Sample records for observed statistical analysis

  1. Statistical analysis of dynamic fibrils observed from NST/BBSO observations

    NASA Astrophysics Data System (ADS)

    Gopalan Priya, Thambaje; Su, Jiang-Tao; Chen, Jie; Deng, Yuan-Yong; Prasad Choudhury, Debi

    2018-02-01

    We present the results obtained from the analysis of dynamic fibrils in NOAA active region (AR) 12132, using high resolution Hα observations from the New Solar Telescope operating at Big Bear Solar Observatory. The dynamic fibrils are seen to be moving up and down, and most of these dynamic fibrils are periodic and have a jet-like appearance. We found from our observations that the fibrils follow almost perfect parabolic paths in many cases. A statistical analysis on the properties of the parabolic paths showing an analysis on deceleration, maximum velocity, duration and kinetic energy of these fibrils is presented here. We found the average maximum velocity to be around 15 kms‑1 and mean deceleration to be around 100 ms‑2. The observed deceleration appears to be a fraction of gravity of the Sun and is not compatible with the path of ballistic motion due to gravity of the Sun. We found a positive correlation between deceleration and maximum velocity. This correlation is consistent with simulations done earlier on magnetoacoustic shock waves propagating upward.

  2. Statistical Analysis of Sport Movement Observations: the Case of Orienteering

    NASA Astrophysics Data System (ADS)

    Amouzandeh, K.; Karimipour, F.

    2017-09-01

    Study of movement observations is becoming more popular in several applications. Particularly, analyzing sport movement time series has been considered as a demanding area. However, most of the attempts made on analyzing movement sport data have focused on spatial aspects of movement to extract some movement characteristics, such as spatial patterns and similarities. This paper proposes statistical analysis of sport movement observations, which refers to analyzing changes in the spatial movement attributes (e.g. distance, altitude and slope) and non-spatial movement attributes (e.g. speed and heart rate) of athletes. As the case study, an example dataset of movement observations acquired during the "orienteering" sport is presented and statistically analyzed.

  3. Statistical analysis of tiny SXR flares observed by SphinX

    NASA Astrophysics Data System (ADS)

    Gryciuk, Magdalena; Siarkowski, Marek; Sylwester, Janusz; Kepa, Anna; Gburek, Szymon; Mrozek, Tomasz; Podgórski, Piotr

    2015-08-01

    The Solar Photometer in X-rays (SphinX) was designed to observe soft X-ray solar emission in the energy range between ~1 keV and 15 keV with the resolution better than 0.5 keV. The instrument operated from February until November 2009 aboard CORONAS-Photon satellite, during the phase of exceptionally low minimum of solar activity. Here we use SphinX data for analysis of micro-flares and brightenings. Despite a very low activity more than a thousand small X-ray events have been recognized by semi-automatic inspection of SphinX light curves. A catalogue of temporal and physical characteristics of these events is shown and discussed and results of the statistical analysis of the catalogue data are presented.

  4. Staging Liver Fibrosis with Statistical Observers

    NASA Astrophysics Data System (ADS)

    Brand, Jonathan Frieman

    Chronic liver disease is a worldwide health problem, and hepatic fibrosis (HF) is one of the hallmarks of the disease. Pathology diagnosis of HF is based on textural change in the liver as a lobular collagen network that develops within portal triads. The scale of collagen lobules is characteristically on order of 1mm, which close to the resolution limit of in vivo Gd-enhanced MRI. In this work the methods to collect training and testing images for a Hotelling observer are covered. An observer based on local texture analysis is trained and tested using wet-tissue phantoms. The technique is used to optimize the MRI sequence based on task performance. The final method developed is a two stage model observer to classify fibrotic and healthy tissue in both phantoms and in vivo MRI images. The first stage observer tests for the presence of local texture. Test statistics from the first observer are used to train the second stage observer to globally sample the local observer results. A decision of the disease class is made for an entire MRI image slice using test statistics collected from the second observer. The techniques are tested on wet-tissue phantoms and in vivo clinical patient data.

  5. Statistical analysis of infrasound signatures in airglow observations: Indications for acoustic resonance

    NASA Astrophysics Data System (ADS)

    Pilger, Christoph; Schmidt, Carsten; Bittner, Michael

    2013-02-01

    The detection of infrasonic signals in temperature time series of the mesopause altitude region (at about 80-100 km) is performed at the German Remote Sensing Data Center of the German Aerospace Center (DLR-DFD) using GRIPS instrumentation (GRound-based Infrared P-branch Spectrometers). Mesopause temperature values with a temporal resolution of up to 10 s are derived from the observation of nocturnal airglow emissions and permit the identification of signals within the long-period infrasound range.Spectral intensities of wave signatures with periods between 2.5 and 10 min are estimated applying the wavelet analysis technique to one minute mean temperature values. Selected events as well as the statistical distribution of 40 months of observation are presented and discussed with respect to resonant modes of the atmosphere. The mechanism of acoustic resonance generated by strong infrasonic sources is a potential explanation of distinct features with periods between 3 and 5 min observed in the dataset.

  6. A new u-statistic with superior design sensitivity in matched observational studies.

    PubMed

    Rosenbaum, Paul R

    2011-09-01

    In an observational or nonrandomized study of treatment effects, a sensitivity analysis indicates the magnitude of bias from unmeasured covariates that would need to be present to alter the conclusions of a naïve analysis that presumes adjustments for observed covariates suffice to remove all bias. The power of sensitivity analysis is the probability that it will reject a false hypothesis about treatment effects allowing for a departure from random assignment of a specified magnitude; in particular, if this specified magnitude is "no departure" then this is the same as the power of a randomization test in a randomized experiment. A new family of u-statistics is proposed that includes Wilcoxon's signed rank statistic but also includes other statistics with substantially higher power when a sensitivity analysis is performed in an observational study. Wilcoxon's statistic has high power to detect small effects in large randomized experiments-that is, it often has good Pitman efficiency-but small effects are invariably sensitive to small unobserved biases. Members of this family of u-statistics that emphasize medium to large effects can have substantially higher power in a sensitivity analysis. For example, in one situation with 250 pair differences that are Normal with expectation 1/2 and variance 1, the power of a sensitivity analysis that uses Wilcoxon's statistic is 0.08 while the power of another member of the family of u-statistics is 0.66. The topic is examined by performing a sensitivity analysis in three observational studies, using an asymptotic measure called the design sensitivity, and by simulating power in finite samples. The three examples are drawn from epidemiology, clinical medicine, and genetic toxicology. © 2010, The International Biometric Society.

  7. Reporting quality of statistical methods in surgical observational studies: protocol for systematic review.

    PubMed

    Wu, Robert; Glen, Peter; Ramsay, Tim; Martel, Guillaume

    2014-06-28

    Observational studies dominate the surgical literature. Statistical adjustment is an important strategy to account for confounders in observational studies. Research has shown that published articles are often poor in statistical quality, which may jeopardize their conclusions. The Statistical Analyses and Methods in the Published Literature (SAMPL) guidelines have been published to help establish standards for statistical reporting.This study will seek to determine whether the quality of statistical adjustment and the reporting of these methods are adequate in surgical observational studies. We hypothesize that incomplete reporting will be found in all surgical observational studies, and that the quality and reporting of these methods will be of lower quality in surgical journals when compared with medical journals. Finally, this work will seek to identify predictors of high-quality reporting. This work will examine the top five general surgical and medical journals, based on a 5-year impact factor (2007-2012). All observational studies investigating an intervention related to an essential component area of general surgery (defined by the American Board of Surgery), with an exposure, outcome, and comparator, will be included in this systematic review. Essential elements related to statistical reporting and quality were extracted from the SAMPL guidelines and include domains such as intent of analysis, primary analysis, multiple comparisons, numbers and descriptive statistics, association and correlation analyses, linear regression, logistic regression, Cox proportional hazard analysis, analysis of variance, survival analysis, propensity analysis, and independent and correlated analyses. Each article will be scored as a proportion based on fulfilling criteria in relevant analyses used in the study. A logistic regression model will be built to identify variables associated with high-quality reporting. A comparison will be made between the scores of surgical

  8. Statistical analysis of arthroplasty data

    PubMed Central

    2011-01-01

    It is envisaged that guidelines for statistical analysis and presentation of results will improve the quality and value of research. The Nordic Arthroplasty Register Association (NARA) has therefore developed guidelines for the statistical analysis of arthroplasty register data. The guidelines are divided into two parts, one with an introduction and a discussion of the background to the guidelines (Ranstam et al. 2011a, see pages x-y in this issue), and this one with a more technical statistical discussion on how specific problems can be handled. This second part contains (1) recommendations for the interpretation of methods used to calculate survival, (2) recommendations on howto deal with bilateral observations, and (3) a discussion of problems and pitfalls associated with analysis of factors that influence survival or comparisons between outcomes extracted from different hospitals. PMID:21619500

  9. Covariance approximation for fast and accurate computation of channelized Hotelling observer statistics

    NASA Astrophysics Data System (ADS)

    Bonetto, P.; Qi, Jinyi; Leahy, R. M.

    2000-08-01

    Describes a method for computing linear observer statistics for maximum a posteriori (MAP) reconstructions of PET images. The method is based on a theoretical approximation for the mean and covariance of MAP reconstructions. In particular, the authors derive here a closed form for the channelized Hotelling observer (CHO) statistic applied to 2D MAP images. The theoretical analysis models both the Poission statistics of PET data and the inhomogeneity of tracer uptake. The authors show reasonably good correspondence between these theoretical results and Monte Carlo studies. The accuracy and low computational cost of the approximation allow the authors to analyze the observer performance over a wide range of operating conditions and parameter settings for the MAP reconstruction algorithm.

  10. Statistical analysis of gravity waves characteristics observed by airglow imaging at Syowa Station (69S, 39E), Antarctica

    NASA Astrophysics Data System (ADS)

    Matsuda, Takashi S.; Nakamura, Takuji; Shiokawa, Kazuo; Tsutsumi, Masaki; Suzuki, Hidehiko; Ejiri, Mitsumu K.; Taguchi, Makoto

    Atmospheric gravity waves (AGWs), which are generated in the lower atmosphere, transport significant amount of energy and momentum into the mesosphere and lower thermosphere and cause the mean wind accelerations in the mesosphere. This momentum deposit drives the general circulation and affects the temperature structure. Among many parameters to characterize AGWs, horizontal phase velocity is very important to discuss the vertical propagation. Airglow imaging is a useful technique for investigating the horizontal structures of AGWs at around 90 km altitude. Recently, there are many reports about statistical characteristics of AGWs observed by airglow imaging. However, comparison of these results obtained at various locations is difficult because each research group uses its own method for extracting and analyzing AGW events. We have developed a new statistical analysis method for obtaining the power spectrum in the horizontal phase velocity domain from airglow image data, so as to deal with huge amounts of imaging data obtained on different years and at various observation sites, without bias caused by different event extraction criteria for the observer. This method was applied to the data obtained at Syowa Station, Antarctica, in 2011 and compared with a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal characteristics. This comparison shows that our new method is adequate to deriving the horizontal phase velocity characteristics of AGWs observed by airglow imaging technique. We plan to apply this method to airglow imaging data observed at Syowa Station in 2002 and between 2008 and 2013, and also to the data observed at other stations in Antarctica (e.g. Rothera Station (67S, 68W) and Halley Station (75S, 26W)), in order to investigate the behavior of AGWs propagation direction and source distribution in the MLT region over Antarctica. In this presentation, we will report interim analysis result of the data

  11. The role of ensemble-based statistics in variational assimilation of cloud-affected observations from infrared imagers

    NASA Astrophysics Data System (ADS)

    Hacker, Joshua; Vandenberghe, Francois; Jung, Byoung-Jo; Snyder, Chris

    2017-04-01

    Effective assimilation of cloud-affected radiance observations from space-borne imagers, with the aim of improving cloud analysis and forecasting, has proven to be difficult. Large observation biases, nonlinear observation operators, and non-Gaussian innovation statistics present many challenges. Ensemble-variational data assimilation (EnVar) systems offer the benefits of flow-dependent background error statistics from an ensemble, and the ability of variational minimization to handle nonlinearity. The specific benefits of ensemble statistics, relative to static background errors more commonly used in variational systems, have not been quantified for the problem of assimilating cloudy radiances. A simple experiment framework is constructed with a regional NWP model and operational variational data assimilation system, to provide the basis understanding the importance of ensemble statistics in cloudy radiance assimilation. Restricting the observations to those corresponding to clouds in the background forecast leads to innovations that are more Gaussian. The number of large innovations is reduced compared to the more general case of all observations, but not eliminated. The Huber norm is investigated to handle the fat tails of the distributions, and allow more observations to be assimilated without the need for strict background checks that eliminate them. Comparing assimilation using only ensemble background error statistics with assimilation using only static background error statistics elucidates the importance of the ensemble statistics. Although the cost functions in both experiments converge to similar values after sufficient outer-loop iterations, the resulting cloud water, ice, and snow content are greater in the ensemble-based analysis. The subsequent forecasts from the ensemble-based analysis also retain more condensed water species, indicating that the local environment is more supportive of clouds. In this presentation we provide details that explain the

  12. New statistical analysis of the horizontal phase velocity distribution of gravity waves observed by airglow imaging

    NASA Astrophysics Data System (ADS)

    Matsuda, Takashi S.; Nakamura, Takuji; Ejiri, Mitsumu K.; Tsutsumi, Masaki; Shiokawa, Kazuo

    2014-08-01

    We have developed a new analysis method for obtaining the power spectrum in the horizontal phase velocity domain from airglow intensity image data to study atmospheric gravity waves. This method can deal with extensive amounts of imaging data obtained on different years and at various observation sites without bias caused by different event extraction criteria for the person processing the data. The new method was applied to sodium airglow data obtained in 2011 at Syowa Station (69°S, 40°E), Antarctica. The results were compared with those obtained from a conventional event analysis in which the phase fronts were traced manually in order to estimate horizontal characteristics, such as wavelengths, phase velocities, and wave periods. The horizontal phase velocity of each wave event in the airglow images corresponded closely to a peak in the spectrum. The statistical results of spectral analysis showed an eastward offset of the horizontal phase velocity distribution. This could be interpreted as the existence of wave sources around the stratospheric eastward jet. Similar zonal anisotropy was also seen in the horizontal phase velocity distribution of the gravity waves by the event analysis. Both methods produce similar statistical results about directionality of atmospheric gravity waves. Galactic contamination of the spectrum was examined by calculating the apparent velocity of the stars and found to be limited for phase speeds lower than 30 m/s. In conclusion, our new method is suitable for deriving the horizontal phase velocity characteristics of atmospheric gravity waves from an extensive amount of imaging data.

  13. Deconstructing Statistical Analysis

    ERIC Educational Resources Information Center

    Snell, Joel

    2014-01-01

    Using a very complex statistical analysis and research method for the sake of enhancing the prestige of an article or making a new product or service legitimate needs to be monitored and questioned for accuracy. 1) The more complicated the statistical analysis, and research the fewer the number of learned readers can understand it. This adds a…

  14. SPA- STATISTICAL PACKAGE FOR TIME AND FREQUENCY DOMAIN ANALYSIS

    NASA Technical Reports Server (NTRS)

    Brownlow, J. D.

    1994-01-01

    The need for statistical analysis often arises when data is in the form of a time series. This type of data is usually a collection of numerical observations made at specified time intervals. Two kinds of analysis may be performed on the data. First, the time series may be treated as a set of independent observations using a time domain analysis to derive the usual statistical properties including the mean, variance, and distribution form. Secondly, the order and time intervals of the observations may be used in a frequency domain analysis to examine the time series for periodicities. In almost all practical applications, the collected data is actually a mixture of the desired signal and a noise signal which is collected over a finite time period with a finite precision. Therefore, any statistical calculations and analyses are actually estimates. The Spectrum Analysis (SPA) program was developed to perform a wide range of statistical estimation functions. SPA can provide the data analyst with a rigorous tool for performing time and frequency domain studies. In a time domain statistical analysis the SPA program will compute the mean variance, standard deviation, mean square, and root mean square. It also lists the data maximum, data minimum, and the number of observations included in the sample. In addition, a histogram of the time domain data is generated, a normal curve is fit to the histogram, and a goodness-of-fit test is performed. These time domain calculations may be performed on both raw and filtered data. For a frequency domain statistical analysis the SPA program computes the power spectrum, cross spectrum, coherence, phase angle, amplitude ratio, and transfer function. The estimates of the frequency domain parameters may be smoothed with the use of Hann-Tukey, Hamming, Barlett, or moving average windows. Various digital filters are available to isolate data frequency components. Frequency components with periods longer than the data collection interval

  15. APPLICATION OF STATISTICAL ENERGY ANALYSIS TO VIBRATIONS OF MULTI-PANEL STRUCTURES.

    DTIC Science & Technology

    cylindrical shell are compared with predictions obtained from statistical energy analysis . Generally good agreement is observed. The flow of mechanical...the coefficients of proportionality between power flow and average modal energy difference, which one must know in order to apply statistical energy analysis . No

  16. StatisticAl Characteristics of Cloud over Beijing, China Obtained FRom Ka band Doppler Radar Observation

    NASA Astrophysics Data System (ADS)

    LIU, J.; Bi, Y.; Duan, S.; Lu, D.

    2017-12-01

    It is well-known that cloud characteristics, such as top and base heights and their layering structure of micro-physical parameters, spatial coverage and temporal duration are very important factors influencing both radiation budget and its vertical partitioning as well as hydrological cycle through precipitation data. Also, cloud structure and their statistical distribution and typical values will have respective characteristics with geographical and seasonal variation. Ka band radar is a powerful tool to obtain above parameters around the world, such as ARM cloud radar at the Oklahoma US, Since 2006, Cloudsat is one of NASA's A-Train satellite constellation, continuously observe the cloud structure with global coverage, but only twice a day it monitor clouds over same local site at same local time.By using IAP Ka band Doppler radar which has been operating continuously since early 2013 over the roof of IAP building in Beijing, we obtained the statistical characteristic of clouds, including cloud layering, cloud top and base heights, as well as the thickness of each cloud layer and their distribution, and were analyzed monthly and seasonal and diurnal variation, statistical analysis of cloud reflectivity profiles is also made. The analysis covers both non-precipitating clouds and precipitating clouds. Also, some preliminary comparison of the results with Cloudsat/Calipso products for same period and same area are made.

  17. A statistical study of EMIC waves observed by Cluster: 1. Wave properties

    NASA Astrophysics Data System (ADS)

    Allen, R. C.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Lin, R.-L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.

    2015-07-01

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In this study, we present a statistical analysis of EMIC wave properties using 10 years (2001-2010) of data from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. The statistical analysis is presented in two papers. This paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.

  18. Observing fermionic statistics with photons in arbitrary processes

    PubMed Central

    Matthews, Jonathan C. F.; Poulios, Konstantinos; Meinecke, Jasmin D. A.; Politi, Alberto; Peruzzo, Alberto; Ismail, Nur; Wörhoff, Kerstin; Thompson, Mark G.; O'Brien, Jeremy L.

    2013-01-01

    Quantum mechanics defines two classes of particles-bosons and fermions-whose exchange statistics fundamentally dictate quantum dynamics. Here we develop a scheme that uses entanglement to directly observe the correlated detection statistics of any number of fermions in any physical process. This approach relies on sending each of the entangled particles through identical copies of the process and by controlling a single phase parameter in the entangled state, the correlated detection statistics can be continuously tuned between bosonic and fermionic statistics. We implement this scheme via two entangled photons shared across the polarisation modes of a single photonic chip to directly mimic the fermion, boson and intermediate behaviour of two-particles undergoing a continuous time quantum walk. The ability to simulate fermions with photons is likely to have applications for verifying boson scattering and for observing particle correlations in analogue simulation using any physical platform that can prepare the entangled state prescribed here. PMID:23531788

  19. Fisher statistics for analysis of diffusion tensor directional information.

    PubMed

    Hutchinson, Elizabeth B; Rutecki, Paul A; Alexander, Andrew L; Sutula, Thomas P

    2012-04-30

    A statistical approach is presented for the quantitative analysis of diffusion tensor imaging (DTI) directional information using Fisher statistics, which were originally developed for the analysis of vectors in the field of paleomagnetism. In this framework, descriptive and inferential statistics have been formulated based on the Fisher probability density function, a spherical analogue of the normal distribution. The Fisher approach was evaluated for investigation of rat brain DTI maps to characterize tissue orientation in the corpus callosum, fornix, and hilus of the dorsal hippocampal dentate gyrus, and to compare directional properties in these regions following status epilepticus (SE) or traumatic brain injury (TBI) with values in healthy brains. Direction vectors were determined for each region of interest (ROI) for each brain sample and Fisher statistics were applied to calculate the mean direction vector and variance parameters in the corpus callosum, fornix, and dentate gyrus of normal rats and rats that experienced TBI or SE. Hypothesis testing was performed by calculation of Watson's F-statistic and associated p-value giving the likelihood that grouped observations were from the same directional distribution. In the fornix and midline corpus callosum, no directional differences were detected between groups, however in the hilus, significant (p<0.0005) differences were found that robustly confirmed observations that were suggested by visual inspection of directionally encoded color DTI maps. The Fisher approach is a potentially useful analysis tool that may extend the current capabilities of DTI investigation by providing a means of statistical comparison of tissue structural orientation. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Common pitfalls in statistical analysis: Clinical versus statistical significance

    PubMed Central

    Ranganathan, Priya; Pramesh, C. S.; Buyse, Marc

    2015-01-01

    In clinical research, study results, which are statistically significant are often interpreted as being clinically important. While statistical significance indicates the reliability of the study results, clinical significance reflects its impact on clinical practice. The third article in this series exploring pitfalls in statistical analysis clarifies the importance of differentiating between statistical significance and clinical significance. PMID:26229754

  1. Analysis of thrips distribution: application of spatial statistics and Kriging

    Treesearch

    John Aleong; Bruce L. Parker; Margaret Skinner; Diantha Howard

    1991-01-01

    Kriging is a statistical technique that provides predictions for spatially and temporally correlated data. Observations of thrips distribution and density in Vermont soils are made in both space and time. Traditional statistical analysis of such data assumes that the counts taken over space and time are independent, which is not necessarily true. Therefore, to analyze...

  2. Bayesian Sensitivity Analysis of Statistical Models with Missing Data

    PubMed Central

    ZHU, HONGTU; IBRAHIM, JOSEPH G.; TANG, NIANSHENG

    2013-01-01

    Methods for handling missing data depend strongly on the mechanism that generated the missing values, such as missing completely at random (MCAR) or missing at random (MAR), as well as other distributional and modeling assumptions at various stages. It is well known that the resulting estimates and tests may be sensitive to these assumptions as well as to outlying observations. In this paper, we introduce various perturbations to modeling assumptions and individual observations, and then develop a formal sensitivity analysis to assess these perturbations in the Bayesian analysis of statistical models with missing data. We develop a geometric framework, called the Bayesian perturbation manifold, to characterize the intrinsic structure of these perturbations. We propose several intrinsic influence measures to perform sensitivity analysis and quantify the effect of various perturbations to statistical models. We use the proposed sensitivity analysis procedure to systematically investigate the tenability of the non-ignorable missing at random (NMAR) assumption. Simulation studies are conducted to evaluate our methods, and a dataset is analyzed to illustrate the use of our diagnostic measures. PMID:24753718

  3. Analysis of statistical misconception in terms of statistical reasoning

    NASA Astrophysics Data System (ADS)

    Maryati, I.; Priatna, N.

    2018-05-01

    Reasoning skill is needed for everyone to face globalization era, because every person have to be able to manage and use information from all over the world which can be obtained easily. Statistical reasoning skill is the ability to collect, group, process, interpret, and draw conclusion of information. Developing this skill can be done through various levels of education. However, the skill is low because many people assume that statistics is just the ability to count and using formulas and so do students. Students still have negative attitude toward course which is related to research. The purpose of this research is analyzing students’ misconception in descriptive statistic course toward the statistical reasoning skill. The observation was done by analyzing the misconception test result and statistical reasoning skill test; observing the students’ misconception effect toward statistical reasoning skill. The sample of this research was 32 students of math education department who had taken descriptive statistic course. The mean value of misconception test was 49,7 and standard deviation was 10,6 whereas the mean value of statistical reasoning skill test was 51,8 and standard deviation was 8,5. If the minimal value is 65 to state the standard achievement of a course competence, students’ mean value is lower than the standard competence. The result of students’ misconception study emphasized on which sub discussion that should be considered. Based on the assessment result, it was found that students’ misconception happen on this: 1) writing mathematical sentence and symbol well, 2) understanding basic definitions, 3) determining concept that will be used in solving problem. In statistical reasoning skill, the assessment was done to measure reasoning from: 1) data, 2) representation, 3) statistic format, 4) probability, 5) sample, and 6) association.

  4. Statistical power analysis in wildlife research

    USGS Publications Warehouse

    Steidl, R.J.; Hayes, J.P.

    1997-01-01

    Statistical power analysis can be used to increase the efficiency of research efforts and to clarify research results. Power analysis is most valuable in the design or planning phases of research efforts. Such prospective (a priori) power analyses can be used to guide research design and to estimate the number of samples necessary to achieve a high probability of detecting biologically significant effects. Retrospective (a posteriori) power analysis has been advocated as a method to increase information about hypothesis tests that were not rejected. However, estimating power for tests of null hypotheses that were not rejected with the effect size observed in the study is incorrect; these power estimates will always be a??0.50 when bias adjusted and have no relation to true power. Therefore, retrospective power estimates based on the observed effect size for hypothesis tests that were not rejected are misleading; retrospective power estimates are only meaningful when based on effect sizes other than the observed effect size, such as those effect sizes hypothesized to be biologically significant. Retrospective power analysis can be used effectively to estimate the number of samples or effect size that would have been necessary for a completed study to have rejected a specific null hypothesis. Simply presenting confidence intervals can provide additional information about null hypotheses that were not rejected, including information about the size of the true effect and whether or not there is adequate evidence to 'accept' a null hypothesis as true. We suggest that (1) statistical power analyses be routinely incorporated into research planning efforts to increase their efficiency, (2) confidence intervals be used in lieu of retrospective power analyses for null hypotheses that were not rejected to assess the likely size of the true effect, (3) minimum biologically significant effect sizes be used for all power analyses, and (4) if retrospective power estimates are to

  5. A Divergence Statistics Extension to VTK for Performance Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pebay, Philippe Pierre; Bennett, Janine Camille

    This report follows the series of previous documents ([PT08, BPRT09b, PT09, BPT09, PT10, PB13], where we presented the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency, k -means, order and auto-correlative statistics engines which we developed within the Visualization Tool Kit ( VTK ) as a scalable, parallel and versatile statistics package. We now report on a new engine which we developed for the calculation of divergence statistics, a concept which we hereafter explain and whose main goal is to quantify the discrepancy, in a stasticial manner akin to measuring a distance, between an observed empirical distribution and a theoretical,more » "ideal" one. The ease of use of the new diverence statistics engine is illustrated by the means of C++ code snippets. Although this new engine does not yet have a parallel implementation, it has already been applied to HPC performance analysis, of which we provide an example.« less

  6. Statistical Power in Meta-Analysis

    ERIC Educational Resources Information Center

    Liu, Jin

    2015-01-01

    Statistical power is important in a meta-analysis study, although few studies have examined the performance of simulated power in meta-analysis. The purpose of this study is to inform researchers about statistical power estimation on two sample mean difference test under different situations: (1) the discrepancy between the analytical power and…

  7. A Statistical Analysis of Langmuir Wave-Electron Correlations Observed by the CHARM II Auroral Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.

    2014-12-01

    Langmuir-mode electron plasma waves are frequently observed by spacecraft in active plasma environments such as the ionosphere. Ionospheric Langmuir waves may be excited by the bump-on-tail instability generated by impinging beams of electrons traveling parallel to the background magnetic field (B). The Correlation of High-frequencies and Auroral Roar Measurement (CHARM II) sounding rocket was launched into a substorm at 9:49 UT on 17 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the University of Iowa Wave-Particle Correlator (WPC), the Dartmouth High-Frequency Experiment (HFE), several charged particle detectors, low-frequency wave instruments, and a magnetometer. The HFE is a receiver system which effectively yields continuous (100% duty cycle) electric-field waveform measurements from 100 kHz to 5 MHz, and which had its detection axis aligned nominally parallel to B. The HFE output was fed on-payload to the WPC, which uses a phase-locked loop to track the incoming wave frequency with the most power, then sorting incoming electrons at eight energy levels into sixteen wave-phase bins. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, and the WPC showed wave-lock and statistically significant particle correlation distributions during several time periods. We show results of an in-depth analysis of the CHARM II WPC data for the entire flight, including statistical analysis of correlations which show evidence of direct interaction with the Langmuir waves, indicating (at various times) trapping of particles and both driving and damping of Langmuir waves by particles. In particular, the sign of the gradient in particle flux appears to correlate with the phase relation between the electrons and the wave field, with possible implications for the wave physics.

  8. A statistical analysis of energy and power demand for the tractive purposes of an electric vehicle in urban traffic - an analysis of a short and long observation period

    NASA Astrophysics Data System (ADS)

    Slaski, G.; Ohde, B.

    2016-09-01

    The article presents the results of a statistical dispersion analysis of an energy and power demand for tractive purposes of a battery electric vehicle. The authors compare data distribution for different values of an average speed in two approaches, namely a short and long period of observation. The short period of observation (generally around several hundred meters) results from a previously proposed macroscopic energy consumption model based on an average speed per road section. This approach yielded high values of standard deviation and coefficient of variation (the ratio between standard deviation and the mean) around 0.7-1.2. The long period of observation (about several kilometers long) is similar in length to standardized speed cycles used in testing a vehicle energy consumption and available range. The data were analysed to determine the impact of observation length on the energy and power demand variation. The analysis was based on a simulation of electric power and energy consumption performed with speed profiles data recorded in Poznan agglomeration.

  9. Tools for Basic Statistical Analysis

    NASA Technical Reports Server (NTRS)

    Luz, Paul L.

    2005-01-01

    Statistical Analysis Toolset is a collection of eight Microsoft Excel spreadsheet programs, each of which performs calculations pertaining to an aspect of statistical analysis. These programs present input and output data in user-friendly, menu-driven formats, with automatic execution. The following types of calculations are performed: Descriptive statistics are computed for a set of data x(i) (i = 1, 2, 3 . . . ) entered by the user. Normal Distribution Estimates will calculate the statistical value that corresponds to cumulative probability values, given a sample mean and standard deviation of the normal distribution. Normal Distribution from two Data Points will extend and generate a cumulative normal distribution for the user, given two data points and their associated probability values. Two programs perform two-way analysis of variance (ANOVA) with no replication or generalized ANOVA for two factors with four levels and three repetitions. Linear Regression-ANOVA will curvefit data to the linear equation y=f(x) and will do an ANOVA to check its significance.

  10. A Method of Relating General Circulation Model Simulated Climate to the Observed Local Climate. Part I: Seasonal Statistics.

    NASA Astrophysics Data System (ADS)

    Karl, Thomas R.; Wang, Wei-Chyung; Schlesinger, Michael E.; Knight, Richard W.; Portman, David

    1990-10-01

    Important surface observations such as the daily maximum and minimum temperature, daily precipitation, and cloud ceilings often have localized characteristics that are difficult to reproduce with the current resolution and the physical parameterizations in state-of-the-art General Circulation climate Models (GCMs). Many of the difficulties can be partially attributed to mismatches in scale, local topography. regional geography and boundary conditions between models and surface-based observations. Here, we present a method, called climatological projection by model statistics (CPMS), to relate GCM grid-point flee-atmosphere statistics, the predictors, to these important local surface observations. The method can be viewed as a generalization of the model output statistics (MOS) and perfect prog (PP) procedures used in numerical weather prediction (NWP) models. It consists of the application of three statistical methods: 1) principle component analysis (FICA), 2) canonical correlation, and 3) inflated regression analysis. The PCA reduces the redundancy of the predictors The canonical correlation is used to develop simultaneous relationships between linear combinations of the predictors, the canonical variables, and the surface-based observations. Finally, inflated regression is used to relate the important canonical variables to each of the surface-based observed variables.We demonstrate that even an early version of the Oregon State University two-level atmospheric GCM (with prescribed sea surface temperature) produces free-atmosphere statistics than can, when standardized using the model's internal means and variances (the MOS-like version of CPMS), closely approximate the observed local climate. When the model data are standardized by the observed free-atmosphere means and variances (the PP version of CPMS), however, the model does not reproduce the observed surface climate as well. Our results indicate that in the MOS-like version of CPMS the differences between

  11. Analysis of Variance with Summary Statistics in Microsoft® Excel®

    ERIC Educational Resources Information Center

    Larson, David A.; Hsu, Ko-Cheng

    2010-01-01

    Students regularly are asked to solve Single Factor Analysis of Variance problems given only the sample summary statistics (number of observations per category, category means, and corresponding category standard deviations). Most undergraduate students today use Excel for data analysis of this type. However, Excel, like all other statistical…

  12. On the Determination of Poisson Statistics for Haystack Radar Observations of Orbital Debris

    NASA Technical Reports Server (NTRS)

    Stokely, Christopher L.; Benbrook, James R.; Horstman, Matt

    2007-01-01

    A convenient and powerful method is used to determine if radar detections of orbital debris are observed according to Poisson statistics. This is done by analyzing the time interval between detection events. For Poisson statistics, the probability distribution of the time interval between events is shown to be an exponential distribution. This distribution is a special case of the Erlang distribution that is used in estimating traffic loads on telecommunication networks. Poisson statistics form the basis of many orbital debris models but the statistical basis of these models has not been clearly demonstrated empirically until now. Interestingly, during the fiscal year 2003 observations with the Haystack radar in a fixed staring mode, there are no statistically significant deviations observed from that expected with Poisson statistics, either independent or dependent of altitude or inclination. One would potentially expect some significant clustering of events in time as a result of satellite breakups, but the presence of Poisson statistics indicates that such debris disperse rapidly with respect to Haystack's very narrow radar beam. An exception to Poisson statistics is observed in the months following the intentional breakup of the Fengyun satellite in January 2007.

  13. A statistical study of EMIC waves observed by Cluster. 1. Wave properties. EMIC Wave Properties

    DOE PAGES

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; ...

    2015-07-23

    Electromagnetic ion cyclotron (EMIC) waves are an important mechanism for particle energization and losses inside the magnetosphere. In order to better understand the effects of these waves on particle dynamics, detailed information about the occurrence rate, wave power, ellipticity, normal angle, energy propagation angle distributions, and local plasma parameters are required. Previous statistical studies have used in situ observations to investigate the distribution of these parameters in the magnetic local time versus L-shell (MLT-L) frame within a limited magnetic latitude (MLAT) range. In our study, we present a statistical analysis of EMIC wave properties using 10 years (2001–2010) of datamore » from Cluster, totaling 25,431 min of wave activity. Due to the polar orbit of Cluster, we are able to investigate EMIC waves at all MLATs and MLTs. This allows us to further investigate the MLAT dependence of various wave properties inside different MLT sectors and further explore the effects of Shabansky orbits on EMIC wave generation and propagation. Thus, the statistical analysis is presented in two papers. OUr paper focuses on the wave occurrence distribution as well as the distribution of wave properties. The companion paper focuses on local plasma parameters during wave observations as well as wave generation proxies.« less

  14. Not a Copernican observer: biased peculiar velocity statistics in the local Universe

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Nusser, Adi; Feix, Martin; Bilicki, Maciej

    2017-05-01

    We assess the effect of the local large-scale structure on the estimation of two-point statistics of the observed radial peculiar velocities of galaxies. A large N-body simulation is used to examine these statistics from the perspective of random observers as well as 'Local Group-like' observers conditioned to reside in an environment resembling the observed Universe within 20 Mpc. The local environment systematically distorts the shape and amplitude of velocity statistics with respect to ensemble-averaged measurements made by a Copernican (random) observer. The Virgo cluster has the most significant impact, introducing large systematic deviations in all the statistics. For a simple 'top-hat' selection function, an idealized survey extending to ˜160 h-1 Mpc or deeper is needed to completely mitigate the effects of the local environment. Using shallower catalogues leads to systematic deviations of the order of 50-200 per cent depending on the scale considered. For a flat redshift distribution similar to the one of the CosmicFlows-3 survey, the deviations are even more prominent in both the shape and amplitude at all separations considered (≲100 h-1 Mpc). Conclusions based on statistics calculated without taking into account the impact of the local environment should be revisited.

  15. Directional Statistics for Polarization Observations of Individual Pulses from Radio Pulsars

    NASA Astrophysics Data System (ADS)

    McKinnon, M. M.

    2010-10-01

    Radio polarimetry is a three-dimensional statistical problem. The three-dimensional aspect of the problem arises from the Stokes parameters Q, U, and V, which completely describe the polarization of electromagnetic radiation and conceptually define the orientation of a polarization vector in the Poincaré sphere. The statistical aspect of the problem arises from the random fluctuations in the source-intrinsic polarization and the instrumental noise. A simple model for the polarization of pulsar radio emission has been used to derive the three-dimensional statistics of radio polarimetry. The model is based upon the proposition that the observed polarization is due to the incoherent superposition of two, highly polarized, orthogonal modes. The directional statistics derived from the model follow the Bingham-Mardia and Fisher family of distributions. The model assumptions are supported by the qualitative agreement between the statistics derived from it and those measured with polarization observations of the individual pulses from pulsars. The orthogonal modes are thought to be the natural modes of radio wave propagation in the pulsar magnetosphere. The intensities of the modes become statistically independent when generalized Faraday rotation (GFR) in the magnetosphere causes the difference in their phases to be large. A stochastic version of GFR occurs when fluctuations in the phase difference are also large, and may be responsible for the more complicated polarization patterns observed in pulsar radio emission.

  16. Statistical Analysis of Tsunami Variability

    NASA Astrophysics Data System (ADS)

    Zolezzi, Francesca; Del Giudice, Tania; Traverso, Chiara; Valfrè, Giulio; Poggi, Pamela; Parker, Eric J.

    2010-05-01

    similar to that seen in ground motion attenuation correlations used for seismic hazard assessment. The second issue was intra-event variability. This refers to the differences in tsunami wave run-up along a section of coast during a single event. Intra-event variability investigated directly considering field observations. The tsunami events used in the statistical evaluation were selected on the basis of the completeness and reliability of the available data. Tsunami considered for the analysis included the recent and well surveyed tsunami of Boxing Day 2004 (Great Indian Ocean Tsunami), Java 2006, Okushiri 1993, Kocaeli 1999, Messina 1908 and a case study of several historic events in Hawaii. Basic statistical analysis was performed on the field observations from these tsunamis. For events with very wide survey regions, the run-up heights have been grouped in order to maintain a homogeneous distance from the source. Where more than one survey was available for a given event, the original datasets were maintained separately to avoid combination of non-homogeneous data. The observed run-up measurements were used to evaluate the minimum, maximum, average, standard deviation and coefficient of variation for each data set. The minimum coefficient of variation was 0.12 measured for the 2004 Boxing Day tsunami at Nias Island (7 data) while the maximum is 0.98 for the Okushiri 1993 event (93 data). The average coefficient of variation is of the order of 0.45.

  17. A new statistic for the analysis of circular data in gamma-ray astronomy

    NASA Technical Reports Server (NTRS)

    Protheroe, R. J.

    1985-01-01

    A new statistic is proposed for the analysis of circular data. The statistic is designed specifically for situations where a test of uniformity is required which is powerful against alternatives in which a small fraction of the observations is grouped in a small range of directions, or phases.

  18. A Statistical Study of Interplanetary Type II Bursts: STEREO Observations

    NASA Astrophysics Data System (ADS)

    Krupar, V.; Eastwood, J. P.; Magdalenic, J.; Gopalswamy, N.; Kruparova, O.; Szabo, A.

    2017-12-01

    Coronal mass ejections (CMEs) are the primary cause of the most severe and disruptive space weather events such as solar energetic particle (SEP) events and geomagnetic storms at Earth. Interplanetary type II bursts are generated via the plasma emission mechanism by energetic electrons accelerated at CME-driven shock waves and hence identify CMEs that potentially cause space weather impact. As CMEs propagate outward from the Sun, radio emissions are generated at progressively at lower frequencies corresponding to a decreasing ambient solar wind plasma density. We have performed a statistical study of 153 interplanetary type II bursts observed by the two STEREO spacecraft between March 2008 and August 2014. These events have been correlated with manually-identified CMEs contained in the Heliospheric Cataloguing, Analysis and Techniques Service (HELCATS) catalogue. Our results confirm that faster CMEs are more likely to produce interplanetary type II radio bursts. We have compared observed frequency drifts with white-light observations to estimate angular deviations of type II burst propagation directions from radial. We have found that interplanetary type II bursts preferably arise from CME flanks. Finally, we discuss a visibility of radio emissions in relation to the CME propagation direction.

  19. Statistical inference of dynamic resting-state functional connectivity using hierarchical observation modeling.

    PubMed

    Sojoudi, Alireza; Goodyear, Bradley G

    2016-12-01

    Spontaneous fluctuations of blood-oxygenation level-dependent functional magnetic resonance imaging (BOLD fMRI) signals are highly synchronous between brain regions that serve similar functions. This provides a means to investigate functional networks; however, most analysis techniques assume functional connections are constant over time. This may be problematic in the case of neurological disease, where functional connections may be highly variable. Recently, several methods have been proposed to determine moment-to-moment changes in the strength of functional connections over an imaging session (so called dynamic connectivity). Here a novel analysis framework based on a hierarchical observation modeling approach was proposed, to permit statistical inference of the presence of dynamic connectivity. A two-level linear model composed of overlapping sliding windows of fMRI signals, incorporating the fact that overlapping windows are not independent was described. To test this approach, datasets were synthesized whereby functional connectivity was either constant (significant or insignificant) or modulated by an external input. The method successfully determines the statistical significance of a functional connection in phase with the modulation, and it exhibits greater sensitivity and specificity in detecting regions with variable connectivity, when compared with sliding-window correlation analysis. For real data, this technique possesses greater reproducibility and provides a more discriminative estimate of dynamic connectivity than sliding-window correlation analysis. Hum Brain Mapp 37:4566-4580, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  20. Transition-Region Ultraviolet Explosive Events in IRIS Si IV: A Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Bartz, Allison

    2018-01-01

    Explosive events (EEs) in the solar transition region are characterized by broad, non-Gaussian line profiles with wings at Doppler velocities exceeding the speed of sound. We present a statistical analysis of 23 IRIS (Interface Region Imaging Spectrograph) sit-and-stare observations, observed between April 2014 and March 2017. Using the IRIS Si IV 1394 Å and 1403 Å spectral windows and the 1400Å Slit Jaw images we have identified 581 EEs. We found that most EEs last less than 20 min. and have a spatial scale on the slit less than 10”, agreeing with measurements in previous work. We observed most EEs in active regions, regardless of date of observation, but selection bias of IRIS observations cannot be ruled out. We also present preliminary findings of optical depth effects from our statistical study.

  1. Improved Statistics for Genome-Wide Interaction Analysis

    PubMed Central

    Ueki, Masao; Cordell, Heather J.

    2012-01-01

    Recently, Wu and colleagues [1] proposed two novel statistics for genome-wide interaction analysis using case/control or case-only data. In computer simulations, their proposed case/control statistic outperformed competing approaches, including the fast-epistasis option in PLINK and logistic regression analysis under the correct model; however, reasons for its superior performance were not fully explored. Here we investigate the theoretical properties and performance of Wu et al.'s proposed statistics and explain why, in some circumstances, they outperform competing approaches. Unfortunately, we find minor errors in the formulae for their statistics, resulting in tests that have higher than nominal type 1 error. We also find minor errors in PLINK's fast-epistasis and case-only statistics, although theory and simulations suggest that these errors have only negligible effect on type 1 error. We propose adjusted versions of all four statistics that, both theoretically and in computer simulations, maintain correct type 1 error rates under the null hypothesis. We also investigate statistics based on correlation coefficients that maintain similar control of type 1 error. Although designed to test specifically for interaction, we show that some of these previously-proposed statistics can, in fact, be sensitive to main effects at one or both loci, particularly in the presence of linkage disequilibrium. We propose two new “joint effects” statistics that, provided the disease is rare, are sensitive only to genuine interaction effects. In computer simulations we find, in most situations considered, that highest power is achieved by analysis under the correct genetic model. Such an analysis is unachievable in practice, as we do not know this model. However, generally high power over a wide range of scenarios is exhibited by our joint effects and adjusted Wu statistics. We recommend use of these alternative or adjusted statistics and urge caution when using Wu et al

  2. [Application of statistics on chronic-diseases-relating observational research papers].

    PubMed

    Hong, Zhi-heng; Wang, Ping; Cao, Wei-hua

    2012-09-01

    To study the application of statistics on Chronic-diseases-relating observational research papers which were recently published in the Chinese Medical Association Magazines, with influential index above 0.5. Using a self-developed criterion, two investigators individually participated in assessing the application of statistics on Chinese Medical Association Magazines, with influential index above 0.5. Different opinions reached an agreement through discussion. A total number of 352 papers from 6 magazines, including the Chinese Journal of Epidemiology, Chinese Journal of Oncology, Chinese Journal of Preventive Medicine, Chinese Journal of Cardiology, Chinese Journal of Internal Medicine and Chinese Journal of Endocrinology and Metabolism, were reviewed. The rate of clear statement on the following contents as: research objectives, t target audience, sample issues, objective inclusion criteria and variable definitions were 99.43%, 98.57%, 95.43%, 92.86% and 96.87%. The correct rates of description on quantitative and qualitative data were 90.94% and 91.46%, respectively. The rates on correctly expressing the results, on statistical inference methods related to quantitative, qualitative data and modeling were 100%, 95.32% and 87.19%, respectively. 89.49% of the conclusions could directly response to the research objectives. However, 69.60% of the papers did not mention the exact names of the study design, statistically, that the papers were using. 11.14% of the papers were in lack of further statement on the exclusion criteria. Percentage of the papers that could clearly explain the sample size estimation only taking up as 5.16%. Only 24.21% of the papers clearly described the variable value assignment. Regarding the introduction on statistical conduction and on database methods, the rate was only 24.15%. 18.75% of the papers did not express the statistical inference methods sufficiently. A quarter of the papers did not use 'standardization' appropriately. As for the

  3. Photon counting statistics analysis of biophotons from hands.

    PubMed

    Jung, Hyun-Hee; Woo, Won-Myung; Yang, Joon-Mo; Choi, Chunho; Lee, Jonghan; Yoon, Gilwon; Yang, Jong S; Soh, Kwang-Sup

    2003-05-01

    The photon counting statistics of biophotons emitted from hands is studied with a view to test its agreement with the Poisson distribution. The moments of observed probability up to seventh order have been evaluated. The moments of biophoton emission from hands are in good agreement while those of dark counts of photomultiplier tube show large deviations from the theoretical values of Poisson distribution. The present results are consistent with the conventional delta-value analysis of the second moment of probability.

  4. Statistical analysis of subjective preferences for video enhancement

    NASA Astrophysics Data System (ADS)

    Woods, Russell L.; Satgunam, PremNandhini; Bronstad, P. Matthew; Peli, Eli

    2010-02-01

    Measuring preferences for moving video quality is harder than for static images due to the fleeting and variable nature of moving video. Subjective preferences for image quality can be tested by observers indicating their preference for one image over another. Such pairwise comparisons can be analyzed using Thurstone scaling (Farrell, 1999). Thurstone (1927) scaling is widely used in applied psychology, marketing, food tasting and advertising research. Thurstone analysis constructs an arbitrary perceptual scale for the items that are compared (e.g. enhancement levels). However, Thurstone scaling does not determine the statistical significance of the differences between items on that perceptual scale. Recent papers have provided inferential statistical methods that produce an outcome similar to Thurstone scaling (Lipovetsky and Conklin, 2004). Here, we demonstrate that binary logistic regression can analyze preferences for enhanced video.

  5. Statistical Analysis of Research Data | Center for Cancer Research

    Cancer.gov

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. The Statistical Analysis of Research Data (SARD) course will be held on April 5-6, 2018 from 9 a.m.-5 p.m. at the National Institutes of Health's Natcher Conference Center, Balcony C on the Bethesda Campus. SARD is designed to provide an overview on the general principles of statistical analysis of research data.  The first day will feature univariate data analysis, including descriptive statistics, probability distributions, one- and two-sample inferential statistics.

  6. Teaching Statistical Inference for Causal Effects in Experiments and Observational Studies

    ERIC Educational Resources Information Center

    Rubin, Donald B.

    2004-01-01

    Inference for causal effects is a critical activity in many branches of science and public policy. The field of statistics is the one field most suited to address such problems, whether from designed experiments or observational studies. Consequently, it is arguably essential that departments of statistics teach courses in causal inference to both…

  7. Statistical wind analysis for near-space applications

    NASA Astrophysics Data System (ADS)

    Roney, Jason A.

    2007-09-01

    Statistical wind models were developed based on the existing observational wind data for near-space altitudes between 60 000 and 100 000 ft (18 30 km) above ground level (AGL) at two locations, Akon, OH, USA, and White Sands, NM, USA. These two sites are envisioned as playing a crucial role in the first flights of high-altitude airships. The analysis shown in this paper has not been previously applied to this region of the stratosphere for such an application. Standard statistics were compiled for these data such as mean, median, maximum wind speed, and standard deviation, and the data were modeled with Weibull distributions. These statistics indicated, on a yearly average, there is a lull or a “knee” in the wind between 65 000 and 72 000 ft AGL (20 22 km). From the standard statistics, trends at both locations indicated substantial seasonal variation in the mean wind speed at these heights. The yearly and monthly statistical modeling indicated that Weibull distributions were a reasonable model for the data. Forecasts and hindcasts were done by using a Weibull model based on 2004 data and comparing the model with the 2003 and 2005 data. The 2004 distribution was also a reasonable model for these years. Lastly, the Weibull distribution and cumulative function were used to predict the 50%, 95%, and 99% winds, which are directly related to the expected power requirements of a near-space station-keeping airship. These values indicated that using only the standard deviation of the mean may underestimate the operational conditions.

  8. Advanced statistical energy analysis

    NASA Astrophysics Data System (ADS)

    Heron, K. H.

    1994-09-01

    A high-frequency theory (advanced statistical energy analysis (ASEA)) is developed which takes account of the mechanism of tunnelling and uses a ray theory approach to track the power flowing around a plate or a beam network and then uses statistical energy analysis (SEA) to take care of any residual power. ASEA divides the energy of each sub-system into energy that is freely available for transfer to other sub-systems and energy that is fixed within the sub-systems that are physically separate and can be interpreted as a series of mathematical models, the first of which is identical to standard SEA and subsequent higher order models are convergent on an accurate prediction. Using a structural assembly of six rods as an example, ASEA is shown to converge onto the exact results while SEA is shown to overpredict by up to 60 dB.

  9. The Influence of Observation Errors on Analysis Error and Forecast Skill Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, R. M.; Tai, K.-S.

    2013-01-01

    The Global Modeling and Assimilation Office (GMAO) observing system simulation experiment (OSSE) framework is used to explore the response of analysis error and forecast skill to observation quality. In an OSSE, synthetic observations may be created that have much smaller error than real observations, and precisely quantified error may be applied to these synthetic observations. Three experiments are performed in which synthetic observations with magnitudes of applied observation error that vary from zero to twice the estimated realistic error are ingested into the Goddard Earth Observing System Model (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation for a one-month period representing July. The analysis increment and observation innovation are strongly impacted by observation error, with much larger variances for increased observation error. The analysis quality is degraded by increased observation error, but the change in root-mean-square error of the analysis state is small relative to the total analysis error. Surprisingly, in the 120 hour forecast increased observation error only yields a slight decline in forecast skill in the extratropics, and no discernable degradation of forecast skill in the tropics.

  10. The Ontology of Biological and Clinical Statistics (OBCS) for standardized and reproducible statistical analysis.

    PubMed

    Zheng, Jie; Harris, Marcelline R; Masci, Anna Maria; Lin, Yu; Hero, Alfred; Smith, Barry; He, Yongqun

    2016-09-14

    Statistics play a critical role in biological and clinical research. However, most reports of scientific results in the published literature make it difficult for the reader to reproduce the statistical analyses performed in achieving those results because they provide inadequate documentation of the statistical tests and algorithms applied. The Ontology of Biological and Clinical Statistics (OBCS) is put forward here as a step towards solving this problem. The terms in OBCS including 'data collection', 'data transformation in statistics', 'data visualization', 'statistical data analysis', and 'drawing a conclusion based on data', cover the major types of statistical processes used in basic biological research and clinical outcome studies. OBCS is aligned with the Basic Formal Ontology (BFO) and extends the Ontology of Biomedical Investigations (OBI), an OBO (Open Biological and Biomedical Ontologies) Foundry ontology supported by over 20 research communities. Currently, OBCS comprehends 878 terms, representing 20 BFO classes, 403 OBI classes, 229 OBCS specific classes, and 122 classes imported from ten other OBO ontologies. We discuss two examples illustrating how the ontology is being applied. In the first (biological) use case, we describe how OBCS was applied to represent the high throughput microarray data analysis of immunological transcriptional profiles in human subjects vaccinated with an influenza vaccine. In the second (clinical outcomes) use case, we applied OBCS to represent the processing of electronic health care data to determine the associations between hospital staffing levels and patient mortality. Our case studies were designed to show how OBCS can be used for the consistent representation of statistical analysis pipelines under two different research paradigms. Other ongoing projects using OBCS for statistical data processing are also discussed. The OBCS source code and documentation are available at: https://github.com/obcs/obcs . The Ontology

  11. Quantitative investigation of inappropriate regression model construction and the importance of medical statistics experts in observational medical research: a cross-sectional study.

    PubMed

    Nojima, Masanori; Tokunaga, Mutsumi; Nagamura, Fumitaka

    2018-05-05

    To investigate under what circumstances inappropriate use of 'multivariate analysis' is likely to occur and to identify the population that needs more support with medical statistics. The frequency of inappropriate regression model construction in multivariate analysis and related factors were investigated in observational medical research publications. The inappropriate algorithm of using only variables that were significant in univariate analysis was estimated to occur at 6.4% (95% CI 4.8% to 8.5%). This was observed in 1.1% of the publications with a medical statistics expert (hereinafter 'expert') as the first author, 3.5% if an expert was included as coauthor and in 12.2% if experts were not involved. In the publications where the number of cases was 50 or less and the study did not include experts, inappropriate algorithm usage was observed with a high proportion of 20.2%. The OR of the involvement of experts for this outcome was 0.28 (95% CI 0.15 to 0.53). A further, nation-level, analysis showed that the involvement of experts and the implementation of unfavourable multivariate analysis are associated at the nation-level analysis (R=-0.652). Based on the results of this study, the benefit of participation of medical statistics experts is obvious. Experts should be involved for proper confounding adjustment and interpretation of statistical models. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Statistical Study of the Properties of Magnetosheath Lion Roars using MMS observations

    NASA Astrophysics Data System (ADS)

    Giagkiozis, S.; Wilson, L. B., III

    2017-12-01

    Intense whistler-mode waves of very short duration are frequently encountered in the magnetosheath. These emissions have been linked to mirror mode waves and the Earth's bow shock. They can efficiently transfer energy between different plasma populations. These electromagnetic waves are commonly referred to as Lion roars (LR), due to the sound generated when the signals are sonified. They are generally observed during dips of the magnetic field that are anti-correlated with increases of density. Using MMS data, we have identified more than 1750 individual LR burst intervals. Each emission was band-pass filtered and further split into >35,000 subintervals, for which the direction of propagation and the polarization were calculated. The analysis of subinterval properties provides a more accurate representation of their true nature than the more commonly used time- and frequency-averaged dynamic spectra analysis. The results of the statistical analysis of the wave properties will be presented.

  13. Statistical design and analysis for plant cover studies with multiple sources of observation errors

    USGS Publications Warehouse

    Wright, Wilson; Irvine, Kathryn M.; Warren, Jeffrey M .; Barnett, Jenny K.

    2017-01-01

    Effective wildlife habitat management and conservation requires understanding the factors influencing distribution and abundance of plant species. Field studies, however, have documented observation errors in visually estimated plant cover including measurements which differ from the true value (measurement error) and not observing a species that is present within a plot (detection error). Unlike the rapid expansion of occupancy and N-mixture models for analysing wildlife surveys, development of statistical models accounting for observation error in plants has not progressed quickly. Our work informs development of a monitoring protocol for managed wetlands within the National Wildlife Refuge System.Zero-augmented beta (ZAB) regression is the most suitable method for analysing areal plant cover recorded as a continuous proportion but assumes no observation errors. We present a model extension that explicitly includes the observation process thereby accounting for both measurement and detection errors. Using simulations, we compare our approach to a ZAB regression that ignores observation errors (naïve model) and an “ad hoc” approach using a composite of multiple observations per plot within the naïve model. We explore how sample size and within-season revisit design affect the ability to detect a change in mean plant cover between 2 years using our model.Explicitly modelling the observation process within our framework produced unbiased estimates and nominal coverage of model parameters. The naïve and “ad hoc” approaches resulted in underestimation of occurrence and overestimation of mean cover. The degree of bias was primarily driven by imperfect detection and its relationship with cover within a plot. Conversely, measurement error had minimal impacts on inferences. We found >30 plots with at least three within-season revisits achieved reasonable posterior probabilities for assessing change in mean plant cover.For rapid adoption and application, code

  14. Improvements to an earth observing statistical performance model with applications to LWIR spectral variability

    NASA Astrophysics Data System (ADS)

    Zhao, Runchen; Ientilucci, Emmett J.

    2017-05-01

    Hyperspectral remote sensing systems provide spectral data composed of hundreds of narrow spectral bands. Spectral remote sensing systems can be used to identify targets, for example, without physical interaction. Often it is of interested to characterize the spectral variability of targets or objects. The purpose of this paper is to identify and characterize the LWIR spectral variability of targets based on an improved earth observing statistical performance model, known as the Forecasting and Analysis of Spectroradiometric System Performance (FASSP) model. FASSP contains three basic modules including a scene model, sensor model and a processing model. Instead of using mean surface reflectance only as input to the model, FASSP transfers user defined statistical characteristics of a scene through the image chain (i.e., from source to sensor). The radiative transfer model, MODTRAN, is used to simulate the radiative transfer based on user defined atmospheric parameters. To retrieve class emissivity and temperature statistics, or temperature / emissivity separation (TES), a LWIR atmospheric compensation method is necessary. The FASSP model has a method to transform statistics in the visible (ie., ELM) but currently does not have LWIR TES algorithm in place. This paper addresses the implementation of such a TES algorithm and its associated transformation of statistics.

  15. Statistical Study on Variations of the Ionospheric Ion Density Observed by DEMETER and Related to Seismic Activities

    NASA Astrophysics Data System (ADS)

    Yan, Rui; Parrot, Michel; Pinçon, Jean-Louis

    2017-12-01

    In this paper, we present the result of a statistical study performed on the ionospheric ion density variations above areas of seismic activity. The ion density was observed by the low altitude satellite DEMETER between 2004 and 2010. In the statistical analysis a superposed epoch method is used where the observed ionospheric ion density close to the epicenters both in space and in time is compared to background values recorded at the same location and in the same conditions. Data associated with aftershocks have been carefully removed from the database to prevent spurious effects on the statistics. It is shown that, during nighttime, anomalous ionospheric perturbations related to earthquakes with magnitudes larger than 5 are evidenced. At the time of these perturbations the background ion fluctuation departs from a normal distribution. They occur up to 200 km from the epicenters and mainly 5 days before the earthquakes. As expected, an ion density perturbation occurring just after the earthquakes and close to the epicenters is also evidenced.

  16. Statistical analysis of dust signals observed by ROSINA/COPS onboard of the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Tzou, Chia-Yu; altwegg, kathrin; Bieler, Andre; Calmonte, Ursina; Gasc, Sébastien; Le Roy, Léna; Rubin, Martin

    2016-10-01

    ROSINA is the in situ Rosetta Orbiter Spectrometer for Ion and Neutral Analysis on board of Rosetta, one of the corner stone missions of the European Space Agency (ESA) to land and orbit the Jupiter family comet 67P/Churyumov-Gerasimenko (67P). ROSINA consists of two mass spectrometers and a pressure sensor. The Reflectron Time of Flight Spectrometer (RTOF) and the Double Focusing Mass Spectrometer (DFMS) complement each other in mass and time resolution.The Comet Pressure Sensor (COPS) provides density measurements of the neutral molecules in the cometary coma of 67P. COPS has two gauges, a nude gauge that measures the total neutral density and a ram gauge that measures the dynamic pressure from the comet. Combining the two COPS is also capable of providing gas dynamic information such as gas velocity and gas temperature of the coma.While Rosetta started orbiting around 67P in August 2014, COPS observed diurnal and seasonal variations of the neutral gas density in the coma. Surprisingly, additional to these major density variation patterns, COPS occasionally observed small spikes in the density that are associated with dust. These dust signals can be interpreted as a result of cometary dust releasing volatiles while heated up near COPS. A statistical analysis of dust signals detected by COPS will be presented.

  17. Asymptotic modal analysis and statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Dowell, Earl H.

    1992-01-01

    Asymptotic Modal Analysis (AMA) is a method which is used to model linear dynamical systems with many participating modes. The AMA method was originally developed to show the relationship between statistical energy analysis (SEA) and classical modal analysis (CMA). In the limit of a large number of modes of a vibrating system, the classical modal analysis result can be shown to be equivalent to the statistical energy analysis result. As the CMA result evolves into the SEA result, a number of systematic assumptions are made. Most of these assumptions are based upon the supposition that the number of modes approaches infinity. It is for this reason that the term 'asymptotic' is used. AMA is the asymptotic result of taking the limit of CMA as the number of modes approaches infinity. AMA refers to any of the intermediate results between CMA and SEA, as well as the SEA result which is derived from CMA. The main advantage of the AMA method is that individual modal characteristics are not required in the model or computations. By contrast, CMA requires that each modal parameter be evaluated at each frequency. In the latter, contributions from each mode are computed and the final answer is obtained by summing over all the modes in the particular band of interest. AMA evaluates modal parameters only at their center frequency and does not sum the individual contributions from each mode in order to obtain a final result. The method is similar to SEA in this respect. However, SEA is only capable of obtaining spatial averages or means, as it is a statistical method. Since AMA is systematically derived from CMA, it can obtain local spatial information as well.

  18. Statistical analysis of flight times for space shuttle ferry flights

    NASA Technical Reports Server (NTRS)

    Graves, M. E.; Perlmutter, M.

    1974-01-01

    Markov chain and Monte Carlo analysis techniques are applied to the simulated Space Shuttle Orbiter Ferry flights to obtain statistical distributions of flight time duration between Edwards Air Force Base and Kennedy Space Center. The two methods are compared, and are found to be in excellent agreement. The flights are subjected to certain operational and meteorological requirements, or constraints, which cause eastbound and westbound trips to yield different results. Persistence of events theory is applied to the occurrence of inclement conditions to find their effect upon the statistical flight time distribution. In a sensitivity test, some of the constraints are varied to observe the corresponding changes in the results.

  19. Statistical Analysis For Nucleus/Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1989-01-01

    Report describes use of several statistical techniques to charactertize angular distributions of secondary particles emitted in collisions of atomic nuclei in energy range of 24 to 61 GeV per nucleon. Purpose of statistical analysis to determine correlations between intensities of emitted particles and angles comfirming existence of quark/gluon plasma.

  20. Water quality management using statistical analysis and time-series prediction model

    NASA Astrophysics Data System (ADS)

    Parmar, Kulwinder Singh; Bhardwaj, Rashmi

    2014-12-01

    This paper deals with water quality management using statistical analysis and time-series prediction model. The monthly variation of water quality standards has been used to compare statistical mean, median, mode, standard deviation, kurtosis, skewness, coefficient of variation at Yamuna River. Model validated using R-squared, root mean square error, mean absolute percentage error, maximum absolute percentage error, mean absolute error, maximum absolute error, normalized Bayesian information criterion, Ljung-Box analysis, predicted value and confidence limits. Using auto regressive integrated moving average model, future water quality parameters values have been estimated. It is observed that predictive model is useful at 95 % confidence limits and curve is platykurtic for potential of hydrogen (pH), free ammonia, total Kjeldahl nitrogen, dissolved oxygen, water temperature (WT); leptokurtic for chemical oxygen demand, biochemical oxygen demand. Also, it is observed that predicted series is close to the original series which provides a perfect fit. All parameters except pH and WT cross the prescribed limits of the World Health Organization /United States Environmental Protection Agency, and thus water is not fit for drinking, agriculture and industrial use.

  1. The statistical analysis of global climate change studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, J.W.

    1992-01-01

    The focus of this work is to contribute to the enhancement of the relationship between climatologists and statisticians. The analysis of global change data has been underway for many years by atmospheric scientists. Much of this analysis includes a heavy reliance on statistics and statistical inference. Some specific climatological analyses are presented and the dependence on statistics is documented before the analysis is undertaken. The first problem presented involves the fluctuation-dissipation theorem and its application to global climate models. This problem has a sound theoretical niche in the literature of both climate modeling and physics, but a statistical analysis inmore » which the data is obtained from the model to show graphically the relationship has not been undertaken. It is under this motivation that the author presents this problem. A second problem concerning the standard errors in estimating global temperatures is purely statistical in nature although very little materials exists for sampling on such a frame. This problem not only has climatological and statistical ramifications, but political ones as well. It is planned to use these results in a further analysis of global warming using actual data collected on the earth. In order to simplify the analysis of these problems, the development of a computer program, MISHA, is presented. This interactive program contains many of the routines, functions, graphics, and map projections needed by the climatologist in order to effectively enter the arena of data visualization.« less

  2. Statistics 101 for Radiologists.

    PubMed

    Anvari, Arash; Halpern, Elkan F; Samir, Anthony E

    2015-10-01

    Diagnostic tests have wide clinical applications, including screening, diagnosis, measuring treatment effect, and determining prognosis. Interpreting diagnostic test results requires an understanding of key statistical concepts used to evaluate test efficacy. This review explains descriptive statistics and discusses probability, including mutually exclusive and independent events and conditional probability. In the inferential statistics section, a statistical perspective on study design is provided, together with an explanation of how to select appropriate statistical tests. Key concepts in recruiting study samples are discussed, including representativeness and random sampling. Variable types are defined, including predictor, outcome, and covariate variables, and the relationship of these variables to one another. In the hypothesis testing section, we explain how to determine if observed differences between groups are likely to be due to chance. We explain type I and II errors, statistical significance, and study power, followed by an explanation of effect sizes and how confidence intervals can be used to generalize observed effect sizes to the larger population. Statistical tests are explained in four categories: t tests and analysis of variance, proportion analysis tests, nonparametric tests, and regression techniques. We discuss sensitivity, specificity, accuracy, receiver operating characteristic analysis, and likelihood ratios. Measures of reliability and agreement, including κ statistics, intraclass correlation coefficients, and Bland-Altman graphs and analysis, are introduced. © RSNA, 2015.

  3. New advanced tools for combined ULF wave analysis of multipoint space-borne and ground observations: application to single event and statistical studies

    NASA Astrophysics Data System (ADS)

    Balasis, G.; Papadimitriou, C.; Daglis, I. A.; Georgiou, M.; Giamini, S. A.

    2013-12-01

    In the past decade, a critical mass of high-quality scientific data on the electric and magnetic fields in the Earth's magnetosphere and topside ionosphere has been progressively collected. This data pool will be further enriched by the measurements of the upcoming ESA/Swarm mission, a constellation of three satellites in three different polar orbits between 400 and 550 km altitude, which is expected to be launched in November 2013. New analysis tools that can cope with measurements of various spacecraft at various regions of the magnetosphere and in the topside ionosphere as well as ground stations will effectively enhance the scientific exploitation of the accumulated data. Here, we report on a new suite of algorithms based on a combination of wavelet spectral methods and artificial neural network techniques and demonstrate the applicability of our recently developed analysis tools both for individual case studies and statistical studies of ultra-low frequency (ULF) waves. First, we provide evidence for a rare simultaneous observation of a ULF wave event in the Earth's magnetosphere, topside ionosphere and surface: we have found a specific time interval during the Halloween 2003 magnetic storm, when the Cluster and CHAMP spacecraft were in good local time (LT) conjunction, and have examined the ULF wave activity in the Pc3 (22-100 mHz) and Pc4-5 (1-22 mHz) bands using data from the Geotail, Cluster and CHAMP missions, as well as the CARISMA and GIMA magnetometer networks. Then, we perform a statistical study of Pc3 wave events observed by CHAMP for the full decade (2001-2010) of the satellite vector magnetic data: the creation of a database of such events enabled us to derive valuable statistics for many important physical properties relating to the spatio-temporal location of these waves, the wave power and frequency, as well as other parameters and their correlation with solar wind conditions, magnetospheric indices, electron density data, ring current decay

  4. A note on generalized Genome Scan Meta-Analysis statistics

    PubMed Central

    Koziol, James A; Feng, Anne C

    2005-01-01

    Background Wise et al. introduced a rank-based statistical technique for meta-analysis of genome scans, the Genome Scan Meta-Analysis (GSMA) method. Levinson et al. recently described two generalizations of the GSMA statistic: (i) a weighted version of the GSMA statistic, so that different studies could be ascribed different weights for analysis; and (ii) an order statistic approach, reflecting the fact that a GSMA statistic can be computed for each chromosomal region or bin width across the various genome scan studies. Results We provide an Edgeworth approximation to the null distribution of the weighted GSMA statistic, and, we examine the limiting distribution of the GSMA statistics under the order statistic formulation, and quantify the relevance of the pairwise correlations of the GSMA statistics across different bins on this limiting distribution. We also remark on aggregate criteria and multiple testing for determining significance of GSMA results. Conclusion Theoretical considerations detailed herein can lead to clarification and simplification of testing criteria for generalizations of the GSMA statistic. PMID:15717930

  5. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    NASA Astrophysics Data System (ADS)

    Sergis, Antonis; Hardalupas, Yannis

    2011-05-01

    This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.

  6. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis.

    PubMed

    Sergis, Antonis; Hardalupas, Yannis

    2011-05-19

    This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.

  7. Anomalous heat transfer modes of nanofluids: a review based on statistical analysis

    PubMed Central

    2011-01-01

    This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids. PMID:21711932

  8. Regression-based statistical mediation and moderation analysis in clinical research: Observations, recommendations, and implementation.

    PubMed

    Hayes, Andrew F; Rockwood, Nicholas J

    2017-11-01

    There have been numerous treatments in the clinical research literature about various design, analysis, and interpretation considerations when testing hypotheses about mechanisms and contingencies of effects, popularly known as mediation and moderation analysis. In this paper we address the practice of mediation and moderation analysis using linear regression in the pages of Behaviour Research and Therapy and offer some observations and recommendations, debunk some popular myths, describe some new advances, and provide an example of mediation, moderation, and their integration as conditional process analysis using the PROCESS macro for SPSS and SAS. Our goal is to nudge clinical researchers away from historically significant but increasingly old school approaches toward modifications, revisions, and extensions that characterize more modern thinking about the analysis of the mechanisms and contingencies of effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. STATISTICAL SAMPLING AND DATA ANALYSIS

    EPA Science Inventory

    Research is being conducted to develop approaches to improve soil and sediment sampling techniques, measurement design and geostatistics, and data analysis via chemometric, environmetric, and robust statistical methods. Improvements in sampling contaminated soil and other hetero...

  10. Analysis of Variance: What Is Your Statistical Software Actually Doing?

    ERIC Educational Resources Information Center

    Li, Jian; Lomax, Richard G.

    2011-01-01

    Users assume statistical software packages produce accurate results. In this article, the authors systematically examined Statistical Package for the Social Sciences (SPSS) and Statistical Analysis System (SAS) for 3 analysis of variance (ANOVA) designs, mixed-effects ANOVA, fixed-effects analysis of covariance (ANCOVA), and nested ANOVA. For each…

  11. "TNOs are Cool": A survey of the trans-Neptunian region. XIII. Statistical analysis of multiple trans-Neptunian objects observed with Herschel Space Observatory

    NASA Astrophysics Data System (ADS)

    Kovalenko, I. D.; Doressoundiram, A.; Lellouch, E.; Vilenius, E.; Müller, T.; Stansberry, J.

    2017-11-01

    Context. Gravitationally bound multiple systems provide an opportunity to estimate the mean bulk density of the objects, whereas this characteristic is not available for single objects. Being a primitive population of the outer solar system, binary and multiple trans-Neptunian objects (TNOs) provide unique information about bulk density and internal structure, improving our understanding of their formation and evolution. Aims: The goal of this work is to analyse parameters of multiple trans-Neptunian systems, observed with Herschel and Spitzer space telescopes. Particularly, statistical analysis is done for radiometric size and geometric albedo, obtained from photometric observations, and for estimated bulk density. Methods: We use Monte Carlo simulation to estimate the real size distribution of TNOs. For this purpose, we expand the dataset of diameters by adopting the Minor Planet Center database list with available values of the absolute magnitude therein, and the albedo distribution derived from Herschel radiometric measurements. We use the 2-sample Anderson-Darling non-parametric statistical method for testing whether two samples of diameters, for binary and single TNOs, come from the same distribution. Additionally, we use the Spearman's coefficient as a measure of rank correlations between parameters. Uncertainties of estimated parameters together with lack of data are taken into account. Conclusions about correlations between parameters are based on statistical hypothesis testing. Results: We have found that the difference in size distributions of multiple and single TNOs is biased by small objects. The test on correlations between parameters shows that the effective diameter of binary TNOs strongly correlates with heliocentric orbital inclination and with magnitude difference between components of binary system. The correlation between diameter and magnitude difference implies that small and large binaries are formed by different mechanisms. Furthermore

  12. Statistical Analysis Techniques for Small Sample Sizes

    NASA Technical Reports Server (NTRS)

    Navard, S. E.

    1984-01-01

    The small sample sizes problem which is encountered when dealing with analysis of space-flight data is examined. Because of such a amount of data available, careful analyses are essential to extract the maximum amount of information with acceptable accuracy. Statistical analysis of small samples is described. The background material necessary for understanding statistical hypothesis testing is outlined and the various tests which can be done on small samples are explained. Emphasis is on the underlying assumptions of each test and on considerations needed to choose the most appropriate test for a given type of analysis.

  13. Notes on numerical reliability of several statistical analysis programs

    USGS Publications Warehouse

    Landwehr, J.M.; Tasker, Gary D.

    1999-01-01

    This report presents a benchmark analysis of several statistical analysis programs currently in use in the USGS. The benchmark consists of a comparison between the values provided by a statistical analysis program for variables in the reference data set ANASTY and their known or calculated theoretical values. The ANASTY data set is an amendment of the Wilkinson NASTY data set that has been used in the statistical literature to assess the reliability (computational correctness) of calculated analytical results.

  14. Comparing Visual and Statistical Analysis of Multiple Baseline Design Graphs.

    PubMed

    Wolfe, Katie; Dickenson, Tammiee S; Miller, Bridget; McGrath, Kathleen V

    2018-04-01

    A growing number of statistical analyses are being developed for single-case research. One important factor in evaluating these methods is the extent to which each corresponds to visual analysis. Few studies have compared statistical and visual analysis, and information about more recently developed statistics is scarce. Therefore, our purpose was to evaluate the agreement between visual analysis and four statistical analyses: improvement rate difference (IRD); Tau-U; Hedges, Pustejovsky, Shadish (HPS) effect size; and between-case standardized mean difference (BC-SMD). Results indicate that IRD and BC-SMD had the strongest overall agreement with visual analysis. Although Tau-U had strong agreement with visual analysis on raw values, it had poorer agreement when those values were dichotomized to represent the presence or absence of a functional relation. Overall, visual analysis appeared to be more conservative than statistical analysis, but further research is needed to evaluate the nature of these disagreements.

  15. Online Statistical Modeling (Regression Analysis) for Independent Responses

    NASA Astrophysics Data System (ADS)

    Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus

    2017-06-01

    Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.

  16. Spectral Analysis of B Stars: An Application of Bayesian Statistics

    NASA Astrophysics Data System (ADS)

    Mugnes, J.-M.; Robert, C.

    2012-12-01

    To better understand the processes involved in stellar physics, it is necessary to obtain accurate stellar parameters (effective temperature, surface gravity, abundances…). Spectral analysis is a powerful tool for investigating stars, but it is also vital to reduce uncertainties at a decent computational cost. Here we present a spectral analysis method based on a combination of Bayesian statistics and grids of synthetic spectra obtained with TLUSTY. This method simultaneously constrains the stellar parameters by using all the lines accessible in observed spectra and thus greatly reduces uncertainties and improves the overall spectrum fitting. Preliminary results are shown using spectra from the Observatoire du Mont-Mégantic.

  17. Statistical analysis of the 70 meter antenna surface distortions

    NASA Technical Reports Server (NTRS)

    Kiedron, K.; Chian, C. T.; Chuang, K. L.

    1987-01-01

    Statistical analysis of surface distortions of the 70 meter NASA/JPL antenna, located at Goldstone, was performed. The purpose of this analysis is to verify whether deviations due to gravity loading can be treated as quasi-random variables with normal distribution. Histograms of the RF pathlength error distribution for several antenna elevation positions were generated. The results indicate that the deviations from the ideal antenna surface are not normally distributed. The observed density distribution for all antenna elevation angles is taller and narrower than the normal density, which results in large positive values of kurtosis and a significant amount of skewness. The skewness of the distribution changes from positive to negative as the antenna elevation changes from zenith to horizon.

  18. Application of Ontology Technology in Health Statistic Data Analysis.

    PubMed

    Guo, Minjiang; Hu, Hongpu; Lei, Xingyun

    2017-01-01

    Research Purpose: establish health management ontology for analysis of health statistic data. Proposed Methods: this paper established health management ontology based on the analysis of the concepts in China Health Statistics Yearbook, and used protégé to define the syntactic and semantic structure of health statistical data. six classes of top-level ontology concepts and their subclasses had been extracted and the object properties and data properties were defined to establish the construction of these classes. By ontology instantiation, we can integrate multi-source heterogeneous data and enable administrators to have an overall understanding and analysis of the health statistic data. ontology technology provides a comprehensive and unified information integration structure of the health management domain and lays a foundation for the efficient analysis of multi-source and heterogeneous health system management data and enhancement of the management efficiency.

  19. Perspectives on statistics education: observations from statistical consulting in an academic nursing environment.

    PubMed

    Hayat, Matthew J; Schmiege, Sarah J; Cook, Paul F

    2014-04-01

    Statistics knowledge is essential for understanding the nursing and health care literature, as well as for applying rigorous science in nursing research. Statistical consultants providing services to faculty and students in an academic nursing program have the opportunity to identify gaps and challenges in statistics education for nursing students. This information may be useful to curriculum committees and statistics educators. This article aims to provide perspective on statistics education stemming from the experiences of three experienced statistics educators who regularly collaborate and consult with nurse investigators. The authors share their knowledge and express their views about data management, data screening and manipulation, statistical software, types of scientific investigation, and advanced statistical topics not covered in the usual coursework. The suggestions provided promote a call for data to study these topics. Relevant data about statistics education can assist educators in developing comprehensive statistics coursework for nursing students. Copyright 2014, SLACK Incorporated.

  20. Explorations in Statistics: The Analysis of Change

    ERIC Educational Resources Information Center

    Curran-Everett, Douglas; Williams, Calvin L.

    2015-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This tenth installment of "Explorations in Statistics" explores the analysis of a potential change in some physiological response. As researchers, we often express absolute change as percent change so we can…

  1. Common pitfalls in statistical analysis: “P” values, statistical significance and confidence intervals

    PubMed Central

    Ranganathan, Priya; Pramesh, C. S.; Buyse, Marc

    2015-01-01

    In the second part of a series on pitfalls in statistical analysis, we look at various ways in which a statistically significant study result can be expressed. We debunk some of the myths regarding the ‘P’ value, explain the importance of ‘confidence intervals’ and clarify the importance of including both values in a paper PMID:25878958

  2. Statistical Analysis of Large-Scale Structure of Universe

    NASA Astrophysics Data System (ADS)

    Tugay, A. V.

    While galaxy cluster catalogs were compiled many decades ago, other structural elements of cosmic web are detected at definite level only in the newest works. For example, extragalactic filaments were described by velocity field and SDSS galaxy distribution during the last years. Large-scale structure of the Universe could be also mapped in the future using ATHENA observations in X-rays and SKA in radio band. Until detailed observations are not available for the most volume of Universe, some integral statistical parameters can be used for its description. Such methods as galaxy correlation function, power spectrum, statistical moments and peak statistics are commonly used with this aim. The parameters of power spectrum and other statistics are important for constraining the models of dark matter, dark energy, inflation and brane cosmology. In the present work we describe the growth of large-scale density fluctuations in one- and three-dimensional case with Fourier harmonics of hydrodynamical parameters. In result we get power-law relation for the matter power spectrum.

  3. Statistical Analysis of Bus Networks in India

    PubMed Central

    2016-01-01

    In this paper, we model the bus networks of six major Indian cities as graphs in L-space, and evaluate their various statistical properties. While airline and railway networks have been extensively studied, a comprehensive study on the structure and growth of bus networks is lacking. In India, where bus transport plays an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer basic questions on its evolution, growth, robustness and resiliency. Although the common feature of small-world property is observed, our analysis reveals a wide spectrum of network topologies arising due to significant variation in the degree-distribution patterns in the networks. We also observe that these networks although, robust and resilient to random attacks are particularly degree-sensitive. Unlike real-world networks, such as Internet, WWW and airline, that are virtual, bus networks are physically constrained. Our findings therefore, throw light on the evolution of such geographically and constrained networks that will help us in designing more efficient bus networks in the future. PMID:27992590

  4. Detailed Analysis of the Interoccurrence Time Statistics in Seismic Activity

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroki; Aizawa, Yoji

    2017-02-01

    The interoccurrence time statistics of seismiciry is studied theoretically as well as numerically by taking into account the conditional probability and the correlations among many earthquakes in different magnitude levels. It is known so far that the interoccurrence time statistics is well approximated by the Weibull distribution, but the more detailed information about the interoccurrence times can be obtained from the analysis of the conditional probability. Firstly, we propose the Embedding Equation Theory (EET), where the conditional probability is described by two kinds of correlation coefficients; one is the magnitude correlation and the other is the inter-event time correlation. Furthermore, the scaling law of each correlation coefficient is clearly determined from the numerical data-analysis carrying out with the Preliminary Determination of Epicenter (PDE) Catalog and the Japan Meteorological Agency (JMA) Catalog. Secondly, the EET is examined to derive the magnitude dependence of the interoccurrence time statistics and the multi-fractal relation is successfully formulated. Theoretically we cannot prove the universality of the multi-fractal relation in seismic activity; nevertheless, the theoretical results well reproduce all numerical data in our analysis, where several common features or the invariant aspects are clearly observed. Especially in the case of stationary ensembles the multi-fractal relation seems to obey an invariant curve, furthermore in the case of non-stationary (moving time) ensembles for the aftershock regime the multi-fractal relation seems to satisfy a certain invariant curve at any moving times. It is emphasized that the multi-fractal relation plays an important role to unify the statistical laws of seismicity: actually the Gutenberg-Richter law and the Weibull distribution are unified in the multi-fractal relation, and some universality conjectures regarding the seismicity are briefly discussed.

  5. New statistical scission-point model to predict fission fragment observables

    NASA Astrophysics Data System (ADS)

    Lemaître, Jean-François; Panebianco, Stefano; Sida, Jean-Luc; Hilaire, Stéphane; Heinrich, Sophie

    2015-09-01

    The development of high performance computing facilities makes possible a massive production of nuclear data in a full microscopic framework. Taking advantage of the individual potential calculations of more than 7000 nuclei, a new statistical scission-point model, called SPY, has been developed. It gives access to the absolute available energy at the scission point, which allows the use of a parameter-free microcanonical statistical description to calculate the distributions and the mean values of all fission observables. SPY uses the richness of microscopy in a rather simple theoretical framework, without any parameter except the scission-point definition, to draw clear answers based on perfect knowledge of the ingredients involved in the model, with very limited computing cost.

  6. [Statistical analysis using freely-available "EZR (Easy R)" software].

    PubMed

    Kanda, Yoshinobu

    2015-10-01

    Clinicians must often perform statistical analyses for purposes such evaluating preexisting evidence and designing or executing clinical studies. R is a free software environment for statistical computing. R supports many statistical analysis functions, but does not incorporate a statistical graphical user interface (GUI). The R commander provides an easy-to-use basic-statistics GUI for R. However, the statistical function of the R commander is limited, especially in the field of biostatistics. Therefore, the author added several important statistical functions to the R commander and named it "EZR (Easy R)", which is now being distributed on the following website: http://www.jichi.ac.jp/saitama-sct/. EZR allows the application of statistical functions that are frequently used in clinical studies, such as survival analyses, including competing risk analyses and the use of time-dependent covariates and so on, by point-and-click access. In addition, by saving the script automatically created by EZR, users can learn R script writing, maintain the traceability of the analysis, and assure that the statistical process is overseen by a supervisor.

  7. A Third Moment Adjusted Test Statistic for Small Sample Factor Analysis

    PubMed Central

    Lin, Johnny; Bentler, Peter M.

    2012-01-01

    Goodness of fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square; but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne’s asymptotically distribution-free method and Satorra Bentler’s mean scaling statistic were developed under the presumption of non-normality in the factors and errors. This paper finds new application to the case where factors and errors are normally distributed in the population but the skewness of the obtained test statistic is still high due to sampling error in the observed indicators. An extension of Satorra Bentler’s statistic is proposed that not only scales the mean but also adjusts the degrees of freedom based on the skewness of the obtained test statistic in order to improve its robustness under small samples. A simple simulation study shows that this third moment adjusted statistic asymptotically performs on par with previously proposed methods, and at a very small sample size offers superior Type I error rates under a properly specified model. Data from Mardia, Kent and Bibby’s study of students tested for their ability in five content areas that were either open or closed book were used to illustrate the real-world performance of this statistic. PMID:23144511

  8. A Third Moment Adjusted Test Statistic for Small Sample Factor Analysis.

    PubMed

    Lin, Johnny; Bentler, Peter M

    2012-01-01

    Goodness of fit testing in factor analysis is based on the assumption that the test statistic is asymptotically chi-square; but this property may not hold in small samples even when the factors and errors are normally distributed in the population. Robust methods such as Browne's asymptotically distribution-free method and Satorra Bentler's mean scaling statistic were developed under the presumption of non-normality in the factors and errors. This paper finds new application to the case where factors and errors are normally distributed in the population but the skewness of the obtained test statistic is still high due to sampling error in the observed indicators. An extension of Satorra Bentler's statistic is proposed that not only scales the mean but also adjusts the degrees of freedom based on the skewness of the obtained test statistic in order to improve its robustness under small samples. A simple simulation study shows that this third moment adjusted statistic asymptotically performs on par with previously proposed methods, and at a very small sample size offers superior Type I error rates under a properly specified model. Data from Mardia, Kent and Bibby's study of students tested for their ability in five content areas that were either open or closed book were used to illustrate the real-world performance of this statistic.

  9. Statistical Properties of Global Precipitation in the NCEP GFS Model and TMPA Observations for Data Assimilation

    NASA Technical Reports Server (NTRS)

    Lien, Guo-Yuan; Kalnay, Eugenia; Miyoshi, Takemasa; Huffman, George J.

    2016-01-01

    Assimilation of satellite precipitation data into numerical models presents several difficulties, with two of the most important being the non-Gaussian error distributions associated with precipitation, and large model and observation errors. As a result, improving the model forecast beyond a few hours by assimilating precipitation has been found to be difficult. To identify the challenges and propose practical solutions to assimilation of precipitation, statistics are calculated for global precipitation in a low-resolution NCEP Global Forecast System (GFS) model and the TRMM Multisatellite Precipitation Analysis (TMPA). The samples are constructed using the same model with the same forecast period, observation variables, and resolution as in the follow-on GFSTMPA precipitation assimilation experiments presented in the companion paper.The statistical results indicate that the T62 and T126 GFS models generally have positive bias in precipitation compared to the TMPA observations, and that the simulation of the marine stratocumulus precipitation is not realistic in the T62 GFS model. It is necessary to apply to precipitation either the commonly used logarithm transformation or the newly proposed Gaussian transformation to obtain a better relationship between the model and observational precipitation. When the Gaussian transformations are separately applied to the model and observational precipitation, they serve as a bias correction that corrects the amplitude-dependent biases. In addition, using a spatially andor temporally averaged precipitation variable, such as the 6-h accumulated precipitation, should be advantageous for precipitation assimilation.

  10. Optimization of the transmission of observable expectation values and observable statistics in continuous-variable teleportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albano Farias, L.; Stephany, J.

    2010-12-15

    We analyze the statistics of observables in continuous-variable (CV) quantum teleportation in the formalism of the characteristic function. We derive expressions for average values of output-state observables, in particular, cumulants which are additive in terms of the input state and the resource of teleportation. Working with a general class of teleportation resources, the squeezed-bell-like states, which may be optimized in a free parameter for better teleportation performance, we discuss the relation between resources optimal for fidelity and those optimal for different observable averages. We obtain the values of the free parameter of the squeezed-bell-like states which optimize the central momentamore » and cumulants up to fourth order. For the cumulants the distortion between in and out states due to teleportation depends only on the resource. We obtain optimal parameters {Delta}{sub (2)}{sup opt} and {Delta}{sub (4)}{sup opt} for the second- and fourth-order cumulants, which do not depend on the squeezing of the resource. The second-order central momenta, which are equal to the second-order cumulants, and the photon number average are also optimized by the resource with {Delta}{sub (2)}{sup opt}. We show that the optimal fidelity resource, which has been found previously to depend on the characteristics of input, approaches for high squeezing to the resource that optimizes the second-order momenta. A similar behavior is obtained for the resource that optimizes the photon statistics, which is treated here using the sum of the squared differences in photon probabilities of input versus output states as the distortion measure. This is interpreted naturally to mean that the distortions associated with second-order momenta dominate the behavior of the output state for large squeezing of the resource. Optimal fidelity resources and optimal photon statistics resources are compared, and it is shown that for mixtures of Fock states both resources are equivalent.« less

  11. Statistical analysis of CCSN/SS7 traffic data from working CCS subnetworks

    NASA Astrophysics Data System (ADS)

    Duffy, Diane E.; McIntosh, Allen A.; Rosenstein, Mark; Willinger, Walter

    1994-04-01

    In this paper, we report on an ongoing statistical analysis of actual CCSN traffic data. The data consist of approximately 170 million signaling messages collected from a variety of different working CCS subnetworks. The key findings from our analysis concern: (1) the characteristics of both the telephone call arrival process and the signaling message arrival process; (2) the tail behavior of the call holding time distribution; and (3) the observed performance of the CCSN with respect to a variety of performance and reliability measurements.

  12. Statistical Analysis of NAS Parallel Benchmarks and LINPACK Results

    NASA Technical Reports Server (NTRS)

    Meuer, Hans-Werner; Simon, Horst D.; Strohmeier, Erich; Lasinski, T. A. (Technical Monitor)

    1994-01-01

    In the last three years extensive performance data have been reported for parallel machines both based on the NAS Parallel Benchmarks, and on LINPACK. In this study we have used the reported benchmark results and performed a number of statistical experiments using factor, cluster, and regression analyses. In addition to the performance results of LINPACK and the eight NAS parallel benchmarks, we have also included peak performance of the machine, and the LINPACK n and n(sub 1/2) values. Some of the results and observations can be summarized as follows: 1) All benchmarks are strongly correlated with peak performance. 2) LINPACK and EP have each a unique signature. 3) The remaining NPB can grouped into three groups as follows: (CG and IS), (LU and SP), and (MG, FT, and BT). Hence three (or four with EP) benchmarks are sufficient to characterize the overall NPB performance. Our poster presentation will follow a standard poster format, and will present the data of our statistical analysis in detail.

  13. The Canadian Precipitation Analysis (CaPA): Evaluation of the statistical interpolation scheme

    NASA Astrophysics Data System (ADS)

    Evans, Andrea; Rasmussen, Peter; Fortin, Vincent

    2013-04-01

    CaPA (Canadian Precipitation Analysis) is a data assimilation system which employs statistical interpolation to combine observed precipitation with gridded precipitation fields produced by Environment Canada's Global Environmental Multiscale (GEM) climate model into a final gridded precipitation analysis. Precipitation is important in many fields and applications, including agricultural water management projects, flood control programs, and hydroelectric power generation planning. Precipitation is a key input to hydrological models, and there is a desire to have access to the best available information about precipitation in time and space. The principal goal of CaPA is to produce this type of information. In order to perform the necessary statistical interpolation, CaPA requires the estimation of a semi-variogram. This semi-variogram is used to describe the spatial correlations between precipitation innovations, defined as the observed precipitation amounts minus the GEM forecasted amounts predicted at the observation locations. Currently, CaPA uses a single isotropic variogram across the entire analysis domain. The present project investigates the implications of this choice by first conducting a basic variographic analysis of precipitation innovation data across the Canadian prairies, with specific interest in identifying and quantifying potential anisotropy within the domain. This focus is further expanded by identifying the effect of storm type on the variogram. The ultimate goal of the variographic analysis is to develop improved semi-variograms for CaPA that better capture the spatial complexities of precipitation over the Canadian prairies. CaPA presently applies a Box-Cox data transformation to both the observations and the GEM data, prior to the calculation of the innovations. The data transformation is necessary to satisfy the normal distribution assumption, but introduces a significant bias. The second part of the investigation aims at devising a bias

  14. Statistical quality control through overall vibration analysis

    NASA Astrophysics Data System (ADS)

    Carnero, M. a. Carmen; González-Palma, Rafael; Almorza, David; Mayorga, Pedro; López-Escobar, Carlos

    2010-05-01

    The present study introduces the concept of statistical quality control in automotive wheel bearings manufacturing processes. Defects on products under analysis can have a direct influence on passengers' safety and comfort. At present, the use of vibration analysis on machine tools for quality control purposes is not very extensive in manufacturing facilities. Noise and vibration are common quality problems in bearings. These failure modes likely occur under certain operating conditions and do not require high vibration amplitudes but relate to certain vibration frequencies. The vibration frequencies are affected by the type of surface problems (chattering) of ball races that are generated through grinding processes. The purpose of this paper is to identify grinding process variables that affect the quality of bearings by using statistical principles in the field of machine tools. In addition, an evaluation of the quality results of the finished parts under different combinations of process variables is assessed. This paper intends to establish the foundations to predict the quality of the products through the analysis of self-induced vibrations during the contact between the grinding wheel and the parts. To achieve this goal, the overall self-induced vibration readings under different combinations of process variables are analysed using statistical tools. The analysis of data and design of experiments follows a classical approach, considering all potential interactions between variables. The analysis of data is conducted through analysis of variance (ANOVA) for data sets that meet normality and homoscedasticity criteria. This paper utilizes different statistical tools to support the conclusions such as chi squared, Shapiro-Wilks, symmetry, Kurtosis, Cochran, Hartlett, and Hartley and Krushal-Wallis. The analysis presented is the starting point to extend the use of predictive techniques (vibration analysis) for quality control. This paper demonstrates the existence

  15. STATISTICAL METHODOLOGY FOR THE SIMULTANEOUS ANALYSIS OF MULTIPLE TYPES OF OUTCOMES IN NONLINEAR THRESHOLD MODELS.

    EPA Science Inventory

    Multiple outcomes are often measured on each experimental unit in toxicology experiments. These multiple observations typically imply the existence of correlation between endpoints, and a statistical analysis that incorporates it may result in improved inference. When both disc...

  16. TRANSIT TIMING OBSERVATIONS FROM KEPLER. I. STATISTICAL ANALYSIS OF THE FIRST FOUR MONTHS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, Eric B.; Rowe, Jason F.; Caldwell, Douglas A.

    The architectures of multiple planet systems can provide valuable constraints on models of planet formation, including orbital migration, and excitation of orbital eccentricities and inclinations. NASA's Kepler mission has identified 1235 transiting planet candidates. The method of transit timing variations (TTVs) has already confirmed seven planets in two planetary systems. We perform a transit timing analysis of the Kepler planet candidates. We find that at least {approx}11% of planet candidates currently suitable for TTV analysis show evidence suggestive of TTVs, representing at least {approx}65 TTV candidates. In all cases, the time span of observations must increase for TTVs to providemore » strong constraints on planet masses and/or orbits, as expected based on N-body integrations of multiple transiting planet candidate systems (assuming circular and coplanar orbits). We find the fraction of planet candidates showing TTVs in this data set does not vary significantly with the number of transiting planet candidates per star, suggesting significant mutual inclinations and that many stars with a single transiting planet should host additional non-transiting planets. We anticipate that Kepler could confirm (or reject) at least {approx}12 systems with multiple transiting planet candidates via TTVs. Thus, TTVs will provide a powerful tool for confirming transiting planets and characterizing the orbital dynamics of low-mass planets. If Kepler observations were extended to at least seven years, then TTVs would provide much more precise constraints on the dynamics of systems with multiple transiting planets and would become sensitive to planets with orbital periods extending into the habitable zone of solar-type stars.« less

  17. Development of the Large-Scale Statistical Analysis System of Satellites Observations Data with Grid Datafarm Architecture

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Murata, K.; Kimura, E.; Honda, R.

    2006-12-01

    In the Solar-Terrestrial Physics (STP) field, the amount of satellite observation data has been increasing every year. It is necessary to solve the following three problems to achieve large-scale statistical analyses of plenty of data. (i) More CPU power and larger memory and disk size are required. However, total powers of personal computers are not enough to analyze such amount of data. Super-computers provide a high performance CPU and rich memory area, but they are usually separated from the Internet or connected only for the purpose of programming or data file transfer. (ii) Most of the observation data files are managed at distributed data sites over the Internet. Users have to know where the data files are located. (iii) Since no common data format in the STP field is available now, users have to prepare reading program for each data by themselves. To overcome the problems (i) and (ii), we constructed a parallel and distributed data analysis environment based on the Gfarm reference implementation of the Grid Datafarm architecture. The Gfarm shares both computational resources and perform parallel distributed processings. In addition, the Gfarm provides the Gfarm filesystem which can be as virtual directory tree among nodes. The Gfarm environment is composed of three parts; a metadata server to manage distributed files information, filesystem nodes to provide computational resources and a client to throw a job into metadata server and manages data processing schedulings. In the present study, both data files and data processes are parallelized on the Gfarm with 6 file system nodes: CPU clock frequency of each node is Pentium V 1GHz, 256MB memory and40GB disk. To evaluate performances of the present Gfarm system, we scanned plenty of data files, the size of which is about 300MB for each, in three processing methods: sequential processing in one node, sequential processing by each node and parallel processing by each node. As a result, in comparison between the

  18. In situ statistical observations of EMIC waves by Arase satellite

    NASA Astrophysics Data System (ADS)

    Nomura, R.; Matsuoka, A.; Teramoto, M.; Nose, M.; Yoshizumi, M.; Fujimoto, A.; Shinohara, M.; Tanaka, Y.

    2017-12-01

    We present in situ statistical survey of electromagnetic ion cyclotron (EMIC) waves observed by Arase satellite from 3 March to 16 July 2017. We identified 64 events using the fluxgate magnetometer (MGF) on the satellite. The EMIC wave is the key phenomena to understand the loss dynamics of MeV-energy electrons in the radiation belt. We will show the radial and latitudinal dependence of the wave occurance rate and the wave parameters (frequency band, coherence, polarization, and ellipticity). Especially the EMIC waves observed at localized weak background magnetic field will be discussed for the wave excitation mechanism in the deep inner magnetosphere.

  19. Study designs, use of statistical tests, and statistical analysis software choice in 2015: Results from two Pakistani monthly Medline indexed journals.

    PubMed

    Shaikh, Masood Ali

    2017-09-01

    Assessment of research articles in terms of study designs used, statistical tests applied and the use of statistical analysis programmes help determine research activity profile and trends in the country. In this descriptive study, all original articles published by Journal of Pakistan Medical Association (JPMA) and Journal of the College of Physicians and Surgeons Pakistan (JCPSP), in the year 2015 were reviewed in terms of study designs used, application of statistical tests, and the use of statistical analysis programmes. JPMA and JCPSP published 192 and 128 original articles, respectively, in the year 2015. Results of this study indicate that cross-sectional study design, bivariate inferential statistical analysis entailing comparison between two variables/groups, and use of statistical software programme SPSS to be the most common study design, inferential statistical analysis, and statistical analysis software programmes, respectively. These results echo previously published assessment of these two journals for the year 2014.

  20. Data analysis of gravitational-wave signals from spinning neutron stars. III. Detection statistics and computational requirements

    NASA Astrophysics Data System (ADS)

    Jaranowski, Piotr; Królak, Andrzej

    2000-03-01

    We develop the analytic and numerical tools for data analysis of the continuous gravitational-wave signals from spinning neutron stars for ground-based laser interferometric detectors. The statistical data analysis method that we investigate is maximum likelihood detection which for the case of Gaussian noise reduces to matched filtering. We study in detail the statistical properties of the optimum functional that needs to be calculated in order to detect the gravitational-wave signal and estimate its parameters. We find it particularly useful to divide the parameter space into elementary cells such that the values of the optimal functional are statistically independent in different cells. We derive formulas for false alarm and detection probabilities both for the optimal and the suboptimal filters. We assess the computational requirements needed to do the signal search. We compare a number of criteria to build sufficiently accurate templates for our data analysis scheme. We verify the validity of our concepts and formulas by means of the Monte Carlo simulations. We present algorithms by which one can estimate the parameters of the continuous signals accurately. We find, confirming earlier work of other authors, that given a 100 Gflops computational power an all-sky search for observation time of 7 days and directed search for observation time of 120 days are possible whereas an all-sky search for 120 days of observation time is computationally prohibitive.

  1. Statistical analysis of tire treadwear data

    DOT National Transportation Integrated Search

    1985-03-01

    This report describes the results of a statistical analysis of the treadwear : variability of radial tires subjected to the Uniform Tire Quality Grading (UTQG) : standard. Because unexplained variability in the treadwear portion of the standard : cou...

  2. Statistical analysis of regulatory ecotoxicity tests.

    PubMed

    Isnard, P; Flammarion, P; Roman, G; Babut, M; Bastien, P; Bintein, S; Esserméant, L; Férard, J F; Gallotti-Schmitt, S; Saouter, E; Saroli, M; Thiébaud, H; Tomassone, R; Vindimian, E

    2001-11-01

    ANOVA-type data analysis, i.e.. determination of lowest-observed-effect concentrations (LOECs), and no-observed-effect concentrations (NOECs), has been widely used for statistical analysis of chronic ecotoxicity data. However, it is more and more criticised for several reasons, among which the most important is probably the fact that the NOEC depends on the choice of test concentrations and number of replications and rewards poor experiments, i.e., high variability, with high NOEC values. Thus, a recent OECD workshop concluded that the use of the NOEC should be phased out and that a regression-based estimation procedure should be used. Following this workshop, a working group was established at the French level between government, academia and industry representatives. Twenty-seven sets of chronic data (algae, daphnia, fish) were collected and analysed by ANOVA and regression procedures. Several regression models were compared and relations between NOECs and ECx, for different values of x, were established in order to find an alternative summary parameter to the NOEC. Biological arguments are scarce to help in defining a negligible level of effect x for the ECx. With regard to their use in the risk assessment procedures, a convenient methodology would be to choose x so that ECx are on average similar to the present NOEC. This would lead to no major change in the risk assessment procedure. However, experimental data show that the ECx depend on the regression models and that their accuracy decreases in the low effect zone. This disadvantage could probably be reduced by adapting existing experimental protocols but it could mean more experimental effort and higher cost. ECx (derived with existing test guidelines, e.g., regarding the number of replicates) whose lowest bounds of the confidence interval are on average similar to present NOEC would improve this approach by a priori encouraging more precise experiments. However, narrow confidence intervals are not only

  3. Transit safety & security statistics & analysis 2003 annual report (formerly SAMIS)

    DOT National Transportation Integrated Search

    2005-12-01

    The Transit Safety & Security Statistics & Analysis 2003 Annual Report (formerly SAMIS) is a compilation and analysis of mass transit accident, casualty, and crime statistics reported under the Federal Transit Administrations (FTAs) National Tr...

  4. Transit safety & security statistics & analysis 2002 annual report (formerly SAMIS)

    DOT National Transportation Integrated Search

    2004-12-01

    The Transit Safety & Security Statistics & Analysis 2002 Annual Report (formerly SAMIS) is a compilation and analysis of mass transit accident, casualty, and crime statistics reported under the Federal Transit Administrations (FTAs) National Tr...

  5. STAPP: Spatiotemporal analysis of plantar pressure measurements using statistical parametric mapping.

    PubMed

    Booth, Brian G; Keijsers, Noël L W; Sijbers, Jan; Huysmans, Toon

    2018-05-03

    Pedobarography produces large sets of plantar pressure samples that are routinely subsampled (e.g. using regions of interest) or aggregated (e.g. center of pressure trajectories, peak pressure images) in order to simplify statistical analysis and provide intuitive clinical measures. We hypothesize that these data reductions discard gait information that can be used to differentiate between groups or conditions. To test the hypothesis of null information loss, we created an implementation of statistical parametric mapping (SPM) for dynamic plantar pressure datasets (i.e. plantar pressure videos). Our SPM software framework brings all plantar pressure videos into anatomical and temporal correspondence, then performs statistical tests at each sampling location in space and time. Novelly, we introduce non-linear temporal registration into the framework in order to normalize for timing differences within the stance phase. We refer to our software framework as STAPP: spatiotemporal analysis of plantar pressure measurements. Using STAPP, we tested our hypothesis on plantar pressure videos from 33 healthy subjects walking at different speeds. As walking speed increased, STAPP was able to identify significant decreases in plantar pressure at mid-stance from the heel through the lateral forefoot. The extent of these plantar pressure decreases has not previously been observed using existing plantar pressure analysis techniques. We therefore conclude that the subsampling of plantar pressure videos - a task which led to the discarding of gait information in our study - can be avoided using STAPP. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Teaching Statistics in Biology: Using Inquiry-based Learning to Strengthen Understanding of Statistical Analysis in Biology Laboratory Courses

    PubMed Central

    2008-01-01

    There is an increasing need for students in the biological sciences to build a strong foundation in quantitative approaches to data analyses. Although most science, engineering, and math field majors are required to take at least one statistics course, statistical analysis is poorly integrated into undergraduate biology course work, particularly at the lower-division level. Elements of statistics were incorporated into an introductory biology course, including a review of statistics concepts and opportunity for students to perform statistical analysis in a biological context. Learning gains were measured with an 11-item statistics learning survey instrument developed for the course. Students showed a statistically significant 25% (p < 0.005) increase in statistics knowledge after completing introductory biology. Students improved their scores on the survey after completing introductory biology, even if they had previously completed an introductory statistics course (9%, improvement p < 0.005). Students retested 1 yr after completing introductory biology showed no loss of their statistics knowledge as measured by this instrument, suggesting that the use of statistics in biology course work may aid long-term retention of statistics knowledge. No statistically significant differences in learning were detected between male and female students in the study. PMID:18765754

  7. Teaching statistics in biology: using inquiry-based learning to strengthen understanding of statistical analysis in biology laboratory courses.

    PubMed

    Metz, Anneke M

    2008-01-01

    There is an increasing need for students in the biological sciences to build a strong foundation in quantitative approaches to data analyses. Although most science, engineering, and math field majors are required to take at least one statistics course, statistical analysis is poorly integrated into undergraduate biology course work, particularly at the lower-division level. Elements of statistics were incorporated into an introductory biology course, including a review of statistics concepts and opportunity for students to perform statistical analysis in a biological context. Learning gains were measured with an 11-item statistics learning survey instrument developed for the course. Students showed a statistically significant 25% (p < 0.005) increase in statistics knowledge after completing introductory biology. Students improved their scores on the survey after completing introductory biology, even if they had previously completed an introductory statistics course (9%, improvement p < 0.005). Students retested 1 yr after completing introductory biology showed no loss of their statistics knowledge as measured by this instrument, suggesting that the use of statistics in biology course work may aid long-term retention of statistics knowledge. No statistically significant differences in learning were detected between male and female students in the study.

  8. CORSSA: The Community Online Resource for Statistical Seismicity Analysis

    USGS Publications Warehouse

    Michael, Andrew J.; Wiemer, Stefan

    2010-01-01

    Statistical seismology is the application of rigorous statistical methods to earthquake science with the goal of improving our knowledge of how the earth works. Within statistical seismology there is a strong emphasis on the analysis of seismicity data in order to improve our scientific understanding of earthquakes and to improve the evaluation and testing of earthquake forecasts, earthquake early warning, and seismic hazards assessments. Given the societal importance of these applications, statistical seismology must be done well. Unfortunately, a lack of educational resources and available software tools make it difficult for students and new practitioners to learn about this discipline. The goal of the Community Online Resource for Statistical Seismicity Analysis (CORSSA) is to promote excellence in statistical seismology by providing the knowledge and resources necessary to understand and implement the best practices, so that the reader can apply these methods to their own research. This introduction describes the motivation for and vision of CORRSA. It also describes its structure and contents.

  9. Statistical analysis of traversal behavior under different types of traffic lights

    NASA Astrophysics Data System (ADS)

    Wang, Boran; Wang, Ziyang; Li, Zhiyin

    2017-12-01

    According to the video observation, it is found that the traffic signal type signal has a significant effect on the illegal crossing behavior of pedestrians at the intersection. Through the method of statistical analysis and variance analysis, the difference between the violation rate and the waiting position of pedestrians at different intersecting lights is compared, and the influence of traffic signal type on pedestrian crossing behavior is evaluated. The results show that the violation rate of the intersection of the static pedestrian lights is significantly higher than that of the countdown signal lights. There are significant differences in the waiting position of the intersection of different signal lights.

  10. Statistical compilation of NAPAP chemical erosion observations

    USGS Publications Warehouse

    Mossotti, Victor G.; Eldeeb, A. Raouf; Reddy, Michael M.; Fries, Terry L.; Coombs, Mary Jane; Schmiermund, Ron L.; Sherwood, Susan I.

    2001-01-01

    In the mid 1980s, the National Acid Precipitation Assessment Program (NAPAP), in cooperation with the National Park Service (NPS) and the U.S. Geological Survey (USGS), initiated a Materials Research Program (MRP) that included a series of field and laboratory studies with the broad objective of providing scientific information on acid rain effects on calcareous building stone. Among the several effects investigated, the chemical dissolution of limestone and marble by rainfall was given particular attention because of the pervasive appearance of erosion effects on cultural materials situated outdoors. In order to track the chemical erosion of stone objects in the field and in the laboratory, the Ca 2+ ion concentration was monitored in the runoff solution from a variety of test objects located both outdoors and under more controlled conditions in the laboratory. This report provides a graphical and statistical overview of the Ca 2+ chemistry in the runoff solutions from (1) five urban and rural sites (DC, NY, NJ, NC, and OH) established by the MRP for materials studies over the period 1984 to 1989, (2) subevent study at the New York MRP site, (3) in situ study of limestone and marble monuments at Gettysburg, (4) laboratory experiments on calcite dissolution conducted by Baedecker, (5) laboratory simulations by Schmiermund, and (6) laboratory investigation of the surface reactivity of calcareous stone conducted by Fries and Mossotti. The graphical representations provided a means for identifying erroneous data that can randomly appear in a database when field operations are semi-automated; a purged database suitable for the evaluation of quantitative models of stone erosion is appended to this report. An analysis of the sources of statistical variability in the data revealed that the rate of stone erosion is weakly dependent on the type of calcareous stone, the ambient temperature, and the H + concentration delivered in the incident rain. The analysis also showed

  11. Statistical evaluation of vibration analysis techniques

    NASA Technical Reports Server (NTRS)

    Milner, G. Martin; Miller, Patrice S.

    1987-01-01

    An evaluation methodology is presented for a selection of candidate vibration analysis techniques applicable to machinery representative of the environmental control and life support system of advanced spacecraft; illustrative results are given. Attention is given to the statistical analysis of small sample experiments, the quantification of detection performance for diverse techniques through the computation of probability of detection versus probability of false alarm, and the quantification of diagnostic performance.

  12. Statistical analysis of effective singular values in matrix rank determination

    NASA Technical Reports Server (NTRS)

    Konstantinides, Konstantinos; Yao, Kung

    1988-01-01

    A major problem in using SVD (singular-value decomposition) as a tool in determining the effective rank of a perturbed matrix is that of distinguishing between significantly small and significantly large singular values to the end, conference regions are derived for the perturbed singular values of matrices with noisy observation data. The analysis is based on the theories of perturbations of singular values and statistical significance test. Threshold bounds for perturbation due to finite-precision and i.i.d. random models are evaluated. In random models, the threshold bounds depend on the dimension of the matrix, the noisy variance, and predefined statistical level of significance. Results applied to the problem of determining the effective order of a linear autoregressive system from the approximate rank of a sample autocorrelation matrix are considered. Various numerical examples illustrating the usefulness of these bounds and comparisons to other previously known approaches are given.

  13. A note on statistical analysis of shape through triangulation of landmarks

    PubMed Central

    Rao, C. Radhakrishna

    2000-01-01

    In an earlier paper, the author jointly with S. Suryawanshi proposed statistical analysis of shape through triangulation of landmarks on objects. It was observed that the angles of the triangles are invariant to scaling, location, and rotation of objects. No distinction was made between an object and its reflection. The present paper provides the methodology of shape discrimination when reflection is also taken into account and makes suggestions for modifications to be made when some of the landmarks are collinear. PMID:10737780

  14. Statistical energy analysis computer program, user's guide

    NASA Technical Reports Server (NTRS)

    Trudell, R. W.; Yano, L. I.

    1981-01-01

    A high frequency random vibration analysis, (statistical energy analysis (SEA) method) is examined. The SEA method accomplishes high frequency prediction of arbitrary structural configurations. A general SEA computer program is described. A summary of SEA theory, example problems of SEA program application, and complete program listing are presented.

  15. Statistical observations of martian 20-30 eV photoelectrons by MAVEN/SWEA

    NASA Astrophysics Data System (ADS)

    Garnier, P.; Steckiewicz, M.; Andre, N.; Mazelle, C. X.; Sauvaud, J. A.; Sakai, S.; Cravens, T.; Mitchell, D. L.; Lillis, R. J.; Espley, J. R.; Brain, D.; Andersson, L.; Jakosky, B. M.

    2016-12-01

    Photoelectron peaks in the 20-30 eV energy range are commonly observed in planetary atmospheres, produced by intense photoionization from solar 30.4 nm photons. At Mars, these photoelectrons are known to escape the planet down its tail (Frahm et al., 2006). Assuming overall charge neutrality, the number of corresponding electrons must be identical to the number of ion charges escaping the planet. Studying the photoelectrons is thus important to understand and quantify the erosion of the martian atmosphere. Moreover, the photoelectrons also play a significant role for the heating and ionization of the atmosphere. The MAVEN (Mars Atmosphere and Volatile EvolutioN) spacecraft has provided detailed observations of the Martian environment for the last two years thanks to its unique orbital coverage and comprehensive plasma instrument suite. The low periapsis altitudes (down to 125 km altitude) and combined presence of an electron spectrometer (Solar Wind Electron Analyzer, SWEA) and of a magnetometer (MAG) provide a unique opportunity to investigate the source region of the photoelectrons and their transport and escape down the tail. We will present statistical results of an automatic detection of 20-30 eV photoelectrons at Mars, based on a simple algorithm using three levels of confidence. More than 150,000 spectra (each averaged over 30s) revealed clear photoelectron peaks from October 2014 to May 2016. The analysis reveals several interesting features such as: the evolution of the peak shape from their source region to higher altitudes, the influence of the magnetic field topology on photoelectron transport, a clear dusk-dawn asymmetry in agreement with the recently-discovered neutral density asymmetry, the statistical influence of the EUV and solar wind parameters and the location of the photoelectron boundary. These results will also be compared with an electron transport code (Sakai et al., 2015, 2016) to better constrain the photoelectron production and transport.

  16. Obscure phenomena in statistical analysis of quantitative structure-activity relationships. Part 1: Multicollinearity of physicochemical descriptors.

    PubMed

    Mager, P P; Rothe, H

    1990-10-01

    Multicollinearity of physicochemical descriptors leads to serious consequences in quantitative structure-activity relationship (QSAR) analysis, such as incorrect estimators and test statistics of regression coefficients of the ordinary least-squares (OLS) model applied usually to QSARs. Beside the diagnosis of the known simple collinearity, principal component regression analysis (PCRA) also allows the diagnosis of various types of multicollinearity. Only if the absolute values of PCRA estimators are order statistics that decrease monotonically, the effects of multicollinearity can be circumvented. Otherwise, obscure phenomena may be observed, such as good data recognition but low predictive model power of a QSAR model.

  17. Interfaces between statistical analysis packages and the ESRI geographic information system

    NASA Technical Reports Server (NTRS)

    Masuoka, E.

    1980-01-01

    Interfaces between ESRI's geographic information system (GIS) data files and real valued data files written to facilitate statistical analysis and display of spatially referenced multivariable data are described. An example of data analysis which utilized the GIS and the statistical analysis system is presented to illustrate the utility of combining the analytic capability of a statistical package with the data management and display features of the GIS.

  18. Quantifying the Energy Landscape Statistics in Proteins - a Relaxation Mode Analysis

    NASA Astrophysics Data System (ADS)

    Cai, Zhikun; Zhang, Yang

    Energy landscape, the hypersurface in the configurational space, has been a useful concept in describing complex processes that occur over a very long time scale, such as the multistep slow relaxations of supercooled liquids and folding of polypeptide chains into structured proteins. Despite extensive simulation studies, its experimental characterization still remains a challenge. To address this challenge, we developed a relaxation mode analysis (RMA) for liquids under a framework analogous to the normal mode analysis for solids. Using RMA, important statistics of the activation barriers of the energy landscape becomes accessible from experimentally measurable two-point correlation functions, e.g. using quasi-elastic and inelastic scattering experiments. We observed a prominent coarsening effect of the energy landscape. The results were further confirmed by direct sampling of the energy landscape using a metadynamics-like adaptive autonomous basin climbing computation. We first demonstrate RMA in a supercooled liquid when dynamical cooperativity emerges in the landscape-influenced regime. Then we show this framework reveals encouraging energy landscape statistics when applied to proteins.

  19. Statistical analysis of the calibration procedure for personnel radiation measurement instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bush, W.J.; Bengston, S.J.; Kalbeitzer, F.L.

    1980-11-01

    Thermoluminescent analyzer (TLA) calibration procedures were used to estimate personnel radiation exposure levels at the Idaho National Engineering Laboratory (INEL). A statistical analysis is presented herein based on data collected over a six month period in 1979 on four TLA's located in the Department of Energy (DOE) Radiological and Environmental Sciences Laboratory at the INEL. The data were collected according to the day-to-day procedure in effect at that time. Both gamma and beta radiation models are developed. Observed TLA readings of thermoluminescent dosimeters are correlated with known radiation levels. This correlation is then used to predict unknown radiation doses frommore » future analyzer readings of personnel thermoluminescent dosimeters. The statistical techniques applied in this analysis include weighted linear regression, estimation of systematic and random error variances, prediction interval estimation using Scheffe's theory of calibration, the estimation of the ratio of the means of two normal bivariate distributed random variables and their corresponding confidence limits according to Kendall and Stuart, tests of normality, experimental design, a comparison between instruments, and quality control.« less

  20. Statistical Analysis of Zebrafish Locomotor Response.

    PubMed

    Liu, Yiwen; Carmer, Robert; Zhang, Gaonan; Venkatraman, Prahatha; Brown, Skye Ashton; Pang, Chi-Pui; Zhang, Mingzhi; Ma, Ping; Leung, Yuk Fai

    2015-01-01

    Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling's T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling's T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure.

  1. Statistical Analysis of Zebrafish Locomotor Response

    PubMed Central

    Zhang, Gaonan; Venkatraman, Prahatha; Brown, Skye Ashton; Pang, Chi-Pui; Zhang, Mingzhi; Ma, Ping; Leung, Yuk Fai

    2015-01-01

    Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling’s T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling’s T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure. PMID

  2. Evolution in Cloud Population Statistics of the MJO: From AMIE Field Observations to Global-Cloud Permitting Models Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollias, Pavlos

    This is a multi-institutional, collaborative project using a three-tier modeling approach to bridge field observations and global cloud-permitting models, with emphases on cloud population structural evolution through various large-scale environments. Our contribution was in data analysis for the generation of high value cloud and precipitation products and derive cloud statistics for model validation. There are two areas in data analysis that we contributed: the development of a synergistic cloud and precipitation cloud classification that identify different cloud (e.g. shallow cumulus, cirrus) and precipitation types (shallow, deep, convective, stratiform) using profiling ARM observations and the development of a quantitative precipitation ratemore » retrieval algorithm using profiling ARM observations. Similar efforts have been developed in the past for precipitation (weather radars), but not for the millimeter-wavelength (cloud) radar deployed at the ARM sites.« less

  3. On intracluster Faraday rotation. II - Statistical analysis

    NASA Technical Reports Server (NTRS)

    Lawler, J. M.; Dennison, B.

    1982-01-01

    The comparison of a reliable sample of radio source Faraday rotation measurements seen through rich clusters of galaxies, with sources seen through the outer parts of clusters and therefore having little intracluster Faraday rotation, indicates that the distribution of rotation in the former population is broadened, but only at the 80% level of statistical confidence. Employing a physical model for the intracluster medium in which the square root of magnetic field strength/turbulent cell per gas core radius number ratio equals approximately 0.07 microgauss, a Monte Carlo simulation is able to reproduce the observed broadening. An upper-limit analysis figure of less than 0.20 microgauss for the field strength/turbulent cell ratio, combined with lower limits on field strength imposed by limitations on the Compton-scattered flux, shows that intracluster magnetic fields must be tangled on scales greater than about 20 kpc.

  4. Time Series Analysis Based on Running Mann Whitney Z Statistics

    USDA-ARS?s Scientific Manuscript database

    A sensitive and objective time series analysis method based on the calculation of Mann Whitney U statistics is described. This method samples data rankings over moving time windows, converts those samples to Mann-Whitney U statistics, and then normalizes the U statistics to Z statistics using Monte-...

  5. A statistical model for water quality predictions from a river discharge using coastal observations

    NASA Astrophysics Data System (ADS)

    Kim, S.; Terrill, E. J.

    2007-12-01

    Understanding and predicting coastal ocean water quality has benefits for reducing human health risks, protecting the environment, and improving local economies which depend on clean beaches. Continuous observations of coastal physical oceanography increase the understanding of the processes which control the fate and transport of a riverine plume which potentially contains high levels of contaminants from the upstream watershed. A data-driven model of the fate and transport of river plume water from the Tijuana River has been developed using surface current observations provided by a network of HF radar operated as part of a local coastal observatory that has been in place since 2002. The model outputs are compared with water quality sampling of shoreline indicator bacteria, and the skill of an alarm for low water quality is evaluated using the receiver operating characteristic (ROC) curve. In addition, statistical analysis of beach closures in comparison with environmental variables is also discussed.

  6. OBSERVATIONS ABOUT HOW WE LEARN ABOUT METHODOLOGY AND STATISTICS.

    PubMed

    Jose, Paul E

    2017-06-01

    The overarching theme of this monograph is to encourage developmental researchers to acquire cutting-edge and innovative design and statistical methods so that we can improve the studies that we execute on the topic of change. Card, the editor of the monograph, challenges the reader to think about works such as the present one as contributing to the new subdiscipline of developmental methodology within the broader field of developmental science. This thought-provoking stance served as the stimulus for the present commentary, which is a collection of observations on "how we learn about methodology and statistics." The point is made that we often learn critical new information from our colleagues, from seminal writings in the literature, and from conferences and workshop participation. It is encouraged that researchers pursue all three of these pathways as ways to acquire innovative knowledge and techniques. Finally, the role of developmental science societies in supporting the dissemination and uptake of this type of knowledge is discussed. © 2017 The Society for Research in Child Development, Inc.

  7. [The informational support of statistical observation related to children disability].

    PubMed

    Son, I M; Polikarpov, A V; Ogrizko, E V; Golubeva, T Yu

    2016-01-01

    Within the framework of the Convention on rights of the disabled the revision is specified concerning criteria of identification of disability of children and reformation of system of medical social expertise according international standards of indices of health and indices related to health. In connection with it, it is important to consider the relationship between alterations in forms of the Federal statistical monitoring in the part of registration of disabled children in the Russian Federation and classification of health indices and indices related to health applied at identification of disability. The article presents analysis of relationship between alterations in forms of the Federal statistical monitoring in the part of registration of disabled children in the Russian Federation and applied classifications used at identification of disability (International classification of impairments, disabilities and handicap (ICDH), international classification of functioning, disability and health (ICF), international classification of functioning, disability and health, version for children and youth (ICF-CY). The intersectorial interaction is considered within the framework of statistics of children disability.

  8. Statistical Analysis of Research Data | Center for Cancer Research

    Cancer.gov

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. The Statistical Analysis of Research Data (SARD) course will be held on April 5-6, 2018 from 9 a.m.-5 p.m. at the National Institutes of Health's Natcher Conference Center, Balcony C on the Bethesda Campus. SARD is designed to provide an overview on the general

  9. A statistical package for computing time and frequency domain analysis

    NASA Technical Reports Server (NTRS)

    Brownlow, J.

    1978-01-01

    The spectrum analysis (SPA) program is a general purpose digital computer program designed to aid in data analysis. The program does time and frequency domain statistical analyses as well as some preanalysis data preparation. The capabilities of the SPA program include linear trend removal and/or digital filtering of data, plotting and/or listing of both filtered and unfiltered data, time domain statistical characterization of data, and frequency domain statistical characterization of data.

  10. The effect of sampling rate on observed statistics in a correlated random walk

    PubMed Central

    Rosser, G.; Fletcher, A. G.; Maini, P. K.; Baker, R. E.

    2013-01-01

    Tracking the movement of individual cells or animals can provide important information about their motile behaviour, with key examples including migrating birds, foraging mammals and bacterial chemotaxis. In many experimental protocols, observations are recorded with a fixed sampling interval and the continuous underlying motion is approximated as a series of discrete steps. The size of the sampling interval significantly affects the tracking measurements, the statistics computed from observed trajectories, and the inferences drawn. Despite the widespread use of tracking data to investigate motile behaviour, many open questions remain about these effects. We use a correlated random walk model to study the variation with sampling interval of two key quantities of interest: apparent speed and angle change. Two variants of the model are considered, in which reorientations occur instantaneously and with a stationary pause, respectively. We employ stochastic simulations to study the effect of sampling on the distributions of apparent speeds and angle changes, and present novel mathematical analysis in the case of rapid sampling. Our investigation elucidates the complex nature of sampling effects for sampling intervals ranging over many orders of magnitude. Results show that inclusion of a stationary phase significantly alters the observed distributions of both quantities. PMID:23740484

  11. A Realistic Experimental Design and Statistical Analysis Project

    ERIC Educational Resources Information Center

    Muske, Kenneth R.; Myers, John A.

    2007-01-01

    A realistic applied chemical engineering experimental design and statistical analysis project is documented in this article. This project has been implemented as part of the professional development and applied statistics courses at Villanova University over the past five years. The novel aspects of this project are that the students are given a…

  12. Internet Data Analysis for the Undergraduate Statistics Curriculum

    ERIC Educational Resources Information Center

    Sanchez, Juana; He, Yan

    2005-01-01

    Statistics textbooks for undergraduates have not caught up with the enormous amount of analysis of Internet data that is taking place these days. Case studies that use Web server log data or Internet network traffic data are rare in undergraduate Statistics education. And yet these data provide numerous examples of skewed and bimodal…

  13. Feature-Based Statistical Analysis of Combustion Simulation Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, J; Krishnamoorthy, V; Liu, S

    2011-11-18

    We present a new framework for feature-based statistical analysis of large-scale scientific data and demonstrate its effectiveness by analyzing features from Direct Numerical Simulations (DNS) of turbulent combustion. Turbulent flows are ubiquitous and account for transport and mixing processes in combustion, astrophysics, fusion, and climate modeling among other disciplines. They are also characterized by coherent structure or organized motion, i.e. nonlocal entities whose geometrical features can directly impact molecular mixing and reactive processes. While traditional multi-point statistics provide correlative information, they lack nonlocal structural information, and hence, fail to provide mechanistic causality information between organized fluid motion and mixing andmore » reactive processes. Hence, it is of great interest to capture and track flow features and their statistics together with their correlation with relevant scalar quantities, e.g. temperature or species concentrations. In our approach we encode the set of all possible flow features by pre-computing merge trees augmented with attributes, such as statistical moments of various scalar fields, e.g. temperature, as well as length-scales computed via spectral analysis. The computation is performed in an efficient streaming manner in a pre-processing step and results in a collection of meta-data that is orders of magnitude smaller than the original simulation data. This meta-data is sufficient to support a fully flexible and interactive analysis of the features, allowing for arbitrary thresholds, providing per-feature statistics, and creating various global diagnostics such as Cumulative Density Functions (CDFs), histograms, or time-series. We combine the analysis with a rendering of the features in a linked-view browser that enables scientists to interactively explore, visualize, and analyze the equivalent of one terabyte of simulation data. We highlight the utility of this new framework for

  14. Statistical methodology for the analysis of dye-switch microarray experiments

    PubMed Central

    Mary-Huard, Tristan; Aubert, Julie; Mansouri-Attia, Nadera; Sandra, Olivier; Daudin, Jean-Jacques

    2008-01-01

    Background In individually dye-balanced microarray designs, each biological sample is hybridized on two different slides, once with Cy3 and once with Cy5. While this strategy ensures an automatic correction of the gene-specific labelling bias, it also induces dependencies between log-ratio measurements that must be taken into account in the statistical analysis. Results We present two original statistical procedures for the statistical analysis of individually balanced designs. These procedures are compared with the usual ML and REML mixed model procedures proposed in most statistical toolboxes, on both simulated and real data. Conclusion The UP procedure we propose as an alternative to usual mixed model procedures is more efficient and significantly faster to compute. This result provides some useful guidelines for the analysis of complex designs. PMID:18271965

  15. Automatic Generation of Algorithms for the Statistical Analysis of Planetary Nebulae Images

    NASA Technical Reports Server (NTRS)

    Fischer, Bernd

    2004-01-01

    Analyzing data sets collected in experiments or by observations is a Core scientific activity. Typically, experimentd and observational data are &aught with uncertainty, and the analysis is based on a statistical model of the conjectured underlying processes, The large data volumes collected by modern instruments make computer support indispensible for this. Consequently, scientists spend significant amounts of their time with the development and refinement of the data analysis programs. AutoBayes [GF+02, FS03] is a fully automatic synthesis system for generating statistical data analysis programs. Externally, it looks like a compiler: it takes an abstract problem specification and translates it into executable code. Its input is a concise description of a data analysis problem in the form of a statistical model as shown in Figure 1; its output is optimized and fully documented C/C++ code which can be linked dynamically into the Matlab and Octave environments. Internally, however, it is quite different: AutoBayes derives a customized algorithm implementing the given model using a schema-based process, and then further refines and optimizes the algorithm into code. A schema is a parameterized code template with associated semantic constraints which define and restrict the template s applicability. The schema parameters are instantiated in a problem-specific way during synthesis as AutoBayes checks the constraints against the original model or, recursively, against emerging sub-problems. AutoBayes schema library contains problem decomposition operators (which are justified by theorems in a formal logic in the domain of Bayesian networks) as well as machine learning algorithms (e.g., EM, k-Means) and nu- meric optimization methods (e.g., Nelder-Mead simplex, conjugate gradient). AutoBayes augments this schema-based approach by symbolic computation to derive closed-form solutions whenever possible. This is a major advantage over other statistical data analysis systems

  16. A statistical analysis of the daily streamflow hydrograph

    NASA Astrophysics Data System (ADS)

    Kavvas, M. L.; Delleur, J. W.

    1984-03-01

    In this study a periodic statistical analysis of daily streamflow data in Indiana, U.S.A., was performed to gain some new insight into the stochastic structure which describes the daily streamflow process. This analysis was performed by the periodic mean and covariance functions of the daily streamflows, by the time and peak discharge -dependent recession limb of the daily streamflow hydrograph, by the time and discharge exceedance level (DEL) -dependent probability distribution of the hydrograph peak interarrival time, and by the time-dependent probability distribution of the time to peak discharge. Some new statistical estimators were developed and used in this study. In general features, this study has shown that: (a) the persistence properties of daily flows depend on the storage state of the basin at the specified time origin of the flow process; (b) the daily streamflow process is time irreversible; (c) the probability distribution of the daily hydrograph peak interarrival time depends both on the occurrence time of the peak from which the inter-arrival time originates and on the discharge exceedance level; and (d) if the daily streamflow process is modeled as the release from a linear watershed storage, this release should depend on the state of the storage and on the time of the release as the persistence properties and the recession limb decay rates were observed to change with the state of the watershed storage and time. Therefore, a time-varying reservoir system needs to be considered if the daily streamflow process is to be modeled as the release from a linear watershed storage.

  17. Spatial statistical analysis of tree deaths using airborne digital imagery

    NASA Astrophysics Data System (ADS)

    Chang, Ya-Mei; Baddeley, Adrian; Wallace, Jeremy; Canci, Michael

    2013-04-01

    High resolution digital airborne imagery offers unprecedented opportunities for observation and monitoring of vegetation, providing the potential to identify, locate and track individual vegetation objects over time. Analytical tools are required to quantify relevant information. In this paper, locations of trees over a large area of native woodland vegetation were identified using morphological image analysis techniques. Methods of spatial point process statistics were then applied to estimate the spatially-varying tree death risk, and to show that it is significantly non-uniform. [Tree deaths over the area were detected in our previous work (Wallace et al., 2008).] The study area is a major source of ground water for the city of Perth, and the work was motivated by the need to understand and quantify vegetation changes in the context of water extraction and drying climate. The influence of hydrological variables on tree death risk was investigated using spatial statistics (graphical exploratory methods, spatial point pattern modelling and diagnostics).

  18. Observational Analysis of Coronal Fans

    NASA Technical Reports Server (NTRS)

    Talpeanu, D.-C.; Rachmeler, L; Mierla, Marilena

    2017-01-01

    Coronal fans (see Figure 1) are bright observational structures that extend to large distances above the solar surface and can easily be seen in EUV (174 angstrom) above the limb. They have a very long lifetime and can live up to several Carrington rotations (CR), remaining relatively stationary for many months. Note that they are not off-limb manifestation of similarly-named active region fans. The solar conditions required to create coronal fans are not well understood. The goal of this research was to find as many associations as possible of coronal fans with other solar features and to gain a better understanding of these structures. Therefore, we analyzed many fans and created an overview of their properties. We present the results of this statistical analysis and also a case study on the longest living fan.

  19. Statistical analysis of fNIRS data: a comprehensive review.

    PubMed

    Tak, Sungho; Ye, Jong Chul

    2014-01-15

    Functional near-infrared spectroscopy (fNIRS) is a non-invasive method to measure brain activities using the changes of optical absorption in the brain through the intact skull. fNIRS has many advantages over other neuroimaging modalities such as positron emission tomography (PET), functional magnetic resonance imaging (fMRI), or magnetoencephalography (MEG), since it can directly measure blood oxygenation level changes related to neural activation with high temporal resolution. However, fNIRS signals are highly corrupted by measurement noises and physiology-based systemic interference. Careful statistical analyses are therefore required to extract neuronal activity-related signals from fNIRS data. In this paper, we provide an extensive review of historical developments of statistical analyses of fNIRS signal, which include motion artifact correction, short source-detector separation correction, principal component analysis (PCA)/independent component analysis (ICA), false discovery rate (FDR), serially-correlated errors, as well as inference techniques such as the standard t-test, F-test, analysis of variance (ANOVA), and statistical parameter mapping (SPM) framework. In addition, to provide a unified view of various existing inference techniques, we explain a linear mixed effect model with restricted maximum likelihood (ReML) variance estimation, and show that most of the existing inference methods for fNIRS analysis can be derived as special cases. Some of the open issues in statistical analysis are also described. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Statistical Analysis of Big Data on Pharmacogenomics

    PubMed Central

    Fan, Jianqing; Liu, Han

    2013-01-01

    This paper discusses statistical methods for estimating complex correlation structure from large pharmacogenomic datasets. We selectively review several prominent statistical methods for estimating large covariance matrix for understanding correlation structure, inverse covariance matrix for network modeling, large-scale simultaneous tests for selecting significantly differently expressed genes and proteins and genetic markers for complex diseases, and high dimensional variable selection for identifying important molecules for understanding molecule mechanisms in pharmacogenomics. Their applications to gene network estimation and biomarker selection are used to illustrate the methodological power. Several new challenges of Big data analysis, including complex data distribution, missing data, measurement error, spurious correlation, endogeneity, and the need for robust statistical methods, are also discussed. PMID:23602905

  1. Statistical analysis of NaOH pretreatment effects on sweet sorghum bagasse characteristics

    NASA Astrophysics Data System (ADS)

    Putri, Ary Mauliva Hada; Wahyuni, Eka Tri; Sudiyani, Yanni

    2017-01-01

    We analyze the behavior of sweet sorghum bagasse characteristics before and after NaOH pretreatments by statistical analysis. These characteristics include the percentages of lignocellulosic materials and the degree of crystallinity. We use the chi-square method to get the values of fitted parameters, and then deploy student's t-test to check whether they are significantly different from zero at 99.73% confidence level (C.L.). We obtain, in the cases of hemicellulose and lignin, that their percentages after pretreatment decrease statistically. On the other hand, crystallinity does not possess similar behavior as the data proves that all fitted parameters in this case might be consistent with zero. Our statistical result is then cross examined with the observations from X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy, showing pretty good agreement. This result may indicate that the 10% NaOH pretreatment might not be sufficient in changing the crystallinity index of the sweet sorghum bagasse.

  2. Statistical issues on the analysis of change in follow-up studies in dental research.

    PubMed

    Blance, Andrew; Tu, Yu-Kang; Baelum, Vibeke; Gilthorpe, Mark S

    2007-12-01

    To provide an overview to the problems in study design and associated analyses of follow-up studies in dental research, particularly addressing three issues: treatment-baselineinteractions; statistical power; and nonrandomization. Our previous work has shown that many studies purport an interacion between change (from baseline) and baseline values, which is often based on inappropriate statistical analyses. A priori power calculations are essential for randomized controlled trials (RCTs), but in the pre-test/post-test RCT design it is not well known to dental researchers that the choice of statistical method affects power, and that power is affected by treatment-baseline interactions. A common (good) practice in the analysis of RCT data is to adjust for baseline outcome values using ancova, thereby increasing statistical power. However, an important requirement for ancova is there to be no interaction between the groups and baseline outcome (i.e. effective randomization); the patient-selection process should not cause differences in mean baseline values across groups. This assumption is often violated for nonrandomized (observational) studies and the use of ancova is thus problematic, potentially giving biased estimates, invoking Lord's paradox and leading to difficulties in the interpretation of results. Baseline interaction issues can be overcome by use of statistical methods; not widely practiced in dental research: Oldham's method and multilevel modelling; the latter is preferred for its greater flexibility to deal with more than one follow-up occasion as well as additional covariates To illustrate these three key issues, hypothetical examples are considered from the fields of periodontology, orthodontics, and oral implantology. Caution needs to be exercised when considering the design and analysis of follow-up studies. ancova is generally inappropriate for nonrandomized studies and causal inferences from observational data should be avoided.

  3. Statistical analysis of MMS observations of energetic electron escape observed at/beyond the dayside magnetopause

    NASA Astrophysics Data System (ADS)

    Cohen, Ian J.; Mauk, Barry H.; Anderson, Brian J.; Westlake, Joseph H.; Sibeck, David G.; Turner, Drew L.; Fennell, Joseph F.; Blake, J. Bern; Jaynes, Allison N.; Leonard, Trevor W.; Baker, Daniel N.; Spence, Harlan E.; Reeves, Geoff D.; Giles, Barbara J.; Strangeway, Robert J.; Torbert, Roy B.; Burch, James L.

    2017-09-01

    Observations from the Energetic Particle Detector (EPD) instrument suite aboard the Magnetospheric Multiscale (MMS) spacecraft show that energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly across the dayside. This includes the surprisingly frequent observation of magnetospheric electrons in the duskside magnetosheath, an unexpected result given assumptions regarding magnetic drift shadowing. The 238 events identified in the 40 keV electron energy channel during the first MMS dayside season that exhibit strongly anisotropic pitch angle distributions indicating monohemispheric field-aligned streaming away from the magnetopause. A review of the extremely rich literature of energetic electron observations beyond the magnetopause is provided to place these new observations into historical context. Despite the extensive history of such research, these new observations provide a more comprehensive data set that includes unprecedented magnetic local time (MLT) coverage of the dayside equatorial magnetopause/magnetosheath. These data clearly highlight the common escape of energetic electrons along magnetic field lines concluded to have been reconnected across the magnetopause. While these streaming escape events agree with prior studies which show strong correlation with geomagnetic activity (suggesting a magnetotail source) and occur most frequently during periods of southward IMF, the high number of duskside events is unexpected and previously unobserved. Although the lowest electron energy channel was the focus of this study, the events reported here exhibit pitch angle anisotropies indicative of streaming up to 200 keV, which could represent the magnetopause loss of >1 MeV electrons from the outer radiation belt.

  4. Multivariate Statistical Inference of Lightning Occurrence, and Using Lightning Observations

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis

    2004-01-01

    Two classes of multivariate statistical inference using TRMM Lightning Imaging Sensor, Precipitation Radar, and Microwave Imager observation are studied, using nonlinear classification neural networks as inferential tools. The very large and globally representative data sample provided by TRMM allows both training and validation (without overfitting) of neural networks with many degrees of freedom. In the first study, the flashing / or flashing condition of storm complexes is diagnosed using radar, passive microwave and/or environmental observations as neural network inputs. The diagnostic skill of these simple lightning/no-lightning classifiers can be quite high, over land (above 80% Probability of Detection; below 20% False Alarm Rate). In the second, passive microwave and lightning observations are used to diagnose radar reflectivity vertical structure. A priori diagnosis of hydrometeor vertical structure is highly important for improved rainfall retrieval from either orbital radars (e.g., the future Global Precipitation Mission "mothership") or radiometers (e.g., operational SSM/I and future Global Precipitation Mission passive microwave constellation platforms), we explore the incremental benefit to such diagnosis provided by lightning observations.

  5. Statistical properties of a utility measure of observer performance compared to area under the ROC curve

    NASA Astrophysics Data System (ADS)

    Abbey, Craig K.; Samuelson, Frank W.; Gallas, Brandon D.; Boone, John M.; Niklason, Loren T.

    2013-03-01

    The receiver operating characteristic (ROC) curve has become a common tool for evaluating diagnostic imaging technologies, and the primary endpoint of such evaluations is the area under the curve (AUC), which integrates sensitivity over the entire false positive range. An alternative figure of merit for ROC studies is expected utility (EU), which focuses on the relevant region of the ROC curve as defined by disease prevalence and the relative utility of the task. However if this measure is to be used, it must also have desirable statistical properties keep the burden of observer performance studies as low as possible. Here, we evaluate effect size and variability for EU and AUC. We use two observer performance studies recently submitted to the FDA to compare the EU and AUC endpoints. The studies were conducted using the multi-reader multi-case methodology in which all readers score all cases in all modalities. ROC curves from the study were used to generate both the AUC and EU values for each reader and modality. The EU measure was computed assuming an iso-utility slope of 1.03. We find mean effect sizes, the reader averaged difference between modalities, to be roughly 2.0 times as big for EU as AUC. The standard deviation across readers is roughly 1.4 times as large, suggesting better statistical properties for the EU endpoint. In a simple power analysis of paired comparison across readers, the utility measure required 36% fewer readers on average to achieve 80% statistical power compared to AUC.

  6. mapDIA: Preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry.

    PubMed

    Teo, Guoshou; Kim, Sinae; Tsou, Chih-Chiang; Collins, Ben; Gingras, Anne-Claude; Nesvizhskii, Alexey I; Choi, Hyungwon

    2015-11-03

    Data independent acquisition (DIA) mass spectrometry is an emerging technique that offers more complete detection and quantification of peptides and proteins across multiple samples. DIA allows fragment-level quantification, which can be considered as repeated measurements of the abundance of the corresponding peptides and proteins in the downstream statistical analysis. However, few statistical approaches are available for aggregating these complex fragment-level data into peptide- or protein-level statistical summaries. In this work, we describe a software package, mapDIA, for statistical analysis of differential protein expression using DIA fragment-level intensities. The workflow consists of three major steps: intensity normalization, peptide/fragment selection, and statistical analysis. First, mapDIA offers normalization of fragment-level intensities by total intensity sums as well as a novel alternative normalization by local intensity sums in retention time space. Second, mapDIA removes outlier observations and selects peptides/fragments that preserve the major quantitative patterns across all samples for each protein. Last, using the selected fragments and peptides, mapDIA performs model-based statistical significance analysis of protein-level differential expression between specified groups of samples. Using a comprehensive set of simulation datasets, we show that mapDIA detects differentially expressed proteins with accurate control of the false discovery rates. We also describe the analysis procedure in detail using two recently published DIA datasets generated for 14-3-3β dynamic interaction network and prostate cancer glycoproteome. The software was written in C++ language and the source code is available for free through SourceForge website http://sourceforge.net/projects/mapdia/.This article is part of a Special Issue entitled: Computational Proteomics. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Processing Doppler Lidar and Cloud Radar Observations for Analysis of Convective Mass Flux Parameterizations Using DYNAMO Direct Observations

    DTIC Science & Technology

    2014-09-30

    for Analysis of Convective Mass Flux Parameterizations Using DYNAMO Direct Observations R. Michael Hardesty CIRES/University of Colorado/NOAA 325...the RV-Revell during legs 2 & 3 of the DYNAMO experiement to help characterize vertical transport through the boundary layer and to build statistics...obtained during DYNAMO , and to investigate whether cold pools that emanate from convection organize the interplay between humidity and convection and

  8. Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

    NASA Technical Reports Server (NTRS)

    Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.

    2011-01-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

  9. Statistical Analysis of the Polarimetric Cloud Analysis and Seeding Test (POLCAST) Field Projects

    NASA Astrophysics Data System (ADS)

    Ekness, Jamie Lynn

    The North Dakota farming industry brings in more than $4.1 billion annually in cash receipts. Unfortunately, agriculture sales vary significantly from year to year, which is due in large part to weather events such as hail storms and droughts. One method to mitigate drought is to use hygroscopic seeding to increase the precipitation efficiency of clouds. The North Dakota Atmospheric Research Board (NDARB) sponsored the Polarimetric Cloud Analysis and Seeding Test (POLCAST) research project to determine the effectiveness of hygroscopic seeding in North Dakota. The POLCAST field projects obtained airborne and radar observations, while conducting randomized cloud seeding. The Thunderstorm Identification Tracking and Nowcasting (TITAN) program is used to analyze radar data (33 usable cases) in determining differences in the duration of the storm, rain rate and total rain amount between seeded and non-seeded clouds. The single ratio of seeded to non-seeded cases is 1.56 (0.28 mm/0.18 mm) or 56% increase for the average hourly rainfall during the first 60 minutes after target selection. A seeding effect is indicated with the lifetime of the storms increasing by 41 % between seeded and non-seeded clouds for the first 60 minutes past seeding decision. A double ratio statistic, a comparison of radar derived rain amount of the last 40 minutes of a case (seed/non-seed), compared to the first 20 minutes (seed/non-seed), is used to account for the natural variability of the cloud system and gives a double ratio of 1.85. The Mann-Whitney test on the double ratio of seeded to non-seeded cases (33 cases) gives a significance (p-value) of 0.063. Bootstrapping analysis of the POLCAST set indicates that 50 cases would provide statistically significant results based on the Mann-Whitney test of the double ratio. All the statistical analysis conducted on the POLCAST data set show that hygroscopic seeding in North Dakota does increase precipitation. While an additional POLCAST field

  10. Crash analysis, statistics & information notebook 1996-2003

    DOT National Transportation Integrated Search

    2004-11-01

    The Department of Motor Vehicle Safety is proud to present the Crash Analysis, Statistics & : Information (CASI) Notebook 1996-2003. DMVS developed the CASI Notebooks to provide : straightforward, easy to understand crash information. Each page or ta...

  11. Statistical analysis and interpretation of prenatal diagnostic imaging studies, Part 2: descriptive and inferential statistical methods.

    PubMed

    Tuuli, Methodius G; Odibo, Anthony O

    2011-08-01

    The objective of this article is to discuss the rationale for common statistical tests used for the analysis and interpretation of prenatal diagnostic imaging studies. Examples from the literature are used to illustrate descriptive and inferential statistics. The uses and limitations of linear and logistic regression analyses are discussed in detail.

  12. Statistic analyses of the color experience according to the age of the observer.

    PubMed

    Hunjet, Anica; Parac-Osterman, Durdica; Vucaj, Edita

    2013-04-01

    Psychological experience of color is a real state of the communication between the environment and color, and it will depend on the source of the light, angle of the view, and particular on the observer and his health condition. Hering's theory or a theory of the opponent processes supposes that cones, which are situated in the retina of the eye, are not sensible on the three chromatic domains (areas, fields, zones) (red, green and purple-blue), but they produce a signal based on the principle of the opposed pairs of colors. A reason of this theory depends on the fact that certain disorders of the color eyesight, which include blindness to certain colors, cause blindness to pairs of opponent colors. This paper presents a demonstration of the experience of blue and yellow tone according to the age of the observer. For the testing of the statistically significant differences in the omission in the color experience according to the color of the background we use following statistical tests: Mann-Whitnney U Test, Kruskal-Wallis ANOVA and Median test. It was proven that the differences are statistically significant in the elderly persons (older than 35 years).

  13. An overview of the mathematical and statistical analysis component of RICIS

    NASA Technical Reports Server (NTRS)

    Hallum, Cecil R.

    1987-01-01

    Mathematical and statistical analysis components of RICIS (Research Institute for Computing and Information Systems) can be used in the following problem areas: (1) quantification and measurement of software reliability; (2) assessment of changes in software reliability over time (reliability growth); (3) analysis of software-failure data; and (4) decision logic for whether to continue or stop testing software. Other areas of interest to NASA/JSC where mathematical and statistical analysis can be successfully employed include: math modeling of physical systems, simulation, statistical data reduction, evaluation methods, optimization, algorithm development, and mathematical methods in signal processing.

  14. Observational limitations of Bose-Einstein photon statistics and radiation noise in thermal emission

    NASA Astrophysics Data System (ADS)

    Lee, Y.-J.; Talghader, J. J.

    2018-01-01

    For many decades, theory has predicted that Bose-Einstein statistics are a fundamental feature of thermal emission into one or a few optical modes; however, the resulting Bose-Einstein-like photon noise has never been experimentally observed. There are at least two reasons for this: (1) Relationships to describe the thermal radiation noise for an arbitrary mode structure have yet to be set forth, and (2) the mode and detector constraints necessary for the detection of such light is extremely hard to fulfill. Herein, photon statistics and radiation noise relationships are developed for systems with any number of modes and couplings to an observing space. The results are shown to reproduce existing special cases of thermal emission and are then applied to resonator systems to discuss physically realizable conditions under which Bose-Einstein-like thermal statistics might be observed. Examples include a single isolated cavity and an emitter cavity coupled to a small detector space. Low-mode-number noise theory shows major deviations from solely Bose-Einstein or Poisson treatments and has particular significance because of recent advances in perfect absorption and subwavelength structures both in the long-wave infrared and terahertz regimes. These microresonator devices tend to utilize a small volume with few modes, a regime where the current theory of thermal emission fluctuations and background noise, which was developed decades ago for free-space or single-mode cavities, has no derived solutions.

  15. Parallelization of the Physical-Space Statistical Analysis System (PSAS)

    NASA Technical Reports Server (NTRS)

    Larson, J. W.; Guo, J.; Lyster, P. M.

    1999-01-01

    Atmospheric data assimilation is a method of combining observations with model forecasts to produce a more accurate description of the atmosphere than the observations or forecast alone can provide. Data assimilation plays an increasingly important role in the study of climate and atmospheric chemistry. The NASA Data Assimilation Office (DAO) has developed the Goddard Earth Observing System Data Assimilation System (GEOS DAS) to create assimilated datasets. The core computational components of the GEOS DAS include the GEOS General Circulation Model (GCM) and the Physical-space Statistical Analysis System (PSAS). The need for timely validation of scientific enhancements to the data assimilation system poses computational demands that are best met by distributed parallel software. PSAS is implemented in Fortran 90 using object-based design principles. The analysis portions of the code solve two equations. The first of these is the "innovation" equation, which is solved on the unstructured observation grid using a preconditioned conjugate gradient (CG) method. The "analysis" equation is a transformation from the observation grid back to a structured grid, and is solved by a direct matrix-vector multiplication. Use of a factored-operator formulation reduces the computational complexity of both the CG solver and the matrix-vector multiplication, rendering the matrix-vector multiplications as a successive product of operators on a vector. Sparsity is introduced to these operators by partitioning the observations using an icosahedral decomposition scheme. PSAS builds a large (approx. 128MB) run-time database of parameters used in the calculation of these operators. Implementing a message passing parallel computing paradigm into an existing yet developing computational system as complex as PSAS is nontrivial. One of the technical challenges is balancing the requirements for computational reproducibility with the need for high performance. The problem of computational

  16. Statistical analysis for understanding and predicting battery degradations in real-life electric vehicle use

    NASA Astrophysics Data System (ADS)

    Barré, Anthony; Suard, Frédéric; Gérard, Mathias; Montaru, Maxime; Riu, Delphine

    2014-01-01

    This paper describes the statistical analysis of recorded data parameters of electrical battery ageing during electric vehicle use. These data permit traditional battery ageing investigation based on the evolution of the capacity fade and resistance raise. The measured variables are examined in order to explain the correlation between battery ageing and operating conditions during experiments. Such study enables us to identify the main ageing factors. Then, detailed statistical dependency explorations present the responsible factors on battery ageing phenomena. Predictive battery ageing models are built from this approach. Thereby results demonstrate and quantify a relationship between variables and battery ageing global observations, and also allow accurate battery ageing diagnosis through predictive models.

  17. Progress of statistical analysis in biomedical research through the historical review of the development of the Framingham score.

    PubMed

    Ignjatović, Aleksandra; Stojanović, Miodrag; Milošević, Zoran; Anđelković Apostolović, Marija

    2017-12-02

    The interest in developing risk models in medicine not only is appealing, but also associated with many obstacles in different aspects of predictive model development. Initially, the association of biomarkers or the association of more markers with the specific outcome was proven by statistical significance, but novel and demanding questions required the development of new and more complex statistical techniques. Progress of statistical analysis in biomedical research can be observed the best through the history of the Framingham study and development of the Framingham score. Evaluation of predictive models comes from a combination of the facts which are results of several metrics. Using logistic regression and Cox proportional hazards regression analysis, the calibration test, and the ROC curve analysis should be mandatory and eliminatory, and the central place should be taken by some new statistical techniques. In order to obtain complete information related to the new marker in the model, recently, there is a recommendation to use the reclassification tables by calculating the net reclassification index and the integrated discrimination improvement. Decision curve analysis is a novel method for evaluating the clinical usefulness of a predictive model. It may be noted that customizing and fine-tuning of the Framingham risk score initiated the development of statistical analysis. Clinically applicable predictive model should be a trade-off between all abovementioned statistical metrics, a trade-off between calibration and discrimination, accuracy and decision-making, costs and benefits, and quality and quantity of patient's life.

  18. Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension.

    PubMed

    Zhu, Xiaofeng; Feng, Tao; Tayo, Bamidele O; Liang, Jingjing; Young, J Hunter; Franceschini, Nora; Smith, Jennifer A; Yanek, Lisa R; Sun, Yan V; Edwards, Todd L; Chen, Wei; Nalls, Mike; Fox, Ervin; Sale, Michele; Bottinger, Erwin; Rotimi, Charles; Liu, Yongmei; McKnight, Barbara; Liu, Kiang; Arnett, Donna K; Chakravati, Aravinda; Cooper, Richard S; Redline, Susan

    2015-01-08

    Genome-wide association studies (GWASs) have identified many genetic variants underlying complex traits. Many detected genetic loci harbor variants that associate with multiple-even distinct-traits. Most current analysis approaches focus on single traits, even though the final results from multiple traits are evaluated together. Such approaches miss the opportunity to systemically integrate the phenome-wide data available for genetic association analysis. In this study, we propose a general approach that can integrate association evidence from summary statistics of multiple traits, either correlated, independent, continuous, or binary traits, which might come from the same or different studies. We allow for trait heterogeneity effects. Population structure and cryptic relatedness can also be controlled. Our simulations suggest that the proposed method has improved statistical power over single-trait analysis in most of the cases we studied. We applied our method to the Continental Origins and Genetic Epidemiology Network (COGENT) African ancestry samples for three blood pressure traits and identified four loci (CHIC2, HOXA-EVX1, IGFBP1/IGFBP3, and CDH17; p < 5.0 × 10(-8)) associated with hypertension-related traits that were missed by a single-trait analysis in the original report. Six additional loci with suggestive association evidence (p < 5.0 × 10(-7)) were also observed, including CACNA1D and WNT3. Our study strongly suggests that analyzing multiple phenotypes can improve statistical power and that such analysis can be executed with the summary statistics from GWASs. Our method also provides a way to study a cross phenotype (CP) association by using summary statistics from GWASs of multiple phenotypes. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  19. Statistical analysis of MMS observations of energetic electron escape observed at/beyond the dayside magnetopause

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cohen, Ian J.; Mauk, Barry H.; Anderson, Brian J.

    Here, observations from the Energetic Particle Detector (EPD) instrument suite aboard the Magnetospheric Multiscale (MMS) spacecraft show that energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly across the dayside. This includes the surprisingly frequent observation of magnetospheric electrons in the duskside magnetosheath, an unexpected result given assumptions regarding magnetic drift shadowing. The 238 events identified in the 40 keV electron energy channel during the first MMS dayside season that exhibit strongly anisotropic pitch angle distributions indicating monohemispheric field-aligned streaming away from the magnetopause. A review of the extremely rich literature of energetic electron observationsmore » beyond the magnetopause is provided to place these new observations into historical context. Despite the extensive history of such research, these new observations provide a more comprehensive data set that includes unprecedented magnetic local time (MLT) coverage of the dayside equatorial magnetopause/magnetosheath. These data clearly highlight the common escape of energetic electrons along magnetic field lines concluded to have been reconnected across the magnetopause. While these streaming escape events agree with prior studies which show strong correlation with geomagnetic activity (suggesting a magnetotail source) and occur most frequently during periods of southward IMF, the high number of duskside events is unexpected and previously unobserved. Although the lowest electron energy channel was the focus of this study, the events reported here exhibit pitch angle anisotropies indicative of streaming up to 200 keV, which could represent the magnetopause loss of >1 MeV electrons from the outer radiation belt.« less

  20. Statistical analysis of MMS observations of energetic electron escape observed at/beyond the dayside magnetopause

    DOE PAGES

    Cohen, Ian J.; Mauk, Barry H.; Anderson, Brian J.; ...

    2017-08-01

    Here, observations from the Energetic Particle Detector (EPD) instrument suite aboard the Magnetospheric Multiscale (MMS) spacecraft show that energetic (greater than tens of keV) magnetospheric particle escape into the magnetosheath occurs commonly across the dayside. This includes the surprisingly frequent observation of magnetospheric electrons in the duskside magnetosheath, an unexpected result given assumptions regarding magnetic drift shadowing. The 238 events identified in the 40 keV electron energy channel during the first MMS dayside season that exhibit strongly anisotropic pitch angle distributions indicating monohemispheric field-aligned streaming away from the magnetopause. A review of the extremely rich literature of energetic electron observationsmore » beyond the magnetopause is provided to place these new observations into historical context. Despite the extensive history of such research, these new observations provide a more comprehensive data set that includes unprecedented magnetic local time (MLT) coverage of the dayside equatorial magnetopause/magnetosheath. These data clearly highlight the common escape of energetic electrons along magnetic field lines concluded to have been reconnected across the magnetopause. While these streaming escape events agree with prior studies which show strong correlation with geomagnetic activity (suggesting a magnetotail source) and occur most frequently during periods of southward IMF, the high number of duskside events is unexpected and previously unobserved. Although the lowest electron energy channel was the focus of this study, the events reported here exhibit pitch angle anisotropies indicative of streaming up to 200 keV, which could represent the magnetopause loss of >1 MeV electrons from the outer radiation belt.« less

  1. A Didactic Experience of Statistical Analysis for the Determination of Glycine in a Nonaqueous Medium Using ANOVA and a Computer Program

    ERIC Educational Resources Information Center

    Santos-Delgado, M. J.; Larrea-Tarruella, L.

    2004-01-01

    The back-titration methods are compared statistically to establish glycine in a nonaqueous medium of acetic acid. Important variations in the mean values of glycine are observed due to the interaction effects between the analysis of variance (ANOVA) technique and a statistical study through a computer software.

  2. An interactive environment for the analysis of large Earth observation and model data sets

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.

    1993-01-01

    We propose to develop an interactive environment for the analysis of large Earth science observation and model data sets. We will use a standard scientific data storage format and a large capacity (greater than 20 GB) optical disk system for data management; develop libraries for coordinate transformation and regridding of data sets; modify the NCSA X Image and X DataSlice software for typical Earth observation data sets by including map transformations and missing data handling; develop analysis tools for common mathematical and statistical operations; integrate the components described above into a system for the analysis and comparison of observations and model results; and distribute software and documentation to the scientific community.

  3. An interactive environment for the analysis of large Earth observation and model data sets

    NASA Technical Reports Server (NTRS)

    Bowman, Kenneth P.; Walsh, John E.; Wilhelmson, Robert B.

    1992-01-01

    We propose to develop an interactive environment for the analysis of large Earth science observation and model data sets. We will use a standard scientific data storage format and a large capacity (greater than 20 GB) optical disk system for data management; develop libraries for coordinate transformation and regridding of data sets; modify the NCSA X Image and X Data Slice software for typical Earth observation data sets by including map transformations and missing data handling; develop analysis tools for common mathematical and statistical operations; integrate the components described above into a system for the analysis and comparison of observations and model results; and distribute software and documentation to the scientific community.

  4. Diagnosis checking of statistical analysis in RCTs indexed in PubMed.

    PubMed

    Lee, Paul H; Tse, Andy C Y

    2017-11-01

    Statistical analysis is essential for reporting of the results of randomized controlled trials (RCTs), as well as evaluating their effectiveness. However, the validity of a statistical analysis also depends on whether the assumptions of that analysis are valid. To review all RCTs published in journals indexed in PubMed during December 2014 to provide a complete picture of how RCTs handle assumptions of statistical analysis. We reviewed all RCTs published in December 2014 that appeared in journals indexed in PubMed using the Cochrane highly sensitive search strategy. The 2014 impact factors of the journals were used as proxies for their quality. The type of statistical analysis used and whether the assumptions of the analysis were tested were reviewed. In total, 451 papers were included. Of the 278 papers that reported a crude analysis for the primary outcomes, 31 (27·2%) reported whether the outcome was normally distributed. Of the 172 papers that reported an adjusted analysis for the primary outcomes, diagnosis checking was rarely conducted, with only 20%, 8·6% and 7% checked for generalized linear model, Cox proportional hazard model and multilevel model, respectively. Study characteristics (study type, drug trial, funding sources, journal type and endorsement of CONSORT guidelines) were not associated with the reporting of diagnosis checking. The diagnosis of statistical analyses in RCTs published in PubMed-indexed journals was usually absent. Journals should provide guidelines about the reporting of a diagnosis of assumptions. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.

  5. Time-of-Flight Measurements as a Possible Method to Observe Anyonic Statistics

    NASA Astrophysics Data System (ADS)

    Umucalılar, R. O.; Macaluso, E.; Comparin, T.; Carusotto, I.

    2018-06-01

    We propose a standard time-of-flight experiment as a method for observing the anyonic statistics of quasiholes in a fractional quantum Hall state of ultracold atoms. The quasihole states can be stably prepared by pinning the quasiholes with localized potentials and a measurement of the mean square radius of the freely expanding cloud, which is related to the average total angular momentum of the initial state, offers direct signatures of the statistical phase. Our proposed method is validated by Monte Carlo calculations for ν =1 /2 and 1 /3 fractional quantum Hall liquids containing a realistic number of particles. Extensions to quantum Hall liquids of light and to non-Abelian anyons are briefly discussed.

  6. A κ-generalized statistical mechanics approach to income analysis

    NASA Astrophysics Data System (ADS)

    Clementi, F.; Gallegati, M.; Kaniadakis, G.

    2009-02-01

    This paper proposes a statistical mechanics approach to the analysis of income distribution and inequality. A new distribution function, having its roots in the framework of κ-generalized statistics, is derived that is particularly suitable for describing the whole spectrum of incomes, from the low-middle income region up to the high income Pareto power-law regime. Analytical expressions for the shape, moments and some other basic statistical properties are given. Furthermore, several well-known econometric tools for measuring inequality, which all exist in a closed form, are considered. A method for parameter estimation is also discussed. The model is shown to fit remarkably well the data on personal income for the United States, and the analysis of inequality performed in terms of its parameters is revealed as very powerful.

  7. Protein Sectors: Statistical Coupling Analysis versus Conservation

    PubMed Central

    Teşileanu, Tiberiu; Colwell, Lucy J.; Leibler, Stanislas

    2015-01-01

    Statistical coupling analysis (SCA) is a method for analyzing multiple sequence alignments that was used to identify groups of coevolving residues termed “sectors”. The method applies spectral analysis to a matrix obtained by combining correlation information with sequence conservation. It has been asserted that the protein sectors identified by SCA are functionally significant, with different sectors controlling different biochemical properties of the protein. Here we reconsider the available experimental data and note that it involves almost exclusively proteins with a single sector. We show that in this case sequence conservation is the dominating factor in SCA, and can alone be used to make statistically equivalent functional predictions. Therefore, we suggest shifting the experimental focus to proteins for which SCA identifies several sectors. Correlations in protein alignments, which have been shown to be informative in a number of independent studies, would then be less dominated by sequence conservation. PMID:25723535

  8. Calculating Statistical Orbit Distributions Using GEO Optical Observations with the Michigan Orbital Debris Survey Telescope (MODEST)

    NASA Technical Reports Server (NTRS)

    Matney, M.; Barker, E.; Seitzer, P.; Abercromby, K. J.; Rodriquez, H. M.

    2006-01-01

    NASA's Orbital Debris measurements program has a goal to characterize the small debris environment in the geosynchronous Earth-orbit (GEO) region using optical telescopes ("small" refers to objects too small to catalog and track with current systems). Traditionally, observations of GEO and near-GEO objects involve following the object with the telescope long enough to obtain an orbit suitable for tracking purposes. Telescopes operating in survey mode, however, randomly observe objects that pass through their field of view. Typically, these short-arc observation are inadequate to obtain detailed orbits, but can be used to estimate approximate circular orbit elements (semimajor axis, inclination, and ascending node). From this information, it should be possible to make statistical inferences about the orbital distributions of the GEO population bright enough to be observed by the system. The Michigan Orbital Debris Survey Telescope (MODEST) has been making such statistical surveys of the GEO region for four years. During that time, the telescope has made enough observations in enough areas of the GEO belt to have had nearly complete coverage. That means that almost all objects in all possible orbits in the GEO and near- GEO region had a non-zero chance of being observed. Some regions (such as those near zero inclination) have had good coverage, while others are poorly covered. Nevertheless, it is possible to remove these statistical biases and reconstruct the orbit populations within the limits of sampling error. In this paper, these statistical techniques and assumptions are described, and the techniques are applied to the current MODEST data set to arrive at our best estimate of the GEO orbit population distribution.

  9. Normality Tests for Statistical Analysis: A Guide for Non-Statisticians

    PubMed Central

    Ghasemi, Asghar; Zahediasl, Saleh

    2012-01-01

    Statistical errors are common in scientific literature and about 50% of the published articles have at least one error. The assumption of normality needs to be checked for many statistical procedures, namely parametric tests, because their validity depends on it. The aim of this commentary is to overview checking for normality in statistical analysis using SPSS. PMID:23843808

  10. Statistical analysis of Geopotential Height (GH) timeseries based on Tsallis non-extensive statistical mechanics

    NASA Astrophysics Data System (ADS)

    Karakatsanis, L. P.; Iliopoulos, A. C.; Pavlos, E. G.; Pavlos, G. P.

    2018-02-01

    In this paper, we perform statistical analysis of time series deriving from Earth's climate. The time series are concerned with Geopotential Height (GH) and correspond to temporal and spatial components of the global distribution of month average values, during the period (1948-2012). The analysis is based on Tsallis non-extensive statistical mechanics and in particular on the estimation of Tsallis' q-triplet, namely {qstat, qsens, qrel}, the reconstructed phase space and the estimation of correlation dimension and the Hurst exponent of rescaled range analysis (R/S). The deviation of Tsallis q-triplet from unity indicates non-Gaussian (Tsallis q-Gaussian) non-extensive character with heavy tails probability density functions (PDFs), multifractal behavior and long range dependences for all timeseries considered. Also noticeable differences of the q-triplet estimation found in the timeseries at distinct local or temporal regions. Moreover, in the reconstructive phase space revealed a lower-dimensional fractal set in the GH dynamical phase space (strong self-organization) and the estimation of Hurst exponent indicated multifractality, non-Gaussianity and persistence. The analysis is giving significant information identifying and characterizing the dynamical characteristics of the earth's climate.

  11. Entropy in statistical energy analysis.

    PubMed

    Le Bot, Alain

    2009-03-01

    In this paper, the second principle of thermodynamics is discussed in the framework of statistical energy analysis (SEA). It is shown that the "vibrational entropy" and the "vibrational temperature" of sub-systems only depend on the vibrational energy and the number of resonant modes. A SEA system can be described as a thermodynamic system slightly out of equilibrium. In steady-state condition, the entropy exchanged with exterior by sources and dissipation exactly balances the production of entropy by irreversible processes at interface between SEA sub-systems.

  12. Statistical power analysis of cardiovascular safety pharmacology studies in conscious rats.

    PubMed

    Bhatt, Siddhartha; Li, Dingzhou; Flynn, Declan; Wisialowski, Todd; Hemkens, Michelle; Steidl-Nichols, Jill

    2016-01-01

    Cardiovascular (CV) toxicity and related attrition are a major challenge for novel therapeutic entities and identifying CV liability early is critical for effective derisking. CV safety pharmacology studies in rats are a valuable tool for early investigation of CV risk. Thorough understanding of data analysis techniques and statistical power of these studies is currently lacking and is imperative for enabling sound decision-making. Data from 24 crossover and 12 parallel design CV telemetry rat studies were used for statistical power calculations. Average values of telemetry parameters (heart rate, blood pressure, body temperature, and activity) were logged every 60s (from 1h predose to 24h post-dose) and reduced to 15min mean values. These data were subsequently binned into super intervals for statistical analysis. A repeated measure analysis of variance was used for statistical analysis of crossover studies and a repeated measure analysis of covariance was used for parallel studies. Statistical power analysis was performed to generate power curves and establish relationships between detectable CV (blood pressure and heart rate) changes and statistical power. Additionally, data from a crossover CV study with phentolamine at 4, 20 and 100mg/kg are reported as a representative example of data analysis methods. Phentolamine produced a CV profile characteristic of alpha adrenergic receptor antagonism, evidenced by a dose-dependent decrease in blood pressure and reflex tachycardia. Detectable blood pressure changes at 80% statistical power for crossover studies (n=8) were 4-5mmHg. For parallel studies (n=8), detectable changes at 80% power were 6-7mmHg. Detectable heart rate changes for both study designs were 20-22bpm. Based on our results, the conscious rat CV model is a sensitive tool to detect and mitigate CV risk in early safety studies. Furthermore, these results will enable informed selection of appropriate models and study design for early stage CV studies

  13. Event coincidence analysis for quantifying statistical interrelationships between event time series. On the role of flood events as triggers of epidemic outbreaks

    NASA Astrophysics Data System (ADS)

    Donges, J. F.; Schleussner, C.-F.; Siegmund, J. F.; Donner, R. V.

    2016-05-01

    Studying event time series is a powerful approach for analyzing the dynamics of complex dynamical systems in many fields of science. In this paper, we describe the method of event coincidence analysis to provide a framework for quantifying the strength, directionality and time lag of statistical interrelationships between event series. Event coincidence analysis allows to formulate and test null hypotheses on the origin of the observed interrelationships including tests based on Poisson processes or, more generally, stochastic point processes with a prescribed inter-event time distribution and other higher-order properties. Applying the framework to country-level observational data yields evidence that flood events have acted as triggers of epidemic outbreaks globally since the 1950s. Facing projected future changes in the statistics of climatic extreme events, statistical techniques such as event coincidence analysis will be relevant for investigating the impacts of anthropogenic climate change on human societies and ecosystems worldwide.

  14. Statistical analysis of midlatitude spread F using multi-station digisonde observations

    NASA Astrophysics Data System (ADS)

    Bhaneja, P.; Earle, G. D.; Bullett, T. W.

    2018-01-01

    A comprehensive statistical study of midlatitude spread F (MSF) is presented for five midlatitude stations in the North American sector. These stations include Ramey AFB, Puerto Rico (18.5°N, 67.1°W, -14° declination angle), Wallops Island, Virginia (37.95°N, 75.5°W, -11° declination angle), Dyess, Texas (32.4°N, 99.8°W, 6.9° declination angle), Boulder, Colorado (40°N, 105.3°W, 10° declination angle), and Vandenberg AFB, California (34.8°N, 120.5°W, 13° declination angle). Pattern recognition algorithms are used to determine the presence of both range and frequency spread F. Data from 1996 to 2011 are analyzed, covering all of Solar Cycle 23 and the beginning of Solar Cycle 24. Variations with respect to season and solar activity are presented, including the effects of the extended minimum between cycles 23 and 24.

  15. Development of computer-assisted instruction application for statistical data analysis android platform as learning resource

    NASA Astrophysics Data System (ADS)

    Hendikawati, P.; Arifudin, R.; Zahid, M. Z.

    2018-03-01

    This study aims to design an android Statistics Data Analysis application that can be accessed through mobile devices to making it easier for users to access. The Statistics Data Analysis application includes various topics of basic statistical along with a parametric statistics data analysis application. The output of this application system is parametric statistics data analysis that can be used for students, lecturers, and users who need the results of statistical calculations quickly and easily understood. Android application development is created using Java programming language. The server programming language uses PHP with the Code Igniter framework, and the database used MySQL. The system development methodology used is the Waterfall methodology with the stages of analysis, design, coding, testing, and implementation and system maintenance. This statistical data analysis application is expected to support statistical lecturing activities and make students easier to understand the statistical analysis of mobile devices.

  16. Bayesian Statistics for Biological Data: Pedigree Analysis

    ERIC Educational Resources Information Center

    Stanfield, William D.; Carlton, Matthew A.

    2004-01-01

    The use of Bayes' formula is applied to the biological problem of pedigree analysis to show that the Bayes' formula and non-Bayesian or "classical" methods of probability calculation give different answers. First year college students of biology can be introduced to the Bayesian statistics.

  17. On statistical inference in time series analysis of the evolution of road safety.

    PubMed

    Commandeur, Jacques J F; Bijleveld, Frits D; Bergel-Hayat, Ruth; Antoniou, Constantinos; Yannis, George; Papadimitriou, Eleonora

    2013-11-01

    Data collected for building a road safety observatory usually include observations made sequentially through time. Examples of such data, called time series data, include annual (or monthly) number of road traffic accidents, traffic fatalities or vehicle kilometers driven in a country, as well as the corresponding values of safety performance indicators (e.g., data on speeding, seat belt use, alcohol use, etc.). Some commonly used statistical techniques imply assumptions that are often violated by the special properties of time series data, namely serial dependency among disturbances associated with the observations. The first objective of this paper is to demonstrate the impact of such violations to the applicability of standard methods of statistical inference, which leads to an under or overestimation of the standard error and consequently may produce erroneous inferences. Moreover, having established the adverse consequences of ignoring serial dependency issues, the paper aims to describe rigorous statistical techniques used to overcome them. In particular, appropriate time series analysis techniques of varying complexity are employed to describe the development over time, relating the accident-occurrences to explanatory factors such as exposure measures or safety performance indicators, and forecasting the development into the near future. Traditional regression models (whether they are linear, generalized linear or nonlinear) are shown not to naturally capture the inherent dependencies in time series data. Dedicated time series analysis techniques, such as the ARMA-type and DRAG approaches are discussed next, followed by structural time series models, which are a subclass of state space methods. The paper concludes with general recommendations and practice guidelines for the use of time series models in road safety research. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. The Analysis of Completely Randomized Factorial Experiments When Observations Are Lost at Random.

    ERIC Educational Resources Information Center

    Hummel, Thomas J.

    An investigation was conducted of the characteristics of two estimation procedures and corresponding test statistics used in the analysis of completely randomized factorial experiments when observations are lost at random. For one estimator, contrast coefficients for cell means did not involve the cell frequencies. For the other, contrast…

  19. Multivariate Statistical Analysis of Water Quality data in Indian River Lagoon, Florida

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, M.; Ye, M.

    2015-12-01

    The Indian River Lagoon, is part of the longest barrier island complex in the United States, is a region of particular concern to the environmental scientist because of the rapid rate of human development throughout the region and the geographical position in between the colder temperate zone and warmer sub-tropical zone. Thus, the surface water quality analysis in this region always brings the newer information. In this present study, multivariate statistical procedures were applied to analyze the spatial and temporal water quality in the Indian River Lagoon over the period 1998-2013. Twelve parameters have been analyzed on twelve key water monitoring stations in and beside the lagoon on monthly datasets (total of 27,648 observations). The dataset was treated using cluster analysis (CA), principle component analysis (PCA) and non-parametric trend analysis. The CA was used to cluster twelve monitoring stations into four groups, with stations on the similar surrounding characteristics being in the same group. The PCA was then applied to the similar groups to find the important water quality parameters. The principal components (PCs), PC1 to PC5 was considered based on the explained cumulative variances 75% to 85% in each cluster groups. Nutrient species (phosphorus and nitrogen), salinity, specific conductivity and erosion factors (TSS, Turbidity) were major variables involved in the construction of the PCs. Statistical significant positive or negative trends and the abrupt trend shift were detected applying Mann-Kendall trend test and Sequential Mann-Kendall (SQMK), for each individual stations for the important water quality parameters. Land use land cover change pattern, local anthropogenic activities and extreme climate such as drought might be associated with these trends. This study presents the multivariate statistical assessment in order to get better information about the quality of surface water. Thus, effective pollution control/management of the surface

  20. Statistical Analysis of Protein Ensembles

    NASA Astrophysics Data System (ADS)

    Máté, Gabriell; Heermann, Dieter

    2014-04-01

    As 3D protein-configuration data is piling up, there is an ever-increasing need for well-defined, mathematically rigorous analysis approaches, especially that the vast majority of the currently available methods rely heavily on heuristics. We propose an analysis framework which stems from topology, the field of mathematics which studies properties preserved under continuous deformations. First, we calculate a barcode representation of the molecules employing computational topology algorithms. Bars in this barcode represent different topological features. Molecules are compared through their barcodes by statistically determining the difference in the set of their topological features. As a proof-of-principle application, we analyze a dataset compiled of ensembles of different proteins, obtained from the Ensemble Protein Database. We demonstrate that our approach correctly detects the different protein groupings.

  1. Technical Note: The Initial Stages of Statistical Data Analysis

    PubMed Central

    Tandy, Richard D.

    1998-01-01

    Objective: To provide an overview of several important data-related considerations in the design stage of a research project and to review the levels of measurement and their relationship to the statistical technique chosen for the data analysis. Background: When planning a study, the researcher must clearly define the research problem and narrow it down to specific, testable questions. The next steps are to identify the variables in the study, decide how to group and treat subjects, and determine how to measure, and the underlying level of measurement of, the dependent variables. Then the appropriate statistical technique can be selected for data analysis. Description: The four levels of measurement in increasing complexity are nominal, ordinal, interval, and ratio. Nominal data are categorical or “count” data, and the numbers are treated as labels. Ordinal data can be ranked in a meaningful order by magnitude. Interval data possess the characteristics of ordinal data and also have equal distances between levels. Ratio data have a natural zero point. Nominal and ordinal data are analyzed with nonparametric statistical techniques and interval and ratio data with parametric statistical techniques. Advantages: Understanding the four levels of measurement and when it is appropriate to use each is important in determining which statistical technique to use when analyzing data. PMID:16558489

  2. Statistical analysis of RHIC beam position monitors performance

    NASA Astrophysics Data System (ADS)

    Calaga, R.; Tomás, R.

    2004-04-01

    A detailed statistical analysis of beam position monitors (BPM) performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.

  3. Statistics Education Research in Malaysia and the Philippines: A Comparative Analysis

    ERIC Educational Resources Information Center

    Reston, Enriqueta; Krishnan, Saras; Idris, Noraini

    2014-01-01

    This paper presents a comparative analysis of statistics education research in Malaysia and the Philippines by modes of dissemination, research areas, and trends. An electronic search for published research papers in the area of statistics education from 2000-2012 yielded 20 for Malaysia and 19 for the Philippines. Analysis of these papers showed…

  4. IVHS Countermeasures for Rear-End Collisions, Task 1; Vol. II: Statistical Analysis

    DOT National Transportation Integrated Search

    1994-02-25

    This report is from the NHTSA sponsored program, "IVHS Countermeasures for Rear-End Collisions". This Volume, Volume II, Statistical Analysis, presents the statistical analysis of rear-end collision accident data that characterizes the accidents with...

  5. Statistical Learning in Specific Language Impairment: A Meta-Analysis

    ERIC Educational Resources Information Center

    Lammertink, Imme; Boersma, Paul; Wijnen, Frank; Rispens, Judith

    2017-01-01

    Purpose: The current meta-analysis provides a quantitative overview of published and unpublished studies on statistical learning in the auditory verbal domain in people with and without specific language impairment (SLI). The database used for the meta-analysis is accessible online and open to updates (Community-Augmented Meta-Analysis), which…

  6. Statistical analysis of the national crash severity study data

    DOT National Transportation Integrated Search

    1980-08-01

    This is the Final Report on a two-year statistical analysis of the data collected in the National Crash Severity Study (NCSS). The analysis presented is primarily concerned with the relationship between occupant injury severity and the crash conditio...

  7. Comparative analysis of positive and negative attitudes toward statistics

    NASA Astrophysics Data System (ADS)

    Ghulami, Hassan Rahnaward; Ab Hamid, Mohd Rashid; Zakaria, Roslinazairimah

    2015-02-01

    Many statistics lecturers and statistics education researchers are interested to know the perception of their students' attitudes toward statistics during the statistics course. In statistics course, positive attitude toward statistics is a vital because it will be encourage students to get interested in the statistics course and in order to master the core content of the subject matters under study. Although, students who have negative attitudes toward statistics they will feel depressed especially in the given group assignment, at risk for failure, are often highly emotional, and could not move forward. Therefore, this study investigates the students' attitude towards learning statistics. Six latent constructs have been the measurement of students' attitudes toward learning statistic such as affect, cognitive competence, value, difficulty, interest, and effort. The questionnaire was adopted and adapted from the reliable and validate instrument of Survey of Attitudes towards Statistics (SATS). This study is conducted among engineering undergraduate engineering students in the university Malaysia Pahang (UMP). The respondents consist of students who were taking the applied statistics course from different faculties. From the analysis, it is found that the questionnaire is acceptable and the relationships among the constructs has been proposed and investigated. In this case, students show full effort to master the statistics course, feel statistics course enjoyable, have confidence that they have intellectual capacity, and they have more positive attitudes then negative attitudes towards statistics learning. In conclusion in terms of affect, cognitive competence, value, interest and effort construct the positive attitude towards statistics was mostly exhibited. While negative attitudes mostly exhibited by difficulty construct.

  8. Langmuir waveforms at interplanetary shocks: STEREO statistical analysis

    NASA Astrophysics Data System (ADS)

    Briand, C.

    2016-12-01

    Wave-particle interactions and particle acceleration are the two main processes allowing energy dissipation at non collisional shocks. Ion acceleration has been deeply studied for many years, also for their central role in the shock front reformation. Electron dynamics is also important in the shock dynamics through the instabilities they can generate which may impact the ion dynamics.Particle measurements can be efficiently completed by wave measurements to determine the characteristics of the electron beams and study the turbulence of the medium. Electric waveforms obtained from the S/WAVES instrument of the STEREO mission between 2007 to 2014 are analyzed. Thus, clear signature of Langmuir waves are observed on 41 interplanetary shocks. These data enable a statistical analysis and to deduce some characteristics of the electron dynamics on different shocks sources (SIR or ICME) and types (quasi-perpendicular or quasi-parallel). The conversion process between electrostatic to electromagnetic waves has also been tested in several cases.

  9. A Statistical Analysis of Brain Morphology Using Wild Bootstrapping

    PubMed Central

    Ibrahim, Joseph G.; Tang, Niansheng; Rowe, Daniel B.; Hao, Xuejun; Bansal, Ravi; Peterson, Bradley S.

    2008-01-01

    Methods for the analysis of brain morphology, including voxel-based morphology and surface-based morphometries, have been used to detect associations between brain structure and covariates of interest, such as diagnosis, severity of disease, age, IQ, and genotype. The statistical analysis of morphometric measures usually involves two statistical procedures: 1) invoking a statistical model at each voxel (or point) on the surface of the brain or brain subregion, followed by mapping test statistics (e.g., t test) or their associated p values at each of those voxels; 2) correction for the multiple statistical tests conducted across all voxels on the surface of the brain region under investigation. We propose the use of new statistical methods for each of these procedures. We first use a heteroscedastic linear model to test the associations between the morphological measures at each voxel on the surface of the specified subregion (e.g., cortical or subcortical surfaces) and the covariates of interest. Moreover, we develop a robust test procedure that is based on a resampling method, called wild bootstrapping. This procedure assesses the statistical significance of the associations between a measure of given brain structure and the covariates of interest. The value of this robust test procedure lies in its computationally simplicity and in its applicability to a wide range of imaging data, including data from both anatomical and functional magnetic resonance imaging (fMRI). Simulation studies demonstrate that this robust test procedure can accurately control the family-wise error rate. We demonstrate the application of this robust test procedure to the detection of statistically significant differences in the morphology of the hippocampus over time across gender groups in a large sample of healthy subjects. PMID:17649909

  10. Imaging mass spectrometry statistical analysis.

    PubMed

    Jones, Emrys A; Deininger, Sören-Oliver; Hogendoorn, Pancras C W; Deelder, André M; McDonnell, Liam A

    2012-08-30

    Imaging mass spectrometry is increasingly used to identify new candidate biomarkers. This clinical application of imaging mass spectrometry is highly multidisciplinary: expertise in mass spectrometry is necessary to acquire high quality data, histology is required to accurately label the origin of each pixel's mass spectrum, disease biology is necessary to understand the potential meaning of the imaging mass spectrometry results, and statistics to assess the confidence of any findings. Imaging mass spectrometry data analysis is further complicated because of the unique nature of the data (within the mass spectrometry field); several of the assumptions implicit in the analysis of LC-MS/profiling datasets are not applicable to imaging. The very large size of imaging datasets and the reporting of many data analysis routines, combined with inadequate training and accessible reviews, have exacerbated this problem. In this paper we provide an accessible review of the nature of imaging data and the different strategies by which the data may be analyzed. Particular attention is paid to the assumptions of the data analysis routines to ensure that the reader is apprised of their correct usage in imaging mass spectrometry research. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. On Statistical Analysis of Neuroimages with Imperfect Registration

    PubMed Central

    Kim, Won Hwa; Ravi, Sathya N.; Johnson, Sterling C.; Okonkwo, Ozioma C.; Singh, Vikas

    2016-01-01

    A variety of studies in neuroscience/neuroimaging seek to perform statistical inference on the acquired brain image scans for diagnosis as well as understanding the pathological manifestation of diseases. To do so, an important first step is to register (or co-register) all of the image data into a common coordinate system. This permits meaningful comparison of the intensities at each voxel across groups (e.g., diseased versus healthy) to evaluate the effects of the disease and/or use machine learning algorithms in a subsequent step. But errors in the underlying registration make this problematic, they either decrease the statistical power or make the follow-up inference tasks less effective/accurate. In this paper, we derive a novel algorithm which offers immunity to local errors in the underlying deformation field obtained from registration procedures. By deriving a deformation invariant representation of the image, the downstream analysis can be made more robust as if one had access to a (hypothetical) far superior registration procedure. Our algorithm is based on recent work on scattering transform. Using this as a starting point, we show how results from harmonic analysis (especially, non-Euclidean wavelets) yields strategies for designing deformation and additive noise invariant representations of large 3-D brain image volumes. We present a set of results on synthetic and real brain images where we achieve robust statistical analysis even in the presence of substantial deformation errors; here, standard analysis procedures significantly under-perform and fail to identify the true signal. PMID:27042168

  12. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation

    NASA Astrophysics Data System (ADS)

    Sperling, Erik A.; Wolock, Charles J.; Morgan, Alex S.; Gill, Benjamin C.; Kunzmann, Marcus; Halverson, Galen P.; MacDonald, Francis A.; Knoll, Andrew H.; Johnston, David T.

    2015-07-01

    Sedimentary rocks deposited across the Proterozoic-Phanerozoic transition record extreme climate fluctuations, a potential rise in atmospheric oxygen or re-organization of the seafloor redox landscape, and the initial diversification of animals. It is widely assumed that the inferred redox change facilitated the observed trends in biodiversity. Establishing this palaeoenvironmental context, however, requires that changes in marine redox structure be tracked by means of geochemical proxies and translated into estimates of atmospheric oxygen. Iron-based proxies are among the most effective tools for tracking the redox chemistry of ancient oceans. These proxies are inherently local, but have global implications when analysed collectively and statistically. Here we analyse about 4,700 iron-speciation measurements from shales 2,300 to 360 million years old. Our statistical analyses suggest that subsurface water masses in mid-Proterozoic oceans were predominantly anoxic and ferruginous (depleted in dissolved oxygen and iron-bearing), but with a tendency towards euxinia (sulfide-bearing) that is not observed in the Neoproterozoic era. Analyses further indicate that early animals did not experience appreciable benthic sulfide stress. Finally, unlike proxies based on redox-sensitive trace-metal abundances, iron geochemical data do not show a statistically significant change in oxygen content through the Ediacaran and Cambrian periods, sharply constraining the magnitude of the end-Proterozoic oxygen increase. Indeed, this re-analysis of trace-metal data is consistent with oxygenation continuing well into the Palaeozoic era. Therefore, if changing redox conditions facilitated animal diversification, it did so through a limited rise in oxygen past critical functional and ecological thresholds, as is seen in modern oxygen minimum zone benthic animal communities.

  13. Asymptotic modal analysis and statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Dowell, Earl H.

    1988-01-01

    Statistical Energy Analysis (SEA) is defined by considering the asymptotic limit of Classical Modal Analysis, an approach called Asymptotic Modal Analysis (AMA). The general approach is described for both structural and acoustical systems. The theoretical foundation is presented for structural systems, and experimental verification is presented for a structural plate responding to a random force. Work accomplished subsequent to the grant initiation focusses on the acoustic response of an interior cavity (i.e., an aircraft or spacecraft fuselage) with a portion of the wall vibrating in a large number of structural modes. First results were presented at the ASME Winter Annual Meeting in December, 1987, and accepted for publication in the Journal of Vibration, Acoustics, Stress and Reliability in Design. It is shown that asymptotically as the number of acoustic modes excited becomes large, the pressure level in the cavity becomes uniform except at the cavity boundaries. However, the mean square pressure at the cavity corner, edge and wall is, respectively, 8, 4, and 2 times the value in the cavity interior. Also it is shown that when the portion of the wall which is vibrating is near a cavity corner or edge, the response is significantly higher.

  14. Multivariate analysis: A statistical approach for computations

    NASA Astrophysics Data System (ADS)

    Michu, Sachin; Kaushik, Vandana

    2014-10-01

    Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.

  15. Use of statistical study methods for the analysis of the results of the imitation modeling of radiation transfer

    NASA Astrophysics Data System (ADS)

    Alekseenko, M. A.; Gendrina, I. Yu.

    2017-11-01

    Recently, due to the abundance of various types of observational data in the systems of vision through the atmosphere and the need for their processing, the use of various methods of statistical research in the study of such systems as correlation-regression analysis, dynamic series, variance analysis, etc. is actual. We have attempted to apply elements of correlation-regression analysis for the study and subsequent prediction of the patterns of radiation transfer in these systems same as in the construction of radiation models of the atmosphere. In this paper, we present some results of statistical processing of the results of numerical simulation of the characteristics of vision systems through the atmosphere obtained with the help of a special software package.1

  16. Applied Behavior Analysis and Statistical Process Control?

    ERIC Educational Resources Information Center

    Hopkins, B. L.

    1995-01-01

    Incorporating statistical process control (SPC) methods into applied behavior analysis is discussed. It is claimed that SPC methods would likely reduce applied behavior analysts' intimate contacts with problems and would likely yield poor treatment and research decisions. Cases and data presented by Pfadt and Wheeler (1995) are cited as examples.…

  17. Statistical Analysis Experiment for Freshman Chemistry Lab.

    ERIC Educational Resources Information Center

    Salzsieder, John C.

    1995-01-01

    Describes a laboratory experiment dissolving zinc from galvanized nails in which data can be gathered very quickly for statistical analysis. The data have sufficient significant figures and the experiment yields a nice distribution of random errors. Freshman students can gain an appreciation of the relationships between random error, number of…

  18. Explorations in statistics: the log transformation.

    PubMed

    Curran-Everett, Douglas

    2018-06-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This thirteenth installment of Explorations in Statistics explores the log transformation, an established technique that rescales the actual observations from an experiment so that the assumptions of some statistical analysis are better met. A general assumption in statistics is that the variability of some response Y is homogeneous across groups or across some predictor variable X. If the variability-the standard deviation-varies in rough proportion to the mean value of Y, a log transformation can equalize the standard deviations. Moreover, if the actual observations from an experiment conform to a skewed distribution, then a log transformation can make the theoretical distribution of the sample mean more consistent with a normal distribution. This is important: the results of a one-sample t test are meaningful only if the theoretical distribution of the sample mean is roughly normal. If we log-transform our observations, then we want to confirm the transformation was useful. We can do this if we use the Box-Cox method, if we bootstrap the sample mean and the statistic t itself, and if we assess the residual plots from the statistical model of the actual and transformed sample observations.

  19. Combined statistical analysis of landslide release and propagation

    NASA Astrophysics Data System (ADS)

    Mergili, Martin; Rohmaneo, Mohammad; Chu, Hone-Jay

    2016-04-01

    Statistical methods - often coupled with stochastic concepts - are commonly employed to relate areas affected by landslides with environmental layers, and to estimate spatial landslide probabilities by applying these relationships. However, such methods only concern the release of landslides, disregarding their motion. Conceptual models for mass flow routing are used for estimating landslide travel distances and possible impact areas. Automated approaches combining release and impact probabilities are rare. The present work attempts to fill this gap by a fully automated procedure combining statistical and stochastic elements, building on the open source GRASS GIS software: (1) The landslide inventory is subset into release and deposition zones. (2) We employ a traditional statistical approach to estimate the spatial release probability of landslides. (3) We back-calculate the probability distribution of the angle of reach of the observed landslides, employing the software tool r.randomwalk. One set of random walks is routed downslope from each pixel defined as release area. Each random walk stops when leaving the observed impact area of the landslide. (4) The cumulative probability function (cdf) derived in (3) is used as input to route a set of random walks downslope from each pixel in the study area through the DEM, assigning the probability gained from the cdf to each pixel along the path (impact probability). The impact probability of a pixel is defined as the average impact probability of all sets of random walks impacting a pixel. Further, the average release probabilities of the release pixels of all sets of random walks impacting a given pixel are stored along with the area of the possible release zone. (5) We compute the zonal release probability by increasing the release probability according to the size of the release zone - the larger the zone, the larger the probability that a landslide will originate from at least one pixel within this zone. We

  20. A perceptual space of local image statistics

    PubMed Central

    Victor, Jonathan D.; Thengone, Daniel J.; Rizvi, Syed M.; Conte, Mary M.

    2015-01-01

    Local image statistics are important for visual analysis of textures, surfaces, and form. There are many kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much less is known about visual processing when multiple kinds of statistics are relevant, in large part because the dimensionality of the problem is high and different kinds of statistics interact. To approach this problem, we focused on binary images on a square lattice – a reduced set of stimuli which nevertheless taps many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities and isodiscrimination contours were consistent across observers. Isodiscrimination contours were elliptical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination surfaces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations of statistics. These predictions, including the prediction of a combination of statistics that was metameric to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over the range from 2.8 to 14 min, but sensitivities to second- and higher-order statistics was substantially lower at 1.4 min. In sum, local image statistics forms a perceptual space that is highly stereotyped across observers, in which different kinds of statistics interact according to simple rules. PMID:26130606

  1. Measurement of Low-Energy Nuclear-Recoil Quenching Factors in CsI[Na] and Statistical Analysis of the First Observation of Coherent, Elastic Neutrino-Nucleus Scattering

    NASA Astrophysics Data System (ADS)

    Rich, Grayson Currie

    The COHERENT Collaboration has produced the first-ever observation, with a significance of 6.7sigma, of a process consistent with coherent, elastic neutrino-nucleus scattering (CEnuNS) as first predicted and described by D.Z. Freedman in 1974. Physics of the CEnuNS process are presented along with its relationship to future measurements in the arenas of nuclear physics, fundamental particle physics, and astroparticle physics, where the newly-observed interaction presents a viable tool for investigations into numerous outstanding questions about the nature of the universe. To enable the CEnuNS observation with a 14.6-kg CsI[Na] detector, new measurements of the response of CsI[Na] to low-energy nuclear recoils, which is the only mechanism by which CEnuNS is detectable, were carried out at Triangle Universities Nuclear Laboratory; these measurements are detailed and an effective nuclear-recoil quenching factor of 8.78 +/- 1.66% is established for CsI[Na] in the recoil-energy range of 5-30 keV, based on new and literature data. Following separate analyses of the CEnuNS-search data by groups at the University of Chicago and the Moscow Engineering and Physics Institute, information from simulations, calculations, and ancillary measurements were used to inform statistical analyses of the collected data. Based on input from the Chicago analysis, the number of CEnuNS events expected from the Standard Model is 173 +/- 48; interpretation as a simple counting experiment finds 136 +/- 31 CEnuNS counts in the data, while a two-dimensional, profile likelihood fit yields 134 +/- 22 CEnuNS counts. Details of the simulations, calculations, and supporting measurements are discussed, in addition to the statistical procedures. Finally, potential improvements to the CsI[Na]-based CEnuNS measurement are presented along with future possibilities for COHERENT Collaboration, including new CEnuNS detectors and measurement of the neutrino-induced neutron spallation process.

  2. Depression and oxidative stress: results from a meta-analysis of observational studies.

    PubMed

    Palta, Priya; Samuel, Laura J; Miller, Edgar R; Szanton, Sarah L

    2014-01-01

    To perform a systematic review and meta-analysis that quantitatively tests and summarizes the hypothesis that depression results in elevated oxidative stress and lower antioxidant levels. We performed a meta-analysis of studies that reported an association between depression and oxidative stress and/or antioxidant status markers. PubMed and EMBASE databases were searched for articles published from January 1980 through December 2012. A random-effects model, weighted by inverse variance, was performed to pool standard deviation (Cohen's d) effect size estimates across studies for oxidative stress and antioxidant status measures, separately. Twenty-three studies with 4980 participants were included in the meta-analysis. Depression was most commonly measured using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria. A Cohen's d effect size of 0.55 (95% confidence interval = 0.47-0.63) was found for the association between depression and oxidative stress, indicating a roughly 0.55 of 1-standard-deviation increase in oxidative stress among individuals with depression compared with those without depression. The results of the studies displayed significant heterogeneity (I(2) = 80.0%, p < .001). A statistically significant effect was also observed for the association between depression and antioxidant status markers (Cohen's d = -0.24, 95% confidence interval = -0.33 to -0.15). This meta-analysis observed an association between depression and oxidative stress and antioxidant status across many different studies. Differences in measures of depression and markers of oxidative stress and antioxidant status markers could account for the observed heterogeneity. These findings suggest that well-established associations between depression and poor heath outcomes may be mediated by high oxidative stress.

  3. CMEs in the Heliosphere: I. A Statistical Analysis of the Observational Properties of CMEs Detected in the Heliosphere from 2007 to 2017 by STEREO/HI-1

    NASA Astrophysics Data System (ADS)

    Harrison, R. A.; Davies, J. A.; Barnes, D.; Byrne, J. P.; Perry, C. H.; Bothmer, V.; Eastwood, J. P.; Gallagher, P. T.; Kilpua, E. K. J.; Möstl, C.; Rodriguez, L.; Rouillard, A. P.; Odstrčil, D.

    2018-05-01

    We present a statistical analysis of coronal mass ejections (CMEs) imaged by the Heliospheric Imager (HI) instruments on board NASA's twin-spacecraft STEREO mission between April 2007 and August 2017 for STEREO-A and between April 2007 and September 2014 for STEREO-B. The analysis exploits a catalogue that was generated within the FP7 HELCATS project. Here, we focus on the observational characteristics of CMEs imaged in the heliosphere by the inner (HI-1) cameras, while following papers will present analyses of CME propagation through the entire HI fields of view. More specifically, in this paper we present distributions of the basic observational parameters - namely occurrence frequency, central position angle (PA) and PA span - derived from nearly 2000 detections of CMEs in the heliosphere by HI-1 on STEREO-A or STEREO-B from the minimum between Solar Cycles 23 and 24 to the maximum of Cycle 24; STEREO-A analysis includes a further 158 CME detections from the descending phase of Cycle 24, by which time communication with STEREO-B had been lost. We compare heliospheric CME characteristics with properties of CMEs observed at coronal altitudes, and with sunspot number. As expected, heliospheric CME rates correlate with sunspot number, and are not inconsistent with coronal rates once instrumental factors/differences in cataloguing philosophy are considered. As well as being more abundant, heliospheric CMEs, like their coronal counterparts, tend to be wider during solar maximum. Our results confirm previous coronagraph analyses suggesting that CME launch sites do not simply migrate to higher latitudes with increasing solar activity. At solar minimum, CMEs tend to be launched from equatorial latitudes, while at maximum, CMEs appear to be launched over a much wider latitude range; this has implications for understanding the CME/solar source association. Our analysis provides some supporting evidence for the systematic dragging of CMEs to lower latitude as they propagate

  4. A Statistical Comparison of PSC Model Simulations and POAM Observations

    NASA Technical Reports Server (NTRS)

    Strawa, A. W.; Drdla, K.; Fromm, M.; Bokarius, K.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    A better knowledge of PSC composition and formation mechanisms is important to better understand and predict stratospheric ozone depletion. Several past studies have attempted to compare modeling results with satellite observations. These comparisons have concentrated on case studies. In this paper we adopt a statistical approach. POAM PSC observations from several Arctic winters are categorized into Type Ia and Ib PSCs using a technique based on Strawa et al. The discrimination technique has been modified to employ the wavelengths dependence of the extinction signal at all wavelengths rather than only at 603 and 10 18 nm. Winter-long simulations for the 1999-2000 Arctic winter have been made using the IMPACT model. These simulations have been constrained by aircraft observations made during the SOLVE/THESEO 2000 campaign. A complete set of winter-long simulations was run for several different microphysical and PSC formation scenarios. The simulations give us perfect knowledge of PSC type (Ia, Ib, or II), composition, especially condensed phase HNO3 which is important for denitrification, and condensed phase H2O. Comparisons are made between the simulation and observation of PSC extinction at 1018 rim versus wavelength dependence, winter-long percentages of Ia and Ib occurrence, and temporal and altitude trends of the PSCs. These comparisons allow us to comment on how realistic some modeling scenarios are.

  5. Autotasked Performance in the NAS Workload: A Statistical Analysis

    NASA Technical Reports Server (NTRS)

    Carter, R. L.; Stockdale, I. E.; Kutler, Paul (Technical Monitor)

    1998-01-01

    A statistical analysis of the workload performance of a production quality FORTRAN code for five different Cray Y-MP hardware and system software configurations is performed. The analysis was based on an experimental procedure that was designed to minimize correlations between the number of requested CPUs and the time of day the runs were initiated. Observed autotasking over heads were significantly larger for the set of jobs that requested the maximum number of CPUs. Speedups for UNICOS 6 releases show consistent wall clock speedups in the workload of around 2. which is quite good. The observed speed ups were very similar for the set of jobs that requested 8 CPUs and the set that requested 4 CPUs. The original NAS algorithm for determining charges to the user discourages autotasking in the workload. A new charging algorithm to be applied to jobs run in the NQS multitasking queues also discourages NAS users from using auto tasking. The new algorithm favors jobs requesting 8 CPUs over those that request less, although the jobs requesting 8 CPUs experienced significantly higher over head and presumably degraded system throughput. A charging algorithm is presented that has the following desirable characteristics when applied to the data: higher overhead jobs requesting 8 CPUs are penalized when compared to moderate overhead jobs requesting 4 CPUs, thereby providing a charging incentive to NAS users to use autotasking in a manner that provides them with significantly improved turnaround while also maintaining system throughput.

  6. Analysis of Statistical Methods Currently used in Toxicology Journals.

    PubMed

    Na, Jihye; Yang, Hyeri; Bae, SeungJin; Lim, Kyung-Min

    2014-09-01

    Statistical methods are frequently used in toxicology, yet it is not clear whether the methods employed by the studies are used consistently and conducted based on sound statistical grounds. The purpose of this paper is to describe statistical methods used in top toxicology journals. More specifically, we sampled 30 papers published in 2014 from Toxicology and Applied Pharmacology, Archives of Toxicology, and Toxicological Science and described methodologies used to provide descriptive and inferential statistics. One hundred thirteen endpoints were observed in those 30 papers, and most studies had sample size less than 10, with the median and the mode being 6 and 3 & 6, respectively. Mean (105/113, 93%) was dominantly used to measure central tendency, and standard error of the mean (64/113, 57%) and standard deviation (39/113, 34%) were used to measure dispersion, while few studies provide justifications regarding why the methods being selected. Inferential statistics were frequently conducted (93/113, 82%), with one-way ANOVA being most popular (52/93, 56%), yet few studies conducted either normality or equal variance test. These results suggest that more consistent and appropriate use of statistical method is necessary which may enhance the role of toxicology in public health.

  7. MICROARRAY DATA ANALYSIS USING MULTIPLE STATISTICAL MODELS

    EPA Science Inventory

    Microarray Data Analysis Using Multiple Statistical Models

    Wenjun Bao1, Judith E. Schmid1, Amber K. Goetz1, Ming Ouyang2, William J. Welsh2,Andrew I. Brooks3,4, ChiYi Chu3,Mitsunori Ogihara3,4, Yinhe Cheng5, David J. Dix1. 1National Health and Environmental Effects Researc...

  8. TRAPR: R Package for Statistical Analysis and Visualization of RNA-Seq Data.

    PubMed

    Lim, Jae Hyun; Lee, Soo Youn; Kim, Ju Han

    2017-03-01

    High-throughput transcriptome sequencing, also known as RNA sequencing (RNA-Seq), is a standard technology for measuring gene expression with unprecedented accuracy. Numerous bioconductor packages have been developed for the statistical analysis of RNA-Seq data. However, these tools focus on specific aspects of the data analysis pipeline, and are difficult to appropriately integrate with one another due to their disparate data structures and processing methods. They also lack visualization methods to confirm the integrity of the data and the process. In this paper, we propose an R-based RNA-Seq analysis pipeline called TRAPR, an integrated tool that facilitates the statistical analysis and visualization of RNA-Seq expression data. TRAPR provides various functions for data management, the filtering of low-quality data, normalization, transformation, statistical analysis, data visualization, and result visualization that allow researchers to build customized analysis pipelines.

  9. Statistical evolution of quiet-Sun small-scale magnetic features using Sunrise observations

    NASA Astrophysics Data System (ADS)

    Anusha, L. S.; Solanki, S. K.; Hirzberger, J.; Feller, A.

    2017-02-01

    The evolution of small magnetic features in quiet regions of the Sun provides a unique window for probing solar magneto-convection. Here we analyze small-scale magnetic features in the quiet Sun, using the high resolution, seeing-free observations from the Sunrise balloon borne solar observatory. Our aim is to understand the contribution of different physical processes, such as splitting, merging, emergence and cancellation of magnetic fields to the rearrangement, addition and removal of magnetic flux in the photosphere. We have employed a statistical approach for the analysis and the evolution studies are carried out using a feature-tracking technique. In this paper we provide a detailed description of the feature-tracking algorithm that we have newly developed and we present the results of a statistical study of several physical quantities. The results on the fractions of the flux in the emergence, appearance, splitting, merging, disappearance and cancellation qualitatively agrees with other recent studies. To summarize, the total flux gained in unipolar appearance is an order of magnitude larger than the total flux gained in emergence. On the other hand, the bipolar cancellation contributes nearly an equal amount to the loss of magnetic flux as unipolar disappearance. The total flux lost in cancellation is nearly six to eight times larger than the total flux gained in emergence. One big difference between our study and previous similar studies is that, thanks to the higher spatial resolution of Sunrise, we can track features with fluxes as low as 9 × 1014 Mx. This flux is nearly an order of magnitude lower than the smallest fluxes of the features tracked in the highest resolution previous studies based on Hinode data. The area and flux of the magnetic features follow power-law type distribution, while the lifetimes show either power-law or exponential type distribution depending on the exact definitions used to define various birth and death events. We have

  10. Wear behavior of AA 5083/SiC nano-particle metal matrix composite: Statistical analysis

    NASA Astrophysics Data System (ADS)

    Hussain Idrisi, Amir; Ismail Mourad, Abdel-Hamid; Thekkuden, Dinu Thomas; Christy, John Victor

    2018-03-01

    This paper reports study on statistical analysis of the wear characteristics of AA5083/SiC nanocomposite. The aluminum matrix composites with different wt % (0%, 1% and 2%) of SiC nanoparticles were fabricated by using stir casting route. The developed composites were used in the manufacturing of spur gears on which the study was conducted. A specially designed test rig was used in testing the wear performance of the gears. The wear was investigated under different conditions of applied load (10N, 20N, and 30N) and operation time (30 mins, 60 mins, 90 mins, and 120mins). The analysis carried out at room temperature under constant speed of 1450 rpm. The wear parameters were optimized by using Taguchi’s method. During this statistical approach, L27 Orthogonal array was selected for the analysis of output. Furthermore, analysis of variance (ANOVA) was used to investigate the influence of applied load, operation time and SiC wt. % on wear behaviour. The wear resistance was analyzed by selecting “smaller is better” characteristics as the objective of the model. From this research, it is observed that experiment time and SiC wt % have the most significant effect on the wear performance followed by the applied load.

  11. Statistical analysis and interpolation of compositional data in materials science.

    PubMed

    Pesenson, Misha Z; Suram, Santosh K; Gregoire, John M

    2015-02-09

    Compositional data are ubiquitous in chemistry and materials science: analysis of elements in multicomponent systems, combinatorial problems, etc., lead to data that are non-negative and sum to a constant (for example, atomic concentrations). The constant sum constraint restricts the sampling space to a simplex instead of the usual Euclidean space. Since statistical measures such as mean and standard deviation are defined for the Euclidean space, traditional correlation studies, multivariate analysis, and hypothesis testing may lead to erroneous dependencies and incorrect inferences when applied to compositional data. Furthermore, composition measurements that are used for data analytics may not include all of the elements contained in the material; that is, the measurements may be subcompositions of a higher-dimensional parent composition. Physically meaningful statistical analysis must yield results that are invariant under the number of composition elements, requiring the application of specialized statistical tools. We present specifics and subtleties of compositional data processing through discussion of illustrative examples. We introduce basic concepts, terminology, and methods required for the analysis of compositional data and utilize them for the spatial interpolation of composition in a sputtered thin film. The results demonstrate the importance of this mathematical framework for compositional data analysis (CDA) in the fields of materials science and chemistry.

  12. Stationary statistical theory of two-surface multipactor regarding all impacts for efficient threshold analysis

    NASA Astrophysics Data System (ADS)

    Lin, Shu; Wang, Rui; Xia, Ning; Li, Yongdong; Liu, Chunliang

    2018-01-01

    Statistical multipactor theories are critical prediction approaches for multipactor breakdown determination. However, these approaches still require a negotiation between the calculation efficiency and accuracy. This paper presents an improved stationary statistical theory for efficient threshold analysis of two-surface multipactor. A general integral equation over the distribution function of the electron emission phase with both the single-sided and double-sided impacts considered is formulated. The modeling results indicate that the improved stationary statistical theory can not only obtain equally good accuracy of multipactor threshold calculation as the nonstationary statistical theory, but also achieve high calculation efficiency concurrently. By using this improved stationary statistical theory, the total time consumption in calculating full multipactor susceptibility zones of parallel plates can be decreased by as much as a factor of four relative to the nonstationary statistical theory. It also shows that the effect of single-sided impacts is indispensable for accurate multipactor prediction of coaxial lines and also more significant for the high order multipactor. Finally, the influence of secondary emission yield (SEY) properties on the multipactor threshold is further investigated. It is observed that the first cross energy and the energy range between the first cross and the SEY maximum both play a significant role in determining the multipactor threshold, which agrees with the numerical simulation results in the literature.

  13. A perceptual space of local image statistics.

    PubMed

    Victor, Jonathan D; Thengone, Daniel J; Rizvi, Syed M; Conte, Mary M

    2015-12-01

    Local image statistics are important for visual analysis of textures, surfaces, and form. There are many kinds of local statistics, including those that capture luminance distributions, spatial contrast, oriented segments, and corners. While sensitivity to each of these kinds of statistics have been well-studied, much less is known about visual processing when multiple kinds of statistics are relevant, in large part because the dimensionality of the problem is high and different kinds of statistics interact. To approach this problem, we focused on binary images on a square lattice - a reduced set of stimuli which nevertheless taps many kinds of local statistics. In this 10-parameter space, we determined psychophysical thresholds to each kind of statistic (16 observers) and all of their pairwise combinations (4 observers). Sensitivities and isodiscrimination contours were consistent across observers. Isodiscrimination contours were elliptical, implying a quadratic interaction rule, which in turn determined ellipsoidal isodiscrimination surfaces in the full 10-dimensional space, and made predictions for sensitivities to complex combinations of statistics. These predictions, including the prediction of a combination of statistics that was metameric to random, were verified experimentally. Finally, check size had only a mild effect on sensitivities over the range from 2.8 to 14min, but sensitivities to second- and higher-order statistics was substantially lower at 1.4min. In sum, local image statistics form a perceptual space that is highly stereotyped across observers, in which different kinds of statistics interact according to simple rules. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Statistical analysis of the ambiguities in the asteroid period determinations

    NASA Astrophysics Data System (ADS)

    Butkiewicz-Bąk, M.; Kwiatkowski, T.; Bartczak, P.; Dudziński, G.; Marciniak, A.

    2017-09-01

    Among asteroids there exist ambiguities in their rotation period determinations. They are due to incomplete coverage of the rotation, noise and/or aliases resulting from gaps between separate lightcurves. To help to remove such uncertainties, basic characteristic of the lightcurves resulting from constraints imposed by the asteroid shapes and geometries of observations should be identified. We simulated light variations of asteroids whose shapes were modelled as Gaussian random spheres, with random orientations of spin vectors and phase angles changed every 5° from 0° to 65°. This produced 1.4 million lightcurves. For each simulated lightcurve, Fourier analysis has been made and the harmonic of the highest amplitude was recorded. From the statistical point of view, all lightcurves observed at phase angles α < 30°, with peak-to-peak amplitudes A > 0.2 mag, are bimodal. Second most frequently dominating harmonic is the first one, with the 3rd harmonic following right after. For 1 per cent of lightcurves with amplitudes A < 0.1 mag and phase angles α < 40°, 4th harmonic dominates.

  15. The Importance of Statistical Modeling in Data Analysis and Inference

    ERIC Educational Resources Information Center

    Rollins, Derrick, Sr.

    2017-01-01

    Statistical inference simply means to draw a conclusion based on information that comes from data. Error bars are the most commonly used tool for data analysis and inference in chemical engineering data studies. This work demonstrates, using common types of data collection studies, the importance of specifying the statistical model for sound…

  16. Explorations in Statistics: The Analysis of Ratios and Normalized Data

    ERIC Educational Resources Information Center

    Curran-Everett, Douglas

    2013-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This ninth installment of "Explorations in Statistics" explores the analysis of ratios and normalized--or standardized--data. As researchers, we compute a ratio--a numerator divided by a denominator--to compute a…

  17. Statistical Energy Analysis (SEA) and Energy Finite Element Analysis (EFEA) Predictions for a Floor-Equipped Composite Cylinder

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.

    2011-01-01

    Comet Enflow is a commercially available, high frequency vibroacoustic analysis software founded on Energy Finite Element Analysis (EFEA) and Energy Boundary Element Analysis (EBEA). Energy Finite Element Analysis (EFEA) was validated on a floor-equipped composite cylinder by comparing EFEA vibroacoustic response predictions with Statistical Energy Analysis (SEA) and experimental results. Statistical Energy Analysis (SEA) predictions were made using the commercial software program VA One 2009 from ESI Group. The frequency region of interest for this study covers the one-third octave bands with center frequencies from 100 Hz to 4000 Hz.

  18. Evaluation of the Relative Contribution of Observing Systems in Reanalyses: Aircraft Temperature Bias and Analysis Innovations

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Dasilva, Arindo M.

    2012-01-01

    Reanalyses have become important sources of data in weather and climate research. While observations are the most crucial component of the systems, few research projects consider carefully the multitudes of assimilated observations and their impact on the results. This is partly due to the diversity of observations and their individual complexity, but also due to the unfriendly nature of the data formats. Here, we discuss the NASA Modern-Era Retrospective analysis for Research and Applications (MERRA) and a companion dataset, the Gridded Innovations and Observations (GIO). GIO is simply a post-processing of the assimilated observations and their innovations (forecast error and analysis error) to a common spatio-temporal grid, following that of the MERRA analysis fields. This data includes in situ, retrieved and radiance observations that are assimilated and used in the reanalysis. While all these disparate observations and statistics are in a uniform easily accessible format, there are some limitations. Similar observations are binned to the grid, so that multiple observations are combined in the gridding process. The data is then implicitly thinned. Some details in the meta data may also be lost (e.g. aircraft or station ID). Nonetheless, the gridded observations should provide easy access to all the observations input to the reanalysis. To provide an example of the GIO data, a case study evaluating observing systems over the United States and statistics is presented, and demonstrates the evaluation of the observations and the data assimilation. The GIO data is used to collocate 200mb Radiosonde and Aircraft temperature measurements from 1979-2009. A known warm bias of the aircraft measurements is apparent compared to the radiosonde data. However, when larger quantities of aircraft data are available, they dominate the analysis and the radiosonde data become biased against the forecast. When AMSU radiances become available the radiosonde and aircraft analysis and

  19. Some statistics of freezing precipitation and rime for the territory of the former USSR from ground-based weather observations

    NASA Astrophysics Data System (ADS)

    Bezrukova, Natalia A.; Jeck, Richard K.; Khalili, Marat F.; Minina, Ludmila S.; Naumov, Alexander Ya.; Stulov, Evgeny A.

    2006-11-01

    This work is a continuation of the previous climatological study of freezing precipitation and rime over the USSR territory [ Bezrukova, N.A., Minina, L.S., Naumov, A.Ya., 2000. Freezing precipitation climatology in the former European USSR. Proceedings of the 13th International Conference on Clouds and Precipitation, pp.737-739, Reno, Nevada, USA, 14-18 August 2000; Bezrukova, N.A., Jeck, R.K., Minina, L.S., Khalili, M.F., Stulov, E.A., 2004. 10-year Statistics on Freezing Precipitation across the former USSR from surface weather observations. Proceedings of the 14th International Conference on Clouds and Precipitation, pp.731-734, Bologna, Italy, 19-23 August 2004.] aimed at creating an atlas of the frequency of these phenomena. This study gives considerable information about and a statistical analysis of freezing precipitation and rime events observed over the territory of the former USSR during a decade (1981-1990) and over the European territory of the USSR during two decades (1971-1990). This paper intends to draw the attention of the reader to the atlas and statistics by showing some interesting points. The authors used the data provided by the ground-based weather stations involved in the international exchange of meteorological data. The USSR network's Monthly Meteorological Tables (1971-1990) [Monthly Meteorological Tables, 1971-1990. Part 1, Novosibirsk-Obninsk. (in Russian).] comprising selected daily ground-based meteorological observations from more than 220 stations served as a basis for the analysis. All the types of freezing precipitation (FP) events were given as WMO Codes 56, 57, 66, 67, 24 and freezing fog (FF) deposited rime as WMO Codes 48, 49. The entire territory was divided into six major regions: the Arctic, the European part of the USSR, the Trans-Caucasus, Central Asia, Siberia, and the Far East. The frequency and distribution of events by regions versus temperature, atmospheric pressure, clouds base height, and some other meteorological

  20. Coupling strength assumption in statistical energy analysis

    PubMed Central

    Lafont, T.; Totaro, N.

    2017-01-01

    This paper is a discussion of the hypothesis of weak coupling in statistical energy analysis (SEA). The examples of coupled oscillators and statistical ensembles of coupled plates excited by broadband random forces are discussed. In each case, a reference calculation is compared with the SEA calculation. First, it is shown that the main SEA relation, the coupling power proportionality, is always valid for two oscillators irrespective of the coupling strength. But the case of three subsystems, consisting of oscillators or ensembles of plates, indicates that the coupling power proportionality fails when the coupling is strong. Strong coupling leads to non-zero indirect coupling loss factors and, sometimes, even to a reversal of the energy flow direction from low to high vibrational temperature. PMID:28484335

  1. Forecasting Japanese encephalitis incidence from historical morbidity patterns: Statistical analysis with 27 years of observation in Assam, India.

    PubMed

    Handique, Bijoy K; Khan, Siraj A; Mahanta, J; Sudhakar, S

    2014-09-01

    Japanese encephalitis (JE) is one of the dreaded mosquito-borne viral diseases mostly prevalent in south Asian countries including India. Early warning of the disease in terms of disease intensity is crucial for taking adequate and appropriate intervention measures. The present study was carried out in Dibrugarh district in the state of Assam located in the northeastern region of India to assess the accuracy of selected forecasting methods based on historical morbidity patterns of JE incidence during the past 22 years (1985-2006). Four selected forecasting methods, viz. seasonal average (SA), seasonal adjustment with last three observations (SAT), modified method adjusting long-term and cyclic trend (MSAT), and autoregressive integrated moving average (ARIMA) have been employed to assess the accuracy of each of the forecasting methods. The forecasting methods were validated for five consecutive years from 2007-2012 and accuracy of each method has been assessed. The forecasting method utilising seasonal adjustment with long-term and cyclic trend emerged as best forecasting method among the four selected forecasting methods and outperformed the even statistically more advanced ARIMA method. Peak of the disease incidence could effectively be predicted with all the methods, but there are significant variations in magnitude of forecast errors among the selected methods. As expected, variation in forecasts at primary health centre (PHC) level is wide as compared to that of district level forecasts. The study showed that adopted forecasting techniques could reasonably forecast the intensity of JE cases at PHC level without considering the external variables. The results indicate that the understanding of long-term and cyclic trend of the disease intensity will improve the accuracy of the forecasts, but there is a need for making the forecast models more robust to explain sudden variation in the disease intensity with detail analysis of parasite and host population

  2. [Statistical analysis of German radiologic periodicals: developmental trends in the last 10 years].

    PubMed

    Golder, W

    1999-09-01

    To identify which statistical tests are applied in German radiological publications, to what extent their use has changed during the last decade, and which factors might be responsible for this development. The major articles published in "ROFO" and "DER RADIOLOGE" during 1988, 1993 and 1998 were reviewed for statistical content. The contributions were classified by principal focus and radiological subspecialty. The methods used were assigned to descriptive, basal and advanced statistics. Sample size, significance level and power were established. The use of experts' assistance was monitored. Finally, we calculated the so-called cumulative accessibility of the publications. 525 contributions were found to be eligible. In 1988, 87% used descriptive statistics only, 12.5% basal, and 0.5% advanced statistics. The corresponding figures in 1993 and 1998 are 62 and 49%, 32 and 41%, and 6 and 10%, respectively. Statistical techniques were most likely to be used in research on musculoskeletal imaging and articles dedicated to MRI. Six basic categories of statistical methods account for the complete statistical analysis appearing in 90% of the articles. ROC analysis is the single most common advanced technique. Authors make increasingly use of statistical experts' opinion and programs. During the last decade, the use of statistical methods in German radiological journals has fundamentally improved, both quantitatively and qualitatively. Presently, advanced techniques account for 20% of the pertinent statistical tests. This development seems to be promoted by the increasing availability of statistical analysis software.

  3. Depression and Oxidative Stress: Results From a Meta-Analysis of Observational Studies

    PubMed Central

    Palta, Priya; Samuel, Laura J.; Miller, Edgar R.; Szanton, Sarah L.

    2014-01-01

    Objective To perform a systematic review and meta-analysis that quantitatively tests and summarizes the hypothesis that depression results in elevated oxidative stress and lower antioxidant levels. Methods We performed a meta-analysis of studies that reported an association between depression and oxidative stress and/or antioxidant status markers. PubMed and EMBASE databases were searched for articles published from January 1980 through December 2012. A random-effects model, weighted by inverse variance, was performed to pool standard deviation (Cohen’s d) effect size estimates across studies for oxidative stress and antioxidant status measures, separately. Results Twenty-three studies with 4980 participants were included in the meta-analysis. Depression was most commonly measured using the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition criteria. A Cohen’s d effect size of 0.55 (95% confidence interval = 0.47–0.63) was found for the association between depression and oxidative stress, indicating a roughly 0.55 of 1-standard-deviation increase in oxidative stress among individuals with depression compared with those without depression. The results of the studies displayed significant heterogeneity (I2 = 80.0%, p < .001). A statistically significant effect was also observed for the association between depression and antioxidant status markers (Cohen’s d = −0.24, 95% confidence interval = −0.33 to −0.15). Conclusions This meta-analysis observed an association between depression and oxidative stress and antioxidant status across many different studies. Differences in measures of depression and markers of oxidative stress and antioxidant status markers could account for the observed heterogeneity. These findings suggest that well-established associations between depression and poor heath outcomes may be mediated by high oxidative stress. PMID:24336428

  4. Analysis of Statistical Methods Currently used in Toxicology Journals

    PubMed Central

    Na, Jihye; Yang, Hyeri

    2014-01-01

    Statistical methods are frequently used in toxicology, yet it is not clear whether the methods employed by the studies are used consistently and conducted based on sound statistical grounds. The purpose of this paper is to describe statistical methods used in top toxicology journals. More specifically, we sampled 30 papers published in 2014 from Toxicology and Applied Pharmacology, Archives of Toxicology, and Toxicological Science and described methodologies used to provide descriptive and inferential statistics. One hundred thirteen endpoints were observed in those 30 papers, and most studies had sample size less than 10, with the median and the mode being 6 and 3 & 6, respectively. Mean (105/113, 93%) was dominantly used to measure central tendency, and standard error of the mean (64/113, 57%) and standard deviation (39/113, 34%) were used to measure dispersion, while few studies provide justifications regarding why the methods being selected. Inferential statistics were frequently conducted (93/113, 82%), with one-way ANOVA being most popular (52/93, 56%), yet few studies conducted either normality or equal variance test. These results suggest that more consistent and appropriate use of statistical method is necessary which may enhance the role of toxicology in public health. PMID:25343012

  5. Fully Bayesian inference for structural MRI: application to segmentation and statistical analysis of T2-hypointensities.

    PubMed

    Schmidt, Paul; Schmid, Volker J; Gaser, Christian; Buck, Dorothea; Bührlen, Susanne; Förschler, Annette; Mühlau, Mark

    2013-01-01

    Aiming at iron-related T2-hypointensity, which is related to normal aging and neurodegenerative processes, we here present two practicable approaches, based on Bayesian inference, for preprocessing and statistical analysis of a complex set of structural MRI data. In particular, Markov Chain Monte Carlo methods were used to simulate posterior distributions. First, we rendered a segmentation algorithm that uses outlier detection based on model checking techniques within a Bayesian mixture model. Second, we rendered an analytical tool comprising a Bayesian regression model with smoothness priors (in the form of Gaussian Markov random fields) mitigating the necessity to smooth data prior to statistical analysis. For validation, we used simulated data and MRI data of 27 healthy controls (age: [Formula: see text]; range, [Formula: see text]). We first observed robust segmentation of both simulated T2-hypointensities and gray-matter regions known to be T2-hypointense. Second, simulated data and images of segmented T2-hypointensity were analyzed. We found not only robust identification of simulated effects but also a biologically plausible age-related increase of T2-hypointensity primarily within the dentate nucleus but also within the globus pallidus, substantia nigra, and red nucleus. Our results indicate that fully Bayesian inference can successfully be applied for preprocessing and statistical analysis of structural MRI data.

  6. Statistical analysis and modeling of intermittent transport events in the tokamak scrape-off layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Johan, E-mail: anderson.johan@gmail.com; Halpern, Federico D.; Ricci, Paolo

    The turbulence observed in the scrape-off-layer of a tokamak is often characterized by intermittent events of bursty nature, a feature which raises concerns about the prediction of heat loads on the physical boundaries of the device. It appears thus necessary to delve into the statistical properties of turbulent physical fields such as density, electrostatic potential, and temperature, focusing on the mathematical expression of tails of the probability distribution functions. The method followed here is to generate statistical information from time-traces of the plasma density stemming from Braginskii-type fluid simulations and check this against a first-principles theoretical model. The analysis ofmore » the numerical simulations indicates that the probability distribution function of the intermittent process contains strong exponential tails, as predicted by the analytical theory.« less

  7. Improving the Canadian Precipitation Analysis Estimates through an Observing System Simulation Experiment

    NASA Astrophysics Data System (ADS)

    Abbasnezhadi, K.; Rasmussen, P. F.; Stadnyk, T.

    2014-12-01

    To gain a better understanding of the spatiotemporal distribution of rainfall over the Churchill River basin, this study was undertaken. The research incorporates gridded precipitation data from the Canadian Precipitation Analysis (CaPA) system. CaPA has been developed by Environment Canada and provides near real-time precipitation estimates on a 10 km by 10 km grid over North America at a temporal resolution of 6 hours. The spatial fields are generated by combining forecasts from the Global Environmental Multiscale (GEM) model with precipitation observations from the network of synoptic weather stations. CaPA's skill is highly influenced by the number of weather stations in the region of interest as well as by the quality of the observations. In an attempt to evaluate the performance of CaPA as a function of the density of the weather station network, a dual-stage design algorithm to simulate CaPA is proposed which incorporates generated weather fields. More specifically, we are adopting a controlled design algorithm which is generally known as Observing System Simulation Experiment (OSSE). The advantage of using the experiment is that one can define reference precipitation fields assumed to represent the true state of rainfall over the region of interest. In the first stage of the defined OSSE, a coupled stochastic model of precipitation and temperature gridded fields is calibrated and validated. The performance of the generator is then validated by comparing model statistics with observed statistics and by using the generated samples as input to the WATFLOOD™ hydrologic model. In the second stage of the experiment, in order to account for the systematic error of station observations and GEM fields, representative errors are to be added to the reference field using by-products of CaPA's variographic analysis. These by-products explain the variance of station observations and background errors.

  8. The value of a statistical life: a meta-analysis with a mixed effects regression model.

    PubMed

    Bellavance, François; Dionne, Georges; Lebeau, Martin

    2009-03-01

    The value of a statistical life (VSL) is a very controversial topic, but one which is essential to the optimization of governmental decisions. We see a great variability in the values obtained from different studies. The source of this variability needs to be understood, in order to offer public decision-makers better guidance in choosing a value and to set clearer guidelines for future research on the topic. This article presents a meta-analysis based on 39 observations obtained from 37 studies (from nine different countries) which all use a hedonic wage method to calculate the VSL. Our meta-analysis is innovative in that it is the first to use the mixed effects regression model [Raudenbush, S.W., 1994. Random effects models. In: Cooper, H., Hedges, L.V. (Eds.), The Handbook of Research Synthesis. Russel Sage Foundation, New York] to analyze studies on the value of a statistical life. We conclude that the variability found in the values studied stems in large part from differences in methodologies.

  9. Propensity Score Analysis: An Alternative Statistical Approach for HRD Researchers

    ERIC Educational Resources Information Center

    Keiffer, Greggory L.; Lane, Forrest C.

    2016-01-01

    Purpose: This paper aims to introduce matching in propensity score analysis (PSA) as an alternative statistical approach for researchers looking to make causal inferences using intact groups. Design/methodology/approach: An illustrative example demonstrated the varying results of analysis of variance, analysis of covariance and PSA on a heuristic…

  10. Systematic analysis of coding and noncoding DNA sequences using methods of statistical linguistics

    NASA Technical Reports Server (NTRS)

    Mantegna, R. N.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1995-01-01

    We compare the statistical properties of coding and noncoding regions in eukaryotic and viral DNA sequences by adapting two tests developed for the analysis of natural languages and symbolic sequences. The data set comprises all 30 sequences of length above 50 000 base pairs in GenBank Release No. 81.0, as well as the recently published sequences of C. elegans chromosome III (2.2 Mbp) and yeast chromosome XI (661 Kbp). We find that for the three chromosomes we studied the statistical properties of noncoding regions appear to be closer to those observed in natural languages than those of coding regions. In particular, (i) a n-tuple Zipf analysis of noncoding regions reveals a regime close to power-law behavior while the coding regions show logarithmic behavior over a wide interval, while (ii) an n-gram entropy measurement shows that the noncoding regions have a lower n-gram entropy (and hence a larger "n-gram redundancy") than the coding regions. In contrast to the three chromosomes, we find that for vertebrates such as primates and rodents and for viral DNA, the difference between the statistical properties of coding and noncoding regions is not pronounced and therefore the results of the analyses of the investigated sequences are less conclusive. After noting the intrinsic limitations of the n-gram redundancy analysis, we also briefly discuss the failure of the zeroth- and first-order Markovian models or simple nucleotide repeats to account fully for these "linguistic" features of DNA. Finally, we emphasize that our results by no means prove the existence of a "language" in noncoding DNA.

  11. Comparisons of non-Gaussian statistical models in DNA methylation analysis.

    PubMed

    Ma, Zhanyu; Teschendorff, Andrew E; Yu, Hong; Taghia, Jalil; Guo, Jun

    2014-06-16

    As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance.

  12. Comparisons of Non-Gaussian Statistical Models in DNA Methylation Analysis

    PubMed Central

    Ma, Zhanyu; Teschendorff, Andrew E.; Yu, Hong; Taghia, Jalil; Guo, Jun

    2014-01-01

    As a key regulatory mechanism of gene expression, DNA methylation patterns are widely altered in many complex genetic diseases, including cancer. DNA methylation is naturally quantified by bounded support data; therefore, it is non-Gaussian distributed. In order to capture such properties, we introduce some non-Gaussian statistical models to perform dimension reduction on DNA methylation data. Afterwards, non-Gaussian statistical model-based unsupervised clustering strategies are applied to cluster the data. Comparisons and analysis of different dimension reduction strategies and unsupervised clustering methods are presented. Experimental results show that the non-Gaussian statistical model-based methods are superior to the conventional Gaussian distribution-based method. They are meaningful tools for DNA methylation analysis. Moreover, among several non-Gaussian methods, the one that captures the bounded nature of DNA methylation data reveals the best clustering performance. PMID:24937687

  13. Experimental design matters for statistical analysis: how to handle blocking.

    PubMed

    Jensen, Signe M; Schaarschmidt, Frank; Onofri, Andrea; Ritz, Christian

    2018-03-01

    Nowadays, evaluation of the effects of pesticides often relies on experimental designs that involve multiple concentrations of the pesticide of interest or multiple pesticides at specific comparable concentrations and, possibly, secondary factors of interest. Unfortunately, the experimental design is often more or less neglected when analysing data. Two data examples were analysed using different modelling strategies. First, in a randomized complete block design, mean heights of maize treated with a herbicide and one of several adjuvants were compared. Second, translocation of an insecticide applied to maize as a seed treatment was evaluated using incomplete data from an unbalanced design with several layers of hierarchical sampling. Extensive simulations were carried out to further substantiate the effects of different modelling strategies. It was shown that results from suboptimal approaches (two-sample t-tests and ordinary ANOVA assuming independent observations) may be both quantitatively and qualitatively different from the results obtained using an appropriate linear mixed model. The simulations demonstrated that the different approaches may lead to differences in coverage percentages of confidence intervals and type 1 error rates, confirming that misleading conclusions can easily happen when an inappropriate statistical approach is chosen. To ensure that experimental data are summarized appropriately, avoiding misleading conclusions, the experimental design should duly be reflected in the choice of statistical approaches and models. We recommend that author guidelines should explicitly point out that authors need to indicate how the statistical analysis reflects the experimental design. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  14. Cost-Effectiveness Analysis: a proposal of new reporting standards in statistical analysis

    PubMed Central

    Bang, Heejung; Zhao, Hongwei

    2014-01-01

    Cost-effectiveness analysis (CEA) is a method for evaluating the outcomes and costs of competing strategies designed to improve health, and has been applied to a variety of different scientific fields. Yet, there are inherent complexities in cost estimation and CEA from statistical perspectives (e.g., skewness, bi-dimensionality, and censoring). The incremental cost-effectiveness ratio that represents the additional cost per one unit of outcome gained by a new strategy has served as the most widely accepted methodology in the CEA. In this article, we call for expanded perspectives and reporting standards reflecting a more comprehensive analysis that can elucidate different aspects of available data. Specifically, we propose that mean and median-based incremental cost-effectiveness ratios and average cost-effectiveness ratios be reported together, along with relevant summary and inferential statistics as complementary measures for informed decision making. PMID:24605979

  15. Statistical Tolerance and Clearance Analysis for Assembly

    NASA Technical Reports Server (NTRS)

    Lee, S.; Yi, C.

    1996-01-01

    Tolerance is inevitable because manufacturing exactly equal parts is known to be impossible. Furthermore, the specification of tolerances is an integral part of product design since tolerances directly affect the assemblability, functionality, manufacturability, and cost effectiveness of a product. In this paper, we present statistical tolerance and clearance analysis for the assembly. Our proposed work is expected to make the following contributions: (i) to help the designers to evaluate products for assemblability, (ii) to provide a new perspective to tolerance problems, and (iii) to provide a tolerance analysis tool which can be incorporated into a CAD or solid modeling system.

  16. Journal of Transportation and Statistics, Vol. 3, No. 2 : special issue on the statistical analysis and modeling of automotive emissions

    DOT National Transportation Integrated Search

    2000-09-01

    This special issue of the Journal of Transportation and Statistics is devoted to the statistical analysis and modeling of automotive emissions. It contains many of the papers presented in the mini-symposium last August and also includes one additiona...

  17. Dental Calculus Links Statistically to Angina Pectoris: 26-Year Observational Study

    PubMed Central

    2016-01-01

    Objectives Dental infections, such as periodontitis, associate with atherosclerosis and its complications. We studied a cohort followed-up since 1985 for incidence of angina pectoris with the hypothesis that calculus accumulation, proxy for poor oral hygiene, links to this symptom. Methods In our Swedish prospective cohort study of 1676 randomly selected subjects followed-up for 26 years. In 1985 all subjects underwent clinical oral examination and answered a questionnaire assessing background variables such as socio-economic status and pack-years of smoking. By using data from the Center of Epidemiology, Swedish National Board of Health and Welfare, Sweden we analyzed the association of oral health parameters with the prevalence of in-hospital verified angina pectoris classified according to the WHO International Classification of Diseases, using descriptive statistics and logistic regression analysis. Results Of the 1676 subjects, 51 (28 women/23 men) had been diagnosed with angina pectoris at a mean age of 59.8 ± 2.9 years. No difference was observed in age and gender between patients with angina pectoris and subjects without. Neither was there any difference in education level and smoking habits (in pack years), Gingival index and Plaque index between the groups. Angina pectoris patients had significantly more often their first maxillary molar tooth extracted (d. 16) than the other subjects (p = 0.02). Patients also showed significantly higher dental calculus index values than the subjects without angina pectoris (p = 0.01). Multiple regression analysis showed odds ratio 2.21 (95% confidence interval 1.17–4.17) in the association between high calculus index and angina pectoris (p = 0.015). Conclusion Our study hypothesis was confirmed by showing for the first time that high dental calculus score indeed associated with the incidence of angina pectoris in this cohort study. PMID:27336307

  18. Dental Calculus Links Statistically to Angina Pectoris: 26-Year Observational Study.

    PubMed

    Söder, Birgitta; Meurman, Jukka H; Söder, Per-Östen

    2016-01-01

    Dental infections, such as periodontitis, associate with atherosclerosis and its complications. We studied a cohort followed-up since 1985 for incidence of angina pectoris with the hypothesis that calculus accumulation, proxy for poor oral hygiene, links to this symptom. In our Swedish prospective cohort study of 1676 randomly selected subjects followed-up for 26 years. In 1985 all subjects underwent clinical oral examination and answered a questionnaire assessing background variables such as socio-economic status and pack-years of smoking. By using data from the Center of Epidemiology, Swedish National Board of Health and Welfare, Sweden we analyzed the association of oral health parameters with the prevalence of in-hospital verified angina pectoris classified according to the WHO International Classification of Diseases, using descriptive statistics and logistic regression analysis. Of the 1676 subjects, 51 (28 women/23 men) had been diagnosed with angina pectoris at a mean age of 59.8 ± 2.9 years. No difference was observed in age and gender between patients with angina pectoris and subjects without. Neither was there any difference in education level and smoking habits (in pack years), Gingival index and Plaque index between the groups. Angina pectoris patients had significantly more often their first maxillary molar tooth extracted (d. 16) than the other subjects (p = 0.02). Patients also showed significantly higher dental calculus index values than the subjects without angina pectoris (p = 0.01). Multiple regression analysis showed odds ratio 2.21 (95% confidence interval 1.17-4.17) in the association between high calculus index and angina pectoris (p = 0.015). Our study hypothesis was confirmed by showing for the first time that high dental calculus score indeed associated with the incidence of angina pectoris in this cohort study.

  19. Statistical Analysis in Dental Research Papers.

    DTIC Science & Technology

    1983-08-08

    AD A136, 019 STATISTICAL ANALYSS IN DENTAL RESEARCH PAPERS(Ul ARMY I INS OF DENTAL NESEARCH WASHINGTON DC L LORTON 0R AUG983 UNCL ASS FED F/S 6/5 IEE...BEFORE COSTL’,..G FORM 2. GOVT ACCESSION NO 3. RECIPIENTS CATALOG NUbER d Ste S. TYPE OF REPORT A PERIOD COVERED ,cistical Analysis in Dental Research ...Papers Submission of papaer Jan- Aue 1983 X!t AUTHOR(&) ". COTACO.RATN Lewis Lorton 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT

  20. Linkage analysis of systolic blood pressure: a score statistic and computer implementation

    PubMed Central

    Wang, Kai; Peng, Yingwei

    2003-01-01

    A genome-wide linkage analysis was conducted on systolic blood pressure using a score statistic. The randomly selected Replicate 34 of the simulated data was used. The score statistic was applied to the sibships derived from the general pedigrees. An add-on R program to GENEHUNTER was developed for this analysis and is freely available. PMID:14975145

  1. Modified Distribution-Free Goodness-of-Fit Test Statistic.

    PubMed

    Chun, So Yeon; Browne, Michael W; Shapiro, Alexander

    2018-03-01

    Covariance structure analysis and its structural equation modeling extensions have become one of the most widely used methodologies in social sciences such as psychology, education, and economics. An important issue in such analysis is to assess the goodness of fit of a model under analysis. One of the most popular test statistics used in covariance structure analysis is the asymptotically distribution-free (ADF) test statistic introduced by Browne (Br J Math Stat Psychol 37:62-83, 1984). The ADF statistic can be used to test models without any specific distribution assumption (e.g., multivariate normal distribution) of the observed data. Despite its advantage, it has been shown in various empirical studies that unless sample sizes are extremely large, this ADF statistic could perform very poorly in practice. In this paper, we provide a theoretical explanation for this phenomenon and further propose a modified test statistic that improves the performance in samples of realistic size. The proposed statistic deals with the possible ill-conditioning of the involved large-scale covariance matrices.

  2. Multi-trait analysis of genome-wide association summary statistics using MTAG.

    PubMed

    Turley, Patrick; Walters, Raymond K; Maghzian, Omeed; Okbay, Aysu; Lee, James J; Fontana, Mark Alan; Nguyen-Viet, Tuan Anh; Wedow, Robbee; Zacher, Meghan; Furlotte, Nicholas A; Magnusson, Patrik; Oskarsson, Sven; Johannesson, Magnus; Visscher, Peter M; Laibson, David; Cesarini, David; Neale, Benjamin M; Benjamin, Daniel J

    2018-02-01

    We introduce multi-trait analysis of GWAS (MTAG), a method for joint analysis of summary statistics from genome-wide association studies (GWAS) of different traits, possibly from overlapping samples. We apply MTAG to summary statistics for depressive symptoms (N eff  = 354,862), neuroticism (N = 168,105), and subjective well-being (N = 388,538). As compared to the 32, 9, and 13 genome-wide significant loci identified in the single-trait GWAS (most of which are themselves novel), MTAG increases the number of associated loci to 64, 37, and 49, respectively. Moreover, association statistics from MTAG yield more informative bioinformatics analyses and increase the variance explained by polygenic scores by approximately 25%, matching theoretical expectations.

  3. Combining optical remote sensing, agricultural statistics and field observations for culture recognition over a peri-urban region

    NASA Astrophysics Data System (ADS)

    Delbart, Nicolas; Emmanuelle, Vaudour; Fabienne, Maignan; Catherine, Ottlé; Jean-Marc, Gilliot

    2017-04-01

    This study explores the potential of multi-temporal optical remote sensing, with high revisit frequency, to derive missing information on agricultural calendar and crop types over the agricultural lands in the Versailles plain in the western Paris suburbs. This study comes besides past and ongoing studies on the use of radar and high spatial resolution optical remote sensing to monitor agricultural practices in this study area (e.g. Vaudour et al. 2014). Agricultural statistics, such as the Land Parcel Identification System (LPIS) for France, permit to know the nature of annual crops for each digitized declared field of this land parcel registry. However, within each declared field several cropped plots and a diversity of practices may exist, being marked by agricultural rotations which vary both spatially and temporally within it and differ from one year to the other. Even though the new LPIS to be released in 2016 is expected to describe individual plots within declared fields, its attributes may not enable to discriminate between winter and spring crops. Here we evaluate the potential of high observation frequency remote sensing to differentiate seasonal crops based essentially on the seasonality of the spectral properties. In particular, we use the Landsat data to spatially disaggregate the LPIS statistical data, on the basis of the analysis of the remote sensing spectral seasonality measured on a number of selected ground-observed fields. This work is carried out in the framework of the CNES TOSCA-PLEIADES-CO of the French Space Agency.

  4. Using MERRA Gridded Innovations for Quantifying Uncertainties in Analysis Fields and Diagnosing Observing System Inhomogeneities

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo; Redder, Christopher

    2010-01-01

    MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum

  5. Using MERRA Gridded Innovation for Quantifying Uncertainties in Analysis Fields and Diagnosing Observing System Inhomogeneities

    NASA Astrophysics Data System (ADS)

    da Silva, A.; Redder, C. R.

    2010-12-01

    MERRA is a NASA reanalysis for the satellite era using a major new version of the Goddard Earth Observing System Data Assimilation System Version 5 (GEOS-5). The Project focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time scales and places the NASA EOS suite of observations in a climate context. The characterization of uncertainty in reanalysis fields is a commonly requested feature by users of such data. While intercomparison with reference data sets is common practice for ascertaining the realism of the datasets, such studies typically are restricted to long term climatological statistics and seldom provide state dependent measures of the uncertainties involved. In principle, variational data assimilation algorithms have the ability of producing error estimates for the analysis variables (typically surface pressure, winds, temperature, moisture and ozone) consistent with the assumed background and observation error statistics. However, these "perceived error estimates" are expensive to obtain and are limited by the somewhat simplistic errors assumed in the algorithm. The observation minus forecast residuals (innovations) by-product of any assimilation system constitutes a powerful tool for estimating the systematic and random errors in the analysis fields. Unfortunately, such data is usually not readily available with reanalysis products, often requiring the tedious decoding of large datasets and not so-user friendly file formats. With MERRA we have introduced a gridded version of the observations/innovations used in the assimilation process, using the same grid and data formats as the regular datasets. Such dataset empowers the user with the ability of conveniently performing observing system related analysis and error estimates. The scope of this dataset will be briefly described. We will present a systematic analysis of MERRA innovation time series for the conventional observing system, including maximum

  6. A critique of the usefulness of inferential statistics in applied behavior analysis

    PubMed Central

    Hopkins, B. L.; Cole, Brian L.; Mason, Tina L.

    1998-01-01

    Researchers continue to recommend that applied behavior analysts use inferential statistics in making decisions about effects of independent variables on dependent variables. In many other approaches to behavioral science, inferential statistics are the primary means for deciding the importance of effects. Several possible uses of inferential statistics are considered. Rather than being an objective means for making decisions about effects, as is often claimed, inferential statistics are shown to be subjective. It is argued that the use of inferential statistics adds nothing to the complex and admittedly subjective nonstatistical methods that are often employed in applied behavior analysis. Attacks on inferential statistics that are being made, perhaps with increasing frequency, by those who are not behavior analysts, are discussed. These attackers are calling for banning the use of inferential statistics in research publications and commonly recommend that behavioral scientists should switch to using statistics aimed at interval estimation or the method of confidence intervals. Interval estimation is shown to be contrary to the fundamental assumption of behavior analysis that only individuals behave. It is recommended that authors who wish to publish the results of inferential statistics be asked to justify them as a means for helping us to identify any ways in which they may be useful. PMID:22478304

  7. Analysis of Coastal Dunes: A Remote Sensing and Statistical Approach.

    ERIC Educational Resources Information Center

    Jones, J. Richard

    1985-01-01

    Remote sensing analysis and statistical methods were used to analyze the coastal dunes of Plum Island, Massachusetts. The research methodology used provides an example of a student project for remote sensing, geomorphology, or spatial analysis courses at the university level. (RM)

  8. Statistical survey of day-side magnetospheric current flow using Cluster observations: magnetopause

    NASA Astrophysics Data System (ADS)

    Liebert, Evelyn; Nabert, Christian; Perschke, Christopher; Fornaçon, Karl-Heinz; Glassmeier, Karl-Heinz

    2017-05-01

    We present a statistical survey of current structures observed by the Cluster spacecraft at high-latitude day-side magnetopause encounters in the close vicinity of the polar cusps. Making use of the curlometer technique and the fluxgate magnetometer data, we calculate the 3-D current densities and investigate the magnetopause current direction, location, and magnitude during varying solar wind conditions. We find that the orientation of the day-side current structures is in accordance with existing magnetopause current models. Based on the ambient plasma properties, we distinguish five different transition regions at the magnetopause surface and observe distinctive current properties for each region. Additionally, we find that the location of currents varies with respect to the onset of the changes in the plasma environment during magnetopause crossings.

  9. Rare-Variant Association Analysis: Study Designs and Statistical Tests

    PubMed Central

    Lee, Seunggeung; Abecasis, Gonçalo R.; Boehnke, Michael; Lin, Xihong

    2014-01-01

    Despite the extensive discovery of trait- and disease-associated common variants, much of the genetic contribution to complex traits remains unexplained. Rare variants can explain additional disease risk or trait variability. An increasing number of studies are underway to identify trait- and disease-associated rare variants. In this review, we provide an overview of statistical issues in rare-variant association studies with a focus on study designs and statistical tests. We present the design and analysis pipeline of rare-variant studies and review cost-effective sequencing designs and genotyping platforms. We compare various gene- or region-based association tests, including burden tests, variance-component tests, and combined omnibus tests, in terms of their assumptions and performance. Also discussed are the related topics of meta-analysis, population-stratification adjustment, genotype imputation, follow-up studies, and heritability due to rare variants. We provide guidelines for analysis and discuss some of the challenges inherent in these studies and future research directions. PMID:24995866

  10. Meta-analysis and The Cochrane Collaboration: 20 years of the Cochrane Statistical Methods Group

    PubMed Central

    2013-01-01

    The Statistical Methods Group has played a pivotal role in The Cochrane Collaboration over the past 20 years. The Statistical Methods Group has determined the direction of statistical methods used within Cochrane reviews, developed guidance for these methods, provided training, and continued to discuss and consider new and controversial issues in meta-analysis. The contribution of Statistical Methods Group members to the meta-analysis literature has been extensive and has helped to shape the wider meta-analysis landscape. In this paper, marking the 20th anniversary of The Cochrane Collaboration, we reflect on the history of the Statistical Methods Group, beginning in 1993 with the identification of aspects of statistical synthesis for which consensus was lacking about the best approach. We highlight some landmark methodological developments that Statistical Methods Group members have contributed to in the field of meta-analysis. We discuss how the Group implements and disseminates statistical methods within The Cochrane Collaboration. Finally, we consider the importance of robust statistical methodology for Cochrane systematic reviews, note research gaps, and reflect on the challenges that the Statistical Methods Group faces in its future direction. PMID:24280020

  11. CORSSA: Community Online Resource for Statistical Seismicity Analysis

    NASA Astrophysics Data System (ADS)

    Zechar, J. D.; Hardebeck, J. L.; Michael, A. J.; Naylor, M.; Steacy, S.; Wiemer, S.; Zhuang, J.

    2011-12-01

    Statistical seismology is critical to the understanding of seismicity, the evaluation of proposed earthquake prediction and forecasting methods, and the assessment of seismic hazard. Unfortunately, despite its importance to seismology-especially to those aspects with great impact on public policy-statistical seismology is mostly ignored in the education of seismologists, and there is no central repository for the existing open-source software tools. To remedy these deficiencies, and with the broader goal to enhance the quality of statistical seismology research, we have begun building the Community Online Resource for Statistical Seismicity Analysis (CORSSA, www.corssa.org). We anticipate that the users of CORSSA will range from beginning graduate students to experienced researchers. More than 20 scientists from around the world met for a week in Zurich in May 2010 to kick-start the creation of CORSSA: the format and initial table of contents were defined; a governing structure was organized; and workshop participants began drafting articles. CORSSA materials are organized with respect to six themes, each will contain between four and eight articles. CORSSA now includes seven articles with an additional six in draft form along with forums for discussion, a glossary, and news about upcoming meetings, special issues, and recent papers. Each article is peer-reviewed and presents a balanced discussion, including illustrative examples and code snippets. Topics in the initial set of articles include: introductions to both CORSSA and statistical seismology, basic statistical tests and their role in seismology; understanding seismicity catalogs and their problems; basic techniques for modeling seismicity; and methods for testing earthquake predictability hypotheses. We have also begun curating a collection of statistical seismology software packages.

  12. Determination of Reference Catalogs for Meridian Observations Using Statistical Method

    NASA Astrophysics Data System (ADS)

    Li, Z. Y.

    2014-09-01

    The meridian observational data are useful for developing high-precision planetary ephemerides of the solar system. These historical data are provided by the jet propulsion laboratory (JPL) or the Institut De Mecanique Celeste Et De Calcul Des Ephemerides (IMCCE). However, we find that the reference systems (realized by the fundamental catalogs FK3 (Third Fundamental Catalogue), FK4 (Fourth Fundamental Catalogue), and FK5 (Fifth Fundamental Catalogue), or Hipparcos), to which the observations are referred, are not given explicitly for some sets of data. The incompleteness of information prevents us from eliminating the systematic effects due to the different fundamental catalogs. The purpose of this paper is to specify clearly the reference catalogs of these observations with the problems in their records by using the JPL DE421 ephemeris. The data for the corresponding planets in the geocentric celestial reference system (GCRS) obtained from the DE421 are transformed to the apparent places with different hypothesis regarding the reference catalogs. Then the validations of the hypothesis are tested by two kinds of statistical quantities which are used to indicate the significance of difference between the original and transformed data series. As a result, this method is proved to be effective for specifying the reference catalogs, and the missed information is determined unambiguously. Finally these meridian data are transformed to the GCRS for further applications in the development of planetary ephemerides.

  13. Recent advances in statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Heron, K. H.

    1992-01-01

    Statistical Energy Analysis (SEA) has traditionally been developed using modal summation and averaging approach, and has led to the need for many restrictive SEA assumptions. The assumption of 'weak coupling' is particularly unacceptable when attempts are made to apply SEA to structural coupling. It is now believed that this assumption is more a function of the modal formulation rather than a necessary formulation of SEA. The present analysis ignores this restriction and describes a wave approach to the calculation of plate-plate coupling loss factors. Predictions based on this method are compared with results obtained from experiments using point excitation on one side of an irregular six-sided box structure. Conclusions show that the use and calculation of infinite transmission coefficients is the way forward for the development of a purely predictive SEA code.

  14. Australasian Resuscitation In Sepsis Evaluation trial statistical analysis plan.

    PubMed

    Delaney, Anthony; Peake, Sandra L; Bellomo, Rinaldo; Cameron, Peter; Holdgate, Anna; Howe, Belinda; Higgins, Alisa; Presneill, Jeffrey; Webb, Steve

    2013-10-01

    The Australasian Resuscitation In Sepsis Evaluation (ARISE) study is an international, multicentre, randomised, controlled trial designed to evaluate the effectiveness of early goal-directed therapy compared with standard care for patients presenting to the ED with severe sepsis. In keeping with current practice, and taking into considerations aspects of trial design and reporting specific to non-pharmacologic interventions, this document outlines the principles and methods for analysing and reporting the trial results. The document is prepared prior to completion of recruitment into the ARISE study, without knowledge of the results of the interim analysis conducted by the data safety and monitoring committee and prior to completion of the two related international studies. The statistical analysis plan was designed by the ARISE chief investigators, and reviewed and approved by the ARISE steering committee. The data collected by the research team as specified in the study protocol, and detailed in the study case report form were reviewed. Information related to baseline characteristics, characteristics of delivery of the trial interventions, details of resuscitation and other related therapies, and other relevant data are described with appropriate comparisons between groups. The primary, secondary and tertiary outcomes for the study are defined, with description of the planned statistical analyses. A statistical analysis plan was developed, along with a trial profile, mock-up tables and figures. A plan for presenting baseline characteristics, microbiological and antibiotic therapy, details of the interventions, processes of care and concomitant therapies, along with adverse events are described. The primary, secondary and tertiary outcomes are described along with identification of subgroups to be analysed. A statistical analysis plan for the ARISE study has been developed, and is available in the public domain, prior to the completion of recruitment into the

  15. Statistical analysis of the horizontal divergent flow in emerging solar active regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toriumi, Shin; Hayashi, Keiji; Yokoyama, Takaaki, E-mail: shin.toriumi@nao.ac.jp

    Solar active regions (ARs) are thought to be formed by magnetic fields from the convection zone. Our flux emergence simulations revealed that a strong horizontal divergent flow (HDF) of unmagnetized plasma appears at the photosphere before the flux begins to emerge. In our earlier study, we analyzed HMI data for a single AR and confirmed presence of this precursor plasma flow in the actual Sun. In this paper, as an extension of our earlier study, we conducted a statistical analysis of the HDFs to further investigate their characteristics and better determine the properties. From SDO/HMI data, we picked up 23more » flux emergence events over a period of 14 months, the total flux of which ranges from 10{sup 20} to 10{sup 22} Mx. Out of 23 selected events, 6 clear HDFs were detected by the method we developed in our earlier study, and 7 HDFs detected by visual inspection were added to this statistic analysis. We found that the duration of the HDF is on average 61 minutes and the maximum HDF speed is on average 3.1 km s{sup –1}. We also estimated the rising speed of the subsurface magnetic flux to be 0.6-1.4 km s{sup –1}. These values are highly consistent with our previous one-event analysis as well as our simulation results. The observation results lead us to the conclusion that the HDF is a rather common feature in the earliest phase of AR emergence. Moreover, our HDF analysis has the capability of determining the subsurface properties of emerging fields that cannot be directly measured.« less

  16. HYPOTHESIS SETTING AND ORDER STATISTIC FOR ROBUST GENOMIC META-ANALYSIS.

    PubMed

    Song, Chi; Tseng, George C

    2014-01-01

    Meta-analysis techniques have been widely developed and applied in genomic applications, especially for combining multiple transcriptomic studies. In this paper, we propose an order statistic of p-values ( r th ordered p-value, rOP) across combined studies as the test statistic. We illustrate different hypothesis settings that detect gene markers differentially expressed (DE) "in all studies", "in the majority of studies", or "in one or more studies", and specify rOP as a suitable method for detecting DE genes "in the majority of studies". We develop methods to estimate the parameter r in rOP for real applications. Statistical properties such as its asymptotic behavior and a one-sided testing correction for detecting markers of concordant expression changes are explored. Power calculation and simulation show better performance of rOP compared to classical Fisher's method, Stouffer's method, minimum p-value method and maximum p-value method under the focused hypothesis setting. Theoretically, rOP is found connected to the naïve vote counting method and can be viewed as a generalized form of vote counting with better statistical properties. The method is applied to three microarray meta-analysis examples including major depressive disorder, brain cancer and diabetes. The results demonstrate rOP as a more generalizable, robust and sensitive statistical framework to detect disease-related markers.

  17. Measuring the Success of an Academic Development Programme: A Statistical Analysis

    ERIC Educational Resources Information Center

    Smith, L. C.

    2009-01-01

    This study uses statistical analysis to estimate the impact of first-year academic development courses in microeconomics, statistics, accountancy, and information systems, offered by the University of Cape Town's Commerce Academic Development Programme, on students' graduation performance relative to that achieved by mainstream students. The data…

  18. Using NASA Earth Observing Satellites and Statistical Model Analysis to Monitor Vegetation and Habitat Rehabilitation in Southwest Virginia's Reclaimed Mine Lands

    NASA Astrophysics Data System (ADS)

    Tate, Z.; Dusenge, D.; Elliot, T. S.; Hafashimana, P.; Medley, S.; Porter, R. P.; Rajappan, R.; Rodriguez, P.; Spangler, J.; Swaminathan, R. S.; VanGundy, R. D.

    2014-12-01

    The majority of the population in southwest Virginia depends economically on coal mining. In 2011, coal mining generated $2,000,000 in tax revenue to Wise County alone. However, surface mining completely removes land cover and leaves the land exposed to erosion. The destruction of the forest cover directly impacts local species, as some are displaced and others perish in the mining process. Even though surface mining has a negative impact on the environment, land reclamation efforts are in place to either restore mined areas to their natural vegetated state or to transform these areas for economic purposes. This project aimed to monitor the progress of land reclamation and the effect on the return of local species. By incorporating NASA Earth observations, such as Landsat 8 Operational Land Imager (OLI) and Landsat 5 Thematic Mapper (TM), re-vegetation process in reclamation sites was estimated through a Time series analysis using the Normalized Difference Vegetation Index (NDVI). A continuous source of cloud free images was accomplished by utilizing the Spatial and Temporal Adaptive Reflectance Fusion Model (STAR-FM). This model developed synthetic Landsat imagery by integrating the high-frequency temporal information from Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and high-resolution spatial information from Landsat sensors In addition, the Maximum Entropy Modeling (MaxENT), an eco-niche model was used to estimate the adaptation of animal species to the newly formed habitats. By combining factors such as land type, precipitation from Tropical Rainfall Measuring Mission (TRMM), and slope from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the MaxENT model produced a statistical analysis on the probability of species habitat. Altogether, the project compiled the ecological information which can be used to identify suitable habitats for local species in reclaimed mined areas.

  19. Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, Ronald M.

    2015-01-01

    The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.

  20. Analysis of Variance in Statistical Image Processing

    NASA Astrophysics Data System (ADS)

    Kurz, Ludwik; Hafed Benteftifa, M.

    1997-04-01

    A key problem in practical image processing is the detection of specific features in a noisy image. Analysis of variance (ANOVA) techniques can be very effective in such situations, and this book gives a detailed account of the use of ANOVA in statistical image processing. The book begins by describing the statistical representation of images in the various ANOVA models. The authors present a number of computationally efficient algorithms and techniques to deal with such problems as line, edge, and object detection, as well as image restoration and enhancement. By describing the basic principles of these techniques, and showing their use in specific situations, the book will facilitate the design of new algorithms for particular applications. It will be of great interest to graduate students and engineers in the field of image processing and pattern recognition.

  1. Sensitivity analysis of observed reflectivity to ice particle surface roughness using MISR satellite observations

    NASA Astrophysics Data System (ADS)

    Bell, A.; Hioki, S.; Wang, Y.; Yang, P.; Di Girolamo, L.

    2016-12-01

    Previous studies found that including ice particle surface roughness in forward light scattering calculations significantly reduces the differences between observed and simulated polarimetric and radiometric observations. While it is suggested that some degree of roughness is desirable, the appropriate degree of surface roughness to be assumed in operational cloud property retrievals and the sensitivity of retrieval products to this assumption remains uncertain. In an effort to extricate this ambiguity, we will present a sensitivity analysis of space-borne multi-angle observations of reflectivity, to varying degrees of surface roughness. This process is two fold. First, sampling information and statistics of Multi-angle Imaging SpectroRadiometer (MISR) sensor data aboard the Terra platform, will be used to define the most coming viewing observation geometries. Using these defined geometries, reflectivity will be simulated for multiple degrees of roughness using results from adding-doubling radiative transfer simulations. Sensitivity of simulated reflectivity to surface roughness can then be quantified, thus yielding a more robust retrieval system. Secondly, sensitivity of the inverse problem will be analyzed. Spherical albedo values will be computed by feeding blocks of MISR data comprising cloudy pixels over ocean into the retrieval system, with assumed values of surface roughness. The sensitivity of spherical albedo to the inclusion of surface roughness can then be quantified, and the accuracy of retrieved parameters can be determined.

  2. Applications of statistics to medical science, IV survival analysis.

    PubMed

    Watanabe, Hiroshi

    2012-01-01

    The fundamental principles of survival analysis are reviewed. In particular, the Kaplan-Meier method and a proportional hazard model are discussed. This work is the last part of a series in which medical statistics are surveyed.

  3. Some issues in the statistical analysis of vehicle emissions

    DOT National Transportation Integrated Search

    2000-09-01

    Some of the issues complicating the statistical analysis of vehicle emissions and the effectiveness of emissions control programs are presented in this article. Issues discussed include: the variability of inter- and intra-vehicle emissions; the skew...

  4. A statistical study of EMIC waves observed by Cluster: 2. Associated plasma conditions

    NASA Astrophysics Data System (ADS)

    Allen, R. C.; Zhang, J.-C.; Kistler, L. M.; Spence, H. E.; Lin, R.-L.; Klecker, B.; Dunlop, M. W.; André, M.; Jordanova, V. K.

    2016-07-01

    This is the second in a pair of papers discussing a statistical study of electromagnetic ion cyclotron (EMIC) waves detected during 10 years (2001-2010) of Cluster observations. In the first paper, an analysis of EMIC wave properties (i.e., wave power, polarization, normal angle, and wave propagation angle) is presented in both the magnetic latitude (MLAT)-distance as well as magnetic local time (MLT)-L frames. This paper focuses on the distribution of EMIC wave-associated plasma conditions as well as two EMIC wave generation proxies (the electron plasma frequency to gyrofrequency ratio proxy and the linear theory proxy) in these same frames. Based on the distributions of hot H+ anisotropy, electron and hot H+ density measurements, hot H+ parallel plasma beta, and the calculated wave generation proxies, three source regions of EMIC waves appear to exist: (1) the well-known overlap between cold plasmaspheric or plume populations with hot anisotropic ring current populations in the postnoon to dusk MLT region; (2) regions all along the dayside magnetosphere at high L shells related to dayside magnetospheric compression and drift shell splitting; and (3) off-equator regions possibly associated with the Shabansky orbits in the dayside magnetosphere.

  5. Statistical analysis of experimental data for mathematical modeling of physical processes in the atmosphere

    NASA Astrophysics Data System (ADS)

    Karpushin, P. A.; Popov, Yu B.; Popova, A. I.; Popova, K. Yu; Krasnenko, N. P.; Lavrinenko, A. V.

    2017-11-01

    In this paper, the probabilities of faultless operation of aerologic stations are analyzed, the hypothesis of normality of the empirical data required for using the Kalman filter algorithms is tested, and the spatial correlation functions of distributions of meteorological parameters are determined. The results of a statistical analysis of two-term (0, 12 GMT) radiosonde observations of the temperature and wind velocity components at some preset altitude ranges in the troposphere in 2001-2016 are presented. These data can be used in mathematical modeling of physical processes in the atmosphere.

  6. Statistics of EMIC Rising Tones Observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Sigsbee, K. M.; Kletzing, C.; Smith, C. W.; Santolik, O.

    2017-12-01

    We will present results from an ongoing statistical study of electromagnetic ion cyclotron (EMIC) wave rising tones observed by the Van Allen Probes. Using data from the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) fluxgate magnetometer, we have identified orbits by both Van Allen Probes with EMIC wave events from the start of the mission in fall 2012 through fall 2016. Orbits with EMIC wave events were further examined for evidence of rising tones. Most EMIC wave rising tones were found during H+ band EMIC wave events. In Fourier time-frequency power spectrograms of the fluxgate magnetometer data, H+ band rising tones generally took the form of triggered emission type events, where the discrete rising tone structures rapidly rise in frequency out of the main band of observed H+ EMIC waves. A smaller percentage of EMIC wave rising tone events were found in the He+ band, where rising tones may appear as discrete structures with a positive slope embedded within the main band of observed He+ EMIC waves, similar in appearance to whistler-mode chorus elements. Understanding the occurrence rate and properties of rising tone EMIC waves will provide observational context for theoretical studies indicating that EMIC waves exhibiting non-linear behavior, such as rising tones, may be more effective at scattering radiation belt electrons than ordinary EMIC waves.

  7. Operational planning using Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS)

    NASA Astrophysics Data System (ADS)

    O'Connor, Alison; Kirtman, Benjamin; Harrison, Scott; Gorman, Joe

    2016-05-01

    The US Navy faces several limitations when planning operations in regard to forecasting environmental conditions. Currently, mission analysis and planning tools rely heavily on short-term (less than a week) forecasts or long-term statistical climate products. However, newly available data in the form of weather forecast ensembles provides dynamical and statistical extended-range predictions that can produce more accurate predictions if ensemble members can be combined correctly. Charles River Analytics is designing the Climatological Observations for Maritime Prediction and Analysis Support Service (COMPASS), which performs data fusion over extended-range multi-model ensembles, such as the North American Multi-Model Ensemble (NMME), to produce a unified forecast for several weeks to several seasons in the future. We evaluated thirty years of forecasts using machine learning to select predictions for an all-encompassing and superior forecast that can be used to inform the Navy's decision planning process.

  8. Statistical Analysis of Large Scale Structure by the Discrete Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Pando, Jesus

    1997-10-01

    The discrete wavelet transform (DWT) is developed as a general statistical tool for the study of large scale structures (LSS) in astrophysics. The DWT is used in all aspects of structure identification including cluster analysis, spectrum and two-point correlation studies, scale-scale correlation analysis and to measure deviations from Gaussian behavior. The techniques developed are demonstrated on 'academic' signals, on simulated models of the Lymanα (Lyα) forests, and on observational data of the Lyα forests. This technique can detect clustering in the Ly-α clouds where traditional techniques such as the two-point correlation function have failed. The position and strength of these clusters in both real and simulated data is determined and it is shown that clusters exist on scales as large as at least 20 h-1 Mpc at significance levels of 2-4 σ. Furthermore, it is found that the strength distribution of the clusters can be used to distinguish between real data and simulated samples even where other traditional methods have failed to detect differences. Second, a method for measuring the power spectrum of a density field using the DWT is developed. All common features determined by the usual Fourier power spectrum can be calculated by the DWT. These features, such as the index of a power law or typical scales, can be detected even when the samples are geometrically complex, the samples are incomplete, or the mean density on larger scales is not known (the infrared uncertainty). Using this method the spectra of Ly-α forests in both simulated and real samples is calculated. Third, a method for measuring hierarchical clustering is introduced. Because hierarchical evolution is characterized by a set of rules of how larger dark matter halos are formed by the merging of smaller halos, scale-scale correlations of the density field should be one of the most sensitive quantities in determining the merging history. We show that these correlations can be completely

  9. Extension of the SIM Hydrometeorological Reanalysis Over the Entire 20th Century by Combination of Observations and Statistical Downscaling

    NASA Astrophysics Data System (ADS)

    Minvielle, M.; Céron, J.; Page, C.

    2013-12-01

    The SAFRAN-ISBA-MODCOU (SIM) system is a combination of three different components: an atmospheric analysis system (SAFRAN) providing the atmospheric forcing for a land surface model (ISBA) that computes surface water and energy budgets and a hydrological model (MODCOU) that provides river flows and level of several aquifers. The variables generated by the SIM chain constitute the SIM reanalysis and the current version only covers the 1958-2012 period. However, long climate datasets are required for evaluation and verification of climate hindcasts/forecasts and to isolate the contribution of natural decadal variability from that of anthropogenic forcing to climate variations. The aim of this work is to extend of the fine-mesh SIM reanalysis to the entire 20th century, especially focusing on temperature and rainfall over France, but also soil wetness and river flows. This extension will first allow a detailed investigation of the influence of decadal variability on France at very fine spatial scales and will provide crucial information for climate model evaluation. Before 1958, the density of available observations from Météo-France necessary to force SAFRAN (rainfall, snow, wind, temperature, humidity, cloudiness) is much lower than today, and not sufficient to produce a correct SIM reanalysis. That's why is has been decided to use the available atmospheric observations over the past decades combined to a statistical downscaling algorithm to overcome the lack of observations. The DSCLIM software package implemented by the CERFACS and using a weather typing based statistical methodology will be used as statistical downscaling method to reconstruct the atmospheric variables necessary to force the ISBA-MODCOU hydrological component. The first stage of this work was to estimate and compare the bias and strengths of the two approaches in their ability to reconstruct the past decades. In this sense, SIM hydro-meteorological experiments were performed for some recent

  10. Comparative analysis of atmosphere temperature variability for Northern Eurasia based on the Reanalysis and in-situ observed data

    NASA Astrophysics Data System (ADS)

    Shulgina, T.; Genina, E.; Gordov, E.; Nikitchuk, K.

    2009-04-01

    At present numerous data archives which include meteorological observations as well as climate processes modeling data are available for Earth Science specialists. Methods of mathematical statistics are widely used for their processing and analysis. In many cases they represent the only way of quantitative assessment of the meteorological and climatic information. Unified set of analysis methods allows us to compare climatic characteristics calculated on the basis of different datasets with the purpose of performing more detailed analysis of climate dynamics for both regional and global levels. The report presents the results of comparative analysis of atmosphere temperature behavior for the Northern Eurasia territory for the period from 1979 to 2004 based on the NCEP/NCAR Reanalysis, NCEP/DOE Reanalysis AMIP II, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 Reanalysis data and observation data obtained from meteorological stations of the former Soviet Union. Statistical processing of atmosphere temperature data included analysis of time series homogeneity of climate indices approved by WMO, such as "Number of frost days", "Number of summer days", "Number of icing days", "Number of tropical nights", etc. by means of parametric methods of mathematical statistics (Fisher and Student tests). That allowed conducting comprehensive research of spatio-temporal features of the atmosphere temperature. Analysis of the atmosphere temperature dynamics revealed inhomogeneity of the data obtained for large observation intervals. Particularly, analysis performed for the period 1979 - 2004 showed the significant increase of the number of frost and icing days approximately by 1 day for every 2 years and decrease roughly by 1 day for 2 years for the number of summer days. Also it should be mentioned that the growth period mean temperature have increased by 1.5 - 2° C for the time period being considered. The usage of different Reanalysis datasets in conjunction with in-situ observed

  11. Statistical validation of earthquake related observations

    NASA Astrophysics Data System (ADS)

    Kossobokov, V. G.

    2011-12-01

    The confirmed fractal nature of earthquakes and their distribution in space and time implies that many traditional estimations of seismic hazard (from term-less to short-term ones) are usually based on erroneous assumptions of easy tractable or, conversely, delicately-designed models. The widespread practice of deceptive modeling considered as a "reasonable proxy" of the natural seismic process leads to seismic hazard assessment of unknown quality, which errors propagate non-linearly into inflicted estimates of risk and, eventually, into unexpected societal losses of unacceptable level. The studies aimed at forecast/prediction of earthquakes must include validation in the retro- (at least) and, eventually, in prospective tests. In the absence of such control a suggested "precursor/signal" remains a "candidate", which link to target seismic event is a model assumption. Predicting in advance is the only decisive test of forecast/predictions and, therefore, the score-card of any "established precursor/signal" represented by the empirical probabilities of alarms and failures-to-predict achieved in prospective testing must prove statistical significance rejecting the null-hypothesis of random coincidental occurrence in advance target earthquakes. We reiterate suggesting so-called "Seismic Roulette" null-hypothesis as the most adequate undisturbed random alternative accounting for the empirical spatial distribution of earthquakes: (i) Consider a roulette wheel with as many sectors as the number of earthquake locations from a sample catalog representing seismic locus, a sector per each location and (ii) make your bet according to prediction (i.e., determine, which locations are inside area of alarm, and put one chip in each of the corresponding sectors); (iii) Nature turns the wheel; (iv) accumulate statistics of wins and losses along with the number of chips spent. If a precursor in charge of prediction exposes an imperfection of Seismic Roulette then, having in mind

  12. Collagen morphology and texture analysis: from statistics to classification

    PubMed Central

    Mostaço-Guidolin, Leila B.; Ko, Alex C.-T.; Wang, Fei; Xiang, Bo; Hewko, Mark; Tian, Ganghong; Major, Arkady; Shiomi, Masashi; Sowa, Michael G.

    2013-01-01

    In this study we present an image analysis methodology capable of quantifying morphological changes in tissue collagen fibril organization caused by pathological conditions. Texture analysis based on first-order statistics (FOS) and second-order statistics such as gray level co-occurrence matrix (GLCM) was explored to extract second-harmonic generation (SHG) image features that are associated with the structural and biochemical changes of tissue collagen networks. Based on these extracted quantitative parameters, multi-group classification of SHG images was performed. With combined FOS and GLCM texture values, we achieved reliable classification of SHG collagen images acquired from atherosclerosis arteries with >90% accuracy, sensitivity and specificity. The proposed methodology can be applied to a wide range of conditions involving collagen re-modeling, such as in skin disorders, different types of fibrosis and muscular-skeletal diseases affecting ligaments and cartilage. PMID:23846580

  13. FADTTS: functional analysis of diffusion tensor tract statistics.

    PubMed

    Zhu, Hongtu; Kong, Linglong; Li, Runze; Styner, Martin; Gerig, Guido; Lin, Weili; Gilmore, John H

    2011-06-01

    The aim of this paper is to present a functional analysis of a diffusion tensor tract statistics (FADTTS) pipeline for delineating the association between multiple diffusion properties along major white matter fiber bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these white matter tract properties in various diffusion tensor imaging studies. The FADTTS integrates five statistical tools: (i) a multivariate varying coefficient model for allowing the varying coefficient functions in terms of arc length to characterize the varying associations between fiber bundle diffusion properties and a set of covariates, (ii) a weighted least squares estimation of the varying coefficient functions, (iii) a functional principal component analysis to delineate the structure of the variability in fiber bundle diffusion properties, (iv) a global test statistic to test hypotheses of interest, and (v) a simultaneous confidence band to quantify the uncertainty in the estimated coefficient functions. Simulated data are used to evaluate the finite sample performance of FADTTS. We apply FADTTS to investigate the development of white matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment. FADTTS can be used to facilitate the understanding of normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles. The advantages of FADTTS compared with the other existing approaches are that they are capable of modeling the structured inter-subject variability, testing the joint effects, and constructing their simultaneous confidence bands. However, FADTTS is not crucial for estimation and reduces to the functional analysis method for the single measure. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Statistical process control methods allow the analysis and improvement of anesthesia care.

    PubMed

    Fasting, Sigurd; Gisvold, Sven E

    2003-10-01

    Quality aspects of the anesthetic process are reflected in the rate of intraoperative adverse events. The purpose of this report is to illustrate how the quality of the anesthesia process can be analyzed using statistical process control methods, and exemplify how this analysis can be used for quality improvement. We prospectively recorded anesthesia-related data from all anesthetics for five years. The data included intraoperative adverse events, which were graded into four levels, according to severity. We selected four adverse events, representing important quality and safety aspects, for statistical process control analysis. These were: inadequate regional anesthesia, difficult emergence from general anesthesia, intubation difficulties and drug errors. We analyzed the underlying process using 'p-charts' for statistical process control. In 65,170 anesthetics we recorded adverse events in 18.3%; mostly of lesser severity. Control charts were used to define statistically the predictable normal variation in problem rate, and then used as a basis for analysis of the selected problems with the following results: Inadequate plexus anesthesia: stable process, but unacceptably high failure rate; Difficult emergence: unstable process, because of quality improvement efforts; Intubation difficulties: stable process, rate acceptable; Medication errors: methodology not suited because of low rate of errors. By applying statistical process control methods to the analysis of adverse events, we have exemplified how this allows us to determine if a process is stable, whether an intervention is required, and if quality improvement efforts have the desired effect.

  15. Effect of the absolute statistic on gene-sampling gene-set analysis methods.

    PubMed

    Nam, Dougu

    2017-06-01

    Gene-set enrichment analysis and its modified versions have commonly been used for identifying altered functions or pathways in disease from microarray data. In particular, the simple gene-sampling gene-set analysis methods have been heavily used for datasets with only a few sample replicates. The biggest problem with this approach is the highly inflated false-positive rate. In this paper, the effect of absolute gene statistic on gene-sampling gene-set analysis methods is systematically investigated. Thus far, the absolute gene statistic has merely been regarded as a supplementary method for capturing the bidirectional changes in each gene set. Here, it is shown that incorporating the absolute gene statistic in gene-sampling gene-set analysis substantially reduces the false-positive rate and improves the overall discriminatory ability. Its effect was investigated by power, false-positive rate, and receiver operating curve for a number of simulated and real datasets. The performances of gene-set analysis methods in one-tailed (genome-wide association study) and two-tailed (gene expression data) tests were also compared and discussed.

  16. A Meta-analysis of Gender Differences in Applied Statistics Achievement.

    ERIC Educational Resources Information Center

    Schram, Christine M.

    1996-01-01

    A meta-analysis of gender differences examined statistics achievement in postsecondary level psychology, education, and business courses. Analysis of 13 articles (18 samples) found that undergraduate males had an advantage, outscoring females when the outcome was a series of examinations. Females outscored males when the outcome was total course…

  17. Statistical Models for the Analysis of Zero-Inflated Pain Intensity Numeric Rating Scale Data.

    PubMed

    Goulet, Joseph L; Buta, Eugenia; Bathulapalli, Harini; Gueorguieva, Ralitza; Brandt, Cynthia A

    2017-03-01

    Pain intensity is often measured in clinical and research settings using the 0 to 10 numeric rating scale (NRS). NRS scores are recorded as discrete values, and in some samples they may display a high proportion of zeroes and a right-skewed distribution. Despite this, statistical methods for normally distributed data are frequently used in the analysis of NRS data. We present results from an observational cross-sectional study examining the association of NRS scores with patient characteristics using data collected from a large cohort of 18,935 veterans in Department of Veterans Affairs care diagnosed with a potentially painful musculoskeletal disorder. The mean (variance) NRS pain was 3.0 (7.5), and 34% of patients reported no pain (NRS = 0). We compared the following statistical models for analyzing NRS scores: linear regression, generalized linear models (Poisson and negative binomial), zero-inflated and hurdle models for data with an excess of zeroes, and a cumulative logit model for ordinal data. We examined model fit, interpretability of results, and whether conclusions about the predictor effects changed across models. In this study, models that accommodate zero inflation provided a better fit than the other models. These models should be considered for the analysis of NRS data with a large proportion of zeroes. We examined and analyzed pain data from a large cohort of veterans with musculoskeletal disorders. We found that many reported no current pain on the NRS on the diagnosis date. We present several alternative statistical methods for the analysis of pain intensity data with a large proportion of zeroes. Published by Elsevier Inc.

  18. Statistical Analysis of speckle noise reduction techniques for echocardiographic Images

    NASA Astrophysics Data System (ADS)

    Saini, Kalpana; Dewal, M. L.; Rohit, Manojkumar

    2011-12-01

    Echocardiography is the safe, easy and fast technology for diagnosing the cardiac diseases. As in other ultrasound images these images also contain speckle noise. In some cases this speckle noise is useful such as in motion detection. But in general noise removal is required for better analysis of the image and proper diagnosis. Different Adaptive and anisotropic filters are included for statistical analysis. Statistical parameters such as Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR), and Root Mean Square Error (RMSE) calculated for performance measurement. One more important aspect that there may be blurring during speckle noise removal. So it is prefered that filter should be able to enhance edges during noise removal.

  19. Detector noise statistics in the non-linear regime

    NASA Technical Reports Server (NTRS)

    Shopbell, P. L.; Bland-Hawthorn, J.

    1992-01-01

    The statistical behavior of an idealized linear detector in the presence of threshold and saturation levels is examined. It is assumed that the noise is governed by the statistical fluctuations in the number of photons emitted by the source during an exposure. Since physical detectors cannot have infinite dynamic range, our model illustrates that all devices have non-linear regimes, particularly at high count rates. The primary effect is a decrease in the statistical variance about the mean signal due to a portion of the expected noise distribution being removed via clipping. Higher order statistical moments are also examined, in particular, skewness and kurtosis. In principle, the expected distortion in the detector noise characteristics can be calibrated using flatfield observations with count rates matched to the observations. For this purpose, some basic statistical methods that utilize Fourier analysis techniques are described.

  20. Latitude Dependence of Low-Altitude O+ Ion Upflow: Statistical Results From FAST Observations

    NASA Astrophysics Data System (ADS)

    Zhao, K.; Chen, K. W.; Jiang, Y.; Chen, W. J.; Huang, L. F.; Fu, S.

    2017-09-01

    We introduce a statistical model to explain the latitudinal dependence of the occurrence rate and energy flux of the ionospheric escaping ions, taking advantage of advances in the spatial coverage and accuracy of FAST observations. We use a weighted piecewise Gaussian function to fit the dependence, because two probability peaks are located in the dayside polar cusp source region and the nightside auroral oval zone source region. The statistical results show that (1) the Gaussian Mixture Model suitably describes the dayside polar cusp upflows, and the dayside and the nightside auroral oval zone upflows. (2) The magnetic latitudes of the ionospheric upflow source regions expand toward the magnetic equator as Kp increases, from 81° magnetic latitude (MLAT) (cusp upflows) and 63° MLAT (auroral oval upflows) during quiet times to 76° MLAT and 61° MLAT, respectively. (3) The dayside polar cusp region provides only 3-5% O+ upflows among all the source regions, which include the dayside auroral oval zone, dayside polar cusp, nightside auroral oval zone, and even the polar cap. However, observations show that more than 70% of upflows occur in the auroral oval zone and that the occurrence probability increases at the altitudes of 3500-4200 km, which is considered to be the lower altitude boundary of ion beams. This observed result suggests that soft electron precipitation and transverse wave heating are the most efficient ion energization/acceleration mechanisms at the altitudes of FAST orbit, and that the parallel acceleration caused by field-aligned potential drops becomes effective above that altitude.

  1. Statistical Analysis of Time-Series from Monitoring of Active Volcanic Vents

    NASA Astrophysics Data System (ADS)

    Lachowycz, S.; Cosma, I.; Pyle, D. M.; Mather, T. A.; Rodgers, M.; Varley, N. R.

    2016-12-01

    Despite recent advances in the collection and analysis of time-series from volcano monitoring, and the resulting insights into volcanic processes, challenges remain in forecasting and interpreting activity from near real-time analysis of monitoring data. Statistical methods have potential to characterise the underlying structure and facilitate intercomparison of these time-series, and so inform interpretation of volcanic activity. We explore the utility of multiple statistical techniques that could be widely applicable to monitoring data, including Shannon entropy and detrended fluctuation analysis, by their application to various data streams from volcanic vents during periods of temporally variable activity. Each technique reveals changes through time in the structure of some of the data that were not apparent from conventional analysis. For example, we calculate the Shannon entropy (a measure of the randomness of a signal) of time-series from the recent dome-forming eruptions of Volcán de Colima (Mexico) and Soufrière Hills (Montserrat). The entropy of real-time seismic measurements and the count rate of certain volcano-seismic event types from both volcanoes is found to be temporally variable, with these data generally having higher entropy during periods of lava effusion and/or larger explosions. In some instances, the entropy shifts prior to or coincident with changes in seismic or eruptive activity, some of which were not clearly recognised by real-time monitoring. Comparison with other statistics demonstrates the sensitivity of the entropy to the data distribution, but that it is distinct from conventional statistical measures such as coefficient of variation. We conclude that each analysis technique examined could provide valuable insights for interpretation of diverse monitoring time-series.

  2. Objective analysis of observational data from the FGGE observing systems

    NASA Technical Reports Server (NTRS)

    Baker, W.; Edelmann, D.; Iredell, M.; Han, D.; Jakkempudi, S.

    1981-01-01

    An objective analysis procedure for updating the GLAS second and fourth order general atmospheric circulation models using observational data from the first GARP global experiment is described. The objective analysis procedure is based on a successive corrections method and the model is updated in a data assimilation cycle. Preparation of the observational data for analysis and the objective analysis scheme are described. The organization of the program and description of the required data sets are presented. The program logic and detailed descriptions of each subroutine are given.

  3. On Conceptual Analysis as the Primary Qualitative Approach to Statistics Education Research in Psychology

    ERIC Educational Resources Information Center

    Petocz, Agnes; Newbery, Glenn

    2010-01-01

    Statistics education in psychology often falls disappointingly short of its goals. The increasing use of qualitative approaches in statistics education research has extended and enriched our understanding of statistical cognition processes, and thus facilitated improvements in statistical education and practices. Yet conceptual analysis, a…

  4. Classification of Malaysia aromatic rice using multivariate statistical analysis

    NASA Astrophysics Data System (ADS)

    Abdullah, A. H.; Adom, A. H.; Shakaff, A. Y. Md; Masnan, M. J.; Zakaria, A.; Rahim, N. A.; Omar, O.

    2015-05-01

    Aromatic rice (Oryza sativa L.) is considered as the best quality premium rice. The varieties are preferred by consumers because of its preference criteria such as shape, colour, distinctive aroma and flavour. The price of aromatic rice is higher than ordinary rice due to its special needed growth condition for instance specific climate and soil. Presently, the aromatic rice quality is identified by using its key elements and isotopic variables. The rice can also be classified via Gas Chromatography Mass Spectrometry (GC-MS) or human sensory panels. However, the uses of human sensory panels have significant drawbacks such as lengthy training time, and prone to fatigue as the number of sample increased and inconsistent. The GC-MS analysis techniques on the other hand, require detailed procedures, lengthy analysis and quite costly. This paper presents the application of in-house developed Electronic Nose (e-nose) to classify new aromatic rice varieties. The e-nose is used to classify the variety of aromatic rice based on the samples odour. The samples were taken from the variety of rice. The instrument utilizes multivariate statistical data analysis, including Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and K-Nearest Neighbours (KNN) to classify the unknown rice samples. The Leave-One-Out (LOO) validation approach is applied to evaluate the ability of KNN to perform recognition and classification of the unspecified samples. The visual observation of the PCA and LDA plots of the rice proves that the instrument was able to separate the samples into different clusters accordingly. The results of LDA and KNN with low misclassification error support the above findings and we may conclude that the e-nose is successfully applied to the classification of the aromatic rice varieties.

  5. Analysis and meta-analysis of single-case designs with a standardized mean difference statistic: a primer and applications.

    PubMed

    Shadish, William R; Hedges, Larry V; Pustejovsky, James E

    2014-04-01

    This article presents a d-statistic for single-case designs that is in the same metric as the d-statistic used in between-subjects designs such as randomized experiments and offers some reasons why such a statistic would be useful in SCD research. The d has a formal statistical development, is accompanied by appropriate power analyses, and can be estimated using user-friendly SPSS macros. We discuss both advantages and disadvantages of d compared to other approaches such as previous d-statistics, overlap statistics, and multilevel modeling. It requires at least three cases for computation and assumes normally distributed outcomes and stationarity, assumptions that are discussed in some detail. We also show how to test these assumptions. The core of the article then demonstrates in depth how to compute d for one study, including estimation of the autocorrelation and the ratio of between case variance to total variance (between case plus within case variance), how to compute power using a macro, and how to use the d to conduct a meta-analysis of studies using single-case designs in the free program R, including syntax in an appendix. This syntax includes how to read data, compute fixed and random effect average effect sizes, prepare a forest plot and a cumulative meta-analysis, estimate various influence statistics to identify studies contributing to heterogeneity and effect size, and do various kinds of publication bias analyses. This d may prove useful for both the analysis and meta-analysis of data from SCDs. Copyright © 2013 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  6. Multivariate statistical analysis: Principles and applications to coorbital streams of meteorite falls

    NASA Technical Reports Server (NTRS)

    Wolf, S. F.; Lipschutz, M. E.

    1993-01-01

    Multivariate statistical analysis techniques (linear discriminant analysis and logistic regression) can provide powerful discrimination tools which are generally unfamiliar to the planetary science community. Fall parameters were used to identify a group of 17 H chondrites (Cluster 1) that were part of a coorbital stream which intersected Earth's orbit in May, from 1855 - 1895, and can be distinguished from all other H chondrite falls. Using multivariate statistical techniques, it was demonstrated that a totally different criterion, labile trace element contents - hence thermal histories - or 13 Cluster 1 meteorites are distinguishable from those of 45 non-Cluster 1 H chondrites. Here, we focus upon the principles of multivariate statistical techniques and illustrate their application using non-meteoritic and meteoritic examples.

  7. Agriculture, population growth, and statistical analysis of the radiocarbon record.

    PubMed

    Zahid, H Jabran; Robinson, Erick; Kelly, Robert L

    2016-01-26

    The human population has grown significantly since the onset of the Holocene about 12,000 y ago. Despite decades of research, the factors determining prehistoric population growth remain uncertain. Here, we examine measurements of the rate of growth of the prehistoric human population based on statistical analysis of the radiocarbon record. We find that, during most of the Holocene, human populations worldwide grew at a long-term annual rate of 0.04%. Statistical analysis of the radiocarbon record shows that transitioning farming societies experienced the same rate of growth as contemporaneous foraging societies. The same rate of growth measured for populations dwelling in a range of environments and practicing a variety of subsistence strategies suggests that the global climate and/or endogenous biological factors, not adaptability to local environment or subsistence practices, regulated the long-term growth of the human population during most of the Holocene. Our results demonstrate that statistical analyses of large ensembles of radiocarbon dates are robust and valuable for quantitatively investigating the demography of prehistoric human populations worldwide.

  8. STATISTICAL ANALYSIS OF SNAP 10A THERMOELECTRIC CONVERTER ELEMENT PROCESS DEVELOPMENT VARIABLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitch, S.H.; Morris, J.W.

    1962-12-15

    Statistical analysis, primarily analysis of variance, was applied to evaluate several factors involved in the development of suitable fabrication and processing techniques for the production of lead telluride thermoelectric elements for the SNAP 10A energy conversion system. The analysis methods are described as to their application for determining the effects of various processing steps, estabIishing the value of individual operations, and evaluating the significance of test results. The elimination of unnecessary or detrimental processing steps was accomplished and the number of required tests was substantially reduced by application of these statistical methods to the SNAP 10A production development effort. (auth)

  9. The Fusion of Financial Analysis and Seismology: Statistical Methods from Financial Market Analysis Applied to Earthquake Data

    NASA Astrophysics Data System (ADS)

    Ohyanagi, S.; Dileonardo, C.

    2013-12-01

    As a natural phenomenon earthquake occurrence is difficult to predict. Statistical analysis of earthquake data was performed using candlestick chart and Bollinger Band methods. These statistical methods, commonly used in the financial world to analyze market trends were tested against earthquake data. Earthquakes above Mw 4.0 located on shore of Sanriku (37.75°N ~ 41.00°N, 143.00°E ~ 144.50°E) from February 1973 to May 2013 were selected for analysis. Two specific patterns in earthquake occurrence were recognized through the analysis. One is a spread of candlestick prior to the occurrence of events greater than Mw 6.0. A second pattern shows convergence in the Bollinger Band, which implies a positive or negative change in the trend of earthquakes. Both patterns match general models for the buildup and release of strain through the earthquake cycle, and agree with both the characteristics of the candlestick chart and Bollinger Band analysis. These results show there is a high correlation between patterns in earthquake occurrence and trend analysis by these two statistical methods. The results of this study agree with the appropriateness of the application of these financial analysis methods to the analysis of earthquake occurrence.

  10. Power flow as a complement to statistical energy analysis and finite element analysis

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1987-01-01

    Present methods of analysis of the structural response and the structure-borne transmission of vibrational energy use either finite element (FE) techniques or statistical energy analysis (SEA) methods. The FE methods are a very useful tool at low frequencies where the number of resonances involved in the analysis is rather small. On the other hand SEA methods can predict with acceptable accuracy the response and energy transmission between coupled structures at relatively high frequencies where the structural modal density is high and a statistical approach is the appropriate solution. In the mid-frequency range, a relatively large number of resonances exist which make finite element method too costly. On the other hand SEA methods can only predict an average level form. In this mid-frequency range a possible alternative is to use power flow techniques, where the input and flow of vibrational energy to excited and coupled structural components can be expressed in terms of input and transfer mobilities. This power flow technique can be extended from low to high frequencies and this can be integrated with established FE models at low frequencies and SEA models at high frequencies to form a verification of the method. This method of structural analysis using power flo and mobility methods, and its integration with SEA and FE analysis is applied to the case of two thin beams joined together at right angles.

  11. Applications of modern statistical methods to analysis of data in physical science

    NASA Astrophysics Data System (ADS)

    Wicker, James Eric

    Modern methods of statistical and computational analysis offer solutions to dilemmas confronting researchers in physical science. Although the ideas behind modern statistical and computational analysis methods were originally introduced in the 1970's, most scientists still rely on methods written during the early era of computing. These researchers, who analyze increasingly voluminous and multivariate data sets, need modern analysis methods to extract the best results from their studies. The first section of this work showcases applications of modern linear regression. Since the 1960's, many researchers in spectroscopy have used classical stepwise regression techniques to derive molecular constants. However, problems with thresholds of entry and exit for model variables plagues this analysis method. Other criticisms of this kind of stepwise procedure include its inefficient searching method, the order in which variables enter or leave the model and problems with overfitting data. We implement an information scoring technique that overcomes the assumptions inherent in the stepwise regression process to calculate molecular model parameters. We believe that this kind of information based model evaluation can be applied to more general analysis situations in physical science. The second section proposes new methods of multivariate cluster analysis. The K-means algorithm and the EM algorithm, introduced in the 1960's and 1970's respectively, formed the basis of multivariate cluster analysis methodology for many years. However, several shortcomings of these methods include strong dependence on initial seed values and inaccurate results when the data seriously depart from hypersphericity. We propose new cluster analysis methods based on genetic algorithms that overcomes the strong dependence on initial seed values. In addition, we propose a generalization of the Genetic K-means algorithm which can accurately identify clusters with complex hyperellipsoidal covariance

  12. Bayesian Statistics and Uncertainty Quantification for Safety Boundary Analysis in Complex Systems

    NASA Technical Reports Server (NTRS)

    He, Yuning; Davies, Misty Dawn

    2014-01-01

    The analysis of a safety-critical system often requires detailed knowledge of safe regions and their highdimensional non-linear boundaries. We present a statistical approach to iteratively detect and characterize the boundaries, which are provided as parameterized shape candidates. Using methods from uncertainty quantification and active learning, we incrementally construct a statistical model from only few simulation runs and obtain statistically sound estimates of the shape parameters for safety boundaries.

  13. The Statistical Analysis Techniques to Support the NGNP Fuel Performance Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bihn T. Pham; Jeffrey J. Einerson

    2010-06-01

    This paper describes the development and application of statistical analysis techniques to support the AGR experimental program on NGNP fuel performance. The experiments conducted in the Idaho National Laboratory’s Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel/graphite temperature) is regulated by the He-Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the SAS-based NGNP Data Management and Analysis System (NDMAS) for automatedmore » processing and qualification of the AGR measured data. The NDMAS also stores daily neutronic (power) and thermal (heat transfer) code simulation results along with the measurement data, allowing for their combined use and comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the target quantity (fuel temperature) within a given range.« less

  14. The Bayesian New Statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective.

    PubMed

    Kruschke, John K; Liddell, Torrin M

    2018-02-01

    In the practice of data analysis, there is a conceptual distinction between hypothesis testing, on the one hand, and estimation with quantified uncertainty on the other. Among frequentists in psychology, a shift of emphasis from hypothesis testing to estimation has been dubbed "the New Statistics" (Cumming 2014). A second conceptual distinction is between frequentist methods and Bayesian methods. Our main goal in this article is to explain how Bayesian methods achieve the goals of the New Statistics better than frequentist methods. The article reviews frequentist and Bayesian approaches to hypothesis testing and to estimation with confidence or credible intervals. The article also describes Bayesian approaches to meta-analysis, randomized controlled trials, and power analysis.

  15. Statistical analysis of lightning electric field measured under Malaysian condition

    NASA Astrophysics Data System (ADS)

    Salimi, Behnam; Mehranzamir, Kamyar; Abdul-Malek, Zulkurnain

    2014-02-01

    Lightning is an electrical discharge during thunderstorms that can be either within clouds (Inter-Cloud), or between clouds and ground (Cloud-Ground). The Lightning characteristics and their statistical information are the foundation for the design of lightning protection system as well as for the calculation of lightning radiated fields. Nowadays, there are various techniques to detect lightning signals and to determine various parameters produced by a lightning flash. Each technique provides its own claimed performances. In this paper, the characteristics of captured broadband electric fields generated by cloud-to-ground lightning discharges in South of Malaysia are analyzed. A total of 130 cloud-to-ground lightning flashes from 3 separate thunderstorm events (each event lasts for about 4-5 hours) were examined. Statistical analyses of the following signal parameters were presented: preliminary breakdown pulse train time duration, time interval between preliminary breakdowns and return stroke, multiplicity of stroke, and percentages of single stroke only. The BIL model is also introduced to characterize the lightning signature patterns. Observations on the statistical analyses show that about 79% of lightning signals fit well with the BIL model. The maximum and minimum of preliminary breakdown time duration of the observed lightning signals are 84 ms and 560 us, respectively. The findings of the statistical results show that 7.6% of the flashes were single stroke flashes, and the maximum number of strokes recorded was 14 multiple strokes per flash. A preliminary breakdown signature in more than 95% of the flashes can be identified.

  16. Linearised and non-linearised isotherm models optimization analysis by error functions and statistical means

    PubMed Central

    2014-01-01

    In adsorption study, to describe sorption process and evaluation of best-fitting isotherm model is a key analysis to investigate the theoretical hypothesis. Hence, numerous statistically analysis have been extensively used to estimate validity of the experimental equilibrium adsorption values with the predicted equilibrium values. Several statistical error analysis were carried out. In the present study, the following statistical analysis were carried out to evaluate the adsorption isotherm model fitness, like the Pearson correlation, the coefficient of determination and the Chi-square test, have been used. The ANOVA test was carried out for evaluating significance of various error functions and also coefficient of dispersion were evaluated for linearised and non-linearised models. The adsorption of phenol onto natural soil (Local name Kalathur soil) was carried out, in batch mode at 30 ± 20 C. For estimating the isotherm parameters, to get a holistic view of the analysis the models were compared between linear and non-linear isotherm models. The result reveled that, among above mentioned error functions and statistical functions were designed to determine the best fitting isotherm. PMID:25018878

  17. Gis-Based Spatial Statistical Analysis of College Graduates Employment

    NASA Astrophysics Data System (ADS)

    Tang, R.

    2012-07-01

    It is urgently necessary to be aware of the distribution and employment status of college graduates for proper allocation of human resources and overall arrangement of strategic industry. This study provides empirical evidence regarding the use of geocoding and spatial analysis in distribution and employment status of college graduates based on the data from 2004-2008 Wuhan Municipal Human Resources and Social Security Bureau, China. Spatio-temporal distribution of employment unit were analyzed with geocoding using ArcGIS software, and the stepwise multiple linear regression method via SPSS software was used to predict the employment and to identify spatially associated enterprise and professionals demand in the future. The results show that the enterprises in Wuhan east lake high and new technology development zone increased dramatically from 2004 to 2008, and tended to distributed southeastward. Furthermore, the models built by statistical analysis suggest that the specialty of graduates major in has an important impact on the number of the employment and the number of graduates engaging in pillar industries. In conclusion, the combination of GIS and statistical analysis which helps to simulate the spatial distribution of the employment status is a potential tool for human resource development research.

  18. A statistical study of EMIC waves observed by Cluster: 2. Associated plasma conditions

    DOE PAGES

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.; ...

    2016-07-01

    This is the second in a pair of papers discussing a statistical study of electromagnetic ion cyclotron (EMIC) waves detected during 10 years (2001–2010) of Cluster observations. In the first paper, an analysis of EMIC wave properties (i.e., wave power, polarization, normal angle, and wave propagation angle) is presented in both the magnetic latitude (MLAT)-distance as well as magnetic local time (MLT)-L frames. In addition, this paper focuses on the distribution of EMIC wave-associated plasma conditions as well as two EMIC wave generation proxies (the electron plasma frequency to gyrofrequency ratio proxy and the linear theory proxy) in these samemore » frames. Based on the distributions of hot H + anisotropy, electron and hot H+ density measurements, hot H + parallel plasma beta, and the calculated wave generation proxies, three source regions of EMIC waves appear to exist: (1) the well-known overlap between cold plasmaspheric or plume populations with hot anisotropic ring current populations in the postnoon to dusk MLT region; (2) regions all along the dayside magnetosphere at high L shells related to dayside magnetospheric compression and drift shell splitting; and (3) off-equator regions possibly associated with the Shabansky orbits in the dayside magnetosphere.« less

  19. A statistical study of EMIC waves observed by Cluster: 2. Associated plasma conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, R. C.; Zhang, J. -C.; Kistler, L. M.

    This is the second in a pair of papers discussing a statistical study of electromagnetic ion cyclotron (EMIC) waves detected during 10 years (2001–2010) of Cluster observations. In the first paper, an analysis of EMIC wave properties (i.e., wave power, polarization, normal angle, and wave propagation angle) is presented in both the magnetic latitude (MLAT)-distance as well as magnetic local time (MLT)-L frames. In addition, this paper focuses on the distribution of EMIC wave-associated plasma conditions as well as two EMIC wave generation proxies (the electron plasma frequency to gyrofrequency ratio proxy and the linear theory proxy) in these samemore » frames. Based on the distributions of hot H + anisotropy, electron and hot H+ density measurements, hot H + parallel plasma beta, and the calculated wave generation proxies, three source regions of EMIC waves appear to exist: (1) the well-known overlap between cold plasmaspheric or plume populations with hot anisotropic ring current populations in the postnoon to dusk MLT region; (2) regions all along the dayside magnetosphere at high L shells related to dayside magnetospheric compression and drift shell splitting; and (3) off-equator regions possibly associated with the Shabansky orbits in the dayside magnetosphere.« less

  20. Application of multivariable statistical techniques in plant-wide WWTP control strategies analysis.

    PubMed

    Flores, X; Comas, J; Roda, I R; Jiménez, L; Gernaey, K V

    2007-01-01

    The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.

  1. An Observation-Driven Agent-Based Modeling and Analysis Framework for C. elegans Embryogenesis.

    PubMed

    Wang, Zi; Ramsey, Benjamin J; Wang, Dali; Wong, Kwai; Li, Husheng; Wang, Eric; Bao, Zhirong

    2016-01-01

    With cutting-edge live microscopy and image analysis, biologists can now systematically track individual cells in complex tissues and quantify cellular behavior over extended time windows. Computational approaches that utilize the systematic and quantitative data are needed to understand how cells interact in vivo to give rise to the different cell types and 3D morphology of tissues. An agent-based, minimum descriptive modeling and analysis framework is presented in this paper to study C. elegans embryogenesis. The framework is designed to incorporate the large amounts of experimental observations on cellular behavior and reserve data structures/interfaces that allow regulatory mechanisms to be added as more insights are gained. Observed cellular behaviors are organized into lineage identity, timing and direction of cell division, and path of cell movement. The framework also includes global parameters such as the eggshell and a clock. Division and movement behaviors are driven by statistical models of the observations. Data structures/interfaces are reserved for gene list, cell-cell interaction, cell fate and landscape, and other global parameters until the descriptive model is replaced by a regulatory mechanism. This approach provides a framework to handle the ongoing experiments of single-cell analysis of complex tissues where mechanistic insights lag data collection and need to be validated on complex observations.

  2. Statistical analysis of the count and profitability of air conditioners.

    PubMed

    Rady, El Houssainy A; Mohamed, Salah M; Abd Elmegaly, Alaa A

    2018-08-01

    This article presents the statistical analysis of the number and profitability of air conditioners in an Egyptian company. Checking the same distribution for each categorical variable has been made using Kruskal-Wallis test.

  3. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis.

    PubMed

    Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti

    2016-07-01

    A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness.Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Code is available at https://github.com/aalto-ics-kepaco anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  4. metaCCA: summary statistics-based multivariate meta-analysis of genome-wide association studies using canonical correlation analysis

    PubMed Central

    Cichonska, Anna; Rousu, Juho; Marttinen, Pekka; Kangas, Antti J.; Soininen, Pasi; Lehtimäki, Terho; Raitakari, Olli T.; Järvelin, Marjo-Riitta; Salomaa, Veikko; Ala-Korpela, Mika; Ripatti, Samuli; Pirinen, Matti

    2016-01-01

    Motivation: A dominant approach to genetic association studies is to perform univariate tests between genotype-phenotype pairs. However, analyzing related traits together increases statistical power, and certain complex associations become detectable only when several variants are tested jointly. Currently, modest sample sizes of individual cohorts, and restricted availability of individual-level genotype-phenotype data across the cohorts limit conducting multivariate tests. Results: We introduce metaCCA, a computational framework for summary statistics-based analysis of a single or multiple studies that allows multivariate representation of both genotype and phenotype. It extends the statistical technique of canonical correlation analysis to the setting where original individual-level records are not available, and employs a covariance shrinkage algorithm to achieve robustness. Multivariate meta-analysis of two Finnish studies of nuclear magnetic resonance metabolomics by metaCCA, using standard univariate output from the program SNPTEST, shows an excellent agreement with the pooled individual-level analysis of original data. Motivated by strong multivariate signals in the lipid genes tested, we envision that multivariate association testing using metaCCA has a great potential to provide novel insights from already published summary statistics from high-throughput phenotyping technologies. Availability and implementation: Code is available at https://github.com/aalto-ics-kepaco Contacts: anna.cichonska@helsinki.fi or matti.pirinen@helsinki.fi Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153689

  5. Statistical Signal Models and Algorithms for Image Analysis

    DTIC Science & Technology

    1984-10-25

    In this report, two-dimensional stochastic linear models are used in developing algorithms for image analysis such as classification, segmentation, and object detection in images characterized by textured backgrounds. These models generate two-dimensional random processes as outputs to which statistical inference procedures can naturally be applied. A common thread throughout our algorithms is the interpretation of the inference procedures in terms of linear prediction

  6. Statistical Analysis of the Exchange Rate of Bitcoin.

    PubMed

    Chu, Jeffrey; Nadarajah, Saralees; Chan, Stephen

    2015-01-01

    Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States Dollar. Fifteen of the most popular parametric distributions in finance are fitted to the log-returns. The generalized hyperbolic distribution is shown to give the best fit. Predictions are given for future values of the exchange rate.

  7. Fast fMRI provides high statistical power in the analysis of epileptic networks.

    PubMed

    Jacobs, Julia; Stich, Julia; Zahneisen, Benjamin; Assländer, Jakob; Ramantani, Georgia; Schulze-Bonhage, Andreas; Korinthenberg, Rudolph; Hennig, Jürgen; LeVan, Pierre

    2014-03-01

    EEG-fMRI is a unique method to combine the high temporal resolution of EEG with the high spatial resolution of MRI to study generators of intrinsic brain signals such as sleep grapho-elements or epileptic spikes. While the standard EPI sequence in fMRI experiments has a temporal resolution of around 2.5-3s a newly established fast fMRI sequence called MREG (Magnetic-Resonance-Encephalography) provides a temporal resolution of around 100ms. This technical novelty promises to improve statistics, facilitate correction of physiological artifacts and improve the understanding of epileptic networks in fMRI. The present study compares simultaneous EEG-EPI and EEG-MREG analyzing epileptic spikes to determine the yield of fast MRI in the analysis of intrinsic brain signals. Patients with frequent interictal spikes (>3/20min) underwent EEG-MREG and EEG-EPI (3T, 20min each, voxel size 3×3×3mm, EPI TR=2.61s, MREG TR=0.1s). Timings of the spikes were used in an event-related analysis to generate activation maps of t-statistics. (FMRISTAT, |t|>3.5, cluster size: 7 voxels, p<0.05 corrected). For both sequences, the amplitude and location of significant BOLD activations were compared with the spike topography. 13 patients were recorded and 33 different spike types could be analyzed. Peak T-values were significantly higher in MREG than in EPI (p<0.0001). Positive BOLD effects correlating with the spike topography were found in 8/29 spike types using the EPI and in 22/33 spikes types using the MREG sequence. Negative BOLD responses in the default mode network could be observed in 3/29 spike types with the EPI and in 19/33 with the MREG sequence. With the latter method, BOLD changes were observed even when few spikes occurred during the investigation. Simultaneous EEG-MREG thus is possible with good EEG quality and shows higher sensitivity in regard to the localization of spike-related BOLD responses than EEG-EPI. The development of new methods of analysis for this sequence such as

  8. Statistical Quality Control of Moisture Data in GEOS DAS

    NASA Technical Reports Server (NTRS)

    Dee, D. P.; Rukhovets, L.; Todling, R.

    1999-01-01

    A new statistical quality control algorithm was recently implemented in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The final step in the algorithm consists of an adaptive buddy check that either accepts or rejects outlier observations based on a local statistical analysis of nearby data. A basic assumption in any such test is that the observed field is spatially coherent, in the sense that nearby data can be expected to confirm each other. However, the buddy check resulted in excessive rejection of moisture data, especially during the Northern Hemisphere summer. The analysis moisture variable in GEOS DAS is water vapor mixing ratio. Observational evidence shows that the distribution of mixing ratio errors is far from normal. Furthermore, spatial correlations among mixing ratio errors are highly anisotropic and difficult to identify. Both factors contribute to the poor performance of the statistical quality control algorithm. To alleviate the problem, we applied the buddy check to relative humidity data instead. This variable explicitly depends on temperature and therefore exhibits a much greater spatial coherence. As a result, reject rates of moisture data are much more reasonable and homogeneous in time and space.

  9. Advanced statistical methods for improved data analysis of NASA astrophysics missions

    NASA Technical Reports Server (NTRS)

    Feigelson, Eric D.

    1992-01-01

    The investigators under this grant studied ways to improve the statistical analysis of astronomical data. They looked at existing techniques, the development of new techniques, and the production and distribution of specialized software to the astronomical community. Abstracts of nine papers that were produced are included, as well as brief descriptions of four software packages. The articles that are abstracted discuss analytical and Monte Carlo comparisons of six different linear least squares fits, a (second) paper on linear regression in astronomy, two reviews of public domain software for the astronomer, subsample and half-sample methods for estimating sampling distributions, a nonparametric estimation of survival functions under dependent competing risks, censoring in astronomical data due to nondetections, an astronomy survival analysis computer package called ASURV, and improving the statistical methodology of astronomical data analysis.

  10. General specifications for the development of a USL NASA PC R and D statistical analysis support package

    NASA Technical Reports Server (NTRS)

    Dominick, Wayne D. (Editor); Bassari, Jinous; Triantafyllopoulos, Spiros

    1984-01-01

    The University of Southwestern Louisiana (USL) NASA PC R and D statistical analysis support package is designed to be a three-level package to allow statistical analysis for a variety of applications within the USL Data Base Management System (DBMS) contract work. The design addresses usage of the statistical facilities as a library package, as an interactive statistical analysis system, and as a batch processing package.

  11. Statistical Analysis on the Mechanical Properties of Magnesium Alloys

    PubMed Central

    Liu, Ruoyu; Jiang, Xianquan; Zhang, Hongju; Zhang, Dingfei; Wang, Jingfeng; Pan, Fusheng

    2017-01-01

    Knowledge of statistical characteristics of mechanical properties is very important for the practical application of structural materials. Unfortunately, the scatter characteristics of magnesium alloys for mechanical performance remain poorly understood until now. In this study, the mechanical reliability of magnesium alloys is systematically estimated using Weibull statistical analysis. Interestingly, the Weibull modulus, m, of strength for magnesium alloys is as high as that for aluminum and steels, confirming the very high reliability of magnesium alloys. The high predictability in the tensile strength of magnesium alloys represents the capability of preventing catastrophic premature failure during service, which is essential for safety and reliability assessment. PMID:29113116

  12. Statistical analysis and digital processing of the Mössbauer spectra

    NASA Astrophysics Data System (ADS)

    Prochazka, Roman; Tucek, Pavel; Tucek, Jiri; Marek, Jaroslav; Mashlan, Miroslav; Pechousek, Jiri

    2010-02-01

    This work is focused on using the statistical methods and development of the filtration procedures for signal processing in Mössbauer spectroscopy. Statistical tools for noise filtering in the measured spectra are used in many scientific areas. The use of a pure statistical approach in accumulated Mössbauer spectra filtration is described. In Mössbauer spectroscopy, the noise can be considered as a Poisson statistical process with a Gaussian distribution for high numbers of observations. This noise is a superposition of the non-resonant photons counting with electronic noise (from γ-ray detection and discrimination units), and the velocity system quality that can be characterized by the velocity nonlinearities. The possibility of a noise-reducing process using a new design of statistical filter procedure is described. This mathematical procedure improves the signal-to-noise ratio and thus makes it easier to determine the hyperfine parameters of the given Mössbauer spectra. The filter procedure is based on a periodogram method that makes it possible to assign the statistically important components in the spectral domain. The significance level for these components is then feedback-controlled using the correlation coefficient test results. The estimation of the theoretical correlation coefficient level which corresponds to the spectrum resolution is performed. Correlation coefficient test is based on comparison of the theoretical and the experimental correlation coefficients given by the Spearman method. The correctness of this solution was analyzed by a series of statistical tests and confirmed by many spectra measured with increasing statistical quality for a given sample (absorber). The effect of this filter procedure depends on the signal-to-noise ratio and the applicability of this method has binding conditions.

  13. Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance

    NASA Astrophysics Data System (ADS)

    Glascock, M. D.; Neff, H.; Vaughn, K. J.

    2004-06-01

    The application of instrumental neutron activation analysis and multivariate statistics to archaeological studies of ceramics and clays is described. A small pottery data set from the Nasca culture in southern Peru is presented for illustration.

  14. Database Creation and Statistical Analysis: Finding Connections Between Two or More Secondary Storage Device

    DTIC Science & Technology

    2017-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS DATABASE CREATION AND STATISTICAL ANALYSIS: FINDING CONNECTIONS BETWEEN TWO OR MORE SECONDARY...BLANK ii Approved for public release. Distribution is unlimited. DATABASE CREATION AND STATISTICAL ANALYSIS: FINDING CONNECTIONS BETWEEN TWO OR MORE...Problem and Motivation . . . . . . . . . . . . . . . . . . . 1 1.2 DOD Applicability . . . . . . . . . . . . . . . . .. . . . . . . 2 1.3 Research

  15. Difference Image Analysis of Defocused Observations With CSTAR

    NASA Astrophysics Data System (ADS)

    Oelkers, Ryan J.; Macri, Lucas M.; Wang, Lifan; Ashley, Michael C. B.; Cui, Xiangqun; Feng, Long-Long; Gong, Xuefei; Lawrence, Jon S.; Qiang, Liu; Luong-Van, Daniel; Pennypacker, Carl R.; Yang, Huigen; Yuan, Xiangyan; York, Donald G.; Zhou, Xu; Zhu, Zhenxi

    2015-02-01

    The Chinese Small Telescope ARray carried out high-cadence time-series observations of 27 square degrees centered on the South Celestial Pole during the Antarctic winter seasons of 2008-2010. Aperture photometry of the 2008 and 2010 i-band images resulted in the discovery of over 200 variable stars. Yearly servicing left the array defocused for the 2009 winter season, during which the system also suffered from intermittent frosting and power failures. Despite these technical issues, nearly 800,000 useful images were obtained using g, r, and clear filters. We developed a combination of difference imaging and aperture photometry to compensate for the highly crowded, blended, and defocused frames. We present details of this approach, which may be useful for the analysis of time-series data from other small-aperture telescopes regardless of their image quality. Using this approach, we were able to recover 68 previously known variables and detected variability in 37 additional objects. We also have determined the observing statistics for Dome A during the 2009 winter season; we find the extinction due to clouds to be less than 0.1 and 0.4 mag for 40% and 63% of the dark time, respectively.

  16. Statistical analysis of early failures in electromigration

    NASA Astrophysics Data System (ADS)

    Gall, M.; Capasso, C.; Jawarani, D.; Hernandez, R.; Kawasaki, H.; Ho, P. S.

    2001-07-01

    The detection of early failures in electromigration (EM) and the complicated statistical nature of this important reliability phenomenon have been difficult issues to treat in the past. A satisfactory experimental approach for the detection and the statistical analysis of early failures has not yet been established. This is mainly due to the rare occurrence of early failures and difficulties in testing of large sample populations. Furthermore, experimental data on the EM behavior as a function of varying number of failure links are scarce. In this study, a technique utilizing large interconnect arrays in conjunction with the well-known Wheatstone Bridge is presented. Three types of structures with a varying number of Ti/TiN/Al(Cu)/TiN-based interconnects were used, starting from a small unit of five lines in parallel. A serial arrangement of this unit enabled testing of interconnect arrays encompassing 480 possible failure links. In addition, a Wheatstone Bridge-type wiring using four large arrays in each device enabled simultaneous testing of 1920 interconnects. In conjunction with a statistical deconvolution to the single interconnect level, the results indicate that the electromigration failure mechanism studied here follows perfect lognormal behavior down to the four sigma level. The statistical deconvolution procedure is described in detail. Over a temperature range from 155 to 200 °C, a total of more than 75 000 interconnects were tested. None of the samples have shown an indication of early, or alternate, failure mechanisms. The activation energy of the EM mechanism studied here, namely the Cu incubation time, was determined to be Q=1.08±0.05 eV. We surmise that interface diffusion of Cu along the Al(Cu) sidewalls and along the top and bottom refractory layers, coupled with grain boundary diffusion within the interconnects, constitutes the Cu incubation mechanism.

  17. A statistical design for testing apomictic diversification through linkage analysis.

    PubMed

    Zeng, Yanru; Hou, Wei; Song, Shuang; Feng, Sisi; Shen, Lin; Xia, Guohua; Wu, Rongling

    2014-03-01

    The capacity of apomixis to generate maternal clones through seed reproduction has made it a useful characteristic for the fixation of heterosis in plant breeding. It has been observed that apomixis displays pronounced intra- and interspecific diversification, but the genetic mechanisms underlying this diversification remains elusive, obstructing the exploitation of this phenomenon in practical breeding programs. By capitalizing on molecular information in mapping populations, we describe and assess a statistical design that deploys linkage analysis to estimate and test the pattern and extent of apomictic differences at various levels from genotypes to species. The design is based on two reciprocal crosses between two individuals each chosen from a hermaphrodite or monoecious species. A multinomial distribution likelihood is constructed by combining marker information from two crosses. The EM algorithm is implemented to estimate the rate of apomixis and test its difference between two plant populations or species as the parents. The design is validated by computer simulation. A real data analysis of two reciprocal crosses between hickory (Carya cathayensis) and pecan (C. illinoensis) demonstrates the utilization and usefulness of the design in practice. The design provides a tool to address fundamental and applied questions related to the evolution and breeding of apomixis.

  18. Biological Parametric Mapping: A Statistical Toolbox for Multi-Modality Brain Image Analysis

    PubMed Central

    Casanova, Ramon; Ryali, Srikanth; Baer, Aaron; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru; Flowers, Lynn; Wood, Frank; Maldjian, Joseph A.

    2006-01-01

    In recent years multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in MATLAB with a user friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely-used T-field, has been implemented in the correlation analysis for more accurate results. An example with in-vivo data is presented demonstrating the potential of the BPM methodology as a tool for multimodal image analysis. PMID:17070709

  19. Statistical approaches in published ophthalmic clinical science papers: a comparison to statistical practice two decades ago.

    PubMed

    Zhang, Harrison G; Ying, Gui-Shuang

    2018-02-09

    The aim of this study is to evaluate the current practice of statistical analysis of eye data in clinical science papers published in British Journal of Ophthalmology ( BJO ) and to determine whether the practice of statistical analysis has improved in the past two decades. All clinical science papers (n=125) published in BJO in January-June 2017 were reviewed for their statistical analysis approaches for analysing primary ocular measure. We compared our findings to the results from a previous paper that reviewed BJO papers in 1995. Of 112 papers eligible for analysis, half of the studies analysed the data at an individual level because of the nature of observation, 16 (14%) studies analysed data from one eye only, 36 (32%) studies analysed data from both eyes at ocular level, one study (1%) analysed the overall summary of ocular finding per individual and three (3%) studies used the paired comparison. Among studies with data available from both eyes, 50 (89%) of 56 papers in 2017 did not analyse data from both eyes or ignored the intereye correlation, as compared with in 60 (90%) of 67 papers in 1995 (P=0.96). Among studies that analysed data from both eyes at an ocular level, 33 (92%) of 36 studies completely ignored the intereye correlation in 2017, as compared with in 16 (89%) of 18 studies in 1995 (P=0.40). A majority of studies did not analyse the data properly when data from both eyes were available. The practice of statistical analysis did not improve in the past two decades. Collaborative efforts should be made in the vision research community to improve the practice of statistical analysis for ocular data. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Statistical analysis of 59 inspected SSME HPFTP turbine blades (uncracked and cracked)

    NASA Technical Reports Server (NTRS)

    Wheeler, John T.

    1987-01-01

    The numerical results of statistical analysis of the test data of Space Shuttle Main Engine high pressure fuel turbopump second-stage turbine blades, including some with cracks are presented. Several statistical methods use the test data to determine the application of differences in frequency variations between the uncracked and cracked blades.

  1. Discrimination between smiling faces: Human observers vs. automated face analysis.

    PubMed

    Del Líbano, Mario; Calvo, Manuel G; Fernández-Martín, Andrés; Recio, Guillermo

    2018-05-11

    This study investigated (a) how prototypical happy faces (with happy eyes and a smile) can be discriminated from blended expressions with a smile but non-happy eyes, depending on type and intensity of the eye expression; and (b) how smile discrimination differs for human perceivers versus automated face analysis, depending on affective valence and morphological facial features. Human observers categorized faces as happy or non-happy, or rated their valence. Automated analysis (FACET software) computed seven expressions (including joy/happiness) and 20 facial action units (AUs). Physical properties (low-level image statistics and visual saliency) of the face stimuli were controlled. Results revealed, first, that some blended expressions (especially, with angry eyes) had lower discrimination thresholds (i.e., they were identified as "non-happy" at lower non-happy eye intensities) than others (especially, with neutral eyes). Second, discrimination sensitivity was better for human perceivers than for automated FACET analysis. As an additional finding, affective valence predicted human discrimination performance, whereas morphological AUs predicted FACET discrimination. FACET can be a valid tool for categorizing prototypical expressions, but is currently more limited than human observers for discrimination of blended expressions. Configural processing facilitates detection of in/congruence(s) across regions, and thus detection of non-genuine smiling faces (due to non-happy eyes). Copyright © 2018 Elsevier B.V. All rights reserved.

  2. SWToolbox: A surface-water tool-box for statistical analysis of streamflow time series

    USGS Publications Warehouse

    Kiang, Julie E.; Flynn, Kate; Zhai, Tong; Hummel, Paul; Granato, Gregory

    2018-03-07

    This report is a user guide for the low-flow analysis methods provided with version 1.0 of the Surface Water Toolbox (SWToolbox) computer program. The software combines functionality from two software programs—U.S. Geological Survey (USGS) SWSTAT and U.S. Environmental Protection Agency (EPA) DFLOW. Both of these programs have been used primarily for computation of critical low-flow statistics. The main analysis methods are the computation of hydrologic frequency statistics such as the 7-day minimum flow that occurs on average only once every 10 years (7Q10), computation of design flows including biologically based flows, and computation of flow-duration curves and duration hydrographs. Other annual, monthly, and seasonal statistics can also be computed. The interface facilitates retrieval of streamflow discharge data from the USGS National Water Information System and outputs text reports for a record of the analysis. Tools for graphing data and screening tests are available to assist the analyst in conducting the analysis.

  3. Sensitivity of the Hydrogen Epoch of Reionization Array and its build-out stages to one-point statistics from redshifted 21 cm observations

    NASA Astrophysics Data System (ADS)

    Kittiwisit, Piyanat; Bowman, Judd D.; Jacobs, Daniel C.; Beardsley, Adam P.; Thyagarajan, Nithyanandan

    2018-03-01

    We present a baseline sensitivity analysis of the Hydrogen Epoch of Reionization Array (HERA) and its build-out stages to one-point statistics (variance, skewness, and kurtosis) of redshifted 21 cm intensity fluctuation from the Epoch of Reionization (EoR) based on realistic mock observations. By developing a full-sky 21 cm light-cone model, taking into account the proper field of view and frequency bandwidth, utilizing a realistic measurement scheme, and assuming perfect foreground removal, we show that HERA will be able to recover statistics of the sky model with high sensitivity by averaging over measurements from multiple fields. All build-out stages will be able to detect variance, while skewness and kurtosis should be detectable for HERA128 and larger. We identify sample variance as the limiting constraint of the measurements at the end of reionization. The sensitivity can also be further improved by performing frequency windowing. In addition, we find that strong sample variance fluctuation in the kurtosis measured from an individual field of observation indicates the presence of outlying cold or hot regions in the underlying fluctuations, a feature that can potentially be used as an EoR bubble indicator.

  4. Statistical Analysis of the Exchange Rate of Bitcoin

    PubMed Central

    Chu, Jeffrey; Nadarajah, Saralees; Chan, Stephen

    2015-01-01

    Bitcoin, the first electronic payment system, is becoming a popular currency. We provide a statistical analysis of the log-returns of the exchange rate of Bitcoin versus the United States Dollar. Fifteen of the most popular parametric distributions in finance are fitted to the log-returns. The generalized hyperbolic distribution is shown to give the best fit. Predictions are given for future values of the exchange rate. PMID:26222702

  5. Common pitfalls in statistical analysis: Odds versus risk

    PubMed Central

    Ranganathan, Priya; Aggarwal, Rakesh; Pramesh, C. S.

    2015-01-01

    In biomedical research, we are often interested in quantifying the relationship between an exposure and an outcome. “Odds” and “Risk” are the most common terms which are used as measures of association between variables. In this article, which is the fourth in the series of common pitfalls in statistical analysis, we explain the meaning of risk and odds and the difference between the two. PMID:26623395

  6. Statistical Techniques to Analyze Pesticide Data Program Food Residue Observations.

    PubMed

    Szarka, Arpad Z; Hayworth, Carol G; Ramanarayanan, Tharacad S; Joseph, Robert S I

    2018-06-26

    The U.S. EPA conducts dietary-risk assessments to ensure that levels of pesticides on food in the U.S. food supply are safe. Often these assessments utilize conservative residue estimates, maximum residue levels (MRLs), and a high-end estimate derived from registrant-generated field-trial data sets. A more realistic estimate of consumers' pesticide exposure from food may be obtained by utilizing residues from food-monitoring programs, such as the Pesticide Data Program (PDP) of the U.S. Department of Agriculture. A substantial portion of food-residue concentrations in PDP monitoring programs are below the limits of detection (left-censored), which makes the comparison of regulatory-field-trial and PDP residue levels difficult. In this paper, we present a novel adaption of established statistical techniques, the Kaplan-Meier estimator (K-M), the robust regression on ordered statistic (ROS), and the maximum-likelihood estimator (MLE), to quantify the pesticide-residue concentrations in the presence of heavily censored data sets. The examined statistical approaches include the most commonly used parametric and nonparametric methods for handling left-censored data that have been used in the fields of medical and environmental sciences. This work presents a case study in which data of thiamethoxam residue on bell pepper generated from registrant field trials were compared with PDP-monitoring residue values. The results from the statistical techniques were evaluated and compared with commonly used simple substitution methods for the determination of summary statistics. It was found that the maximum-likelihood estimator (MLE) is the most appropriate statistical method to analyze this residue data set. Using the MLE technique, the data analyses showed that the median and mean PDP bell pepper residue levels were approximately 19 and 7 times lower, respectively, than the corresponding statistics of the field-trial residues.

  7. The GEOS Ozone Data Assimilation System: Specification of Error Statistics

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Riishojgaard, Lars Peter; Rood, Richard B.

    2000-01-01

    A global three-dimensional ozone data assimilation system has been developed at the Data Assimilation Office of the NASA/Goddard Space Flight Center. The Total Ozone Mapping Spectrometer (TOMS) total ozone and the Solar Backscatter Ultraviolet (SBUV) or (SBUV/2) partial ozone profile observations are assimilated. The assimilation, into an off-line ozone transport model, is done using the global Physical-space Statistical Analysis Scheme (PSAS). This system became operational in December 1999. A detailed description of the statistical analysis scheme, and in particular, the forecast and observation error covariance models is given. A new global anisotropic horizontal forecast error correlation model accounts for a varying distribution of observations with latitude. Correlations are largest in the zonal direction in the tropics where data is sparse. Forecast error variance model is proportional to the ozone field. The forecast error covariance parameters were determined by maximum likelihood estimation. The error covariance models are validated using x squared statistics. The analyzed ozone fields in the winter 1992 are validated against independent observations from ozone sondes and HALOE. There is better than 10% agreement between mean Halogen Occultation Experiment (HALOE) and analysis fields between 70 and 0.2 hPa. The global root-mean-square (RMS) difference between TOMS observed and forecast values is less than 4%. The global RMS difference between SBUV observed and analyzed ozone between 50 and 3 hPa is less than 15%.

  8. New dimensions from statistical graphics for GIS (geographic information system) analysis and interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCord, R.A.; Olson, R.J.

    1988-01-01

    Environmental research and assessment activities at Oak Ridge National Laboratory (ORNL) include the analysis of spatial and temporal patterns of ecosystem response at a landscape scale. Analysis through use of geographic information system (GIS) involves an interaction between the user and thematic data sets frequently expressed as maps. A portion of GIS analysis has a mathematical or statistical aspect, especially for the analysis of temporal patterns. ARC/INFO is an excellent tool for manipulating GIS data and producing the appropriate map graphics. INFO also has some limited ability to produce statistical tabulation. At ORNL we have extended our capabilities by graphicallymore » interfacing ARC/INFO and SAS/GRAPH to provide a combined mapping and statistical graphics environment. With the data management, statistical, and graphics capabilities of SAS added to ARC/INFO, we have expanded the analytical and graphical dimensions of the GIS environment. Pie or bar charts, frequency curves, hydrographs, or scatter plots as produced by SAS can be added to maps from attribute data associated with ARC/INFO coverages. Numerous, small, simplified graphs can also become a source of complex map ''symbols.'' These additions extend the dimensions of GIS graphics to include time, details of the thematic composition, distribution, and interrelationships. 7 refs., 3 figs.« less

  9. The Australasian Resuscitation in Sepsis Evaluation (ARISE) trial statistical analysis plan.

    PubMed

    Delaney, Anthony P; Peake, Sandra L; Bellomo, Rinaldo; Cameron, Peter; Holdgate, Anna; Howe, Belinda; Higgins, Alisa; Presneill, Jeffrey; Webb, Steve

    2013-09-01

    The Australasian Resuscitation in Sepsis Evaluation (ARISE) study is an international, multicentre, randomised, controlled trial designed to evaluate the effectiveness of early goal-directed therapy compared with standard care for patients presenting to the emergency department with severe sepsis. In keeping with current practice, and considering aspects of trial design and reporting specific to non-pharmacological interventions, our plan outlines the principles and methods for analysing and reporting the trial results. The document is prepared before completion of recruitment into the ARISE study, without knowledge of the results of the interim analysis conducted by the data safety and monitoring committee and before completion of the two related international studies. Our statistical analysis plan was designed by the ARISE chief investigators, and reviewed and approved by the ARISE steering committee. We reviewed the data collected by the research team as specified in the study protocol and detailed in the study case report form. We describe information related to baseline characteristics, characteristics of delivery of the trial interventions, details of resuscitation, other related therapies and other relevant data with appropriate comparisons between groups. We define the primary, secondary and tertiary outcomes for the study, with description of the planned statistical analyses. We have developed a statistical analysis plan with a trial profile, mock-up tables and figures. We describe a plan for presenting baseline characteristics, microbiological and antibiotic therapy, details of the interventions, processes of care and concomitant therapies and adverse events. We describe the primary, secondary and tertiary outcomes with identification of subgroups to be analysed. We have developed a statistical analysis plan for the ARISE study, available in the public domain, before the completion of recruitment into the study. This will minimise analytical bias and

  10. STATISTICAL ANALYSIS OF TANK 19F FLOOR SAMPLE RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.

    2010-09-02

    Representative sampling has been completed for characterization of the residual material on the floor of Tank 19F as per the statistical sampling plan developed by Harris and Shine. Samples from eight locations have been obtained from the tank floor and two of the samples were archived as a contingency. Six samples, referred to in this report as the current scrape samples, have been submitted to and analyzed by SRNL. This report contains the statistical analysis of the floor sample analytical results to determine if further data are needed to reduce uncertainty. Included are comparisons with the prior Mantis samples resultsmore » to determine if they can be pooled with the current scrape samples to estimate the upper 95% confidence limits (UCL95%) for concentration. Statistical analysis revealed that the Mantis and current scrape sample results are not compatible. Therefore, the Mantis sample results were not used to support the quantification of analytes in the residual material. Significant spatial variability among the current scrape sample results was not found. Constituent concentrations were similar between the North and South hemispheres as well as between the inner and outer regions of the tank floor. The current scrape sample results from all six samples fall within their 3-sigma limits. In view of the results from numerous statistical tests, the data were pooled from all six current scrape samples. As such, an adequate sample size was provided for quantification of the residual material on the floor of Tank 19F. The uncertainty is quantified in this report by an UCL95% on each analyte concentration. The uncertainty in analyte concentration was calculated as a function of the number of samples, the average, and the standard deviation of the analytical results. The UCL95% was based entirely on the six current scrape sample results (each averaged across three analytical determinations).« less

  11. [Design and implementation of online statistical analysis function in information system of air pollution and health impact monitoring].

    PubMed

    Lü, Yiran; Hao, Shuxin; Zhang, Guoqing; Liu, Jie; Liu, Yue; Xu, Dongqun

    2018-01-01

    To implement the online statistical analysis function in information system of air pollution and health impact monitoring, and obtain the data analysis information real-time. Using the descriptive statistical method as well as time-series analysis and multivariate regression analysis, SQL language and visual tools to implement online statistical analysis based on database software. Generate basic statistical tables and summary tables of air pollution exposure and health impact data online; Generate tendency charts of each data part online and proceed interaction connecting to database; Generate butting sheets which can lead to R, SAS and SPSS directly online. The information system air pollution and health impact monitoring implements the statistical analysis function online, which can provide real-time analysis result to its users.

  12. Multivariate statistical analysis of low-voltage EDS spectrum images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, I.M.

    1998-03-01

    Whereas energy-dispersive X-ray spectrometry (EDS) has been used for compositional analysis in the scanning electron microscope for 30 years, the benefits of using low operating voltages for such analyses have been explored only during the last few years. This paper couples low-voltage EDS with two other emerging areas of characterization: spectrum imaging and multivariate statistical analysis. The specimen analyzed for this study was a finished Intel Pentium processor, with the polyimide protective coating stripped off to expose the final active layers.

  13. Statistical characterisation of COSMO Sky-Med X-SAR retrieved precipitation fields by scale-invariance analysis

    NASA Astrophysics Data System (ADS)

    Deidda, Roberto; Mascaro, Giuseppe; Hellies, Matteo; Baldini, Luca; Roberto, Nicoletta

    2013-04-01

    COSMO Sky-Med (CSK) is an important programme of the Italian Space Agency aiming at supporting environmental monitoring and management of exogenous, endogenous and anthropogenic risks through X-band Synthetic Aperture Radar (X-SAR) on board of 4 satellites forming a constellation. Most of typical SAR applications are focused on land or ocean observation. However, X-band SAR can be detect precipitation that results in a specific signature caused by the combination of attenuation of surface returns induced by precipitation and enhancement of backscattering determined by the hydrometeors in the SAR resolution volume. Within CSK programme, we conducted an intercomparison between the statistical properties of precipitation fields derived by CSK SARs and those derived by the CNR Polar 55C (C-band) ground based weather radar located in Rome (Italy). This contribution presents main results of this research which was aimed at the robust characterisation of rainfall statistical properties across different scales by means of scale-invariance analysis and multifractal theory. The analysis was performed on a dataset of more two years of precipitation observations collected by the CNR Polar 55C radar and rainfall fields derived from available images collected by the CSK satellites during intense rainfall events. Scale-invariance laws and multifractal properties were detected on the most intense rainfall events derived from the CNR Polar 55C radar for spatial scales from 4 km to 64 km. The analysis on X-SAR retrieved rainfall fields, although based on few images, leaded to similar results and confirmed the existence of scale-invariance and multifractal properties for scales larger than 4 km. These outcomes encourage investigating SAR methodologies for future development of meteo-hydrological forecasting models based on multifractal theory.

  14. Statistical Analysis of a Large Sample Size Pyroshock Test Data Set Including Post Flight Data Assessment. Revision 1

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    2010-01-01

    The Earth Observing System (EOS) Terra spacecraft was launched on an Atlas IIAS launch vehicle on its mission to observe planet Earth in late 1999. Prior to launch, the new design of the spacecraft's pyroshock separation system was characterized by a series of 13 separation ground tests. The analysis methods used to evaluate this unusually large amount of shock data will be discussed in this paper, with particular emphasis on population distributions and finding statistically significant families of data, leading to an overall shock separation interface level. The wealth of ground test data also allowed a derivation of a Mission Assurance level for the flight. All of the flight shock measurements were below the EOS Terra Mission Assurance level thus contributing to the overall success of the EOS Terra mission. The effectiveness of the statistical methodology for characterizing the shock interface level and for developing a flight Mission Assurance level from a large sample size of shock data is demonstrated in this paper.

  15. Examination of influential observations in penalized spline regression

    NASA Astrophysics Data System (ADS)

    Türkan, Semra

    2013-10-01

    In parametric or nonparametric regression models, the results of regression analysis are affected by some anomalous observations in the data set. Thus, detection of these observations is one of the major steps in regression analysis. These observations are precisely detected by well-known influence measures. Pena's statistic is one of them. In this study, Pena's approach is formulated for penalized spline regression in terms of ordinary residuals and leverages. The real data and artificial data are used to see illustrate the effectiveness of Pena's statistic as to Cook's distance on detecting influential observations. The results of the study clearly reveal that the proposed measure is superior to Cook's Distance to detect these observations in large data set.

  16. Tree-space statistics and approximations for large-scale analysis of anatomical trees.

    PubMed

    Feragen, Aasa; Owen, Megan; Petersen, Jens; Wille, Mathilde M W; Thomsen, Laura H; Dirksen, Asger; de Bruijne, Marleen

    2013-01-01

    Statistical analysis of anatomical trees is hard to perform due to differences in the topological structure of the trees. In this paper we define statistical properties of leaf-labeled anatomical trees with geometric edge attributes by considering the anatomical trees as points in the geometric space of leaf-labeled trees. This tree-space is a geodesic metric space where any two trees are connected by a unique shortest path, which corresponds to a tree deformation. However, tree-space is not a manifold, and the usual strategy of performing statistical analysis in a tangent space and projecting onto tree-space is not available. Using tree-space and its shortest paths, a variety of statistical properties, such as mean, principal component, hypothesis testing and linear discriminant analysis can be defined. For some of these properties it is still an open problem how to compute them; others (like the mean) can be computed, but efficient alternatives are helpful in speeding up algorithms that use means iteratively, like hypothesis testing. In this paper, we take advantage of a very large dataset (N = 8016) to obtain computable approximations, under the assumption that the data trees parametrize the relevant parts of tree-space well. Using the developed approximate statistics, we illustrate how the structure and geometry of airway trees vary across a population and show that airway trees with Chronic Obstructive Pulmonary Disease come from a different distribution in tree-space than healthy ones. Software is available from http://image.diku.dk/aasa/software.php.

  17. SOCR Analyses - an Instructional Java Web-based Statistical Analysis Toolkit.

    PubMed

    Chu, Annie; Cui, Jenny; Dinov, Ivo D

    2009-03-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test.The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website.In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most

  18. Assessment of Reliable Change Using 95% Credible Intervals for the Differences in Proportions: A Statistical Analysis for Case-Study Methodology.

    PubMed

    Unicomb, Rachael; Colyvas, Kim; Harrison, Elisabeth; Hewat, Sally

    2015-06-01

    Case-study methodology studying change is often used in the field of speech-language pathology, but it can be criticized for not being statistically robust. Yet with the heterogeneous nature of many communication disorders, case studies allow clinicians and researchers to closely observe and report on change. Such information is valuable and can further inform large-scale experimental designs. In this research note, a statistical analysis for case-study data is outlined that employs a modification to the Reliable Change Index (Jacobson & Truax, 1991). The relationship between reliable change and clinical significance is discussed. Example data are used to guide the reader through the use and application of this analysis. A method of analysis is detailed that is suitable for assessing change in measures with binary categorical outcomes. The analysis is illustrated using data from one individual, measured before and after treatment for stuttering. The application of this approach to assess change in categorical, binary data has potential application in speech-language pathology. It enables clinicians and researchers to analyze results from case studies for their statistical and clinical significance. This new method addresses a gap in the research design literature, that is, the lack of analysis methods for noncontinuous data (such as counts, rates, proportions of events) that may be used in case-study designs.

  19. Energy-density field approach for low- and medium-frequency vibroacoustic analysis of complex structures using a statistical computational model

    NASA Astrophysics Data System (ADS)

    Kassem, M.; Soize, C.; Gagliardini, L.

    2009-06-01

    In this paper, an energy-density field approach applied to the vibroacoustic analysis of complex industrial structures in the low- and medium-frequency ranges is presented. This approach uses a statistical computational model. The analyzed system consists of an automotive vehicle structure coupled with its internal acoustic cavity. The objective of this paper is to make use of the statistical properties of the frequency response functions of the vibroacoustic system observed from previous experimental and numerical work. The frequency response functions are expressed in terms of a dimensionless matrix which is estimated using the proposed energy approach. Using this dimensionless matrix, a simplified vibroacoustic model is proposed.

  20. Statistical analysis of co-occurrence patterns in microbial presence-absence datasets.

    PubMed

    Mainali, Kumar P; Bewick, Sharon; Thielen, Peter; Mehoke, Thomas; Breitwieser, Florian P; Paudel, Shishir; Adhikari, Arjun; Wolfe, Joshua; Slud, Eric V; Karig, David; Fagan, William F

    2017-01-01

    species prevalence. This model is available from recent statistics literature, and can be used for evaluating the significance of any value of an empirically observed Jaccard's index. The resulting simple, yet effective method for handling correlation analysis of microbial presence-absence datasets provides a robust means of testing and finding relationships and/or shared environmental responses among microbial taxa.

  1. Statistical analysis of co-occurrence patterns in microbial presence-absence datasets

    PubMed Central

    Bewick, Sharon; Thielen, Peter; Mehoke, Thomas; Breitwieser, Florian P.; Paudel, Shishir; Adhikari, Arjun; Wolfe, Joshua; Slud, Eric V.; Karig, David; Fagan, William F.

    2017-01-01

    corrects for species prevalence. This model is available from recent statistics literature, and can be used for evaluating the significance of any value of an empirically observed Jaccard’s index. The resulting simple, yet effective method for handling correlation analysis of microbial presence-absence datasets provides a robust means of testing and finding relationships and/or shared environmental responses among microbial taxa. PMID:29145425

  2. CorSig: a general framework for estimating statistical significance of correlation and its application to gene co-expression analysis.

    PubMed

    Wang, Hong-Qiang; Tsai, Chung-Jui

    2013-01-01

    With the rapid increase of omics data, correlation analysis has become an indispensable tool for inferring meaningful associations from a large number of observations. Pearson correlation coefficient (PCC) and its variants are widely used for such purposes. However, it remains challenging to test whether an observed association is reliable both statistically and biologically. We present here a new method, CorSig, for statistical inference of correlation significance. CorSig is based on a biology-informed null hypothesis, i.e., testing whether the true PCC (ρ) between two variables is statistically larger than a user-specified PCC cutoff (τ), as opposed to the simple null hypothesis of ρ = 0 in existing methods, i.e., testing whether an association can be declared without a threshold. CorSig incorporates Fisher's Z transformation of the observed PCC (r), which facilitates use of standard techniques for p-value computation and multiple testing corrections. We compared CorSig against two methods: one uses a minimum PCC cutoff while the other (Zhu's procedure) controls correlation strength and statistical significance in two discrete steps. CorSig consistently outperformed these methods in various simulation data scenarios by balancing between false positives and false negatives. When tested on real-world Populus microarray data, CorSig effectively identified co-expressed genes in the flavonoid pathway, and discriminated between closely related gene family members for their differential association with flavonoid and lignin pathways. The p-values obtained by CorSig can be used as a stand-alone parameter for stratification of co-expressed genes according to their correlation strength in lieu of an arbitrary cutoff. CorSig requires one single tunable parameter, and can be readily extended to other correlation measures. Thus, CorSig should be useful for a wide range of applications, particularly for network analysis of high-dimensional genomic data. A web server for

  3. Exploratory Visual Analysis of Statistical Results from Microarray Experiments Comparing High and Low Grade Glioma

    PubMed Central

    Reif, David M.; Israel, Mark A.; Moore, Jason H.

    2007-01-01

    The biological interpretation of gene expression microarray results is a daunting challenge. For complex diseases such as cancer, wherein the body of published research is extensive, the incorporation of expert knowledge provides a useful analytical framework. We have previously developed the Exploratory Visual Analysis (EVA) software for exploring data analysis results in the context of annotation information about each gene, as well as biologically relevant groups of genes. We present EVA as a flexible combination of statistics and biological annotation that provides a straightforward visual interface for the interpretation of microarray analyses of gene expression in the most commonly occuring class of brain tumors, glioma. We demonstrate the utility of EVA for the biological interpretation of statistical results by analyzing publicly available gene expression profiles of two important glial tumors. The results of a statistical comparison between 21 malignant, high-grade glioblastoma multiforme (GBM) tumors and 19 indolent, low-grade pilocytic astrocytomas were analyzed using EVA. By using EVA to examine the results of a relatively simple statistical analysis, we were able to identify tumor class-specific gene expression patterns having both statistical and biological significance. Our interactive analysis highlighted the potential importance of genes involved in cell cycle progression, proliferation, signaling, adhesion, migration, motility, and structure, as well as candidate gene loci on a region of Chromosome 7 that has been implicated in glioma. Because EVA does not require statistical or computational expertise and has the flexibility to accommodate any type of statistical analysis, we anticipate EVA will prove a useful addition to the repertoire of computational methods used for microarray data analysis. EVA is available at no charge to academic users and can be found at http://www.epistasis.org. PMID:19390666

  4. Investigation of Weibull statistics in fracture analysis of cast aluminum

    NASA Technical Reports Server (NTRS)

    Holland, Frederic A., Jr.; Zaretsky, Erwin V.

    1989-01-01

    The fracture strengths of two large batches of A357-T6 cast aluminum coupon specimens were compared by using two-parameter Weibull analysis. The minimum number of these specimens necessary to find the fracture strength of the material was determined. The applicability of three-parameter Weibull analysis was also investigated. A design methodology based on the combination of elementary stress analysis and Weibull statistical analysis is advanced and applied to the design of a spherical pressure vessel shell. The results from this design methodology are compared with results from the applicable ASME pressure vessel code.

  5. Statistical Analysis of 30 Years Rainfall Data: A Case Study

    NASA Astrophysics Data System (ADS)

    Arvind, G.; Ashok Kumar, P.; Girish Karthi, S.; Suribabu, C. R.

    2017-07-01

    Rainfall is a prime input for various engineering design such as hydraulic structures, bridges and culverts, canals, storm water sewer and road drainage system. The detailed statistical analysis of each region is essential to estimate the relevant input value for design and analysis of engineering structures and also for crop planning. A rain gauge station located closely in Trichy district is selected for statistical analysis where agriculture is the prime occupation. The daily rainfall data for a period of 30 years is used to understand normal rainfall, deficit rainfall, Excess rainfall and Seasonal rainfall of the selected circle headquarters. Further various plotting position formulae available is used to evaluate return period of monthly, seasonally and annual rainfall. This analysis will provide useful information for water resources planner, farmers and urban engineers to assess the availability of water and create the storage accordingly. The mean, standard deviation and coefficient of variation of monthly and annual rainfall was calculated to check the rainfall variability. From the calculated results, the rainfall pattern is found to be erratic. The best fit probability distribution was identified based on the minimum deviation between actual and estimated values. The scientific results and the analysis paved the way to determine the proper onset and withdrawal of monsoon results which were used for land preparation and sowing.

  6. Sedimentological analysis and bed thickness statistics from a Carboniferous deep-water channel-levee complex: Myall Trough, SE Australia

    NASA Astrophysics Data System (ADS)

    Palozzi, Jason; Pantopoulos, George; Maravelis, Angelos G.; Nordsvan, Adam; Zelilidis, Avraam

    2018-02-01

    This investigation presents an outcrop-based integrated study of internal division analysis and statistical treatment of turbidite bed thickness applied to a Carboniferous deep-water channel-levee complex in the Myall Trough, southeast Australia. Turbidite beds of the studied succession are characterized by a range of sedimentary structures grouped into two main associations, a thick-bedded and a thin-bedded one, that reflect channel-fill and overbank/levee deposits, respectively. Three vertically stacked channel-levee cycles have been identified. Results of statistical analysis of bed thickness, grain-size and internal division patterns applied on the studied channel-levee succession, indicate that turbidite bed thickness data seem to be well characterized by a bimodal lognormal distribution, which is possibly reflecting the difference between deposition from lower-density flows (in a levee/overbank setting) and very high-density flows (in a channel fill setting). Power law and exponential distributions were observed to hold only for the thick-bedded parts of the succession and cannot characterize the whole bed thickness range of the studied sediments. The succession also exhibits non-random clustering of bed thickness and grain-size measurements. The studied sediments are also characterized by the presence of statistically detected fining-upward sandstone packets. A novel quantitative approach (change-point analysis) is proposed for the detection of those packets. Markov permutation statistics also revealed the existence of order in the alternation of internal divisions in the succession expressed by an optimal internal division cycle reflecting two main types of gravity flow events deposited within both thick-bedded conglomeratic and thin-bedded sandstone associations. The analytical methods presented in this study can be used as additional tools for quantitative analysis and recognition of depositional environments in hydrocarbon-bearing research of ancient

  7. Statistical analysis of multivariate atmospheric variables. [cloud cover

    NASA Technical Reports Server (NTRS)

    Tubbs, J. D.

    1979-01-01

    Topics covered include: (1) estimation in discrete multivariate distributions; (2) a procedure to predict cloud cover frequencies in the bivariate case; (3) a program to compute conditional bivariate normal parameters; (4) the transformation of nonnormal multivariate to near-normal; (5) test of fit for the extreme value distribution based upon the generalized minimum chi-square; (6) test of fit for continuous distributions based upon the generalized minimum chi-square; (7) effect of correlated observations on confidence sets based upon chi-square statistics; and (8) generation of random variates from specified distributions.

  8. Assessing signal-to-noise in quantitative proteomics: multivariate statistical analysis in DIGE experiments.

    PubMed

    Friedman, David B

    2012-01-01

    All quantitative proteomics experiments measure variation between samples. When performing large-scale experiments that involve multiple conditions or treatments, the experimental design should include the appropriate number of individual biological replicates from each condition to enable the distinction between a relevant biological signal from technical noise. Multivariate statistical analyses, such as principal component analysis (PCA), provide a global perspective on experimental variation, thereby enabling the assessment of whether the variation describes the expected biological signal or the unanticipated technical/biological noise inherent in the system. Examples will be shown from high-resolution multivariable DIGE experiments where PCA was instrumental in demonstrating biologically significant variation as well as sample outliers, fouled samples, and overriding technical variation that would not be readily observed using standard univariate tests.

  9. Statistical analysis of weigh-in-motion data for bridge design in Vermont.

    DOT National Transportation Integrated Search

    2014-10-01

    This study investigates the suitability of the HL-93 live load model recommended by AASHTO LRFD Specifications : for its use in the analysis and design of bridges in Vermont. The method of approach consists in performing a : statistical analysis of w...

  10. Statistical study of muons counts rates in differents directions, observed at the Brazilian Southern Space Observatory

    NASA Astrophysics Data System (ADS)

    Grams, Guilherme; Schuch, Nelson Jorge; Braga, Carlos Roberto; Purushottam Kane, Rajaram; Echer, Ezequiel; Ronan Coelho Stekel, Tardelli

    Cosmic ray are charged particles, at the most time protons, that reach the earth's magne-tosphere from interplanetary space with velocities greater than the solar wind. When these impinge the atmosphere, they interact with atmosphere constituents and decay into sub-particles forming an atmospheric shower. The muons are the sub-particles which normally maintain the originated direction of the primary cosmic ray. A multi-directional muon detec-tor (MMD) was installed in 2001 and upgraded in 2005, through an international cooperation between Brazil, Japan and USA, and operated since then at the Southern Space Observatory -SSO/CRS/CCR/INPE -MCT, (29,4° S, 53,8° W, 480m a.s.l.), São Martinho da Serra, RS, a Brazil. The main objetive of this work is to present a statistical analysis of the intensity of muons, with energy between 50 and 170 GeV, in differents directions, measured by the SSO's multi-directional muon detector. The analysis was performed with data from 2006 and 2007 collected by the SSO's MMD. The MMD consists of two layers of 4x7 detectors with a total observation area of 28 m2 . The counting of muons in each directional channel is made by a coincidence of pulses pair, one from a detector in the upper layer and the other from a detector in the lower layer. The SSO's MMD is equipped with 119 directional channels for muon count rate measurement and is capable of detecting muons incident with zenithal angle between 0° and 75,53° . A statistical analysis was made with the MMD muon count rate for all the di-rectional channels. The average and the standard deviation of the muon count rate in each directional component were calculated. The results show lower cont rate for the channels with larger zenith, and higher cont rate with smaller zenith, as expected from the production and propagation of muons in the atmosphere. It is also possible to identify the Stormer cone. The SSO's MMD is also a detector component of the Global Muon Detector Network (GMDN

  11. Statistical analysis of content of Cs-137 in soils in Bansko-Razlog region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobilarov, R. G., E-mail: rkobi@tu-sofia.bg

    Statistical analysis of the data set consisting of the activity concentrations of {sup 137}Cs in soils in Bansko–Razlog region is carried out in order to establish the dependence of the deposition and the migration of {sup 137}Cs on the soil type. The descriptive statistics and the test of normality show that the data set have not normal distribution. Positively skewed distribution and possible outlying values of the activity of {sup 137}Cs in soils were observed. After reduction of the effects of outliers, the data set is divided into two parts, depending on the soil type. Test of normality of themore » two new data sets shows that they have a normal distribution. Ordinary kriging technique is used to characterize the spatial distribution of the activity of {sup 137}Cs over an area covering 40 km{sup 2} (whole Razlog valley). The result (a map of the spatial distribution of the activity concentration of {sup 137}Cs) can be used as a reference point for future studies on the assessment of radiological risk to the population and the erosion of soils in the study area.« less

  12. On the Statistical Analysis of the Radar Signature of the MQM-34D

    DTIC Science & Technology

    1975-01-31

    target drone for aspect angles near normal to the roll axis for a vertically polarized measurements system. The radar cross section and glint are... drone . The raw data from RATSCAT are reported in graphical form in an AFSWC three-volume report.. The results reported here are a statistical analysis of...Ta1get Drones , AFSWC-rR.74-0l, January 1974. 2James W. Wright, On the Statistical Analysis of the Radar Signature of the MQM-34D, Interim Report

  13. Economic and statistical analysis of time limitations for spotting fluids and fishing operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, P.S.; Brinkmann, P.E.; Taneja, P.K.

    1984-05-01

    This paper reviews the statistics of ''Spotting Fluids'' to free stuck drill pipe as well as the economics and statistics of drill string fishing operations. Data were taken from Mobil Oil Exploration and Producing Southeast Inc.'s (MOEPSI) records from 1970-1981. Only those events which occur after a drill string becomes stuck are discussed. The data collected were categorized as Directional Wells and Straight Wells. Bar diagrams are presented to show the Success Ratio vs. Soaking Time for each of the two categories. An analysis was made to identify the elapsed time limit to place the spotting fluid for maximum probabilitymore » of success. Also determined was the statistical minimum soaking time and the maximum soaking time. For determining the time limit for fishing operations, the following criteria were used: 1. The Risked ''Economic Breakeven Analysis'' concept was developed based on the work of Harrison. 2. Statistical Probability of Success based on MOEPSI's records from 1970-1981.« less

  14. Methods of learning in statistical education: Design and analysis of a randomized trial

    NASA Astrophysics Data System (ADS)

    Boyd, Felicity Turner

    Background. Recent psychological and technological advances suggest that active learning may enhance understanding and retention of statistical principles. A randomized trial was designed to evaluate the addition of innovative instructional methods within didactic biostatistics courses for public health professionals. Aims. The primary objectives were to evaluate and compare the addition of two active learning methods (cooperative and internet) on students' performance; assess their impact on performance after adjusting for differences in students' learning style; and examine the influence of learning style on trial participation. Methods. Consenting students enrolled in a graduate introductory biostatistics course were randomized to cooperative learning, internet learning, or control after completing a pretest survey. The cooperative learning group participated in eight small group active learning sessions on key statistical concepts, while the internet learning group accessed interactive mini-applications on the same concepts. Controls received no intervention. Students completed evaluations after each session and a post-test survey. Study outcome was performance quantified by examination scores. Intervention effects were analyzed by generalized linear models using intent-to-treat analysis and marginal structural models accounting for reported participation. Results. Of 376 enrolled students, 265 (70%) consented to randomization; 69, 100, and 96 students were randomized to the cooperative, internet, and control groups, respectively. Intent-to-treat analysis showed no differences between study groups; however, 51% of students in the intervention groups had dropped out after the second session. After accounting for reported participation, expected examination scores were 2.6 points higher (of 100 points) after completing one cooperative learning session (95% CI: 0.3, 4.9) and 2.4 points higher after one internet learning session (95% CI: 0.0, 4.7), versus

  15. Statistical Features of Deep-ocean Tsunamis Based on 30 Years of Bottom Pressure Observations in the Northeast Pacific

    NASA Astrophysics Data System (ADS)

    Fine, I.; Thomson, R.; Chadwick, W. W., Jr.; Davis, E. E.; Fox, C. G.

    2016-12-01

    We have used a set of high-resolution bottom pressure recorder (BPR) time series collected at Axial Seamount on the Juan de Fuca Ridge beginning in 1986 to examine tsunami waves of seismological origin in the northeast Pacific. These data are a combination of autonomous, internally-recording battery-powered instruments and cabled instruments on the OOI Cabled Array. Of the total of 120 tsunami events catalogued for the coasts of Japan, Alaska, western North America and Hawaii, we found evidence for 38 events in the Axial Seamount BPR records. Many of these tsunamis were not observed along the adjacent west coast of the USA and Canada because of the much higher noise level of coastal locations and the lack of digital tide gauge data prior to 2000. We have also identified several tsunamis of apparent seismological origin that were observed at coastal stations but not at the deep ocean site. Careful analysis of these observations suggests that they were likely of meteorological origin. Analysis of the pressure measurements from Axial Seamount, along with BPR measurements from a nearby ODP CORK (Ocean Drilling Program Circulation Obviation Retrofit Kit) borehole and DART (Deep-ocean Assessment and Reporting of Tsunamis) locations, reveals features of deep-ocean tsunamis that are markedly different from features observed at coastal locations. Results also show that the energy of deep-ocean tsunamis can differ significantly among the three sets of stations despite their close spatial spacing and that this difference is strongly dependent on the direction of the incoming tsunami waves. These deep-ocean observations provide the most comprehensive statistics possible for tsunamis in the Pacific Ocean over the past 30 years. New insight into the distribution of tsunami amplitudes and wave energy derived from the deep-ocean sites should prove useful for long-term tsunami prediction and mitigation for coastal communities along the west coast of the USA and Canada.

  16. Detection of changes of high-frequency activity by statistical time-frequency analysis in epileptic spikes

    PubMed Central

    Kobayashi, Katsuhiro; Jacobs, Julia; Gotman, Jean

    2013-01-01

    Objective A novel type of statistical time-frequency analysis was developed to elucidate changes of high-frequency EEG activity associated with epileptic spikes. Methods The method uses the Gabor Transform and detects changes of power in comparison to background activity using t-statistics that are controlled by the false discovery rate (FDR) to correct type I error of multiple testing. The analysis was applied to EEGs recorded at 2000 Hz from three patients with mesial temporal lobe epilepsy. Results Spike-related increase of high-frequency oscillations (HFOs) was clearly shown in the FDR-controlled t-spectra: it was most dramatic in spikes recorded from the hippocampus when the hippocampus was the seizure onset zone (SOZ). Depression of fast activity was observed immediately after the spikes, especially consistently in the discharges from the hippocampal SOZ. It corresponded to the slow wave part in case of spike-and-slow-wave complexes, but it was noted even in spikes without apparent slow waves. In one patient, a gradual increase of power above 200 Hz preceded spikes. Conclusions FDR-controlled t-spectra clearly detected the spike-related changes of HFOs that were unclear in standard power spectra. Significance We developed a promising tool to study the HFOs that may be closely linked to the pathophysiology of epileptogenesis. PMID:19394892

  17. A Statistical Analysis of Reviewer Agreement and Bias in Evaluating Medical Abstracts 1

    PubMed Central

    Cicchetti, Domenic V.; Conn, Harold O.

    1976-01-01

    Observer variability affects virtually all aspects of clinical medicine and investigation. One important aspect, not previously examined, is the selection of abstracts for presentation at national medical meetings. In the present study, 109 abstracts, submitted to the American Association for the Study of Liver Disease, were evaluated by three “blind” reviewers for originality, design-execution, importance, and overall scientific merit. Of the 77 abstracts rated for all parameters by all observers, interobserver agreement ranged between 81 and 88%. However, corresponding intraclass correlations varied between 0.16 (approaching statistical significance) and 0.37 (p < 0.01). Specific tests of systematic differences in scoring revealed statistically significant levels of observer bias on most of the abstract components. Moreover, the mean differences in interobserver ratings were quite small compared to the standard deviations of these differences. These results emphasize the importance of evaluating the simple percentage of rater agreement within the broader context of observer variability and systematic bias. PMID:997596

  18. Efficiency Analysis: Enhancing the Statistical and Evaluative Power of the Regression-Discontinuity Design.

    ERIC Educational Resources Information Center

    Madhere, Serge

    An analytic procedure, efficiency analysis, is proposed for improving the utility of quantitative program evaluation for decision making. The three features of the procedure are explained: (1) for statistical control, it adopts and extends the regression-discontinuity design; (2) for statistical inferences, it de-emphasizes hypothesis testing in…

  19. Statistical analysis of the determinations of the Sun's Galactocentric distance

    NASA Astrophysics Data System (ADS)

    Malkin, Zinovy

    2013-02-01

    Based on several tens of R0 measurements made during the past two decades, several studies have been performed to derive the best estimate of R0. Some used just simple averaging to derive a result, whereas others provided comprehensive analyses of possible errors in published results. In either case, detailed statistical analyses of data used were not performed. However, a computation of the best estimates of the Galactic rotation constants is not only an astronomical but also a metrological task. Here we perform an analysis of 53 R0 measurements (published in the past 20 years) to assess the consistency of the data. Our analysis shows that they are internally consistent. It is also shown that any trend in the R0 estimates from the last 20 years is statistically negligible, which renders the presence of a bandwagon effect doubtful. On the other hand, the formal errors in the published R0 estimates improve significantly with time.

  20. Statistical Analysis of Hubble /WFC3 Transit Spectroscopy of Extrasolar Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Guangwei; Deming, Drake; Knutson, Heather

    2017-10-01

    Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST /WFC3 transit spectra for 1.1–1.65 μ m water vapor absorption and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-transmit code. We express the magnitude ofmore » the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.« less

  1. Statistical Analysis of Hubble/WFC3 Transit Spectroscopy of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Fu, Guangwei; Deming, Drake; Knutson, Heather; Madhusudhan, Nikku; Mandell, Avi; Fraine, Jonathan

    2018-01-01

    Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST/WFC3 transit spectra for 1.1-1.65 micron water vapor absorption, and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-Transmit code. We express the magnitude of the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.

  2. Statistical Analysis of Hubble/WFC3 Transit Spectroscopy of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Fu, Guangwei; Deming, Drake; Knutson, Heather; Madhusudhan, Nikku; Mandell, Avi; Fraine, Jonathan

    2017-10-01

    Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST/WFC3 transit spectra for 1.1-1.65 μm water vapor absorption and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-transmit code. We express the magnitude of the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.

  3. Statistical analysis of global horizontal solar irradiation GHI in Fez city, Morocco

    NASA Astrophysics Data System (ADS)

    Bounoua, Z.; Mechaqrane, A.

    2018-05-01

    An accurate knowledge of the solar energy reaching the ground is necessary for sizing and optimizing the performances of solar installations. This paper describes a statistical analysis of the global horizontal solar irradiation (GHI) at Fez city, Morocco. For better reliability, we have first applied a set of check procedures to test the quality of hourly GHI measurements. We then eliminate the erroneous values which are generally due to measurement or the cosine effect errors. Statistical analysis show that the annual mean daily values of GHI is of approximately 5 kWh/m²/day. Daily monthly mean values and other parameter are also calculated.

  4. Statistical and observational research of solar flare for total spectra and geometrical features

    NASA Astrophysics Data System (ADS)

    Nishimoto, S.; Watanabe, K.; Imada, S.; Kawate, T.; Lee, K. S.

    2017-12-01

    Impulsive energy release phenomena such as solar flares, sometimes affect to the solar-terrestrial environment. Usually, we use soft X-ray flux (GOES class) as the index of flare scale. However, the magnitude of effect to the solar-terrestrial environment is not proportional to that scale. To identify the relationship between solar flare phenomena and influence to the solar-terrestrial environment, we need to understand the full spectrum of solar flares. There is the solar flare irradiance model named the Flare Irradiance Spectral Model (FISM) (Chamberlin et al., 2006, 2007, 2008). The FISM can estimate solar flare spectra with high wavelength resolution. However, this model can not express the time evolution of emitted plasma during the solar flare, and has low accuracy on short wavelength that strongly effects and/or controls the total flare spectra. For the purpose of obtaining the time evolution of total solar flare spectra, we are performing statistical analysis of the electromagnetic data of solar flares. In this study, we select solar flare events larger than M-class from the Hinode flare catalogue (Watanabe et al., 2012). First, we focus on the EUV emission observed by the SDO/EVE. We examined the intensities and time evolutions of five EUV lines of 55 flare events. As a result, we found positive correlation between the "soft X-ray flux" and the "EUV peak flux" for all EVU lines. Moreover, we found that hot lines peaked earlier than cool lines of the EUV light curves. We also examined the hard X-ray data obtained by RHESSI. When we analyzed 163 events, we found good correlation between the "hard X-ray intensity" and the "soft X-ray flux". Because it seems that the geometrical features of solar flares effect to those time evolutions, we also looked into flare ribbons observed by SDO/AIA. We examined 21 flare events, and found positive correlation between the "GOES duration" and the "ribbon length". We also found positive correlation between the "ribbon

  5. Meta-analysis of gene-level associations for rare variants based on single-variant statistics.

    PubMed

    Hu, Yi-Juan; Berndt, Sonja I; Gustafsson, Stefan; Ganna, Andrea; Hirschhorn, Joel; North, Kari E; Ingelsson, Erik; Lin, Dan-Yu

    2013-08-08

    Meta-analysis of genome-wide association studies (GWASs) has led to the discoveries of many common variants associated with complex human diseases. There is a growing recognition that identifying "causal" rare variants also requires large-scale meta-analysis. The fact that association tests with rare variants are performed at the gene level rather than at the variant level poses unprecedented challenges in the meta-analysis. First, different studies may adopt different gene-level tests, so the results are not compatible. Second, gene-level tests require multivariate statistics (i.e., components of the test statistic and their covariance matrix), which are difficult to obtain. To overcome these challenges, we propose to perform gene-level tests for rare variants by combining the results of single-variant analysis (i.e., p values of association tests and effect estimates) from participating studies. This simple strategy is possible because of an insight that multivariate statistics can be recovered from single-variant statistics, together with the correlation matrix of the single-variant test statistics, which can be estimated from one of the participating studies or from a publicly available database. We show both theoretically and numerically that the proposed meta-analysis approach provides accurate control of the type I error and is as powerful as joint analysis of individual participant data. This approach accommodates any disease phenotype and any study design and produces all commonly used gene-level tests. An application to the GWAS summary results of the Genetic Investigation of ANthropometric Traits (GIANT) consortium reveals rare and low-frequency variants associated with human height. The relevant software is freely available. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Statistical Learning Analysis in Neuroscience: Aiming for Transparency

    PubMed Central

    Hanke, Michael; Halchenko, Yaroslav O.; Haxby, James V.; Pollmann, Stefan

    2009-01-01

    Encouraged by a rise of reciprocal interest between the machine learning and neuroscience communities, several recent studies have demonstrated the explanatory power of statistical learning techniques for the analysis of neural data. In order to facilitate a wider adoption of these methods, neuroscientific research needs to ensure a maximum of transparency to allow for comprehensive evaluation of the employed procedures. We argue that such transparency requires “neuroscience-aware” technology for the performance of multivariate pattern analyses of neural data that can be documented in a comprehensive, yet comprehensible way. Recently, we introduced PyMVPA, a specialized Python framework for machine learning based data analysis that addresses this demand. Here, we review its features and applicability to various neural data modalities. PMID:20582270

  7. STATISTICAL ANALYSIS OF TANK 18F FLOOR SAMPLE RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, S.

    2010-09-02

    Representative sampling has been completed for characterization of the residual material on the floor of Tank 18F as per the statistical sampling plan developed by Shine [1]. Samples from eight locations have been obtained from the tank floor and two of the samples were archived as a contingency. Six samples, referred to in this report as the current scrape samples, have been submitted to and analyzed by SRNL [2]. This report contains the statistical analysis of the floor sample analytical results to determine if further data are needed to reduce uncertainty. Included are comparisons with the prior Mantis samples resultsmore » [3] to determine if they can be pooled with the current scrape samples to estimate the upper 95% confidence limits (UCL{sub 95%}) for concentration. Statistical analysis revealed that the Mantis and current scrape sample results are not compatible. Therefore, the Mantis sample results were not used to support the quantification of analytes in the residual material. Significant spatial variability among the current sample results was not found. Constituent concentrations were similar between the North and South hemispheres as well as between the inner and outer regions of the tank floor. The current scrape sample results from all six samples fall within their 3-sigma limits. In view of the results from numerous statistical tests, the data were pooled from all six current scrape samples. As such, an adequate sample size was provided for quantification of the residual material on the floor of Tank 18F. The uncertainty is quantified in this report by an upper 95% confidence limit (UCL{sub 95%}) on each analyte concentration. The uncertainty in analyte concentration was calculated as a function of the number of samples, the average, and the standard deviation of the analytical results. The UCL{sub 95%} was based entirely on the six current scrape sample results (each averaged across three analytical determinations).« less

  8. Limitations of Using Microsoft Excel Version 2016 (MS Excel 2016) for Statistical Analysis for Medical Research.

    PubMed

    Tanavalee, Chotetawan; Luksanapruksa, Panya; Singhatanadgige, Weerasak

    2016-06-01

    Microsoft Excel (MS Excel) is a commonly used program for data collection and statistical analysis in biomedical research. However, this program has many limitations, including fewer functions that can be used for analysis and a limited number of total cells compared with dedicated statistical programs. MS Excel cannot complete analyses with blank cells, and cells must be selected manually for analysis. In addition, it requires multiple steps of data transformation and formulas to plot survival analysis graphs, among others. The Megastat add-on program, which will be supported by MS Excel 2016 soon, would eliminate some limitations of using statistic formulas within MS Excel.

  9. Landing Site Dispersion Analysis and Statistical Assessment for the Mars Phoenix Lander

    NASA Technical Reports Server (NTRS)

    Bonfiglio, Eugene P.; Adams, Douglas; Craig, Lynn; Spencer, David A.; Strauss, William; Seelos, Frank P.; Seelos, Kimberly D.; Arvidson, Ray; Heet, Tabatha

    2008-01-01

    The Mars Phoenix Lander launched on August 4, 2007 and successfully landed on Mars 10 months later on May 25, 2008. Landing ellipse predicts and hazard maps were key in selecting safe surface targets for Phoenix. Hazard maps were based on terrain slopes, geomorphology maps and automated rock counts of MRO's High Resolution Imaging Science Experiment (HiRISE) images. The expected landing dispersion which led to the selection of Phoenix's surface target is discussed as well as the actual landing dispersion predicts determined during operations in the weeks, days, and hours before landing. A statistical assessment of these dispersions is performed, comparing the actual landing-safety probabilities to criteria levied by the project. Also discussed are applications for this statistical analysis which were used by the Phoenix project. These include using the statistical analysis used to verify the effectiveness of a pre-planned maneuver menu and calculating the probability of future maneuvers.

  10. OSPAR standard method and software for statistical analysis of beach litter data.

    PubMed

    Schulz, Marcus; van Loon, Willem; Fleet, David M; Baggelaar, Paul; van der Meulen, Eit

    2017-09-15

    The aim of this study is to develop standard statistical methods and software for the analysis of beach litter data. The optimal ensemble of statistical methods comprises the Mann-Kendall trend test, the Theil-Sen slope estimation, the Wilcoxon step trend test and basic descriptive statistics. The application of Litter Analyst, a tailor-made software for analysing the results of beach litter surveys, to OSPAR beach litter data from seven beaches bordering on the south-eastern North Sea, revealed 23 significant trends in the abundances of beach litter types for the period 2009-2014. Litter Analyst revealed a large variation in the abundance of litter types between beaches. To reduce the effects of spatial variation, trend analysis of beach litter data can most effectively be performed at the beach or national level. Spatial aggregation of beach litter data within a region is possible, but resulted in a considerable reduction in the number of significant trends. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Statistical Analysis of CFD Solutions from the Fourth AIAA Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    2010-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from the U.S., Europe, Asia, and Russia using a variety of grid systems and turbulence models for the June 2009 4th Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was a new subsonic transport model, the Common Research Model, designed using a modern approach for the wing and included a horizontal tail. The fourth workshop focused on the prediction of both absolute and incremental drag levels for wing-body and wing-body-horizontal tail configurations. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with earlier workshops using the statistical framework.

  12. Bayesian Statistical Analysis of Historical and Late Holocene Rates of Sea-Level Change

    NASA Astrophysics Data System (ADS)

    Cahill, Niamh; Parnell, Andrew; Kemp, Andrew; Horton, Benjamin

    2014-05-01

    A fundamental concern associated with climate change is the rate at which sea levels are rising. Studies of past sea level (particularly beyond the instrumental data range) allow modern sea-level rise to be placed in a more complete context. Considering this, we perform a Bayesian statistical analysis on historical and late Holocene rates of sea-level change. The data that form the input to the statistical model are tide-gauge measurements and proxy reconstructions from cores of coastal sediment. The aims are to estimate rates of sea-level rise, to determine when modern rates of sea-level rise began and to observe how these rates have been changing over time. Many of the current methods for doing this use simple linear regression to estimate rates. This is often inappropriate as it is too rigid and it can ignore uncertainties that arise as part of the data collection exercise. This can lead to over confidence in the sea-level trends being characterized. The proposed Bayesian model places a Gaussian process prior on the rate process (i.e. the process that determines how rates of sea-level are changing over time). The likelihood of the observed data is the integral of this process. When dealing with proxy reconstructions, this is set in an errors-in-variables framework so as to take account of age uncertainty. It is also necessary, in this case, for the model to account for glacio-isostatic adjustment, which introduces a covariance between individual age and sea-level observations. This method provides a flexible fit and it allows for the direct estimation of the rate process with full consideration of all sources of uncertainty. Analysis of tide-gauge datasets and proxy reconstructions in this way means that changing rates of sea level can be estimated more comprehensively and accurately than previously possible. The model captures the continuous and dynamic evolution of sea-level change and results show that not only are modern sea levels rising but that the rates

  13. Valid Statistical Analysis for Logistic Regression with Multiple Sources

    NASA Astrophysics Data System (ADS)

    Fienberg, Stephen E.; Nardi, Yuval; Slavković, Aleksandra B.

    Considerable effort has gone into understanding issues of privacy protection of individual information in single databases, and various solutions have been proposed depending on the nature of the data, the ways in which the database will be used and the precise nature of the privacy protection being offered. Once data are merged across sources, however, the nature of the problem becomes far more complex and a number of privacy issues arise for the linked individual files that go well beyond those that are considered with regard to the data within individual sources. In the paper, we propose an approach that gives full statistical analysis on the combined database without actually combining it. We focus mainly on logistic regression, but the method and tools described may be applied essentially to other statistical models as well.

  14. Noise removing in encrypted color images by statistical analysis

    NASA Astrophysics Data System (ADS)

    Islam, N.; Puech, W.

    2012-03-01

    Cryptographic techniques are used to secure confidential data from unauthorized access but these techniques are very sensitive to noise. A single bit change in encrypted data can have catastrophic impact over the decrypted data. This paper addresses the problem of removing bit error in visual data which are encrypted using AES algorithm in the CBC mode. In order to remove the noise, a method is proposed which is based on the statistical analysis of each block during the decryption. The proposed method exploits local statistics of the visual data and confusion/diffusion properties of the encryption algorithm to remove the errors. Experimental results show that the proposed method can be used at the receiving end for the possible solution for noise removing in visual data in encrypted domain.

  15. Multivariate meta-analysis: a robust approach based on the theory of U-statistic.

    PubMed

    Ma, Yan; Mazumdar, Madhu

    2011-10-30

    Meta-analysis is the methodology for combining findings from similar research studies asking the same question. When the question of interest involves multiple outcomes, multivariate meta-analysis is used to synthesize the outcomes simultaneously taking into account the correlation between the outcomes. Likelihood-based approaches, in particular restricted maximum likelihood (REML) method, are commonly utilized in this context. REML assumes a multivariate normal distribution for the random-effects model. This assumption is difficult to verify, especially for meta-analysis with small number of component studies. The use of REML also requires iterative estimation between parameters, needing moderately high computation time, especially when the dimension of outcomes is large. A multivariate method of moments (MMM) is available and is shown to perform equally well to REML. However, there is a lack of information on the performance of these two methods when the true data distribution is far from normality. In this paper, we propose a new nonparametric and non-iterative method for multivariate meta-analysis on the basis of the theory of U-statistic and compare the properties of these three procedures under both normal and skewed data through simulation studies. It is shown that the effect on estimates from REML because of non-normal data distribution is marginal and that the estimates from MMM and U-statistic-based approaches are very similar. Therefore, we conclude that for performing multivariate meta-analysis, the U-statistic estimation procedure is a viable alternative to REML and MMM. Easy implementation of all three methods are illustrated by their application to data from two published meta-analysis from the fields of hip fracture and periodontal disease. We discuss ideas for future research based on U-statistic for testing significance of between-study heterogeneity and for extending the work to meta-regression setting. Copyright © 2011 John Wiley & Sons, Ltd.

  16. Statistical analysis in MSW collection performance assessment.

    PubMed

    Teixeira, Carlos Afonso; Avelino, Catarina; Ferreira, Fátima; Bentes, Isabel

    2014-09-01

    The increase of Municipal Solid Waste (MSW) generated over the last years forces waste managers pursuing more effective collection schemes, technically viable, environmentally effective and economically sustainable. The assessment of MSW services using performance indicators plays a crucial role for improving service quality. In this work, we focus on the relevance of regular system monitoring as a service assessment tool. In particular, we select and test a core-set of MSW collection performance indicators (effective collection distance, effective collection time and effective fuel consumption) that highlights collection system strengths and weaknesses and supports pro-active management decision-making and strategic planning. A statistical analysis was conducted with data collected in mixed collection system of Oporto Municipality, Portugal, during one year, a week per month. This analysis provides collection circuits' operational assessment and supports effective short-term municipality collection strategies at the level of, e.g., collection frequency and timetables, and type of containers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Statistical analysis of secondary particle distributions in relativistic nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Mcguire, Stephen C.

    1987-01-01

    The use is described of several statistical techniques to characterize structure in the angular distributions of secondary particles from nucleus-nucleus collisions in the energy range 24 to 61 GeV/nucleon. The objective of this work was to determine whether there are correlations between emitted particle intensity and angle that may be used to support the existence of the quark gluon plasma. The techniques include chi-square null hypothesis tests, the method of discrete Fourier transform analysis, and fluctuation analysis. We have also used the method of composite unit vectors to test for azimuthal asymmetry in a data set of 63 JACEE-3 events. Each method is presented in a manner that provides the reader with some practical detail regarding its application. Of those events with relatively high statistics, Fe approaches 0 at 55 GeV/nucleon was found to possess an azimuthal distribution with a highly non-random structure. No evidence of non-statistical fluctuations was found in the pseudo-rapidity distributions of the events studied. It is seen that the most effective application of these methods relies upon the availability of many events or single events that possess very high multiplicities.

  18. A statistical study of sporadic sodium layer observed by Sodium lidar at Hefei (31.8° N, 117.3° E)

    NASA Astrophysics Data System (ADS)

    Dou, X.-K.; Xue, X.-H.; Chen, T.-D.; Wan, W.-X.; Cheng, X.-W.; Li, T.; Chen, C.; Qiu, S.; Chen, Z.-Y.

    2009-06-01

    Sodium lidar observations of sporadic sodium layers (SSLs) during the past 3 years at a mid-latitude location (Hefei, China, 31.8° N, 117.3° E) are reported in this paper. From 64 SSL events detected in about 900 h of observation, an SSL occurrence rate of 1 event every 14 h at our location was obtained. This result, combined with previous studies, reveals that the SSL occurrence can be relatively frequent at some mid-latitude locations. Statistical analysis of main parameters for the 64 SSL events was performed. By examining the corresponding data from an ionosonde, a considerable correlation was found with a Pearson coefficient of 0.66 between seasonal variations of SSL and those of sporadic E (Es) during nighttime, which was in line with the research by Nagasawa and Abo (1995). From comparison between observations from the University of Science and Technology of China (USTC) lidar and from Wuhan Institute of Physics and Mathematics (WIPM) lidar (Wuhan, China, 31° N, 114° E), the minimum horizontal range for some events was estimated to be over 500 km.

  19. Spatio-temporal analysis of sub-hourly rainfall over Mumbai, India: Is statistical forecasting futile?

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra; Sekharan, Sheeba; Karmakar, Subhankar; Ghosh, Subimal; Zope, P. E.; Eldho, T. I.

    2017-04-01

    Mumbai, the commercial and financial capital of India, experiences incessant annual rain episodes, mainly attributable to erratic rainfall pattern during monsoons and urban heat-island effect due to escalating urbanization, leading to increasing vulnerability to frequent flooding. After the infamous episode of 2005 Mumbai torrential rains when only two rain gauging stations existed, the governing civic body, the Municipal Corporation of Greater Mumbai (MCGM) came forward with an initiative to install 26 automatic weather stations (AWS) in June 2006 (MCGM 2007), which later increased to 60 AWS. A comprehensive statistical analysis to understand the spatio-temporal pattern of rainfall over Mumbai or any other coastal city in India has never been attempted earlier. In the current study, a thorough analysis of available rainfall data for 2006-2014 from these stations was performed; the 2013-2014 sub-hourly data from 26 AWS was found useful for further analyses due to their consistency and continuity. Correlogram cloud indicated no pattern of significant correlation when we considered the closest to the farthest gauging station from the base station; this impression was also supported by the semivariogram plots. Gini index values, a statistical measure of temporal non-uniformity, were found above 0.8 in visible majority showing an increasing trend in most gauging stations; this sufficiently led us to conclude that inconsistency in daily rainfall was gradually increasing with progress in monsoon. Interestingly, night rainfall was lesser compared to daytime rainfall. The pattern-less high spatio-temporal variation observed in Mumbai rainfall data signifies the futility of independently applying advanced statistical techniques, and thus calls for simultaneous inclusion of physics-centred models such as different meso-scale numerical weather prediction systems, particularly the Weather Research and Forecasting (WRF) model.

  20. RooStatsCms: A tool for analysis modelling, combination and statistical studies

    NASA Astrophysics Data System (ADS)

    Piparo, D.; Schott, G.; Quast, G.

    2010-04-01

    RooStatsCms is an object oriented statistical framework based on the RooFit technology. Its scope is to allow the modelling, statistical analysis and combination of multiple search channels for new phenomena in High Energy Physics. It provides a variety of methods described in literature implemented as classes, whose design is oriented to the execution of multiple CPU intensive jobs on batch systems or on the Grid.

  1. Statistical shape analysis using 3D Poisson equation--A quantitatively validated approach.

    PubMed

    Gao, Yi; Bouix, Sylvain

    2016-05-01

    Statistical shape analysis has been an important area of research with applications in biology, anatomy, neuroscience, agriculture, paleontology, etc. Unfortunately, the proposed methods are rarely quantitatively evaluated, and as shown in recent studies, when they are evaluated, significant discrepancies exist in their outputs. In this work, we concentrate on the problem of finding the consistent location of deformation between two population of shapes. We propose a new shape analysis algorithm along with a framework to perform a quantitative evaluation of its performance. Specifically, the algorithm constructs a Signed Poisson Map (SPoM) by solving two Poisson equations on the volumetric shapes of arbitrary topology, and statistical analysis is then carried out on the SPoMs. The method is quantitatively evaluated on synthetic shapes and applied on real shape data sets in brain structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. For the Love of Statistics: Appreciating and Learning to Apply Experimental Analysis and Statistics through Computer Programming Activities

    ERIC Educational Resources Information Center

    Mascaró, Maite; Sacristán, Ana Isabel; Rufino, Marta M.

    2016-01-01

    For the past 4 years, we have been involved in a project that aims to enhance the teaching and learning of experimental analysis and statistics, of environmental and biological sciences students, through computational programming activities (using R code). In this project, through an iterative design, we have developed sequences of R-code-based…

  3. An analysis of a large dataset on immigrant integration in Spain. The Statistical Mechanics perspective on Social Action

    NASA Astrophysics Data System (ADS)

    Barra, Adriano; Contucci, Pierluigi; Sandell, Rickard; Vernia, Cecilia

    2014-02-01

    How does immigrant integration in a country change with immigration density? Guided by a statistical mechanics perspective we propose a novel approach to this problem. The analysis focuses on classical integration quantifiers such as the percentage of jobs (temporary and permanent) given to immigrants, mixed marriages, and newborns with parents of mixed origin. We find that the average values of different quantifiers may exhibit either linear or non-linear growth on immigrant density and we suggest that social action, a concept identified by Max Weber, causes the observed non-linearity. Using the statistical mechanics notion of interaction to quantitatively emulate social action, a unified mathematical model for integration is proposed and it is shown to explain both growth behaviors observed. The linear theory instead, ignoring the possibility of interaction effects would underestimate the quantifiers up to 30% when immigrant densities are low, and overestimate them as much when densities are high. The capacity to quantitatively isolate different types of integration mechanisms makes our framework a suitable tool in the quest for more efficient integration policies.

  4. Degree-based statistic and center persistency for brain connectivity analysis.

    PubMed

    Yoo, Kwangsun; Lee, Peter; Chung, Moo K; Sohn, William S; Chung, Sun Ju; Na, Duk L; Ju, Daheen; Jeong, Yong

    2017-01-01

    Brain connectivity analyses have been widely performed to investigate the organization and functioning of the brain, or to observe changes in neurological or psychiatric conditions. However, connectivity analysis inevitably introduces the problem of mass-univariate hypothesis testing. Although, several cluster-wise correction methods have been suggested to address this problem and shown to provide high sensitivity, these approaches fundamentally have two drawbacks: the lack of spatial specificity (localization power) and the arbitrariness of an initial cluster-forming threshold. In this study, we propose a novel method, degree-based statistic (DBS), performing cluster-wise inference. DBS is designed to overcome the above-mentioned two shortcomings. From a network perspective, a few brain regions are of critical importance and considered to play pivotal roles in network integration. Regarding this notion, DBS defines a cluster as a set of edges of which one ending node is shared. This definition enables the efficient detection of clusters and their center nodes. Furthermore, a new measure of a cluster, center persistency (CP) was introduced. The efficiency of DBS with a known "ground truth" simulation was demonstrated. Then they applied DBS to two experimental datasets and showed that DBS successfully detects the persistent clusters. In conclusion, by adopting a graph theoretical concept of degrees and borrowing the concept of persistence from algebraic topology, DBS could sensitively identify clusters with centric nodes that would play pivotal roles in an effect of interest. DBS is potentially widely applicable to variable cognitive or clinical situations and allows us to obtain statistically reliable and easily interpretable results. Hum Brain Mapp 38:165-181, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Multivariate Statistical Analysis of MSL APXS Bulk Geochemical Data

    NASA Astrophysics Data System (ADS)

    Hamilton, V. E.; Edwards, C. S.; Thompson, L. M.; Schmidt, M. E.

    2014-12-01

    We apply cluster and factor analyses to bulk chemical data of 130 soil and rock samples measured by the Alpha Particle X-ray Spectrometer (APXS) on the Mars Science Laboratory (MSL) rover Curiosity through sol 650. Multivariate approaches such as principal components analysis (PCA), cluster analysis, and factor analysis compliment more traditional approaches (e.g., Harker diagrams), with the advantage of simultaneously examining the relationships between multiple variables for large numbers of samples. Principal components analysis has been applied with success to APXS, Pancam, and Mössbauer data from the Mars Exploration Rovers. Factor analysis and cluster analysis have been applied with success to thermal infrared (TIR) spectral data of Mars. Cluster analyses group the input data by similarity, where there are a number of different methods for defining similarity (hierarchical, density, distribution, etc.). For example, without any assumptions about the chemical contributions of surface dust, preliminary hierarchical and K-means cluster analyses clearly distinguish the physically adjacent rock targets Windjana and Stephen as being distinctly different than lithologies observed prior to Curiosity's arrival at The Kimberley. In addition, they are separated from each other, consistent with chemical trends observed in variation diagrams but without requiring assumptions about chemical relationships. We will discuss the variation in cluster analysis results as a function of clustering method and pre-processing (e.g., log transformation, correction for dust cover) and implications for interpreting chemical data. Factor analysis shares some similarities with PCA, and examines the variability among observed components of a dataset so as to reveal variations attributable to unobserved components. Factor analysis has been used to extract the TIR spectra of components that are typically observed in mixtures and only rarely in isolation; there is the potential for similar

  6. CADDIS Volume 4. Data Analysis: Predicting Environmental Conditions from Biological Observations (PECBO Appendix)

    EPA Pesticide Factsheets

    Overview of PECBO Module, using scripts to infer environmental conditions from biological observations, statistically estimating species-environment relationships, methods for inferring environmental conditions, statistical scripts in module.

  7. Monte Carlo based statistical power analysis for mediation models: methods and software.

    PubMed

    Zhang, Zhiyong

    2014-12-01

    The existing literature on statistical power analysis for mediation models often assumes data normality and is based on a less powerful Sobel test instead of the more powerful bootstrap test. This study proposes to estimate statistical power to detect mediation effects on the basis of the bootstrap method through Monte Carlo simulation. Nonnormal data with excessive skewness and kurtosis are allowed in the proposed method. A free R package called bmem is developed to conduct the power analysis discussed in this study. Four examples, including a simple mediation model, a multiple-mediator model with a latent mediator, a multiple-group mediation model, and a longitudinal mediation model, are provided to illustrate the proposed method.

  8. A statistical analysis of the impact of advertising signs on road safety.

    PubMed

    Yannis, George; Papadimitriou, Eleonora; Papantoniou, Panagiotis; Voulgari, Chrisoula

    2013-01-01

    This research aims to investigate the impact of advertising signs on road safety. An exhaustive review of international literature was carried out on the effect of advertising signs on driver behaviour and safety. Moreover, a before-and-after statistical analysis with control groups was applied on several road sites with different characteristics in the Athens metropolitan area, in Greece, in order to investigate the correlation between the placement or removal of advertising signs and the related occurrence of road accidents. Road accident data for the 'before' and 'after' periods on the test sites and the control sites were extracted from the database of the Hellenic Statistical Authority, and the selected 'before' and 'after' periods vary from 2.5 to 6 years. The statistical analysis shows no statistical correlation between road accidents and advertising signs in none of the nine sites examined, as the confidence intervals of the estimated safety effects are non-significant at 95% confidence level. This can be explained by the fact that, in the examined road sites, drivers are overloaded with information (traffic signs, directions signs, labels of shops, pedestrians and other vehicles, etc.) so that the additional information load from advertising signs may not further distract them.

  9. Building the Community Online Resource for Statistical Seismicity Analysis (CORSSA)

    NASA Astrophysics Data System (ADS)

    Michael, A. J.; Wiemer, S.; Zechar, J. D.; Hardebeck, J. L.; Naylor, M.; Zhuang, J.; Steacy, S.; Corssa Executive Committee

    2010-12-01

    Statistical seismology is critical to the understanding of seismicity, the testing of proposed earthquake prediction and forecasting methods, and the assessment of seismic hazard. Unfortunately, despite its importance to seismology - especially to those aspects with great impact on public policy - statistical seismology is mostly ignored in the education of seismologists, and there is no central repository for the existing open-source software tools. To remedy these deficiencies, and with the broader goal to enhance the quality of statistical seismology research, we have begun building the Community Online Resource for Statistical Seismicity Analysis (CORSSA). CORSSA is a web-based educational platform that is authoritative, up-to-date, prominent, and user-friendly. We anticipate that the users of CORSSA will range from beginning graduate students to experienced researchers. More than 20 scientists from around the world met for a week in Zurich in May 2010 to kick-start the creation of CORSSA: the format and initial table of contents were defined; a governing structure was organized; and workshop participants began drafting articles. CORSSA materials are organized with respect to six themes, each containing between four and eight articles. The CORSSA web page, www.corssa.org, officially unveiled on September 6, 2010, debuts with an initial set of approximately 10 to 15 articles available online for viewing and commenting with additional articles to be added over the coming months. Each article will be peer-reviewed and will present a balanced discussion, including illustrative examples and code snippets. Topics in the initial set of articles will include: introductions to both CORSSA and statistical seismology, basic statistical tests and their role in seismology; understanding seismicity catalogs and their problems; basic techniques for modeling seismicity; and methods for testing earthquake predictability hypotheses. A special article will compare and review

  10. Vibroacoustic optimization using a statistical energy analysis model

    NASA Astrophysics Data System (ADS)

    Culla, Antonio; D`Ambrogio, Walter; Fregolent, Annalisa; Milana, Silvia

    2016-08-01

    In this paper, an optimization technique for medium-high frequency dynamic problems based on Statistical Energy Analysis (SEA) method is presented. Using a SEA model, the subsystem energies are controlled by internal loss factors (ILF) and coupling loss factors (CLF), which in turn depend on the physical parameters of the subsystems. A preliminary sensitivity analysis of subsystem energy to CLF's is performed to select CLF's that are most effective on subsystem energies. Since the injected power depends not only on the external loads but on the physical parameters of the subsystems as well, it must be taken into account under certain conditions. This is accomplished in the optimization procedure, where approximate relationships between CLF's, injected power and physical parameters are derived. The approach is applied on a typical aeronautical structure: the cabin of a helicopter.

  11. Meta- and statistical analysis of single-case intervention research data: quantitative gifts and a wish list.

    PubMed

    Kratochwill, Thomas R; Levin, Joel R

    2014-04-01

    In this commentary, we add to the spirit of the articles appearing in the special series devoted to meta- and statistical analysis of single-case intervention-design data. Following a brief discussion of historical factors leading to our initial involvement in statistical analysis of such data, we discuss: (a) the value added by including statistical-analysis recommendations in the What Works Clearinghouse Standards for single-case intervention designs; (b) the importance of visual analysis in single-case intervention research, along with the distinctive role that could be played by single-case effect-size measures; and (c) the elevated internal validity and statistical-conclusion validity afforded by the incorporation of various forms of randomization into basic single-case design structures. For the future, we envision more widespread application of quantitative analyses, as critical adjuncts to visual analysis, in both primary single-case intervention research studies and literature reviews in the behavioral, educational, and health sciences. Copyright © 2014 Society for the Study of School Psychology. Published by Elsevier Ltd. All rights reserved.

  12. Analysis of Critical Earth Observation Priorities for Societal Benefit

    NASA Astrophysics Data System (ADS)

    Zell, E. R.; Huff, A. K.; Carpenter, A. T.; Friedl, L.

    2011-12-01

    To ensure that appropriate near real-time (NRT) and historical Earth observation data are available to benefit society and meet end-user needs, the Group on Earth Observations (GEO) sponsored a multi-disciplinary study to identify a set of critical and common Earth observations associated with 9 Societal Benefit Areas (SBAs): Agriculture, Biodiversity, Climate, Disasters, Ecosystems, Energy, Health, Water, and Weather. GEO is an intergovernmental organization working to improve the availability, access, and use of Earth observations to benefit society through a Global Earth Observation System of Systems (GEOSS). The study, overseen by the GEO User Interface Committee, focused on the "demand" side of Earth observation needs: which users need what types of data, and when? The methodology for the study was a meta-analysis of over 1,700 publicly available documents addressing Earth observation user priorities, under the guidance of expert advisors from around the world. The result was a ranking of 146 Earth observation parameters that are critical and common to multiple SBAs, based on an ensemble of 4 statistically robust methods. Within the results, key details emerged on NRT observations needed to serve a broad community of users. The NRT observation priorities include meteorological parameters, vegetation indices, land cover and soil property observations, water body and snow cover properties, and atmospheric composition. The results of the study and examples of NRT applications will be presented. The applications are as diverse as the list of priority parameters. For example, NRT meteorological and soil moisture information can support monitoring and forecasting for more than 25 infectious diseases, including epidemic diseases, such as malaria, and diseases of major concern in the U.S., such as Lyme disease. Quickly evolving events that impact forests, such as fires and insect outbreaks, can be monitored and forecasted with a combination of vegetation indices, fuel

  13. SOCR Analyses – an Instructional Java Web-based Statistical Analysis Toolkit

    PubMed Central

    Chu, Annie; Cui, Jenny; Dinov, Ivo D.

    2011-01-01

    The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test. The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website. In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most

  14. Statistical analysis for validating ACO-KNN algorithm as feature selection in sentiment analysis

    NASA Astrophysics Data System (ADS)

    Ahmad, Siti Rohaidah; Yusop, Nurhafizah Moziyana Mohd; Bakar, Azuraliza Abu; Yaakub, Mohd Ridzwan

    2017-10-01

    This research paper aims to propose a hybrid of ant colony optimization (ACO) and k-nearest neighbor (KNN) algorithms as feature selections for selecting and choosing relevant features from customer review datasets. Information gain (IG), genetic algorithm (GA), and rough set attribute reduction (RSAR) were used as baseline algorithms in a performance comparison with the proposed algorithm. This paper will also discuss the significance test, which was used to evaluate the performance differences between the ACO-KNN, IG-GA, and IG-RSAR algorithms. This study evaluated the performance of the ACO-KNN algorithm using precision, recall, and F-score, which were validated using the parametric statistical significance tests. The evaluation process has statistically proven that this ACO-KNN algorithm has been significantly improved compared to the baseline algorithms. The evaluation process has statistically proven that this ACO-KNN algorithm has been significantly improved compared to the baseline algorithms. In addition, the experimental results have proven that the ACO-KNN can be used as a feature selection technique in sentiment analysis to obtain quality, optimal feature subset that can represent the actual data in customer review data.

  15. Statistical and Economic Techniques for Site-specific Nematode Management.

    PubMed

    Liu, Zheng; Griffin, Terry; Kirkpatrick, Terrence L

    2014-03-01

    Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes.

  16. Statistical correlation analysis for comparing vibration data from test and analysis

    NASA Technical Reports Server (NTRS)

    Butler, T. G.; Strang, R. F.; Purves, L. R.; Hershfeld, D. J.

    1986-01-01

    A theory was developed to compare vibration modes obtained by NASTRAN analysis with those obtained experimentally. Because many more analytical modes can be obtained than experimental modes, the analytical set was treated as expansion functions for putting both sources in comparative form. The dimensional symmetry was developed for three general cases: nonsymmetric whole model compared with a nonsymmetric whole structural test, symmetric analytical portion compared with a symmetric experimental portion, and analytical symmetric portion with a whole experimental test. The theory was coded and a statistical correlation program was installed as a utility. The theory is established with small classical structures.

  17. A Guideline to Univariate Statistical Analysis for LC/MS-Based Untargeted Metabolomics-Derived Data

    PubMed Central

    Vinaixa, Maria; Samino, Sara; Saez, Isabel; Duran, Jordi; Guinovart, Joan J.; Yanes, Oscar

    2012-01-01

    Several metabolomic software programs provide methods for peak picking, retention time alignment and quantification of metabolite features in LC/MS-based metabolomics. Statistical analysis, however, is needed in order to discover those features significantly altered between samples. By comparing the retention time and MS/MS data of a model compound to that from the altered feature of interest in the research sample, metabolites can be then unequivocally identified. This paper reports on a comprehensive overview of a workflow for statistical analysis to rank relevant metabolite features that will be selected for further MS/MS experiments. We focus on univariate data analysis applied in parallel on all detected features. Characteristics and challenges of this analysis are discussed and illustrated using four different real LC/MS untargeted metabolomic datasets. We demonstrate the influence of considering or violating mathematical assumptions on which univariate statistical test rely, using high-dimensional LC/MS datasets. Issues in data analysis such as determination of sample size, analytical variation, assumption of normality and homocedasticity, or correction for multiple testing are discussed and illustrated in the context of our four untargeted LC/MS working examples. PMID:24957762

  18. A Guideline to Univariate Statistical Analysis for LC/MS-Based Untargeted Metabolomics-Derived Data.

    PubMed

    Vinaixa, Maria; Samino, Sara; Saez, Isabel; Duran, Jordi; Guinovart, Joan J; Yanes, Oscar

    2012-10-18

    Several metabolomic software programs provide methods for peak picking, retention time alignment and quantification of metabolite features in LC/MS-based metabolomics. Statistical analysis, however, is needed in order to discover those features significantly altered between samples. By comparing the retention time and MS/MS data of a model compound to that from the altered feature of interest in the research sample, metabolites can be then unequivocally identified. This paper reports on a comprehensive overview of a workflow for statistical analysis to rank relevant metabolite features that will be selected for further MS/MS experiments. We focus on univariate data analysis applied in parallel on all detected features. Characteristics and challenges of this analysis are discussed and illustrated using four different real LC/MS untargeted metabolomic datasets. We demonstrate the influence of considering or violating mathematical assumptions on which univariate statistical test rely, using high-dimensional LC/MS datasets. Issues in data analysis such as determination of sample size, analytical variation, assumption of normality and homocedasticity, or correction for multiple testing are discussed and illustrated in the context of our four untargeted LC/MS working examples.

  19. Multi-scale statistical analysis of coronal solar activity

    DOE PAGES

    Gamborino, Diana; del-Castillo-Negrete, Diego; Martinell, Julio J.

    2016-07-08

    Multi-filter images from the solar corona are used to obtain temperature maps that are analyzed using techniques based on proper orthogonal decomposition (POD) in order to extract dynamical and structural information at various scales. Exploring active regions before and after a solar flare and comparing them with quiet regions, we show that the multi-scale behavior presents distinct statistical properties for each case that can be used to characterize the level of activity in a region. Information about the nature of heat transport is also to be extracted from the analysis.

  20. STRengthening analytical thinking for observational studies: the STRATOS initiative.

    PubMed

    Sauerbrei, Willi; Abrahamowicz, Michal; Altman, Douglas G; le Cessie, Saskia; Carpenter, James

    2014-12-30

    The validity and practical utility of observational medical research depends critically on good study design, excellent data quality, appropriate statistical methods and accurate interpretation of results. Statistical methodology has seen substantial development in recent times. Unfortunately, many of these methodological developments are ignored in practice. Consequently, design and analysis of observational studies often exhibit serious weaknesses. The lack of guidance on vital practical issues discourages many applied researchers from using more sophisticated and possibly more appropriate methods when analyzing observational studies. Furthermore, many analyses are conducted by researchers with a relatively weak statistical background and limited experience in using statistical methodology and software. Consequently, even 'standard' analyses reported in the medical literature are often flawed, casting doubt on their results and conclusions. An efficient way to help researchers to keep up with recent methodological developments is to develop guidance documents that are spread to the research community at large. These observations led to the initiation of the strengthening analytical thinking for observational studies (STRATOS) initiative, a large collaboration of experts in many different areas of biostatistical research. The objective of STRATOS is to provide accessible and accurate guidance in the design and analysis of observational studies. The guidance is intended for applied statisticians and other data analysts with varying levels of statistical education, experience and interests. In this article, we introduce the STRATOS initiative and its main aims, present the need for guidance documents and outline the planned approach and progress so far. We encourage other biostatisticians to become involved. © 2014 The Authors. Statistics in Medicine published by John Wiley & Sons, Ltd.

  1. Statistical testing and power analysis for brain-wide association study.

    PubMed

    Gong, Weikang; Wan, Lin; Lu, Wenlian; Ma, Liang; Cheng, Fan; Cheng, Wei; Grünewald, Stefan; Feng, Jianfeng

    2018-04-05

    The identification of connexel-wise associations, which involves examining functional connectivities between pairwise voxels across the whole brain, is both statistically and computationally challenging. Although such a connexel-wise methodology has recently been adopted by brain-wide association studies (BWAS) to identify connectivity changes in several mental disorders, such as schizophrenia, autism and depression, the multiple correction and power analysis methods designed specifically for connexel-wise analysis are still lacking. Therefore, we herein report the development of a rigorous statistical framework for connexel-wise significance testing based on the Gaussian random field theory. It includes controlling the family-wise error rate (FWER) of multiple hypothesis testings using topological inference methods, and calculating power and sample size for a connexel-wise study. Our theoretical framework can control the false-positive rate accurately, as validated empirically using two resting-state fMRI datasets. Compared with Bonferroni correction and false discovery rate (FDR), it can reduce false-positive rate and increase statistical power by appropriately utilizing the spatial information of fMRI data. Importantly, our method bypasses the need of non-parametric permutation to correct for multiple comparison, thus, it can efficiently tackle large datasets with high resolution fMRI images. The utility of our method is shown in a case-control study. Our approach can identify altered functional connectivities in a major depression disorder dataset, whereas existing methods fail. A software package is available at https://github.com/weikanggong/BWAS. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Statistical analysis of magnetically soft particles in magnetorheological elastomers

    NASA Astrophysics Data System (ADS)

    Gundermann, T.; Cremer, P.; Löwen, H.; Menzel, A. M.; Odenbach, S.

    2017-04-01

    The physical properties of magnetorheological elastomers (MRE) are a complex issue and can be influenced and controlled in many ways, e.g. by applying a magnetic field, by external mechanical stimuli, or by an electric potential. In general, the response of MRE materials to these stimuli is crucially dependent on the distribution of the magnetic particles inside the elastomer. Specific knowledge of the interactions between particles or particle clusters is of high relevance for understanding the macroscopic rheological properties and provides an important input for theoretical calculations. In order to gain a better insight into the correlation between the macroscopic effects and microstructure and to generate a database for theoretical analysis, x-ray micro-computed tomography (X-μCT) investigations as a base for a statistical analysis of the particle configurations were carried out. Different MREs with quantities of 2-15 wt% (0.27-2.3 vol%) of iron powder and different allocations of the particles inside the matrix were prepared. The X-μCT results were edited by an image processing software regarding the geometrical properties of the particles with and without the influence of an external magnetic field. Pair correlation functions for the positions of the particles inside the elastomer were calculated to statistically characterize the distributions of the particles in the samples.

  3. Wavelet analysis in ecology and epidemiology: impact of statistical tests

    PubMed Central

    Cazelles, Bernard; Cazelles, Kévin; Chavez, Mario

    2014-01-01

    Wavelet analysis is now frequently used to extract information from ecological and epidemiological time series. Statistical hypothesis tests are conducted on associated wavelet quantities to assess the likelihood that they are due to a random process. Such random processes represent null models and are generally based on synthetic data that share some statistical characteristics with the original time series. This allows the comparison of null statistics with those obtained from original time series. When creating synthetic datasets, different techniques of resampling result in different characteristics shared by the synthetic time series. Therefore, it becomes crucial to consider the impact of the resampling method on the results. We have addressed this point by comparing seven different statistical testing methods applied with different real and simulated data. Our results show that statistical assessment of periodic patterns is strongly affected by the choice of the resampling method, so two different resampling techniques could lead to two different conclusions about the same time series. Moreover, our results clearly show the inadequacy of resampling series generated by white noise and red noise that are nevertheless the methods currently used in the wide majority of wavelets applications. Our results highlight that the characteristics of a time series, namely its Fourier spectrum and autocorrelation, are important to consider when choosing the resampling technique. Results suggest that data-driven resampling methods should be used such as the hidden Markov model algorithm and the ‘beta-surrogate’ method. PMID:24284892

  4. Wavelet analysis in ecology and epidemiology: impact of statistical tests.

    PubMed

    Cazelles, Bernard; Cazelles, Kévin; Chavez, Mario

    2014-02-06

    Wavelet analysis is now frequently used to extract information from ecological and epidemiological time series. Statistical hypothesis tests are conducted on associated wavelet quantities to assess the likelihood that they are due to a random process. Such random processes represent null models and are generally based on synthetic data that share some statistical characteristics with the original time series. This allows the comparison of null statistics with those obtained from original time series. When creating synthetic datasets, different techniques of resampling result in different characteristics shared by the synthetic time series. Therefore, it becomes crucial to consider the impact of the resampling method on the results. We have addressed this point by comparing seven different statistical testing methods applied with different real and simulated data. Our results show that statistical assessment of periodic patterns is strongly affected by the choice of the resampling method, so two different resampling techniques could lead to two different conclusions about the same time series. Moreover, our results clearly show the inadequacy of resampling series generated by white noise and red noise that are nevertheless the methods currently used in the wide majority of wavelets applications. Our results highlight that the characteristics of a time series, namely its Fourier spectrum and autocorrelation, are important to consider when choosing the resampling technique. Results suggest that data-driven resampling methods should be used such as the hidden Markov model algorithm and the 'beta-surrogate' method.

  5. How Many Studies Do You Need? A Primer on Statistical Power for Meta-Analysis

    ERIC Educational Resources Information Center

    Valentine, Jeffrey C.; Pigott, Therese D.; Rothstein, Hannah R.

    2010-01-01

    In this article, the authors outline methods for using fixed and random effects power analysis in the context of meta-analysis. Like statistical power analysis for primary studies, power analysis for meta-analysis can be done either prospectively or retrospectively and requires assumptions about parameters that are unknown. The authors provide…

  6. New software for statistical analysis of Cambridge Structural Database data

    PubMed Central

    Sykes, Richard A.; McCabe, Patrick; Allen, Frank H.; Battle, Gary M.; Bruno, Ian J.; Wood, Peter A.

    2011-01-01

    A collection of new software tools is presented for the analysis of geometrical, chemical and crystallographic data from the Cambridge Structural Database (CSD). This software supersedes the program Vista. The new functionality is integrated into the program Mercury in order to provide statistical, charting and plotting options alongside three-dimensional structural visualization and analysis. The integration also permits immediate access to other information about specific CSD entries through the Mercury framework, a common requirement in CSD data analyses. In addition, the new software includes a range of more advanced features focused towards structural analysis such as principal components analysis, cone-angle correction in hydrogen-bond analyses and the ability to deal with topological symmetry that may be exhibited in molecular search fragments. PMID:22477784

  7. A high-resolution open biomass burning emission inventory based on statistical data and MODIS observations in mainland China

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Fan, M.; Huang, Z.; Zheng, J.; Chen, L.

    2017-12-01

    Open biomass burning which has adverse effects on air quality and human health is an important source of gas and particulate matter (PM) in China. Current emission estimations of open biomass burning are generally based on single source (alternative to statistical data and satellite-derived data) and thus contain large uncertainty due to the limitation of data. In this study, to quantify the 2015-based amount of open biomass burning, we established a new estimation method for open biomass burning activity levels by combining the bottom-up statistical data and top-down MODIS observations. And three sub-category sources which used different activity data were considered. For open crop residue burning, the "best estimate" of activity data was obtained by averaging the statistical data from China statistical yearbooks and satellite observations from MODIS burned area product MCD64A1 weighted by their uncertainties. For the forest and grassland fires, their activity levels were represented by the combination of statistical data and MODIS active fire product MCD14ML. Using the fire radiative power (FRP) which is considered as a better indicator of active fire level as the spatial allocation surrogate, coarse gridded emissions were reallocated into 3km ×3km grids to get a high-resolution emission inventory. Our results showed that emissions of CO, NOx, SO2, NH3, VOCs, PM2.5, PM10, BC and OC in mainland China were 6607, 427, 84, 79, 1262, 1198, 1222, 159 and 686 Gg/yr, respectively. Among all provinces of China, Henan, Shandong and Heilongjiang were the top three contributors to the total emissions. In this study, the developed open biomass burning emission inventory with a high-resolution could support air quality modeling and policy-making for pollution control.

  8. Statistical analysis of hail characteristics in the hail-protected western part of Croatia using data from hail suppression stations

    NASA Astrophysics Data System (ADS)

    Počakal, Damir; Štalec, Janez

    In the continental part of Croatia, operational hail suppression has been conducted for more than 30 years. The current protected area is 25,177 km 2 and has about 492 hail suppression stations which are managed with eight weather radar centres. This paper present a statistical analysis of parameters connected with hail occurrence on hail suppression stations in the western part of protected area in 1981-2000 period. This analysis compares data of two periods with different intensity of hail suppression activity and is made as a part of a project for assessment of hail suppression efficiency in Croatia. Because of disruption in hail suppression system during the independence war in Croatia (1991-1995), lack of rockets and other objective circumstances, it is considered that in the 1991-2000 period, hail suppression system could not act properly. Because of that, a comparison of hail suppression data for two periods was made. The first period (1981-1990), which is characterised with full application of hail suppression technology is compared with the second period (1991-2000). The protected area is divided into quadrants (9×9 km), such that every quadrant has at least one hail suppression station and intercomparison is more precise. Discriminant analysis was performed for the yearly values of each quadrant. These values included number of cases with solid precipitation, hail damage, heavy hail damage, number of active hail suppression stations, number of days with solid precipitation, solid precipitation damage, heavy solid precipitation damage and the number and duration of air traffic control bans. The discriminant analysis shows that there is a significant difference between the two periods. Average values of observed periods on isolated discriminant function 1 are for the first period (1981-1990) -0.36 and for the second period +0.23 standard deviation of all observations. The analysis for all eight variables shows statistically substantial differences in the

  9. Observed ozone exceedances in Italy: statistical analysis and modelling in the period 2002-2015

    NASA Astrophysics Data System (ADS)

    Falasca, Serena; Curci, Gabriele; Candeloro, Luca; Conte, Annamaria; Ippoliti, Carla

    2017-04-01

    concentrations. On the other hand, high-temperature events have similar duration and higher mean temperature with respect to recent years, pointing out that temperature is not the only driver of high-ozone events. The statistical model confirms a significant impact of the meteorological variables (positive for temperature and pressure, negative for humidity and wind speed) on the probability of ozone events. Significant predictors are also the altitude (negative) and the number of inhabitants (positive). The decreasing observed recent trend is explained by the introduction of the Euro regulations, rather than natural variability. However, we find an inversion of trend for the more recent period under Euro6 (from September 2014), but we cautionary wait a confirmation from additional data at least for the year 2016.

  10. The statistical analysis of energy release in small-scale coronal structures

    NASA Astrophysics Data System (ADS)

    Ulyanov, Artyom; Kuzin, Sergey; Bogachev, Sergey

    We present the results of statistical analysis of impulsive flare-like brightenings, which numerously occur in the quiet regions of solar corona. For our study, we utilized high-cadence observations performed with two EUV-telescopes - TESIS/Coronas-Photon and AIA/SDO. In total, we processed 6 sequences of images, registered throughout the period between 2009 and 2013, covering the rising phase of the 24th solar cycle. Based on high-speed DEM estimation method, we developed a new technique to evaluate the main parameters of detected events (geometrical sizes, duration, temperature and thermal energy). We then obtained the statistical distributions of these parameters and examined their variations depending on the level of solar activity. The results imply that near the minimum of the solar cycle the energy release in quiet corona is mainly provided by small-scale events (nanoflares), whereas larger events (microflares) prevail on the peak of activity. Furthermore, we investigated the coronal conditions that had specified the formation and triggering of registered flares. By means of photospheric magnetograms obtained with MDI/SoHO and HMI/SDO instruments, we examined the topology of local magnetic fields at different stages: the pre-flare phase, the peak of intensity and the ending phase. To do so, we introduced a number of topological parameters including the total magnetic flux, the distance between magnetic sources and their mutual arrangement. The found correlation between the change of these parameters and the formation of flares may offer an important tool for application of flare forecasting.

  11. Analysis and modeling of tropical convection observed by CYGNSS

    NASA Astrophysics Data System (ADS)

    Lang, T. J.; Li, X.; Roberts, J. B.; Mecikalski, J. R.

    2017-12-01

    The Cyclone Global Navigation Satellite System (CYGNSS) is a multi-satellite constellation that utilizes Global Positioning System (GPS) reflectometry to retrieve near-surface wind speeds over the ocean. While CYGNSS is primarily aimed at measuring wind speeds in tropical cyclones, our research has established that the mission may also provide valuable insight into the relationships between wind-driven surface fluxes and general tropical oceanic convection. Currently, we are examining organized tropical convection using a mixture of CYGNSS level 1 through level 3 data, IMERG (Integrated Multi-satellite Retrievals for Global Precipitation Measurement), and other ancillary datasets (including buoys, GPM level 1 and 2 data, as well as ground-based radar). In addition, observing system experiments (OSEs) are being performed using hybrid three-dimensional variational assimilation to ingest CYGNSS observations into a limited-domain, convection-resolving model. Our focus for now is on case studies of convective evolution, but we will also report on progress toward statistical analysis of convection sampled by CYGNSS. Our working hypothesis is that the typical mature phase of organized tropical convection is marked by the development of a sharp gust-front boundary from an originally spatially broader but weaker wind speed change associated with precipitation. This increase in the wind gradient, which we demonstrate is observable by CYGNSS, likely helps to focus enhanced turbulent fluxes of convection-sustaining heat and moisture near the leading edge of the convective system where they are more easily ingested by the updraft. Progress on the testing and refinement of this hypothesis, using a mixture of observations and modeling, will be reported.

  12. Statistical Analysis of CFD Solutions From the Fifth AIAA Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Morrison, Joseph H.

    2013-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using a common grid sequence and multiple turbulence models for the June 2012 fifth Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was the Common Research Model subsonic transport wing-body previously used for the 4th Drag Prediction Workshop. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.

  13. Statistical Patterns of Ionospheric Convection Derived From Mid-Latitude, High-Latitude, and Polar SuperDARN HF Radar Observations

    NASA Astrophysics Data System (ADS)

    Thomas, E. G.; Shepherd, S. G.

    2017-12-01

    Global patterns of ionospheric convection have been widely studied in terms of the interplanetary magnetic field (IMF) magnitude and orientation in both the Northern and Southern Hemispheres using observations from the Super Dual Auroral Radar Network (SuperDARN). The dynamic range of driving conditions under which existing SuperDARN statistical models are valid is currently limited to periods when the high-latitude convection pattern remains above about 60° geomagnetic latitude. Cousins and Shepherd [2010] found this to correspond to intervals when the solar wind electric field Esw < 4.1 mV/m and IMF Bz is negative. Conversely, under northward IMF conditions (Bz > 0) the high-latitude radars often experience difficulties in measuring convection above about 85° geomagnetic latitude. In this presentation, we introduce a new statistical model of ionospheric convection which is valid for much more dominant IMF Bz conditions than was previously possible by including velocity measurements from the newly constructed tiers of radars in the Northern Hemisphere at midlatitudes and in the polar cap. This new model (TS17) is compared to previous statistical models derived from high-latitude SuperDARN observations (RG96, PSR10, CS10) and its impact on instantaneous Map Potential solutions is examined.

  14. An Adaptive Buddy Check for Observational Quality Control

    NASA Technical Reports Server (NTRS)

    Dee, Dick P.; Rukhovets, Leonid; Todling, Ricardo; DaSilva, Arlindo M.; Larson, Jay W.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    An adaptive buddy check algorithm is presented that adjusts tolerances for outlier observations based on the variability of surrounding data. The algorithm derives from a statistical hypothesis test combined with maximum-likelihood covariance estimation. Its stability is shown to depend on the initial identification of outliers by a simple background check. The adaptive feature ensures that the final quality control decisions are not very sensitive to prescribed statistics of first-guess and observation errors, nor on other approximations introduced into the algorithm. The implementation of the algorithm in a global atmospheric data assimilation is described. Its performance is contrasted with that of a non-adaptive buddy check, for the surface analysis of an extreme storm that took place in Europe on 27 December 1999. The adaptive algorithm allowed the inclusion of many important observations that differed greatly from the first guess and that would have been excluded on the basis of prescribed statistics. The analysis of the storm development was much improved as a result of these additional observations.

  15. Categorical data processing for real estate objects valuation using statistical analysis

    NASA Astrophysics Data System (ADS)

    Parygin, D. S.; Malikov, V. P.; Golubev, A. V.; Sadovnikova, N. P.; Petrova, T. M.; Finogeev, A. G.

    2018-05-01

    Theoretical and practical approaches to the use of statistical methods for studying various properties of infrastructure objects are analyzed in the paper. Methods of forecasting the value of objects are considered. A method for coding categorical variables describing properties of real estate objects is proposed. The analysis of the results of modeling the price of real estate objects using regression analysis and an algorithm based on a comparative approach is carried out.

  16. Statistical assessment on a combined analysis of GRYN-ROMN-UCBN upland vegetation vital signs

    USGS Publications Warehouse

    Irvine, Kathryn M.; Rodhouse, Thomas J.

    2014-01-01

    As of 2013, Rocky Mountain and Upper Columbia Basin Inventory and Monitoring Networks have multiple years of vegetation data and Greater Yellowstone Network has three years of vegetation data and monitoring is ongoing in all three networks. Our primary objective is to assess whether a combined analysis of these data aimed at exploring correlations with climate and weather data is feasible. We summarize the core survey design elements across protocols and point out the major statistical challenges for a combined analysis at present. The dissimilarity in response designs between ROMN and UCBN-GRYN network protocols presents a statistical challenge that has not been resolved yet. However, the UCBN and GRYN data are compatible as they implement a similar response design; therefore, a combined analysis is feasible and will be pursued in future. When data collected by different networks are combined, the survey design describing the merged dataset is (likely) a complex survey design. A complex survey design is the result of combining datasets from different sampling designs. A complex survey design is characterized by unequal probability sampling, varying stratification, and clustering (see Lohr 2010 Chapter 7 for general overview). Statistical analysis of complex survey data requires modifications to standard methods, one of which is to include survey design weights within a statistical model. We focus on this issue for a combined analysis of upland vegetation from these networks, leaving other topics for future research. We conduct a simulation study on the possible effects of equal versus unequal probability selection of points on parameter estimates of temporal trend using available packages within the R statistical computing package. We find that, as written, using lmer or lm for trend detection in a continuous response and clm and clmm for visually estimated cover classes with “raw” GRTS design weights specified for the weight argument leads to substantially

  17. Statistical model to perform error analysis of curve fits of wind tunnel test data using the techniques of analysis of variance and regression analysis

    NASA Technical Reports Server (NTRS)

    Alston, D. W.

    1981-01-01

    The considered research had the objective to design a statistical model that could perform an error analysis of curve fits of wind tunnel test data using analysis of variance and regression analysis techniques. Four related subproblems were defined, and by solving each of these a solution to the general research problem was obtained. The capabilities of the evolved true statistical model are considered. The least squares fit is used to determine the nature of the force, moment, and pressure data. The order of the curve fit is increased in order to delete the quadratic effect in the residuals. The analysis of variance is used to determine the magnitude and effect of the error factor associated with the experimental data.

  18. Wavelet Statistical Analysis of Low-Latitude Geomagnetic Measurements

    NASA Astrophysics Data System (ADS)

    Papa, A. R.; Akel, A. F.

    2009-05-01

    Following previous works by our group (Papa et al., JASTP, 2006), where we analyzed a series of records acquired at the Vassouras National Geomagnetic Observatory in Brazil for the month of October 2000, we introduced a wavelet analysis for the same type of data and for other periods. It is well known that wavelets allow a more detailed study in several senses: the time window for analysis can be drastically reduced if compared to other traditional methods (Fourier, for example) and at the same time allow an almost continuous accompaniment of both amplitude and frequency of signals as time goes by. This advantage brings some possibilities for potentially useful forecasting methods of the type also advanced by our group in previous works (see for example, Papa and Sosman, JASTP, 2008). However, the simultaneous statistical analysis of both time series (in our case amplitude and frequency) is a challenging matter and is in this sense that we have found what we consider our main goal. Some possible trends for future works are advanced.

  19. Applications of Earth Observations for Fisheries Management: An analysis of socioeconomic benefits

    NASA Astrophysics Data System (ADS)

    Friedl, L.; Kiefer, D. A.; Turner, W.

    2013-12-01

    This paper will discuss the socioeconomic impacts of a project applying Earth observations and models to support management and conservation of tuna and other marine resources in the eastern Pacific Ocean. A project team created a software package that produces statistical analyses and dynamic maps of habitat for pelagic ocean biota. The tool integrates sea surface temperature and chlorophyll imagery from MODIS, ocean circulation models, and other data products. The project worked with the Inter-American Tropical Tuna Commission, which issues fishery management information, such as stock assessments, for the eastern Pacific region. The Commission uses the tool and broader habitat information to produce better estimates of stock and thus improve their ability to identify species that could be at risk of overfishing. The socioeconomic analysis quantified the relative value that Earth observations contributed to accurate stock size assessments through improvements in calculating population size. The analysis team calculated the first-order economic costs of a fishery collapse (or shutdown), and they calculated the benefits of improved estimates that reduce the uncertainty of stock size and thus reduce the risk of fishery collapse. The team estimated that the project reduced the probability of collapse of different fisheries, and the analysis generated net present values of risk mitigation. USC led the project with sponsorship from the NASA Earth Science Division's Applied Sciences Program, which conducted the socioeconomic impact analysis. The paper will discuss the project and focus primarily on the analytic methods, impact metrics, and the results of the socioeconomic benefits analysis.

  20. Extreme Statistics of Storm Surges in the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kulikov, E. A.; Medvedev, I. P.

    2017-11-01

    Statistical analysis of the extreme values of the Baltic Sea level has been performed for a series of observations for 15-125 years at 13 tide gauge stations. It is shown that the empirical relation between value of extreme sea level rises or ebbs (caused by storm events) and its return period in the Baltic Sea can be well approximated by the Gumbel probability distribution. The maximum values of extreme floods/ebbs of the 100-year recurrence were observed in the Gulf of Finland and the Gulf of Riga. The two longest data series, observed in Stockholm and Vyborg over 125 years, have shown a significant deviation from the Gumbel distribution for the rarest events. Statistical analysis of the hourly sea level data series reveals some asymmetry in the variability of the Baltic Sea level. The probability of rises proved higher than that of ebbs. As for the magnitude of the 100-year recurrence surge, it considerably exceeded the magnitude of ebbs almost everywhere. This asymmetry effect can be attributed to the influence of low atmospheric pressure during storms. A statistical study of extreme values has also been applied to sea level series for Narva over the period of 1994-2000, which were simulated by the ROMS numerical model. Comparisons of the "simulated" and "observed" extreme sea level distributions show that the model reproduces quite satisfactorily extreme floods of "moderate" magnitude; however, it underestimates sea level changes for the most powerful storm surges.

  1. Web-Based Statistical Sampling and Analysis

    ERIC Educational Resources Information Center

    Quinn, Anne; Larson, Karen

    2016-01-01

    Consistent with the Common Core State Standards for Mathematics (CCSSI 2010), the authors write that they have asked students to do statistics projects with real data. To obtain real data, their students use the free Web-based app, Census at School, created by the American Statistical Association (ASA) to help promote civic awareness among school…

  2. The sumLINK statistic for genetic linkage analysis in the presence of heterogeneity.

    PubMed

    Christensen, G B; Knight, S; Camp, N J

    2009-11-01

    We present the "sumLINK" statistic--the sum of multipoint LOD scores for the subset of pedigrees with nominally significant linkage evidence at a given locus--as an alternative to common methods to identify susceptibility loci in the presence of heterogeneity. We also suggest the "sumLOD" statistic (the sum of positive multipoint LOD scores) as a companion to the sumLINK. sumLINK analysis identifies genetic regions of extreme consistency across pedigrees without regard to negative evidence from unlinked or uninformative pedigrees. Significance is determined by an innovative permutation procedure based on genome shuffling that randomizes linkage information across pedigrees. This procedure for generating the empirical null distribution may be useful for other linkage-based statistics as well. Using 500 genome-wide analyses of simulated null data, we show that the genome shuffling procedure results in the correct type 1 error rates for both the sumLINK and sumLOD. The power of the statistics was tested using 100 sets of simulated genome-wide data from the alternative hypothesis from GAW13. Finally, we illustrate the statistics in an analysis of 190 aggressive prostate cancer pedigrees from the International Consortium for Prostate Cancer Genetics, where we identified a new susceptibility locus. We propose that the sumLINK and sumLOD are ideal for collaborative projects and meta-analyses, as they do not require any sharing of identifiable data between contributing institutions. Further, loci identified with the sumLINK have good potential for gene localization via statistical recombinant mapping, as, by definition, several linked pedigrees contribute to each peak.

  3. A Primer on Observational Measurement.

    PubMed

    Girard, Jeffrey M; Cohn, Jeffrey F

    2016-08-01

    Observational measurement plays an integral role in a variety of scientific endeavors within biology, psychology, sociology, education, medicine, and marketing. The current article provides an interdisciplinary primer on observational measurement; in particular, it highlights recent advances in observational methodology and the challenges that accompany such growth. First, we detail the various types of instrument that can be used to standardize measurements across observers. Second, we argue for the importance of validity in observational measurement and provide several approaches to validation based on contemporary validity theory. Third, we outline the challenges currently faced by observational researchers pertaining to measurement drift, observer reactivity, reliability analysis, and time/expense. Fourth, we describe recent advances in computer-assisted measurement, fully automated measurement, and statistical data analysis. Finally, we identify several key directions for future observational research to explore.

  4. Statistical models for the analysis and design of digital polymerase chain (dPCR) experiments

    USGS Publications Warehouse

    Dorazio, Robert; Hunter, Margaret

    2015-01-01

    Statistical methods for the analysis and design of experiments using digital PCR (dPCR) have received only limited attention and have been misused in many instances. To address this issue and to provide a more general approach to the analysis of dPCR data, we describe a class of statistical models for the analysis and design of experiments that require quantification of nucleic acids. These models are mathematically equivalent to generalized linear models of binomial responses that include a complementary, log–log link function and an offset that is dependent on the dPCR partition volume. These models are both versatile and easy to fit using conventional statistical software. Covariates can be used to specify different sources of variation in nucleic acid concentration, and a model’s parameters can be used to quantify the effects of these covariates. For purposes of illustration, we analyzed dPCR data from different types of experiments, including serial dilution, evaluation of copy number variation, and quantification of gene expression. We also showed how these models can be used to help design dPCR experiments, as in selection of sample sizes needed to achieve desired levels of precision in estimates of nucleic acid concentration or to detect differences in concentration among treatments with prescribed levels of statistical power.

  5. Statistical Analysis for Collision-free Boson Sampling.

    PubMed

    Huang, He-Liang; Zhong, Han-Sen; Li, Tan; Li, Feng-Guang; Fu, Xiang-Qun; Zhang, Shuo; Wang, Xiang; Bao, Wan-Su

    2017-11-10

    Boson sampling is strongly believed to be intractable for classical computers but solvable with photons in linear optics, which raises widespread concern as a rapid way to demonstrate the quantum supremacy. However, due to its solution is mathematically unverifiable, how to certify the experimental results becomes a major difficulty in the boson sampling experiment. Here, we develop a statistical analysis scheme to experimentally certify the collision-free boson sampling. Numerical simulations are performed to show the feasibility and practicability of our scheme, and the effects of realistic experimental conditions are also considered, demonstrating that our proposed scheme is experimentally friendly. Moreover, our broad approach is expected to be generally applied to investigate multi-particle coherent dynamics beyond the boson sampling.

  6. Statistical analysis plan of the head position in acute ischemic stroke trial pilot (HEADPOST pilot).

    PubMed

    Olavarría, Verónica V; Arima, Hisatomi; Anderson, Craig S; Brunser, Alejandro; Muñoz-Venturelli, Paula; Billot, Laurent; Lavados, Pablo M

    2017-02-01

    Background The HEADPOST Pilot is a proof-of-concept, open, prospective, multicenter, international, cluster randomized, phase IIb controlled trial, with masked outcome assessment. The trial will test if lying flat head position initiated in patients within 12 h of onset of acute ischemic stroke involving the anterior circulation increases cerebral blood flow in the middle cerebral arteries, as measured by transcranial Doppler. The study will also assess the safety and feasibility of patients lying flat for ≥24 h. The trial was conducted in centers in three countries, with ability to perform early transcranial Doppler. A feature of this trial was that patients were randomized to a certain position according to the month of admission to hospital. Objective To outline in detail the predetermined statistical analysis plan for HEADPOST Pilot study. Methods All data collected by participating researchers will be reviewed and formally assessed. Information pertaining to the baseline characteristics of patients, their process of care, and the delivery of treatments will be classified, and for each item, appropriate descriptive statistical analyses are planned with comparisons made between randomized groups. For the outcomes, statistical comparisons to be made between groups are planned and described. Results This statistical analysis plan was developed for the analysis of the results of the HEADPOST Pilot study to be transparent, available, verifiable, and predetermined before data lock. Conclusions We have developed a statistical analysis plan for the HEADPOST Pilot study which is to be followed to avoid analysis bias arising from prior knowledge of the study findings. Trial registration The study is registered under HEADPOST-Pilot, ClinicalTrials.gov Identifier NCT01706094.

  7. Statistical inference for noisy nonlinear ecological dynamic systems.

    PubMed

    Wood, Simon N

    2010-08-26

    Chaotic ecological dynamic systems defy conventional statistical analysis. Systems with near-chaotic dynamics are little better. Such systems are almost invariably driven by endogenous dynamic processes plus demographic and environmental process noise, and are only observable with error. Their sensitivity to history means that minute changes in the driving noise realization, or the system parameters, will cause drastic changes in the system trajectory. This sensitivity is inherited and amplified by the joint probability density of the observable data and the process noise, rendering it useless as the basis for obtaining measures of statistical fit. Because the joint density is the basis for the fit measures used by all conventional statistical methods, this is a major theoretical shortcoming. The inability to make well-founded statistical inferences about biological dynamic models in the chaotic and near-chaotic regimes, other than on an ad hoc basis, leaves dynamic theory without the methods of quantitative validation that are essential tools in the rest of biological science. Here I show that this impasse can be resolved in a simple and general manner, using a method that requires only the ability to simulate the observed data on a system from the dynamic model about which inferences are required. The raw data series are reduced to phase-insensitive summary statistics, quantifying local dynamic structure and the distribution of observations. Simulation is used to obtain the mean and the covariance matrix of the statistics, given model parameters, allowing the construction of a 'synthetic likelihood' that assesses model fit. This likelihood can be explored using a straightforward Markov chain Monte Carlo sampler, but one further post-processing step returns pure likelihood-based inference. I apply the method to establish the dynamic nature of the fluctuations in Nicholson's classic blowfly experiments.

  8. Redshift data and statistical inference

    NASA Technical Reports Server (NTRS)

    Newman, William I.; Haynes, Martha P.; Terzian, Yervant

    1994-01-01

    Frequency histograms and the 'power spectrum analysis' (PSA) method, the latter developed by Yu & Peebles (1969), have been widely employed as techniques for establishing the existence of periodicities. We provide a formal analysis of these two classes of methods, including controlled numerical experiments, to better understand their proper use and application. In particular, we note that typical published applications of frequency histograms commonly employ far greater numbers of class intervals or bins than is advisable by statistical theory sometimes giving rise to the appearance of spurious patterns. The PSA method generates a sequence of random numbers from observational data which, it is claimed, is exponentially distributed with unit mean and variance, essentially independent of the distribution of the original data. We show that the derived random processes is nonstationary and produces a small but systematic bias in the usual estimate of the mean and variance. Although the derived variable may be reasonably described by an exponential distribution, the tail of the distribution is far removed from that of an exponential, thereby rendering statistical inference and confidence testing based on the tail of the distribution completely unreliable. Finally, we examine a number of astronomical examples wherein these methods have been used giving rise to widespread acceptance of statistically unconfirmed conclusions.

  9. A Bifactor Approach to Model Multifaceted Constructs in Statistical Mediation Analysis

    ERIC Educational Resources Information Center

    Gonzalez, Oscar; MacKinnon, David P.

    2018-01-01

    Statistical mediation analysis allows researchers to identify the most important mediating constructs in the causal process studied. Identifying specific mediators is especially relevant when the hypothesized mediating construct consists of multiple related facets. The general definition of the construct and its facets might relate differently to…

  10. Quantile regression for the statistical analysis of immunological data with many non-detects.

    PubMed

    Eilers, Paul H C; Röder, Esther; Savelkoul, Huub F J; van Wijk, Roy Gerth

    2012-07-07

    Immunological parameters are hard to measure. A well-known problem is the occurrence of values below the detection limit, the non-detects. Non-detects are a nuisance, because classical statistical analyses, like ANOVA and regression, cannot be applied. The more advanced statistical techniques currently available for the analysis of datasets with non-detects can only be used if a small percentage of the data are non-detects. Quantile regression, a generalization of percentiles to regression models, models the median or higher percentiles and tolerates very high numbers of non-detects. We present a non-technical introduction and illustrate it with an implementation to real data from a clinical trial. We show that by using quantile regression, groups can be compared and that meaningful linear trends can be computed, even if more than half of the data consists of non-detects. Quantile regression is a valuable addition to the statistical methods that can be used for the analysis of immunological datasets with non-detects.

  11. GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy

    NASA Astrophysics Data System (ADS)

    Mancini, F.; Ceppi, C.; Ritrovato, G.

    2010-09-01

    This study focuses on landslide susceptibility mapping in the Daunia area (Apulian Apennines, Italy) and achieves this by using a multivariate statistical method and data processing in a Geographical Information System (GIS). The Logistic Regression (hereafter LR) method was chosen to produce a susceptibility map over an area of 130 000 ha where small settlements are historically threatened by landslide phenomena. By means of LR analysis, the tendency to landslide occurrences was, therefore, assessed by relating a landslide inventory (dependent variable) to a series of causal factors (independent variables) which were managed in the GIS, while the statistical analyses were performed by means of the SPSS (Statistical Package for the Social Sciences) software. The LR analysis produced a reliable susceptibility map of the investigated area and the probability level of landslide occurrence was ranked in four classes. The overall performance achieved by the LR analysis was assessed by local comparison between the expected susceptibility and an independent dataset extrapolated from the landslide inventory. Of the samples classified as susceptible to landslide occurrences, 85% correspond to areas where landslide phenomena have actually occurred. In addition, the consideration of the regression coefficients provided by the analysis demonstrated that a major role is played by the "land cover" and "lithology" causal factors in determining the occurrence and distribution of landslide phenomena in the Apulian Apennines.

  12. Exploring the Micro-Social Geography of Children's Interactions in Preschool: A Long-Term Observational Study and Analysis Using Geographic Information Technologies

    ERIC Educational Resources Information Center

    Torrens, Paul M.; Griffin, William A.

    2013-01-01

    The authors describe an observational and analytic methodology for recording and interpreting dynamic microprocesses that occur during social interaction, making use of space--time data collection techniques, spatial-statistical analysis, and visualization. The scheme has three investigative foci: Structure, Activity Composition, and Clustering.…

  13. Statistical colour models: an automated digital image analysis method for quantification of histological biomarkers.

    PubMed

    Shu, Jie; Dolman, G E; Duan, Jiang; Qiu, Guoping; Ilyas, Mohammad

    2016-04-27

    Colour is the most important feature used in quantitative immunohistochemistry (IHC) image analysis; IHC is used to provide information relating to aetiology and to confirm malignancy. Statistical modelling is a technique widely used for colour detection in computer vision. We have developed a statistical model of colour detection applicable to detection of stain colour in digital IHC images. Model was first trained by massive colour pixels collected semi-automatically. To speed up the training and detection processes, we removed luminance channel, Y channel of YCbCr colour space and chose 128 histogram bins which is the optimal number. A maximum likelihood classifier is used to classify pixels in digital slides into positively or negatively stained pixels automatically. The model-based tool was developed within ImageJ to quantify targets identified using IHC and histochemistry. The purpose of evaluation was to compare the computer model with human evaluation. Several large datasets were prepared and obtained from human oesophageal cancer, colon cancer and liver cirrhosis with different colour stains. Experimental results have demonstrated the model-based tool achieves more accurate results than colour deconvolution and CMYK model in the detection of brown colour, and is comparable to colour deconvolution in the detection of pink colour. We have also demostrated the proposed model has little inter-dataset variations. A robust and effective statistical model is introduced in this paper. The model-based interactive tool in ImageJ, which can create a visual representation of the statistical model and detect a specified colour automatically, is easy to use and available freely at http://rsb.info.nih.gov/ij/plugins/ihc-toolbox/index.html . Testing to the tool by different users showed only minor inter-observer variations in results.

  14. Statistical Analysis of Spectral Properties and Prosodic Parameters of Emotional Speech

    NASA Astrophysics Data System (ADS)

    Přibil, J.; Přibilová, A.

    2009-01-01

    The paper addresses reflection of microintonation and spectral properties in male and female acted emotional speech. Microintonation component of speech melody is analyzed regarding its spectral and statistical parameters. According to psychological research of emotional speech, different emotions are accompanied by different spectral noise. We control its amount by spectral flatness according to which the high frequency noise is mixed in voiced frames during cepstral speech synthesis. Our experiments are aimed at statistical analysis of cepstral coefficient values and ranges of spectral flatness in three emotions (joy, sadness, anger), and a neutral state for comparison. Calculated histograms of spectral flatness distribution are visually compared and modelled by Gamma probability distribution. Histograms of cepstral coefficient distribution are evaluated and compared using skewness and kurtosis. Achieved statistical results show good correlation comparing male and female voices for all emotional states portrayed by several Czech and Slovak professional actors.

  15. Landmark-free statistical analysis of the shape of plant leaves.

    PubMed

    Laga, Hamid; Kurtek, Sebastian; Srivastava, Anuj; Miklavcic, Stanley J

    2014-12-21

    The shapes of plant leaves are important features to biologists, as they can help in distinguishing plant species, measuring their health, analyzing their growth patterns, and understanding relations between various species. Most of the methods that have been developed in the past focus on comparing the shape of individual leaves using either descriptors or finite sets of landmarks. However, descriptor-based representations are not invertible and thus it is often hard to map descriptor variability into shape variability. On the other hand, landmark-based techniques require automatic detection and registration of the landmarks, which is very challenging in the case of plant leaves that exhibit high variability within and across species. In this paper, we propose a statistical model based on the Squared Root Velocity Function (SRVF) representation and the Riemannian elastic metric of Srivastava et al. (2011) to model the observed continuous variability in the shape of plant leaves. We treat plant species as random variables on a non-linear shape manifold and thus statistical summaries, such as means and covariances, can be computed. One can then study the principal modes of variations and characterize the observed shapes using probability density models, such as Gaussians or Mixture of Gaussians. We demonstrate the usage of such statistical model for (1) efficient classification of individual leaves, (2) the exploration of the space of plant leaf shapes, which is important in the study of population-specific variations, and (3) comparing entire plant species, which is fundamental to the study of evolutionary relationships in plants. Our approach does not require descriptors or landmarks but automatically solves for the optimal registration that aligns a pair of shapes. We evaluate the performance of the proposed framework on publicly available benchmarks such as the Flavia, the Swedish, and the ImageCLEF2011 plant leaf datasets. Copyright © 2014 Elsevier Ltd. All

  16. Multivariate statistical analysis of wildfires in Portugal

    NASA Astrophysics Data System (ADS)

    Costa, Ricardo; Caramelo, Liliana; Pereira, Mário

    2013-04-01

    Several studies demonstrate that wildfires in Portugal present high temporal and spatial variability as well as cluster behavior (Pereira et al., 2005, 2011). This study aims to contribute to the characterization of the fire regime in Portugal with the multivariate statistical analysis of the time series of number of fires and area burned in Portugal during the 1980 - 2009 period. The data used in the analysis is an extended version of the Rural Fire Portuguese Database (PRFD) (Pereira et al, 2011), provided by the National Forest Authority (Autoridade Florestal Nacional, AFN), the Portuguese Forest Service, which includes information for more than 500,000 fire records. There are many multiple advanced techniques for examining the relationships among multiple time series at the same time (e.g., canonical correlation analysis, principal components analysis, factor analysis, path analysis, multiple analyses of variance, clustering systems). This study compares and discusses the results obtained with these different techniques. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005: "Synoptic patterns associated with large summer forest fires in Portugal". Agricultural and Forest Meteorology. 129, 11-25. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011 This work is supported by European Union Funds (FEDER/COMPETE - Operational Competitiveness Programme) and by national funds (FCT - Portuguese Foundation for Science and Technology) under the project FCOMP-01-0124-FEDER-022692, the project FLAIR (PTDC/AAC-AMB/104702/2008) and the EU 7th Framework Program through FUME (contract number 243888).

  17. Statistical Literacy: Developing a Youth and Adult Education Statistical Project

    ERIC Educational Resources Information Center

    Conti, Keli Cristina; Lucchesi de Carvalho, Dione

    2014-01-01

    This article focuses on the notion of literacy--general and statistical--in the analysis of data from a fieldwork research project carried out as part of a master's degree that investigated the teaching and learning of statistics in adult education mathematics classes. We describe the statistical context of the project that involved the…

  18. Cognition of and Demand for Education and Teaching in Medical Statistics in China: A Systematic Review and Meta-Analysis

    PubMed Central

    Li, Gaoming; Yi, Dali; Wu, Xiaojiao; Liu, Xiaoyu; Zhang, Yanqi; Liu, Ling; Yi, Dong

    2015-01-01

    Background Although a substantial number of studies focus on the teaching and application of medical statistics in China, few studies comprehensively evaluate the recognition of and demand for medical statistics. In addition, the results of these various studies differ and are insufficiently comprehensive and systematic. Objectives This investigation aimed to evaluate the general cognition of and demand for medical statistics by undergraduates, graduates, and medical staff in China. Methods We performed a comprehensive database search related to the cognition of and demand for medical statistics from January 2007 to July 2014 and conducted a meta-analysis of non-controlled studies with sub-group analysis for undergraduates, graduates, and medical staff. Results There are substantial differences with respect to the cognition of theory in medical statistics among undergraduates (73.5%), graduates (60.7%), and medical staff (39.6%). The demand for theory in medical statistics is high among graduates (94.6%), undergraduates (86.1%), and medical staff (88.3%). Regarding specific statistical methods, the cognition of basic statistical methods is higher than of advanced statistical methods. The demand for certain advanced statistical methods, including (but not limited to) multiple analysis of variance (ANOVA), multiple linear regression, and logistic regression, is higher than that for basic statistical methods. The use rates of the Statistical Package for the Social Sciences (SPSS) software and statistical analysis software (SAS) are only 55% and 15%, respectively. Conclusion The overall statistical competence of undergraduates, graduates, and medical staff is insufficient, and their ability to practically apply their statistical knowledge is limited, which constitutes an unsatisfactory state of affairs for medical statistics education. Because the demand for skills in this area is increasing, the need to reform medical statistics education in China has become urgent

  19. Cognition of and Demand for Education and Teaching in Medical Statistics in China: A Systematic Review and Meta-Analysis.

    PubMed

    Wu, Yazhou; Zhou, Liang; Li, Gaoming; Yi, Dali; Wu, Xiaojiao; Liu, Xiaoyu; Zhang, Yanqi; Liu, Ling; Yi, Dong

    2015-01-01

    Although a substantial number of studies focus on the teaching and application of medical statistics in China, few studies comprehensively evaluate the recognition of and demand for medical statistics. In addition, the results of these various studies differ and are insufficiently comprehensive and systematic. This investigation aimed to evaluate the general cognition of and demand for medical statistics by undergraduates, graduates, and medical staff in China. We performed a comprehensive database search related to the cognition of and demand for medical statistics from January 2007 to July 2014 and conducted a meta-analysis of non-controlled studies with sub-group analysis for undergraduates, graduates, and medical staff. There are substantial differences with respect to the cognition of theory in medical statistics among undergraduates (73.5%), graduates (60.7%), and medical staff (39.6%). The demand for theory in medical statistics is high among graduates (94.6%), undergraduates (86.1%), and medical staff (88.3%). Regarding specific statistical methods, the cognition of basic statistical methods is higher than of advanced statistical methods. The demand for certain advanced statistical methods, including (but not limited to) multiple analysis of variance (ANOVA), multiple linear regression, and logistic regression, is higher than that for basic statistical methods. The use rates of the Statistical Package for the Social Sciences (SPSS) software and statistical analysis software (SAS) are only 55% and 15%, respectively. The overall statistical competence of undergraduates, graduates, and medical staff is insufficient, and their ability to practically apply their statistical knowledge is limited, which constitutes an unsatisfactory state of affairs for medical statistics education. Because the demand for skills in this area is increasing, the need to reform medical statistics education in China has become urgent.

  20. [Methods of statistical analysis in differential diagnostics of the degree of brain glioma anaplasia during preoperative stage].

    PubMed

    Glavatskiĭ, A Ia; Guzhovskaia, N V; Lysenko, S N; Kulik, A V

    2005-12-01

    The authors proposed a possible preoperative diagnostics of the degree of supratentorial brain gliom anaplasia using statistical analysis methods. It relies on a complex examination of 934 patients with I-IV degree anaplasias, which had been treated in the Institute of Neurosurgery from 1990 to 2004. The use of statistical analysis methods for differential diagnostics of the degree of brain gliom anaplasia may optimize a diagnostic algorithm, increase reliability of obtained data and in some cases avoid carrying out irrational operative intrusions. Clinically important signs for the use of statistical analysis methods directed to preoperative diagnostics of brain gliom anaplasia have been defined

  1. Statistics without Tears: Complex Statistics with Simple Arithmetic

    ERIC Educational Resources Information Center

    Smith, Brian

    2011-01-01

    One of the often overlooked aspects of modern statistics is the analysis of time series data. Modern introductory statistics courses tend to rush to probabilistic applications involving risk and confidence. Rarely does the first level course linger on such useful and fascinating topics as time series decomposition, with its practical applications…

  2. Van Allen Probes observations of unusually low frequency whistler mode waves observed in association with moderate magnetic storms: Statistical study.

    PubMed

    Cattell, C A; Breneman, A W; Thaller, S A; Wygant, J R; Kletzing, C A; Kurth, W S

    2015-09-28

    We show the first evidence for locally excited chorus at frequencies below 0.1  f ce (electron cyclotron frequency) in the outer radiation belt. A statistical study of chorus during geomagnetic storms observed by the Van Allen Probes found that frequencies are often dramatically lower than expected. The frequency at peak power suddenly stops tracking the equatorial 0.5  f ce and f / f ce decreases rapidly, often to frequencies well below 0.1  f ce (in situ and mapped to equator). These very low frequency waves are observed both when the satellites are close to the equatorial plane and at higher magnetic latitudes. Poynting flux is consistent with generation at the equator. Wave amplitudes can be up to 20 to 40 mV/m and 2 to 4 nT. We conclude that conditions during moderate to large storms can excite unusually low frequency chorus, which is resonant with more energetic electrons than typical chorus, with critical implications for understanding radiation belt evolution.

  3. [The research protocol VI: How to choose the appropriate statistical test. Inferential statistics].

    PubMed

    Flores-Ruiz, Eric; Miranda-Novales, María Guadalupe; Villasís-Keever, Miguel Ángel

    2017-01-01

    The statistical analysis can be divided in two main components: descriptive analysis and inferential analysis. An inference is to elaborate conclusions from the tests performed with the data obtained from a sample of a population. Statistical tests are used in order to establish the probability that a conclusion obtained from a sample is applicable to the population from which it was obtained. However, choosing the appropriate statistical test in general poses a challenge for novice researchers. To choose the statistical test it is necessary to take into account three aspects: the research design, the number of measurements and the scale of measurement of the variables. Statistical tests are divided into two sets, parametric and nonparametric. Parametric tests can only be used if the data show a normal distribution. Choosing the right statistical test will make it easier for readers to understand and apply the results.

  4. Statistics, Adjusted Statistics, and Maladjusted Statistics.

    PubMed

    Kaufman, Jay S

    2017-05-01

    Statistical adjustment is a ubiquitous practice in all quantitative fields that is meant to correct for improprieties or limitations in observed data, to remove the influence of nuisance variables or to turn observed correlations into causal inferences. These adjustments proceed by reporting not what was observed in the real world, but instead modeling what would have been observed in an imaginary world in which specific nuisances and improprieties are absent. These techniques are powerful and useful inferential tools, but their application can be hazardous or deleterious if consumers of the adjusted results mistake the imaginary world of models for the real world of data. Adjustments require decisions about which factors are of primary interest and which are imagined away, and yet many adjusted results are presented without any explanation or justification for these decisions. Adjustments can be harmful if poorly motivated, and are frequently misinterpreted in the media's reporting of scientific studies. Adjustment procedures have become so routinized that many scientists and readers lose the habit of relating the reported findings back to the real world in which we live.

  5. [The principal components analysis--method to classify the statistical variables with applications in medicine].

    PubMed

    Dascălu, Cristina Gena; Antohe, Magda Ecaterina

    2009-01-01

    Based on the eigenvalues and the eigenvectors analysis, the principal component analysis has the purpose to identify the subspace of the main components from a set of parameters, which are enough to characterize the whole set of parameters. Interpreting the data for analysis as a cloud of points, we find through geometrical transformations the directions where the cloud's dispersion is maximal--the lines that pass through the cloud's center of weight and have a maximal density of points around them (by defining an appropriate criteria function and its minimization. This method can be successfully used in order to simplify the statistical analysis on questionnaires--because it helps us to select from a set of items only the most relevant ones, which cover the variations of the whole set of data. For instance, in the presented sample we started from a questionnaire with 28 items and, applying the principal component analysis we identified 7 principal components--or main items--fact that simplifies significantly the further data statistical analysis.

  6. Humans make efficient use of natural image statistics when performing spatial interpolation.

    PubMed

    D'Antona, Anthony D; Perry, Jeffrey S; Geisler, Wilson S

    2013-12-16

    Visual systems learn through evolution and experience over the lifespan to exploit the statistical structure of natural images when performing visual tasks. Understanding which aspects of this statistical structure are incorporated into the human nervous system is a fundamental goal in vision science. To address this goal, we measured human ability to estimate the intensity of missing image pixels in natural images. Human estimation accuracy is compared with various simple heuristics (e.g., local mean) and with optimal observers that have nearly complete knowledge of the local statistical structure of natural images. Human estimates are more accurate than those of simple heuristics, and they match the performance of an optimal observer that knows the local statistical structure of relative intensities (contrasts). This optimal observer predicts the detailed pattern of human estimation errors and hence the results place strong constraints on the underlying neural mechanisms. However, humans do not reach the performance of an optimal observer that knows the local statistical structure of the absolute intensities, which reflect both local relative intensities and local mean intensity. As predicted from a statistical analysis of natural images, human estimation accuracy is negligibly improved by expanding the context from a local patch to the whole image. Our results demonstrate that the human visual system exploits efficiently the statistical structure of natural images.

  7. Re-Evaluation of Event Correlations in Virtual California Using Statistical Analysis

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Heflin, M. B.; Granat, R. A.; Yikilmaz, M. B.; Heien, E.; Rundle, J.; Donnellan, A.

    2010-12-01

    Fusing the results of simulation tools with statistical analysis methods has contributed to our better understanding of the earthquake process. In a previous study, we used a statistical method to investigate emergent phenomena in data produced by the Virtual California earthquake simulator. The analysis indicated that there were some interesting fault interactions and possible triggering and quiescence relationships between events. We have converted the original code from Matlab to python/C++ and are now evaluating data from the most recent version of Virtual California in order to analyze and compare any new behavior exhibited by the model. The Virtual California earthquake simulator can be used to study fault and stress interaction scenarios for realistic California earthquakes. The simulation generates a synthetic earthquake catalog of events with a minimum size of ~M 5.8 that can be evaluated using statistical analysis methods. Virtual California utilizes realistic fault geometries and a simple Amontons - Coulomb stick and slip friction law in order to drive the earthquake process by means of a back-slip model where loading of each segment occurs due to the accumulation of a slip deficit at the prescribed slip rate of the segment. Like any complex system, Virtual California may generate emergent phenomena unexpected even by its designers. In order to investigate this, we have developed a statistical method that analyzes the interaction between Virtual California fault elements and thereby determine whether events on any given fault elements show correlated behavior. Our method examines events on one fault element and then determines whether there is an associated event within a specified time window on a second fault element. Note that an event in our analysis is defined as any time an element slips, rather than any particular “earthquake” along the entire fault length. Results are then tabulated and then differenced with an expected correlation

  8. Processes and subdivisions in diogenites, a multivariate statistical analysis

    NASA Technical Reports Server (NTRS)

    Harriott, T. A.; Hewins, R. H.

    1984-01-01

    Multivariate statistical techniques used on diogenite orthopyroxene analyses show the relationships that occur within diogenites and the two orthopyroxenite components (class I and II) in the polymict diogenite Garland. Cluster analysis shows that only Peckelsheim is similar to Garland class I (Fe-rich) and the other diogenites resemble Garland class II. The unique diogenite Y 75032 may be related to type I by fractionation. Factor analysis confirms the subdivision and shows that Fe does not correlate with the weakly incompatible elements across the entire pyroxene composition range, indicating that igneous fractionation is not the process controlling total diogenite composition variation. The occurrence of two groups of diogenites is interpreted as the result of sampling or mixing of two main sequences of orthopyroxene cumulates with slightly different compositions.

  9. Analysis/forecast experiments with a multivariate statistical analysis scheme using FGGE data

    NASA Technical Reports Server (NTRS)

    Baker, W. E.; Bloom, S. C.; Nestler, M. S.

    1985-01-01

    A three-dimensional, multivariate, statistical analysis method, optimal interpolation (OI) is described for modeling meteorological data from widely dispersed sites. The model was developed to analyze FGGE data at the NASA-Goddard Laboratory of Atmospherics. The model features a multivariate surface analysis over the oceans, including maintenance of the Ekman balance and a geographically dependent correlation function. Preliminary comparisons are made between the OI model and similar schemes employed at the European Center for Medium Range Weather Forecasts and the National Meteorological Center. The OI scheme is used to provide input to a GCM, and model error correlations are calculated for forecasts of 500 mb vertical water mixing ratios and the wind profiles. Comparisons are made between the predictions and measured data. The model is shown to be as accurate as a successive corrections model out to 4.5 days.

  10. Bayesian approach for counting experiment statistics applied to a neutrino point source analysis

    NASA Astrophysics Data System (ADS)

    Bose, D.; Brayeur, L.; Casier, M.; de Vries, K. D.; Golup, G.; van Eijndhoven, N.

    2013-12-01

    In this paper we present a model independent analysis method following Bayesian statistics to analyse data from a generic counting experiment and apply it to the search for neutrinos from point sources. We discuss a test statistic defined following a Bayesian framework that will be used in the search for a signal. In case no signal is found, we derive an upper limit without the introduction of approximations. The Bayesian approach allows us to obtain the full probability density function for both the background and the signal rate. As such, we have direct access to any signal upper limit. The upper limit derivation directly compares with a frequentist approach and is robust in the case of low-counting observations. Furthermore, it allows also to account for previous upper limits obtained by other analyses via the concept of prior information without the need of the ad hoc application of trial factors. To investigate the validity of the presented Bayesian approach, we have applied this method to the public IceCube 40-string configuration data for 10 nearby blazars and we have obtained a flux upper limit, which is in agreement with the upper limits determined via a frequentist approach. Furthermore, the upper limit obtained compares well with the previously published result of IceCube, using the same data set.

  11. AN EXPLORATION OF THE STATISTICAL SIGNATURES OF STELLAR FEEDBACK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyden, Ryan D.; Offner, Stella S. R.; Koch, Eric W.

    2016-12-20

    All molecular clouds are observed to be turbulent, but the origin, means of sustenance, and evolution of the turbulence remain debated. One possibility is that stellar feedback injects enough energy into the cloud to drive observed motions on parsec scales. Recent numerical studies of molecular clouds have found that feedback from stars, such as protostellar outflows and winds, injects energy and impacts turbulence. We expand upon these studies by analyzing magnetohydrodynamic simulations of molecular clouds, including stellar winds, with a range of stellar mass-loss rates and magnetic field strengths. We generate synthetic {sup 12}CO(1–0) maps assuming that the simulations aremore » at the distance of the nearby Perseus molecular cloud. By comparing the outputs from different initial conditions and evolutionary times, we identify differences in the synthetic observations and characterize these using common astrostatistics. We quantify the different statistical responses using a variety of metrics proposed in the literature. We find that multiple astrostatistics, including the principal component analysis, the spectral correlation function, and the velocity coordinate spectrum (VCS), are sensitive to changes in stellar mass-loss rates and/or time evolution. A few statistics, including the Cramer statistic and VCS, are sensitive to the magnetic field strength. These findings demonstrate that stellar feedback influences molecular cloud turbulence and can be identified and quantified observationally using such statistics.« less

  12. STRengthening Analytical Thinking for Observational Studies: the STRATOS initiative

    PubMed Central

    Sauerbrei, Willi; Abrahamowicz, Michal; Altman, Douglas G; le Cessie, Saskia; Carpenter, James

    2014-01-01

    The validity and practical utility of observational medical research depends critically on good study design, excellent data quality, appropriate statistical methods and accurate interpretation of results. Statistical methodology has seen substantial development in recent times. Unfortunately, many of these methodological developments are ignored in practice. Consequently, design and analysis of observational studies often exhibit serious weaknesses. The lack of guidance on vital practical issues discourages many applied researchers from using more sophisticated and possibly more appropriate methods when analyzing observational studies. Furthermore, many analyses are conducted by researchers with a relatively weak statistical background and limited experience in using statistical methodology and software. Consequently, even ‘standard’ analyses reported in the medical literature are often flawed, casting doubt on their results and conclusions. An efficient way to help researchers to keep up with recent methodological developments is to develop guidance documents that are spread to the research community at large. These observations led to the initiation of the strengthening analytical thinking for observational studies (STRATOS) initiative, a large collaboration of experts in many different areas of biostatistical research. The objective of STRATOS is to provide accessible and accurate guidance in the design and analysis of observational studies. The guidance is intended for applied statisticians and other data analysts with varying levels of statistical education, experience and interests. In this article, we introduce the STRATOS initiative and its main aims, present the need for guidance documents and outline the planned approach and progress so far. We encourage other biostatisticians to become involved. PMID:25074480

  13. [Statistical analysis of body and lung mass of animals subjected to a single experimental insufflation of soil dust and electro-energetic ashes].

    PubMed

    Matysiak, W; Królikowska-Prasał, I; Staszyc, J; Kifer, E; Romanowska-Sarlej, J

    1989-01-01

    The studies were performed on 44 white female Wistar rats which were intratracheally administered the suspension of the soil dust and the electro-energetic ashes. The electro-energetic ashes were collected from 6 different local heat and power generating plants while the soil dust from several random places of our country. The statistical analysis of the body and the lung mass of the animals subjected to the single dust and ash insufflation was performed. The applied variants proved the statistically significant differences between the body and the lung mass. The observed differences are connected with the kinds of dust and ash used in the experiment.

  14. Controllability and observability analysis for vertex domination centrality in directed networks

    NASA Astrophysics Data System (ADS)

    Wang, Bingbo; Gao, Lin; Gao, Yong; Deng, Yue; Wang, Yu

    2014-06-01

    Topological centrality is a significant measure for characterising the relative importance of a node in a complex network. For directed networks that model dynamic processes, however, it is of more practical importance to quantify a vertex's ability to dominate (control or observe) the state of other vertices. In this paper, based on the determination of controllable and observable subspaces under the global minimum-cost condition, we introduce a novel direction-specific index, domination centrality, to assess the intervention capabilities of vertices in a directed network. Statistical studies demonstrate that the domination centrality is, to a great extent, encoded by the underlying network's degree distribution and that most network positions through which one can intervene in a system are vertices with high domination centrality rather than network hubs. To analyse the interaction and functional dependence between vertices when they are used to dominate a network, we define the domination similarity and detect significant functional modules in glossary and metabolic networks through clustering analysis. The experimental results provide strong evidence that our indices are effective and practical in accurately depicting the structure of directed networks.

  15. Statistical analysis of severe magnetic fluctuations in the near-Earth plasma sheet observed by THEMIS-E

    NASA Astrophysics Data System (ADS)

    Xu, Heqiucen; Shiokawa, Kazuo; Frühauff, Dennis

    2017-10-01

    We statistically analyzed severe magnetic fluctuations in the nightside near-Earth plasma sheet at 6-12 RE (Earth radii; 1 RE = 6371 km), because they are important for non-magnetohydrodynamics (non-MHD) effects in the magnetotail and are considered to be necessary for current disruption in the inside-out substorm model. We used magnetic field data from 2013 and 2014 obtained by the Time History of Events and Macroscale Interactions during Substorms E (THEMIS-E) satellite (sampling rate: 4 Hz). A total of 1283 severe magnetic fluctuation events were identified that satisfied the criteria σB/B > 0. 5, where σB and B are the standard deviation and the average value of magnetic field intensity during the time interval of the local proton gyroperiod, respectively. We found that the occurrence rates of severe fluctuation events are 0.00118, 0.00899, and 0.0238 % at 6-8, 8-10, and 10-12 RE, respectively, and most events last for no more than 15 s. From these occurrence rates, we estimated the possible scale sizes of current disruption by severe magnetic fluctuations as 3.83 RE3 by assuming that four substorms with 5 min intervals of current disruption occur every day. The fluctuation events occurred most frequently at the ZGSM (Z distance in the geocentric solar magnetospheric coordinate system) close to the model neutral sheet within 0.2 RE. Most events occur in association with sudden decreases in the auroral electrojet lower (AL) index and magnetic field dipolarization, indicating that they are related to substorms. Sixty-two percent of magnetic fluctuation events were accompanied by ion flow with velocity V > 100 km s-1, indicating that the violation of ion gyromotion tends to occur during high-speed flow in the near-Earth plasma sheet. The superposed epoch analysis also indicated that the flow speed increases before the severe magnetic fluctuations. We discuss how both the inside

  16. Statistics for nuclear engineers and scientists. Part 1. Basic statistical inference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beggs, W.J.

    1981-02-01

    This report is intended for the use of engineers and scientists working in the nuclear industry, especially at the Bettis Atomic Power Laboratory. It serves as the basis for several Bettis in-house statistics courses. The objectives of the report are to introduce the reader to the language and concepts of statistics and to provide a basic set of techniques to apply to problems of the collection and analysis of data. Part 1 covers subjects of basic inference. The subjects include: descriptive statistics; probability; simple inference for normally distributed populations, and for non-normal populations as well; comparison of two populations; themore » analysis of variance; quality control procedures; and linear regression analysis.« less

  17. Bias, precision and statistical power of analysis of covariance in the analysis of randomized trials with baseline imbalance: a simulation study.

    PubMed

    Egbewale, Bolaji E; Lewis, Martyn; Sim, Julius

    2014-04-09

    Analysis of variance (ANOVA), change-score analysis (CSA) and analysis of covariance (ANCOVA) respond differently to baseline imbalance in randomized controlled trials. However, no empirical studies appear to have quantified the differential bias and precision of estimates derived from these methods of analysis, and their relative statistical power, in relation to combinations of levels of key trial characteristics. This simulation study therefore examined the relative bias, precision and statistical power of these three analyses using simulated trial data. 126 hypothetical trial scenarios were evaluated (126,000 datasets), each with continuous data simulated by using a combination of levels of: treatment effect; pretest-posttest correlation; direction and magnitude of baseline imbalance. The bias, precision and power of each method of analysis were calculated for each scenario. Compared to the unbiased estimates produced by ANCOVA, both ANOVA and CSA are subject to bias, in relation to pretest-posttest correlation and the direction of baseline imbalance. Additionally, ANOVA and CSA are less precise than ANCOVA, especially when pretest-posttest correlation ≥ 0.3. When groups are balanced at baseline, ANCOVA is at least as powerful as the other analyses. Apparently greater power of ANOVA and CSA at certain imbalances is achieved in respect of a biased treatment effect. Across a range of correlations between pre- and post-treatment scores and at varying levels and direction of baseline imbalance, ANCOVA remains the optimum statistical method for the analysis of continuous outcomes in RCTs, in terms of bias, precision and statistical power.

  18. Bias, precision and statistical power of analysis of covariance in the analysis of randomized trials with baseline imbalance: a simulation study

    PubMed Central

    2014-01-01

    Background Analysis of variance (ANOVA), change-score analysis (CSA) and analysis of covariance (ANCOVA) respond differently to baseline imbalance in randomized controlled trials. However, no empirical studies appear to have quantified the differential bias and precision of estimates derived from these methods of analysis, and their relative statistical power, in relation to combinations of levels of key trial characteristics. This simulation study therefore examined the relative bias, precision and statistical power of these three analyses using simulated trial data. Methods 126 hypothetical trial scenarios were evaluated (126 000 datasets), each with continuous data simulated by using a combination of levels of: treatment effect; pretest-posttest correlation; direction and magnitude of baseline imbalance. The bias, precision and power of each method of analysis were calculated for each scenario. Results Compared to the unbiased estimates produced by ANCOVA, both ANOVA and CSA are subject to bias, in relation to pretest-posttest correlation and the direction of baseline imbalance. Additionally, ANOVA and CSA are less precise than ANCOVA, especially when pretest-posttest correlation ≥ 0.3. When groups are balanced at baseline, ANCOVA is at least as powerful as the other analyses. Apparently greater power of ANOVA and CSA at certain imbalances is achieved in respect of a biased treatment effect. Conclusions Across a range of correlations between pre- and post-treatment scores and at varying levels and direction of baseline imbalance, ANCOVA remains the optimum statistical method for the analysis of continuous outcomes in RCTs, in terms of bias, precision and statistical power. PMID:24712304

  19. Statistical analysis of ultrasonic measurements in concrete

    NASA Astrophysics Data System (ADS)

    Chiang, Chih-Hung; Chen, Po-Chih

    2002-05-01

    Stress wave techniques such as measurements of ultrasonic pulse velocity are often used to evaluate concrete quality in structures. For proper interpretation of measurement results, the dependence of pulse transit time on the average acoustic impedance and the material homogeneity along the sound path need to be examined. Semi-direct measurement of pulse velocity could be more convenient than through transmission measurement. It is not necessary to assess both sides of concrete floors or walls. A novel measurement scheme is proposed and verified based on statistical analysis. It is shown that Semi-direct measurements are very effective for gathering large amount of pulse velocity data from concrete reference specimens. The variability of measurements is comparable with that reported by American Concrete Institute using either break-off or pullout tests.

  20. 75 FR 24718 - Guidance for Industry on Documenting Statistical Analysis Programs and Data Files; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-05

    ...] Guidance for Industry on Documenting Statistical Analysis Programs and Data Files; Availability AGENCY... Programs and Data Files.'' This guidance is provided to inform study statisticians of recommendations for documenting statistical analyses and data files submitted to the Center for Veterinary Medicine (CVM) for the...

  1. Statistical imprints of CMB B -type polarization leakage in an incomplete sky survey analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santos, Larissa; Wang, Kai; Hu, Yangrui

    2017-01-01

    One of the main goals of modern cosmology is to search for primordial gravitational waves by looking on their imprints in the B -type polarization in the cosmic microwave background radiation. However, this signal is contaminated by various sources, including cosmic weak lensing, foreground radiations, instrumental noises, as well as the E -to- B leakage caused by the partial sky surveys, which should be well understood to avoid the misinterpretation of the observed data. In this paper, we adopt the E / B decomposition method suggested by Smith in 2006, and study the imprints of E -to- B leakage residualsmore » in the constructed B -type polarization maps, B( n-circumflex ), by employing various statistical tools. We find that the effects of E -to- B leakage are negligible for the B-mode power spectrum, as well as the skewness and kurtosis analyses of B-maps. However, if employing the morphological statistical tools, including Minkowski functionals and/or Betti numbers, we find the effect of leakage can be detected at very high confidence level, which shows that in the morphological analysis, the leakage can play a significant role as a contaminant for measuring the primordial B -mode signal and must be taken into account for a correct explanation of the data.« less

  2. Dietary fat intake and risk of epithelial ovarian cancer: a meta-analysis of 6,689 subjects from 8 observational studies.

    PubMed

    Huncharek, M; Kupelnick, B

    2001-01-01

    The etiology of epithelial ovarian cancer is unknown. Prior work suggests that high dietary fat intake is associated with an increased risk of this tumor, although this association remains speculative. A meta-analysis was performed to evaluate this suspected relationship. Using previously described methods, a protocol was developed for a meta-analysis examining the association between high vs. low dietary fat intake and the risk of epithelial ovarian cancer. Literature search techniques, study inclusion criteria, and statistical procedures were prospectively defined. Data from observational studies were pooled using a general variance-based meta-analytic method employing confidence intervals (CI) previously described by Greenland. The outcome of interest was a summary relative risk (RRs) reflecting the risk of ovarian cancer associated with high vs. low dietary fat intake. Sensitivity analyses were performed when necessary to evaluate any observed statistical heterogeneity. The literature search yielded 8 observational studies enrolling 6,689 subjects. Data were stratified into three dietary fat intake categories: total fat, animal fat, and saturated fat. Initial tests for statistical homogeneity demonstrated that hospital-based studies accounted for observed heterogeneity possibly because of selection bias. Accounting for this, an RRs was calculated for high vs. low total fat intake, yielding a value of 1.24 (95% CI = 1.07-1.43), a statistically significant result. That is, high total fat intake is associated with a 24% increased risk of ovarian cancer development. The RRs for high saturated fat intake was 1.20 (95% CI = 1.04-1.39), suggesting a 20% increased risk of ovarian cancer among subjects with these dietary habits. High vs. low animal fat diet gave an RRs of 1.70 (95% CI = 1.43-2.03), consistent with a statistically significant 70% increased ovarian cancer risk. High dietary fat intake appears to represent a significant risk factor for the development of

  3. Statistical Tutorial | Center for Cancer Research

    Cancer.gov

    Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data.  ST is designed as a follow up to Statistical Analysis of Research Data (SARD) held in April 2018.  The tutorial will apply the general principles of statistical analysis of research data including descriptive statistics, z- and t-tests of means and mean

  4. Improved score statistics for meta-analysis in single-variant and gene-level association studies.

    PubMed

    Yang, Jingjing; Chen, Sai; Abecasis, Gonçalo

    2018-06-01

    Meta-analysis is now an essential tool for genetic association studies, allowing them to combine large studies and greatly accelerating the pace of genetic discovery. Although the standard meta-analysis methods perform equivalently as the more cumbersome joint analysis under ideal settings, they result in substantial power loss under unbalanced settings with various case-control ratios. Here, we investigate the power loss problem by the standard meta-analysis methods for unbalanced studies, and further propose novel meta-analysis methods performing equivalently to the joint analysis under both balanced and unbalanced settings. We derive improved meta-score-statistics that can accurately approximate the joint-score-statistics with combined individual-level data, for both linear and logistic regression models, with and without covariates. In addition, we propose a novel approach to adjust for population stratification by correcting for known population structures through minor allele frequencies. In the simulated gene-level association studies under unbalanced settings, our method recovered up to 85% power loss caused by the standard methods. We further showed the power gain of our methods in gene-level tests with 26 unbalanced studies of age-related macular degeneration . In addition, we took the meta-analysis of three unbalanced studies of type 2 diabetes as an example to discuss the challenges of meta-analyzing multi-ethnic samples. In summary, our improved meta-score-statistics with corrections for population stratification can be used to construct both single-variant and gene-level association studies, providing a useful framework for ensuring well-powered, convenient, cross-study analyses. © 2018 WILEY PERIODICALS, INC.

  5. The Use of Satellite Observed Cloud Patterns in Northern Hemisphere 300 mb and 1000/300 mb Numerical Analysis.

    DTIC Science & Technology

    1984-02-01

    prediction Extratropical cyclones Objective analysis Bogus techniques 20. ABSTRACT (Continue on reverse aide If necooearn mid Identify by block number) Jh A...quasi-objective statistical method for deriving 300 mb geopotential heights and 1000/300 mb thicknesses in the vicinity of extratropical cyclones 0I...with the aid of satellite imagery is presented. The technique utilizes satellite observed extratropical spiral cloud pattern parameters in conjunction

  6. Combine bivariate statistics analysis and multivariate statistics analysis to assess landslide susceptibility in Chen-Yu-Lan watershed, Nantou, Taiwan.

    NASA Astrophysics Data System (ADS)

    Ngan Nguyen, Thi To; Liu, Cheng-Chien

    2013-04-01

    How landslides occurred and which factors triggered and sped up landslide occurrences were usually asked by researchers in the past decades. Many investigations carried out in many places in the world to finding out methods that predict and prevent damages from landslides phenomena. Chen-Yu-Lan River watershed is reputed as a 'hot pot' of landslide researches in Taiwan by its complicated geological structures with the significant tectonic fault systems and steeply mountainous terrain. Beside annual high precipitation concentration and the abrupt slopes, some natural disaster, as typhoons (Sinlaku-2008, Kalmaegi-2008, and Marakot-2009) and earthquake (Chi-Chi earthquake-1999) are also the triggered factors cause landslides with serious damages in this place. This research expresses the quantitative approaches to generate landslide susceptible map for Chen-Yu-Lan watershed, a mountainous area in the central Taiwan. Landslide inventories data, which were detected from the Formosat-2 imageries for eight years from 2004 to 2011, were applied to carry out landslide susceptibility mapping. Bivariate statistics analysis and multivariate statistics analysis would be applied to calculate susceptible index of landslides. The weights of parameters were computed based on landslide data for eight years from 2004 to 2011. To validate effective levels of factors to landslide occurrences, this method built some multivariate algorithms and compared these results with real landslide occurrences. Besides this method, the historical data of landslides were also used to assess and classify landslide susceptibility levels. From long-term landslide data, relation between landslide susceptibility levels and landslide repetition was assigned. The results demonstrated differently effective levels of potential factors, such as, slope gradient, drainage density, lithology and land use to landslide phenomena. The results also showed logical relationship between weights and characteristics of

  7. Statistical analysis of cascading failures in power grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael; Pfitzner, Rene; Turitsyn, Konstantin

    2010-12-01

    We introduce a new microscopic model of cascading failures in transmission power grids. This model accounts for automatic response of the grid to load fluctuations that take place on the scale of minutes, when optimum power flow adjustments and load shedding controls are unavailable. We describe extreme events, caused by load fluctuations, which cause cascading failures of loads, generators and lines. Our model is quasi-static in the causal, discrete time and sequential resolution of individual failures. The model, in its simplest realization based on the Directed Current description of the power flow problem, is tested on three standard IEEE systemsmore » consisting of 30, 39 and 118 buses. Our statistical analysis suggests a straightforward classification of cascading and islanding phases in terms of the ratios between average number of removed loads, generators and links. The analysis also demonstrates sensitivity to variations in line capacities. Future research challenges in modeling and control of cascading outages over real-world power networks are discussed.« less

  8. Measuring the statistical validity of summary meta-analysis and meta-regression results for use in clinical practice.

    PubMed

    Willis, Brian H; Riley, Richard D

    2017-09-20

    An important question for clinicians appraising a meta-analysis is: are the findings likely to be valid in their own practice-does the reported effect accurately represent the effect that would occur in their own clinical population? To this end we advance the concept of statistical validity-where the parameter being estimated equals the corresponding parameter for a new independent study. Using a simple ('leave-one-out') cross-validation technique, we demonstrate how we may test meta-analysis estimates for statistical validity using a new validation statistic, Vn, and derive its distribution. We compare this with the usual approach of investigating heterogeneity in meta-analyses and demonstrate the link between statistical validity and homogeneity. Using a simulation study, the properties of Vn and the Q statistic are compared for univariate random effects meta-analysis and a tailored meta-regression model, where information from the setting (included as model covariates) is used to calibrate the summary estimate to the setting of application. Their properties are found to be similar when there are 50 studies or more, but for fewer studies Vn has greater power but a higher type 1 error rate than Q. The power and type 1 error rate of Vn are also shown to depend on the within-study variance, between-study variance, study sample size, and the number of studies in the meta-analysis. Finally, we apply Vn to two published meta-analyses and conclude that it usefully augments standard methods when deciding upon the likely validity of summary meta-analysis estimates in clinical practice. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd.

  9. An Interactive Tool For Semi-automated Statistical Prediction Using Earth Observations and Models

    NASA Astrophysics Data System (ADS)

    Zaitchik, B. F.; Berhane, F.; Tadesse, T.

    2015-12-01

    We developed a semi-automated statistical prediction tool applicable to concurrent analysis or seasonal prediction of any time series variable in any geographic location. The tool was developed using Shiny, JavaScript, HTML and CSS. A user can extract a predictand by drawing a polygon over a region of interest on the provided user interface (global map). The user can select the Climatic Research Unit (CRU) precipitation or Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) as predictand. They can also upload their own predictand time series. Predictors can be extracted from sea surface temperature, sea level pressure, winds at different pressure levels, air temperature at various pressure levels, and geopotential height at different pressure levels. By default, reanalysis fields are applied as predictors, but the user can also upload their own predictors, including a wide range of compatible satellite-derived datasets. The package generates correlations of the variables selected with the predictand. The user also has the option to generate composites of the variables based on the predictand. Next, the user can extract predictors by drawing polygons over the regions that show strong correlations (composites). Then, the user can select some or all of the statistical prediction models provided. Provided models include Linear Regression models (GLM, SGLM), Tree-based models (bagging, random forest, boosting), Artificial Neural Network, and other non-linear models such as Generalized Additive Model (GAM) and Multivariate Adaptive Regression Splines (MARS). Finally, the user can download the analysis steps they used, such as the region they selected, the time period they specified, the predictand and predictors they chose and preprocessing options they used, and the model results in PDF or HTML format. Key words: Semi-automated prediction, Shiny, R, GLM, ANN, RF, GAM, MARS

  10. MethVisual - visualization and exploratory statistical analysis of DNA methylation profiles from bisulfite sequencing.

    PubMed

    Zackay, Arie; Steinhoff, Christine

    2010-12-15

    Exploration of DNA methylation and its impact on various regulatory mechanisms has become a very active field of research. Simultaneously there is an arising need for tools to process and analyse the data together with statistical investigation and visualisation. MethVisual is a new application that enables exploratory analysis and intuitive visualization of DNA methylation data as is typically generated by bisulfite sequencing. The package allows the import of DNA methylation sequences, aligns them and performs quality control comparison. It comprises basic analysis steps as lollipop visualization, co-occurrence display of methylation of neighbouring and distant CpG sites, summary statistics on methylation status, clustering and correspondence analysis. The package has been developed for methylation data but can be also used for other data types for which binary coding can be inferred. The application of the package, as well as a comparison to existing DNA methylation analysis tools and its workflow based on two datasets is presented in this paper. The R package MethVisual offers various analysis procedures for data that can be binarized, in particular for bisulfite sequenced methylation data. R/Bioconductor has become one of the most important environments for statistical analysis of various types of biological and medical data. Therefore, any data analysis within R that allows the integration of various data types as provided from different technological platforms is convenient. It is the first and so far the only specific package for DNA methylation analysis, in particular for bisulfite sequenced data available in R/Bioconductor enviroment. The package is available for free at http://methvisual.molgen.mpg.de/ and from the Bioconductor Consortium http://www.bioconductor.org.

  11. MethVisual - visualization and exploratory statistical analysis of DNA methylation profiles from bisulfite sequencing

    PubMed Central

    2010-01-01

    Background Exploration of DNA methylation and its impact on various regulatory mechanisms has become a very active field of research. Simultaneously there is an arising need for tools to process and analyse the data together with statistical investigation and visualisation. Findings MethVisual is a new application that enables exploratory analysis and intuitive visualization of DNA methylation data as is typically generated by bisulfite sequencing. The package allows the import of DNA methylation sequences, aligns them and performs quality control comparison. It comprises basic analysis steps as lollipop visualization, co-occurrence display of methylation of neighbouring and distant CpG sites, summary statistics on methylation status, clustering and correspondence analysis. The package has been developed for methylation data but can be also used for other data types for which binary coding can be inferred. The application of the package, as well as a comparison to existing DNA methylation analysis tools and its workflow based on two datasets is presented in this paper. Conclusions The R package MethVisual offers various analysis procedures for data that can be binarized, in particular for bisulfite sequenced methylation data. R/Bioconductor has become one of the most important environments for statistical analysis of various types of biological and medical data. Therefore, any data analysis within R that allows the integration of various data types as provided from different technological platforms is convenient. It is the first and so far the only specific package for DNA methylation analysis, in particular for bisulfite sequenced data available in R/Bioconductor enviroment. The package is available for free at http://methvisual.molgen.mpg.de/ and from the Bioconductor Consortium http://www.bioconductor.org. PMID:21159174

  12. A simple linear regression method for quantitative trait loci linkage analysis with censored observations.

    PubMed

    Anderson, Carl A; McRae, Allan F; Visscher, Peter M

    2006-07-01

    Standard quantitative trait loci (QTL) mapping techniques commonly assume that the trait is both fully observed and normally distributed. When considering survival or age-at-onset traits these assumptions are often incorrect. Methods have been developed to map QTL for survival traits; however, they are both computationally intensive and not available in standard genome analysis software packages. We propose a grouped linear regression method for the analysis of continuous survival data. Using simulation we compare this method to both the Cox and Weibull proportional hazards models and a standard linear regression method that ignores censoring. The grouped linear regression method is of equivalent power to both the Cox and Weibull proportional hazards methods and is significantly better than the standard linear regression method when censored observations are present. The method is also robust to the proportion of censored individuals and the underlying distribution of the trait. On the basis of linear regression methodology, the grouped linear regression model is computationally simple and fast and can be implemented readily in freely available statistical software.

  13. A Statistical Analysis of the Output Signals of an Acousto-Optic Spectrum Analyzer for CW (Continuous-Wave) Signals

    DTIC Science & Technology

    1988-10-01

    A statistical analysis on the output signals of an acousto - optic spectrum analyzer (AOSA) is performed for the case when the input signal is a...processing, Electronic warfare, Radar countermeasures, Acousto - optic , Spectrum analyzer, Statistical analysis, Detection, Estimation, Canada, Modelling.

  14. Extreme value statistics analysis of fracture strengths of a sintered silicon nitride failing from pores

    NASA Technical Reports Server (NTRS)

    Chao, Luen-Yuan; Shetty, Dinesh K.

    1992-01-01

    Statistical analysis and correlation between pore-size distribution and fracture strength distribution using the theory of extreme-value statistics is presented for a sintered silicon nitride. The pore-size distribution on a polished surface of this material was characterized, using an automatic optical image analyzer. The distribution measured on the two-dimensional plane surface was transformed to a population (volume) distribution, using the Schwartz-Saltykov diameter method. The population pore-size distribution and the distribution of the pore size at the fracture origin were correllated by extreme-value statistics. Fracture strength distribution was then predicted from the extreme-value pore-size distribution, usin a linear elastic fracture mechanics model of annular crack around pore and the fracture toughness of the ceramic. The predicted strength distribution was in good agreement with strength measurements in bending. In particular, the extreme-value statistics analysis explained the nonlinear trend in the linearized Weibull plot of measured strengths without postulating a lower-bound strength.

  15. Statistical analysis of sparse infection data and its implications for retroviral treatment trials in primates.

    PubMed Central

    Spouge, J L

    1992-01-01

    Reports on retroviral primate trials rarely publish any statistical analysis. Present statistical methodology lacks appropriate tests for these trials and effectively discourages quantitative assessment. This paper describes the theory behind VACMAN, a user-friendly computer program that calculates statistics for in vitro and in vivo infectivity data. VACMAN's analysis applies to many retroviral trials using i.v. challenges and is valid whenever the viral dose-response curve has a particular shape. Statistics from actual i.v. retroviral trials illustrate some unappreciated principles of effective animal use: dilutions other than 1:10 can improve titration accuracy; infecting titration animals at the lowest doses possible can lower challenge doses; and finally, challenging test animals in small trials with more virus than controls safeguards against false successes, "reuses" animals, and strengthens experimental conclusions. The theory presented also explains the important concept of viral saturation, a phenomenon that may cause in vitro and in vivo titrations to agree for some retroviral strains and disagree for others. PMID:1323844

  16. Evidence for a Global Sampling Process in Extraction of Summary Statistics of Item Sizes in a Set.

    PubMed

    Tokita, Midori; Ueda, Sachiyo; Ishiguchi, Akira

    2016-01-01

    Several studies have shown that our visual system may construct a "summary statistical representation" over groups of visual objects. Although there is a general understanding that human observers can accurately represent sets of a variety of features, many questions on how summary statistics, such as an average, are computed remain unanswered. This study investigated sampling properties of visual information used by human observers to extract two types of summary statistics of item sets, average and variance. We presented three models of ideal observers to extract the summary statistics: a global sampling model without sampling noise, global sampling model with sampling noise, and limited sampling model. We compared the performance of an ideal observer of each model with that of human observers using statistical efficiency analysis. Results suggest that summary statistics of items in a set may be computed without representing individual items, which makes it possible to discard the limited sampling account. Moreover, the extraction of summary statistics may not necessarily require the representation of individual objects with focused attention when the sets of items are larger than 4.

  17. Applications of statistical physics and information theory to the analysis of DNA sequences

    NASA Astrophysics Data System (ADS)

    Grosse, Ivo

    2000-10-01

    DNA carries the genetic information of most living organisms, and the of genome projects is to uncover that genetic information. One basic task in the analysis of DNA sequences is the recognition of protein coding genes. Powerful computer programs for gene recognition have been developed, but most of them are based on statistical patterns that vary from species to species. In this thesis I address the question if there exist universal statistical patterns that are different in coding and noncoding DNA of all living species, regardless of their phylogenetic origin. In search for such species-independent patterns I study the mutual information function of genomic DNA sequences, and find that it shows persistent period-three oscillations. To understand the biological origin of the observed period-three oscillations, I compare the mutual information function of genomic DNA sequences to the mutual information function of stochastic model sequences. I find that the pseudo-exon model is able to reproduce the mutual information function of genomic DNA sequences. Moreover, I find that a generalization of the pseudo-exon model can connect the existence and the functional form of long-range correlations to the presence and the length distributions of coding and noncoding regions. Based on these theoretical studies I am able to find an information-theoretical quantity, the average mutual information (AMI), whose probability distributions are significantly different in coding and noncoding DNA, while they are almost identical in all studied species. These findings show that there exist universal statistical patterns that are different in coding and noncoding DNA of all studied species, and they suggest that the AMI may be used to identify genes in different living species, irrespective of their taxonomic origin.

  18. Analyzing Dyadic Sequence Data—Research Questions and Implied Statistical Models

    PubMed Central

    Fuchs, Peter; Nussbeck, Fridtjof W.; Meuwly, Nathalie; Bodenmann, Guy

    2017-01-01

    The analysis of observational data is often seen as a key approach to understanding dynamics in romantic relationships but also in dyadic systems in general. Statistical models for the analysis of dyadic observational data are not commonly known or applied. In this contribution, selected approaches to dyadic sequence data will be presented with a focus on models that can be applied when sample sizes are of medium size (N = 100 couples or less). Each of the statistical models is motivated by an underlying potential research question, the most important model results are presented and linked to the research question. The following research questions and models are compared with respect to their applicability using a hands on approach: (I) Is there an association between a particular behavior by one and the reaction by the other partner? (Pearson Correlation); (II) Does the behavior of one member trigger an immediate reaction by the other? (aggregated logit models; multi-level approach; basic Markov model); (III) Is there an underlying dyadic process, which might account for the observed behavior? (hidden Markov model); and (IV) Are there latent groups of dyads, which might account for observing different reaction patterns? (mixture Markov; optimal matching). Finally, recommendations for researchers to choose among the different models, issues of data handling, and advises to apply the statistical models in empirical research properly are given (e.g., in a new r-package “DySeq”). PMID:28443037

  19. A Statistical Analysis of YORP Coefficients

    NASA Astrophysics Data System (ADS)

    McMahon, Jay W.; Scheeres, D.

    2013-10-01

    The YORP (Yarkovsky-O'Keefe-Radzievskii-Paddack) effect is theorized to be a major factor in the evolution of small asteroids (<10 km) in the near-Earth and main belt populations. YORP torques, which originate from absorbed sunlight and subsequent thermal radiation, causes secular changes in an asteroid's spin rate and spin vector orientation (e.g. Rubincam, Journal of Geophysical Research, 1995). This in turn controls the magnitude and direction of the Yarkovsky effect, which causes a drift in an asteroid's heliocentric semi-major axis (Vokrouhlicky and Farinella, Nature, 2000). YORP is also thought to be responsible for the creation of multiple asteroid systems and asteroid pairs through the process of rotational fission (Pravec et al, Nature, 2010). Despite the fact that the YORP effect has been measured on several asteroids (e.g. Taylor et al, Science, 2007 and Kaasalainen et al, Nature, 2007), it has proven very difficult to predict the effect accurately from a shape model due to the sensitivity of the YORP coefficients to shape changes (Statler, Icarus, 2009). This has been especially troublesome for Itokawa, for which a very detailed shape model is available (Scheeres et al, Icarus 2007; Breiter et al, Astronomy & Astrophysics, 2009). In this study, we compute the YORP coefficients for a number asteroids with detailed shape models available on the PDS-SBN. We then statistically perturb the asteroid shapes at the same resolution, creating a family of YORP coefficients for each shape. Next, we analyze the change in YORP coefficients between a shape model of accuracy obtainable from radar with one including small-scale topography on the surface as was observed on Itokawa. The combination of these families of coefficients will effectively give error bars on our knowledge of the YORP coefficients given a shape model of some accuracy. Finally, we discuss the statistical effect of boulder and craters, and the modification of these results due to recent studies on

  20. FADTTSter: accelerating hypothesis testing with functional analysis of diffusion tensor tract statistics

    NASA Astrophysics Data System (ADS)

    Noel, Jean; Prieto, Juan C.; Styner, Martin

    2017-03-01

    Functional Analysis of Diffusion Tensor Tract Statistics (FADTTS) is a toolbox for analysis of white matter (WM) fiber tracts. It allows associating diffusion properties along major WM bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these WM tract properties. However, to use this toolbox, a user must have an intermediate knowledge in scripting languages (MATLAB). FADTTSter was created to overcome this issue and make the statistical analysis accessible to any non-technical researcher. FADTTSter is actively being used by researchers at the University of North Carolina. FADTTSter guides non-technical users through a series of steps including quality control of subjects and fibers in order to setup the necessary parameters to run FADTTS. Additionally, FADTTSter implements interactive charts for FADTTS' outputs. This interactive chart enhances the researcher experience and facilitates the analysis of the results. FADTTSter's motivation is to improve usability and provide a new analysis tool to the community that complements FADTTS. Ultimately, by enabling FADTTS to a broader audience, FADTTSter seeks to accelerate hypothesis testing in neuroimaging studies involving heterogeneous clinical data and diffusion tensor imaging. This work is submitted to the Biomedical Applications in Molecular, Structural, and Functional Imaging conference. The source code of this application is available in NITRC.

  1. Statistical methods for the analysis of climate extremes

    NASA Astrophysics Data System (ADS)

    Naveau, Philippe; Nogaj, Marta; Ammann, Caspar; Yiou, Pascal; Cooley, Daniel; Jomelli, Vincent

    2005-08-01

    Currently there is an increasing research activity in the area of climate extremes because they represent a key manifestation of non-linear systems and an enormous impact on economic and social human activities. Our understanding of the mean behavior of climate and its 'normal' variability has been improving significantly during the last decades. In comparison, climate extreme events have been hard to study and even harder to predict because they are, by definition, rare and obey different statistical laws than averages. In this context, the motivation for this paper is twofold. Firstly, we recall the basic principles of Extreme Value Theory that is used on a regular basis in finance and hydrology, but it still does not have the same success in climate studies. More precisely, the theoretical distributions of maxima and large peaks are recalled. The parameters of such distributions are estimated with the maximum likelihood estimation procedure that offers the flexibility to take into account explanatory variables in our analysis. Secondly, we detail three case-studies to show that this theory can provide a solid statistical foundation, specially when assessing the uncertainty associated with extreme events in a wide range of applications linked to the study of our climate. To cite this article: P. Naveau et al., C. R. Geoscience 337 (2005).

  2. Considerations in the statistical analysis of clinical trials in periodontitis.

    PubMed

    Imrey, P B

    1986-05-01

    Adult periodontitis has been described as a chronic infectious process exhibiting sporadic, acute exacerbations which cause quantal, localized losses of dental attachment. Many analytic problems of periodontal trials are similar to those of other chronic diseases. However, the episodic, localized, infrequent, and relatively unpredictable behavior of exacerbations, coupled with measurement error difficulties, cause some specific problems. Considerable controversy exists as to the proper selection and treatment of multiple site data from the same patient for group comparisons for epidemiologic or therapeutic evaluative purposes. This paper comments, with varying degrees of emphasis, on several issues pertinent to the analysis of periodontal trials. Considerable attention is given to the ways in which measurement variability may distort analytic results. Statistical treatments of multiple site data for descriptive summaries are distinguished from treatments for formal statistical inference to validate therapeutic effects. Evidence suggesting that sites behave independently is contested. For inferential analyses directed at therapeutic or preventive effects, analytic models based on site independence are deemed unsatisfactory. Methods of summarization that may yield more powerful analyses than all-site mean scores, while retaining appropriate treatment of inter-site associations, are suggested. Brief comments and opinions on an assortment of other issues in clinical trial analysis are preferred.

  3. Statistical approach to partial equilibrium analysis

    NASA Astrophysics Data System (ADS)

    Wang, Yougui; Stanley, H. E.

    2009-04-01

    A statistical approach to market equilibrium and efficiency analysis is proposed in this paper. One factor that governs the exchange decisions of traders in a market, named willingness price, is highlighted and constitutes the whole theory. The supply and demand functions are formulated as the distributions of corresponding willing exchange over the willingness price. The laws of supply and demand can be derived directly from these distributions. The characteristics of excess demand function are analyzed and the necessary conditions for the existence and uniqueness of equilibrium point of the market are specified. The rationing rates of buyers and sellers are introduced to describe the ratio of realized exchange to willing exchange, and their dependence on the market price is studied in the cases of shortage and surplus. The realized market surplus, which is the criterion of market efficiency, can be written as a function of the distributions of willing exchange and the rationing rates. With this approach we can strictly prove that a market is efficient in the state of equilibrium.

  4. Directions for new developments on statistical design and analysis of small population group trials.

    PubMed

    Hilgers, Ralf-Dieter; Roes, Kit; Stallard, Nigel

    2016-06-14

    Most statistical design and analysis methods for clinical trials have been developed and evaluated where at least several hundreds of patients could be recruited. These methods may not be suitable to evaluate therapies if the sample size is unavoidably small, which is usually termed by small populations. The specific sample size cut off, where the standard methods fail, needs to be investigated. In this paper, the authors present their view on new developments for design and analysis of clinical trials in small population groups, where conventional statistical methods may be inappropriate, e.g., because of lack of power or poor adherence to asymptotic approximations due to sample size restrictions. Following the EMA/CHMP guideline on clinical trials in small populations, we consider directions for new developments in the area of statistical methodology for design and analysis of small population clinical trials. We relate the findings to the research activities of three projects, Asterix, IDeAl, and InSPiRe, which have received funding since 2013 within the FP7-HEALTH-2013-INNOVATION-1 framework of the EU. As not all aspects of the wide research area of small population clinical trials can be addressed, we focus on areas where we feel advances are needed and feasible. The general framework of the EMA/CHMP guideline on small population clinical trials stimulates a number of research areas. These serve as the basis for the three projects, Asterix, IDeAl, and InSPiRe, which use various approaches to develop new statistical methodology for design and analysis of small population clinical trials. Small population clinical trials refer to trials with a limited number of patients. Small populations may result form rare diseases or specific subtypes of more common diseases. New statistical methodology needs to be tailored to these specific situations. The main results from the three projects will constitute a useful toolbox for improved design and analysis of small

  5. Combining Statistical Samples of Resolved-ISM Simulated Galaxies with Realistic Mock Observations to Fully Interpret HST and JWST Surveys

    NASA Astrophysics Data System (ADS)

    Faucher-Giguere, Claude-Andre

    2016-10-01

    HST has invested thousands of orbits to complete multi-wavelength surveys of high-redshift galaxies including the Deep Fields, COSMOS, 3D-HST and CANDELS. Over the next few years, JWST will undertake complementary, spatially-resolved infrared observations. Cosmological simulations are the most powerful tool to make detailed predictions for the properties of galaxy populations and to interpret these surveys. We will leverage recent major advances in the predictive power of cosmological hydrodynamic simulations to produce the first statistical sample of hundreds of galaxies simulated with 10 pc resolution and with explicit interstellar medium and stellar feedback physics proved to simultaneously reproduce the galaxy stellar mass function, the chemical enrichment of galaxies, and the neutral hydrogen content of galaxy halos. We will process our new set of full-volume cosmological simulations, called FIREBOX, with a mock imaging and spectral synthesis pipeline to produce realistic mock HST and JWST observations, including spatially-resolved photometry and spectroscopy. By comparing FIREBOX with recent high-redshift HST surveys, we will study the stellar build up of galaxies, the evolution massive star-forming clumps, their contribution to bulge growth, the connection of bulges to star formation quenching, and the triggering mechanisms of AGN activity. Our mock data products will also enable us to plan future JWST observing programs. We will publicly release all our mock data products to enable HST and JWST science beyond our own analysis, including with the Frontier Fields.

  6. A wind proxy based on migrating dunes at the Baltic coast: statistical analysis of the link between wind conditions and sand movement

    NASA Astrophysics Data System (ADS)

    Bierstedt, Svenja E.; Hünicke, Birgit; Zorita, Eduardo; Ludwig, Juliane

    2017-07-01

    We statistically analyse the relationship between the structure of migrating dunes in the southern Baltic and the driving wind conditions over the past 26 years, with the long-term aim of using migrating dunes as a proxy for past wind conditions at an interannual resolution. The present analysis is based on the dune record derived from geo-radar measurements by Ludwig et al. (2017). The dune system is located at the Baltic Sea coast of Poland and is migrating from west to east along the coast. The dunes present layers with different thicknesses that can be assigned to absolute dates at interannual timescales and put in relation to seasonal wind conditions. To statistically analyse this record and calibrate it as a wind proxy, we used a gridded regional meteorological reanalysis data set (coastDat2) covering recent decades. The identified link between the dune annual layers and wind conditions was additionally supported by the co-variability between dune layers and observed sea level variations in the southern Baltic Sea. We include precipitation and temperature into our analysis, in addition to wind, to learn more about the dependency between these three atmospheric factors and their common influence on the dune system. We set up a statistical linear model based on the correlation between the frequency of days with specific wind conditions in a given season and dune migration velocities derived for that season. To some extent, the dune records can be seen as analogous to tree-ring width records, and hence we use a proxy validation method usually applied in dendrochronology, cross-validation with the leave-one-out method, when the observational record is short. The revealed correlations between the wind record from the reanalysis and the wind record derived from the dune structure is in the range between 0.28 and 0.63, yielding similar statistical validation skill as dendroclimatological records.

  7. Measuring the statistical validity of summary meta‐analysis and meta‐regression results for use in clinical practice

    PubMed Central

    Riley, Richard D.

    2017-01-01

    An important question for clinicians appraising a meta‐analysis is: are the findings likely to be valid in their own practice—does the reported effect accurately represent the effect that would occur in their own clinical population? To this end we advance the concept of statistical validity—where the parameter being estimated equals the corresponding parameter for a new independent study. Using a simple (‘leave‐one‐out’) cross‐validation technique, we demonstrate how we may test meta‐analysis estimates for statistical validity using a new validation statistic, Vn, and derive its distribution. We compare this with the usual approach of investigating heterogeneity in meta‐analyses and demonstrate the link between statistical validity and homogeneity. Using a simulation study, the properties of Vn and the Q statistic are compared for univariate random effects meta‐analysis and a tailored meta‐regression model, where information from the setting (included as model covariates) is used to calibrate the summary estimate to the setting of application. Their properties are found to be similar when there are 50 studies or more, but for fewer studies Vn has greater power but a higher type 1 error rate than Q. The power and type 1 error rate of Vn are also shown to depend on the within‐study variance, between‐study variance, study sample size, and the number of studies in the meta‐analysis. Finally, we apply Vn to two published meta‐analyses and conclude that it usefully augments standard methods when deciding upon the likely validity of summary meta‐analysis estimates in clinical practice. © 2017 The Authors. Statistics in Medicine published by John Wiley & Sons Ltd. PMID:28620945

  8. Statistical Models for the Analysis and Design of Digital Polymerase Chain Reaction (dPCR) Experiments.

    PubMed

    Dorazio, Robert M; Hunter, Margaret E

    2015-11-03

    Statistical methods for the analysis and design of experiments using digital PCR (dPCR) have received only limited attention and have been misused in many instances. To address this issue and to provide a more general approach to the analysis of dPCR data, we describe a class of statistical models for the analysis and design of experiments that require quantification of nucleic acids. These models are mathematically equivalent to generalized linear models of binomial responses that include a complementary, log-log link function and an offset that is dependent on the dPCR partition volume. These models are both versatile and easy to fit using conventional statistical software. Covariates can be used to specify different sources of variation in nucleic acid concentration, and a model's parameters can be used to quantify the effects of these covariates. For purposes of illustration, we analyzed dPCR data from different types of experiments, including serial dilution, evaluation of copy number variation, and quantification of gene expression. We also showed how these models can be used to help design dPCR experiments, as in selection of sample sizes needed to achieve desired levels of precision in estimates of nucleic acid concentration or to detect differences in concentration among treatments with prescribed levels of statistical power.

  9. Statistical Inference for Data Adaptive Target Parameters.

    PubMed

    Hubbard, Alan E; Kherad-Pajouh, Sara; van der Laan, Mark J

    2016-05-01

    Consider one observes n i.i.d. copies of a random variable with a probability distribution that is known to be an element of a particular statistical model. In order to define our statistical target we partition the sample in V equal size sub-samples, and use this partitioning to define V splits in an estimation sample (one of the V subsamples) and corresponding complementary parameter-generating sample. For each of the V parameter-generating samples, we apply an algorithm that maps the sample to a statistical target parameter. We define our sample-split data adaptive statistical target parameter as the average of these V-sample specific target parameters. We present an estimator (and corresponding central limit theorem) of this type of data adaptive target parameter. This general methodology for generating data adaptive target parameters is demonstrated with a number of practical examples that highlight new opportunities for statistical learning from data. This new framework provides a rigorous statistical methodology for both exploratory and confirmatory analysis within the same data. Given that more research is becoming "data-driven", the theory developed within this paper provides a new impetus for a greater involvement of statistical inference into problems that are being increasingly addressed by clever, yet ad hoc pattern finding methods. To suggest such potential, and to verify the predictions of the theory, extensive simulation studies, along with a data analysis based on adaptively determined intervention rules are shown and give insight into how to structure such an approach. The results show that the data adaptive target parameter approach provides a general framework and resulting methodology for data-driven science.

  10. Conceptual and statistical issues in couples observational research: Rationale and methods for design decisions.

    PubMed

    Baucom, Brian R W; Leo, Karena; Adamo, Colin; Georgiou, Panayiotis; Baucom, Katherine J W

    2017-12-01

    Observational behavioral coding methods are widely used for the study of relational phenomena. There are numerous guidelines for the development and implementation of these methods that include principles for creating new and adapting existing coding systems as well as principles for creating coding teams. While these principles have been successfully implemented in research on relational phenomena, the ever expanding array of phenomena being investigated with observational methods calls for a similar expansion of these principles. Specifically, guidelines are needed for decisions that arise in current areas of emphasis in couple research including observational investigation of related outcomes (e.g., relationship distress and psychological symptoms), the study of change in behavior over time, and the study of group similarities and differences in the enactment and perception of behavior. This article describes conceptual and statistical considerations involved in these 3 areas of research and presents principle- and empirically based rationale for design decisions related to these issues. A unifying principle underlying these guidelines is the need for careful consideration of fit between theory, research questions, selection of coding systems, and creation of coding teams. Implications of (mis)fit for the advancement of theory are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  11. UNITY: Confronting Supernova Cosmology's Statistical and Systematic Uncertainties in a Unified Bayesian Framework

    NASA Astrophysics Data System (ADS)

    Rubin, D.; Aldering, G.; Barbary, K.; Boone, K.; Chappell, G.; Currie, M.; Deustua, S.; Fagrelius, P.; Fruchter, A.; Hayden, B.; Lidman, C.; Nordin, J.; Perlmutter, S.; Saunders, C.; Sofiatti, C.; Supernova Cosmology Project, The

    2015-11-01

    While recent supernova (SN) cosmology research has benefited from improved measurements, current analysis approaches are not statistically optimal and will prove insufficient for future surveys. This paper discusses the limitations of current SN cosmological analyses in treating outliers, selection effects, shape- and color-standardization relations, unexplained dispersion, and heterogeneous observations. We present a new Bayesian framework, called UNITY (Unified Nonlinear Inference for Type-Ia cosmologY), that incorporates significant improvements in our ability to confront these effects. We apply the framework to real SN observations and demonstrate smaller statistical and systematic uncertainties. We verify earlier results that SNe Ia require nonlinear shape and color standardizations, but we now include these nonlinear relations in a statistically well-justified way. This analysis was primarily performed blinded, in that the basic framework was first validated on simulated data before transitioning to real data. We also discuss possible extensions of the method.

  12. Statistical mechanics of economics I

    NASA Astrophysics Data System (ADS)

    Kusmartsev, F. V.

    2011-02-01

    We show that statistical mechanics is useful in the description of financial crisis and economics. Taking a large amount of instant snapshots of a market over an interval of time we construct their ensembles and study their statistical interference. This results in a probability description of the market and gives capital, money, income, wealth and debt distributions, which in the most cases takes the form of the Bose-Einstein distribution. In addition, statistical mechanics provides the main market equations and laws which govern the correlations between the amount of money, debt, product, prices and number of retailers. We applied the found relations to a study of the evolution of the economics in USA between the years 1996 to 2008 and observe that over that time the income of a major population is well described by the Bose-Einstein distribution which parameters are different for each year. Each financial crisis corresponds to a peak in the absolute activity coefficient. The analysis correctly indicates the past crises and predicts the future one.

  13. Modular reweighting software for statistical mechanical analysis of biased equilibrium data

    NASA Astrophysics Data System (ADS)

    Sindhikara, Daniel J.

    2012-07-01

    Here a simple, useful, modular approach and software suite designed for statistical reweighting and analysis of equilibrium ensembles is presented. Statistical reweighting is useful and sometimes necessary for analysis of equilibrium enhanced sampling methods, such as umbrella sampling or replica exchange, and also in experimental cases where biasing factors are explicitly known. Essentially, statistical reweighting allows extrapolation of data from one or more equilibrium ensembles to another. Here, the fundamental separable steps of statistical reweighting are broken up into modules - allowing for application to the general case and avoiding the black-box nature of some “all-inclusive” reweighting programs. Additionally, the programs included are, by-design, written with little dependencies. The compilers required are either pre-installed on most systems, or freely available for download with minimal trouble. Examples of the use of this suite applied to umbrella sampling and replica exchange molecular dynamics simulations will be shown along with advice on how to apply it in the general case. New version program summaryProgram title: Modular reweighting version 2 Catalogue identifier: AEJH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 179 118 No. of bytes in distributed program, including test data, etc.: 8 518 178 Distribution format: tar.gz Programming language: C++, Python 2.6+, Perl 5+ Computer: Any Operating system: Any RAM: 50-500 MB Supplementary material: An updated version of the original manuscript (Comput. Phys. Commun. 182 (2011) 2227) is available Classification: 4.13 Catalogue identifier of previous version: AEJH_v1_0 Journal reference of previous version: Comput. Phys. Commun. 182 (2011) 2227 Does the new

  14. Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques

    NASA Astrophysics Data System (ADS)

    Mishra, D.; Goyal, P.

    2014-12-01

    Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.

  15. Analysis of IUE Observations of Supernovae

    NASA Technical Reports Server (NTRS)

    Kirshner, Robert P.

    1996-01-01

    This program supported the analysis of IUE observations of supernovae. One aspect was a Target-of-Opportunity program to observe bright supernovae which was applied to SN 1993J in M81, and another was continuing analysis of the IUE data from SN 1987A. Because of its quick response time, the IUE satellite has continued to provide useful data on the ultraviolet spectra of supernovae. Even after the launch of the Hubble Space Telescope, which has much more powerful ultraviolet spectrometers, the IUE has enabled us to obtain early and frequent measurements of ultraviolet radiation: this information has been folded in with our HST data to create unique observations of supernova which can be interpreted to give powerful constraints on the physical properties of the exploding stars. Our chief result in the present grant period was the completion of a detailed reanalysis of the data on the circumstellar shell of SN 1987A. The presence of narrow high-temperature mission lines from nitrogen-rich gas close to SN 1987A has been the principal observational constraint on the evolution of the supernova's progenitor. Our new analysis shows that the onset of these lines, their rise to maximum, and their subsequent fading can be understood in the context of a model for the photoionization of circumstellar matter.

  16. Observational studies using propensity score analysis underestimated the effect sizes in critical care medicine.

    PubMed

    Zhang, Zhongheng; Ni, Hongying; Xu, Xiao

    2014-08-01

    Propensity score (PS) analysis has been increasingly used in critical care medicine; however, its validation has not been systematically investigated. The present study aimed to compare effect sizes in PS-based observational studies vs. randomized controlled trials (RCTs) (or meta-analysis of RCTs). Critical care observational studies using PS were systematically searched in PubMed from inception to April 2013. Identified PS-based studies were matched to one or more RCTs in terms of population, intervention, comparison, and outcome. The effect sizes of experimental treatments were compared for PS-based studies vs. RCTs (or meta-analysis of RCTs) with sign test. Furthermore, ratio of odds ratio (ROR) was calculated from the interaction term of treatment × study type in a logistic regression model. A ROR < 1 indicates greater benefit for experimental treatment in RCTs compared with PS-based studies. RORs of each comparison were pooled by using meta-analytic approach with random-effects model. A total of 20 PS-based studies were identified and matched to RCTs. Twelve of the 20 comparisons showed greater beneficial effect for experimental treatment in RCTs than that in PS-based studies (sign test P = 0.503). The difference was statistically significant in four comparisons. ROR can be calculated from 13 comparisons, of which four showed significantly greater beneficial effect for experimental treatment in RCTs. The pooled ROR was 0.71 (95% CI: 0.63, 0.79; P = 0.002), suggesting that RCTs (or meta-analysis of RCTs) were more likely to report beneficial effect for the experimental treatment than PS-based studies. The result remained unchanged in sensitivity analysis and meta-regression. In critical care literature, PS-based observational study is likely to report less beneficial effect of experimental treatment compared with RCTs (or meta-analysis of RCTs). Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Statistical analysis of radioimmunoassay. In comparison with bioassay (in Japanese)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, R.

    1973-01-01

    Using the data of RIA (radioimmunoassay), statistical procedures for dealing with two problems of the linearization of dose response curve and calculation of relative potency were described. There were three methods for linearization of dose response curve of RIA. In each method, the following parameters were shown on the horizontal and vertical axis: dose x, (B/T)/sup -1/; c/x + c, B/T (C: dose which makes B/T 50%); log x, logit B/T. Among them, the last method seems to be most practical. The statistical procedures for bioassay were employed for calculating the relative potency of unknown samples compared to the standardmore » samples from dose response curves of standand and unknown samples using regression coefficient. It is desirable that relative potency is calculated by plotting more than 5 points in the standard curve and plotting more than 2 points in unknow samples. For examining the statistical limit of precision of measuremert, LH activity of gonadotropin in urine was measured and relative potency, precision coefficient and the upper and lower limits of relative potency at 95% confidence limit were calculated. On the other hand, bioassay (by the ovarian ascorbic acid reduction method and anteriol lobe of prostate weighing method) was done in the same samples, and the precision was compared with that of RIA. In these examinations, the upper and lower limits of the relative potency at 95% confidence limit were near each other, while in bioassay, a considerable difference was observed between the upper and lower limits. The necessity of standardization and systematization of the statistical procedures for increasing the precision of RIA was pointed out. (JA)« less

  18. Using Statistical Process Control for detecting anomalies in multivariate spatiotemporal Earth Observations

    NASA Astrophysics Data System (ADS)

    Flach, Milan; Mahecha, Miguel; Gans, Fabian; Rodner, Erik; Bodesheim, Paul; Guanche-Garcia, Yanira; Brenning, Alexander; Denzler, Joachim; Reichstein, Markus

    2016-04-01

    The number of available Earth observations (EOs) is currently substantially increasing. Detecting anomalous patterns in these multivariate time series is an important step in identifying changes in the underlying dynamical system. Likewise, data quality issues might result in anomalous multivariate data constellations and have to be identified before corrupting subsequent analyses. In industrial application a common strategy is to monitor production chains with several sensors coupled to some statistical process control (SPC) algorithm. The basic idea is to raise an alarm when these sensor data depict some anomalous pattern according to the SPC, i.e. the production chain is considered 'out of control'. In fact, the industrial applications are conceptually similar to the on-line monitoring of EOs. However, algorithms used in the context of SPC or process monitoring are rarely considered for supervising multivariate spatio-temporal Earth observations. The objective of this study is to exploit the potential and transferability of SPC concepts to Earth system applications. We compare a range of different algorithms typically applied by SPC systems and evaluate their capability to detect e.g. known extreme events in land surface processes. Specifically two main issues are addressed: (1) identifying the most suitable combination of data pre-processing and detection algorithm for a specific type of event and (2) analyzing the limits of the individual approaches with respect to the magnitude, spatio-temporal size of the event as well as the data's signal to noise ratio. Extensive artificial data sets that represent the typical properties of Earth observations are used in this study. Our results show that the majority of the algorithms used can be considered for the detection of multivariate spatiotemporal events and directly transferred to real Earth observation data as currently assembled in different projects at the European scale, e.g. http://baci-h2020.eu

  19. Statistical Analysis of Human Body Movement and Group Interactions in Response to Music

    NASA Astrophysics Data System (ADS)

    Desmet, Frank; Leman, Marc; Lesaffre, Micheline; de Bruyn, Leen

    Quantification of time series that relate to physiological data is challenging for empirical music research. Up to now, most studies have focused on time-dependent responses of individual subjects in controlled environments. However, little is known about time-dependent responses of between-subject interactions in an ecological context. This paper provides new findings on the statistical analysis of group synchronicity in response to musical stimuli. Different statistical techniques were applied to time-dependent data obtained from an experiment on embodied listening in individual and group settings. Analysis of inter group synchronicity are described. Dynamic Time Warping (DTW) and Cross Correlation Function (CCF) were found to be valid methods to estimate group coherence of the resulting movements. It was found that synchronicity of movements between individuals (human-human interactions) increases significantly in the social context. Moreover, Analysis of Variance (ANOVA) revealed that the type of music is the predominant factor in both the individual and the social context.

  20. Methodologies for the Statistical Analysis of Memory Response to Radiation

    NASA Astrophysics Data System (ADS)

    Bosser, Alexandre L.; Gupta, Viyas; Tsiligiannis, Georgios; Frost, Christopher D.; Zadeh, Ali; Jaatinen, Jukka; Javanainen, Arto; Puchner, Helmut; Saigné, Frédéric; Virtanen, Ari; Wrobel, Frédéric; Dilillo, Luigi

    2016-08-01

    Methodologies are proposed for in-depth statistical analysis of Single Event Upset data. The motivation for using these methodologies is to obtain precise information on the intrinsic defects and weaknesses of the tested devices, and to gain insight on their failure mechanisms, at no additional cost. The case study is a 65 nm SRAM irradiated with neutrons, protons and heavy ions. This publication is an extended version of a previous study [1].