly polar-gridded products of Aquarius data to improve our understanding of L-band observations of ice sheets, sea ice, permafrost, and the polar oceans. Additionally, these products intend to facilitate access to L-band data, and can be used to assist in algorithm developments. Aquarius data at latitudes higher than 50 degrees are averaged and gridded into weekly products of brightness temperature (TB), normalized radar cross section (NRCS), and sea surface salinity (SSS). Each grid cell also contains sea ice fraction, the standard deviation of TB, NRCS, and SSS, and the number of footprint observations collected during the seven-day cycle. The largest 3 dB footprint dimensions are 97 km×156 km and 74 km×122 km (along × across track) for the radiometers and scatterometer, respectively. The data is gridded to the Equal-Area Scalable Earth version 2.0 (EASE2.0) grid, with a grid cell resolution of 36 km. The data sets start in August 2011, with the first Aquarius observations and will be updated on a monthly basis following the release schedule of the Aquarius Level 2 data sets. The weekly gridded products are distributed by the US National Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html

  14. Relationship of Topside Ionospheric Ion Outflows to Auroral Forms and Precipitations, Plasma Waves, and Convection Observed by POLAR

    NASA Technical Reports Server (NTRS)

    Hirahara, M.; Horwitz, J. L.; Moore, T. E.; Germany, G. A.; Spann, J. F.; Peterson, W. K.; Shelley, E. G.; Chandler, M. O.; Giles, B. L.; Craven, P. D.; hide

    1997-01-01

    The POLAR satellite often observes upflowing ionospheric ions (UFls) in and near the auroral oval on southern perigee (approximately 5000 km altitude) passes. We present the UFI features observed by the thermal ion dynamics experiment (TIDE) and the toroidal imaging mass-angle spectrograph (TIMAS) in the dusk-dawn sector under two different geomagnetic activity conditions in order to elicit their relationships with auroral forms, wave emissions, and convection pattern from additional POLAR instruments. During the active interval, the ultraviolet imager (UVI) observed a bright discrete aurora on the dusk side after the substorm onset and then observed a small isolated aurora form and diffuse auroras on the dawn side during the recovery phase. The UFls showed clear conic distributions when the plasma wave instrument (PWI) detected strong broadband wave emissions below approximately 10 kHz, while no significant auroral activities were observed by UVI. At higher latitudes, the low-energy UFI conics gradually changed to the polar wind component with decreasing intensity of the broadband emissions. V-shaped auroral kilometric radiation (AKR) signatures observed above approximately 200 kHz by PWI coincided with the region where the discrete aurora and the UFI beams were detected. The latitude of these features was lower than that of the UFI conics. During the observations of the UFI beams and conics, the lower-frequency fluctuations observed by the electric field instrument (EFI) were also enhanced, and the convection directions exhibited large fluctuations. It is evident that large electrostatic potential drops produced the precipitating electrons and discrete auroras, the UFI beams, and the AKR, which is also supported by the energetic plasma data from HYDRA. Since the intense broadband emissions were also observed with the UFIs. the ionospheric ions could be energized transversely before or during the parallel acceleration due to the potential drops.

  15. Relationship of Topside Ionospheric Ion Outflows to Auroral Forms and Precipitation, Plasma Waves, and Convection Observed by Polar

    NASA Technical Reports Server (NTRS)

    Hirahara, M.; Horwitz, J. L.; Moore, T. E.; Germany, G. A.; Spann, J. F.; Peterson, W. K.; Shelley, E. G.; Chandler, M. O.; Giles, B. L.; Craven, P. D.; hide

    1998-01-01

    The POLAR satellite often observes upflowing ionospheric ions (UFIs) in and near the aurora] oval on southern perigee (approx. 5000 km altitude) passes. We present the UFI features observed by the thermal ion dynamics experiment (TIDE) and the toroidal imaging mass angle spectrograph (TIMAS) in the dusk-dawn sector under two different geomagnetic activity conditions in order to elicit their relationships with auroral forms, wave emissions, and convection pattern from additional POLAR instruments. During the active interval, the ultraviolet imager (UVI) observed a bright discrete aurora on the duskside after the substorm onset and then observed a small isolated aurora form and diffuse auroras on the dawnside during the recovery phase. The UFIs showed clear conic distributions when the plasma wave instrument (PWI) detected strong broadband wave emissions below approx. 10 kHz, while no significant auroral activities were observed by UVI. At higher latitudes, the low-energy UFI conics gradually changed to the polar wind component with decreasing intensity of the broadband emissions. V-shaped auroral kilometric radiation (AKR) signatures observed above -200 kHz by PWI coincided with the region where the discrete aurora and the UFI beams were detected. The latitude of these features was lower than that of the UFI conics. During the observations of the UFI beams and conics, the lower-frequency fluctuations observed by the electric field instrument were also enhanced, and the convection directions exhibited large fluctuations. It is evident that large electrostatic potential drops produced the precipitating electrons and discrete auroras, the UFI beams, and the AKR, which is also supported by the energetic plasma data from HYDRA. Since the intense broadband emissions were also observed with the UFIs, the ionospheric ions could be energized transversely before or during the parallel acceleration due to the potential drops.

  16. Spin polarization of graphene and h -BN on Co(0001) and Ni(111) observed by spin-polarized surface positronium spectroscopy

    NASA Astrophysics Data System (ADS)

    Miyashita, A.; Maekawa, M.; Wada, K.; Kawasuso, A.; Watanabe, T.; Entani, S.; Sakai, S.

    2018-05-01

    In spin-polarized surface positronium annihilation measurements, the spin polarizations of graphene and h -BN on Co(0001) were higher than those on Ni(111), while no significant differences were seen between graphene and h -BN on the same metal. The obtained spin polarizations agreed with those expected from first-principles calculations considering the positron wave function and the electron density of states from the first surface layer to the vacuum region. The higher spin polarizations of graphene and h -BN on Co(0001) as compared to Ni(111) simply reflect the spin polarizations of these metals. The comparable spin polarizations of graphene and h -BN on the same metal are attributed to the creation of similar electronic states due to the strong influence of the metals: the Dirac cone of graphene and the band gap of h -BN disappear as a consequence of d -π hybridization.

  17. A Model Assessment of Satellite Observed Trends in Polar Sea Ice Extents

    NASA Technical Reports Server (NTRS)

    Vinnikov, Konstantin Y.; Cavalieri, Donald J.; Parkinson, Claire L.

    2005-01-01

    For more than three decades now, satellite passive microwave observations have been used to monitor polar sea ice. Here we utilize sea ice extent trends determined from primarily satellite data for both the Northern and Southern Hemispheres for the period 1972(73)-2004 and compare them with results from simulations by eleven climate models. In the Northern Hemisphere, observations show a statistically significant decrease of sea ice extent and an acceleration of sea ice retreat during the past three decades. However, from the modeled natural variability of sea ice extents in control simulations, we conclude that the acceleration is not statistically significant and should not be extrapolated into the future. Observations and model simulations show that the time scale of climate variability in sea ice extent in the Southern Hemisphere is much larger than in the Northern Hemisphere and that the Southern Hemisphere sea ice extent trends are not statistically significant.

  18. Alma Polarization Observations Of The Particle Accelerators In The Peculiar Hot Spot 3C 445 South

    NASA Astrophysics Data System (ADS)

    Orienti, Monica; Brunetti, G.; Mack, K.-H.; Nagai, H.; Paladino, R.; Prieto, M. A.

    2017-10-01

    Radio hot spots are bright and compact regions at the edges of powerful radio galaxies. In these regions the relativistic particles are reaccelerated by shocks produced by the interaction between the supersonic jets and the external environment. The discovery of synchrotron optical emission extending on kpc scale in some hot spots suggests that additional efficient and spatially distributed acceleration mechanisms must take place in order to compensate the severe radiative losses of optical emitting electrons. The key parameter to unveil the mechanism at work is the polarization intensity: high fractional polarization in the case of shocks, whereas low values or absence of polarization are expected in case of turbulence. In this contribution I will present results on full-polarization ALMA observations at 97 GHz of the hot spot 3C 445 South. This arc-shaped hot spot is characterized by two main components enshrouded by extended emission that is visible from radio to X-rays. The ALMA results, complemented by mutiband VLA, VLT, HST and Chandra data, will be used to shed a light on the complex distribution and nature of particle acceleration at the edge of powerful radio galaxies.

  19. Multichroic Antenna-Coupled Bolometers for CMB Polarization and Sub-mm Observations

    NASA Astrophysics Data System (ADS)

    Lee, Adrian

    We propose to develop planar antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization log-periodic antenna with a 4:1-bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. The advantages of this approach, compared with those using conventional single-color pixels, include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands. These advantages have the potential to greatly reduce the cost and/or increase the performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization measurements, a wide frequency range of roughly 30 to 300 GHz is required to subtract galactic foregrounds. The multichroic architecture we propose enables a relatively low-cost 30-cm aperture space mission to have sufficient sensitivity to probe below the tensor-to-scalar ratio r = 0.01. For a larger aperture mission, such as the EPIC-IM concept, the proposed technology could reduce the focal-plane mass by a factor of 2-3, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR ground-based CMB polarization experiment now operating in Chile. That experiment uses a single-band planar antenna and produces excellent beam properties and optical efficiency. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Building on these accomplishments, the deliverables for the proposed work include: *Two pixel types that together cover the range from 30 to 300 GHz. The low-frequency pixel will have bands centered at 35, 50, and 80 GHz and the high frequency pixel will have bands centered at 120, 180, and 270

  20. Polarization Properties and Magnetic Field Structures in the High-mass Star-forming Region W51 Observed with ALMA

    NASA Astrophysics Data System (ADS)

    Koch, Patrick M.; Tang, Ya-Wen; Ho, Paul T. P.; Yen, Hsi-Wei; Su, Yu-Nung; Takakuwa, Shigehisa

    2018-03-01

    We present the first ALMA dust polarization observations toward the high-mass star-forming regions W51 e2, e8, and W51 North in Band 6 (230 GHz) with a resolution of about 0\\buildrel{\\prime\\prime}\\over{.} 26 (∼5 mpc). Polarized emission in all three sources is clearly detected and resolved. Measured relative polarization levels are between 0.1% and 10%. While the absolute polarization shows complicated structures, the relative polarization displays the typical anticorrelation with Stokes I, although with a large scatter. Inferred magnetic (B) field morphologies are organized and connected. Detailed substructures are resolved, revealing new features such as comet-shaped B-field morphologies in satellite cores, symmetrically converging B-field zones, and possibly streamlined morphologies. The local B-field dispersion shows some anticorrelation with the relative polarization. Moreover, the lowest polarization percentages together with largest dispersions coincide with B-field convergence zones. We put forward \\sin ω , where ω is the measurable angle between a local B-field orientation and local gravity, as a measure of how effectively the B field can oppose gravity. Maps of \\sin ω for all three sources show organized structures that suggest a locally varying role of the B field, with some regions where gravity can largely act unaffectedly, possibly in a network of narrow magnetic channels, and other regions where the B field can work maximally against gravity.

  1. Visual and Non-Visual Contributions to the Perception of Object Motion during Self-Motion

    PubMed Central

    Fajen, Brett R.; Matthis, Jonathan S.

    2013-01-01

    Many locomotor tasks involve interactions with moving objects. When observer (i.e., self-)motion is accompanied by object motion, the optic flow field includes a component due to self-motion and a component due to object motion. For moving observers to perceive the movement of other objects relative to the stationary environment, the visual system could recover the object-motion component – that is, it could factor out the influence of self-motion. In principle, this could be achieved using visual self-motion information, non-visual self-motion information, or a combination of both. In this study, we report evidence that visual information about the speed (Experiment 1) and direction (Experiment 2) of self-motion plays a role in recovering the object-motion component even when non-visual self-motion information is also available. However, the magnitude of the effect was less than one would expect if subjects relied entirely on visual self-motion information. Taken together with previous studies, we conclude that when self-motion is real and actively generated, both visual and non-visual self-motion information contribute to the perception of object motion. We also consider the possible role of this process in visually guided interception and avoidance of moving objects. PMID:23408983

  2. Helicity-dependent cross sections and double-polarization observable E in η photoproduction from quasifree protons and neutrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witthauer, L.; Dieterle, M.; Abt, S.

    2017-05-01

    Precise helicity-dependent cross sections and the double-polarization observable E were measured for η photoproduction from quasifree protons and neutrons bound in the deuteron. The η → 2γ and η → 3π 0 → 6γ decay modes were used to optimize the statistical quality of the data and to estimate systematic uncertainties. The measurement used the A2 detector setup at the tagged photon beam of the electron accelerator MAMI in Mainz. A longitudinally polarized deuterated butanol target was used in combination with a circularly polarized photon beam from bremsstrahlung of a longitudinally polarized electron beam. The reaction products were detected withmore » the electromagnetic calorimeters Crystal Ball and TAPS, which covered 98% of the full solid angle. The results show that the narrow structure observed earlier in the unpolarized excitation function of η photoproduction off the neutron appears only in reactions with antiparallel photon and nucleon spin (σ 1/2). It is absent for reactions with parallel spin orientation (σ 3/2) and thus very probably related to partial waves with total spin 1/2. The behavior of the angular distributions of the helicity-dependent cross sections was analyzed by fitting them with Legendre polynomials. The results are in good agreement with a model from the Bonn-Gatchina group, which uses an interference of P 11 and S 11 partial waves to explain the narrow structure.« less

  3. The Motion of a Satellite of the Moon

    NASA Technical Reports Server (NTRS)

    Lass, Harry

    1960-01-01

    The motion of a satellite of the Moon depends on the potential field due to the Moon as well as the gravitational effects of the Earth and Sun. If one chooses a frame of reference attached to the Moon, it can be shown that the force field resulting from the Sun can be neglected when compared with the perturbing field of the Moon resulting from its oblateness. The effect of the Earth's field on the satellite is of the some order of magnitude as the Moon's perturbing field and must be included in an analysis of the motion of a satellite of the Moon. We will assume that the distance between Earth and Moon remains constant, and we will consider satellite orbits of small eccentricity. It will be shown that a nearly circular polar orbit will digress less than 1 deg from a polar orbit and that the change in eccentricity is less than a factor of e in one year.

  4. Variations in Solar Parameters and Cosmic Rays with Solar Magnetic Polarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, S.; Yi, Y., E-mail: suyeonoh@jnu.ac.kr

    The sunspot number varies with the 11-year Schwabe cycle, and the solar magnetic polarity reverses every 11 years approximately at the solar maximum. Because of polarity reversal, the difference between odd and even solar cycles is seen in solar activity. In this study, we create the mean solar cycle expressed by phase using the monthly sunspot number for all solar cycles 1–23. We also generate the mean solar cycle for sunspot area, solar radio flux, and cosmic ray flux within the allowance of observational range. The mean solar cycle has one large peak at solar maximum for odd solar cyclesmore » and two small peaks for most even solar cycles. The odd and even solar cycles have the statistical difference in value and shape at a confidence level of at least 98%. For solar cycles 19–23, the second peak in the even solar cycle is larger than the first peak. This result is consistent with the frequent solar events during the declining phase after the solar maximum. The difference between odd and even solar cycles can be explained by a combined model of polarity reversal and solar rotation. In the positive/negative polarity, the polar magnetic field introduces angular momentum in the same/opposite direction as/to the solar rotation. Thus the addition/subtraction of angular momentum can increase/decrease the motion of plasma to support the formation of sunspots. Since the polarity reverses at the solar maximum, the opposite phenomenon occurs in the declining phase.« less

  5. Observation of Polar Mesosphere Summer Echoes using the northernmost MST radar at Eureka (80°N)

    NASA Astrophysics Data System (ADS)

    Swarnalingam, N.; Hocking, W.; Janches, D.; Drummond, J.

    2017-09-01

    We investigate long-term Polar Mesosphere Summer Echoes (PMSEs) observations conducted by the northernmost geographically located MST radar at Eureka (80°N, 86°W). While PMSEs are a well recognized summer phenomenon in the polar regions, previous calibrated studies at Resolute Bay and Eureka using 51.5 MHz and 33 MHz radars respectively, showed that PMSE backscatter signal strengths are relatively weak in the polar cap sites, compared to the auroral zone sites (Swarnalingam et al., 2009b; Singer et al., 2010). Complications arise with PMSEs in which the echo strength is controlled by the electrons, which are, in turn, influenced by heavily charged ice particles as well as the variability in the D-region plasma. In recent years, PMSE experiments were conducted inside the polar cap utilizing a 51 MHz radar located at Eureka. In this paper, we investigate calibrated observations, conducted during 2009-2015. Seasonal and diurnal variations of the backscatter signal strengths are discussed and compared to previously published results from the ALOMAR radar, which is a radar of similar design located in the auroral zone at Andenes, Norway (69°N, 16°E). At Eureka, while PMSEs are present with a daily occurrence rate which is comparable to the rate observed at the auroral zone site for at least two seasons, they show a great level of inter-annual variability. The occurrence rate for the strong echoes tends to be low. Furthermore, comparison of the absolute backscatter signal strengths at these two sites clearly indicates that the PMSE backscatter signal strength at Eureka is weak. Although this difference could be caused by several factors, we investigate the intensity of the neutral air turbulence at Eureka from the measurements of the Doppler spectrum of the PMSE backscatter signals. We found that the level of the turbulence intensity at Eureka is weak relative to previously reported results from three high latitude sites.

  6. Observation of Polar Mesosphere Summer Echoes using the Northernmost MST Radar at Eureka (80 deg N)

    NASA Technical Reports Server (NTRS)

    Swarnalingam, N.; Hocking, W.; Janches, D.; Drummond, J.

    2017-01-01

    We investigate long-term Polar Mesosphere Summer Echoes (PMSEs) observations conducted by the northern most geographically located MST radar at Eureka (80 deg N, 86 deg W). While PMSEs are a well recognized summer phenomenon in the polar regions, previous calibrated studies at Resolute Bay and Eureka using 51.5 MHz and33 MHz radars respectively, showed that PMSE backscatter signal strengths are relatively weak in the polar cap sites, compared to the auroral zone sites (Swarnalingam et al., 2009b; Singer et al., 2010). Complications arise with PMSEs in which the echo strength is controlled by the electrons, which are, in turn, influenced by heavily charged ice particles as well as the variability in the D-region plasma. In recent years, PMSE experiments were conducted inside the polar cap utilizing a 51 MHz radar located at Eureka. In this paper, we investigate calibrated observations, conducted during 2009-2015. Seasonal and diurnal variations of the backscatter signal strengths are discussed and compared to previously published results from the ALOMAR radar, which is a radar of similar design located in the auroral zone at Andenes, Norway (69 deg N, 16 deg E). At Eureka, while PMSEs are present with a daily occurrence rate which is comparable to the rate observed at the auroral zone site for at least two seasons, they show a great level of inter-annual variability. The occurrence rate for the strong echoes tends to be low. Furthermore, comparison of the absolute backscatter signal strengths at these two sites clearly indicates that the PMSE backscatter signal strength at Eureka is weak. Although this difference could be caused by several factors, we investigate the intensity of the neutral air turbulence at Eureka from the measurements of the Doppler spectrum of the PMSE backscatter signals. We found that the level of the turbulence intensity at Eureka is weak relative to previously reported results from three high latitude sites.

  7. In Situ Observational Constraints on GIA in Antarctica

    NASA Astrophysics Data System (ADS)

    Wilson, T. J.; Bevis, M. G.; Kendrick, E. C.; Konfal, S.; Dalziel, I. W.; Smalley, R.; Willis, M. J.; Wiens, D. A.; Heeszel, D. S.

    2012-12-01

    Geodetic and seismologic data sets have been acquired across a significant portion of Antarctica through deployment of autonomous, remote instrumentation by the Antarctic Network (ANET) project of the Polar Earth Observing Network (POLENET). Continuous GPS measurements of bedrock crustal motions are yielding a synoptic picture of vertical and horizontal crustal motion patterns from the Transantarctic Mountains to the Ellsworth-Whitmore Mountains and Marie Byrd Land regions. Vertical motion patterns are broadly compatible with predictions from current GIA models, but the magnitudes of the vertical motions are substantially lower than predicted. Slower rates of uplift due to GIA can be attributed to factors including errors in ice history, a superposed solid earth response to modern ice mass change, and/or the influence of laterally varying earth properties on the GIA response. Patterns of horizontal motions measured by ANET show that the role of laterally varying earth rheology is extremely important in Antarctica. Crustal motion vectors are closely aligned and document motion from East toward West Antarctica, in contradiction to ice sheet reconstructions placing maximum LGM ice mass loss in West Antarctica and GIA models that predict motions in the opposite direction. When compared to earth structure mapped by seismology, the horizontal crustal motions are consistently near-perpendicular to the very strong gradient in crust and mantle properties, perhaps the first confirmation of predictions from modeling studies that horizontal motions can be deflected or even reversed where such a lateral earth property exists. Accurate GIA models for Antarctica clearly require a laterally-varying earth model and tuning based on these new GPS and seismological constraints.

  8. Efficient Time-Domain Imaging Processing for One-Stationary Bistatic Forward-Looking SAR Including Motion Errors

    PubMed Central

    Xie, Hongtu; Shi, Shaoying; Xiao, Hui; Xie, Chao; Wang, Feng; Fang, Qunle

    2016-01-01

    With the rapid development of the one-stationary bistatic forward-looking synthetic aperture radar (OS-BFSAR) technology, the huge amount of the remote sensing data presents challenges for real-time imaging processing. In this paper, an efficient time-domain algorithm (ETDA) considering the motion errors for the OS-BFSAR imaging processing, is presented. This method can not only precisely handle the large spatial variances, serious range-azimuth coupling and motion errors, but can also greatly improve the imaging efficiency compared with the direct time-domain algorithm (DTDA). Besides, it represents the subimages on polar grids in the ground plane instead of the slant-range plane, and derives the sampling requirements considering motion errors for the polar grids to offer a near-optimum tradeoff between the imaging precision and efficiency. First, OS-BFSAR imaging geometry is built, and the DTDA for the OS-BFSAR imaging is provided. Second, the polar grids of subimages are defined, and the subaperture imaging in the ETDA is derived. The sampling requirements for polar grids are derived from the point of view of the bandwidth. Finally, the implementation and computational load of the proposed ETDA are analyzed. Experimental results based on simulated and measured data validate that the proposed ETDA outperforms the DTDA in terms of the efficiency improvement. PMID:27845757

  9. Motion of the Mantle in the Translational Modes of the Earth and Mercury

    NASA Technical Reports Server (NTRS)

    Grinfeld, Pavel; Wisdom, Jack

    2005-01-01

    Slichter modes refer to the translational motion of the inner core with respect to the outer core and the mantle. The polar Slichter mode is the motion of the inner core along the axis of rotation. Busse presented an analysis of the polar mode which yielded an expression for its period. Busse's analysis included the assumption that the mantle was stationary. This approximation is valid for planets with small inner cores, such as the Earth whose inner core is about 1/60 of the total planet mass. On the other hand, many believe that Mercury's core may be enormous. If so, the motion of the mantle should be expected to produce a significant effect. We present a formal framework for including the motion of the mantle in the analysis of the translational motion of the inner core. We analyze the effect of the motion of the mantle on the Slichter modes for a non-rotating planet with an inner core of arbitrary size. We omit the effects of viscosity in the outer core, magnetic effects, and solid tides. Our approach is perturbative and is based on a linearization of Euler's equations for the motion of the fluid and Newton's second law for the motion of the inner core. We find an analytical expression for the period of the Slichter mode. Our result agrees with Busse's in the limiting case of small inner core. We present the unexpected result that even for Mercury the motion of the mantle does not significantly change the period of oscillation.

  10. First measurement of the polarization observable E in the p → (γ → ,π+) n reaction up to 2.25 GeV

    NASA Astrophysics Data System (ADS)

    Strauch, S.; Briscoe, W. J.; Döring, M.; Klempt, E.; Nikonov, V. A.; Pasyuk, E.; Rönchen, D.; Sarantsev, A. V.; Strakovsky, I.; Workman, R.; Adhikari, K. P.; Adikaram, D.; Anderson, M. D.; Anefalos Pereira, S.; Anisovich, A. V.; Badui, R. A.; Ball, J.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Benmouna, N.; Biselli, A. S.; Brock, J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carlin, C.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; Dashyan, N.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dugger, M.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meekins, D. G.; Meyer, C. A.; Mokeev, V.; Montgomery, R. A.; Moody, C. I.; Moutarde, H.; Movsisyan, A.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; O'Rielly, G.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Peng, P.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Ritchie, B. G.; Rizzo, A.; Rosner, G.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seely, M. L.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stoler, P.; Stepanyan, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Trivedi, A.; Tucker, R.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2015-11-01

    First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction γ → p → →π+ n, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have been included in new multipole analyses resulting in updated nucleon resonance parameters. We report updated fits from the Bonn-Gatchina, Jülich-Bonn, and SAID groups.

  11. First measurement of the polarization observable E in the p →(y →π +)n reaction up to 2.25 GeV

    DOE PAGES

    Strauch, Steffen

    2015-08-28

    First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E , for the reaction y →p →→π +n, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have beenmore » included in new multipole analyses resulting in updated nucleon resonance parameters. Lastly, we report updated fits from the Bonn–Gatchina, Jülich–Bonn, and SAID groups.« less

  12. The Quake-Catcher Network: Improving Earthquake Strong Motion Observations Through Community Engagement

    NASA Astrophysics Data System (ADS)

    Cochran, E. S.; Lawrence, J. F.; Christensen, C. M.; Chung, A. I.; Neighbors, C.; Saltzman, J.

    2010-12-01

    The Quake-Catcher Network (QCN) involves the community in strong motion data collection by utilizing volunteer computing techniques and low-cost MEMS accelerometers. Volunteer computing provides a mechanism to expand strong-motion seismology with minimal infrastructure costs, while promoting community participation in science. Micro-Electro-Mechanical Systems (MEMS) triaxial accelerometers can be attached to a desktop computer via USB and are internal to many laptops. Preliminary shake table tests show the MEMS accelerometers can record high-quality seismic data with instrument response similar to research-grade strong-motion sensors. QCN began distributing sensors and software to K-12 schools and the general public in April 2008 and has grown to roughly 1500 stations worldwide. We also recently tested whether sensors could be quickly deployed as part of a Rapid Aftershock Mobilization Program (RAMP) following the 2010 M8.8 Maule, Chile earthquake. Volunteers are recruited through media reports, web-based sensor request forms, as well as social networking sites. Using data collected to date, we examine whether a distributed sensing network can provide valuable seismic data for earthquake detection and characterization while promoting community participation in earthquake science. We utilize client-side triggering algorithms to determine when significant ground shaking occurs and this metadata is sent to the main QCN server. On average, trigger metadata are received within 1-10 seconds from the observation of a trigger; the larger data latencies are correlated with greater server-station distances. When triggers are detected, we determine if the triggers correlate to others in the network using spatial and temporal clustering of incoming trigger information. If a minimum number of triggers are detected then a QCN-event is declared and an initial earthquake location and magnitude is estimated. Initial analysis suggests that the estimated locations and magnitudes are

  13. Observation of Global Hyperon Polarization in Ultrarelativistic Heavy-Ion Collisions

    NASA Astrophysics Data System (ADS)

    Upsal, Isaac; STAR Collaboration

    2017-11-01

    Collisions between heavy nuclei at ultra-relativistic energies form a color-deconfined state of matter known as the quark-gluon plasma. This state is well described by hydrodynamics, and non-central collisions are expected to produce a fluid characterized by strong vorticity in the presence of strong external magnetic fields. The STAR Collaboration at Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) has measured collisions between gold nuclei at center of mass energies √{sNN} = 7.7- 200 GeV. We report the first observation of globally polarized Λ and Λ bar hyperons, aligned with the angular momentum of the colliding system. These measurements provide important information on partonic spin-orbit coupling, the vorticity of the quark-gluon plasma, and the magnetic field generated in the collision.

  14. On the systematics in apparent proper motions of radio sources observed by VLBI

    NASA Astrophysics Data System (ADS)

    Raposo-Pulido, V.; Lambert, S.; Capitaine, N.; Nilsson, T.; Heinkelmann, R.; Schuh, H.

    2015-08-01

    For about twenty years, several authors have been investigating the systematics in the apparent proper motions of radio source positions. In some cases, the theoretical work developed (Pyne et al., 1996) could not be assessed due to the few number of VLBI observations. In other cases, the effects attributed to apparent proper motion could not be related successfully because there were no significant evidences from a statistical point of view (MacMillan, 2005). In this work we provide considerations about the estimation of the coefficients of spherical harmonics, based on a three-step procedure used by Titov et al. (2011) and Titov and Lambert (2013). The early stage of this work has been to compare step by step the computations and estimation processes between the Calc/Solve (http://gemini.gsfc.nasa.gov/solve/) and VieVS software (Böhm et al., 2012). To achieve this, the results were analyzed and compared with the previous study done by Titov and Lambert (2013).

  15. Polarization Imaging Apparatus

    NASA Technical Reports Server (NTRS)

    Zou, Yingyin K.; Chen, Qiushui

    2010-01-01

    A polarization imaging apparatus has shown promise as a prototype of instruments for medical imaging with contrast greater than that achievable by use of non-polarized light. The underlying principles of design and operation are derived from observations that light interacts with tissue ultrastructures that affect reflectance, scattering, absorption, and polarization of light. The apparatus utilizes high-speed electro-optical components for generating light properties and acquiring polarization images through aligned polarizers. These components include phase retarders made of OptoCeramic (registered TradeMark) material - a ceramic that has a high electro-optical coefficient. The apparatus includes a computer running a program that implements a novel algorithm for controlling the phase retarders, capturing image data, and computing the Stokes polarization images. Potential applications include imaging of superficial cancers and other skin lesions, early detection of diseased cells, and microscopic analysis of tissues. The high imaging speed of this apparatus could be beneficial for observing live cells or tissues, and could enable rapid identification of moving targets in astronomy and national defense. The apparatus could also be used as an analysis tool in material research and industrial processing.

  16. Weekly gridded Aquarius L-band radiometer/scatterometer observations and salinity retrievals over the polar regions - Part 1: Product description

    NASA Astrophysics Data System (ADS)

    Brucker, L.; Dinnat, E. P.; Koenig, L. S.

    2014-05-01

    Passive and active observations at L band (frequency ~1.4 GHz) from the Aquarius/SAC-D mission offer new capabilities to study the polar regions. Due to the lack of polar-gridded products, however, applications over the cryosphere have been limited. We present three weekly polar-gridded products of Aquarius data to improve our understanding of L-band observations of ice sheets, sea ice, permafrost, and the polar oceans. Additionally, these products intend to facilitate access to L-band data, and can be used to assist in algorithm developments. Aquarius data at latitudes higher than 50° are averaged and gridded into weekly products of brightness temperature (TB), normalized radar cross section (NRCS), and sea surface salinity (SSS). Each grid cell also contains sea ice fraction, the standard deviation of TB, NRCS, and SSS, and the number of footprint observations collected during the seven-day cycle. The largest 3 dB footprint dimensions are 97 km × 156 km and 74 km × 122 km (along × across track) for the radiometers and scatterometer, respectively. The data is gridded to the Equal-Area Scalable Earth version 2.0 (EASE2.0) grid, with a grid cell resolution of 36 km. The data sets start in August 2011, with the first Aquarius observations and will be updated on a monthly basis following the release schedule of the Aquarius Level 2 data sets. The weekly gridded products are distributed by the US National Snow and Ice Data Center at http://nsidc.org/data/aquarius/index.html .

  17. The Coordination Dynamics of Observational Learning: Relative Motion Direction and Relative Phase as Informational Content Linking Action-Perception to Action-Production.

    PubMed

    Buchanan, John J

    2016-01-01

    The primary goal of this chapter is to merge together the visual perception perspective of observational learning and the coordination dynamics theory of pattern formation in perception and action. Emphasis is placed on identifying movement features that constrain and inform action-perception and action-production processes. Two sources of visual information are examined, relative motion direction and relative phase. The visual perception perspective states that the topological features of relative motion between limbs and joints remains invariant across an actor's motion and therefore are available for pickup by an observer. Relative phase has been put forth as an informational variable that links perception to action within the coordination dynamics theory. A primary assumption of the coordination dynamics approach is that environmental information is meaningful only in terms of the behavior it modifies. Across a series of single limb tasks and bimanual tasks it is shown that the relative motion and relative phase between limbs and joints is picked up through visual processes and supports observational learning of motor skills. Moreover, internal estimations of motor skill proficiency and competency are linked to the informational content found in relative motion and relative phase. Thus, the chapter links action to perception and vice versa and also links cognitive evaluations to the coordination dynamics that support action-perception and action-production processes.

  18. Transient tidal eddy motion in the western Gulf of Maine, part 1: Primary structure

    NASA Astrophysics Data System (ADS)

    Brown, W. S.; Marques, G. M.

    2013-07-01

    High frequency radar-derived surface current maps of the Great South Channel (GSC) in the western Gulf of Maine in 2005 revealed clockwise (CW) and anticlockwise (ACW) eddy motion associated with the strong regional tidal currents. To better elucidate the kinematics and dynamics of these transient tidal eddy motions, an observational and modeling study was conducted during the weakly stratified conditions of winter 2008-2009. Our moored bottom pressure and ADCP current measurements in 13m depth were augmented by historical current measurements in about 30m in documenting the dominance of highly polarized M2 semidiurnal currents in our nearshore study region. The high-resolution finite element coastal ocean model (QUODDY) - forced by the five principal tidal constituents - produced maps depicting the formation and evolution of the CW and ACW eddy motions that regularly follow maximum ebb and flood flows, respectively. Observation versus model current comparison required that the model bottom current drag coefficient be set to at an unusually high Cd=0.01 - suggesting the importance of form drag in the study region. The observations and model results were consistent in diagnosing CW or ACW eddy motions that (a) form nearshore in the coastal boundary layer (CBL) for about 3h after the respective tidal current maxima and then (b) translate southeastward across the GSC along curved 50m isobath at speeds of about 25m/s. Observation-based and model-based momentum budget estimates were consistent in showing a first order forced semidiurnal standing tidal wave dynamics (like the adjacent Gulf of Maine) which was modulated by adverse pressure gradient/bottom stress forcing to generate the eddy motions. Observation-based estimates of terms in the transport vorticity budget showed that in the shallower Inner Zone subregion (average depth=23m) that the diffusion of nearshore vorticity was dominant in feeding the growth of eddy motion vorticity; while in the somewhat deeper

  19. Heating the polar corona by collisionless shocks: an example of cross-fertilization in space physics

    NASA Astrophysics Data System (ADS)

    Zimbardo, Gaetano; Nistico, Giuseppe

    We propose a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona. We consider that a large number of small scale shock waves can be present in the solar corona, as suggested by recent observations of polar coronal jets. The heavy ion energization mechanism is, essentially, the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = -V × B. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to E is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T⊥ T , in agreement with observations. Also, heating is more than mass proportional with respect to protons, because the heavy ion orbit is mostly upstream of the quasi-perpendicular shock foot. The observed temperature ratios between O5+ ions and protons in the polar corona, and between α particles and protons in the solar wind are easily recovered. Results of numerical simulations reproducing the heavy ion reflection will be presented. This work is an interesting example of cross-fertilization in space plasma physics: the non adiabatic heating of heavy ions comes from Speiser orbits in the magnetotail, observations of preferential heating of heavy ions at shocks comes from Ulysses data on corotating interaction regions shocks, heavy ion reflecton from a magnetic barrier is akin to the ion orbits in the Ferraro-Rosenbluth sheath considered for the magnetopause, the formation of shocks in the reconnection outflow regions comes from solar flare models, and evidence of reconnection and fast flows in the polar corona comes from Hinode and STEREO observations of coronal hole jets.

  20. Polarization and Out-of-Plane Observables in the γ^*NarrowΔ Transition

    NASA Astrophysics Data System (ADS)

    Kaloskamis, N. I.

    1998-10-01

    The H(e,e^' p)π^0, H(e,e^' p)π^0 and H(e,e^' π^+)n reactions have been studied at Bates during the past three years. Polarization observables have been measured for the first time in order to extract the Coulomb quadrupole amplitude of the γ^*NarrowΔ transition, by isolating it from that due to background processes. The detection equipment included a focal plane polarimeter (FPP) in the first experiment, and out-of-plane spectrometers (OOPS) in the second. Measurements were made at Q^2=0.127 (GeV/c)^2, invariant masses of W=1170, 1232, 1294 MeV and angles θ_pq^cm of up to 61^o. Data will be presented for the total cross section and the proton recoil polarization (P_n). Combined with sequencial measurements of the space asymmetry (A_LT), they provide clear discrimination among available electroproduction models and do not confirm a recent reportfootnote F. Kalleicher et al., Z. Phys. A359, 201 (1997) of a large Coulomb quadrupole amplitude. Preliminary data of the helicity asymmetry (A_LT^'), measured simultaneously using two OOPS modules, will also be presented.

  1. Earth rotation excitation mechanisms derived from geodetic space observations

    NASA Astrophysics Data System (ADS)

    Göttl, F.; Schmidt, M.

    2009-04-01

    Earth rotation variations are caused by mass displacements and motions in the subsystems of the Earth. Via the satellite Gravity and Climate Experiment (GRACE) gravity field variations can be identified which are caused by mass redistribution in the Earth system. Therefore time variable gravity field models (GFZ RL04, CSR RL04, JPL RL04, ITG-Grace03, GRGS, ...) can be used to derive different impacts on Earth rotation. Furthermore satellite altimetry provides accurate information on sea level anomalies (AVISO, DGFI) which are caused by mass and volume changes of seawater. Since Earth rotation is solely affected by mass variations and motions the volume (steric) effect has to be reduced from the altimetric observations in order to infer oceanic contributions to Earth rotation variations. Therefore the steric effect is estimated from physical ocean parameters such as temperature and salinity changes in the oceans (WOA05, Ishii). In this study specific individual geophysical contributions to Earth rotation variations are identified by means of a multitude of accurate geodetic space observations in combination with a realistic error propagation. It will be shown that due to adjustment of altimetric and/or gravimetric solutions the results for polar motion excitations can be improved.

  2. Observed ground-motion variabilities and implication for source properties

    NASA Astrophysics Data System (ADS)

    Cotton, F.; Bora, S. S.; Bindi, D.; Specht, S.; Drouet, S.; Derras, B.; Pina-Valdes, J.

    2016-12-01

    One of the key challenges of seismology is to be able to calibrate and analyse the physical factors that control earthquake and ground-motion variabilities. Within the framework of empirical ground-motion prediction equation (GMPE) developments, ground-motions residuals (differences between recorded ground motions and the values predicted by a GMPE) are computed. The exponential growth of seismological near-field records and modern regression algorithms allow to decompose these residuals into between-event and a within-event residual components. The between-event term quantify all the residual effects of the source (e.g. stress-drops) which are not accounted by magnitude term as the only source parameter of the model. Between-event residuals provide a new and rather robust way to analyse the physical factors that control earthquake source properties and associated variabilities. We first will show the correlation between classical stress-drops and between-event residuals. We will also explain why between-event residuals may be a more robust way (compared to classical stress-drop analysis) to analyse earthquake source-properties. We will finally calibrate between-events variabilities using recent high-quality global accelerometric datasets (NGA-West 2, RESORCE) and datasets from recent earthquakes sequences (Aquila, Iquique, Kunamoto). The obtained between-events variabilities will be used to evaluate the variability of earthquake stress-drops but also the variability of source properties which cannot be explained by a classical Brune stress-drop variations. We will finally use the between-event residual analysis to discuss regional variations of source properties, differences between aftershocks and mainshocks and potential magnitude dependencies of source characteristics.

  3. Solar Cycle Variation of Microwave Polar Brightening and EUV Coronal Hole Observed by Nobeyama Radioheliograph and SDO/AIA

    NASA Astrophysics Data System (ADS)

    Kim, Sujin; Park, Jong-Yeop; Kim, Yeon-Han

    2017-08-01

    We investigate the solar cycle variation of microwave and extreme ultraviolet (EUV) intensity in latitude to compare microwave polar brightening (MPB) with the EUV polar coronal hole (CH). For this study, we used the full-sun images observed in 17 GHz of the Nobeyama Radioheliograph from 1992 July to 2016 November and in two EUV channels of the Atmospheric Imaging Assembly (AIA) 193 Å and 171 Å on the Solar Dynamics Observatory (SDO) from 2011 January to 2016 November. As a result, we found that the polar intensity in EUV is anti-correlated with the polar intensity in microwave. Since the depression of EUV intensity in the pole is mostly owing to the CH appearance and continuation there, the anti-correlation in the intensity implies the intimate association between the polar CH and the MPB. Considering the report of tet{gopal99} that the enhanced microwave brightness in the CH is seen above the enhanced photospheric magnetic field, we suggest that the pole area during the solar minimum has a stronger magnetic field than the quiet sun level and such a strong field in the pole results in the formation of the polar CH. The emission mechanism of the MPB and the physical link with the polar CH are not still fully understood. It is necessary to investigate the MPB using high resolution microwave imaging data, which can be obtained by the high performance large-array radio observatories such as the ALMA project.

  4. The Polarization Signature of Photospheric Magnetic Fields in 3D MHD Simulations and Observations at Disk Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, C.; Fabbian, D.; Rezaei, R.

    2017-06-10

    Before using three-dimensional (3D) magnetohydrodynamical (MHD) simulations of the solar photosphere in the determination of elemental abundances, one has to ensure that the correct amount of magnetic flux is present in the simulations. The presence of magnetic flux modifies the thermal structure of the solar photosphere, which affects abundance determinations and the solar spectral irradiance. The amount of magnetic flux in the solar photosphere also constrains any possible heating in the outer solar atmosphere through magnetic reconnection. We compare the polarization signals in disk-center observations of the solar photosphere in quiet-Sun regions with those in Stokes spectra computed on themore » basis of 3D MHD simulations having average magnetic flux densities of about 20, 56, 112, and 224 G. This approach allows us to find the simulation run that best matches the observations. The observations were taken with the Hinode SpectroPolarimeter (SP), the Tenerife Infrared Polarimeter (TIP), the Polarimetric Littrow Spectrograph (POLIS), and the GREGOR Fabry–Pèrot Interferometer (GFPI), respectively. We determine characteristic quantities of full Stokes profiles in a few photospheric spectral lines in the visible (630 nm) and near-infrared (1083 and 1565 nm). We find that the appearance of abnormal granulation in intensity maps of degraded simulations can be traced back to an initially regular granulation pattern with numerous bright points in the intergranular lanes before the spatial degradation. The linear polarization signals in the simulations are almost exclusively related to canopies of strong magnetic flux concentrations and not to transient events of magnetic flux emergence. We find that the average vertical magnetic flux density in the simulation should be less than 50 G to reproduce the observed polarization signals in the quiet-Sun internetwork. A value of about 35 G gives the best match across the SP, TIP, POLIS, and GFPI observations.« less

  5. Developments in Polarization and Energy Control of APPLE-II Undulators at Diamond Light Source

    NASA Astrophysics Data System (ADS)

    Longhi, E. C.; Bencok, P.; Dobrynin, A.; Rial, E. C. M.; Rose, A.; Steadman, P.; Thompson, C.; Thomson, A.; Wang, H.

    2013-03-01

    A pair of 2m long APPLE-II type undulators have been built for the I10 BLADE beamline at Diamond Light Source. These 48mm period devices have gap as well as four moveable phase axes which provide the possibility to produce the full range of elliptical polarizations as well as linear polarization tilted through a full 180deg. The mechanical layout chosen has a 'master and slave' arrangement of the phase axes on the top and bottom. This arrangement allows the use of symmetries to provide operational ease for both changing energy using only the master phase while keeping fixed linear horizontal or circular polarization, as well as changing linear polarization angle while keeping fixed energy [1]. The design allows very fast motion of the master phase arrays, without sacrifice of accuracy, allowing the possibility of mechanical polarization switching at 1Hz for dichroism experiments. We present the mechanical design features of these devices, as well as the results of magnetic measurements and shimming from before installation. Finally, we present the results of characterization of these devices by the beamline, including polarimetry, which has been done on the various modes of motion to control energy and polarization. These modes of operation have been available to users since 2011.

  6. Biological applications of confocal fluorescence polarization microscopy

    NASA Astrophysics Data System (ADS)

    Bigelow, Chad E.

    Fluorescence polarization microscopy is a powerful modality capable of sensing changes in the physical properties and local environment of fluorophores. In this thesis we present new applications for the technique in cancer diagnosis and treatment and explore the limits of the modality in scattering media. We describe modifications to our custom-built confocal fluorescence microscope that enable dual-color imaging, optical fiber-based confocal spectroscopy and fluorescence polarization imaging. Experiments are presented that indicate the performance of the instrument for all three modalities. The limits of confocal fluorescence polarization imaging in scattering media are explored and the microscope parameters necessary for accurate polarization images in this regime are determined. A Monte Carlo routine is developed to model the effect of scattering on images. Included in it are routines to track the polarization state of light using the Mueller-Stokes formalism and a model for fluorescence generation that includes sampling the excitation light polarization ellipse, Brownian motion of excited-state fluorophores in solution, and dipole fluorophore emission. Results from this model are compared to experiments performed on a fluorophore-embedded polymer rod in a turbid medium consisting of polystyrene microspheres in aqueous suspension. We demonstrate the utility of the fluorescence polarization imaging technique for removal of contaminating autofluorescence and for imaging photodynamic therapy drugs in cell monolayers. Images of cells expressing green fluorescent protein are extracted from contaminating fluorescein emission. The distribution of meta-tetrahydroxypheny1chlorin in an EMT6 cell monolayer is also presented. A new technique for imaging enzyme activity is presented that is based on observing changes in the anisotropy of fluorescently-labeled substrates. Proof-of-principle studies are performed in a model system consisting of fluorescently labeled bovine

  7. Hierarchical Phased Array Antenna Focal Plane for Cosmic Microwave Background Polarization and Sub-mm Observations

    NASA Astrophysics Data System (ADS)

    Lee, Adrian

    We propose to develop planar-antenna-coupled superconducting bolometer arrays for observations at sub-millimeter to millimeter wavelengths. Our pixel architecture features a dual-polarization, log-periodic antenna with a 5:1 bandwidth ratio, followed by a filter bank that divides the total bandwidth into several broad photometric bands. We propose to develop an hierarchical phased array of our basic pixel type that gives optimal mapping speed (sensitivity) over a much broader range of frequencies. The advantage of this combination of an intrinsically broadband pixel with hierarchical phase arraying include a combination of greatly reduced focal-plane mass, higher array sensitivity, and a larger number of spectral bands compared to focal-plane designs using conventional single-color pixels. These advantages have the potential to greatly reduce cost and/or increase performance of NASA missions in the sub-millimeter to millimeter bands. For CMB polarization, a wide frequency range of about 30 to 400 GHz is required to subtract galactic foregrounds. As an example, the multichroic architecture we propose could reduce the focal plane mass of the EPIC-IM CMB polarization mission study concept by a factor of 4, with great savings in required cryocooler performance and therefore cost. We have demonstrated the lens-coupled antenna concept in the POLARBEAR groundbased CMB polarization experiment which is now operating in Chile. That experiment uses a single-band planar antenna that gives excellent beam properties and optical efficiency. POLARBEAR recently succeeded in detecting gravitational lensing B-modes in the CMB polarization. In the laboratory, we have measured two octaves of total bandwidth in the log-periodic sinuous antenna. We have built filter banks of 2, 3, and 7 bands with 4, 6, and 14 bolometers per pixel for two linear polarizations. Pixels of this type are slated to be deployed on the ground in POLARBEAR and SPT-3G and proposed to be used on a balloon by EBEX

  8. WORM - WINDOWED OBSERVATION OF RELATIVE MOTION

    NASA Technical Reports Server (NTRS)

    Bauer, F.

    1994-01-01

    The Windowed Observation of Relative Motion, WORM, program is primarily intended for the generation of simple X-Y plots from data created by other programs. It allows the user to label, zoom, and change the scale of various plots. Three dimensional contour and line plots are provided, although with more limited capabilities. The input data can be in binary or ASCII format, although all data must be in the same format. A great deal of control over the details of the plot is provided, such as gridding, size of tick marks, colors, log/semilog capability, time tagging, and multiple and phase plane plots. Many color and monochrome graphics terminals and hard copy printer/plotters are supported. The WORM executive commands, menu selections and macro files can be used to develop plots and tabular data, query the WORM Help library, retrieve data from input files, and invoke VAX DCL commands. WORM generated plots are displayed on local graphics terminals and can be copied using standard hard copy capabilities. Some of the graphics features of WORM include: zooming and dezooming various portions of the plot; plot documentation including curve labeling and function listing; multiple curves on the same plot; windowing of multiple plots and insets of the same plot; displaying a specific on a curve; and spinning the curve left, right, up, and down. WORM is written in PASCAL for interactive execution and has been implemented on a DEC VAX computer operating under VMS 4.7 with a virtual memory requirement of approximately 392K of 8 bit bytes. It uses the QPLOT device independent graphics library included with WORM. It was developed in 1988.

  9. Objects in Motion

    ERIC Educational Resources Information Center

    Damonte, Kathleen

    2004-01-01

    One thing scientists study is how objects move. A famous scientist named Sir Isaac Newton (1642-1727) spent a lot of time observing objects in motion and came up with three laws that describe how things move. This explanation only deals with the first of his three laws of motion. Newton's First Law of Motion says that moving objects will continue…

  10. Constraining Polarized Foregrounds for EoR Experiments. II. Polarization Leakage Simulations in the Avoidance Scheme

    NASA Astrophysics Data System (ADS)

    Nunhokee, C. D.; Bernardi, G.; Kohn, S. A.; Aguirre, J. E.; Thyagarajan, N.; Dillon, J. S.; Foster, G.; Grobler, T. L.; Martinot, J. Z. E.; Parsons, A. R.

    2017-10-01

    A critical challenge in the observation of the redshifted 21 cm line is its separation from bright Galactic and extragalactic foregrounds. In particular, the instrumental leakage of polarized foregrounds, which undergo significant Faraday rotation as they propagate through the interstellar medium, may harmfully contaminate the 21 cm power spectrum. We develop a formalism to describe the leakage due to instrumental widefield effects in visibility-based power spectra measured with redundant arrays, extending the delay-spectrum approach presented in Parsons et al. We construct polarized sky models and propagate them through the instrument model to simulate realistic full-sky observations with the Precision Array to Probe the Epoch of Reionization. We find that the leakage due to a population of polarized point sources is expected to be higher than diffuse Galactic polarization at any k mode for a 30 m reference baseline. For the same reference baseline, a foreground-free window at k > 0.3 h Mpc-1 can be defined in terms of leakage from diffuse Galactic polarization even under the most pessimistic assumptions. If measurements of polarized foreground power spectra or a model of polarized foregrounds are given, our method is able to predict the polarization leakage in actual 21 cm observations, potentially enabling its statistical subtraction from the measured 21 cm power spectrum.

  11. The facing bias in biological motion perception: Effects of stimulus gender and observer sex.

    PubMed

    Schouten, Ben; Troje, Nikolaus F; Brooks, Anna; van der Zwan, Rick; Verfaillie, Karl

    2010-07-01

    Under orthographic projection, biological motion point-light walkers offer no cues to the order of the dots in depth: Views from the front and from the back result in the very same stimulus. Yet observers show a bias toward seeing a walker facing the viewer (Vanrie, Dekeyser, & Verfaillie, 2004). Recently, we reported that this facing bias strongly depends on the gender of the walker (Brooks et al., 2008). The goal of the present study was, first, to examine the robustness of the effect by testing a much larger subject sample and, second, to investigate whether the effect depends on observer sex. Despite the fact that we found a significant effect of figure gender, we clearly failed to replicate the strong effect observed in the original study. We did, however, observe a significant interaction between figure gender and observer sex.

  12. European VLBI network observations of fourteen GHz-peaked-spectrum radio sources at 5 GHz

    NASA Astrophysics Data System (ADS)

    Xiang, L.; Reynolds, C.; Strom, R. G.; Dallacasa, D.

    2006-08-01

    We present the results of EVN polarization observations of fourteen GHz-Peaked-Spectrum (GPS) radio sources at 5 GHz. These sources were selected from bright GPS source samples and we aimed at finding Compact Symmetric Objects (CSOs). We have obtained full polarization 5 GHz VLBI observations of 14 sources providing information on their source structure and spectral indices. The results show that two core-jet sources 1433-040 and DA193, out of 14 GPS sources, exhibit integrated fractional polarizations of 3.6% and 1.0% respectively. The other 12 sources have no clear detection of pc-scale polarization. The results confirm that the GPS sources generally have very low polarization at 5 GHz. The sources 1133+432, 1824+271 and 2121-014 are confirmed as CSOs. Three new CSOs 0914+114, 1518+046 and 2322-040 (tentative) have been classified on the basis of 5 GHz images and spectral indices. The sources 1333+589, 1751+278 and 2323+790 can be classified either as compact doubles, and then they are likely CSO candidates or core-jet sources; further observations are needed for an appropriate classification; 0554-026, 1433-040 and 1509+054 are core-jet sources. In addition, we estimate that a component in the jet of quasar DA193 has superluminal motion of 3.3±0.6 h-1 c in 5.5 years.

  13. Effects of action observation therapy on upper extremity function, daily activities and motion evoked potential in cerebral infarction patients.

    PubMed

    Fu, Jianming; Zeng, Ming; Shen, Fang; Cui, Yao; Zhu, Meihong; Gu, Xudong; Sun, Ya

    2017-10-01

    The aim of this study was to explore the effects of action observation therapy on motor function of upper extremity, activities of daily living, and motion evoked potential in cerebral infarction patients. Cerebral infarction survivors were randomly assigned to an experimental group (28 patients) or a control group (25 patients). The conventional rehabilitation treatments were applied in both groups, but the experimental group received an additional action observation therapy for 8 weeks (6 times per week, 20 minutes per time). Fugl-Meyer assessment (FMA), Wolf Motor Function Test (WMFT), Modified Barthel Index (MBI), and motor evoked potential (MEP) were used to evaluate the upper limb movement function and daily life activity. There were no significant differences between experiment and control group in the indexes, including FMA, WMFT, and MBI scores, before the intervention. However, after 8 weeks treatments, these indexes were improved significantly. MEP latency and center-motion conduction time (CMCT) decreased from 23.82 ± 2.16 and 11.15 ± 1.68 to 22.69 ± 2.11 and 10.12 ± 1.46 ms. MEP amplitude increased from 0.61 ± 0.22 to 1.25 ± 0.38 mV. A remarkable relationship between the evaluations indexes of MEP and FMA was found. Combination of motion observation and traditional upper limb rehabilitation treatment technology can significantly elevate the movement function of cerebral infarction patients in subacute seizure phase with upper limb dysfunction, which expanded the application range of motion observation therapy and provided an effective therapy strategy for upper extremities hemiplegia in stroke patients.

  14. Polarization of the diffuse galactic light.

    NASA Technical Reports Server (NTRS)

    Sparrow, J. G.; Ney, E. P.

    1972-01-01

    Polarization measurements made from the satellite OSO-5 show that the polarized intensity in the direction of the Scutum arm of the Galaxy is different in intensity and direction of the polarization from that observed due to the zodiacal light. The observations are consistent with polarized diffuse galactic light superposed on the zodiacal light. The results are interpreted in terms of a model in which the galactic starlight is scattered by interstellar dust.

  15. Ground roll attenuation using polarization analysis in the t-f-k domain

    NASA Astrophysics Data System (ADS)

    Wang, C.; Wang, Y.

    2017-07-01

    S waves travel slower than P waves and have a lower dominant frequency. Therefore, applying common techniques such as time-frequency filtering and f-k filtering to separate S waves from ground roll is difficult because ground roll is also characterized by slow velocity and low frequency. In this study, we present a method for attenuating ground roll using a polarization filtering method based on the t-f-k transform. We describe the particle motion of the waves by complex vector signals. Each pair of frequency components, whose frequencies have the same absolute value but different signs, of the complex signal indicate an elliptical or linear motion. The polarization parameters of the elliptical or linear motion are explicitly related to the two Fourier coefficients. We then extend these concepts to the t-f-k domain and propose a polarization filtering method for ground roll attenuation based on the t-f-k transform. The proposed approach can define automatically the time-varying reject zones on the f-k panel at different times as a function of the reciprocal ellipticity. Four attributes, time, frequency, apparent velocity and polarization are used to identify and extract the ground roll simultaneously. Thus, the ground roll and body waves can be separated as long as they are dissimilar in one of these attributes. We compare our method with commonly used filtering techniques by applying the methods to synthetic and real seismic data. The results indicate that our method can attenuate ground roll while preserving body waves more effectively than the other methods.

  16. OBSERVER RATING VERSUS THREE-DIMENSIONAL MOTION ANALYSIS OF LOWER EXTREMITY KINEMATICS DURING FUNCTIONAL SCREENING TESTS: A SYSTEMATIC REVIEW.

    PubMed

    Maclachlan, Liam; White, Steven G; Reid, Duncan

    2015-08-01

    Functional assessments are conducted in both clinical and athletic settings in an attempt to identify those individuals who exhibit movement patterns that may increase their risk of non-contact injury. In place of highly sophisticated three-dimensional motion analysis, functional testing can be completed through observation. To evaluate the validity of movement observation assessments by summarizing the results of articles comparing human observation in real-time or video play-back and three-dimensional motion analysis of lower extremity kinematics during functional screening tests. Systematic review. A computerized systematic search was conducted through Medline, SPORTSdiscus, Scopus, Cinhal, and Cochrane health databases between February and April of 2014. Validity studies comparing human observation (real-time or video play-back) to three-dimensional motion analysis of functional tasks were selected. Only studies comprising uninjured, healthy subjects conducting lower extremity functional assessments were appropriate for review. Eligible observers were certified health practitioners or qualified members of sports and athletic training teams that conduct athlete screening. The Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) was used to appraise the literature. Results are presented in terms of functional tasks. Six studies met the inclusion criteria. Across these studies, two-legged squats, single-leg squats, drop-jumps, and running and cutting manoeuvres were the functional tasks analysed. When compared to three-dimensional motion analysis, observer ratings of lower extremity kinematics, such as knee position in relation to the foot, demonstrated mixed results. Single-leg squats achieved target sensitivity values (≥ 80%) but not specificity values (≥ 50%>%). Drop-jump task agreement ranged from poor (< 50%) to excellent (> 80%). Two-legged squats achieved 88% sensitivity and 85% specificity. Mean underestimations as large as 198 (peak knee

  17. Circular polarization of twilight.

    NASA Technical Reports Server (NTRS)

    Angel, J. R. P.; Illing, R.; Martin, P. G.

    1972-01-01

    Review of observations of circular polarization of twilight performed with a polarimeter which uses an electronically switched Pockels cell operated as a reversible quarter-wave plate to convert circular into linear polarization. The latter was then analyzed by a Wollaston prism followed by two gallium-arsenide photomultipliers. The discovery of a definite natural circular polarization at twilight does suggest that, with increased observation precision, measurements of the small daylight component are possible. These could give useful information about particles in the atmosphere and be valuable in studies of meteorology and air pollution.

  18. Connections between collinear and transverse-momentum-dependent polarized observables within the Collins–Soper–Sterman formalism

    DOE PAGES

    Gamberg, Leonard; Metz, Andreas; Pitonyak, Daniel; ...

    2018-03-15

    Here, we extend the improved Collins–Soper–Sterman (iCSS) W+Y construction recently presented in to the case of polarized observables, where we focus in particular on the Sivers effect in semi-inclusive deep-inelastic scattering. We further show how one recovers the expected leading-order collinear twist-3 result from a (weighted) q T-integral of the differential cross section. We are also able to demonstrate the validity of the well-known relation between the (TMD) Sivers function and the (collinear twist-3) Qiu–Sterman function within the iCSS framework. This relation allows for their interpretation as functions yielding the average transverse momentum of unpolarized quarks in a transversely polarizedmore » spin-1/2 target. We further outline how this study can be generalized to other polarized quantities.« less

  19. Connections between collinear and transverse-momentum-dependent polarized observables within the Collins–Soper–Sterman formalism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gamberg, Leonard; Metz, Andreas; Pitonyak, Daniel

    Here, we extend the improved Collins–Soper–Sterman (iCSS) W+Y construction recently presented in to the case of polarized observables, where we focus in particular on the Sivers effect in semi-inclusive deep-inelastic scattering. We further show how one recovers the expected leading-order collinear twist-3 result from a (weighted) q T-integral of the differential cross section. We are also able to demonstrate the validity of the well-known relation between the (TMD) Sivers function and the (collinear twist-3) Qiu–Sterman function within the iCSS framework. This relation allows for their interpretation as functions yielding the average transverse momentum of unpolarized quarks in a transversely polarizedmore » spin-1/2 target. We further outline how this study can be generalized to other polarized quantities.« less

  20. Observations of the northern seasonal polar cap on Mars: I. Spring sublimation activity and processes

    USGS Publications Warehouse

    Hansen, C.J.; Byrne, S.; Portyankina, G.; Bourke, M.; Dundas, C.; McEwen, A.; Mellon, M.; Pommerol, A.; Thomas, N.

    2013-01-01

    Spring sublimation of the seasonal CO2 northern polar cap is a dynamic process in the current Mars climate. Phenomena include dark fans of dune material propelled out onto the seasonal ice layer, polygonal cracks in the seasonal ice, sand flow down slipfaces, and outbreaks of gas and sand around the dune margins. These phenomena are concentrated on the north polar erg that encircles the northern residual polar cap. The Mars Reconnaissance Orbiter has been in orbit for three Mars years, allowing us to observe three northern spring seasons. Activity is consistent with and well described by the Kieffer model of basal sublimation of the seasonal layer of ice applied originally in the southern hemisphere. Three typical weak spots have been identified on the dunes for escape of gas sublimed from the bottom of the seasonal ice layer: the crest of the dune, the interface of the dune with the interdune substrate, and through polygonal cracks in the ice. Pressurized gas flows through these vents and carries out material entrained from the dune. Furrows in the dunes channel gas to outbreak points and may be the northern equivalent of southern radially-organized channels (“araneiform” terrain), albeit not permanent. Properties of the seasonal CO2 ice layer are derived from timing of seasonal events such as when final sublimation occurs. Modification of dune morphology shows that landscape evolution is occurring on Mars today, driven by seasonal activity associated with sublimation of the seasonal CO2 polar cap.

  1. J/{psi} Polarization from Fixed-Target to Collider Energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faccioli, Pietro; Woehri, Hermine K.; Lourenco, Carlos

    Magnitude and 'sign' of the measured J/{psi} polarization crucially depends on the reference frame used in the data analysis: a full understanding of the polarization phenomenon requires measurements reported in two 'orthogonal' frames, such as the Collins-Soper and helicity frames. Moreover, the azimuthal anisotropy can be, in certain frames, as significant as the polar one. The seemingly contradictory results reported by the experiments E866, HERA-B, and CDF can be consistently described assuming that the most suitable axis for the measurement is along the direction of the relative motion of the colliding partons, and that directly produced J/{psi}'s are longitudinally polarizedmore » at low momentum and transversely polarized at high momentum. We make specific predictions that can be tested on existing CDF data and by LHC measurements, which should show a full transverse polarization for direct J/{psi}'s of p{sub T}>25 GeV/c.« less

  2. A study of possible ground-motion amplification at the Coyote Lake Dam, California

    USGS Publications Warehouse

    Boore, D.M.; Graizer, V.M.; Tinsley, J.C.; Shakal, A.F.

    2004-01-01

    The abutment site at the Coyote Lake Dam recorded an unusually large peak acceleration of 1.29g during the 1984 Morgan Hill earthquake. Following this earthquake another strong-motion station was installed about 700 m downstream from the abutment station. We study all events (seven) recorded on these stations, using ratios of peak accelerations, spectral ratios, and particle motion polarization (using holograms) to investigate the relative ground motion at the two sites. We find that in all but one case the motion at the abutment site is larger than the downstream site over a broad frequency band. The polarizations are similar for the two sites for a given event, but can vary from one event to another. This suggests that the dam itself is not strongly influencing the records. Although we can be sure that the relative motion is usually larger at the abutment site, we cannot conclude that there is anomalous site amplification at the abutment site. The downstream site could have lower-than-usual near-surface amplifications. On the other hand, the geology near the abutment site is extremely complex and includes fault slivers, with rapid lateral changes in materials and presumably seismic velocities. For this reason alone, the abutment site should not be considered a normal free-field site.

  3. Net motion of acoustically levitating nano-particles: A theoretical analysis

    NASA Astrophysics Data System (ADS)

    Lippera, Kevin; Dauchot, Olivier; Benzaquen, Michael; Gulliver-LadHyX Collaboration

    2017-11-01

    A particle 2D-trapped in the nodal planed of a standing acoustic wave is prone to acoustic-phoretic motion as soon as its shape breaks polar or chiral symmetry. such a setup constitues an ideal system to study boundaryless 2D collective behavior with purely hydrodynamic long range interactions. Recent studies have indeed shown that quasi-spherical particles may undergo net propulsion, a feature partially understood theoretically in the particular case of infinite viscous boundary layers. We here extend the theoretical results of to any boundary layer thickness, by that meeting typical experimental conditions. In addition, we propose an explanation for the net spinning of the trapped particles, as observed in experiments.

  4. Orientational Dynamics of a Functionalized Alkyl Planar Monolayer Probed by Polarization-Selective Angle-Resolved Infrared Pump-Probe Spectroscopy.

    PubMed

    Nishida, Jun; Yan, Chang; Fayer, Michael D

    2016-10-12

    Polarization-selective angle-resolved infrared pump-probe spectroscopy was developed and used to study the orientational dynamics of a planar alkylsiloxane monolayer functionalized with a rhenium metal carbonyl headgroup on an SiO 2 surface. The technique, together with a time-averaged infrared linear dichroism measurement, characterized picosecond orientational relaxation of the headgroup occurring at the monolayer-air interface by employing several sets of incident angles of the infrared pulses relative to the sample surface. By application of this method and using a recently developed theory, it was possible to extract both the out-of-plane and "mainly"-in-plane orientational correlation functions in a model-independent manner. The observed correlation functions were compared with theoretically derived correlation functions based on several dynamical models. The out-of-plane correlation function reveals the highly restricted out-of-plane motions of the head groups and also suggests that the angular distribution of the transition dipole moments is bimodal. The mainly-in-plane correlation function, for the sample studied here with the strongly restricted out-of-plane motions, essentially arises from the purely in-plane dynamics. In contrast to the out-of-plane dynamics, significant in-plane motions occurring over various time scales were observed including an inertial motion, a restricted wobbling motion of ∼3 ps, and complete randomization occurring in ∼25 ps.

  5. A statistical study of electron butterfly pitch angle distributions using Polar

    NASA Astrophysics Data System (ADS)

    Fritz, T.; Duguay, R.

    As the line of apsides of the orbit of the POLAR spacecraft has precessed, the radial distance at which the orbit of the spacecraft intersects the equatorial plane has steadily increased. Beginning in 1999, the crossing exceeded distances of six Earth radii and a particle distribution exhibiting a deficiency in particles with pitch angles nearly perpendicular to magnetic field lines was frequently observed in the energetic electron measurements made by the POLAR CEPPAD HIST and IES sensors. (Blake, et a , 1995) Such particle distributions, known as "butterfly" distributions,l represent a region in pitch angle space that is shadowed by the magnetopause and can provide information about the location of the magnetopause and its stand off distance. The occurrence of "butterfly" distributions also reflects the configuration and combined influence of the Earth's magnetosphere and the dawn to dusk electric field. In particular, the study observed the occurrence of the minimum at a local pitch angle of 90 degrees for data recorded between the years 1999 and 2001. Information corresponding to the spacecraft entering such regions of particle pitch angle distribution was collected and analyzed. Polar plots of magnetic local time versus radial distance have been generated and are compared to equatorial contours of constant magnetic field, as well as to the theoretical motion of such particles constrained under the 1st adiabatic invariant within realistic magnetic and electric fields. Blake, et al, Space Science Reviews 71: 531-562, 1995

  6. Parsec-Scale Kinematic and Polarization Properties of MOJAVE AGN Jets

    NASA Astrophysics Data System (ADS)

    Lister, Matthew L.

    2013-12-01

    We describe the parsec-scale kinematics and statistical polarization properties of 200 AGN jets based on 15 GHz VLBA data obtained between 1994 Aug 31 and 2011 May 1. Nearly all of the 60 most heavily observed jets show significant changes in their innermost position angle over a 12 to 16 year interval, ranging from 10° to 150° on the sky, corresponding to intrinsic variations of ~ 0.5° to ~ 2°. The BL Lac jets show smaller variations than quasars. Roughly half of the heavily observed jets show systematic position angle trends with time, and 20 show indications of oscillatory behavior. The time spans of the data sets are too short compared to the fitted periods (5 to 12 y), however, to reliably establish periodicity. The rapid changes and large jumps in position angle seen in many cases suggest that the superluminal AGN jet features occupy only a portion of the entire jet cross section, and may be energized portions of thin instability structures within the jet. We have derived vector proper motions for 887 moving features in 200 jets having at least five VLBA epochs. For 557 well-sampled features, there are sufficient data to additionally study possible accelerations. The moving features are generally non-ballistic, with 70% of the well-sampled features showing either significant accelerations or non-radial motions. Inward motions are rare (2% of all features), are slow (< 0.1 mas per y), are more prevalent in BL Lac jets, and are typically found within 1 mas of the unresolved core feature. There is a general trend of increasing apparent speed with distance down the jet for both radio galaxies and BL Lac objects. In most jets, the speeds of the features cluster around a characteristic value, yet there is a considerable dispersion in the distribution. Orientation variations within the jet cannot fully account for the dispersion, implying that the features have a range of Lorentz factor and/or pattern speed. Very slow pattern speed features are rare, comprising

  7. A Quasioptical Vector Interferometer for Polarization Control

    NASA Technical Reports Server (NTRS)

    Chuss, David T.; Wollack, Edward J.; Moseley, Harvey S.; Novak, Giles

    2005-01-01

    We present a mathematical description of a Quasioptical Vector Interferometer (QVI), a device that maps an input polarization state to an output polarization state by introducing a phase delay between two linear orthogonal components of the input polarization. The advantages of such a device over a spinning wave-plate modulator for measuring astronomical polarization in the far-infrared through millimeter are: 1. The use of small, linear motions eliminates the need for cryogenic rotational bearings, 2. The phase flexibility allows measurement of Stokes V as well as Q and U, and 3. The QVI allows for both multi-wavelength and broadband modulation. We suggest two implementations of this device as an astronomical polarization modulator. The first involves two such modulators placed in series. By adjusting the two phase delays, it is possible to use such a modulator to measure Stokes Q, U, and V for passbands that are not too large. Conversely, a single QVI may be used to measure Q and V independent of frequency. In this implementation, Stokes U must be measured by rotating the instrument. We conclude this paper by presenting initial laboratory results.

  8. The influence of polarization on box air mass factors for UV/vis nadir satellite observations

    NASA Astrophysics Data System (ADS)

    Hilboll, Andreas; Richter, Andreas; Rozanov, Vladimir V.; Burrows, John P.

    2015-04-01

    Tropospheric abundances of pollutant trace gases like, e.g., NO2, are often derived by applying the differential optical absorption spectroscopy (DOAS) method to space-borne measurements of back-scattered and reflected solar radiation. The resulting quantity, the slant column density (SCD), subsequently has to be converted to more easily interpretable vertical column densities by means of the so-called box air mass factor (BAMF). The BAMF describes the ratio of SCD and VCD within one atmospheric layer and is calculated by a radiative transfer model. Current operational and scientific data products of satellite-derived trace gas VCDs do not include the effect of polarization in their radiative transfer models. However, the various scattering processes in the atmosphere do lead to a distinctive polarization pattern of the observed Earthshine spectra. This study investigates the influence of these polarization patterns on box air mass factors for satellite nadir DOAS measurements of NO2 in the UV/vis wavelength region. NO2 BAMFs have been simulated for a multitude of viewing geometries, surface albedos, and surface altitudes, using the radiative transfer model SCIATRAN. The results show a potentially large influence of polarization on the BAMF, which can reach 10% and more close to the surface. A simple correction for this effect seems not to be feasible, as it strongly depends on the specific measurement scenario and can lead to both high and low biases of the resulting NO2 VCD. We therefore conclude that all data products of NO2 VCDs derived from space-borne DOAS measurements should include polarization effects in their radiative transfer model calculations, or at least include the errors introduced by using linear models in their uncertainty estimates.

  9. Improved UT1 Predictions through Low-Latency VLBI Observations

    DTIC Science & Technology

    2010-03-14

    J Geod (2010) 84:399–402 DOI 10.1007/s00190-010-0372-8 SHORT NOTE Improved UT1 predictions through low-latency VLBI observations Brian Luzum · Axel...polar motion and nutation on UT1 determinations from VLBI Intensive obser- vations. J Geod 82(12):863. doi:10.1007/s00190-008-0212-2 Ray JR, Carter WE...Behrend D (2007) The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects. J Geod 81(6–8):479. doi

  10. Influence of core flows on the decade variations of the polar motion

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Le Huy, M.; Le Mouël, J.-L.

    We address the possibility for the core flows that generate the geomagnetic field to contribute significantly to the decade variations of the mean pole position (generally called the Markowitz wobble). This assumption is made plausible by the observation that the flow at the surface of the core-estimated from the geomagnetic secular variation models-experiences important changes on this time scale. We discard the viscous and electromagnetic core-mantle couplings and consider only the pressure torque pf resulting from the fluid flow overpressure acting on the non-spherical core-mantle boundary (CMB) at the bottom of the mantle, and the gravity torque gf due to the density heterogeneity driving the core flow. We show that forces within the core balance each other on the time scale considered and, using global integrals over the core, the mantle and the whole Earth, we write Euler's equation for the mantle in terms of two more useful torques Pgeo and . The "geostrophic torque", γ Pgeo incorporates γpf and part of γgf, while γ is another fraction of γgf. We recall how the geostrophic pressure pgeo, and thus γPgeo for a given topography, can be derived from the flow at the CMB and compute the motion of the mean pole from 1900 to 1990, assuming in a first approach that the unknown γ can be neglected. The amplitude of the computed pole motion is three to ten times less than the observed one and out of the phase with it. In order to estimate the possible contribution of γ we then use a second approach and consider the case in which the reference state for the Earth is assumed to be the classical axisymmetric ellipsoidal figure with an almost constant ellipticity within the core. We show that (γPgeo + γ) is then equal to a pseudo-electromagnetic torque γL3, the torque exerted on the core by the component of the Lorentz force along the axis of rotation (this torque exists even though the mantle is assumed insulating). This proves that, at least in this case and

  11. Nonlinear gyrotropic motion of skyrmion in a magnetic nanodisk

    NASA Astrophysics Data System (ADS)

    Chen, Yi-fu; Li, Zhi-xiong; Zhou, Zhen-wei; Xia, Qing-lin; Nie, Yao-zhuang; Guo, Guang-hua

    2018-07-01

    We study the nonlinear gyrotropic motion of a magnetic skyrmion in a nanodisk by means of micromagnetic simulations. The skyrmion is driven by a linearly polarized harmonic field with the frequency of counterclockwise gyrotropic mode. It is found that the motion of the skyrmion displays different patterns with increasing field amplitude. In the linear regime of weak driving field, the skyrmion performs a single counterclockwise gyrotropic motion. The guiding center of the skyrmion moves along a helical line from the centre of the nanodisk to a stable circular orbit. The stable orbital radius increases linearly with the field amplitude. When the driving field is larger than a critical value, the skyrmion exhibits complex nonlinear motion. With the advance of time, the motion trajectory of the skyrmion goes through a series of evolution process, from a single circular motion to a bird nest-like and a flower-like trajectory and finally, to a gear-like steady-state motion. The frequency spectra show that except the counterclockwise gyrotropic mode, the clockwise gyrotropic mode is also nonlinearly excited and its amplitude increases with time. The complex motion trajectory of the skyrmion is the result of superposition of the two gyrotropic motions with changing amplitude. Both the linear and nonlinear gyrotropic motions of the skyrmion can be well described by a generalized Thiele's equation of motion.

  12. Polar Rain Gradients and Field-Aligned Polar Cap Potentials

    NASA Technical Reports Server (NTRS)

    Fairfield, D. H.; Wing, S.; Newell, P. T.; Ruohoniemi, J. M.; Gosling, J. T.; Skoug, R. M.

    2008-01-01

    ACE SWEPAM measurements of solar wind field-aligned electrons have been compared with simultaneous measurements of polar rain electrons precipitating over the polar cap and detected by DMSP spacecraft. Such comparisons allow investigation of cross-polar-cap gradients in the intensity of otherwise-steady polar rain. The generally good agreement of the distribution functions, f, from the two data sources confirms that direct entry of solar electrons along open field lines is indeed the cause of polar rain. The agreement between the data sets is typically best on the side of the polar cap with most intense polar rain but the DMSP f's in less intense regions can be brought into agreement with ACE measurements by shifting all energies by a fixed amounts that range from tens to several hundred eV. In most cases these shifts are positive which implies that field-aligned potentials of these amounts exist on polar cap field lines which tend to retard the entry of electrons and produce the observed gradients. These retarding potentials undoubtedly appear in order to prevent the entry of low-energy electrons and maintain charge quasi-neutrality that would otherwise be violated since most tailward flowing magnetosheath ions are unable to follow polar rain electrons down to the polar cap. In more limited regions near the boundary of the polar cap there is sometimes evidence for field-aligned potentials of the opposite sign that accelerate polar rain electrons. A solar electron burst is also studied and it is concluded that electrons from such bursts can enter the magnetotail and precipitate in the same manner as polar rain.

  13. Coronal Polarization of Pseudostreamers and the Solar Polar Field Reversal

    NASA Technical Reports Server (NTRS)

    Rachmeler, L. A.; Guennou, C.; Seaton, D. B.; Gibson, S. E.; Auchere, F.

    2016-01-01

    The reversal of the solar polar magnetic field is notoriously hard to pin down due to the extreme viewing angle of the pole. In Cycle 24, the southern polar field reversal can be pinpointed with high accuracy due to a large-scale pseudostreamer that formed over the pole and persisted for approximately a year. We tracked the size and shape of this structure with multiple observations and analysis techniques including PROBA2/SWAP EUV images, AIA EUV images, CoMP polarization data, and 3D tomographic reconstructions. We find that the heliospheric field reversed polarity in February 2014, whereas in the photosphere, the last vestiges of the previous polar field polarity remained until March 2015. We present here the evolution of the structure and describe its identification in the Fe XII 1074nm coronal emission line, sensitive to the Hanle effect in the corona.

  14. United States Naval Academy Polar Science Program's Visual Arctic Observing Buoys; The IceGoat

    NASA Astrophysics Data System (ADS)

    Woods, J. E.; Clemente-Colon, P.; Nghiem, S. V.; Rigor, I.; Valentic, T. A.

    2012-12-01

    The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Buoys. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Ocean Engineering, Systems Engineering, Aerospace Engineering, and Computer Science Departments and developed a USNA Visual Arctic Observing Buoy, IceGoat1, which was designed, built, and deployed by midshipmen. The experience gained through Polar field studies and data derived from these buoys will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 during the BROMEX 2012 field campaign out of Barrow, AK in March 2012. This buoy reports near real-time observation of Air Temperature, Sea Temperature, Atmospheric Pressure, Position and Images from 2 mounted webcams. The importance of this unique type of buoy being inserted into the U.S. Interagency Arctic Buoy Program and the International Arctic Buoy Programme (USIABP/IABP) array is cross validating satellite observations of sea ice cover in the Arctic with the buoys webcams. We also propose to develop multiple sensor packages for the IceGoat to include a more robust weather suite, and a passive acoustic hydrophone. Remote cameras on buoys have provided crucial qualitative information that complements the quantitative measurements of geophysical parameters. For example, the mechanical anemometers on the IABP Polar Arctic Weather Station at the North Pole Environmental Observatory (NPEO) have at times reported zero winds speeds, and inspection of the images from the NPEO cameras have showed

  15. Constraining Polarized Foregrounds for EoR Experiments. II. Polarization Leakage Simulations in the Avoidance Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nunhokee, C. D.; Bernardi, G.; Foster, G.

    A critical challenge in the observation of the redshifted 21 cm line is its separation from bright Galactic and extragalactic foregrounds. In particular, the instrumental leakage of polarized foregrounds, which undergo significant Faraday rotation as they propagate through the interstellar medium, may harmfully contaminate the 21 cm power spectrum. We develop a formalism to describe the leakage due to instrumental widefield effects in visibility-based power spectra measured with redundant arrays, extending the delay-spectrum approach presented in Parsons et al. We construct polarized sky models and propagate them through the instrument model to simulate realistic full-sky observations with the Precision Arraymore » to Probe the Epoch of Reionization. We find that the leakage due to a population of polarized point sources is expected to be higher than diffuse Galactic polarization at any k mode for a 30 m reference baseline. For the same reference baseline, a foreground-free window at k > 0.3 h Mpc{sup −1} can be defined in terms of leakage from diffuse Galactic polarization even under the most pessimistic assumptions. If measurements of polarized foreground power spectra or a model of polarized foregrounds are given, our method is able to predict the polarization leakage in actual 21 cm observations, potentially enabling its statistical subtraction from the measured 21 cm power spectrum.« less

  16. Local Nanomechanical Motion In Single Cells.

    NASA Astrophysics Data System (ADS)

    Pelling, Andrew; Gimzewski, James

    2004-03-01

    We present new evidence that the nanoscale motion of the cell wall of Saccharomyces cerevisiae exhibits local bionanomechanical motion at characteristic frequencies and which is not caused by random or Brownian processes. This motion is measured with the AFM tip which acts as a nanomechanical sensor, permitting the motion of the cell wall to be recorded as a function of time, applied force, etc. We present persuasive evidence which shows that the local nanomechanical motion is characteristic of metabolic processes taking place inside the cell. This is demonstrated by clear differences between living cells and living cells treated with a metabolic inhibitor. This inhibitor specifically targets cytochrome oxidase inside the mitochondria and inhibits ATP production. The cells observed in this study display characteristic local cell wall motion with amplitudes between 1 and 3 nm and frequencies between 500 and 1700 Hz. The motion is temperature dependant which also suggests the mechanism for the observed motion has biological origins. In addition to a stringent series of control experiments we also discuss local measurements of the cell's mechanical properties and their influence on the observed bionanomechanical motion.

  17. Constraints on the neutrino parameters by future cosmological 21 cm line and precise CMB polarization observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Yoshihiko; Kohri, Kazunori; Hazumi, Masashi, E-mail: oyamayo@icrr.u-tokyo.ac.jp, E-mail: kohri@post.kek.jp, E-mail: masashi.hazumi@kek.jp

    2016-02-01

    Observations of the 21 cm line radiation coming from the epoch of reionization have a great capacity to study the cosmological growth of the Universe. Besides, CMB polarization produced by gravitational lensing has a large amount of information about the growth of matter fluctuations at late time. In this paper, we investigate their sensitivities to the impact of neutrino property on the growth of density fluctuations, such as the total neutrino mass, the effective number of neutrino species (extra radiation), and the neutrino mass hierarchy. We show that by combining a precise CMB polarization observation such as Simons Array withmore » a 21 cm line observation such as Square kilometer Array (SKA) phase 1 and a baryon acoustic oscillation observation (Dark Energy Spectroscopic Instrument:DESI) we can measure effects of non-zero neutrino mass on the growth of density fluctuation if the total neutrino mass is larger than 0.1 eV. Additionally, the combinations can strongly improve errors of the bounds on the effective number of neutrino species σ (N{sub ν}) ∼ 0.06−0.09 at 95 % C.L.. Finally, by using SKA phase 2, we can determine the neutrino mass hierarchy at 95 % C.L. if the total neutrino mass is similar to or smaller than 0.1 eV.« less

  18. Vector solitons with polarization instability and locked polarization in a fiber laser

    NASA Astrophysics Data System (ADS)

    Tang, Dingkang; Zhang, Jian-Guo; Liu, Yuanshan

    2012-07-01

    We investigate the characteristics of vector solitons with and without locked phase velocities of orthogonal polarization components in a specially-designed laser cavity which is formed by a bidirectional fiber loop together with a semiconductor saturable absorber mirror. The characteristics of the two states are compared in the temporal and spectrum domain, respectively. Both of the two states exhibit the characteristic of mode locking while the two orthogonal polarization components are not resolved. However, for the vector soliton with unlocked phase velocities, identical intensity varies after passing through a polarization beam splitter (PBS) outside the laser cavity. Contrary to the polarization rotation locked vector soliton, the intensity does not change periodically. For the polarization-locked vector soliton (PLVS), the identical pulse intensity is still obtained after passing through the PBS and can be observed on the oscilloscope screen after photodetection. A coupler instead of a circulator is integrated in the laser cavity and strong interaction on the polarization resolved spectra of the PLVS is observed. By comparing the two states, we conclude that interaction between the two orthogonal components contributes to the locked phase velocities.

  19. Discriminating different type waves from pressure and ground motion observation in the seafloor by DONET cabled observation network.

    NASA Astrophysics Data System (ADS)

    Araki, E.; Kawaguchi, K.; Kaneda, Y.

    2011-12-01

    We developed and deployed seafloor cabled observatory called "Dense Ocean-floor Network for Earthquake and Tsunamis (DONET)" in the Nankai Trough, south of Japan. The main purpose of the DONET network is to observe large earthquake such as Tonankai earthquake in the deployed seafloor and associate Tsunamis in real-time to help disaster mitigation, and as well to monitor inter-seismic crustal activities such as micro earthquakes, very low frequency earthquakes, and slower crustal deformation. In each DONET seafloor observatory, high-sensitive broadband set of instruments for seismic and seafloor pressure monitoring, consisted from Guralp CMG3T broadband seismometer, Metrozet TSA100S accelerometer, Paroscientific 8B7000-2 pressure gauge, a deep-sea differential pressure gauge, a hydrophone, and a seawater thermometer, are installed. The density of seafloor observatories are 20 observatories distributed in 15-30 km interval which is optimized for monitoring of events in the plate boundary beneath the network. DONET may be regarded as a large-scale, high sensitive high density seismic array for monitoring teleseismic events in the Philippine Sea and the Pacific Ocean. The DONET seafloor observatories are situated in wide range of seafloor depth between 1800m and 4500m, from the seafloor basin about 50 km off Japanese Island through the slope of accerecionary prism to the deep trench axis 150 km off the coast, that may also regarded as a vertical array in the 4.5km thick ocean. This variation of depths helps identify T-phases from the array record. In data analysis, it is necessary to identify propagation mode of each observed wave which may often be mixed together. In our design of DONET observation system, we took care to help identification of seismic phase by obtaining both ground motion and seafloor pressure in the same location. This is simply achieved by combining seafloor pressure gauges and seismometer in a single observatory package, but care was taken to

  20. Heating heavy ions in the polar corona by collisionless shocks: A one-dimensional simulation

    NASA Astrophysics Data System (ADS)

    Nisticò, Giuseppe; Zimbardo, Gaetano

    2012-01-01

    Recently a new model for explaining the observations of preferential heating of heavy ions in the polar solar corona was proposed (Zimbardo, 2010, 2011). In that model the ion energization mechanism is the ion reflection off supercritical quasi-perpendicular collisionless shocks in the corona and the subsequent acceleration by the motional electric field E = -V × B/c. The mechanism of heavy ion reflection is based on ion gyration in the magnetic overshoot of the shock. The acceleration due to the motional electric field is perpendicular to the magnetic field, giving rise to large temperature anisotropy with T⊥ ≫ T∥, in agreement with SoHO observations. Such a model is tested here by means of a one dimensional test particle simulation where ions are launched toward electric and magnetic profiles representing the shock transition. We study the dynamics of O5+, as representative of coronal heavy ions for Alfvénic Mach numbers of 2-4, as appropriate to solar corona. It is found that O5+ ions are easily reflected and gain more than mass proportional energy with respect to protons.