NASA Astrophysics Data System (ADS)
Lekkas, Efthymios L.; Mavroulis, Spyridon D.
2016-01-01
The early 2014 Cephalonia Island (Ionian Sea, Western Greece) earthquake sequence comprised two main shocks with almost the same magnitude (moment magnitude (Mw) 6.0) occurring successively within a short time (January 26 and February 3) and space (Paliki peninsula in Western Cephalonia) interval. Εach earthquake was induced by the rupture of a different pre-existing onshore active fault zone and produced different co-seismic surface rupture zones. Co-seismic surface rupture structures were predominantly strike-slip-related structures including V-shaped conjugate surface ruptures, dextral and sinistral strike-slip surface ruptures, restraining and releasing bends, Riedel structures ( R, R', P, T), small-scale bookshelf faulting, and flower structures. An extensional component was present across surface rupture zones resulting in ground openings (sinkholes), small-scale grabens, and co-seismic dip-slip (normal) displacements. A compressional component was also present across surface rupture zones resulting in co-seismic dip-slip (reverse) displacements. From the comparison of our field geological observations with already published surface deformation measurements by DInSAR Interferometry, it is concluded that there is a strong correlation among the surface rupture zones, the ruptured active fault zones, and the detected displacement discontinuities in Paliki peninsula.
NASA Astrophysics Data System (ADS)
Fukuyama, Eiichi; Tsuchida, Kotoyo; Kawakata, Hironori; Yamashita, Futoshi; Mizoguchi, Kazuo; Xu, Shiqing
2018-05-01
We were able to successfully capture rupture nucleation processes on a 2-D fault surface during large-scale biaxial friction experiments using metagabbro rock specimens. Several rupture nucleation patterns have been detected by a strain gauge array embedded inside the rock specimens as well as by that installed along the edge walls of the fault. In most cases, the unstable rupture started just after the rupture front touched both ends of the rock specimen (i.e., when rupture front extended to the entire width of the fault). In some cases, rupture initiated at multiple locations and the rupture fronts coalesced to generate unstable ruptures, which could only be detected from the observation inside the rock specimen. Therefore, we need to carefully examine the 2-D nucleation process of the rupture especially when analyzing the data measured only outside the rock specimen. At least the measurements should be done at both sides of the fault to identify the asymmetric rupture propagation on the fault surface, although this is not perfect yet. In the present experiment, we observed three typical types of the 2-D rupture propagation patterns, two of which were initiated at a single location either close to the fault edge or inside the fault. This initiation could be accelerated by the free surface effect at the fault edge. The third one was initiated at multiple locations and had a rupture coalescence at the middle of the fault. These geometrically complicated rupture initiation patterns are important for understanding the earthquake nucleation process in nature.
Rosa, C.M.; Catchings, R.D.; Rymer, M.J.; Grove, Karen; Goldman, M.R.
2016-07-08
High-resolution seismic-reflection and refraction images of the 1906 surface rupture zone of the San Andreas Fault near Woodside, California reveal evidence for one or more additional near-surface (within about 3 meters [m] depth) fault strands within about 25 m of the 1906 surface rupture. The 1906 surface rupture above the groundwater table (vadose zone) has been observed in paleoseismic trenches that coincide with our seismic profile and is seismically characterized by a discrete zone of low P-wave velocities (Vp), low S-wave velocities (Vs), high Vp/Vs ratios, and high Poisson’s ratios. A second near-surface fault strand, located about 17 m to the southwest of the 1906 surface rupture, is inferred by similar seismic anomalies. Between these two near-surface fault strands and below 5 m depth, we observed a near-vertical fault strand characterized by a zone of high Vp, low Vs, high Vp/Vs ratios, and high Poisson’s ratios on refraction tomography images and near-vertical diffractions on seismic-reflection images. This prominent subsurface zone of seismic anomalies is laterally offset from the 1906 surface rupture by about 8 m and likely represents the active main (long-term) strand of the San Andreas Fault at 5 to 10 m depth. Geometries of the near-surface and subsurface (about 5 to 10 m depth) fault zone suggest that the 1906 surface rupture dips southwestward to join the main strand of the San Andreas Fault at about 5 to 10 m below the surface. The 1906 surface rupture forms a prominent groundwater barrier in the upper 3 to 5 m, but our interpreted secondary near-surface fault strand to the southwest forms a weaker barrier, suggesting that there has been less or less-recent near-surface slip on that strand. At about 6 m depth, the main strand of the San Andreas Fault consists of water-saturated blue clay (collected from a hand-augered borehole), which is similar to deeply weathered serpentinite observed within the main strand of the San Andreas Fault at nearby sites. Multiple fault strands in the area of the 1906 surface rupture may account for variations in geologic slip rates calculated from several paleoseismic sites along the Peninsula segment of the San Andreas Fault.t.
Crystal plastic earthquakes in dolostones
NASA Astrophysics Data System (ADS)
Passelegue, Francois; Aubry, Jerome; Nicolas, Aurelien; Fondriest, Michele; Schubnel, Alexandre; Di Toro, Giulio
2017-04-01
Dolostone is the most dominant lithology of the seismogenic upper crust around the Mediterranean Sea. Understanding the internal mechanisms controlling fault friction is crucial for understanding seismicity along active faults. Displacement in such fault zones is frequently highlighted by highly reflective (mirror-like) slip surfaces, created by thin films of nanogranular fault rock. Using saw-cut dolostone samples coming from natural fault zones, we conducted friction experiments under triaxial loading conditions. To reproduce the natural conditions, experiments were conducted at 30, 60 and 90 MPa confining pressure at respectively 30, 65 and 100 degrees C. At 30 and 65 degrees C, only slow rupture was observed and the experimental fault exhibits frictional behaviour, i.e. a dependence of normal stress on peak shear stress. At 65 degrees C, a strengthening behaviour is observed after the main rupture, leading to a succession of slow rupture. At 100 degrees C, the macroscopic behaviour of the fault becomes ductile, and no dependence of pressure on the peak shear stress is observed. In addition, the increase of the confining pressure up to 60 and 90 MPa allow the transition from slow to fast rupture, highlighted by the records of acoustic activity and by dynamic stress drop occurring in a few tens of microseconds. Using strain gages located along the fault surface and acoustic transducers, we were able to measure the rupture velocities during slow and fast rupture. Slow ruptures propagated around 0.1 m/s, in agreement with natural observations. Fast ruptures propagated up the supershear velocities, i.e. faster than the shear wave speed (>3500 m/s). A complete study of the microstructures was realized before and after ruptures. Slow ruptures lead to the production of mirror-like surface driven by the production of nanograins due to dislocation processes. Fast ruptures induce the production of amorphous material along the fault surface, which may come from melting processes. We demonstrate that the transition from slow to dynamic instabilities is observed when the entire fault exhibits plastic processes, which increase the stiffness of the fault.
Crystal plastic earthquakes in dolostones: from slow to fast ruptures.
NASA Astrophysics Data System (ADS)
Passelegue, F. X.; Aubry, J.; Nicolas, A.; Fondriest, M.; Schubnel, A.; Di Toro, G.
2017-12-01
Dolostone is the most dominant lithology of the seismogenic upper crust around the Mediterranean Sea. Understanding the internal mechanisms controlling fault friction is crucial for understanding seismicity along active faults. Displacement in such fault zones is frequently highlighted by highly reflective (mirror-like) slip surfaces, created by thin films of nanogranular fault rock. Using saw-cut dolostone samples coming from natural fault zones, we conducted stick-slip experiments under triaxial loading conditions at 30, 60 and 90 MPa confining pressure and temperature ranging from 30 to 100 degrees C. At 30 and 65 degrees C, only slow rupture was observed and the experimental fault exhibits frictional behaviour, i.e. a dependence of normal stress on peak shear stress. At 65 degrees C, a strengthening behaviour is observed after the main rupture, leading to a succession of slow rupture. At 100 degrees C, the macroscopic behaviour of the fault becomes ductile, and no dependence of pressure on the peak shear stress is observed. In addition, the increase of the confining pressure up to 60 and 90 MPa allow the transition from slow to fast rupture, highlighted by the records of acoustic activity and by dynamic stress drop occurring in a few tens of microseconds. Using strain gages located along the fault surface and acoustic transducers, we were able to measure the rupture velocities during slow and fast rupture. Slow ruptures propagated around 0.1 m/s, in agreement with natural observations. Fast ruptures propagated up to supershear velocities, i.e. faster than the shear wave speed (>3500 m/s). A complete study of the microstructures was realized before and after ruptures. Slow ruptures lead to the production of mirror-like surface driven by the production of nanograins due to dislocation processes. Fast ruptures induce the production of amorphous material along the fault surface, which may come from decarbonation and melting processes. We demonstrate that the transition from slow to fast instabilities is observed due to an increase of the fault stiffness with increasing both temperature and confining pressure. This increase in the stiffness leads to an increase of the slip velocity during the main instability, which allow flash weakening processes and fast propagation of the seismic rupture.
Fine structure of the landers fault zone: Segmentation and the rupture process
Li, Y.-G.; Vidale, J.E.; Aki, K.; Marone, C.J.; Lee, W.H.K.
1994-01-01
Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy.
NASA Astrophysics Data System (ADS)
Vallage, Amaury; Klinger, Yann; Grandin, Raphael; Delorme, Arthur; Pierrot-Deseilligny, Marc
2016-04-01
The understanding of earthquake processes and the interaction of earthquake rupture with Earth's free surface relies on the resolution of the observations. Recent and detailed post-earthquake measurements bring new insights on shallow mechanical behavior of rupture processes as it becomes possible to measure and locate surficial deformation distribution. The 2013 Mw 7.7 Balochistan earthquake, Pakistan, offers a nice opportunity to comprehend where and why surficial deformation might differs from at-depth localized slip. This earthquake ruptured the Hoshab fault over 200 km; the motion was mainly left lateral with a small and discontinuous vertical component in the southern part of the rupture. Using images with the finest resolution currently available, we measured the surface displacement amplitude and its orientation at the ground surface (including the numerous tensile cracks). We combined these measurements with the 1:500 scale ground rupture map to focus on the behavior of the frontal rupture in the area where deformation distributes. Comparison with orientations of inherited tectonic structures, visible in older rocks formation surrounding the actual 2013 rupture, shows the control exercised by such structures on co-seismic rupture distribution. Such observation raises the question on how pre-existing tectonic structures in a medium, mapped in several seismically active places around the globe; can control the co-seismic distribution of the deformation during earthquakes.
NASA Astrophysics Data System (ADS)
Villamor, P.; Litchfield, N. J.; Van Dissen, R. J.; Langridge, R.; Berryman, K. R.; Baize, S.
2016-12-01
Surface rupture associated with the 2010 Mw7.1 Darfield Earthquake (South Island, New Zealand) was extremely well documented, thanks to an immediate field mapping response and the acquisition of LiDAR data within days of the event. With respect to informing Probabilistic Fault Displacement Analysis (PFDHA) the main insights and outcomes from this rupture through Quaternary gravel are: 1) significant distributed deformation either side of the main trace (30 to 300 m wide deformation zone) and how the deformation is distributed away from the main trace; 2) a thorough analysis of uncertainty of the displacement measures obtained using the LIDAR data and repeated measurements from several scientists; and 3) the short surface rupture length for the reported magnitude, resulting from complex fault rupture with 5-6 reverse and strike-slip strands, most of which had no surface rupture. While the 2010 event is extremely well documented and will be an excellent case to add to the Surface Rupture during Earthquakes database (SURE), other NZ historical earthquakes that are not so well documented, but can provide important information for PFDHA. New Zealand has experienced about 10 historical surface fault ruptures since 1848, comprising ruptures on strike-slip, reverse and normal faults. Mw associated with these ruptures ranges between 6.3 and 8.1. From these ruptures we observed that the surface expression of deformation can be influenced by: fault maturity; the type of Quaternary sedimentary cover; fault history (e.g., influence of inversion tectonics, flexural slip); fault complexity; and primary versus secondary rupture. Other recent >Mw 6.6 earthquakes post-2010 that did not rupture the ground surface have been documented with InSAR and can inform Mw thresholds for surface fault rupture. It will be important to capture all this information and that of similar events worldwide to inform the SURE database and ultimately PFDHA.
NASA Astrophysics Data System (ADS)
Zielke, O.; Arrowsmith, J.
2007-12-01
In order to determine the magnitude of pre-historic earthquakes, surface rupture length, average and maximum surface displacement are utilized, assuming that an earthquake of a specific size will cause surface features of correlated size. The well known Wells and Coppersmith (1994) paper and other studies defined empirical relationships between these and other parameters, based on historic events with independently known magnitude and rupture characteristics. However, these relationships show relatively large standard deviations and they are based only on a small number of events. To improve these first-order empirical relationships, the observation location relative to the rupture extent within the regional tectonic framework should be accounted for. This however cannot be done based on natural seismicity because of the limited size of datasets on large earthquakes. We have developed the numerical model FIMozFric, based on derivations by Okada (1992) to create synthetic seismic records for a given fault or fault system under the influence of either slip- or stress boundary conditions. Our model features A) the introduction of an upper and lower aseismic zone, B) a simple Coulomb friction law, C) bulk parameters simulating fault heterogeneity, and D) a fault interaction algorithm handling the large number of fault patches (typically 5,000-10,000). The joint implementation of these features produces well behaved synthetic seismic catalogs and realistic relationships among magnitude and surface rupture characteristics which are well within the error of the results by Wells and Coppersmith (1994). Furthermore, we use the synthetic seismic records to show that the relationships between magntiude and rupture characteristics are a function of the observation location within the regional tectonic framework. The model presented here can to provide paleoseismologists with a tool to improve magnitude estimates from surface rupture characteristics, by incorporating the regional and local structural context which can be determined in the field: Assuming a paleoseismologist measures the offset along a fault caused by an earthquake, our model can be used to determine the probability distribution of magnitudes which are capable of producing the observed offset, accounting for regional tectonic setting and observation location.
NASA Astrophysics Data System (ADS)
Lienkaemper, James J.; Williams, Patrick L.
1999-07-01
WGCEP90 estimated the Hayward fault to have a high probability (0.45 in 30 yr) of producing a future M7 Bay Area earthquake. This was based on a generic recurrence time and an unverified segmentation model, because there were few direct observations for the southern fault and none for the northern Hayward fault. To better constrain recurrence and segmentation of the northern Hayward fault, we trenched in north Oakland. Unexpectedly, we observed evidence of surface rupture probably from the M7 1868 earthquake. This extends the limit of that surface rupture 13 km north of the segmentation boundary used in the WGCEP90 model and forces serious re-evaluation of the current two-segment paradigm. Although we found that major prehistoric ruptures have occurred here, we could not radiocarbon date them. However, the last major prehistoric event appears correlative with a recently recognized event 13 km to the north dated AD 1640-1776.
Lienkaemper, J.J.; Williams, P.L.
1999-01-01
WGCEP90 estimated the Hayward fault to have a high probability (0.45 in 30 yr) of producing a future M7 Bay Area earthquake. This was based on a generic recurrence time and an unverified segmentation model, because there were few direct observations for the southern fault and none for the northern Hayward fault. To better constrain recurrence and segmentation of the northern Hayward fault, we trenched in north Oakland. Unexpectedly, we observed evidence of surface rupture probably from the M7 1868 earthquake. This extends the limit of that surface rupture 13 km north of the segmentation boundary used in the WGCEP90 model and forces serious re-evaluation of the current two-segment paradigm. Although we found that major prehistoric ruptures have occurred here, we could not radiocarbon date them. However, the last major prehistoric event appears correlative with a recently recognized event 13 km to the north dated AD 1640-1776. Copyright 1999 by the American Geophysical Union.
From slow to fast rupture during laboratory earthquakes in dolostones
NASA Astrophysics Data System (ADS)
Passelegue, F. X.; Fondriest, M.; Nicolas, A.; Aubry, J.; Schubnel, A.; Di Toro, G.
2016-12-01
Dolostones are the dominant lithology of the shallow portions of many seismically active regions (e.g., Italian Apennines). Displacement in natural fault zones cutting dolostones and exhumed from < 3-4 km depth is frequently localized on highly reflective (mirror-like) slip surfaces, coated with thin films of nano-granular fault rock. Using saw-cut dolostone samples, we conducted stick-slip experiments under upper crustal stress conditions (confining pressures and temperatures of 30, 60 and 90 MPa at 30, 65 and 100 °C, respectively). Samples were equipped with 15 piezoelectric transducers allowing the record of acoustic activity. At 30 and 65 °C, only slow ruptures (Vr < 200 m/s) were observed and the experimental faults exhibited ductile behaviour. At 65 °C, a slip strengthening behaviour was observed after the main slow rupture, leading to a succession of slow ruptures. At T = 100 °C and 30 MPa confining pressure, fault strengthening increased after each rupture, allowing, while the rupture processes remained slow (no acoustic activity), a sequence of slow stick-slip events. Instead, at the same ambient temperature but under larger confining pressures (60 and 90 MPa), we observed the transition from slow to fast rupture events (up to supershear rupture velocities), associated to clusters of acoustic activity and dynamic stress drop occurring in few tens of microseconds. In all experiments, mirror-like surfaces and nanoparticles were observed under the scanning electron microscope as a result of slow and fast ruptures. Clearly, mirror-like surfaces and nano powders are not representative of seismic slip events in cohesive dolostones. Instead, the transition from slow to fast ruptures (and generation of acoustic emissions) was related to a flash weakening processes, enhanced at 100° C, which allowed the experimental fault to weaken with slip faster than the rate at which the elastic strain was released from the surrounding medium.
Treiman, J.A.; Kendrick, K.J.; Bryant, W.A.; Rockwell, T.K.; McGill, S.F.
2002-01-01
The Mw 7.1 Hector Mine earthquake occurred within the Mojave Desert portion of the eastern California shear zone and was accompanied by 48 km of dextral surface rupture. Complex northward rupture began on two branches of the Lavic Lake fault in the northern Bullion Mountains and also propagated southward onto the Bullion fault. Lesser amounts of rupture occurred across two right steps to the south. Surface rupture was mapped using postearthquake, 1:10,000-scale aerial photography. Field mapping provided additional detail and more than 400 fault-rupture observations; of these, approximately 300 measurements were used to characterize the slip distribution. En echelon surface rupture predominated in areas of thick alluvium, whereas in the bedrock areas, rupture was more continuous and focused within a narrower zone. Measured dextral offsets were relatively symmetrical about the epicentral region, with a maximum displacement of 5.25 ?? 0.85 m. Vertical slip was a secondary component and was variable, with minor west-side-down displacements predominat.ing in the Bullion Mountains. Field and aerial photographic evidence indicates that most of the faults that ruptured in 1999 had had prior late-Quaternary displacement, although only limited sections of the rupture show evidence for prior Holocene displacement.
Rupture and Spreading Dynamics of Lipid Membranes on a Solid Surface
NASA Astrophysics Data System (ADS)
Perazzo, Antonio; Shin, Sangwoo; Colosqui, Carlos; Young, Yuan-Nan; Stone, Howard A.
2017-11-01
The spreading of lipid membranes on solid surfaces is a dynamic phenomenon relevant to drug delivery, endocytosis, biofouling, and the synthesis of supported lipid bilayers. Current technological developments are limited by an incomplete understanding of the spreading and adhesion dynamics of a lipid bilayer under different physicochemical conditions. Here, we present recent experimental and theoretical results for the spreading of giant unilamellar vesicles (GUVs), where the vesicle shell consists of a lipid bilayer. In particular, we study the effect of different background ion concentrations, osmolarity mismatches between the interior and the exterior of the vesicles, and different surface chemistries of the glass substrate. In all of the studied cases, we observe a delay time before a GUV in contact with the solid surface eventually ruptures. The rupture kinetics and subsequent spreading dynamics is controlled by the ionic screening within the thin film of liquid between the vesicle and the surface. Different rupture mechanisms, mobilities of the spreading vesicle, and degrees of substrate coverage are observed by varying the electrolyte concentration, solid surface charge, and osmolarity mismatch.
Dynamic rupture modeling of thrust faults with parallel surface traces.
NASA Astrophysics Data System (ADS)
Peshette, P.; Lozos, J.; Yule, D.
2017-12-01
Fold and thrust belts (such as those found in the Himalaya or California Transverse Ranges) consist of many neighboring thrust faults in a variety of geometries. Active thrusts within these belts individually contribute to regional seismic hazard, but further investigation is needed regarding the possibility of multi-fault rupture in a single event. Past analyses of historic thrust surface traces suggest that rupture within a single event can jump up to 12 km. There is also observational precedent for long distance triggering between subparallel thrusts (e.g. the 1997 Harnai, Pakistan events, separated by 50 km). However, previous modeling studies find a maximum jumping rupture distance between thrust faults of merely 200 m. Here, we present a new dynamic rupture modeling parameter study that attempts to reconcile these differences and determine which geometrical and stress conditions promote jumping rupture. We use a community verified 3D finite element method to model rupture on pairs of thrust faults with parallel surface traces. We vary stress drop and fault strength to determine which conditions produce jumping rupture at different dip angles and different separations between surface traces. This parameter study may help to understand the likelihood of jumping rupture in real-world thrust systems, and may thereby improve earthquake hazard assessment.
Surface and Subsurface Fault Displacements from the September 2010 Darfield (Canterbury) Earthquake
NASA Astrophysics Data System (ADS)
Meyers, B.; Furlong, K. P.; Hayes, G. P.; Herman, M. W.; Quigley, M.
2012-12-01
On September 3, 2010 a Magnitude 7.1 earthquake struck near Darfield, New Zealand. This was to be the first earthquake in an ongoing, damaging sequence near the city of Christchurch. The earthquake produced a surface rupture with measurable offsets of up to 5.3m along a 30km surface fault system. The spatial pattern of slip during this rupture has been determined by various groups using a range of approaches and several independent data sets. Surface fault rupture was measured in the field and fault slip at depth has been inferred from a seismologic finite fault model (FFM) and various geodetic observations including GPS and InSAR. Here we compare the observed segmented surface displacements with fault slip inferred from the other data. Measurements of the surface rupture show segmented faulting consistent with subsurface slip in the FFM. In the FFM, the main slip patch near the hypocenter can be directly correlated to the region of maximum surface displacement. The FFM and some evidence in the InSAR data also indicate that the Greendale fault system, the structure responsible for the bulk of the rupture, continues at depth closer towards Christchurch than is seen in surface rupture patterns. There is an additional 20km long patch with up to 3m of modeled slip seen in the eastern end of the inverted fault, offset to the south from the Greendale fault trace. This additional fault segment is consistent with a zone of aftershock activity of the main Darfield event, and with local patterns of strong motion. It thus appears that slip recorded at the surface does not describe the entire fault system. This eastward extension of the September rupture means that there is only a short segment of unruptured crust remaining along the entire fault system involved in the Canterbury earthquake sequence.
Numerical study of liquid film rupture after droplet spreading on a superhydrophilic surface
NASA Astrophysics Data System (ADS)
Guo, Yisen; Lian, Yongsheng
2017-11-01
When a droplet impacts onto a solid surface, different outcomes can be observed, such as rebound, spreading and splashing. We present numerical simulation results on liquid film rupture after spreading of a droplet impact on a smooth superhydrophilic surface. The Navier-Stokes equations are solved using the variable density pressure projection method and the moment-of-fluid method is used to track the droplet interface. A superhydrophilic or superwetting surface has strong affinity to liquid and we assume the contact angle between solid and liquid is almost zero degree. The droplet spreading and film rupture process occurs in two stages: the droplet first spreads onto the surface and flattens into a thin film as it reaches the maximum diameter, then the film rim becomes unstable and the film rupture initiates from the rim toward the center gradually until the entire film breaks up into secondary droplets. The duration of the film rupture stage is much shorter than the spreading stage. The simulation result is compared with experiment and good agreement is achieved. We investigate the film thickness evolution during spreading and the effect of surface wettability on film rupture.
Wilkinson, Maxwell W; McCaffrey, Ken J W; Jones, Richard R; Roberts, Gerald P; Holdsworth, Robert E; Gregory, Laura C; Walters, Richard J; Wedmore, Luke; Goodall, Huw; Iezzi, Francesco
2017-07-04
The temporal evolution of slip on surface ruptures during an earthquake is important for assessing fault displacement, defining seismic hazard and for predicting ground motion. However, measurements of near-field surface displacement at high temporal resolution are elusive. We present a novel record of near-field co-seismic displacement, measured with 1-second temporal resolution during the 30 th October 2016 M w 6.6 Vettore earthquake (Central Italy), using low-cost Global Navigation Satellite System (GNSS) receivers located in the footwall and hangingwall of the Mt. Vettore - Mt. Bove fault system, close to new surface ruptures. We observe a clear temporal and spatial link between our near-field record and InSAR, far-field GPS data, regional measurements from the Italian Strong Motion and National Seismic networks, and field measurements of surface ruptures. Comparison of these datasets illustrates that the observed surface ruptures are the propagation of slip from depth on a surface rupturing (i.e. capable) fault array, as a direct and immediate response to the 30 th October earthquake. Large near-field displacement ceased within 6-8 seconds of the origin time, implying that shaking induced gravitational processes were not the primary driving mechanism. We demonstrate that low-cost GNSS is an accurate monitoring tool when installed as custom-made, short-baseline networks.
NASA Astrophysics Data System (ADS)
Thingbijam, Kiran Kumar; Galis, Martin; Vyas, Jagdish; Mai, P. Martin
2017-04-01
We examine the spatial interdependence between kinematic parameters of earthquake rupture, which include slip, rise-time (total duration of slip), acceleration time (time-to-peak slip velocity), peak slip velocity, and rupture velocity. These parameters were inferred from dynamic rupture models obtained by simulating spontaneous rupture on faults with varying degree of surface-roughness. We observe that the correlations between these parameters are better described by non-linear correlations (that is, on logarithm-logarithm scale) than by linear correlations. Slip and rise-time are positively correlated while these two parameters do not correlate with acceleration time, peak slip velocity, and rupture velocity. On the other hand, peak slip velocity correlates positively with rupture velocity but negatively with acceleration time. Acceleration time correlates negatively with rupture velocity. However, the observed correlations could be due to weak heterogeneity of the slip distributions given by the dynamic models. Therefore, the observed correlations may apply only to those parts of rupture plane with weak slip heterogeneity if earthquake-rupture associate highly heterogeneous slip distributions. Our findings will help to improve pseudo-dynamic rupture generators for efficient broadband ground-motion simulations for seismic hazard studies.
Earthquake rupture process recreated from a natural fault surface
Parsons, Thomas E.; Minasian, Diane L.
2015-01-01
What exactly happens on the rupture surface as an earthquake nucleates, spreads, and stops? We cannot observe this directly, and models depend on assumptions about physical conditions and geometry at depth. We thus measure a natural fault surface and use its 3D coordinates to construct a replica at 0.1 m resolution to obviate geometry uncertainty. We can recreate stick-slip behavior on the resulting finite element model that depends solely on observed fault geometry. We clamp the fault together and apply steady state tectonic stress until seismic slip initiates and terminates. Our recreated M~1 earthquake initiates at contact points where there are steep surface gradients because infinitesimal lateral displacements reduce clamping stress most efficiently there. Unclamping enables accelerating slip to spread across the surface, but the fault soon jams up because its uneven, anisotropic shape begins to juxtapose new high-relief sticking points. These contacts would ultimately need to be sheared off or strongly deformed before another similar earthquake could occur. Our model shows that an important role is played by fault-wall geometry, though we do not include effects of varying fluid pressure or exotic rheologies on the fault surfaces. We extrapolate our results to large fault systems using observed self-similarity properties, and suggest that larger ruptures might begin and end in a similar way, though the scale of geometrical variation in fault shape that can arrest a rupture necessarily scales with magnitude. In other words, fault segmentation may be a magnitude dependent phenomenon and could vary with each subsequent rupture.
NASA Astrophysics Data System (ADS)
Yun, S.; Koketsu, K.; Aoki, Y.
2014-12-01
The September 4, 2010, Canterbury earthquake with a moment magnitude (Mw) of 7.1 is a crustal earthquake in the South Island, New Zealand. The February 22, 2011, Christchurch earthquake (Mw=6.3) is the biggest aftershock of the 2010 Canterbury earthquake that is located at about 50 km to the east of the mainshock. Both earthquakes occurred on previously unrecognized faults. Field observations indicate that the rupture of the 2010 Canterbury earthquake reached the surface; the surface rupture with a length of about 30 km is located about 4 km south of the epicenter. Also various data including the aftershock distribution and strong motion seismograms suggest a very complex rupture process. For these reasons it is useful to investigate the complex rupture process using multiple data with various sensitivities to the rupture process. While previously published source models are based on one or two datasets, here we infer the rupture process with three datasets, InSAR, strong-motion, and teleseismic data. We first performed point source inversions to derive the focal mechanism of the 2010 Canterbury earthquake. Based on the focal mechanism, the aftershock distribution, the surface fault traces and the SAR interferograms, we assigned several source faults. We then performed the joint inversion to determine the rupture process of the 2010 Canterbury earthquake most suitable for reproducing all the datasets. The obtained slip distribution is in good agreement with the surface fault traces. We also performed similar inversions to reveal the rupture process of the 2011 Christchurch earthquake. Our result indicates steep dip and large up-dip slip. This reveals the observed large vertical ground motion around the source region is due to the rupture process, rather than the local subsurface structure. To investigate the effects of the 3-D velocity structure on characteristic strong motion seismograms of the two earthquakes, we plan to perform the inversion taking 3-D velocity structure of this region into account.
NASA Astrophysics Data System (ADS)
Ma, S.
2011-12-01
Low-velocity fault zones have long been recognized for crustal earthquakes by using fault-zone trapped waves and geodetic observations on land. However, the most pronounced low-velocity fault zones are probably in the subduction zones where sediments on the seafloor are being continuously subducted. In this study I focus on shallow subduction zone earthquakes; these earthquakes pose a serious threat to human society in their ability in generating large tsunamis. Numerous observations indicate that these earthquakes have unusually long rupture durations, low rupture velocities, and/or small stress drops near the trench. However, the underlying physics is unclear. I will use dynamic rupture simulations with a finite-element method to investigate the dynamic stress evolution on faults induced by both sediments and free surface, and its relations with rupture velocity and slip. I will also explore the effect of off-fault yielding of sediments on the rupture characteristics and seafloor deformation. As shown in Ma and Beroza (2008), the more compliant hanging wall combined with free surface greatly increases the strength drop and slip near the trench. Sediments in the subduction zone likely have a significant role in the rupture dynamics of shallow subduction zone earthquakes and tsunami generation.
Estimation of source processes of the 2016 Kumamoto earthquakes from strong motion waveforms
NASA Astrophysics Data System (ADS)
Kubo, H.; Suzuki, W.; Aoi, S.; Sekiguchi, H.
2016-12-01
In this study, we estimated the source processes for two large events of the 2016 Kumamoto earthquakes (the M7.3 event at 1:25 JST on April 16, 2016 and the M6.5 event at 21:26 JST on April 14, 2016) from strong motion waveforms using multiple-time-window linear waveform inversion (Hartzell and Heaton 1983; Sekiguchi et al. 2000). Based on the observations of surface ruptures, the spatial distribution of aftershocks, and the geodetic data, a realistic curved fault model was developed for the source-process analysis of the M7.3 event. The source model obtained for the M7.3 event with a seismic moment of 5.5 × 1019 Nm (Mw 7.1) had two significant ruptures. One rupture propagated toward the northeastern shallow region at 4 s after rupture initiation, and continued with large slips to approximately 16 s. This rupture caused a large slip region with a peak slip of 3.8 m that was located 10-30 km northeast of the hypocenter and reached the caldera of Mt. Aso. The contribution of the large slip region to the seismic waveforms was large at many stations. Another rupture propagated toward the surface from the hypocenter at 2-6 s, and then propagated toward the northeast along the near surface at 6-10 s. This rupture largely contributed to the seismic waveforms at the stations south of the fault and close to the hypocenter. A comparison with the results obtained using a single fault plane model demonstrate that the use of the curved fault model led to improved waveform fit at the stations south of the fault. The extent of the large near-surface slips in this source model for the M7.3 event is roughly consistent with the extent of the observed large surface ruptures. The source model obtained for the M6.5 event with a seismic moment of 1.7 × 1018 Nm (Mw 6.1) had large slips in the region around the hypocenter and in the shallow region north-northeast of the hypocenter, both of which had a maximum slip of 0.7 m. The rupture of the M6.5 event propagated from the former region to the latter region at 1-6 s after rupture initiation, which is expected to have caused the strong ground motions due to the forward directivity effect at KMMH16 and surroundings. The occurrence of the near-surface large slips in this source model for the M6.5 event is consistent with the appearance of small surface cracks, which were observed by some residents.
Crone, A.J.; Personius, S.F.; Craw, P.A.; Haeussler, P.J.; Staft, L.A.
2004-01-01
The 3 November 2002 Mw 7.9 Denali fault earthquake sequence initiated on the newly discovered Susitna Glacier thrust fault and caused 48 km of surface rupture. Rupture of the Susitna Glacier fault generated scarps on ice of the Susitna and West Fork glaciers and on tundra and surficial deposits along the southern front of the central Alaska Range. Based on detailed mapping, 27 topographic profiles, and field observations, we document the characteristics and slip distribution of the 2002 ruptures and describe evidence of pre-2002 ruptures on the fault. The 2002 surface faulting produced structures that range from simple folds on a single trace to complex thrust-fault ruptures and pressure ridges on multiple, sinuous strands. The deformation zone is locally more than 1 km wide. We measured a maximum vertical displacement of 5.4 m on the south-directed main thrust. North-directed backthrusts have more than 4 m of surface offset. We measured a well-constrained near-surface fault dip of about 19?? at one site, which is considerably less than seismologically determined values of 35??-48??. Surface-rupture data yield an estimated magnitude of Mw 7.3 for the fault, which is similar to the seismological value of Mw 7.2. Comparison of field and seismological data suggest that the Susitna Glacier fault is part of a large positive flower structure associated with northwest-directed transpressive deformation on the Denali fault. Prehistoric scarps are evidence of previous rupture of the Sustina Glacier fault, but additional work is needed to determine if past failures of the Susitna Glacier fault have consistently induced rupture of the Denali fault.
Early steps of supported bilayer formation probed by single vesicle fluorescence assays.
Johnson, Joseph M; Ha, Taekjip; Chu, Steve; Boxer, Steven G
2002-01-01
We have developed a single vesicle assay to study the mechanisms of supported bilayer formation. Fluorescently labeled, unilamellar vesicles (30-100 nm diameter) were first adsorbed to a quartz surface at low enough surface concentrations to visualize single vesicles. Fusion and rupture events during the bilayer formation, induced by the subsequent addition of unlabeled vesicles, were detected by measuring two-color fluorescence signals simultaneously. Lipid-conjugated dyes monitored the membrane fusion while encapsulated dyes reported on the vesicle rupture. Four dominant pathways were observed, each exhibiting characteristic two-color fluorescence signatures: 1) primary fusion, in which an unlabeled vesicle fuses with a labeled vesicle on the surface, is signified by the dequenching of the lipid-conjugated dyes followed by rupture and final merging into the bilayer; 2) simultaneous fusion and rupture, in which a labeled vesicle on the surface ruptures simultaneously upon fusion with an unlabeled vesicle; 3) no dequenching, in which loss of fluorescence signal from both dyes occur simultaneously with the final merger into the bilayer; and 4) isolated rupture (pre-ruptured vesicles), in which a labeled vesicle on the surface spontaneously undergoes content loss, a process that occurs with high efficiency in the presence of a high concentration of Texas Red-labeled lipids. Vesicles that have undergone content loss appear to be more fusogenic than intact vesicles. PMID:12496104
NASA Astrophysics Data System (ADS)
Sunil, A. S.; Bagiya, Mala S.; Catherine, Joshi; Rolland, Lucie; Sharma, Nitin; Sunil, P. S.; Ramesh, D. S.
2017-03-01
Ionospheric response to the recent 25 April 2015 Gorkha, Nepal earthquake is studied in terms of Global Positioning System-Total Electron Content (GPS-TEC) from the viewpoints of source directivity, rupture propagation and associated surface deformations, over and near the fault plane. The azimuthal directivity of co-seismic ionospheric perturbations (CIP) amplitudes from near field exhibit excellent correlation with east-southeast propagation of earthquake rupture and associated surface deformations. In addition, the amplitude of CIP is observed to be very small in the opposite direction of the rupture movement. Conceptual explanations on the poleward directivity of CIP exist in literature, we show the observational evidences of additional equator ward directivity, interpreted in terms of rupture propagation direction. We also discuss the coupling between earthquake induced acoustic waves and local geomagnetic field and its effects on near field CIP amplitudes. We suggest that variability of near field CIP over and near the fault plane are the manifestations of the geomagnetic field-wave coupling in addition to crustal deformations that observed through GPS measurements and corroborated by Interferometric Synthetic Aperture Radar (InSAR) data sets.
Long-Wavelength Rupturing Instability in Surface-Tension-Driven Benard Convection
NASA Technical Reports Server (NTRS)
Swift, J. B.; Hook, Stephen J. Van; Becerril, Ricardo; McCormick, W. D.; Swinney, H. L.; Schatz, Michael F.
1999-01-01
A liquid layer with a free upper surface and heated from below is subject to thermocapillary-induced convective instabilities. We use very thin liquid layers (0.01 cm) to significantly reduce buoyancy effects and simulate Marangoni convection in microgravity. We observe thermocapillary-driven convection in two qualitatively different modes, short-wavelength Benard hexagonal convection cells and a long-wavelength interfacial rupturing mode. We focus on the long-wavelength mode and present experimental observations and theoretical analyses of the long-wavelength instability. Depending on the depths and thermal conductivities of the liquid and the gas above it, the interface can rupture downwards and form a dry spot or rupture upwards and form a high spot. Linear stability theory gives good agreement to the experimental measurements of onset as long as sidewall effects are taken into account. Nonlinear theory correctly predicts the subcritical nature of the bifurcation and the selection between the dry spot and high spots.
Observation of self-excited acoustic vortices in defect-mediated dust acoustic wave turbulence.
Tsai, Ya-Yi; I, Lin
2014-07-01
Using the self-excited dust acoustic wave as a platform, we demonstrate experimental observation of self-excited fluctuating acoustic vortex pairs with ± 1 topological charges through spontaneous waveform undulation in defect-mediated turbulence for three-dimensional traveling nonlinear longitudinal waves. The acoustic vortex pair has helical waveforms with opposite chirality around the low-density hole filament pair in xyt space (the xy plane is the plane normal to the wave propagation direction). It is generated through ruptures of sequential crest surfaces and reconnections with their trailing ruptured crest surfaces. The initial rupture is originated from the amplitude reduction induced by the formation of the kinked wave crest strip with strong stretching through the undulation instability. Increasing rupture causes the separation of the acoustic vortex pair after generation. A similar reverse process is followed for the acoustic vortex annihilating with the opposite-charged acoustic vortex from the same or another pair generation.
NASA Astrophysics Data System (ADS)
Harrington, Jonathan; Wang, Teng; Feng, Guangcai; Akoglu, Ahmet; Jónsson, Sigurjón; Motagh, Mahdi
2014-05-01
The M 7.7 earthquake in the Balochistan province of Pakistan on September 24th, 2013 took place along a subsidiary fault in the transition area between the Makran accretionary prism and the Chaman transform fault. This tectonics of the Indian and Arabian plate collisions with Eurasia produce primarily oblique left-lateral strike slip in this region. In this work, measurements of displacement and mapping of the rupture trace are achieved through image correlation of Landsat 8 images and SAR offset tracking of TerraSAR-X data. Horizontal displacements from both methods and derived vertical displacements are used to constrain a fault rupture model for the earthquake. Preliminary results show a surprisingly uniform slip distribution with maximum displacement near the surface. The total fault rupture length is ~210 km, with up to 9 m of left-lateral strike-slip and 3 m of reverse faulting. Additionally, mapping of the rupture trace is made use of for geomorphological observations relating to slip rates and identification of transpressional and transtensional features. Our results indicate a mostly smooth rupture trace, with the presence of two restraining steps, a releasing bend and a 3 km long sliver where the surface rupture jumped from the foot of the range-front into the alluvial fans at their base. A small block at one of the restraining steps shows intermediate displacement in both data sets. At the southern end of the rupture we observe that displacement from the earthquake cuts across a fold-and-thrust belt of the Makran accretionary prism. Preliminary results show a minimum of 12 km of repeated section of the accretionary wedge, and within the southern repeated section we find an offset of 600 m between two parallel ridges across the rupture trace. We relate these observations to conceptual models of fault segmentation and growth.
DeLong, Stephen B.; Donnellan, Andrea; Ponti, Daniel J.; Rubin, Ron S.; Lienkaemper, James J.; Prentice, Carol S.; Dawson, Timothy E.; Seitz, Gordon G.; Schwartz, David P.; Hudnut, Kenneth W.; Rosa, Carla M.; Pickering, Alexandra J; Parker, Jay W.
2016-01-01
The Mw 6.0 South Napa earthquake of 24 August 2014 caused slip on several active fault strands within the West Napa Fault Zone (WNFZ). Field mapping identified 12.5 km of surface rupture. These field observations, near-field geodesy and space geodesy, together provide evidence for more than ~30 km of surface deformation with a relatively complex distribution across a number of subparallel lineaments. Along a ~7 km section north of the epicenter, the surface rupture is confined to a single trace that cuts alluvial deposits, reoccupying a low-slope scarp. The rupture continued northward onto at least four other traces through subparallel ridges and valleys. Postseismic slip exceeded coseismic slip along much of the southern part of the main rupture trace with total slip 1 year postevent approaching 0.5 m at locations where only a few centimeters were measured the day of the earthquake. Analysis of airborne interferometric synthetic aperture radar data provides slip distributions along fault traces, indicates connectivity and extent of secondary traces, and confirms that postseismic slip only occurred on the main trace of the fault, perhaps indicating secondary structures ruptured as coseismic triggered slip. Previous mapping identified the WNFZ as a zone of distributed faulting, and this was generally borne out by the complex 2014 rupture pattern. Implications for hazard analysis in similar settings include the need to consider the possibility of complex surface rupture in areas of complex topography, especially where multiple potentially Quaternary-active fault strands can be mapped.
NASA Astrophysics Data System (ADS)
Shi, Chen; Wang, Jing; Chen, Ping; Feng, Jiayue; Cui, Jinyuan; Yang, Faze
2017-12-01
Domestic Aramid Fiber III (DAF III) was modified by oxygen plasma treatment. The fiber surface characteristics was observed by Scanning Electron Microscopy. The results showed that oxygen plasma treatment changed surface morphologies. The effects of oxygen plasma treatment on DAF III reinforced bismaleimides (BMI) composite bending and interfacial properties were investigated, respectively. The ILSS value increased from 49.3 MPa to 56.0 MPa (by 13.5%) after oxygen plasma treatment. The bending strength changed a little. Furthermore, the composite rupture mode changed from interfacial rupture to fiber or resin bulk rupture.
NASA Astrophysics Data System (ADS)
Kolawole, F.; Atekwana, E. A.; Laó-Dávila, D. A.; Abdelsalam, M. G.; Chindandali, P. R.; Salima, J.; Kalindekafe, L.
2018-05-01
Seismic events of varying magnitudes have been associated with ruptures along unknown or incompletely mapped buried faults. The 2009 Mw 6.0 Karonga, Malawi earthquake caused a surface rupture length of 14-18 km along a single W-dipping fault [St. Mary Fault (SMF)] on the hanging wall of the North Basin of the Malawi Rift. Prior to this earthquake, there was no known surface expression or knowledge of the presence of this fault. Although the earthquake damage zone is characterized by surface ruptures and coseismic liquefaction-induced sand blows, the origin of the causative fault and the near-surface structure of the rupture zone are not known. We used high-resolution aeromagnetic and electrical resistivity data to elucidate the relationship between surface rupture locations and buried basement structures. We also acquired electrical resistivity tomography (ERT) profiles along and across the surface rupture zone to image the near-surface structure of the damaged zone. We applied mathematical derivative filters to the aeromagnetic data to enhance basement structures underlying the rupture zone and surrounding areas. Although several magnetic lineaments are visible in the basement, mapped surface ruptures align with a single 37 km long, 148°-162°—striking magnetic lineament, and is interpreted as the ruptured normal fault. Inverted ERT profiles reveal three regional geoelectric layers which consist of 15 m thick layer of discontinuous zones of high and low resistivity values, underlain by a 27 m thick zone of high electrical resistivity (up to 100 Ω m) and a basal layer of lower resistivity (1.0-6.0 Ω m) extending from 42 m depth downwards (the maximum achieved depth of investigation). The geoelectric layers are truncated by a zone of electrical disturbance (electrical mélange) coinciding with areas of coseismic surface rupturing and sediment liquefaction along the ruptured. Our study shows that the 2009 Karonga earthquake was associated with the partial rupture of the buried SMF, and illuminates other potential seismogenic buried faults within the Karonga area of the North Basin. Although our electrical surveys were conducted 6 yr after the 2009 Karonga earthquake, we observe that near-surface lenses of electrically conductive sediments imaged by our ERT profiles, coincide with zones of coseismic surface rupture and liquefaction sand blows. We suggest that the presence of these preserved near-surface lenses of potentially water-saturated sand pose potential hazard in the event of a future earthquake in the area. In addition, our ERT profiles reveal structures that could represent relics of previous earthquake events along the SMF. In addition, our study demonstrates that the integration of ERT and aeromagnetic data can be very useful in illuminating seismogenic buried faults, thereby significantly improving seismic hazard analysis in tectonically active areas.
Fault Branching and Long-Term Earthquake Rupture Scenario for Strike-Slip Earthquake
NASA Astrophysics Data System (ADS)
Klinger, Y.; CHOI, J. H.; Vallage, A.
2017-12-01
Careful examination of surface rupture for large continental strike-slip earthquakes reveals that for the majority of earthquakes, at least one major branch is involved in the rupture pattern. Often, branching might be either related to the location of the epicenter or located toward the end of the rupture, and possibly related to the stopping of the rupture. In this work, we examine large continental earthquakes that show significant branches at different scales and for which ground surface rupture has been mapped in great details. In each case, rupture conditions are described, including dynamic parameters, past earthquakes history, and regional stress orientation, to see if the dynamic stress field would a priori favor branching. In one case we show that rupture propagation and branching are directly impacted by preexisting geological structures. These structures serve as pathways for the rupture attempting to propagate out of its shear plane. At larger scale, we show that in some cases, rupturing a branch might be systematic, hampering possibilities for the development of a larger seismic rupture. Long-term geomorphology hints at the existence of a strong asperity in the zone where the rupture branched off the main fault. There, no evidence of throughgoing rupture could be seen along the main fault, while the branch is well connected to the main fault. This set of observations suggests that for specific configurations, some rupture scenarios involving systematic branching are more likely than others.
Numerical simulation of the 1976 Ms7.8 Tangshan Earthquake
NASA Astrophysics Data System (ADS)
Li, Zhengbo; Chen, Xiaofei
2017-04-01
An Ms 7.8 earthquake happened in Tangshan in 1976, causing more than 240000 people death and almost destroying the whole city. Numerous studies indicated that the surface rupture zone extends 8 to 11 km in the south of Tangshan City. The fault system is composed with more than ten NE-trending right-lateral strike-slip left-stepping echelon faults, with a general strike direction of N30°E. However, recent scholars proposed that the surface ruptures appeared in a larger area. To simulate the rupture process closer to the real situation, the curvilinear grid finite difference method presented by Zhang et al. (2006, 2014) which can handle the free surface and the complex geometry were implemented to investigate the dynamic rupture and ground motion of Tangshan earthquake. With the data from field survey, seismic section, borehole and trenching results given by different studies, several fault geometry models were established. The intensity, the seismic waveform and the displacement resulted from the simulation of different models were compared with the observed data. The comparison of these models shows details of the rupture process of the Tangshan earthquake and implies super-shear may occur during the rupture, which is important for better understanding of this complicated rupture process and seismic hazard distributions of this earthquake.
Broadband ground-motion simulation using a hybrid approach
Graves, R.W.; Pitarka, A.
2010-01-01
This paper describes refinements to the hybrid broadband ground-motion simulation methodology of Graves and Pitarka (2004), which combines a deterministic approach at low frequencies (f 1 Hz). In our approach, fault rupture is represented kinematically and incorporates spatial heterogeneity in slip, rupture speed, and rise time. The prescribed slip distribution is constrained to follow an inverse wavenumber-squared fall-off and the average rupture speed is set at 80% of the local shear-wave velocity, which is then adjusted such that the rupture propagates faster in regions of high slip and slower in regions of low slip. We use a Kostrov-like slip-rate function having a rise time proportional to the square root of slip, with the average rise time across the entire fault constrained empirically. Recent observations from large surface rupturing earthquakes indicate a reduction of rupture propagation speed and lengthening of rise time in the near surface, which we model by applying a 70% reduction of the rupture speed and increasing the rise time by a factor of 2 in a zone extending from the surface to a depth of 5 km. We demonstrate the fidelity of the technique by modeling the strong-motion recordings from the Imperial Valley, Loma Prieta, Landers, and Northridge earthquakes.
NASA Astrophysics Data System (ADS)
Zheng, Ao; Wang, Mingfeng; Yu, Xiangwei; Zhang, Wenbo
2018-03-01
On 2016 November 13, an Mw 7.8 earthquake occurred in the northeast of the South Island of New Zealand near Kaikoura. The earthquake caused severe damages and great impacts on local nature and society. Referring to the tectonic environment and defined active faults, the field investigation and geodetic evidence reveal that at least 12 fault sections ruptured in the earthquake, and the focal mechanism is one of the most complicated in historical earthquakes. On account of the complexity of the source rupture, we propose a multisegment fault model based on the distribution of surface ruptures and active tectonics. We derive the source rupture process of the earthquake using the kinematic waveform inversion method with the multisegment fault model from strong-motion data of 21 stations (0.05-0.35 Hz). The inversion result suggests the rupture initiates in the epicentral area near the Humps fault, and then propagates northeastward along several faults, until the offshore Needles fault. The Mw 7.8 event is a mixture of right-lateral strike and reverse slip, and the maximum slip is approximately 19 m. The synthetic waveforms reproduce the characteristics of the observed ones well. In addition, we synthesize the coseismic offsets distribution of the ruptured region from the slips of upper subfaults in the fault model, which is roughly consistent with the surface breaks observed in the field survey.
Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics
NASA Astrophysics Data System (ADS)
Zhang, Zhenguo; Zhang, Wei; Chen, Xiaofei
2014-11-01
In this study, we present a new method for simulating the 3-D dynamic rupture process occurring on a non-planar fault. The method is based on the curved-grid finite-difference method (CG-FDM) proposed by Zhang & Chen and Zhang et al. to simulate the propagation of seismic waves in media with arbitrary irregular surface topography. While keeping the advantages of conventional FDM, that is computational efficiency and easy implementation, the CG-FDM also is flexible in modelling the complex fault model by using general curvilinear grids, and thus is able to model the rupture dynamics of a fault with complex geometry, such as oblique dipping fault, non-planar fault, fault with step-over, fault branching, even if irregular topography exists. The accuracy and robustness of this new method have been validated by comparing with the previous results of Day et al., and benchmarks for rupture dynamics simulations. Finally, two simulations of rupture dynamics with complex fault geometry, that is a non-planar fault and a fault rupturing a free surface with topography, are presented. A very interesting phenomenon was observed that topography can weaken the tendency for supershear transition to occur when rupture breaks out at a free surface. Undoubtedly, this new method provides an effective, at least an alternative, tool to simulate the rupture dynamics of a complex non-planar fault, and can be applied to model the rupture dynamics of a real earthquake with complex geometry.
Detailed Surface Rupture Geometry from the 2016 Amatrice Earthquake
NASA Astrophysics Data System (ADS)
Mildon, Z. K.; Iezzi, F.; Wedmore, L. N. J.; Gregory, L. C.; McCaffrey, K. J. W.; Wilkinson, M. W.; Faure Walker, J.; Roberts, G.; Livio, F.; Vittori, E.; Michetti, A.; Frigerio, C.; Ferrario, F.; Blumetti, A. M.; Guerrieri, L.; Di Manna, P.; Comerci, V.
2016-12-01
The Amatrice earthquake was generated by co-rupture of the Mt. Vettore and Laga faults at depth. Surface ruptures were observed for 5km along the Mt. Vettore fault, with no clear observations on the Laga fault reported to date. The surface rupture on Mt. Vettore manifests as a 15-20cm pale stripe at the base of a 60-80o dipping bedrock fault scarp and similar magnitude vertical offsets of colluvial deposits. We have measured the strike and dip of the fault alongside the coseismic throw, heave, and slip azimuth along the length of the rupture with high spatial resolution (c.2-6m, >2000 measurements). The slip azimuth is relatively constant between 210-270° even where the rupture faces uphill at its SE termination which is consistent with the regional NW-SE extension direction, defined by focal mechanisms and borehole break-out data. The simplest coseismic throw profile that would be expected is quasi-symmetric. However we found the highest values of throw (Inter Quartile Range 15-19.5cm) are skewed towards the NW end on a 1.7 km section of the fault that is oblique relative to the overall fault strike. In the centre of the rupture, orientated close to the overall fault strike, the throw is lower (IQR 7.5-13cm) and discontinuous along strike. We suggest that the skewed throw profile occurs because the strike, dip and throw must vary systematically in order to preserve the principal strain rate across a fault, in agreement with previous publications. The density of our measurements, crucially including the slip azimuth, allows us to resolve the regional debate over whether normal fault ruptures are primary tectonic features or landslides of hangingwall sediments. If the surface offsets are due to landslides, then the slip azimuth should correlate with the downslope direction of the hangingwall. We show using an available 10m DEM that this is not the case and hence the surface offsets described herein are a primary tectonic feature. This presentation offers new insights into rupture processes because of the high resolution of the dataset collected rapidly after the earthquake, but crucially because it includes the slip vector azimuth, allowing a full description of the kinematics of the faulting relative to the regional stress field and local topographic variations.
Shallow megathrust earthquake ruptures betrayed by their outer-trench aftershocks signature
NASA Astrophysics Data System (ADS)
Sladen, Anthony; Trevisan, Jenny
2018-02-01
For some megathrust earthquakes, the rupture extends to the solid Earth's surface, at the ocean floor. This unexpected behaviour holds strong implications for the tsunami potential of subduction zones and for the physical conditions governing earthquakes, but such ruptures occur in underwater areas which are hard to observe, even with current instrumentation and imaging techniques. Here, we evidence that aftershocks occurring ocean-ward from the trench are conditioned by near-surface rupture of the megathrust fault. Comparison to well constrained earthquake slip models further reveals that for each event the number of aftershocks is proportional to the amount of shallow slip, a link likely related to static stress transfer. Hence, the spatial distribution of these specific aftershock sequences could provide independent constrains on the coseismic shallow slip of future events. It also offers the prospect to be able to reassess the rupture of many large subduction earthquakes back to the beginning of the instrumental era.
Surface Rupture Map of the 2002 M7.9 Denali Fault Earthquake, Alaska: Digital Data
Haeussler, Peter J.
2009-01-01
The November 3, 2002, Mw7.9 Denali Fault earthquake produced about 340 km of surface rupture along the Susitna Glacier Thrust Fault and the right-lateral, strike-slip Denali and Totschunda Faults. Digital photogrammetric methods were primarily used to create a 1:500-scale, three-dimensional surface rupture map, and 1:6,000-scale aerial photographs were used for three-dimensional digitization in ESRI's ArcMap GIS software, using Leica's StereoAnalyst plug in. Points were digitized 4.3 m apart, on average, for the entire surface rupture. Earthquake-induced landslides, sackungen, and unruptured Holocene fault scarps on the eastern Denali Fault were also digitized where they lay within the limits of air photo coverage. This digital three-dimensional fault-trace map is superior to traditional maps in terms of relative and absolute accuracy, completeness, and detail and is used as a basis for three-dimensional visualization. Field work complements the air photo observations in locations of dense vegetation, on bedrock, or in areas where the surface trace is weakly developed. Seventeen km of the fault trace, which broke through glacier ice, were not digitized in detail due to time constraints, and air photos missed another 10 km of fault rupture through the upper Black Rapids Glacier, so that was not mapped in detail either.
Insight into the rupture process of a rare tsunami earthquake from near-field high-rate GPS
NASA Astrophysics Data System (ADS)
Macpherson, K. A.; Hill, E. M.; Elosegui, P.; Banerjee, P.; Sieh, K. E.
2011-12-01
We investigated the rupture duration and velocity of the October 25, 2010 Mentawai earthquake by examining high-rate GPS displacement data. This Mw=7.8 earthquake appears to have ruptured either an up-dip part of the Sumatran megathrust or a fore-arc splay fault, and produced tsunami run-ups on nearby islands that were out of proportion with its magnitude. It has been described as a so-called "slow tsunami earthquake", characterised by a dearth of high-frequency signal and long rupture duration in low-strength, near-surface media. The event was recorded by the Sumatran GPS Array (SuGAr), a network of high-rate (1 sec) GPS sensors located on the nearby islands of the Sumatran fore-arc. For this study, the 1 sec time series from 8 SuGAr stations were selected for analysis due to their proximity to the source and high-quality recordings of both static displacements and dynamic waveforms induced by surface waves. The stations are located at epicentral distances of between 50 and 210 km, providing a unique opportunity to observe the dynamic source processes of a tsunami earthquake from near-source, high-rate GPS. We estimated the rupture duration and velocity by simulating the rupture using the spectral finite-element method SPECFEM and comparing the synthetic time series to the observed surface waves. A slip model from a previous study, derived from the inversion of GPS static offsets and tsunami data, and the CRUST2.0 3D velocity model were used as inputs for the simulations. Rupture duration and velocity were varied for a suite of simulations in order to determine the parameters that produce the best-fitting waveforms.
Comparison of the November 2002 Denali and November 2001 Kunlun Earthquakes
NASA Astrophysics Data System (ADS)
Bufe, C. G.
2002-12-01
Major earthquakes occurred in Tibet on the central Kunlun fault (M 7.8) on November 14, 2001 (Lin and others, 2002) and in Alaska on the central Denali fault (M 7.9) on November 3, 2002. Both earthquakes generated large surface waves (Kunlun Ms 8.0 (USGS) and Denali Ms 8.5). Each event occurred on east-west-trending strike-slip faults and exhibited nearly unilateral rupture propagating several hundred kilometers from west to east. Surface rupture length estimates were about 400 km for Kunlun, 300 km for Denali. Maximum surface faulting and moment release were observed far to the east of the points of rupture initiation. Harvard moment centroids were located east of USGS epicenters by 182 km (Kunlun) and by 126 km (Denali). Maximum surface faulting was observed near 240 km (Kunlun, 16 m left lateral) and near 175 km (Denali, 9 m right lateral) east of the USGS epicenters. Significant thrust components were observed in the initiation of the Denali event (ERI analysis and mapped thrust) and in the termination of the Kunlun rupture, as evidenced by thrust mechanisms of the largest aftershocks which occurred near the eastern part of the Kunlun rupture. In each sequence the largest aftershock was about 2 orders of magnitude smaller than the mainshock. Moment release along the ruptured segments was examined for the 25-year periods preceding the main shocks. The Denali zone shows precursory accelerating moment release with the dominant events occurring on October 22, 1996 (M 5.8) and October 23, 2002 (M 6.7). The Kunlun zone shows nearly constant moment release over time with the last significant event before the main shock occurring on November 26, 2000 (M 5.4). Moment release data are consistent with previous observations of annual periodicity preceding major earthquakes, possibly due to the evolution of a critical state with seasonal and tidal triggering (Varnes and Bufe, 2001). Annual periodicity is also evident for the larger events in the greater San Francisco Bay region over several decades preceding the 1906 San Francisco earthquake (M 7.8). Both the Kunlun and the Denali mainshocks occurred at new moon.
Infrasonic Observations of Ground Shaking along the 2010 Mw 7.2 El Mayor Rupture
NASA Astrophysics Data System (ADS)
Degroot-Hedlin, C. D.; Walker, K.
2010-12-01
The Mw 7.2 El Mayor earthquake in northeast Baja California generated seismic waves that were felt for up to 90 seconds throughout southern California and northern Baja. The locations of the epicenter, aftershocks, and surface rupture suggest that the rupture was not focused at one specific location, but initiated near El Mayor, Mexico and extended northwest for roughly 120 km through the U.S. border. We analyze infrasound and seismic data recorded by three arrays and show that the surface shaking in the vicinity of the rupture also generated infrasound that was detected at least 200 km away to the north and west of the epicentral region, despite stratospheric winds from the west that only favor eastward propagation. Frequency domain beamforming of infrasound array signals recorded by an array near San Diego (MRIAR) shows a time progression of signal back azimuth that spans the entire rupture length. Ray trace modeling using 4-D atmospheric velocity models suggests that the observed infrasound signals refracted in the thermosphere. The signals have frequencies from 1 to 12 Hz, which is rather high given the level of thermospheric attenuation predicted by traditional models. A secondary infrasound wavetrain that arrived at MRIAR before the epicentral infrasound appears to have originated from an infrasonic radiator south of the array that was excited by the passing surface waves.
Complex ruptures during hydraulic fracturing of the Marcellus Shale
NASA Astrophysics Data System (ADS)
Viegas, G. F.; Urbancic, T.; Bosman, K.; Baig, A. M.
2016-12-01
Complex rupture patterns were observed on several M0+ events recorded during a hydraulic stimulation of the Marcellus shale. Although M>0 events associated with hydraulic fracturing have now been commonly recorded and may cause concern in terms of public and infrastructure safety, the vast majority of these events are smaller than M3 and are not felt at the surface. We investigate the rupture characteristics of one such multi-rupture event with 3 sub-events, by examining the failure dynamics of the overall fracture itself and of each individual sub-event, and the growth of the overall fracture from rupture initiation to arrest. This analysis is only possible due to the wide frequency range of the seismic monitoring system put in place which spanned from 0.1 Hz to 1000 Hz. The monitoring system consists of: high-frequency sensor-arrays of geophones deployed downhole close to the reservoir and thus to the rupture initiation point; and low to intermediate frequency accelerometers and geophones deployed at intermediate and shallow depths, allowing for the investigation of overall rupture characteristics. We aim to gain an understanding of the role of asperities, fracture roughness, and fluids on the different aspects of the rupture processes and of the failure mechanisms (shearing versus tensile dominance of behavior) associated with these complex events. Our results show that the overall event is characterized by the failure of multiple asperities and the distance between the 3 sub-events is less than 20 m. We observe decreasing stress drop and increasing Mw over time for the successive sub-events which suggest decreasing frictional resistance due to the presence of fluids over an increasingly large rupture surface akin to increased slip over a larger and less resistant contact area such as an asperity. The overall failure shows a dominant shearing mode mechanism whereas the sub-events failures show strong tensile components. The ruptures of the 1st and 2nd sub-events are indicative of shear-compaction of an asperity and the one of the 3rd sub-event is suggestive of a rupture riding over several surface patches. Additional analysis of other complex events will improve the characterization of the rupture processes of these larger-magnitude events and allow for the assessment of conditions under which the failures occur.
Seismic Evidence of A Widely Distributed West Napa Fault Zone, Hendry Winery, Napa, California
NASA Astrophysics Data System (ADS)
Goldman, M.; Catchings, R.; Chan, J. H.; Criley, C.
2015-12-01
Following the 24 August 2014 Mw 6.0 South Napa earthquake, surface rupture was mapped along the West Napa Fault Zone (WNFZ) for a distance of ~ 14 km and locally within zones up to ~ 2 km wide. Near the northern end of the surface rupture, however, several strands coalesced to form a narrow, ~100-m-wide zone of surface rupture. To determine the location, width, and shallow (upper few hundred meters) geometry of the fault zone, we acquired an active-source seismic survey across the northern surface rupture in February 2015. We acquired both P- and S-wave data, from which we developed reflection images and tomographic images of Vp, Vs, Vp/Vs, and Poisson's ratio of the upper 100 m. We also used small explosive charges within surface ruptures located ~600 m north of our seismic array to record fault-zone guided waves. Our data indicate that at the latitude of the Hendry Winery, the WNFZ is characterized by at least five fault traces that are spaced 60 to 200 m apart. Zones of low-Vs, low-Vp/Vs, and disrupted reflectors highlight the fault traces on the tomography and reflection images. On peak-ground-velocity (PGV) plots, the most pronounced high-amplitude guided-wave seismic energy coincides precisely with the mapped surface ruptures, and the guided waves also show discrete high PGV zones associated with unmapped fault traces east of the surface ruptures. Although the surface ruptures of the WNFZ were observed only over a 100-m-wide zone at the Hendry Winery, our data indicate that the fault zone is at least 400 m wide, which is probably a minimum width given the 400-m length of our seismic profile. Slip on the WNFZ is generally considered to be low relative to most other Bay Area faults, but we suggest that the West Napa Fault is a zone of widely distributed shear, and to fully account for the total slip on the WNFZ, slip on all traces of this wide fault zone must be considered.
NASA Astrophysics Data System (ADS)
Elliott, A. J.; Oskin, M. E.; Liu-zeng, J.; Shao, Y.-X.
2018-05-01
Restraining double-bends along strike-slip faults inhibit or permit throughgoing ruptures depending on bend angle, length, and prior rupture history. Modeling predicts that for mature strike-slip faults in a regional stress regime characterized by simple shear, a restraining bend of >18° and >4 km length impedes propagating rupture. Indeed, natural evidence shows that the most recent rupture(s) of the Xorkoli section (90°-93°E) of the eastern Altyn Tagh fault (ATF) ended at large restraining bends. However, when multiple seismic cycles are considered in numerical dynamic rupture modeling, heterogeneous residual stresses enable some ruptures to propagate further, modulating whether the bends persistently serve as barriers. These models remain to be tested using observations of the cumulative effects of multiple earthquake ruptures. Here we investigate whether a large restraining double-bend on the ATF serves consistently as a barrier to rupture by measuring long-term slip rates around the terminus of its most recent surface rupture at the Aksay bend. Our results show a W-E decline in slip as the SATF enters the bend, as would be predicted from repeated rupture terminations there. Prior work demonstrated no Holocene slip on the central, most misoriented portion of the bend, while 19-79 m offsets suggest that multiple ruptures have occurred on the west side of the bend during the Holocene. Thus we conclude the gradient in the SATF's slip rate results from the repeated termination of earthquake ruptures there. However, a finite slip rate east of the bend represents the transmission of some slip, suggesting that a small fraction of ruptures may fully traverse or jump the double-bend. This agreement between natural observations of slip accumulation and multi-cycle models of fault rupture enables us to translate observed slip rates into insight about the dynamic rupture process of individual earthquakes as they encounter geometric complexities along faults.
Briggs, Richard W.; Wesnousky, Steven G.; Brune, James N.; Purvance, Matthew D.; Mahan, Shannon
2013-01-01
The Fort Sage Mountains fault zone is a normal fault in the Walker Lane of the western Basin and Range that produced a small surface rupture (L 5.6 earthquake in 1950. We investigate the paleoseismic history of the Fort Sage fault and find evidence for two paleoearthquakes with surface displacements much larger than those observed in 1950. Rupture of the Fort Sage fault ∼5.6 ka resulted in surface displacements of at least 0.8–1.5 m, implying earthquake moment magnitudes (Mw) of 6.7–7.1. An older rupture at ∼20.5 ka displaced the ground at least 1.5 m, implying an earthquake of Mw 6.8–7.1. A field of precariously balanced rocks (PBRs) is located less than 1 km from the surface‐rupture trace of this Holocene‐active normal fault. Ground‐motion prediction equations (GMPEs) predict peak ground accelerations (PGAs) of 0.2–0.3g for the 1950 rupture and 0.3–0.5g for the ∼5.6 ka paleoearthquake one kilometer from the fault‐surface trace, yet field tests indicate that the Fort Sage PBRs will be toppled by PGAs between 0.1–0.3g. We discuss the paleoseismic history of the Fort Sage fault in the context of the nearby PBRs, GMPEs, and probabilistic seismic hazard maps for extensional regimes. If the Fort Sage PBRs are older than the mid‐Holocene rupture on the Fort Sage fault zone, this implies that current GMPEs may overestimate near‐fault footwall ground motions at this site.
NASA Astrophysics Data System (ADS)
Choi, Jin-Hyuck; Klinger, Yann; Ferry, Matthieu; Ritz, Jean-François; Kurtz, Robin; Rizza, Magali; Bollinger, Laurent; Davaasambuu, Battogtokh; Tsend-Ayush, Nyambayar; Demberel, Sodnomsambuu
2018-02-01
In 1905, 14 days apart, two M 8 continental strike-slip earthquakes, the Tsetserleg and Bulnay earthquakes, occurred on the Bulnay fault system, in Mongolia. Together, they ruptured four individual faults, with a total length of 676 km. Using submetric optical satellite images "Pleiades" with ground resolution of 0.5 m, complemented by field observation, we mapped in detail the entire surface rupture associated with this earthquake sequence. Surface rupture along the main Bulnay fault is 388 km in length, striking nearly E-W. The rupture is formed by a series of fault segments that are 29 km long on average, separated by geometric discontinuities. Although there is a difference of about 2 m in the average slip between the western and eastern parts of the Bulnay rupture, along-fault slip variations are overall limited, resulting in a smooth slip distribution, except for local slip deficit at segment boundaries. We show that damage, including short branches and secondary faulting, associated with the rupture propagation, occurred significantly more often along the western part of the Bulnay rupture, while the eastern part of the rupture appears more localized and thus possibly structurally simpler. Eventually, the difference of slip between the western and eastern parts of the rupture is attributed to this difference of rupture localization, associated at first order with a lateral change in the local geology. Damage associated to rupture branching appears to be located asymmetrically along the extensional side of the strike-slip rupture and shows a strong dependence on structural geologic inheritance.
Field and LiDAR observations of the Hector Mine California 1999 surface rupture
NASA Astrophysics Data System (ADS)
Sousa, F.; Akciz, S. O.; Harvey, J. C.; Hudnut, K. W.; Lynch, D. K.; Scharer, K. M.; Stock, J. M.; Witkosky, R.; Kendrick, K. J.; Wespestad, C.
2014-12-01
We report new field- and computer-based investigations of the surface rupture of the October 16, 1999 Hector Mine Earthquake. Since May 2012, in cooperation with the United States Marine Corps Air Ground Combat Center (MCAGCC) at Twentynine Palms, CA, our team has been allowed ground and aerial access to the entire surface rupture. We have focused our new field-based research and imagery analysis along the ~10 kilometer-long maximum slip zone (MSZ) which roughly corresponds to the zone of >4 meter dextral horizontal offset. New data include: 1) a 1 km wide aerial LiDAR survey along the entire surface rupture (@ 10 shots/m2, May 2012, www.opentopography.org); 2) terrestrial LiDAR surveys at 5 sites within the MSZ (@ >1000 shots/m2, April 2014); 3) low altitude aerial photography and ground based photography of the entire MSZ; 4) a ground-truthed database of 87 out of the 94 imagery-based offset measurements made within the MSZ; and 5) a database of 50 new field-based offset measurements made within the MSZ by our team on the ground, 31 of which have also been made on the computer (Ladicaoz) with both the 2000 LiDAR data (@ 0.5 m DEM resolution; Chen et al, in review) and 2012 LiDAR data (@ 35 cm DEM resolution; our team). New results to date include 1) significant variability (> 2 m) in horizontal offsets measured along short distances of the surface rupture (~100 m) within segments of the surface rupture that are localized to a single fault strand; 2) strong dependence of decadal scale fault scarp preservation on local lithology (bedrock vs. alluvial fan vs. fine sediment) and geomorphology (uphill vs. downhill facing scarp); 3) newly observed offset features which were never measured during the post-event field response; 4) newly observed offset features too small to be resolved in airborne LiDAR data (< 1 m); 5) nearly 25% of LiDAR imagery-based measurements that were later ground-truthed were judged by our team to warrant removal from the database due to incorrect feature reconstruction; and 6) significant variability in both accuracy of LiDAR offset measurements (relative to field-based measurements) and reported uncertainty between workers, mostly based on differing interpretations of geomorphic complexity.
Surface Rupture and Slip Distribution Resulting from the 2013 M7.7 Balochistan, Pakistan Earthquake
NASA Astrophysics Data System (ADS)
Reitman, N. G.; Gold, R. D.; Briggs, R. W.; Barnhart, W. D.; Hayes, G. P.
2014-12-01
The 24 September 2013 M7.7 earthquake in Balochistan, Pakistan, produced a ~200 km long left-lateral strike-slip surface rupture along a portion of the Hoshab fault, a moderately dipping (45-75º) structure in the Makran accretionary prism. The rupture is remarkably continuous and crosses only two (0.7 and 1.5 km wide) step-overs along its arcuate path through southern Pakistan. Displacements are dominantly strike-slip, with a minor component of reverse motion. We remotely mapped the surface rupture at 1:5,000 scale and measured displacements using high resolution (0.5 m) pre- and post-event satellite imagery. We mapped 295 laterally faulted stream channels, terrace margins, and roads to quantify near-field displacement proximal (±10 m) to the rupture trace. The maximum near-field left-lateral offset is 15±2 m (average of ~7 m). Additionally, we used pre-event imagery to digitize 254 unique landforms in the "medium-field" (~100-200 m from the rupture) and then measured their displacements compared to the post-event imagery. At this scale, maximum left-lateral offset approaches 17 m (average of ~8.5 m). The width (extent of observed surface faulting) of the rupture zone varies from ~1 m to 3.7 km. Near- and medium-field offsets show similar slip distributions that are inversely correlated with the width of the fault zone at the surface (larger offsets correspond to narrow fault zones). The medium-field offset is usually greater than the near-field offset. The along-strike surface slip distribution is highly variable, similar to the slip distributions documented for the 2002 Denali M7.9 earthquake and 2001 Kunlun M7.8 earthquake, although the Pakistan offsets are larger in magnitude. The 2013 Pakistan earthquake ranks among the largest documented continental strike-slip displacements, possibly second only to the 18+ m surface displacements attributed to the 1855 Wairarapa M~8.1 earthquake.
NASA Astrophysics Data System (ADS)
Sherrod, B. L.; Styron, R. H.
2016-12-01
Paleoseismic studies documented prehistoric earthquakes after the last glaciation ended 15 ka on 13 upper-crustal fault zones in the Cascadia fore arc. These fault zones are a consequence of north-directed fore arc block migration manifesting as a series of bedrock uplifts and intervening structural basins in the southern Salish Sea lowland between Vancouver, B.C. to the north and Olympia, WA to the south, and bounded on the east and west by the Cascade Mountains and Olympic Mountains, respectively. Our dataset uses published information and includes 27 earthquakes tabulated from observations of postglacial deformation at 63 sites. Stratigraphic offsets along faults consist of two types of measurements: 1) vertical separation of strata along faults observed in fault scarp excavations, and 2) estimates from coastal uplift and subsidence. We used probabilistic methods to estimate past rupture magnitudes and surface rupture length (SRL), applying empirical observations from modern earthquakes and point measurements from paleoseismic sites (Biasi and Weldon, 2006). Estimates of paleoearthquake magnitude ranged between M 6.5 and M 7.5. SRL estimates varied between 20 and 90 km. Paleoearthquakes on the Seattle fault zone and Saddle Mountain West fault about 1100 years ago were outliers in our analysis. Large offsets observed for these two earthquakes implies a M 7.8 and 200 km SRL, given the average observed ratio of slip/SRL in modern earthquakes. The actual mapped traces of these faults are less than 200km, implying these earthquakes had an unusually high static stress drop or, in the case of the Seattle fault, splay faults may have accentuated uplift in the hanging wall. Refined calculations incorporating fault area may change these magnitude and SRL estimates. Biasi, G.P., and Weldon, R.J., 2006, Estimating Surface Rupture Length and Magnitude of Paleoearthquakes from Point Measurements of Rupture Displacement: B. Seismol. Soc. Am., 96, 1612-1623.
Broadband Rupture Process of the 2001 Kunlun Fault (Mw 7.8) Earthquake
NASA Astrophysics Data System (ADS)
Antolik, M.; Abercrombie, R.; Ekstrom, G.
2003-04-01
We model the source process of the 14 November, 2001 Kunlun fault earthquake using broadband body waves from the Global Digital Seismographic Network (P, SH) and both point-source and distributed slip techniques. The point-source mechanism technique is a non-linear iterative inversion that solves for focal mechanism, moment rate function, depth, and rupture directivity. The P waves reveal a complex rupture process for the first 30 s, with smooth unilateral rupture toward the east along the Kunlun fault accounting for the remainder of the 120 s long rupture. The obtained focal mechanism for the main portion of the rupture is (strike=96o, dip=83o, rake=-8o) which is consistent with both the Harvard CMT solution and observations of the surface rupture. The seismic moment is 5.29×1020 Nm and the average rupture velocity is ˜3.5 km/s. However, the initial portion of the P waves cannot be fit at all with this mechanism. A strong pulse visible in the first 20 s can only be matched with an oblique-slip subevent (MW ˜ 6.8-7.0) involving a substantial normal faulting component, but the nodal planes of this mechanism are not well constrained. The first-motion polarities of the P waves clearly require a strike mechanism with a similar orientation as the Kunlun fault. Field observations of the surface rupture (Xu et al., SRL, 73, No. 6) reveal a small 26 km-long strike-slip rupture at the far western end (90.5o E) with a 45-km long gap and extensional step-over between this rupture and the main Kunlun fault rupture. We hypothesize that the initial fault break occurred on this segment, with release of the normal faulting energy as a continuous rupture through the extensional step, enabling transfer of the slip to the main Kunlun fault. This process is similar to that which occurred during the 2002 Denali fault (MW 7.9) earthquake sequence except that 11 days elapsed between the October 23 (M_W 6.7) foreshock and the initial break of the Denali earthquake along a thrust fault.
NASA Astrophysics Data System (ADS)
Ferry, Matthieu; Tsutsumi, Hiroyuki; Meghraoui, Mustapha; Toda, Shinji
2013-04-01
The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping dominates as well but with some strain localization along two major splays that exhibit 15-20 cm of vertical offset. On both walls, the basal silt unit is vertically deformed by ~0.6 m, similarly to what is observed for the 2011 rupture. Furthermore, the base of said silt unit exhibits indication for secondary faulting prior to the 2011 event and that resemble cracks observed at the present-day surface. This suggests that the Itozawa fault has already ruptured in a similar fashion in the late Pleistocene). Hence, recent activity of the Itozawa fault may be controlled entirely by large to giant earthquakes along the Japan Trench.
NASA Astrophysics Data System (ADS)
Suter, Max
2015-01-01
During the 3 May 1887 Mw 7.5 Sonora earthquake (surface rupture end-to-end length: 101.8 km), an array of three north-south striking Basin-and-Range Province faults (from north to south Pitáycachi, Teras, and Otates) slipped sequentially along the western margin of the Sierra Madre Occidental Plateau. This detailed field survey of the 1887 earthquake rupture zone along the Pitáycachi fault includes mapping the rupture scarp and measurements of surface deformation. The surface rupture has an endpoint-to-endpoint length of ≥41.0 km, dips 70°W, and is characterized by normal left-lateral extension. The maximum surface offset is 487 cm and the mean offset 260 cm. The rupture trace shows a complex pattern of second-order segmentation. However, this segmentation is not expressed in the 1887 along-rupture surface offset profile, which indicates that the secondary segments are linked at depth into a single coherent fault surface. The Pitáycachi surface rupture shows a well-developed bipolar branching pattern suggesting that the rupture originated in its central part, where the polarity of the rupture bifurcations changes. Most likely the rupture first propagated bilaterally along the Pitáycachi fault. The southern rupture front likely jumped across a step over to the Teras fault and from there across a major relay zone to the Otates fault. Branching probably resulted from the lateral propagation of the rupture after breaching the seismogenic part of the crust, given that the much shorter ruptures of the Otates and Teras segments did not develop branches.
NASA Astrophysics Data System (ADS)
Van Dissen, Russ; Little, Tim
2017-04-01
The Mw 7.8 Kaikoura earthquake of 14 November, 2016 (NZDT) was a complex event. It involved ground-surface (or seafloor) fault rupture on at least a dozen onland or offshore faults, and subsurface rupture on a handful of additional faults. Most of the surface ruptures involved previously known (or suspected) active faults, as well as surface rupture on at least two hitherto unrecognised active faults. The southwest to northeast extent of surface fault rupture, as generalised by two straight-line segments, is approximately 180 km, though this is a minimum for the collective length of surface rupture due to multiple overlapping faults with various orientations. Surface rupture displacements on specific faults involved in the Kaikoura Earthquake span approximately two orders of magnitude. For example, maximum surface displacement on the Heaver's Creek Fault is cm- to dm-scale in size; whereas, maximum surface displacement on the nearby Kekerengu Fault is approximately 10-12 m (predominantly in a dextral sense). The Kekerengu Fault has a Late Pleistocene slip-rate rate of 20-26 mm/yr, and is possibly the second fastest slipping onland fault in New Zealand, behind the Alpine Fault. Located in the northeastern South Island of New Zealand, the Kekerengu Fault - along with the Hope Fault to the southwest and the Needles Fault offshore to the northeast - comprise the fastest slipping elements of the Pacific-Australian plate boundary in this part of the country. In January 2016 (about ten months prior to the Kaikoura earthquake) three paleo-earthquake investigation trenches were excavated across pronounced traces of the Kekerengu Fault at two locations. These were the first such trenches dug and evaluated across the fault. All three trenches displayed abundant evidence of past surface fault ruptures (three surface ruptures in the last approximately 1,200 years, four now including the 2016 rupture). An interesting aspect of the 2016 rupture is that two of the trenches received surface fault rupture, and are now dextrally offset by about 9 m, while the third trench did not have any 2016 surface rupture pass through it. In this instance, ground-surface rupture along this trace of the fault died out within tens of metres of the trench. Another salient aspect of the Kaikoura earthquake is that the determined (or estimated) recurrence intervals of the faults that ruptured the ground surface vary by an order of magnitude or more. This strongly implies that the ensemble of faults that ruptured with the Kekerengu Fault in the 2016 earthquake has not always been the same for past earthquakes. Possible reasons for this could include the state of stress at the time of a specific earthquake, the direction of rupture propagation, and whether or not rupture on one fault system cascades into rupture on another as is suspected to have happened in the Kaikoura earthquake.
NASA Astrophysics Data System (ADS)
Zhu, D.; Zhu, H.; Luo, Y.; Chen, X.
2008-12-01
We use a new finite difference method (FDM) and the slip-weakening law to model the rupture dynamics of a non-planar fault embedded in a 3-D elastic media with free surface. The new FDM, based on boundary- conforming grid, sets up the mapping equations between the curvilinear coordinate and the Cartesian coordinate and transforms irregular physical space to regular computational space; it also employs a higher- order non-staggered DRP/opt MacCormack scheme which is of low dispersion and low dissipation so that the high accuracy and stability of our rupture modeling are guaranteed. Compared with the previous methods, not only we can compute the spontaneous rupture of an arbitrarily shaped fault, but also can model the influence of the surface topography on the rupture process of earthquake. In order to verify the feasibility of this method, we compared our results and other previous results, and found out they matched perfectly. Thanks to the boundary-conforming FDM, problems such as dynamic rupture with arbitrary dip, strike and rake over an arbitrary curved plane can be handled; and supershear or subshear rupture can be simulated with different parameters such as the initial stresses and the critical slip displacement Dc. Besides, our rupture modeling is economical to be implemented owing to its high efficiency and does not suffer from displacement leakage. With the help of inversion data of rupture by field observations, this method is convenient to model rupture processes and seismograms of natural earthquakes.
The 2016 Kaikōura earthquake: Simultaneous rupture of the subduction interface and overlying faults
NASA Astrophysics Data System (ADS)
Wang, Teng; Wei, Shengji; Shi, Xuhua; Qiu, Qiang; Li, Linlin; Peng, Dongju; Weldon, Ray J.; Barbot, Sylvain
2018-01-01
The distribution of slip during an earthquake and how it propagates among faults in the subduction system play a major role in seismic and tsunami hazards, yet they are poorly understood because offshore observations are often lacking. Here we derive the slip distribution and rupture evolution during the 2016 Mw 7.9 Kaikōura (New Zealand) earthquake that reconcile the surface rupture, space geodetic measurements, seismological and tsunami waveform records. We use twelve fault segments, with eleven in the crust and one on the megathrust interface, to model the geodetic data and match the major features of the complex surface ruptures. Our modeling result indicates that a large portion of the moment is distributed on the subduction interface, making a significant contribution to the far field surface deformation and teleseismic body waves. The inclusion of local strong motion and teleseismic waveform data in the joint inversion reveals a unilateral rupture towards northeast with a relatively low averaged rupture speed of ∼1.5 km/s. The first 30 s of the rupture took place on the crustal faults with oblique slip motion and jumped between fault segments that have large differences in strike and dip. The peak moment release occurred at ∼65 s, corresponding to simultaneous rupture of both plate interface and the overlying splay faults with rake angle changes progressively from thrust to strike-slip. The slip on the Papatea fault produced more than 2 m of offshore uplift, making a major contribution to the tsunami at the Kaikōura station, while the northeastern end of the rupture can explain the main features at the Wellington station. Our inversions and simulations illuminate complex up-dip rupture behavior that should be taken into consideration in both seismic and tsunami hazard assessment. The extreme complex rupture behavior also brings new challenges to the earthquake dynamic simulations and understanding the physics of earthquakes.
Faulting, damage, and intensity in the Canyondam earthquake of May 23, 2013
Chapman, K.; Gold, M.B.; Boatwright, John; Sipe, J.; Quitoriano, V.; Dreger, D.; Hardebeck, Jeanne
2016-09-23
On Thursday evening, May 23, 2013 (0347 May 24 UTC), a moment magnitude (Mw) = 5.7 earthquake occurred northeast of Canyondam, California. A two-person team of U.S. Geological Survey scientists went to the area to search for surface rupture and to canvass damage in the communities around Lake Almanor. While the causative fault had not been identified at the time of the field survey, surface rupture was expected to have occurred just south of Lake Almanor, approximately 2–4 kilometers south of the epicenter. No surface rupture was discovered. Felt intensity among the communities around Lake Almanor appeared to vary significantly. Lake Almanor West (LAW), Lake Almanor Country Club (LACC), and Hamilton Branch (HB) experienced Modified Mercalli Intensity (MMI) ≥7, whereas other communities around the lake experienced MMI ≤6; the maximum observed intensity was MMI 8, in LAW. Damage in the high intensity areas consisted of broken and collapsed chimneys, ruptured pipes, and some damage to foundations and to structural elements within houses. Although this shaking damage is not usually expected for an Mw 5.7 earthquake, the intensities at Lake Almanor Country Club correlate with the peak ground acceleration (38 percent g) and peak ground velocity (30 centimeters per second) recorded by the California Strong Motion Instrumentation Program accelerometer located at the nearby Lake Almanor Fire Station. The intensity distribution for the three hardest hit areas (LAW, LACC, and HB) appears to increase as the azimuth from epicenter to the intensity sites approaches the fault strike. The small communities of Almanor and Prattville on the southwestern shore of Lake Almanor experienced somewhat lower intensities. The town of Canyondam experienced a lower intensity as well, despite its location up-dip of the earthquake rupture. This report contains information on the earthquake itself, the search for surface rupture, and the damage we observed and compiled from other sources.
NASA Astrophysics Data System (ADS)
Pantosti, Daniela
2017-04-01
The October 30, 2016 (06:40 UTC) Mw 6.5 earthquake occurred about 28 km NW of Amatrice village as the result of upper crust normal faulting on a nearly 30 km-long, NW-SE oriented, SW dipping fault system in the Central Apennines. This earthquake is the strongest Italian seismic event since the 1980 Mw 6.9 Irpinia earthquake. The Mw 6.5 event was the largest shock of a seismic sequence, which began on August 24 with a Mw 6.0 earthquake and also included a Mw 5.9 earthquake on October 26, about 9 and 35 km NW of Amatrice village, respectively. Field surveys of coseismic geological effects at the surface started within hours of the mainshock and were carried out by several national and international teams of earth scientists (about 120 people) from different research institutions and universities coordinated by the EMERGEO Working Group of the Istituto Nazionale di Geofisica e Vulcanologia. This collaborative effort was focused on the detailed recognition and mapping of: 1) the total extent of the October 30 coseismic surface ruptures, 2) their geometric and kinematic characteristics, 3) the coseismic displacement distribution along the activated fault system, including subsidiary and antithetic ruptures. The huge amount of collected data (more than 8000 observation points of several types of coseismic effects at the surface) were stored, managed and shared using a specifically designed spreadsheet to populate a georeferenced database. More comprehensive mapping of the details and extent of surface rupture was facilitated by Structure-from-Motion photogrammetry surveys by means of several helicopter flights. An almost continuous alignment of ruptures about 30 km long, N150/160 striking, mainly SW side down was observed along the already known active Mt. Vettore - Mt. Bove fault system. The mapped ruptures occasionally overlapped those of the August 24 Mw 6.0 and October 26 Mw 5.9 shocks. The coincidence between the observed surface ruptures and the trace of active normal faults mapped in the available geological literature is noteworthy. The field data collected suggest a complex coseismic surface faulting pattern along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays. The cumulative surface faulting length has been estimated in about 40 km. The maximum vertical offset is significant, locally exceeding 2 meters along the Mt. Vettore Fault, measured both along bedrock fault planes and free-faces affecting unconsolidated deposits. This enormous collaborative experience has a twofold relevance, on the one side allowed to document in high detail the earthquake ruptures before Winter would destroy them, on the other represent the first large European experience for coseismic effects survey that we should use a leading case to establish a coseismic effects European team to get ready to respond to future seismic crises at the European level.
NASA Astrophysics Data System (ADS)
De Martini, P. M.; Pucci, S.; Villani, F.; Civico, R.; Del Rio, L.; Cinti, F. R.; Pantosti, D.
2017-12-01
In 2016-2017 a series of moderate to large normal faulting earthquakes struck central Italy producing severe damage in many towns including Amatrice, Norcia and Visso and resulting in 299 casualties and >20,000 homeless. The complex seismic sequence depicts a multiple activation of the Mt. Vettore-Mt. Bove (VBFS) and the Laga Mts. fault systems, which were considered in literature as independent segments characterizing a recent seismic gap in the region comprised between two modern seismic sequences: the 1997-1998 Colfiorito and the 2009 L'Aquila. We mapped in detail the coseismic surface ruptures following three mainshocks (Mw 6.0 on 24th August, Mw 5.9 and Mw 6.5 on 26th and 30th October, 2016, respectively). Primary surface ruptures were observed and recorded for a total length of 5.2 km, ≅10 km and ≅25 km, respectively, along closely-spaced, parallel or subparallel, overlapping or step-like synthetic and antithetic fault splays of the activated fault systems, in some cases rupturing repeatedly the same location. Some coseismic ruptures were mapped also along the Norcia Fault System, paralleling the VBFS about 10 km westward. We recorded geometric and kinematic characteristics of the normal faulting ruptures with an unprecedented detail thanks to almost 11,000 oblique photographs taken from helicopter flights soon after the mainshocks, verified and integrated with field data (more than 7000 measurements). We analyze the along-strike coseismic slip and slip vectors distribution to be observed in the context of the geomorphic expression of the disrupted slopes and their depositional and erosive processes. Moreover, we constructed 1:10.000 scale geologic cross-sections based on updated maps, and we reconstructed the net offset distribution of the activated fault system to be compared with the morphologic throws and to test a cause-effect relationship between faulting and first-order landforms. We provide a reconstruction of the 2016 coseismic rupture pattern as representative of the VBFS behavior, a discussion on the fault system boundaries persistence, and on the significance of the repeated surface faulting at same location.
EMG monitoring during functional non-surgical therapy of Achilles tendon rupture.
Hüfner, Tobias; Wohifarth, Kai; Fink, Matthias; Thermann, H; Rollnik, Jens D
2002-07-01
After surgical therapy of Achilles tendon rupture, neuromuscular changes may persist, even one year after surgery. We were interested whether these changes are also evident following a non-surgical functional therapy (Variostabil therapy boot/Adidas). Twenty-one patients with complete Achilles tendon rupture were enrolled in the study (mean age 38.5 years, range 24 to 60; 18 men, three women) and followed-up clinically and with surface EMG of the gastrocnemius muscles after four, eight, 12 weeks, and one year after rupture. EMG differences between the affected and non-affected side could only be observed at baseline and after four weeks following Achilles tendon rupture. The results from our study show that EMG changes are not found following non-surgical functional therapy.
The Rurrand Fault, Germany: A Holocene surface rupture and new slip rate estimates
NASA Astrophysics Data System (ADS)
Grützner, Christoph; Fischer, Peter; Reicherter, Klaus
2016-04-01
Very low deformation rates in continental interiors are a challenge for research on active tectonics and seismic hazard. Faults tend to have very long earthquake recurrence intervals and morphological evidence of surface faulting is often obliterated by erosion and sedimentation. The Lower Rhine Graben in Central Europe is characterized by slow active faults with individual slip rates of well less than 0.1 mm/a. As a consequence, most geodetic techniques fail to record tectonic motions and the morphological expression of the faults is subtle. Although damaging events are known from this region, e.g. the 1755/56 Düren earthquakes series, there is no account for surface rupturing events in instrumental and historical records. Owing to the short temporal coverage with respect to the fault recurrence intervals, these records probably fail to depict the maximum possible magnitudes. In this study we used morphological evidence from a 1 m airborne LiDAR survey, near surface geophysics, and paleoseismological trenching to identify surface rupturing earthquakes at the Rurrand Fault between Cologne and Aachen in W Germany. LiDAR data allowed identifying a young fault strand parallel to the already known main fault with the subtle morphological expression of recent surface faulting. In the paleoseismological trenches we found evidence for two surface rupturing earthquakes. The most recent event occurred in the Holocene, and a previous earthquake probably happened in the last 150 ka. Geophysical data allowed us to estimate a minimum slip rate of 0.03 mm/a from an offset gravel horizon. We estimate paleomagnitudes of MW5.9-6.8 based on the observed offsets in the trench (<0.5 m per event) and fault scaling relationships. Our data imply that the Rurrand Fault did not creep during the last 150 ka, but rather failed in large earthquakes. These events were much stronger than those known from historical sources. We are able to show that the Rurrand Fault did not rupture the surface during the Düren 1755/56 seismic crisis and conclude that these events likely occurred on another nearby fault system or did not rupture the surface at all. The very long recurrence interval of 25-65 ka for surface rupturing events illustrates the problems of assessing earthquake hazard in such slowly deforming regions. We emphasize that geological data must be included in seismic hazard and surface rupture hazard assessments in order to obtain a complete picture of a region's seismic potential.
Choy, G.L.; Bowman, J.R.
1990-01-01
On January 22, 1988, three large intraplate earthquakes (with MS 6.3, 6.4 and 6.7) occurred within a 12-hour period near Tennant Creek, Australia. Broadband displacement and velocity records of body waves from teleseismically recorded data are analyzed to determine source mechanisms, depths, and complexity of rupture of each of the three main shocks. Hypocenters of an additional 150 foreshocks and aftershocks constrained by local arrival time data and field observations of surface rupture are used to complement the source characteristics of the main shocks. The interpretation of the combined data sets suggests that the overall rupture process involved unusually complicated stress release. Rupture characteristics suggest that substantial slow slip occurred on each of the three fault interfaces that was not accompanied by major energy release. Variation of focal depth and the strong increase of moment and radiated energy with each main shock imply that lateral variations of strength were more important than vertical gradients of shear stress in controlling the progression of rupture. -from Authors
Complex rupture during the 12 January 2010 Haiti earthquake
Hayes, G.P.; Briggs, R.W.; Sladen, A.; Fielding, E.J.; Prentice, C.; Hudnut, K.; Mann, P.; Taylor, F.W.; Crone, A.J.; Gold, R.; Ito, T.; Simons, M.
2010-01-01
Initially, the devastating Mw 7.0, 12 January 2010 Haiti earthquake seemed to involve straightforward accommodation of oblique relative motion between the Caribbean and North American plates along the Enriquillog-Plantain Garden fault zone. Here, we combine seismological observations, geologic field data and space geodetic measurements to show that, instead, the rupture process may have involved slip on multiple faults. Primary surface deformation was driven by rupture on blind thrust faults with only minor, deep, lateral slip along or near the main Enriquillog-Plantain Garden fault zone; thus the event only partially relieved centuries of accumulated left-lateral strain on a small part of the plate-boundary system. Together with the predominance of shallow off-fault thrusting, the lack of surface deformation implies that remaining shallow shear strain will be released in future surface-rupturing earthquakes on the Enriquillog-Plantain Garden fault zone, as occurred in inferred Holocene and probable historic events. We suggest that the geological signature of this earthquakeg-broad warping and coastal deformation rather than surface rupture along the main fault zoneg-will not be easily recognized by standard palaeoseismic studies. We conclude that similarly complex earthquakes in tectonic environments that accommodate both translation and convergenceg-such as the San Andreas fault through the Transverse Ranges of Californiag-may be missing from the prehistoric earthquake record. ?? 2010 Macmillan Publishers Limited. All rights reserved.
NASA Astrophysics Data System (ADS)
Ekhtari, N.; Glennie, C. L.; Fielding, E. J.; Liang, C.
2016-12-01
Near field surface deformation is vital to understanding the shallow fault physics of earthquakes but near-field deformation measurements are often sparse or not reliable. In this study, we use the Co-seismic Image Correlation (COSI-Corr) technique to map the near-field surface deformation caused by the M 7.3 April 16, 2016 Kumamoto Earthquake, Kyushu, Japan. The surface rupture around the Eastern segment of Futagawa fault is mapped using a pair of panchromatic 1.5 meter resolution SPOT 7 images. These images were acquired on January 16 and April 29, 2016 (3 months before and 13 days after the earthquake respectively) with close to nadir (less than 1.5 degree off nadir) viewing angle. The two images are ortho-rectified using SRTM Digital Elevation Model and further co-registered using tie points far away from the rupture field. Then the COSI-Corr technique is utilized to produce an estimated surface displacement map, and a horizontal displacement vector field is calculated which supplies a seamless estimate of near field displacement measurements along the Eastern segment of the Futagawa fault. The COSI-Corr estimated displacements are then compared to other existing displacement observations from InSAR, GPS and field observations.
NASA Astrophysics Data System (ADS)
Bounif, A.; Haessler, H.; Meghraoui, M.
1987-10-01
An earthquake of magnitude Ms = 6.0 (CSEM, Strasbourg) occurred at Constantine (Algeria) on 27 October 1985. This seismic event is the strongest felt in the Tellian Atlas since the El Asnam seismic crisis of October 10, 1980. A team from the Centre de Recherche d'Astronomie, d'Astrophysique et de Géophysique (CRAAG, Algeria), utilising 8 portable stations, registered the activity a few days after the main shock. The aftershocks follow a N045° direction, and show the existence of three ruptured segments. Cross sections display a remarkable vertical fault plane and suggest asperities in the rupture process. Surface breaks were found affecting Quaternary deposits. The principal segment is about 3.8 km long showing “enéchelon” cracks with left-lateral displacement while the main direction of the rupture is N055°. Although the vertical motion is small, the northwestern block shows a normal component of the main surface faulting, while the left-lateral displacement is about 10 cm. The strike-slip focal mechanism solution determined from the global seismic network and field observations are in good agreement.
Droplet size effects on film drainage between droplet and substrate.
Steinhaus, Benjamin; Spicer, Patrick T; Shen, Amy Q
2006-06-06
When a droplet approaches a solid surface, the thin liquid film between the droplet and the surface drains until an instability forms and then ruptures. In this study, we utilize microfluidics to investigate the effects of film thickness on the time to film rupture for water droplets in a flowing continuous phase of silicone oil deposited on solid poly(dimethylsiloxane) (PDMS) surfaces. The water droplets ranged in size from millimeters to micrometers, resulting in estimated values of the film thickness at rupture ranging from 600 nm down to 6 nm. The Stefan-Reynolds equation is used to model film drainage beneath both millimeter- and micrometer-scale droplets. For millimeter-scale droplets, the experimental and analytical film rupture times agree well, whereas large differences are observed for micrometer-scale droplets. We speculate that the differences in the micrometer-scale data result from the increases in the local thin film viscosity due to confinement-induced molecular structure changes in the silicone oil. A modified Stefan-Reynolds equation is used to account for the increased thin film viscosity of the micrometer-scale droplet drainage case.
NASA Astrophysics Data System (ADS)
Graymer, R. W.
2014-12-01
Assignment of the South Napa earthquake to a mapped fault is difficult, as it occurred where three large, northwest-trending faults converge and may interact in the subsurface. The surface rupture did not fall on the main trace of any of these faults, but instead between the Carneros and West Napa faults and northwest along strike from the northern mapped end of the Franklin Fault. The 2014 rupture plane appears to be nearly vertical, based on focal mechanisms of the mainshock and connection of the surface trace/rupture to the relocated hypocenter (J. Hardebeck, USGS). 3D surfaces constructed from published data show that the Carneros Fault is a steeply west-dipping fault that runs just west of the near-vertical 2014 rupture plane. The Carneros Fault does not appear to have been involved in the earthquake, although relocated aftershocks suggest possible minor triggered slip. The main West Napa Fault is also steeply west-dipping and that its projection intersects the 2014 rupture plane at around the depth of the mainshock hypocenter. UAVSAR data (A. Donnellan, JPL) and relocated aftershocks suggest that the main West Napa Fault experienced triggered slip/afterslip along a length of roughly 20 km. It is possible that the 2014 rupture took place along a largely unrecognized westerly strand of the West Napa Fault. The Franklin Fault is a steeply east-dipping fault (with a steeply west-dipping subordinate trace east of Mare Island) that has documented late Quaternary offset. Given the generally aligned orientation of the 3D fault surfaces, an alternative interpretation is that the South Napa earthquake occurred on the northernmost reach of the Franklin Fault within it's 3D junction with the West Napa Fault. This interpretation is supported, but not proven, by a short but prominent linear feature in the UAVSAR data at Slaughterhouse Point west of Vallejo, along trend south-southeast of the observed coseismic surface rupture.
NASA Astrophysics Data System (ADS)
Li, H.; Wang, H.; Li, C.; Zhang, J.; Sun, Z.; Si, J.; Liu, D.; Chevalier, M. L.; Han, L.; Yun, K.; Zheng, Y.
2015-12-01
The 2008 Mw7.9 Wenchuan earthquake produced two co-seismic surface ruptures along Yingxiu-Beichuan fault (~270 km) and the Guanxian-Anxian fault (~80 km) simultaneously in the Longmen Shan thrust belt. Besides, two surface rupture zones were tracked in the southern segment of the Yingxiu-Beichuan rupture zone, one along the Yingxiu fault, the other along the Shenxigou-Longchi fault, which both converged into one rupture zone at the Bajiaomiao village, Hongkou town, where one distinct fault plane with two striation orientations was exposed. The Wenchuan earthquake Fault Scientific Drilling project (WFSD) was carried out right after the earthquake to investigate its faulting mechanisms and rupture process. Six boreholes were drilled along the rupture zones with depths ranging from 600 to 2400 m. WFSD-1 and WFSD-2 are located at the Bajiaomiao area, the southern segment of the Yingxiu-Beichuan rupture zone, while WFSD-4 and WFSD-4S are in the Nanba town area, in the northern part of the rupture zone. Detailed research showed that ~1 mm thick Principal Slip Zone (PSZ) of the Wenchuan earthquake is located at ~589 m-depth in the WFSD-1 cores. Graphite present in the PSZ indicates a low fault strength. Long-term temperature monitoring shows an extremely low fault friction coefficient during the earthquake. Recently, another possible PSZ was found in WFSD-1 cores at ~732 m-depth, with a ~2 mm thick melt layer in the fault gouge, where feldspar was melted but quartz was not, indicating that the frictional melting temperature was 1230°C < T < 1720°C. These two PSZs at depth may correspond to the two co-seismic surface rupture zones. Besides, the Wenchuan earthquake PSZ was also recognized in the WFSD-4S cores, at ~1084 m-depth. About 200-400 μm thick melt layer (fault vein, mainly feldspar), as well as melt injection veins, were observed in the slip zone, where oblique distinct striations were visible on the slip surface. Therefore, there are two PSZs in the shallow crust at the southern segment along the Yingxiu-Beichuan fault, and another one along the northern segment. Melt and graphite in the PSZs indicate that the frictional melting and thermal pressurization are the main fault mechanisms during the Wenchuan earthquake. The melt and graphite can be considered as markers of large earthquakes.
NASA Astrophysics Data System (ADS)
Ferry, M.; Tsutsumi, H.; Meghraoui, M.; Toda, S.
2012-12-01
The 11 March 2011 Mw 9 Tohoku-oki earthquake ruptured ~500 km length of the Japan Trench along the coast of eastern Japan and significantly impacted the stress regime within the crust. The resulting change in seismicity over the Japan mainland was exhibited by the 11 April 2011 Mw 6.6 Iwaki earthquake that ruptured the Itozawa and Yunodake faults. Trending NNW and NW, respectively, these 70-80° W-dipping faults bound the Iwaki basin of Neogene age and have been reactivated simultaneously both along 15-km-long sections. Here, we present initial results from a paleoseismic excavation performed across the Itozawa fault within the Tsunagi Valley at the northern third of the observed surface rupture. At the Tsunagi site, the rupture affects a rice paddy, which provides an ideally horizontal initial state to collect detailed and accurate measurements. The surface break is composed of a continuous 30-to-40-cm-wide purely extensional crack that separates the uplifted block from a gently dipping 1-to-2-m-wide strip affected by right-stepping en-echelon cracks and locally bounded by a ~0.1-m-high reverse scarplet. Total station across-fault topographic profiles indicate the pre-earthquake ground surface was vertically deformed by ~0.6 m while direct field examinations reveal that well-defined rice paddy limits have been left-laterally offset by ~0.1 m. The 12-m-long, 3.5-m-deep trench exposes the 30-to-40-cm-thick cultivated soil overlaying a 1-m-thick red to yellow silt unit, a 2-m-thick alluvial gravel unit and a basal 0.1-1-m-thick organic-rich silt unit. Deformation associated to the 2011 rupture illustrates down-dip movement along a near-vertical fault with a well-expressed bending moment at the surface and generalized warping. On the north wall, the intermediate gravel unit displays a deformation pattern similar to granular flow with only minor discrete faulting and no splay to be continuously followed from the main fault to the surface. On the south wall, warping dominates as well but with some strain localization along two major splays that exhibit 15-20 cm of vertical offset. On both walls, the basal silt unit is vertically deformed by ~0.6 m, similarly to what is observed for the 2011 rupture. Furthermore, the base of said silt unit exhibits indication for secondary faulting prior to the 2011 event and that resemble cracks observed at the present-day surface. This suggests that the Itozawa fault has already ruptured in a similar fashion; probably in the late Pleistocene-early Holocene (radiocarbon samples are being processed). Hence, recent activity of the Itozawa fault may be controlled entirely by large to giant earthquakes along the Japan Trench.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. BEGNAUD; ET AL
2000-09-01
Obtaining accurate seismic event locations is one of the most important goals for monitoring detonations of underground nuclear teats. This is a particular challenge at small magnitudes where the number of recording stations may be less than 20. Although many different procedures are being developed to improve seismic location, most procedures suffer from inadequate testing against accurate information about a seismic event. Events with well-defined attributes, such as latitude, longitude, depth and origin time, are commonly referred to as ground truth (GT). Ground truth comes in many forms and with many different levels of accuracy. Interferometric Synthetic Aperture Radar (InSAR)more » can provide independent and accurate information (ground truth) regarding ground surface deformation and/or rupture. Relating surface deformation to seismic events is trivial when events are large and create a significant surface rupture, such as for the M{sub w} = 7.5 event that occurred in the remote northern region of the Tibetan plateau in 1997. The event, which was a vertical strike slip even appeared anomalous in nature due to the lack of large aftershocks and had an associated surface rupture of over 180 km that was identified and modeled using InSAR. The east-west orientation of the fault rupture provides excellent ground truth for latitude, but is of limited use for longitude. However, a secondary rupture occurred 50 km south of the main shock rupture trace that can provide ground truth with accuracy within 5 km. The smaller, 5-km-long secondary rupture presents a challenge for relating the deformation to a seismic event. The rupture is believed to have a thrust mechanism; the dip of the fimdt allows for some separation between the secondary rupture trace and its associated event epicenter, although not as much as is currently observed from catalog locations. Few events within the time period of the InSAR analysis are candidates for the secondary rupture. Of these, we have identified six possible secondary rupture events (mb range = 3.7-4.8, with two magnitudes not reported), based on synthetic tests and residual analysis. All of the candidate events are scattered about the main and secondary rupture. A Joint Hypocenter Determination (JHD) approach applied to the aftershocks using global picks was not able to identify the secondary event. We added regional data and used propagation path corrections to reduce scatter and remove the 20-km bias seen in the main shock location. A&r preliminary analysis using several different velocity models, none of the candidate events proved to relocate on the surface trace of the secondary rupture. However, one event (mb = not reported) moved from a starting distance of {approximately}106 km to a relocated distance of {approximately}28 km from the secondary rupture, the only candidate event to relocate in relative proximity to the secondary rupture.« less
2012-08-01
unlimited 3.1.2. Fractography Figure 5: SEM images of a 3.18mm thick sheet specimen tested at 760◦C/758MPa. (a) The region near the fracture surface... fractography using secondary electron imaging (SE) in a scanning electron microscope (SEM). No surface oxidation was observed at this temperature. The...ruptured after 210 hours. 3.2.3. Fractography The SEM image of the reconstructed creep ruptured specimen with thickness h = 3.18mm is shown in Fig. 18a
NASA Astrophysics Data System (ADS)
Cowgill, E.; Bernardin, T. S.; Oskin, M. E.; Bowles, C. J.; Yikilmaz, M. B.; Kreylos, O.; Elliott, A. J.; Bishop, M. S.; Gold, R. D.; Morelan, A.; Bawden, G. W.; Hamann, B.; Kellogg, L. H.
2010-12-01
The Mw 7.0 January 12, 2010 Haiti earthquake ended 240 years of relative quiescence following earthquakes that destroyed Port-au-Prince in 1751 and 1770. We place the 2010 rupture in the context of past earthquakes and future hazards by using remote analysis of airborne LiDAR to observe the topographic expression of active faulting and develop a new conceptual model for the earthquake behavior of the eastern Enriquillo fault zone (EFZ). In this model, the 2010 event occupies a long-lived segment boundary at a stepover within the EFZ separating fault segments that likely ruptured in 1751 and 1770, explaining both past clustering and the lack of 2010 surface rupture. Immediately following the 2010 earthquake, an airborne LiDAR point cloud containing over 2.7 billion point measurements of surface features was collected by the Rochester Inst. of Technology. To analyze these data, we capitalize on the human capacity to visually identify meaningful patterns embedded in noisy data by conducting interactive visual analysis of the entire 66.8 GB Haiti terrain data in a 4-sided, 800 ft3 immersive virtual-reality environment at the UC Davis KeckCAVES using the software tools LiDAR Viewer (to analyze point cloud data) and Crusta (for 3D surficial geologic mapping on DEM data). We discovered and measured landforms displaced by past surface-rupturing earthquakes and remotely characterized the regional fault geometry. Our analysis of the ~50 km long reach of EFZ spanning the 2010 epicenter indicates that geomorphic evidence of active faulting is clearer east of the epicenter than to the west. West of the epicenter, and in the region of the 2010 rupture, the fault is poorly defined along an embayed, low-relief range front, with little evidence of recent surface rupture. In contrast, landform offsets of 6 to 50 m along the reach of the EFZ east of the epicenter and closest to Port-au-Prince attest to repeated recent surface-rupturing earthquakes here. Specifically, we found and documented offset landforms including fluvial terrace risers near Dumay (6.3 +0.9/-1.3 m) and Chauffard/Jameau (32.2 +1.8/-3.1 m), a channel (52 +18/-13 m) ~500 m east of the Chauffard/Jameau site, and an alluvial fan near Fayette (8.6 +2.8/-2.5 m). Based on the fault-trace morphology and distribution of sites where we see 6-8 m offsets, we estimate the probable along-strike extent of past surface rupture was 40 to 60 km along this fault reach. Application of moment-rupture area relationships to these observations suggest that an earthquake similar to, or larger than the Mw 7.0 2010 event is possible along the Enriquillo fault near Port-au-Prince. We deduce that the 2010 earthquake was a relatively small event on a boundary between fault segments that ruptured in 1751 and 1770, based on new analysis of historical damage reports and the gap of well-defined fault-zone morphology where the 2010 earthquake occurred.
NASA Astrophysics Data System (ADS)
Ulrich, Thomas; Gabriel, Alice-Agnes
2017-04-01
Natural fault geometries are subject to a large degree of uncertainty. Their geometrical structure is not directly observable and may only be inferred from surface traces, or geophysical measurements. Most studies aiming at assessing the potential seismic hazard of natural faults rely on idealised shaped models, based on observable large-scale features. Yet, real faults are wavy at all scales, their geometric features presenting similar statistical properties from the micro to the regional scale. Dynamic rupture simulations aim to capture the observed complexity of earthquake sources and ground-motions. From a numerical point of view, incorporating rough faults in such simulations is challenging - it requires optimised codes able to run efficiently on high-performance computers and simultaneously handle complex geometries. Physics-based rupture dynamics hosted by rough faults appear to be much closer to source models inverted from observation in terms of complexity. Moreover, the simulated ground-motions present many similarities with observed ground-motions records. Thus, such simulations may foster our understanding of earthquake source processes, and help deriving more accurate seismic hazard estimates. In this presentation, the software package SeisSol (www.seissol.org), based on an ADER-Discontinuous Galerkin scheme, is used to solve the spontaneous dynamic earthquake rupture problem. The usage of tetrahedral unstructured meshes naturally allows for complicated fault geometries. However, SeisSol's high-order discretisation in time and space is not particularly suited for small-scale fault roughness. We will demonstrate modelling conditions under which SeisSol resolves rupture dynamics on rough faults accurately. The strong impact of the geometric gradient of the fault surface on the rupture process is then shown in 3D simulations. Following, the benefits of explicitly modelling fault curvature and roughness, in distinction to prescribing heterogeneous initial stress conditions on a planar fault, is demonstrated. Furthermore, we show that rupture extend, rupture front coherency and rupture speed are highly dependent on the initial amplitude of stress acting on the fault, defined by the normalized prestress factor R, the ratio of the potential stress drop over the breakdown stress drop. The effects of fault complexity are particularly pronounced for lower R. By low-pass filtering a rough fault at several cut-off wavelengths, we then try to capture rupture complexity using a simplified fault geometry. We find that equivalent source dynamics can only be obtained using a scarcely filtered fault associated with a reduced stress level. To investigate the wavelength-dependent roughness effect, the fault geometry is bandpass-filtered over several spectral ranges. We show that geometric fluctuations cause rupture velocity fluctuations of similar length scale. The impact of fault geometry is especially pronounced when the rupture front velocity is near supershear. Roughness fluctuations significantly smaller than the rupture front characteristic dimension (cohesive zone size) affect only macroscopic rupture properties, thus, posing a minimum length scale limiting the required resolution of 3D fault complexity. Lastly, the effect of fault curvature and roughness on the simulated ground-motions is assessed. Despite employing a simple linear slip weakening friction law, the simulated ground-motions compare well with estimates from ground motions prediction equations, even at relatively high frequencies.
NASA Astrophysics Data System (ADS)
Fialko, Y.; Gonzalez, A.; Gonzalez-Garcia, J. J.; Barbot, S.; Leprince, S.; Sandwell, D. T.; Agnew, D. C.
2010-12-01
The April 4, 2010 "Easter Sunday" earthquake on the US-Mexico border was the largest event to strike Southern California in the last 18 years. The earthquake occurred on a northwest trending fault close to, but not coincident with the identified 1892 Laguna Salada rupture. We investigate coseismic deformation due to the 2010 El Mayor-Cucapah earthquake using Synthetic Aperture Radar (SAR) imagery form ENVISAT and ALOS satellites, optical imagery from SPOT-5 satellite, and continuous and campaign GPS data. The earliest campaign postseismic GPS survey was conducted within days after the earthquake, and provided the near-field cosesmic offsets. Along-track SAR interferograms and amplitude cross-correlation of optical images reveal a relatively simple continuous fault trace with maximum offsets of the order of 3 meters. This is in contrast to the results of geological mapping that portrayed a complex broad zone of distributed faulting. Also, SAR data indicate that the rupture propagated bi-laterally from the epicenter near the town of Durango both to the North-West into the Cucapah mountains and to the South-East into the Mexically valley. The inferred South-East part of the rupture was subsequently field-checked and associated with several fresh scarps, although overall the earthquake fault does not have a conspicuous surface trace South-East of the hypocenter. It is worth noting that the 2010 earthquake propagated into stress shadows of prior events - the Laguna Salada earthquake that ruptured the North-West part of the fault in 1892, and several M6+ earthquakes that ruptured the South-East part of the fault over the last century. Analysis of the coseismic displacement field at the Earth's surface (in particular, the full 3-component displacement field retrieved from SAR and optical imagery) shows a pronounced asymmetry in horizontal displacements across both nodal planes. The maximum displacements are observed in the North-Eastern and South-Western quadrants. This pattern cannot be explained by oblique slip on a quasi-planar fault. Multi-parametric inversions of the space geodetic data suggest that the El Mayor-Cucapah earthquake occurred on a helix-shaped rupture, with Eastward dip in the Northern section and Westward dip in the Southern section. This interpretation is consistent with field observations of the surface rupture and aftershock data, and provides an explanation for a strong non-double-couple component suggested by the seismic moment tensor solution. The total geodetic moment of our best-fitting model is in a good agreement with the seismic moment. We will also discuss effects of the elastic structure on the inferred static rupture model, and observations of early postseismic deformation.
Surface Rupture Characteristics and Rupture Mechanics of the Yushu Earthquake (Ms7.1), 14/04/2010
NASA Astrophysics Data System (ADS)
Pan, J.; Li, H.; Xu, Z.; Li, N.; Wu, F.; Guo, R.; Zhang, W.
2010-12-01
On April 14th 2010, a disastrous earthquake (Ms 7.1) struck Yushu County, Qinghai Province, China, killing thousands of people. This earthquake occurred as a result of sinistral strike-slip faulting on the western segment of the Xianshuihe Fault zone in eastern Tibetan Plateau. Our group conducted scientific investigation in the field on co-seismic surface rupture and active tectonics in the epicenter area immediately after the earthquake. Here, we introduce our preliminary results on the surface ruptures and rupture mechanics of the Yushu Earthquake. The surface rupture zone of Yushu earthquake, which is about 49 km-long, consists of 3 discontinuous left stepping rupture segments, which are 19 km, 22 km, and about 8 km, respectively, from west to east. Each segment consists of a series of right stepping en-echelon branch ruptures. The branch ruptures consist of interphase push-up and tension fissures or simply en-echelon tension fissures. The co-seismic displacements had been surveyed with a total station in detail on landmarks such as rivers, gullies, roads, farmlands, wire poles, and fences. The maximum offset measured is 2.3m, located near the Guoyangyansongduo Village. There are 3 offset peaks along the rupture zone corresponding to the 3 segments of the surface rupture zone. The maximum offsets in the west, central, and east segment rupture zones are 1.4m, 2.3m, and 1.6m respectively. The surface rupture zone of Yushu earthquake strikes in a 310°NW direction. The fault plane dips to the northeast and the dip angle is about 81°. The rupture zone is developed in transtension setting. Tension normal fault developed during the sinistral strike-slip process of the fault. The valley west of Yushu City and the Longbao Lake are both pull-apart basins formed during the transtension activity of the fault.
Near-Fault Strong Ground Motions during the 2016 Kumamoto, Japan, Earthquake
NASA Astrophysics Data System (ADS)
Iwata, T.; Asano, K.
2016-12-01
The 2016 Kumamoto mainshock (Mw7.0) produced a surface ruptured fault of about 20km long with maximum 2m offset, and identified as a surface ruptured event. Two strong motion records were observed near the surface ruptured fault at Mashiki town hall and Nishihara village hall. We investigated characteristics of those strong ground motions. As the acceleration records consisted of the baseline errors caused by nonzero initial acceleration and tilting of the accelerograph, we carefully removed the baseline errors (c.f. Chiu, 2001, Boore and Bommer, 2005) so as to obtain velocity and displacements. The observed permanent displacements were about 1.2m in horizontal direction and about 0.7m sinking in vertical direction at Mashiki town hall, and about 1.7m and 1.8m, respectively, at Nishihara village hall. Those permanent displacements almost coincide to results by GNSS and InSAR analysis (e.g., GSI, 2016). It takes about only 3 s to reach the permanent displacement. Somerville (2003) pointed out that ground motions from earthquakes producing large surface ruptures appeared to have systematically weaker ground motions than ground motions from earthquakes whose rupture were confined to the subsurface using the Ground Motion Prediction Equation (GMPE) for response spectra (Abrahamson and Silva, 1997). We calculated the response spectra of those records, compared them to the GMPE with the same manner and found two records were systematically larger than the expected from the GMPE in the period range of 0.3 s to 5 s. We need to re-consider the working hypothesis that the near-fault ground motions are weaker and to separate the near-fault and site effects on ground motions. Strong motions in the longer period range would be mainly caused by the near-fault (near-field term) effect.We used the acceleration data of the Kumamoto seismic intensity information network, provided by JMA.
Haeussler, Peter J.; Schwartz, D.P.; Dawson, T.E.; Stenner, Heidi D.; Lienkaemper, J.J.; Cinti, F.; Montone, Paola; Sherrod, B.; Craw, P.
2004-01-01
On 3 November 2002, an M7.9 earthquake produced 340 km of surface rupture on the Denali and two related faults in Alaska. The rupture proceeded from west to east and began with a 40-km-long break on a previously unknown thrust fault. Estimates of surface slip on this thrust are 3-6 m. Next came the principal surface break along ???218 km of the Denali fault. Right-lateral offsets averaged around 5 m and increased eastward to a maximum of nearly 9 m. The fault also ruptured beneath the trans-Alaska oil pipeline, which withstood almost 6 m of lateral offset. Finally, slip turned southeastward onto the Totschunda fault. Right-lateral offsets are up to 3 m, and the surface rupture is about 76 km long. This three-part rupture ranks among the longest strike-slip events of the past two centuries. The earthquake is typical when compared to other large earthquakes on major intracontinental strike-slip faults. ?? 2004, Earthquake Engineering Research Institute.
Movement of fine particles on an air bubble surface studied using high-speed video microscopy.
Nguyen, Anh V; Evans, Geoffrey M
2004-05-01
A CCD high-speed video microscopy system operating at 1000 frames per second was used to obtain direct quantitative measurements of the trajectories of fine glass spheres on the surface of air bubbles. The glass spheres were rendered hydrophobic by a methylation process. Rupture of the intervening water film between a hydrophobic particle and an air bubble with the consequent formation of a three-phase contact was observed. The bubble-particle sliding attachment interaction is not satisfactorily described by the available theories. Surface forces had little effect on the particle sliding with a water film, which ruptured probably due to the submicrometer-sized gas bubbles existing at the hydrophobic particle-water interface.
NASA Astrophysics Data System (ADS)
Barnhart, W. D.; Briggs, R.
2015-12-01
Geodetic imaging techniques enable researchers to "see" details of fault rupture that cannot be captured by complementary tools such as seismology and field studies, thus providing increasingly detailed information about surface strain, slip kinematics, and how an earthquake may be transcribed into the geological record. For example, the recent Haiti, Sierra El Mayor, and Nepal earthquakes illustrate the fundamental role of geodetic observations in recording blind ruptures where purely geological and seismological studies provided incomplete views of rupture kinematics. Traditional earthquake hazard analyses typically rely on sparse paleoseismic observations and incomplete mapping, simple assumptions of slip kinematics from Andersonian faulting, and earthquake analogs to characterize the probabilities of forthcoming ruptures and the severity of ground accelerations. Spatially dense geodetic observations in turn help to identify where these prevailing assumptions regarding fault behavior break down and highlight new and unexpected kinematic slip behavior. Here, we focus on three key contributions of space geodetic observations to the analysis of co-seismic deformation: identifying near-surface co-seismic slip where no easily recognized fault rupture exists; discerning non-Andersonian faulting styles; and quantifying distributed, off-fault deformation. The 2013 Balochistan strike slip earthquake in Pakistan illuminates how space geodesy precisely images non-Andersonian behavior and off-fault deformation. Through analysis of high-resolution optical imagery and DEMs, evidence emerges that a single fault map slip as both a strike slip and dip slip fault across multiple seismic cycles. These observations likewise enable us to quantify on-fault deformation, which account for ~72% of the displacements in this earthquake. Nonetheless, the spatial distribution of on- and off-fault deformation in this event is highly spatially variable- a complicating factor for comparisons of geologic and geodetic slip rates. As such, detailed studies such as this will play a continuing vital role in the accurate assessment of short- and long-term fault slip kinematics.
Cowgill, Eric; Bernardin, Tony S.; Oskin, Michael E.; Bowles, Christopher; Yikilmaz, M. Burak; Kreylos, Oliver; Elliott, Austin J.; Bishop, Scott; Gold, Ryan D.; Morelan, Alexander; Bawden, Gerald W.; Hamann, Bernd; Kellogg, Louise
2012-01-01
The moment magnitude (Mw) 7.0 12 January 2010 Haiti earthquake is the first major earthquake for which a large-footprint LiDAR (light detection and ranging) survey was acquired within several weeks of the event. Here, we describe the use of virtual reality data visualization to analyze massive amounts (67 GB on disk) of multiresolution terrain data during the rapid scientific response to a major natural disaster. In particular, we describe a method for conducting virtual field work using both desktop computers and a 4-sided, 22 m3 CAVE immersive virtual reality environment, along with KeckCAVES (Keck Center for Active Visualization in the Earth Sciences) software tools LiDAR Viewer, to analyze LiDAR point-cloud data, and Crusta, for 2.5 dimensional surficial geologic mapping on a bare-earth digital elevation model. This system enabled virtual field work that yielded remote observations of the topographic expression of active faulting within an ∼75-km-long section of the eastern Enriquillo–Plantain Garden fault spanning the 2010 epicenter. Virtual field observations indicated that the geomorphic evidence of active faulting and ancient surface rupture varies along strike. Landform offsets of 6–50 m along the Enriquillo–Plantain Garden fault east of the 2010 epicenter and closest to Port-au-Prince attest to repeated recent surface-rupturing earthquakes there. In the west, the fault trace is well defined by displaced landforms, but it is not as clear as in the east. The 2010 epicenter is within a transition zone between these sections that extends from Grand Goâve in the west to Fayette in the east. Within this transition, between L'Acul (lat 72°40′W) and the Rouillone River (lat 72°35′W), the Enriquillo–Plantain Garden fault is undefined along an embayed low-relief range front, with little evidence of recent surface rupture. Based on the geometry of the eastern and western faults that show evidence of recent surface rupture, we propose that the 2010 event occurred within a stepover that appears to have served as a long-lived boundary between rupture segments, explaining the lack of 2010 surface rupture. This study demonstrates how virtual reality–based data visualization has the potential to transform rapid scientific response by enabling virtual field studies and real-time interactive analysis of massive terrain data sets.
Dynamic Rupture and Energy Partition in Models of Earthquake Faults
NASA Astrophysics Data System (ADS)
Shi, Z.; Needleman, A.; Ben-Zion, Y.
2006-12-01
We study properties of dynamic rupture and the partition of energy between radiation and dissipative mechanisms using 2D finite element calculations. The goal is to improve the understanding of these processes on faults at different evolutionary stages associated with different levels of geometrical complexity and possible presence of contrasting elastic properties across the fault. The initial calculations employ homogeneous media and a planar internal interface governed by a general rate- and state-dependent friction law that accounts for the gradual response of shear stress to abrupt changes of normal stress. Ruptures are initiated by gradually increasing the shear traction in a limited nucleation zone near the origin. By changing the rate dependency of the friction law and the size of the nucleation zone, we obtain four rupture modes: (i) supershear crack-like rupture; (ii) subshear crack-like rupture; (iii) subshear single pulse; and (iv) supershear train of pulses. Increasing the initial shear stress produces a transition from a subshear crack to a supershear crack, while increasing the rate dependency of the friction produces self-healing and the transition from a crack-like to a pulse mode of rupture. Properties of the nucleation process can strongly affect the rupture mode. In the cases examined, the total release of strain energy (over the same propagation distance) decreases following the order: supershear crack, subshear crack, train of pulses and single pulse. The ratio of the radiated kinetic energy to the energy dissipated in friction is about 5% for the supershear crack case and about 2% for the other three cases. Future work will involve similar calculations accounting for the generation of plastic strain in the bulk, the material contrast across the fault, and the addition of cohesive surfaces in the bulk to allow for the generation of new surfaces. The study may provide fundamental information on rupture processes in geologically-relevant circumstances and improve the understanding of physical limits on extreme ground motion. The results may be used to check assumptions made in observational works and may help to guide new observational research.
Lindvall, S.C.; Rockwell, T.K.; Dawson, T.E.; Helms, J.G.; Bowman, K.W.
2002-01-01
We conducted paleoseismic studies in a closed depression along the San Andreas fault on the north flank of Frazier Mountain near Frazier Park, California. We recognized two earthquake ruptures in our trench exposure and interpreted the most recent rupture, event 1, to represent the historical 1857 earthquake. We also exposed evidence of an earlier surface rupture, event 2, along an older group of faults that did not rerupture during event 1. Radiocarbon dating of the stratigraphy above and below the earlier event constrains its probable age to between A.D. 1460 and 1600. Because we documented continuous, unfaulted stratigraphy between the earlier event horizon and the youngest event horizon in the portion of the fault zone exposed, we infer event 2 to be the penultimate event. We observed no direct evidence of an 1812 earthquake in our exposures. However, we cannot preclude the presence of this event at our site due to limited age control in the upper part of the section and the possibility of other fault strands beyond the limits of our exposures. Based on overlapping age ranges, event 2 at Frazier Mountain may correlate with event B at the Bidart fan site in the Carrizo Plain to the northwest and events V and W4 at Pallett Creek and Wrightwood, respectively, to the southeast. If the events recognized at these multiple sites resulted from the same surface rupture, then it appears that the San Andreas fault has repeatedly failed in large ruptures similar in extent to 1857.
3D Dynamic Rupture Simulations along Dipping Faults, with a focus on the Wasatch Fault Zone, Utah
NASA Astrophysics Data System (ADS)
Withers, K.; Moschetti, M. P.
2017-12-01
We study dynamic rupture and ground motion from dip-slip faults in regions that have high-seismic hazard, such as the Wasatch fault zone, Utah. Previous numerical simulations have modeled deterministic ground motion along segments of this fault in the heavily populated regions near Salt Lake City but were restricted to low frequencies ( 1 Hz). We seek to better understand the rupture process and assess broadband ground motions and variability from the Wasatch Fault Zone by extending deterministic ground motion prediction to higher frequencies (up to 5 Hz). We perform simulations along a dipping normal fault (40 x 20 km along strike and width, respectively) with characteristics derived from geologic observations to generate a suite of ruptures > Mw 6.5. This approach utilizes dynamic simulations (fully physics-based models, where the initial stress drop and friction law are imposed) using a summation by parts (SBP) method. The simulations include rough-fault topography following a self-similar fractal distribution (over length scales from 100 m to the size of the fault) in addition to off-fault plasticity. Energy losses from heat and other mechanisms, modeled as anelastic attenuation, are also included, as well as free-surface topography, which can significantly affect ground motion patterns. We compare the effect of material structure and both rate and state and slip-weakening friction laws have on rupture propagation. The simulations show reduced slip and moment release in the near surface with the inclusion of plasticity, better agreeing with observations of shallow slip deficit. Long-wavelength fault geometry imparts a non-uniform stress distribution along both dip and strike, influencing the preferred rupture direction and hypocenter location, potentially important for seismic hazard estimation.
Laboratory experiment of seismic cycles using compliant viscoelastic materials
NASA Astrophysics Data System (ADS)
Yamaguchi, T.
2016-12-01
It is well known that surface asperities at fault interfaces play an essential role in stick-slip friction. There have been many laboratory experiments conducted using rocks and some analogue materials to understand the effects of asperities and the underlying mechanisms. Among such materials, soft polymer gels have great advantages of slowing down propagating rupture front speed as well as shear wave speed: it facilitates observation of the dynamic rupture behavior. However, most experiments were done with bimaterial interfaces (combination of soft and hard materials) and there are few experiments with an identical (gel on gel) setup. Furthermore, there have been also few studies mentioning the link between local asperity contact and macroscopic dynamic rupture behavior. In this talk, we report our experimental studies on stick-slip friction between gels having controlled artificial asperities. We show that, depending on number density and configuration randomness of the asperities, the rupture behavior greatly changes: when the asperities are located periodically with optimum number densities, fast rupture propagation occurs, while slow and heterogeneous slip behavior is observed for samples having randomly located asperities. We discuss the importance of low frequency (large wavelength) excitation of the normal displacement contributing to weakening the fault interface. We also discuss the observed regular to slow slip transition with a simple model.
Cohesive zone length of metagabbro at supershear rupture velocity
NASA Astrophysics Data System (ADS)
Fukuyama, Eiichi; Xu, Shiqing; Yamashita, Futoshi; Mizoguchi, Kazuo
2016-10-01
We investigated the shear strain field ahead of a supershear rupture. The strain array data along the sliding fault surfaces were obtained during the large-scale biaxial friction experiments at the National Research Institute for Earth Science and Disaster Resilience. These friction experiments were done using a pair of meter-scale metagabbro rock specimens whose simulated fault area was 1.5 m × 0.1 m. A 2.6-MPa normal stress was applied with loading velocity of 0.1 mm/s. Near-fault strain was measured by 32 two-component semiconductor strain gauges installed at an interval of 50 mm and 10 mm off the fault and recorded at an interval of 1 MHz. Many stick-slip events were observed in the experiments. We chose ten unilateral rupture events that propagated with supershear rupture velocity without preceding foreshocks. Focusing on the rupture front, stress concentration was observed and sharp stress drop occurred immediately inside the ruptured area. The temporal variation of strain array data is converted to the spatial variation of strain assuming a constant rupture velocity. We picked up the peak strain and zero-crossing strain locations to measure the cohesive zone length. By compiling the stick-slip event data, the cohesive zone length is about 50 mm although it scattered among the events. We could not see any systematic variation at the location but some dependence on the rupture velocity. The cohesive zone length decreases as the rupture velocity increases, especially larger than √{2} times the shear wave velocity. This feature is consistent with the theoretical prediction.
Liu-Zeng, J.; Zhang, Z.; Wen, L.; Tapponnier, P.; Sun, Jielun; Xing, X.; Hu, G.; Xu, Q.; Zeng, L.; Ding, L.; Ji, C.; Hudnut, K.W.; van der Woerd, J.
2009-01-01
The Ms 8.0, Wenchuan earthquake, which devastated the mountainous western rim of the Sichuan basin in central China, produced a surface rupture over 200??km-long with oblique thrust/dextral slip and maximum scarp heights of ~ 10??m. It thus ranks as one of the world's largest continental mega-thrust events in the last 150??yrs. Field investigation shows clear surface breaks along two of the main branches of the NE-trending Longmen Shan thrust fault system. The principal rupture, on the NW-dipping Beichuan fault, displays nearly equal amounts of thrust and right-lateral slip. Basin-ward of this rupture, another continuous surface break is observed for over 70??km on the parallel, more shallowly NW-dipping Pengguan fault. Slip on this latter fault was pure thrusting, with a maximum scarp height of ~ 3.5??m. This is one of the very few reported instances of crustal-scale co-seismic slip partitioning on parallel thrusts. This out-of-sequence event, with distributed surface breaks on crustal mega-thrusts, highlights regional, ~ EW-directed, present day crustal shortening oblique to the Longmen Shan margin of Tibet. The long rupture and large offsets with strong horizontal shortening that characterize the Wenchuan earthquake herald a re-evaluation of tectonic models anticipating little or no active shortening of the upper crust along this edge of the plateau, and require a re-assessment of seismic hazard along potentially under-rated active faults across the densely populated western Sichuan basin and mountains. ?? 2009 Elsevier B.V.
Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand.
Hamling, Ian J; Hreinsdóttir, Sigrún; Clark, Kate; Elliott, John; Liang, Cunren; Fielding, Eric; Litchfield, Nicola; Villamor, Pilar; Wallace, Laura; Wright, Tim J; D'Anastasio, Elisabetta; Bannister, Stephen; Burbidge, David; Denys, Paul; Gentle, Paula; Howarth, Jamie; Mueller, Christof; Palmer, Neville; Pearson, Chris; Power, William; Barnes, Philip; Barrell, David J A; Van Dissen, Russ; Langridge, Robert; Little, Tim; Nicol, Andrew; Pettinga, Jarg; Rowland, Julie; Stirling, Mark
2017-04-14
On 14 November 2016, northeastern South Island of New Zealand was struck by a major moment magnitude ( M w ) 7.8 earthquake. Field observations, in conjunction with interferometric synthetic aperture radar, Global Positioning System, and seismology data, reveal this to be one of the most complex earthquakes ever recorded. The rupture propagated northward for more than 170 kilometers along both mapped and unmapped faults before continuing offshore at the island's northeastern extent. Geodetic and field observations reveal surface ruptures along at least 12 major faults, including possible slip along the southern Hikurangi subduction interface; extensive uplift along much of the coastline; and widespread anelastic deformation, including the ~8-meter uplift of a fault-bounded block. This complex earthquake defies many conventional assumptions about the degree to which earthquake ruptures are controlled by fault segmentation and should motivate reevaluation of these issues in seismic hazard models. Copyright © 2017, American Association for the Advancement of Science.
In Vitro Spoilation of Silicone-Hydrogel Soft Contact Lenses in a Model-Blink Cell.
Peng, Cheng-Chun; Fajardo, Neil P; Razunguzwa, Trust; Radke, Clayton J
2015-07-01
We developed an in vitro model-blink cell that reproduces the mechanism of in vivo fouling of soft contact lenses. In the model-blink cell, model tear lipid directly contacts the lens surface after forced aqueous rupture, mirroring the pre-lens tear-film breakup during interblink. Soft contact lenses are attached to a Teflon holder and immersed in artificial tear solution with protein, salts, and mucins. Artificial tear-lipid solution is spread over the air/tear interface as a duplex lipid layer. The aqueous tear film is periodically ruptured and reformed by withdrawing and reinjecting tear solution into the cell, mimicking the blink-rupture process. Fouled deposits appear on the lenses after cycling, and their compositions and spatial distributions are subsequently analyzed by optical microscopy, laser ablation electrospray ionization mass spectrometry, and two-photon fluorescence confocal scanning laser microscopy. Discrete deposit (white) spots with an average size of 20 to 300 μm are observed on the studied lenses, confirming what is seen in vivo and validating the in vitro model-blink cell. Targeted lipids (cholesterol) and proteins (albumin from bovine serum) are identified in the discrete surface deposits. Both lipid and protein occur simultaneously in the surface deposits and overlap with the white spots observed by optical microscopy. Additionally, lipid and protein penetrate into the bulk of tested silicone-hydrogel lenses, likely attributed to the bicontinuous microstructure of oleophilic silicone and hydrophilic polymer phases of the lens. In vitro spoilation of soft contact lenses is successfully achieved by the model-blink cell confirming the tear rupture/deposition mechanism of lens fouling. The model-blink cell provides a reliable laboratory tool for screening new antifouling lens materials, surface coatings, and care solutions.
Rupture preparation process controlled by surface roughness on meter-scale laboratory fault
NASA Astrophysics Data System (ADS)
Yamashita, Futoshi; Fukuyama, Eiichi; Xu, Shiqing; Mizoguchi, Kazuo; Kawakata, Hironori; Takizawa, Shigeru
2018-05-01
We investigate the effect of fault surface roughness on rupture preparation characteristics using meter-scale metagabbro specimens. We repeatedly conducted the experiments with the same pair of rock specimens to make the fault surface rough. We obtained three experimental results under the same experimental conditions (6.7 MPa of normal stress and 0.01 mm/s of loading rate) but at different roughness conditions (smooth, moderately roughened, and heavily roughened). During each experiment, we observed many stick-slip events preceded by precursory slow slip. We investigated when and where slow slip initiated by using the strain gauge data processed by the Kalman filter algorithm. The observed rupture preparation processes on the smooth fault (i.e. the first experiment among the three) showed high repeatability of the spatiotemporal distributions of slow slip initiation. Local stress measurements revealed that slow slip initiated around the region where the ratio of shear to normal stress (τ/σ) was the highest as expected from finite element method (FEM) modeling. However, the exact location of slow slip initiation was where τ/σ became locally minimum, probably due to the frictional heterogeneity. In the experiment on the moderately roughened fault, some irregular events were observed, though the basic characteristics of other regular events were similar to those on the smooth fault. Local stress data revealed that the spatiotemporal characteristics of slow slip initiation and the resulting τ/σ drop for irregular events were different from those for regular ones even under similar stress conditions. On the heavily roughened fault, the location of slow slip initiation was not consistent with τ/σ anymore because of the highly heterogeneous static friction on the fault, which also decreased the repeatability of spatiotemporal distributions of slow slip initiation. These results suggest that fault surface roughness strongly controls the rupture preparation process, and generally increases its complexity with the degree of roughness.
NASA Astrophysics Data System (ADS)
Asano, K.; Iwata, T.; Kubo, H.
2015-12-01
A thrust earthquake of MW 6.3 occurred along the northern part of the Itoigawa-Shizuoka Tectonic Line (ISTL) in the northern Nagano prefecture, central Japan, on November 22, 2014. This event was reported to be related to an active fault, the Kamishiro fault belonging to the ISTL (e.g., HERP, 2014). The surface rupture is observed along the Kamishiro fault (e.g., Lin et al., 2015; Okada et al., 2015). We estimated the kinematic source rupture process of this earthquake through the multiple time-window linear waveform inversion method (Hartzell and Heaton, 1983). We used velocity waveforms in 0.05-1 Hz from 12 strong motion stations of K-NET, KiK-net (NIED), JMA, and Nagano prefecture (SK-net, ERI). In order to enhance the reliability in Green's functions, we assumed one-dimensional velocity structure models different for the different stations, which were extracted from the nation-wide three-dimensional velocity structure model, Japan Integrated Velocity Structure Model (JIVSM, Koketsu et al., 2012). Considering the spatial distribution of aftershocks (Sakai et al., 2015) and surface ruptures, the assumed fault model consisted of two dip-bending fault segments with different dip angles between the northern and southern segments. The total length and width of the fault plane is 20 km and 13 km, relatively, and the fault model is divided into 260 subfaults of 1 km × 1 km in space and six smoothed ramp functions in time. An asperity or large slip area with a peak slip of 1.9 m was estimated in the lower plane of the northern segment in the approximate depth range of 4 to 8 km. The depth extent of this asperity is consistent with the seismogenic zone revealed by past studies (e.g., Panayotopoulos et al., 2014). In contrast, the slip in the southern segment is relatively concentrated in the shallow portion of the segment where the surface ruptures were found along the Kamishiro fault. The overall spatial rupture pattern of the source fault, in which the deep asperity was located on the northern segment and surface rupture was found on the southern segment, seems to be spatially consistent with the mapped active faults. These findings suggest characteristic and repeating features of fault ruptures along active faults where static offsets have accumulated over past events, and it would be a good constraint on earthquake scenarios along it.
NASA Astrophysics Data System (ADS)
Arai, H.; Ando, R.; Aoki, Y.
2017-12-01
The 2016 Kumamoto earthquake sequence hit the SW Japan, from April 14th to 16th and its sequence includes two M6-class foreshocks and the main shock (Mw 7.0). Importantly, the detailed surface displacement caused solely by the two foreshocks could be captured by a SAR observation isolated from the mainshock deformation. The foreshocks ruptured the previously mapped Hinagu fault and their hypocentral locations and the aftershock distribution indicates the involvement of two different subparallel faults. Therefore we assumed that the 1st and the 2nd foreshocks respectively ruptured each of the subparallel faults (faults A and B). One of the interesting points of this earthquake is that the two major foreshocks had a temporal gap of 2.5 hours even though the fault A and B are quite close by each other. This suggests that the stress perturbation due to the 1st foreshock is not large enough to trigger the 2nd one right away but that it's large enough to bring about the following earthquake after a delay time.We aim to reproduce the foreshock sequence such as rupture jumping over the subparallel faults by using dynamic rupture simulations. We employed a spatiotemporal-boundary integral equation method accelerated by the Fast Domain Partitioning Method (Ando, 2016, GJI) since this method allows us to construct a complex fault geometry in 3D media. Our model has two faults and a free ground surface. We conducted rupture simulation with various sets of parameters to identify the optimal condition describing the observation.Our simulation results are roughly categorized into 3 cases with regard to the criticality for the rupture jumping. The case 1 (supercritical case) shows the fault A and B ruptured consecutively without any temporal gap. In the case 2 (nearly critical), the rupture on the fault B started with a temporal gap after the fault A finished rupturing, which is what we expected as a reproduction. In the case 3 (subcritical), only the fault A ruptured and its rupture did not transfer to the fault B. We succeed in reproducing rupture jumping over two faults with a temporal gap due to the nucleation by taking account of a velocity strengthening (direct) effect. With a detailed analysis of the case 2, we can constrain ranges of parameters strictly, and this gives us deeper insights into the physics underlying the delayed foreshock activity.
Teran, Orlando; Fletcher, John L.; Oskin, Michael; Rockwell, Thomas; Hudnut, Kenneth W.; Spelz, Ronald; Akciz, Sinan; Hernandez-Flores, Ana Paula; Morelan, Alexander
2015-01-01
We systematically mapped (scales >1:500) the surface rupture of the 4 April 2010 Mw (moment magnitude) 7.2 El Mayor-Cucapah earthquake through the Sierra Cucapah (Baja California, northwestern Mexico) to understand how faults with similar structural and lithologic characteristics control rupture zone fabric, which is here defined by the thickness, distribution, and internal configuration of shearing in a rupture zone. Fault zone thickness and master fault dip are strongly correlated with many parameters of rupture zone fabric. Wider fault zones produce progressively wider rupture zones and both of these parameters increase systematically with decreasing dip of master faults, which varies from 20° to 90° in our dataset. Principal scarps that accommodate more than 90% of the total coseismic slip in a given transect are only observed in fault sections with narrow rupture zones (<25 m). As rupture zone thickness increases, the number of scarps in a given transect increases, and the scarp with the greatest relative amount of coseismic slip decreases. Rupture zones in previously undeformed alluvium become wider and have more complex arrangements of secondary fractures with oblique slip compared to those with pure normal dip-slip or pure strike-slip. Field relations and lidar (light detection and ranging) difference models show that as magnitude of coseismic slip increases from 0 to 60 cm, the links between kinematically distinct fracture sets increase systematically to the point of forming a throughgoing principal scarp. Our data indicate that secondary faults and penetrative off-fault strain continue to accommodate the oblique kinematics of coseismic slip after the formation of a thoroughgoing principal scarp. Among the widest rupture zones in the Sierra Cucapah are those developed above buried low angle faults due to the transfer of slip to widely distributed steeper faults, which are mechanically more favorably oriented. The results from this study show that the measureable parameters that define rupture zone fabric allow for testing hypotheses concerning the mechanics and propagation of earthquake ruptures, as well as for siting and designing facilities to be constructed in regions near active faults.
Quantifying near-field and off-fault deformation patterns of the 1992 Mw 7.3 Landers earthquake
NASA Astrophysics Data System (ADS)
Milliner, Christopher W. D.; Dolan, James F.; Hollingsworth, James; Leprince, Sebastien; Ayoub, Francois; Sammis, Charles G.
2015-05-01
Coseismic surface deformation in large earthquakes is typically measured using field mapping and with a range of geodetic methods (e.g., InSAR, lidar differencing, and GPS). Current methods, however, either fail to capture patterns of near-field coseismic surface deformation or lack preevent data. Consequently, the characteristics of off-fault deformation and the parameters that control it remain poorly understood. We develop a standardized method to fully measure the surface, near-field, coseismic deformation patterns at high resolution using the COSI-Corr program by correlating pairs of aerial photographs taken before and after the 1992 Mw 7.3 Landers earthquake. COSI-Corr offers the advantage of measuring displacement across the entire zone of surface deformation and over a wider aperture than that available to field geologists. For the Landers earthquake, our measured displacements are systematically larger than the field measurements, indicating the presence of off-fault deformation. We show that 46% of the total surface displacement occurred as off-fault deformation, over a mean deformation width of 154 m. The magnitude and width of off-fault deformation along the rupture is primarily controlled by the macroscopic structural complexity of the fault system, with a weak correlation with the type of near-surface materials through which the rupture propagated. Both the magnitude and width of distributed deformation are largest in stepovers, bends, and at the southern termination of the surface rupture. We find that slip along the surface rupture exhibits a consistent degree of variability at all observable length scales and that the slip distribution is self-affine fractal with dimension of 1.56.
Separated rupture and retraction of a bi-layer free film
NASA Astrophysics Data System (ADS)
Stewart, Peter; Feng, Jie; Griffiths, Ian
2017-11-01
We investigate the dynamics of a rising air bubble in an aqueous phase coated with a layer of oil. Recent experiments have shown that bubble rupture at the compound air/oil/aqueous interface can effectively disperse submicrometre oil droplets into the aqueous phase, suggesting a possible mechanism for clean-up of oil spillages on the surface of the ocean. Using a theoretical model we consider the stability of the long liquid free film formed as the bubble reaches the free surface, composed of two immiscible layers of differing viscosities, where each layer experiences a van der Waals force between its interfaces. For an excess of surfactant on one gas-liquid interface we show that the instability manifests as distinct rupture events, with the oil layer rupturing first and retracting over the in-tact water layer beneath, consistent with the experimental observations. We use our model to examine the dynamics of oil retraction, showing that it follows a power-law for short times, and examine the influence of retraction on the stability of the water layer.
The 2016 central Italy earthquake sequence: surface effects, fault model and triggering scenarios
NASA Astrophysics Data System (ADS)
Chatzipetros, Alexandros; Pavlides, Spyros; Papathanassiou, George; Sboras, Sotiris; Valkaniotis, Sotiris; Georgiadis, George
2017-04-01
The results of fieldwork performed during the 2016 earthquake sequence around the karstic basins of Norcia and La Piana di Castelluccio, at an altitude of 1400 m, on the Monte Vettore (altitude 2476 m) and Vettoretto, as well as the three mapped seismogenic faults, striking NNW-SSW, are presented in this paper. Surface co-seismic ruptures were observed in the Vettore and Vettoretto segment of the fault for several kilometres ( 7 km) in the August earthquakes at high altitudes, and were re-activated and expanded northwards during the October earthquakes. Coseismic ruptures and the neotectonic Mt. Vettore fault zone were modelled in detail using images acquired from specifically planned UAV (drone) flights. Ruptures, typically with displacement of up to 20 cm, were observed after the August event both in the scree and weathered mantle (elluvium), as well as the bedrock, consisting mainly of fragmented carbonate rocks with small tectonic surfaces. These fractures expanded and new ones formed during the October events, typically of displacements of up to 50 cm, although locally higher displacements of up to almost 2 m were observed. Hundreds of rock falls and landslides were mapped through satellite imagery, using pre- and post- earthquake Sentinel 2A images. Several of them were also verified in the field. Based on field mapping results and seismological information, the causative faults were modelled. The model consists of five seismogenic sources, each one associated with a strong event in the sequence. The visualisation of the seismogenic sources follows INGV's DISS standards for the Individual Seismogenic Sources (ISS) layer, while strike, dip and rake of the seismic sources are obtained from selected focal mechanisms. Based on this model, the ground deformation pattern was inferred, using Okada's dislocation solution formulae, which shows that the maximum calculated vertical displacement is 0.53 m. This is in good agreement with the statistical analysis of the observed surface rupture displacement. Stress transfer analysis was also performed in the five modelled seismogenic sources, using seismologically defined parameters. The resulting stress transfer pattern, based on the sequence of events, shows that the causative fault of each event was influenced by loading from the previous ones.
Rapid Response Products of The ARIA Project for the M6.0 August 24, 2014 South Napa Earthquake
NASA Astrophysics Data System (ADS)
Yun, S. H.; Owen, S. E.; Hua, H.; Milillo, P.; Fielding, E. J.; Hudnut, K. W.; Dawson, T. E.; Mccrink, T. P.; Jo, M. J.; Barnhart, W. D.; Manipon, G. J. M.; Agram, P. S.; Moore, A. W.; Jung, H. S.; Webb, F.; Milillo, G.; Rosinski, A.
2014-12-01
A magnitude 6.0 earthquake struck southern Napa county northeast of San Francisco, California, on Aug. 24, 2014, causing significant damage in the city of Napa and nearby areas. One day after the earthquake, the Advanced Rapid Imaging and Analysis (ARIA) team produced and released observations of coseismic ground displacement measured with continuous GPS stations of the Plate Boundary Observatory (operated by UNAVCO for the National Science Foundation) and the Bay Area Rapid Deformation network (operated by Berkeley Seismological Laboratory). Three days after the earthquake (Aug. 27), the Italian Space Agency's (ASI) COSMO-SkyMed (CSK) satellite acquired their first post-event data. On the same day, the ARIA team, in collaboration with ASI and University of Basilicata, produced and released a coseismic interferogram that revealed ground deformation and surface rupture. The depiction of the surface rupture - discontinuities of color fringes in the CSK interferogram - helped guide field geologists from the US Geological Survey and the California Geological Survey (CGS) to features that may have otherwise gone undetected. Small-scale cracks were found on a runway of the Napa County Airport, as well as bridge damage and damaged roads. ARIA's response to this event highlighted the importance of timeliness for mapping surface deformation features. ARIA's rapid response products were shared through Southern California Earthquake Center's response website and the California Earthquake Clearinghouse. A damage proxy map derived from InSAR coherence of CSK data was produced and distributed on Aug. 27. Field crews from the CGS identified true and false positives, including mobile home damage, newly planted grape vines, and a cripple wall failure of a house. Finite fault slip models constrained from CSK interferograms and continuous GPS observations reveal a north-propagating rupture with well-resolved slip from 0-10.5 km depth. We also measured along-track coseismic displacements of about -30 to 30 cm, along the main surface rupture, using multiple aperture interferometry and SAR pixel offset calculation. We also processed the European Space Agency's Sentinel-1A data on Sep. 3 and compared the result with the CSK interferogram, finding a general agreement between the two observations of surface deformation.
Controls on Patterns of Repeated Fault Rupture: Examples From the Denali and Bear River Faults
NASA Astrophysics Data System (ADS)
Schwartz, D. P.; Hecker, S.
2013-12-01
A requirement for estimating seismic hazards is assigning magnitudes to earthquake sources. This relies on anticipating rupture length and slip along faults. Fundamental questions include whether lengths of past surface ruptures can be reasonably determined from fault zone characteristics and whether the variability in length and slip during repeated faulting can be constrained. To address these issues, we look at rupture characteristics and their possible controls from examples in very different tectonic settings: the high slip rate (≥15 mm/yr) Denali fault system, Alaska, and the recently activated Bear River normal fault, Wyoming-Utah. The 2002 rupture of the central Denali fault (CDF) is associated with two noteworthy geometric features. First, rupture initiated where the Susitna Glacier thrust fault (SG) intersects the CDF at depth, near the apex of a structurally complex restraining bend along the Denali. Paleoseismic data show that for the past 700 years the timing of large surface ruptures on the Denali fault west of the 2002 rupture has been distinct from those along the CDF. For the past ~6ka the frequency of SG to Denali ruptures has been ~1:12, indicating that this complexity of the 2002 rupture has not been common. Second, rupture propagated off of one strike-slip fault (CDF) onto another (the Totschunda fault, TF), an occurrence that seldom has been observed. LiDAR mapping of the intersection shows direct connectivity of the two faults--the CDF simply branches into both the TF and the eastern Denali fault (EDF). Differences in the timing of earthquakes during the past 700-800 years at sites surrounding this intersection, and estimates of accumulated slip from slip rates, indicate that for the 2002 rupture sufficient strain had accumulated on the TF to favor its failure. In contrast, the penultimate CDF rupture, with the same slip distribution as in 2002, appears to have stopped at or near the branch point, implying that neither the TF nor the EDF was stressed sufficiently to fail at that time. The Bear River fault zone (BRFZ) is a young normal fault along the eastern margin of basin-range extension that appears to have reactivated a ramp in the Laramide-age Darby-Hogsback thrust. The entire Cenozoic history of the BRFZ may consist of only two surface-rupturing events in the late Holocene (one at ~5 ka and the most recent at ~2.5 ka). The 40-km-long fault comprises synthetic and antithetic scarps extending across a zone up to 5 km wide. Remote sensing, including airborne LiDAR, and field studies show that, despite the complexity, the pattern of faulting was similar (in location and amount) for each of the two events and, at the south end, was strongly influenced by the east-west-trending Uinta Arch. Pre-existing structure clearly has exerted a first-order control on moment release on this immature fault. As shown by these examples, data on timing of surface ruptures, coseismic slip, slip rate, and fault geometry can provide a basis to constrain lengths of past and future earthquake ruptures, including possible alternative rupture scenarios. The difficult question for hazard analysis is whether the available data capture the full range of behavior and with what relative frequency do the alternatives occur?
Bruno, Pier Paolo G.; Duross, Christopher; Kokkalas, Sotirios
2017-01-01
The 1934 Ms 6.6 Hansel Valley, Utah, earthquake produced an 8-km-long by 3-km-wide zone of north-south−trending surface deformation in an extensional basin within the easternmost Basin and Range Province. Less than 0.5 m of purely vertical displacement was measured at the surface, although seismologic data suggest mostly strike-slip faulting at depth. Characterization of the origin and kinematics of faulting in the Hansel Valley earthquake is important to understand how complex fault ruptures accommodate regions of continental extension and transtension. Here, we address three questions: (1) How does the 1934 surface rupture compare with faults in the subsurface? (2) Are the 1934 fault scarps tectonic or secondary features? (3) Did the 1934 earthquake have components of both strike-slip and dip-slip motion? To address these questions, we acquired a 6.6-km-long, high-resolution seismic profile across Hansel Valley, including the 1934 ruptures. We observed numerous east- and west-dipping normal faults that dip 40°−70° and offset late Quaternary strata from within a few tens of meters of the surface down to a depth of ∼1 km. Spatial correspondence between the 1934 surface ruptures and subsurface faults suggests that ruptures associated with the earthquake are of tectonic origin. Our data clearly show complex basin faulting that is most consistent with transtensional tectonics. Although the kinematics of the 1934 earthquake remain underconstrained, we interpret the disagreement between surface (normal) and subsurface (strike-slip) kinematics as due to slip partitioning during fault propagation and to the effect of preexisting structural complexities. We infer that the 1934 earthquake occurred along an ∼3-km wide, off-fault damage zone characterized by distributed deformation along small-displacement faults that may be alternatively activated during different earthquake episodes.
Tsunamigenic earthquake simulations using experimentally derived friction laws
NASA Astrophysics Data System (ADS)
Murphy, S.; Di Toro, G.; Romano, F.; Scala, A.; Lorito, S.; Spagnuolo, E.; Aretusini, S.; Festa, G.; Piatanesi, A.; Nielsen, S.
2018-03-01
Seismological, tsunami and geodetic observations have shown that subduction zones are complex systems where the properties of earthquake rupture vary with depth as a result of different pre-stress and frictional conditions. A wealth of earthquakes of different sizes and different source features (e.g. rupture duration) can be generated in subduction zones, including tsunami earthquakes, some of which can produce extreme tsunamigenic events. Here, we offer a geological perspective principally accounting for depth-dependent frictional conditions, while adopting a simplified distribution of on-fault tectonic pre-stress. We combine a lithology-controlled, depth-dependent experimental friction law with 2D elastodynamic rupture simulations for a Tohoku-like subduction zone cross-section. Subduction zone fault rocks are dominantly incohesive and clay-rich near the surface, transitioning to cohesive and more crystalline at depth. By randomly shifting along fault dip the location of the high shear stress regions ("asperities"), moderate to great thrust earthquakes and tsunami earthquakes are produced that are quite consistent with seismological, geodetic, and tsunami observations. As an effect of depth-dependent friction in our model, slip is confined to the high stress asperity at depth; near the surface rupture is impeded by the rock-clay transition constraining slip to the clay-rich layer. However, when the high stress asperity is located in the clay-to-crystalline rock transition, great thrust earthquakes can be generated similar to the Mw 9 Tohoku (2011) earthquake.
J.B. Salisbury,; T.K. Rockwell,; T.J. Middleton,; Hudnut, Kenneth W.
2012-01-01
We measured offsets on tectonically displaced geomorphic features along 80 km of the Clark strand of the San Jacinto fault (SJF) to estimate slip‐per‐event for the past several surface ruptures. We identify 168 offset features from which we make over 490 measurements using B4 light detection and ranging (LiDAR) imagery and field observations. Our results suggest that LiDAR technology is an exemplary supplement to traditional field methods in slip‐per‐event studies. Displacement estimates indicate that the most recent surface‐rupturing event (MRE) produced an average of 2.5–2.9 m of right‐lateral slip with maximum slip of nearly 4 m at Anza, a Mw 7.2–7.5 earthquake. Average multiple‐event offsets for the same 80 kms are ∼5.5 m, with maximum values of 3 m at Anza for the penultimate event. Cumulative displacements of 9–10 m through Anza suggest the third event was also similar in size. Paleoseismic work at Hog Lake dates the most recent surface rupture event at ca. 1790. A poorly located, large earthquake occurred in southern California on 22 November 1800; we relocate this event to the Clark fault based on the MRE at Hog Lake. We also recognize the occurrence of a younger rupture along ∼15–20 km of the fault in Blackburn Canyon with ∼1.25 m of average displacement. We attribute these offsets to the 21 April 1918 Mw 6.9 event. These data argue that much or all of the Clark fault, and possibly also the Casa Loma fault, fail together in large earthquakes, but that shorter sections may fail in smaller events.
Rupture of thin liquid films on structured surfaces
NASA Astrophysics Data System (ADS)
Ajaev, Vladimir S.; Gatapova, Elizaveta Ya.; Kabov, Oleg A.
2011-10-01
We investigate stability and breakup of a thin liquid film on a solid surface under the action of disjoining pressure. The solid surface is structured by parallel grooves. Air is trapped in the grooves under the liquid film. Our mathematical model takes into account the effect of slip due to the presence of menisci separating the liquid film from the air inside the grooves, the deformation of these menisci due to local variations of pressure in the liquid film, and nonuniformities of the Hamaker constant which measures the strength of disjoining pressure. Both linear stability and strongly nonlinear evolution of the film are analyzed. Surface structuring results in decrease of the fastest growing instability wavelength and the rupture time. It is shown that a simplified description of film dynamics based on the standard formula for effective slip leads to significant deviations from the behavior seen in our simulations. Self-similar decay over several orders of magnitude of the film thickness near the rupture point is observed. We also show that the presence of the grooves can lead to instability in otherwise stable films if the relative groove width is above a critical value, found as a function of disjoining pressure parameters.
Frankel, A.
2004-01-01
Displacement waveforms and high-frequency acceleration envelopes from stations at distances of 3-300 km were inverted to determine the source process of the M 7.9 Denali fault earthquake. Fitting the initial portion of the displacement waveforms indicates that the earthquake started with an oblique thrust subevent (subevent # 1) with an east-west-striking, north-dipping nodal plane consistent with the observed surface rupture on the Susitna Glacier fault. Inversion of the remainder of the waveforms (0.02-0.5 Hz) for moment release along the Denali and Totschunda faults shows that rupture proceeded eastward on the Denali fault, with two strike-slip subevents (numbers 2 and 3) centered about 90 and 210 km east of the hypocenter. Subevent 2 was located across from the station at PS 10 (Trans-Alaska Pipeline Pump Station #10) and was very localized in space and time. Subevent 3 extended from 160 to 230 km east of the hypocenter and had the largest moment of the subevents. Based on the timing between subevent 2 and the east end of subevent 3, an average rupture velocity of 3.5 km/sec, close to the shear wave velocity at the average rupture depth, was found. However, the portion of the rupture 130-220 km east of the epicenter appears to have an effective rupture velocity of about 5.0 km/ sec, which is supershear. These two subevents correspond approximately to areas of large surface offsets observed after the earthquake. Using waveforms of the M 6.7 Nenana Mountain earthquake as empirical Green's functions, the high-frequency (1-10 Hz) envelopes of the M 7.9 earthquake were inverted to determine the location of high-frequency energy release along the faults. The initial thrust subevent produced the largest high-frequency energy release per unit fault length. The high-frequency envelopes and acceleration spectra (>0.5 Hz) of the M 7.9 earthquake can be simulated by chaining together rupture zones of the M 6.7 earthquake over distances from 30 to 180 km east of the hypocenter. However, the inversion indicates that there was relatively little high-frequency energy generated along the 60-km portion of the Totschunda fault on the east end of the rupture.
NASA Astrophysics Data System (ADS)
Dong, Xia; Iacocca, Ronald G.; Bustard, Bethany L.; Kemp, Craig A. J.
2010-02-01
Stainless steel pipes with different degrees of rouging and a Teflon®-coated rupture disc with severe corrosion were thoroughly investigated by combining multiple surface analytical techniques. The surface roughness and iron oxide layer thickness increase with increasing rouge severity, and the chromium oxide layer coexists with the iron oxide layer in samples with various degrees of rouging. Unlike the rouging observed for stainless steel pipes, the fast degradation of the rupture disc was caused by a crevice corrosion environment created by perforations in the protective Teflon coating. This failure analysis clearly shows the highly corrosive nature of ultrapure water used in the manufacture of pharmaceutical products, and demonstrates some of the unexpected corrosion mechanisms that can be encountered in these environments.
Sharp, R.V.
1989-01-01
The M6.2 Elmore Desert Ranch earthquake of 24 November 1987 was associated spatially and probably temporally with left-lateral surface rupture on many northeast-trending faults in and near the Superstition Hills in western Imperial Valley. Three curving discontinuous principal zones of rupture among these breaks extended northeastward from near the Superstition Hills fault zone as far as 9km; the maximum observed surface slip, 12.5cm, was on the northern of the three, the Elmore Ranch fault, at a point near the epicenter. Twelve hours after the Elmore Ranch earthquake, the M6.6 Superstition Hills earthquake occurred near the northwest end of the right-lateral Superstition Hills fault zone. We measured displacements over 339 days at as many as 296 sites along the Superstition Hills fault zone, and repeated measurements at 49 sites provided sufficient data to fit with a simple power law. The overall distributions of right-lateral displacement at 1 day and the estimated final slip are nearly symmetrical about the midpoint of the surface rupture. The average estimated final right-lateral slip for the Superstition Hills fault zone is ~54cm. The average left-lateral slip for the conjugate faults trending northeastward is ~23cm. The southernmost ruptured member of the Superstition Hills fault zone, newly named the Wienert fault, extends the known length of the zone by about 4km. -from Authors
Spatiotemporal Dynamics of Adenovirus Membrane Rupture and Endosomal Escape
Maier, Oana; Marvin, Shauna A.; Wodrich, Harald; Campbell, Edward M.
2012-01-01
A key step in adenovirus cell entry is viral penetration of cellular membranes to gain access to the cytoplasm and deliver the genome to the nucleus. Yet little is known about this important event in the adenoviral life cycle. Using the cytosolic protein galectin-3 (gal3) as a marker of membrane rupture with both live- and fixed-cell imaging, we demonstrate that in the majority of instances, exposure of pVI and recruitment of gal3 to ruptured membranes occur early at or near the cell surface and occur minimally in EEA-1-positive (EEA-1+) early endosomes or LAMP-1+ late endosomes/lysosomes. Live-cell imaging of Ad5 egress from gal3+ endosomes occurs most frequently from perinuclear locations. While the Ad5 capsid is observed escaping from gal3+ endosomes, pVI appears to remain associated with the gal3+ ruptured endosomes. Thus, Ad5 membrane rupture and endosomal escape appear to be both spatially and temporally distinct events. PMID:22855481
Rupture Dynamics along Thrust Dipping Fault: Inertia Effects due to Free Surface Wave Interactions
NASA Astrophysics Data System (ADS)
Vilotte, J. P.; Scala, A.; Festa, G.
2017-12-01
We numerically investigate the dynamic interaction between free surface and up-dip, in-plane rupture propagation along thrust faults, under linear slip-weakening friction. With reference to shallow along-dip rupture propagation during large subduction earthquakes, we consider here low dip-angle fault configurations with fixed strength excess and depth-increasing initial stress. In this configuration, the rupture undergoes a break of symmetry with slip-induced normal stress perturbations triggered by the interaction with reflected waves from the free surface. We found that both body-waves - behind the crack front - and surface waves - at the crack front - can trigger inertial effects. When waves interact with the rupture before this latter reaches its asymptotic speed, the rupture can accelerate toward the asymptotic speed faster than in the unbounded symmetric case, as a result of these inertial effects. Moreover, wave interaction at the crack front also affects the slip rate generating large ground motion on the hanging wall. Imposing the same initial normal stress, frictional strength and stress drop while varying the static friction coefficient we found that the break of symmetry makes the rupture dynamics dependent on the absolute value of friction. The higher the friction the stronger the inertial effect both in terms of rupture acceleration and slip amount. When the contact condition allows the fault interface to open close to the free surface, the length of the opening zone is shown to depend on the propagation length, the initial normal stress and the static friction coefficient. These new results are shown to agree with analytical results of rupture propagation in bounded media, and open new perspectives for understanding the shallow rupture of large subduction earthquakes and tsunami sources.
Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.
2013-01-01
The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and extensional stresses on built structures within the fault zone. Such differential movement and resulting distortion of built structures appear to have occurred between fault traces at the gatewell near the southern end of San Andreas Lake during the 1906 San Francisco earthquake (Schussler, 1906). In addition to the three fault traces within the main 1906 surface rupture zone, our data indicate at least one additional fault trace (or zone) about 80 meters northeast of the main 1906 surface rupture zone. Because ground shaking also can damage structures, we used fault-zone guided waves to investigate ground shaking within the fault zones relative to ground shaking outside the fault zones. Peak ground velocity (PGV) measurements from our guided-wave study indicate that ground shaking is greater at each of the surface fault traces, varying with the frequency of the seismic data and the wave type (P versus S). S-wave PGV increases by as much as 5–6 times at the fault traces relative to areas outside the fault zone, and P-wave PGV increases by as much as 3–10 times. Assuming shaking increases linearly with increasing earthquake magnitude, these data suggest strong shaking may pose a significant hazard to built structures that extend across the fault traces. Similarly complex fault structures likely underlie other strike-slip faults (such as the Hayward, Calaveras, and Silver Creek Faults) that intersect structures of the water delivery system, and these fault structures similarly should be investigated.
Catchings, Rufus D.; Rymer, Michael J.; Goldman, Mark R.; Sickler, Robert R.; Criley, Coyn J.
2014-01-01
The determination of near‐surface (vadose zone and slightly below) fault locations and geometries is important because assessment of ground rupture, strong shaking, geologic slip rates, and rupture histories occurs at shallow depths. However, seismic imaging of fault zones at shallow depths can be difficult due to near‐surface complexities, such as weathering, groundwater saturation, massive (nonlayered) rocks, and vertically layered strata. Combined P‐ and S‐wave seismic‐refraction tomography data can overcome many of the near‐surface, fault‐zone seismic‐imaging problems because of differences in the responses of elastic (bulk and shear) moduli of P and S waves to shallow‐depth, fault‐zone properties. We show that high‐resolution refraction tomography images of P‐ to S‐wave velocity ratios (VP/VS) can reliably identify near‐surface faults. We demonstrate this method using tomography images of the San Andreas fault (SAF) surface‐rupture zone associated with the 18 April 1906 ∼M 7.9 San Francisco earthquake on the San Francisco peninsula in California. There, the SAF cuts through Franciscan mélange, which consists of an incoherent assemblage of greywacke, chert, greenstone, and serpentinite. A near‐vertical zone (∼75° northeast dip) of high P‐wave velocities (up to 3000 m/s), low S‐wave velocities (∼150–600 m/s), high VP/VS ratios (4–8.8), and high Poisson’s ratios (0.44–0.49) characterizes the main surface‐rupture zone to a depth of about 20 m and is consistent with nearby trench observations. We suggest that the combined VP/VSimaging approach can reliably identify most near‐surface fault zones in locations where many other seismic methods cannot be applied.
NASA Astrophysics Data System (ADS)
Kazmi, Zaheer Abbas; Konagai, Kazuo; Kyokawa, Hiroyuki; Tetik, Cigdem
On April 11th, 2011, Iwaki region of Fukushima prefecture was jolted by Fukushima-Prefecture Hamadoori Earthquake. Surface ruptures were observed along causative Idosawa and Yunotake normal faults. In addition to numerous small slope failures, a coherent landslide and building structures of Tabito Junior High School, bisected by Idosawa Fault, were found along the causative faults. A precise digital elevation model of the coherent landslide was obtained through the ground and air-born LiDAR surveys. The measurements of perimeters of the gymnasium building and the swimming pool of Tabito Junior High School have shown that ground undergoes a slow and steady/continual deformation.
Rupture of poly implant prothèse silicone breast implants: an implant retrieval study.
Swarts, Eric; Kop, Alan M; Nilasaroya, Anastasia; Keogh, Catherine V; Cooper, Timothy
2013-04-01
Poly Implant Prothèse implants were recalled in Australia in April of 2010 following concerns of higher than expected rupture rates and the use of unauthorized industrial grade silicone as a filler material. Although subsequent investigations found that the gel filler material does not pose a threat to human health, the important question of what caused a relatively modern breast implant to have such a poor outcome compared with contemporary silicone breast implants is yet to be addressed. From a cohort of 27 patients, 19 ruptured Poly Implant Prothèse breast implants were subjected to a range of mechanical tests and microscopic/macroscopic investigations to evaluate possible changes in properties as a result of implantation. New Poly Implant Prothèse implants were used as controls. All samples, explanted and controls, complied with the requirements for shell integrity as specified in the International Organization for Standardization 14607. Compression testing revealed rupture rates similar to those reported in the literature. Shell thickness was highly variable, with most shells having regions below the minimum thickness of 0.57 mm that was specified by the manufacturer. Potential regions of stress concentration were observed on the smooth inner surfaces and outer textured surfaces. The high incidence of Poly Implant Prothèse shell rupture is most likely a result of inadequate quality control, with contributory factors being shell thickness variation and manufacturing defects on both inner and outer surfaces of the shell. No evidence of shell degradation with implantation time was determined.
Earthquake geology of the Bulnay Fault (Mongolia)
Rizza, Magali; Ritz, Jean-Franciois; Prentice, Carol S.; Vassallo, Ricardo; Braucher, Regis; Larroque, Christophe; Arzhannikova, A.; Arzhanikov, S.; Mahan, Shannon; Massault, M.; Michelot, J-L.; Todbileg, M.
2015-01-01
The Bulnay earthquake of July 23, 1905 (Mw 8.3-8.5), in north-central Mongolia, is one of the world's largest recorded intracontinental earthquakes and one of four great earthquakes that occurred in the region during the 20th century. The 375-km-long surface rupture of the left-lateral, strike-slip, N095°E trending Bulnay Fault associated with this earthquake is remarkable for its pronounced expression across the landscape and for the size of features produced by previous earthquakes. Our field observations suggest that in many areas the width and geometry of the rupture zone is the result of repeated earthquakes; however, in those areas where it is possible to determine that the geomorphic features are the result of the 1905 surface rupture alone, the size of the features produced by this single earthquake are singular in comparison to most other historical strike-slip surface ruptures worldwide. Along the 80 km stretch, between 97.18°E and 98.33°E, the fault zone is characterized by several meters width and the mean left-lateral 1905 offset is 8.9 ± 0.6 m with two measured cumulative offsets that are twice the 1905 slip. These observations suggest that the displacement produced during the penultimate event was similar to the 1905 slip. Morphotectonic analyses carried out at three sites along the eastern part of the Bulnay fault, allow us to estimate a mean horizontal slip rate of 3.1 ± 1.7 mm/yr over the Late Pleistocene-Holocene period. In parallel, paleoseismological investigations show evidence for two earthquakes prior to the 1905 event with recurrence intervals of ~2700-4000 years.
The Mw6.0 24 August 2014 South Napa earthquake
Brocher, Thomas M.; Baltay, Annemarie S.; Hardebeck, Jeanne L.; Pollitz, Fred F.; Murray, Jessica R.; Llenos, Andrea L.; Schwartz, David P.; Blair, James Luke; Ponti, Daniel J.; Lienkaemper, James J.; Langenheim, V.E.; Dawson, Timothy E.; Hudnut, Kenneth W.; Shelly, David R.; Dreger, Douglas S.; Boatwright, John; Aagaard, Brad T.; Wald, David J.; Allen, Richard M.; Barnhart, William D.; Knudsen, Keith L.; Brooks, Benjamin A.; Scharer, Katherine M.
2015-01-01
The Mw 6.0 South Napa earthquake, which occurred at 10:20 UTC 24 August 2014 was the largest earthquake to strike the greater San Francisco Bay area since the Mw 6.9 1989 Loma Prieta earthquake. The rupture from this right‐lateral earthquake propagated mostly unilaterally to the north and up‐dip, directing the strongest shaking toward the city of Napa, where peak ground accelerations (PGAs) between 45%g and 61%g were recorded and modified Mercalli intensities (MMIs) of VII–VIII were reported. Tectonic surface rupture with dextral slip of up to 46 cm was observed on a 12.5 km long segment, some of which was along a previously mapped strand of the West Napa fault system, although the rupture extended to the north of the mapped Quaternary strand. Modeling of seismic and geodetic data suggests an average coseismic slip of 50 cm, with a maximum slip of about 1 m at depths of 10–11 km. We observed up to 35 cm of afterslip along the surface trace in the week following the mainshock, primarily along the southern half of the surface rupture that experienced relatively little coseismic offset. Relocation of the sparse aftershock sequence suggests en echelon southwest‐ and northeast‐dipping fault planes, reflective of the complex fault geometry in this region. The Napa basin and historic and late Holocene alluvial flood deposits in downtown Napa amplified the ground motions there. Few ground failures were mapped, reflecting the dry season (as well as a persistent drought that had lowered the groundwater table) and the short duration of strong shaking in the epicentral area.
NASA Astrophysics Data System (ADS)
DeLong, S. B.; Pickering, A.; Scharer, K. M.; Hudnut, K. W.; Lienkaemper, J. J.
2014-12-01
Near-fault surface deformation associated with the August 24, 2014 M6.0 South Napa earthquake included both coseismic and post-seismic slip. Initial synthesis of field observations and initial measurement and modeling of afterslip from traditional survey methods indicate that coseismic slip was minimal (<10 cm) within 8 km northward from the epicenter but post-seismic slip, in places, approached 40 cm. We collected reconnaissance photographs using professional-grade SLR cameras from a helicopter within 12 hours after the earthquake, and a more systematic collection of air photos the day after the earthquake. We also collected terrestrial laser scanner (TLS) data two days (on August 26) and twenty-two days (on September 22) after the earthquake along a 0.5 km length of the main fault trace, just south of State Highway 12. This study site is 6 km north of the southern end of the 15 km long surface rupture and 5 km south of the highest measured co-seismic slip. We used structure-from-motion (SfM) methods to mosaic, orthorectify, and generate dense point clouds from the photos. SfM data corroborates survey-based ground observations of limited (~5 cm or less) coseismic slip along the fault trace between CA State Highway 12 and Withers Road, on discontinuous left-stepping en echelon ruptures. By August 26, the surface rupture became nearly continuous, and cultural features extracted from the TLS point clouds indicate horizontal slip magnitudes between 15 and 27 cm, increasing northward. By September 22, slip magnitudes had increased to between 26 and 46 cm. The lower slip magnitudes are to the south at Withers Road, and the general trend is increased slip to the north, but there is more slip variability along the fault trace in the September 15 data. From August 26 to September 15, the west side of the fault trace uplifted between 0.5 and 5 cm relative to east side. Increased relief on the surface rupture itself indicated a slight compressional component of the deformation. These results confirm that post-event air photos can be useful for rapid 3D mapping, and that the unparalleled accuracy of TLS data can be used to quantify even very subtle deformation patterns in three dimensions and document changes through time.
The 2011 Mw 7.1 Van (Eastern Turkey) earthquake
Elliot, John R.; Copley, Alex C.; Holley, R.; Scharer, Katherine M.; Parsons, Barry
2013-01-01
We use interferometric synthetic aperture radar (InSAR), body wave seismology, satellite imagery, and field observations to constrain the fault parameters of the Mw 7.1 2011 Van (Eastern Turkey) reverse-slip earthquake, in the Turkish-Iranian plateau. Distributed slip models from elastic dislocation modeling of the InSAR surface displacements from ENVISAT and COSMO-SkyMed interferograms indicate up to 9 m of reverse and oblique slip on a pair of en echelon NW 40 °–54 ° dipping fault planes which have surface extensions projecting to just 10 km north of the city of Van. The slip remained buried and is relatively deep, with a centroid depth of 14 km, and the rupture reaching only within 8–9 km of the surface, consistent with the lack of significant ground rupture. The up-dip extension of this modeled WSW striking fault plane coincides with field observations of weak ground deformation seen on the western of the two fault segments and has a dip consistent with that seen at the surface in fault gouge exposed in Quaternary sediments. No significant coseismic slip is found in the upper 8 km of the crust above the main slip patches, except for a small region on the eastern segment potentially resulting from the Mw 5.9 aftershock on the same day. We perform extensive resolution tests on the data to confirm the robustness of the observed slip deficit in the shallow crust. We resolve a steep gradient in displacement at the point where the planes of the two fault segments ends are inferred to abut at depth, possibly exerting some structural control on rupture extent.
On the Prediction of Ground Motion
NASA Astrophysics Data System (ADS)
Lavallee, D.; Schmedes, J.; Archuleta, R. J.
2012-12-01
Using a slip-weakening dynamic model of rupture, we generated earthquake scenarios that provided the spatio-temporal evolution of the slip on the fault and the radiated field at the free surface. We observed scenarios where the rupture propagates at a supershear speed on some parts of the fault while remaining subshear for other parts of the fault. For some scenarios with nearly identical initial conditions, the rupture speed was always subshear. For both types of scenarios (mixture of supershear and subshear speeds and only subshear), we compute the peak ground accelerations (PGA) regularly distributed over the Earth's surface. We then calculate the probability density functions (PDF) of the PGA. For both types of scenarios, the PDF curves are asymmetrically shaped and asymptotically attenuated according to power law. This behavior of the PDF is similar to that observed for the PDF curves of PGA recorded during earthquakes. The main difference between scenarios with a supershear rupture speed and scenarios with only subshear rupture speed is the range of PGA values. Based on these results, we investigate three issues fundamental for the prediction of ground motion. It is important to recognize that recorded ground motions during an earthquake sample a small fraction of the radiation field. It is not obvious that such sampling will capture the largest ground motion generated during an earthquake, nor that the number of stations is large enough to properly infer the statistical properties associated with the radiation field. To quantify the effect of under (or low) sampling of the radiation field, we design three experiments. For a scenario where the rupture speed is only subshear, we construct multiple sets of observations. Each set is comprised of 100 randomly selected PGA values from all of the PGA's calculated at the Earth's surface. In the first experiment, we evaluate how the distributions of PGA in the sets compare with the distribution of all the PGA. For this experiment, we used different statistical tests (e.g. chi-square). This experiment quantifies the likelihood that a random set of PGA can be used to infer the statistical properties of all the PGA. In the second experiment, we fit the PDF of the PGA of every set with probability laws used in the literature to describe the PDF of recorded PGA: the lognormal law, the generalized maximum extreme value law, and the Levy law. For each set, the probability laws are then used to compute the probability to observe a PGA value that will cause "moderate to heavy" potential damage according to Instrumental Intensity scale developed by USGS. For each probability law, we compare predictions based on the set with the prediction estimated from all the PGA. This experiment quantifies the reliability and uncertainty in predicting an outcome due to under sampling the radiation field. The third experiment consists in using the sets discussed above and repeats the two investigations discussed above but this time comparing with a scenario where the rupture has a supershear speed over part of the fault. The objective here is to assess additional uncertainty in predicting PGA and damage resulting from ruptures that have supershear speeds.
The 1999 Hector Mine Earthquake, Southern California: Vector Near-Field Displacements from ERS InSAR
NASA Technical Reports Server (NTRS)
Sandwell, David T.; Sichoix, Lydie; Smith, Bridget
2002-01-01
Two components of fault slip are uniquely determined from two line-of-sight (LOS) radar interferograms by assuming that the fault-normal component of displacement is zero. We use this approach with ascending and descending interferograms from the ERS satellites to estimate surface slip along the Hector Mine earthquake rupture. The LOS displacement is determined by visually counting fringes to within 1 km of the outboard ruptures. These LOS estimates and uncertainties are then transformed into strike- and dip-slip estimates and uncertainties; the transformation is singular for a N-S oriented fault and optimal for an E-W oriented fault. In contrast to our previous strike-slip estimates, which were based only on a descending interferogram, we now find good agreement with the geological measurements, except at the ends of the rupture. The ascending interferogram reveals significant west-sidedown dip-slip (approximately 1.0 m) which reduces the strike-slip estimates by 1 to 2 m, especially along the northern half of the rupture. A spike in the strike-slip displacement of 6 m is observed in central part of the rupture. This large offset is confirmed by subpixel cross correlation of features in the before and after amplitude images. In addition to strike slip and dip slip, we identify uplift and subsidence along the fault, related to the restraining and releasing bends in the fault trace, respectively. Our main conclusion is that at least two look directions are required for accurate estimates of surface slip even along a pure strike-slip fault. Models and results based only on a single look direction could have major errors. Our new estimates of strike slip and dip slip along the rupture provide a boundary condition for dislocation modeling. A simple model, which has uniform slip to a depth of 12 km, shows good agreement with the observed ascending and descending interferograms.
Map showing surface ruptures associated with the Mammoth Lakes, California, earthquakes of May 1980
Clark, M.M.; Yount, J.C.; Vaughn, P.R.; Zepeda, R.L.
1982-01-01
This map shows surface ruptures associated with the M 6 Mammoth Lakes earthquakes of May 25-27, 1980 (Sherburne, 1980). The ruptures were mapped during USGS field investigations May 28 to June 4 and July 14-19, 1980. The map also includes some of the ruptures recorded by California Division of Mines and Geology investigators May 26-31, June 26-27, and July 7-11, 1980 (Taylor and Bryant, 1980). Because most of the surface ruptures developed in either unconsolidated pumice, alluvium, or till (and many were on slopes of scarps created by earlier faulting), wind, rain and animals quickly erased many of the ruptures. In places, the minimum detectable slip was 3-10 mm. Thus the lines on the map do not record all of the ruptures that formed at the time of the earthquake. Many of the areas were we show gaps between lines on the map probably had cracks originally.
NASA Astrophysics Data System (ADS)
Shao, G.; Ji, C.; Lu, Z.; Hudnut, K. W.; Liu, J.; Zhang, W.
2009-12-01
We study the kinematic rupture process of the 2008 Mw 7.9 Wenchuan earthquake using all geophysical and geological datasets that we are able to access, including the waveforms of teleseismic long period surface waves, broadband body waves and local strong motions, GPS vectors, interferometic radar (INSAR) images, and geological surface offsets. The relocated aftershock locations have also been included to constrain the potential fault geometry. These datasets have very different sensitivities to not only the slip on the fault but also the “a priori” information of the source inversions, such as the local velocity structure and the details of irregular fault surface. Effects have then been made to reconcile these datasets by reasonably perturbing the velocity structure and fault geometry, which are both poorly constrained. We have used two 1D velocity models, one for the Tibet plateau and the other for Sichuan basin, to calculate the static and dynamic earth responses; and developed a complex fault system including two irregular fault planes for Beichuan and Pengguan faults, respectively. The long wavelength errors of the INSAR LOS displacements have also been considered and been corrected simultaneously during the joint inversions. Our preferred model not only explains the geodetic and tele-seismic data very well, but also reasonably matches most strong motion waveforms. According to this result, the Wenchuan earthquake has an unprecedented complex rupture process. It initiated southwest of the town of Yingxiu at a depth of about 12 km, where the low-angle Pengguan fault and the high-angle Beichuan fault intersect. The rupture initiated on the low angle Pengguan fault and then later triggered the rupture on the high angle Beichuan fault. It then unilaterally ruptured northeastward for 270 km, mainly on the Beichuan fault. The entire rupture duration is over 95 seconds with an average rupture velocity of 3.0 km/s. Except for the region near the hypocenter and the region near the northeast end of the rupture, the majority of slip occurred at depths less than 12 km. The total seismic moment released by this earthquake was 1.02 x 1021 Nm, with ~36% on the Pengguan fault. Our analysis also indicates that the aftershock zone along the extension of the Xiaoyudong fault is consistent with the theory of static stress triggering due to the co-seismic rupture.
NASA Astrophysics Data System (ADS)
Ulrich, T.; Gabriel, A. A.
2016-12-01
The geometry of faults is subject to a large degree of uncertainty. As buried structures being not directly observable, their complex shapes may only be inferred from surface traces, if available, or through geophysical methods, such as reflection seismology. As a consequence, most studies aiming at assessing the potential hazard of faults rely on idealized fault models, based on observable large-scale features. Yet, real faults are known to be wavy at all scales, their geometric features presenting similar statistical properties from the micro to the regional scale. The influence of roughness on the earthquake rupture process is currently a driving topic in the computational seismology community. From the numerical point of view, rough faults problems are challenging problems that require optimized codes able to run efficiently on high-performance computing infrastructure and simultaneously handle complex geometries. Physically, simulated ruptures hosted by rough faults appear to be much closer to source models inverted from observation in terms of complexity. Incorporating fault geometry on all scales may thus be crucial to model realistic earthquake source processes and to estimate more accurately seismic hazard. In this study, we use the software package SeisSol, based on an ADER-Discontinuous Galerkin scheme, to run our numerical simulations. SeisSol allows solving the spontaneous dynamic earthquake rupture problem and the wave propagation problem with high-order accuracy in space and time efficiently on large-scale machines. In this study, the influence of fault roughness on dynamic rupture style (e.g. onset of supershear transition, rupture front coherence, propagation of self-healing pulses, etc) at different length scales is investigated by analyzing ruptures on faults of varying roughness spectral content. In particular, we investigate the existence of a minimum roughness length scale in terms of rupture inherent length scales below which the rupture ceases to be sensible. Finally, the effect of fault geometry on ground-motions, in the near-field, is considered. Our simulations feature a classical linear slip weakening on the fault and a viscoplastic constitutive model off the fault. The benefits of using a more elaborate fast velocity-weakening friction law will also be considered.
Hudnutt, K.W.; Borsa, A.; Glennie, C.; Minster, J.-B.
2002-01-01
In order to document surface rupture associated with the Hector Mine earthquake, in particular, the area of maximum slip and the deformed surface of Lavic Lake playa, we acquired high-resolution data using relatively new topographic-mapping methods. We performed a raster-laser scan of the main surface breaks along the entire rupture zone, as well as along an unruptured portion of the Bullion fault. The image of the ground surface produced by this method is highly detailed, comparable to that obtained when geologists make particularly detailed site maps for geomorphic or paleoseismic studies. In this case, however, for the first time after a surface-rupturing earthquake, the detailed mapping is along the entire fault zone rather than being confined to selected sites. These data are geodetically referenced, using the Global Positioning System, thus enabling more accurate mapping of the rupture traces. In addition, digital photographs taken along the same flight lines can be overlaid onto the precise topographic data, improving terrain visualization. We demonstrate the potential of these techniques for measuring fault-slip vectors.
NASA Astrophysics Data System (ADS)
Tan, Xi-bin; Yuan, Ren-mao; Xu, Xi-wei; Chen, Gui-hua; Klinger, Yann; Chang, Chung-Pai; Ren, Jun-jie; Xu, Chong; Li, Kang
2012-09-01
The large oblique reverse slip shock of the 2008 Mw = 7.9 Wenchuan earthquake, China, produced one of the longest and most complicated surface ruptures ever known. The complexity is particularly evident in the Xiaoyudong area, where three special phenomena occurred: the 7 km long Xiaoyudong rupture perpendicular to the Beichuan-Yingxiu fault; the occurrence of two parallel faults rupturing simultaneously, and apparent discontinuity of the Beichuan-Yingxiu rupture. This paper systematically documents these co-seismic rupture phenomena for the Xiaoyudong area. The discussion and results are based on field investigations and analyses of faulting mechanisms and prevalent stress conditions. The results show that the Beichuan-Yingxiu fault formed a 3.5 km wide restraining stepover at the Xiaoyudong area. The Xiaoyudong fault is not a tear fault suggested by previous researches, but a frontal reverse fault induced by the oblique compression at this stepover; it well accommodates the 'deformation gap' of the Beichuan-Yingxiu fault in the Xiaoyudong area. Further, stress along the Peng-Guan fault plane doubles due to a change in dip angle of the Beichuan-Yingxiu fault across the Xiaoyudong restraining stepover. This resulted in two faults rupturing the ground's surface simultaneously, to the north of the Xiaoyudong area. These results are helpful in deepening our understanding of the dynamic processes that produced surface ruptures during the Wenchuan earthquake. Furthermore, the results suggest more attention be focused on the influence of dextral slip component, the change of the control fault's attitude, and property differences in rocks on either side of faults when discussing the formation mechanism of surface ruptures.
The 1999 Izmit, Turkey, earthquake: A 3D dynamic stress transfer model of intraearthquake triggering
Harris, R.A.; Dolan, J.F.; Hartleb, R.; Day, S.M.
2002-01-01
Before the August 1999 Izmit (Kocaeli), Turkey, earthquake, theoretical studies of earthquake ruptures and geological observations had provided estimates of how far an earthquake might jump to get to a neighboring fault. Both numerical simulations and geological observations suggested that 5 km might be the upper limit if there were no transfer faults. The Izmit earthquake appears to have followed these expectations. It did not jump across any step-over wider than 5 km and was instead stopped by a narrower step-over at its eastern end and possibly by a stress shadow caused by a historic large earthquake at its western end. Our 3D spontaneous rupture simulations of the 1999 Izmit earthquake provide two new insights: (1) the west- to east-striking fault segments of this part of the North Anatolian fault are oriented so as to be low-stress faults and (2) the easternmost segment involved in the August 1999 rupture may be dipping. An interesting feature of the Izmit earthquake is that a 5-km-long gap in surface rupture and an adjacent 25° restraining bend in the fault zone did not stop the earthquake. The latter observation is a warning that significant fault bends in strike-slip faults may not arrest future earthquakes.
NASA Astrophysics Data System (ADS)
Pulido Hernandez, N. E.; Dalguer Gudiel, L. A.; Aoi, S.
2009-12-01
The Iwate-Miyagi Nairiku earthquake, a reverse earthquake occurred in the southern Iwate prefecture Japan (2008/6/14), produced the largest peak ground acceleration recorded to date (4g) (Aoi et al. 2008), at the West Ichinoseki (IWTH25), KiK-net strong motion station of NIED. This station which is equipped with surface and borehole accelerometers (GL-260), also recorded very high peak accelerations up to 1g at the borehole level, despite being located in a rock site. From comparison of spectrograms of the observed surface and borehole records at IWTH25, Pulido et. al (2008) identified two high frequency (HF) ground motion events located at 4.5s and 6.3s originating at the source, which likely derived in the extreme observed accelerations of 3.9g and 3.5g at IWTH25. In order to understand the generation mechanism of these HF events we performed a dynamic fault rupture model of the Iwate-Miyagi Nairiku earthquake by using the Support Operator Rupture Dynamics (SORD) code, (Ely et al., 2009). SORD solves the elastodynamic equation using a generalized finite difference method that can utilize meshes of arbitrary structure and is capable of handling geometries appropriate to thrust earthquakes. Our spontaneous dynamic rupture model of the Iwate-Miyagi Nairiku earthquake is governed by the simple slip weakening friction law. The dynamic parameters, stress drop, strength excess and critical slip weakening distance are estimated following the procedure described in Pulido and Dalguer (2009) [PD09]. These parameters develop earthquake rupture consistent with the final slip obtained by kinematic source inversion of near source strong ground motion recordings. The dislocation model of this earthquake is characterized by a patch of large slip located ~7 km south of the hypocenter (Suzuki et al. 2009). Our results for the calculation of stress drop follow a similar pattern. Using the rupture times obtained from the dynamic model of the Iwate-Miyagi Nairiku earthquake we estimated the rupture velocity as well as rupture velocity changes distribution across the fault plane based on the procedure proposed by PD09. Our results show that rupture velocity has strong variations concentrated in small patches within large slip areas (asperities). Using this dynamic model we performed the strong motion simulation at the IWTH25 borehole. We obtained that this model is able to reproduce the two HF events observed in the strong motion data. Our preliminary results suggest that the extreme acceleration pulses were induced by two strong rupture velocity acceleration events at the rupture front. References Aoi, S., T. Kunugi, and H. Fujiwara, 2008, Science, 322, 727-730. Ely, G. P., S. M. Day, and J.-B. Minster (2009), Geophys. J. Int., 177(3), 1140-1150. Pulido, N., S. Aoi, and W. Suzuki (2008), AGU Fall meeting, S33C-02. Pulido, N., and L.A. Dalguer, (2009). Estimation of the high-frequency radiation of the 2000 Tottori (Japan) earthquake based on a dynamic model of fault rupture: Application to the strong ground motion simulation, Bull. Seism. Soc. Am. 99(4), 2305-2322. Suzuki, W., S. Aoi, and H. Sekiguchi, (2009), Bull. Seism. Soc. Am. (Accepted).
NASA Astrophysics Data System (ADS)
Gold, Ryan; Clark, Dan; King, Tamarah; Quigley, Mark
2017-04-01
Surface-rupturing earthquakes in stable continental regions (SCRs) occur infrequently, though when they occur in heavily populated regions the damage and loss of life can be severe (e.g., 2001 Bhuj earthquake). Quantifying the surface-rupture characteristics of these low-probability events is therefore important, both to improve understanding of the on- and off-fault deformation field near the rupture trace and to provide additional constraints on earthquake magnitude to rupture length and displacement, which are critical inputs for seismic hazard calculations. This investigation focuses on the 24 August 2016 M6.0 Petermann Ranges earthquake, Northern Territory, Australia. We use 0.3-0.5 m high-resolution optical Worldview satellite imagery to map the trace of the surface rupture associated with the earthquake. From our mapping, we are able to trace the rupture over a length of 20 km, trending NW, and exhibiting apparent north-side-up motion. To quantify the magnitude of vertical surface deformation, we use stereo Worldview images processed using NASA Ames Stereo Pipeline software to generate pre- and post-earthquake digital terrain models with a spatial resolution of 1.5 to 2 m. The surface scarp is apparent in much of the post-event digital terrain model. Initial efforts to difference the pre- and post-event digital terrain models yield noisy results, though we detect vertical deformation of 0.2 to 0.6 m over length scales of 100 m to 1 km from the mapped trace of the rupture. Ongoing efforts to remove ramps and perform spatial smoothing will improve our understanding of the extent and pattern of vertical deformation. Additionally, we will compare our results with InSAR and field measurements obtained following the earthquake.
New Field Observations About 19 August 1966 Varto earthquake, Eastern Turkey
NASA Astrophysics Data System (ADS)
Gurboga, S.
2013-12-01
Some destructive earthquakes in the past and even in the recent have several mysteries. For example, magnitude, epicenter location, faulting type and source fault of an earthquake have not been detected yet. One of these mysteries events is 19 August 1966 Varto earthquake in Turkey. 19 August 1966 Varto earthquake (Ms = 6.8) was an extra ordinary event at the 40 km east of junction between NAFS and EAFS which are two seismogenic system and active structures shaping the tectonics of Turkey. This earthquake sourced from Varto fault zone which are approximately 4 km width and 43 km length. It consists of faults which have parallel to sub-parallel, closely-spaced, north and south-dipping up to 85°-88° dip amount. Although this event has 6.8 (Ms) magnitude that is big enough to create a surface rupture, there was no clear surface deformation had been detected. This creates the controversial issue about the source fault and the mechanism of the earthquake. According to Wallace (1968) the type of faulting is right-lateral. On the other hand, McKenzie (1972) proposed right-lateral movement with thrust component by using the focal mechanism solution. The recent work done by Sançar et al. (2011) claimed that type of faulting is pure right-lateral strike-slip and there is no any surface rupture during the earthquake. Furthermore, they suggested that Varto segment in the Varto Fault Zone was most probably not broken in 1966 earthquake. This study is purely focused on the field geology and trenching survey for the investigation of 1966 Varto earthquake. Four fault segments have been mapped along the Varto fault zone: Varto, Sazlica, Leylekdağ and Çayçati segments. Because of the thick volcanic cover on the area around Varto, surface rupture has only been detected by trenching survey. Two trenching survey have been applied along the Yayikli and Ağaçalti faults in the Varto fault zone. Consequently, detailed geological work in the field and trenching survey indicate that a) source of 1966 earthquake is Varto segment in Varto Fault Zone, b) many of the surface deformations observed just after the earthquake is lateral-spreading and small landslides, c) surface rupture was created with 10 cm displacement at the surface with thrust component. Because of the volcanic cover and activation of many faults, ground surface rupture could not be seen clearly which has been expected after 6.8 magnitude earthquake, d) faulting type is right-lateral component with thrust component. Keywords: 1966 Varto earthquake, paleoseismology, right-lateral fault with thrust component.
Effect of off-fault low-velocity elastic inclusions on supershear rupture dynamics
NASA Astrophysics Data System (ADS)
Ma, Xiao; Elbanna, A. E.
2015-10-01
Heterogeneous velocity structures are expected to affect fault rupture dynamics. To quantitatively evaluate some of these effects, we examine a model of dynamic rupture on a frictional fault embedded in an elastic full space, governed by plane strain elasticity, with a pair of off-fault inclusions that have a lower rigidity than the background medium. We solve the elastodynamic problem using the Finite Element software Pylith. The fault operates under linear slip-weakening friction law. We initiate the rupture by artificially overstressing a localized region near the left edge of the fault. We primarily consider embedded soft inclusions with 20 per cent reduction in both the pressure wave and shear wave speeds. The embedded inclusions are placed at different distances from the fault surface and have different sizes. We show that the existence of a soft inclusion may significantly shorten the transition length to supershear propagation through the Burridge-Andrews mechanism. We also observe that supershear rupture is generated at pre-stress values that are lower than what is theoretically predicted for a homogeneous medium. We discuss the implications of our results for dynamic rupture propagation in complex velocity structures as well as supershear propagation on understressed faults.
Krill, Michael K; Borchers, James R; Hoffman, Joshua T; Krill, Matthew L; Hewett, Timothy E
2017-09-01
Achilles tendon (AT) ruptures are a potentially career-altering and ending injury. Achilles tendon ruptures have a below average return-to-play rate compared to other common orthopaedic procedures for National Football League (NFL) players. The objective of this study was to monitor the incidence and injury rates (IR) of AT ruptures that occurred during the regular season in order to evaluate the influence of player position, time of injury, and playing surface on rupture rates. A thorough online review was completed to identify published injury reports and public information regarding AT ruptures sustained during regular season and post-season games in the National Football League (NFL) during the 2009-10 to 2016-17 seasons. Team schedules, player position details and stadium information was used to determine period of the season of injury and playing surface. IRs were calculated per 100 team games (TG). Injury rate ratios (IRR) were utilized to compare IRs. During eight monitored seasons, there were 44 AT ruptures in NFL games. A majority of AT ruptures were sustained in the first eight games of the regular season (n = 32, 72.7%). There was a significant rate difference for the first and second four-game segments of the regular season compared to the last two four-game segments of the regular season. Defensive players suffered a majority of AT ruptures (n = 32, 72.7%). The IR on grass was 1.00 per 100 TG compared to 1.08 per 100 TG on artificial turf (IRR: 0.93, p = .80). A significant increase in AT ruptures occurred in the first and second four game segments of the regular season compared to the last two-four game segments of the regular season. Defensive players suffered a majority of AT ruptures compared to offensive or specialist players. There was no difference between AT rupture rates and playing surface in games.
Poro-elastic Rebound Along the Landers 1992 Earthquake Surface Rupture
NASA Technical Reports Server (NTRS)
Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.
1998-01-01
Maps of post-seismic surface displacement after the 1992, Landers, California earthquake, generated by interferometric processing of ERS-1 Synthetic Aperture Radar (SAR) images, reveal effects of various deformation processes near the 1992 surface rupture.
Gold, Ryan D.; Reitman, Nadine G.; Briggs, Richard; Barnhart, William; Hayes, Gavin; Wilson, Earl M.
2015-01-01
The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~ 200 km-long stretch of the Hoshab fault in southern Pakistan and produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. We remotely measured surface deformation associated with this event using high-resolution (0.5 m) pre- and post-event satellite optical imagery. We document left lateral, near-field, on-fault offsets (10 m from fault) using 309 laterally offset piercing points, such as streams, terrace risers, and roads. Peak near-field displacement is 13.6 + 2.5/− 3.4 m. We characterize off-fault deformation by measuring medium- (< 350 m from fault) and far-field (> 350 m from fault) displacement using manual (259 measurements) and automated image cross-correlation methods, respectively. Off-fault peak lateral displacement values are ~ 15 m and exceed on-fault displacement magnitudes for ~ 85% of the rupture length. Our observations suggest that for this rupture, coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, nearly 100% of total surface displacement occurs within a few hundred meters of the primary fault trace. Furthermore, off-fault displacement accounts for, on average, 28% of the total displacement but exhibits a highly heterogeneous along-strike pattern. The best agreement between near-field and far-field displacements generally corresponds to the narrowest fault zone widths. Our analysis demonstrates significant and heterogeneous mismatches between on- and off-fault coseismic deformation, and we conclude that this phenomenon should be considered in hazard models based on geologically determined on-fault slip rates.
NASA Astrophysics Data System (ADS)
Melgar, Diego; Geng, Jianghui; Crowell, Brendan W.; Haase, Jennifer S.; Bock, Yehuda; Hammond, William C.; Allen, Richard M.
2015-07-01
Real-time high-rate geodetic data have been shown to be useful for rapid earthquake response systems during medium to large events. The 2014 Mw6.1 Napa, California earthquake is important because it provides an opportunity to study an event at the lower threshold of what can be detected with GPS. We show the results of GPS-only earthquake source products such as peak ground displacement magnitude scaling, centroid moment tensor (CMT) solution, and static slip inversion. We also highlight the retrospective real-time combination of GPS and strong motion data to produce seismogeodetic waveforms that have higher precision and longer period information than GPS-only or seismic-only measurements of ground motion. We show their utility for rapid kinematic slip inversion and conclude that it would have been possible, with current real-time infrastructure, to determine the basic features of the earthquake source. We supplement the analysis with strong motion data collected close to the source to obtain an improved postevent image of the source process. The model reveals unilateral fast propagation of slip to the north of the hypocenter with a delayed onset of shallow slip. The source model suggests that the multiple strands of observed surface rupture are controlled by the shallow soft sediments of Napa Valley and do not necessarily represent the intersection of the main faulting surface and the free surface. We conclude that the main dislocation plane is westward dipping and should intersect the surface to the east, either where the easternmost strand of surface rupture is observed or at the location where the West Napa fault has been mapped in the past.
NASA Astrophysics Data System (ADS)
Gold, Ryan D.; Reitman, Nadine G.; Briggs, Richard W.; Barnhart, William D.; Hayes, Gavin P.; Wilson, Earl
2015-10-01
The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~ 200 km-long stretch of the Hoshab fault in southern Pakistan and produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. We remotely measured surface deformation associated with this event using high-resolution (0.5 m) pre- and post-event satellite optical imagery. We document left lateral, near-field, on-fault offsets (10 m from fault) using 309 laterally offset piercing points, such as streams, terrace risers, and roads. Peak near-field displacement is 13.6 + 2.5/- 3.4 m. We characterize off-fault deformation by measuring medium- (< 350 m from fault) and far-field (> 350 m from fault) displacement using manual (259 measurements) and automated image cross-correlation methods, respectively. Off-fault peak lateral displacement values are ~ 15 m and exceed on-fault displacement magnitudes for ~ 85% of the rupture length. Our observations suggest that for this rupture, coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, nearly 100% of total surface displacement occurs within a few hundred meters of the primary fault trace. Furthermore, off-fault displacement accounts for, on average, 28% of the total displacement but exhibits a highly heterogeneous along-strike pattern. The best agreement between near-field and far-field displacements generally corresponds to the narrowest fault zone widths. Our analysis demonstrates significant and heterogeneous mismatches between on- and off-fault coseismic deformation, and we conclude that this phenomenon should be considered in hazard models based on geologically determined on-fault slip rates.
Surface faulting. A preliminary view
Sharp, R.V.
1989-01-01
This description of surface faulting near Spitak, Armenia, is based on a field inspection made December 22-26, 1988. The surface rupture west of Spitak, displacement of the ground surface, pre-earthquake surface expressions of the fault, and photolineaments in landsat images are described and surface faulting is compared to aftershocks. It is concluded that the 2 meters of maximum surface displacement fits well within the range of reliably measured maximum surface offsets for historic reverse and oblique-reverse faulting events throughout the world. By contrast, the presently known length of surface rupture near Spitak, between 8 and 13 km, is shorter than any other reverse or oblique-reverse event of magnitude greater than 6.0. This may be a reason to suppose that additional surface rupture might remain unmapped.
Self-healing slip pulses in dynamic rupture models due to velocity-dependent strength
Beeler, N.M.; Tullis, T.E.
1996-01-01
Seismological observations of short slip duration on faults (short rise time on seismograms) during earthquakes are not consistent with conventional crack models of dynamic rupture and fault slip. In these models, the leading edge of rupture stops only when a strong region is encountered, and slip at an interior point ceases only when waves from the stopped edge of slip propagate back to that point. In contrast, some seismological evidence suggests that the duration of slip is too short for waves to propagate from the nearest edge of the ruptured surface, perhaps even if the distance used is an asperity size instead of the entire rupture dimension. What controls slip duration, if not dimensions of the fault or of asperities? In this study, dynamic earthquake rupture and slip are represented by a propagating shear crack. For all propagating shear cracks, slip velocity is highest near the rupture front, and at a small distance behind the rupture front, the slip velocity decreases. As pointed out by Heaton (1990), if the crack obeys a negative slip-rate-dependent strength relation, the lower slip velocity behind the rupture front will lead to strengthening that further reduces the velocity, and under certain circumstances, healing of slip can occur. The boundary element method of Hamano (1974) is used in a program adapted from Andrews (1985) for numerical simulations of mode II rupture with two different velocity-dependent strength functions. For the first function, after a slip-weakening displacement, the crack follows an exponential velocity-weakening relation. The characteristic velocity V0 of the exponential determines the magnitude of the velocity-dependence at dynamic velocities. The velocity-dependence at high velocity is essentially zero when V0 is small and the resulting slip velocity distribution is similar to slip weakening. If V0 is larger, rupture propagation initially resembles slip-weakening, but spontaneous healing occurs behind the rupture front. The rise time and rupture propagation velocity depend on the choice of constitutive parameters. The second strength function is a natural log velocity-dependent form similar to constitutive laws that fit experimental rock friction data at lower velocities. Slip pulses also arise with this function. For a reasonable choice of constitutive parameters, slip pulses with this function do not propagate at speeds greater than the Raleighwave velocity. The calculated slip pulses are similar in many aspects to seismic observations of short rise time. In all cases of self-healing slip pulses, the residual stress increases with distance behind the trailing edge of the pulse so that the final stress drop is much less than the dynamic stress drop, in agreement with the model of Brune (1976) and some recent seismological observations of rupture.
Langridge, R.M.; Stenner, Heidi D.; Fumal, T.E.; Christofferson, S.A.; Rockwell, T.K.; Hartleb, R.D.; Bachhuber, J.; Barka, A.A.
2002-01-01
The Mw 7.4 17 August 1999 İzmit earthquake ruptured five major fault segments of the dextral North Anatolian Fault Zone. The 26-km-long, N86°W-trending Sakarya fault segment (SFS) extends from the Sapanca releasing step-over in the west to near the town of Akyazi in the east. The SFS emerges from Lake Sapanca as two distinct fault traces that rejoin to traverse the Adapazari Plain to Akyazi. Offsets were measured across 88 cultural and natural features that cross the fault, such as roads, cornfield rows, rows of trees, walls, rails, field margins, ditches, vehicle ruts, a dike, and ground cracks. The maximum displacement observed for the İzmit earthquake (∼5.1 m) was encountered on this segment. Dextral displacement for the SFS rises from less than 1 m at Lake Sapanca to greater than 5 m near Arifiye, only 3 km away. Average slip decreases uniformly to the east from Arifiye until the fault steps left from Sagir to Kazanci to the N75°W, 6-km-long Akyazi strand, where slip drops to less than 1 m. The Akyazi strand passes eastward into the Akyazi Bend, which consists of a high-angle bend (18°-29°) between the Sakarya and Karadere fault segments, a 6-km gap in surface rupture, and high aftershock energy release. Complex structural geometries exist between the İzmit, Düzce, and 1967 Mudurnu fault segments that have arrested surface ruptures on timescales ranging from 30 sec to 88 days to 32 yr. The largest of these step-overs may have acted as a rupture segmentation boundary in previous earthquake cycles.
Spontaneous subserosal venous rupture overlying a uterine leiomyoma in a young woman.
Jenayah, Amel Achour; Saoudi, Sarah; Sferi, Nour; Skander, Rim; Marzouk, Sofiène Ben; Cherni, Abdallah; Sfar, Ezzeddine; Chelli, Dalenda; Boudaya, Fethia
2017-01-01
Uterine leiomyomas are very common tumors found in women. Rupture of veins on the surface of uterine leiomyoma is an unusual source of hemoperitoneum. It is an extremely uncommon gynaecological cause of hemoperitoneum. It is a life threatening emergency. We report a case of massive intraperitoneal hemorrhage due to rupture of vessels on the surface of subserous leiomyoma. A differential diagnosis of rupture of leiomyoma'ssurface vessel should be considered, while dealing with a case of hemoperitoneum with pelvic mass.
NASA Astrophysics Data System (ADS)
Inoue, N.; Kitada, N.; Irikura, K.
2013-12-01
A probability of surface rupture is important to configure the seismic source, such as area sources or fault models, for a seismic hazard evaluation. In Japan, Takemura (1998) estimated the probability based on the historical earthquake data. Kagawa et al. (2004) evaluated the probability based on a numerical simulation of surface displacements. The estimated probability indicates a sigmoid curve and increases between Mj (the local magnitude defined and calculated by Japan Meteorological Agency) =6.5 and Mj=7.0. The probability of surface rupture is also used in a probabilistic fault displacement analysis (PFDHA). The probability is determined from the collected earthquake catalog, which were classified into two categories: with surface rupture or without surface rupture. The logistic regression is performed for the classified earthquake data. Youngs et al. (2003), Ross and Moss (2011) and Petersen et al. (2011) indicate the logistic curves of the probability of surface rupture by normal, reverse and strike-slip faults, respectively. Takao et al. (2013) shows the logistic curve derived from only Japanese earthquake data. The Japanese probability curve shows the sharply increasing in narrow magnitude range by comparison with other curves. In this study, we estimated the probability of surface rupture applying the logistic analysis to the surface displacement derived from a surface displacement calculation. A source fault was defined in according to the procedure of Kagawa et al. (2004), which determined a seismic moment from a magnitude and estimated the area size of the asperity and the amount of slip. Strike slip and reverse faults were considered as source faults. We applied Wang et al. (2003) for calculations. The surface displacements with defined source faults were calculated by varying the depth of the fault. A threshold value as 5cm of surface displacement was used to evaluate whether a surface rupture reach or do not reach to the surface. We carried out the logistic regression analysis to the calculated displacements, which were classified by the above threshold. The estimated probability curve indicated the similar trend to the result of Takao et al. (2013). The probability of revere faults is larger than that of strike slip faults. On the other hand, PFDHA results show different trends. The probability of reverse faults at higher magnitude is lower than that of strike slip and normal faults. Ross and Moss (2011) suggested that the sediment and/or rock over the fault compress and not reach the displacement to the surface enough. The numerical theory applied in this study cannot deal with a complex initial situation such as topography.
Direct measurement of the breakdown slip from near-fault strong motion data
NASA Astrophysics Data System (ADS)
Cruz-Atienza, V. M.; Olsen, K. B.; Dalguer, L. A.
2007-12-01
Obtaining reliable estimates of the frictional behaviour on earthquake faults is a fundamental task, particularly the breakdown slip Dc, which has an important role on rupture propagation through the earthquake energy budget. Several studies have attempted to estimate Dc indirectly from kinematical analysis of fault ruptures (e.g., Ide and Takeo, JGR, 1997). However, such estimates are complicated because of both the limited band-width of the observed seismograms used to image the rupture process and the rapid decay of high frequencies with distance from the fault. Mikumo et al. (BSSA, 2003) proposed a method to estimate Dc on the fault plane as the slip at the time of the peak sliprate function (Dc'). Fukuyama and Mikumo (GRL, 2007) proposed to extend this method beyond the fault plane, by estimating Dc as twice the rake-parallel particle displacement at the time of the peak particle velocity. The factor of two arises from an equal amount of opposite displacement on either side of the fault. They concluded that such method allows reliable Dc' estimates with negligible dependence on the perpendicular distance from the fault, and used it to obtain Dc' estimates for the 2000 M6.6 Tottori (0.3 m) and the 2002 M7.9 Denali (2.5 m) earthquakes. The study by Fukuyama and Mikumo was based on simple two-dimensional Green's functions in a homogeneous full space for an anti-plane kinematic crack, and suffers from three fundamental omissions: 1) the free surface and heterogeneous structure, 2) the finiteness of the rupture surface and 3) the dynamic rupture complexity of real 3D earthquakes. Here, we re-examine the methodology proposed by Fukuyama and Mikumo by means of a more realistic approach. We use spontaneous rupture propagation simulated by a recently developed and highly accurate approach, namely the staggered-grid split-node (SGSN) method in a fourth-order staggered- grid finite difference method (Dalguer and Day, JGR, 2007). We assume a vertical strike-slip fault governed by both linear and non-linear slip-weakening friction laws. Our results show that both the free surface and the stopping phases strongly affect Dc estimates. The particle motion recorded by surface instruments is amplified roughly by a factor of two due to the presence of the free surface. As a consequence, the method by Fukuyama and Mikumo over-estimates Dc when applied to strong motion data recorded on the earth's surface. Moreover, contrary to the results by Fukuyama and Mikumo, we observe a strong distance-dependence of the Dc estimates perpendicular to the fault. This variation includes a minimum near the fault, increasing up to about 140% of the target Dc value at a distance 2-3 km from the fault. At further distances from the fault the Dc estimate decreases to about 60% of the target value 10 km away. This distance dependence of the Dc estimate is presumably caused mainly by stopping phases propagating from the fault boundaries. Simulations in heterogeneous media including a low-velocity layer, intrinsic attenuation (Q) and stochastic initial stress conditions allow us to asses the reliability and uncertainty involved in the method proposed by Fukuyama and Mikumo. Dc estimates under these realistic conditions are important but remain below a factor of two in most of the cases we have analyzed. In summary, the accuracy of the method is strongly affected by the presence of the free surface, finite fault extent, and likely by complexity in the velocity structure and rupture propagation.
NASA Astrophysics Data System (ADS)
Festa, Gaetano; Scala, Antonio; Vilotte, Jean-Pierre
2017-04-01
To address the influence of the free surface interaction on rupture propagating along subduction zones, we numerically investigate dynamic interactions, involving coupling between normal and shear tractions, between in-plane rupture propagating along dipping thrust faults and a free surface for different structural and geometrical conditions. When the rupture occurs along reverse fault with a dip angle different from 90° the symmetry is broken as an effect of slip-induced normal stress perturbations and a larger ground motion is evidenced on the hanging wall. The ground motion is amplified by multiple reflections of waves trapped between the fault and the free surface. This effect is shown to occur when the rupture tip lies on the vertical below the intersection between the S-wave front and the surface that is when waves along the surface start to interact with the rupture front. This interaction is associated with a finite region where the rupture advances in a massive regime preventing the shrinking of the process zone and the emission of high-frequency radiation. The smaller the dip angle the larger co-seismic slip in the shallow part as an effect of the significant break of symmetry. Radiation from shallow part is still depleted in high frequencies due to the massive propagating regime and the interaction length dominating the rupture dynamics. Instantaneous shear response to normal traction perturbations may lead to unstable solutions as in the case of bimaterial rupture. A parametric study has been performed to analyse the effects of a regularised shear traction response to normal traction variations. Finally the case of Tohoku earthquake is considered and we present 2D along-dip numerical results. At first order the larger slip close to the trench can be ascribed to the break of symmetry and the interaction with free surface. When shear/normal coupling is properly regularised the signal from the trench is depleted in high frequencies whereas during deep propagation high-frequency radiations emerge associated to geometrical and structural complexities or to frictional strength asperities.
Propose a Wall Shear Stress Divergence to Estimate the Risks of Intracranial Aneurysm Rupture
Zhang, Y.; Takao, H.; Murayama, Y.; Qian, Y.
2013-01-01
Although wall shear stress (WSS) has long been considered a critical indicator of intracranial aneurysm rupture, there is still no definite conclusion as to whether a high or a low WSS results in aneurysm rupture. The reason may be that the effect of WSS direction has not been fully considered. The objectives of this study are to investigate the magnitude of WSS (|WSS|) and its divergence on the aneurysm surface and to test the significance of both in relation to the aneurysm rupture. Patient-specific computational fluid dynamics (CFD) was used to compute WSS and wall shear stress divergence (WSSD) on the aneurysm surface for nineteen patients. Our results revealed that if high |WSS| is stretching aneurysm luminal surface, and the stretching region is concentrated, the aneurysm is under a high risk of rupture. It seems that, by considering both direction and magnitude of WSS, WSSD may be a better indicator for the risk estimation of aneurysm rupture (154). PMID:24191140
Preliminary Study on Earthquake Surface Rupture Extraction from Uav Images
NASA Astrophysics Data System (ADS)
Yuan, X.; Wang, X.; Ding, X.; Wu, X.; Dou, A.; Wang, S.
2018-04-01
Because of the advantages of low-cost, lightweight and photography under the cloud, UAVs have been widely used in the field of seismic geomorphology research in recent years. Earthquake surface rupture is a typical seismic tectonic geomorphology that reflects the dynamic and kinematic characteristics of crustal movement. The quick identification of earthquake surface rupture is of great significance for understanding the mechanism of earthquake occurrence, disasters distribution and scale. Using integrated differential UAV platform, series images were acquired with accuracy POS around the former urban area (Qushan town) of Beichuan County as the area stricken seriously by the 2008 Wenchuan Ms8.0 earthquake. Based on the multi-view 3D reconstruction technique, the high resolution DSM and DOM are obtained from differential UAV images. Through the shade-relief map and aspect map derived from DSM, the earthquake surface rupture is extracted and analyzed. The results show that the surface rupture can still be identified by using the UAV images although the time of earthquake elapse is longer, whose middle segment is characterized by vertical movement caused by compression deformation from fault planes.
Constant Stress Drop Fits Earthquake Surface Slip-Length Data
NASA Astrophysics Data System (ADS)
Shaw, B. E.
2011-12-01
Slip at the surface of the Earth provides a direct window into the earthquake source. A longstanding controversy surrounds the scaling of average surface slip with rupture length, which shows the puzzling feature of continuing to increase with rupture length for lengths many times the seismogenic width. Here we show that a more careful treatment of how ruptures transition from small circular ruptures to large rectangular ruptures combined with an assumption of constant stress drop provides a new scaling law for slip versus length which (1) does an excellent job fitting the data, (2) gives an explanation for the large crossover lengthscale at which slip begins to saturate, and (3) supports constant stress drop scaling which matches that seen for small earthquakes. We additionally discuss how the new scaling can be usefully applied to seismic hazard estimates.
"Immortal" liquid film formed by colliding bubble at oscillating solid substrates
NASA Astrophysics Data System (ADS)
Zawala, Jan
2016-05-01
This paper presents an experimental study of the behavior of an ascending air bubble (equivalent radius 0.74 mm) colliding with a solid substrate. The substrate is either motionless or oscillating with a precisely adjusted acceleration, slightly higher than gravity. It is shown that the stability of the liquid film formed between the striking bubble and the solid surface depends not only on the hydrophobic/hydrophilic properties of the solid but also on the energetic interrelations in the system. The results indicate that the rupture of the bubble and its attachment at a smooth hydrophobic solid surface are related to the viscous dissipation of energy, leading to a gradual decrease in the bubble deformation, and in consequence in the radius of the formed separating liquid film. When the film radius is small enough, the bubble ruptures and attaches to the hydrophobic solid surface. Moreover, it is shown that when the bubble deformations are forced to be constant, by applying properly adjusted oscillations of the solid substrate (energy supply conditions), bubble rupture can be prevented and a constant bubble bouncing is observed, irrespective of the hydrophobic/hydrophilic properties of the solid substrate. Under such energy supply conditions, the liquid film can be considered "immortal." The numerical calculations performed for the respective system, in which constant kinetic energy is induced, confirm that the liquid film can persist indefinitely owing to its constant radius, which is too large to reach the critical thickness for rupture during the collision time.
Johnston, M.J.S.; Linde, A.T.; Agnew, D.C.
1994-01-01
High-precision strain was observed with a borehole dilational strainmeter in the Devil's Punchbowl during the 11:58 UT 28 June 1992 MW 7.3 Landers earthquake and the large Big Bear aftershock (MW 6.3). The strainmeter is installed at a depth of 176 m in the fault zone approximately midway between the surface traces of the San Andreas and Punchbowl faults and is about 100 km from the 85-km-long Landers rupture. We have questioned whether unusual amplified strains indicating precursive slip or high fault compliance occurred on the faults ruptured by the Landers earthquake, or in the San Andreas fault zone before and during the earthquake, whether static offsets for both the Landers and Big Bear earthquakes agree with expectation from geodetic and seismologic models of the ruptures and with observations from a nearby two-color geodimeter network, and whether postseismic behavior indicated continued slip on the Landers rupture or local triggered slip on the San Andreas. We show that the strain observed during the earthquake at this instrument shows no apparent amplification effects. There are no indications of precursive strain in these strain data due to either local slip on the San Andreas or precursive slip on the eventual Landers rupture. The observations are generally consistent with models of the earthquake in which fault geometry and slip have the same form as that determined by either inversion of the seismic data or inversion of geodetically determined ground displacements produced by the earthquake. Finally, there are some indications of minor postseismic behavior, particularly during the month following the earthquake.
Zhang, Wentao; Zhang, Xintao; Huang, Wei
2012-03-01
When knee medial collateral ligament (MCL) rupture, the upper surface of medial meniscus is exposed totally, like the gulf panoramic, which is called "panoramic views of the bay sign" or the "bay sign". To investigate the reliability and significance of the "bay sign" in diagnosis of knee MCL rupture under arthroscope. Between March 2007 and March 2011, 127 patients with knees injuries were divided into the observation group (n = 59) and control group (n = 68) based on the MRI results. In the observation group, 59 patients had MCL rupture by MRI, including 12 cases of MCL injury alone, 16 cases of MCL injury with lateral meniscus torn, 27 cases of MCL injury with anterior cruciate ligament (ACL) injury, 3 cases of MCL injury with ACL and posterior cruciate ligament (PCL) injury, and 1 case of MCL injury with patellar dislocation; there were 38 males and 21 females with an average age of 23.2 years (range, 16-39 years). In the control group, 68 patients had no MCL rupture by MRI, including 38 cases of ACL injury, 4 cases of ACL and PCL injury, and 26 cases of ACL and lateral meniscus injury; there were 45 males and 23 females with an average age of 31.8 years (range, 25-49 years). The "bay sign" was observed under arthroscope in 2 groups before and after operation. The positive "bay sign" was seen under arthroscope in the patients of the observation group before MCL repair; the "bay sign" disappeared after repair. No "bay sign" was seen in patients of the control group before and after ACL reconstruction. The "bay sign" is a reliable diagnostic evidence of MCL injury. It can be used as a basis to judge the success of MCL reconstruction during operation.
The 2014 Mw6.1 South Napa Earthquake: A unilateral rupture with shallow asperity and rapid afterslip
Wei, Shengji; Barbot, Sylvain; Graves, Robert; Lienkaemper, James J.; Wang, Teng; Hudnut, Kenneth W.; Fu, Yuning; Helmberger, Don
2015-01-01
The Mw6.1 South Napa earthquake occurred near Napa, California on August 24, 2014 (UTC), and was the largest inland earthquake in Northern California since the 1989 Mw6.9 Loma Prieta earthquake. The first report of the earthquake from the Northern California Earthquake Data Center (NCEDC) indicates a hypocentral depth of 11.0km with longitude and latitude of (122.3105°W, 38.217°N). Surface rupture was documented by field observations and Lidar imaging (Brooks et al. 2014; Hudnut et al. 2014; Brocher et al., 2015), with about 12 km of continuous rupture starting near the epicenter and extending to the northwest. The southern part of the rupture is relatively straight, but the strike changes by about 15° at the northern end over a 6-km segment. The peak dextral offset was observed near the Buhman residence with right-.‐lateral motion of 46 cm, near the location where the strike of fault begins to rotate clock-.‐wise (Hudnut et al., 2014). The earthquake was well recorded by the strong motion network operated by the NCEDC, the California Geological Survey and the U.S. Geological Survey (USGS). There are about 12 sites within an epicentral distance of 15km, with relatively good azimuthal coverage (Fig.1). The largest peak-ground-velocity (PGV) of nearly 100 cm/s was observed on station 1765, which is the closest station to the rupture and lies about 3 km east of the northern segment (Fig. 1). The ground deformation associated with the earthquake was also well recorded by the high-resolution COSMO-SkyMed satellite and Sentinel-1A satellite, providing independent static observations.
Sources of shaking and flooding during the Tohoku-Oki earthquake: a mixture of rupture styles
Wei, Shengji; Graves, Robert; Helmberger, Don; Avouac, Jean-Philippe; Jiang, Junle
2012-01-01
Modeling strong ground motions from great subduction zone earthquakes is one of the great challenges of computational seismology. To separate the rupture characteristics from complexities caused by 3D sub-surface geology requires an extraordinary data set such as provided by the recent Mw9.0 Tohoku-Oki earthquake. Here we combine deterministic inversion and dynamically guided forward simulation methods to model over one thousand high-rate GPS and strong motion observations from 0 to 0.25 Hz across the entire Honshu Island. Our results display distinct styles of rupture with a deeper generic interplate event (~Mw8.5) transitioning to a shallow tsunamigenic earthquake (~Mw9.0) at about 25 km depth in a process driven by a strong dynamic weakening mechanism, possibly thermal pressurization. This source model predicts many important features of the broad set of seismic, geodetic and seafloor observations providing a major advance in our understanding of such great natural hazards.
NASA Astrophysics Data System (ADS)
Gold, Ryan; Reitman, Nadine; Briggs, Richard; Barnhart, William; Hayes, Gavin
2015-04-01
The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~200 km-long stretch of the 60° ± 15° northwest-dipping Hoshab fault in southern Pakistan. The earthquake is notable because it produced the second-largest lateral surface displacement observed for a continental strike-slip earthquake. Surface displacements and geodetic and teleseismic inversions indicate that peak slip occurred within the upper 0-3 km of the crust. To explore along-strike and fault-perpendicular surface deformation patterns, we remotely mapped the surface trace of the rupture and measured its surface deformation using high-resolution (0.5 m) pre- and post-event satellite imagery. Post-event images were collected 7-114 days following the earthquake, so our analysis captures the sum of both the coseismic and post-seismic (e.g., after slip) deformation. We document peak left-lateral offset of ~15 m using 289 near-field (±10 m from fault) laterally offset piercing points, such as streams, terrace risers, and roads. We characterize off-fault deformation by measuring the medium- (±200 m from fault) and far-field (±10 km from fault) displacement using manual (242 measurements) and automated image cross-correlation methods. Off-fault peak lateral displacement values (medium- and far-field) are ~16 m and commonly exceed the on-fault displacement magnitudes. Our observations suggest that coseismic surface displacement typically increases with distance away from the surface trace of the fault; however, the majority of surface displacement is within 100 m of the primary fault trace and is most localized on sections of the rupture exhibiting narrow (<5 m) zones of observable surface deformation. Furthermore, the near-field displacement measurements account for, on average, only 73% of the total coseismic displacement field and the pattern is highly heterogeneous. This analysis highlights the importance of identifying paleoseismic field study sites (e.g. trenches) that span fault sections with narrow deformation zones in order to capture the full deformation field. Our results imply that hazard analyses based on geologically-determined fault slip rates (e.g., near-field) should consider the significant and heterogeneous mismatch we document between on- and off-fault coseismic deformation.
Interpreting the strongest deep earthquake ever observed
NASA Astrophysics Data System (ADS)
Schultz, Colin
2013-12-01
Massive earthquakes that strike deep within the Earth may be more efficient at dissipating pent-up energy than similar quakes near the surface, according to new research by Wei et al. The authors analyzed the rupture of the most powerful deep earthquake ever recorded.
Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake
Ji, C.; Helmberger, D.V.; Wald, D.J.; Ma, K.-F.
2003-01-01
We investigate the rupture process of the 1999 Chi-Chi, Taiwan, earthquake using extensive near-source observations, including three-component velocity waveforms at 36 strong motion stations and 119 GPS measurements. A three-plane fault geometry derived from our previous inversion using only static data [Ji et al., 2001] is applied. The slip amplitude, rake angle, rupture initiation time, and risetime function are inverted simultaneously with a recently developed finite fault inverse method that combines a wavelet transform approach with a simulated annealing algorithm [Ji et al., 2002b]. The inversion results are validated by the forward prediction of an independent data set, the teleseismic P and SH ground velocities, with notable agreement. The results show that the total seismic moment release of this earthquake is 2.7 ?? 1020 N m and that most of the slip occured in a triangular-shaped asperity involving two fault segments, which is consistent with our previous static inversion. The rupture front propagates with an average rupture velocity of ???2.0 km s-1, and the average slip duration (risetime) is 7.2 s. Several interesting observations related to the temporal evolution of the Chi-Chi earthquake are also investigated, including (1) the strong effect of the sinuous fault plane of the Chelungpu fault on spatial and temporal variations in slip history, (2) the intersection of fault 1 and fault 2 not being a strong impediment to the rupture propagation, and (3 the observation that the peak slip velocity near the surface is, in general, higher than on the deeper portion of the fault plane, as predicted by dynamic modeling.
Mechanics of Multifault Earthquake Ruptures
NASA Astrophysics Data System (ADS)
Fletcher, J. M.; Oskin, M. E.; Teran, O.
2015-12-01
The 2010 El Mayor-Cucapah earthquake of magnitude Mw 7.2 produced the most complex rupture ever documented on the Pacific-North American plate margin, and the network of high- and low-angle faults activated in the event record systematic changes in kinematics with fault orientation. Individual faults have a broad and continuous spectrum of slip sense ranging from endmember dextral strike slip to normal slip, and even faults with thrust sense of dip slip were commonly observed in the aftershock sequence. Patterns of coseismic slip are consistent with three-dimensional constrictional strain and show that integrated transtensional shearing can be accommodated in a single earthquake. Stress inversions of coseismic surface rupture and aftershock focal mechanisms define two coaxial, but permuted stress states. The maximum (σ1) and intermediate (σ2) principal stresses are close in magnitude, but flip orientations due to topography- and density-controlled gradients in lithostatic load along the length of the rupture. Although most large earthquakes throughout the world activate slip on multiple faults, the mechanical conditions of their genesis remain poorly understood. Our work attempts to answer several key questions. 1) Why do complex fault systems exist? They must do something that simple, optimally-oriented fault systems cannot because the two types of faults are commonly located in close proximity. 2) How are faults with diverse orientations and slip senses prepared throughout the interseismic period to fail spontaneously together in a single earthquake? 3) Can a single stress state produce multi-fault failure? 4) Are variations in pore pressure, friction and cohesion required to produce simultaneous rupture? 5) How is the fabric of surface rupture affected by variations in orientation, kinematics, total geologic slip and fault zone architecture?
Width of surface rupture zone for thrust earthquakes: implications for earthquake fault zoning
NASA Astrophysics Data System (ADS)
Boncio, Paolo; Liberi, Francesca; Caldarella, Martina; Nurminen, Fiia-Charlotta
2018-01-01
The criteria for zoning the surface fault rupture hazard (SFRH) along thrust faults are defined by analysing the characteristics of the areas of coseismic surface faulting in thrust earthquakes. Normal and strike-slip faults have been deeply studied by other authors concerning the SFRH, while thrust faults have not been studied with comparable attention. Surface faulting data were compiled for 11 well-studied historic thrust earthquakes occurred globally (5.4 ≤ M ≤ 7.9). Several different types of coseismic fault scarps characterize the analysed earthquakes, depending on the topography, fault geometry and near-surface materials (simple and hanging wall collapse scarps, pressure ridges, fold scarps and thrust or pressure ridges with bending-moment or flexural-slip fault ruptures due to large-scale folding). For all the earthquakes, the distance of distributed ruptures from the principal fault rupture (r) and the width of the rupture zone (WRZ) were compiled directly from the literature or measured systematically in GIS-georeferenced published maps. Overall, surface ruptures can occur up to large distances from the main fault ( ˜ 2150 m on the footwall and ˜ 3100 m on the hanging wall). Most of the ruptures occur on the hanging wall, preferentially in the vicinity of the principal fault trace ( > ˜ 50 % at distances < ˜ 250 m). The widest WRZ are recorded where sympathetic slip (Sy) on distant faults occurs, and/or where bending-moment (B-M) or flexural-slip (F-S) fault ruptures, associated with large-scale folds (hundreds of metres to kilometres in wavelength), are present. A positive relation between the earthquake magnitude and the total WRZ is evident, while a clear correlation between the vertical displacement on the principal fault and the total WRZ is not found. The distribution of surface ruptures is fitted with probability density functions, in order to define a criterion to remove outliers (e.g. 90 % probability of the cumulative distribution function) and define the zone where the likelihood of having surface ruptures is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary (the highest level of SM, i.e. Level 3 SM according to Italian guidelines). In the absence of such a very detailed study (basic SM, i.e. Level 1 SM of Italian guidelines) a width of ˜ 840 m (90 % probability from "simple thrust" database of distributed ruptures, excluding B-M, F-S and Sy fault ruptures) is suggested to be sufficiently precautionary. For more detailed SM, where the fault is carefully mapped, one must consider that the highest SFRH is concentrated in a narrow zone, ˜ 60 m in width, that should be considered as a fault avoidance zone (more than one-third of the distributed ruptures are expected to occur within this zone). The fault rupture hazard zones should be asymmetric compared to the trace of the principal fault. The average footwall to hanging wall ratio (FW : HW) is close to 1 : 2 in all analysed cases. These criteria are applicable to "simple thrust" faults, without considering possible B-M or F-S fault ruptures due to large-scale folding, and without considering sympathetic slip on distant faults. Areas potentially susceptible to B-M or F-S fault ruptures should have their own zones of fault rupture hazard that can be defined by detailed knowledge of the structural setting of the area (shape, wavelength, tightness and lithology of the thrust-related large-scale folds) and by geomorphic evidence of past secondary faulting. Distant active faults, potentially susceptible to sympathetic triggering, should be zoned as separate principal faults. The entire database of distributed ruptures (including B-M, F-S and Sy fault ruptures) can be useful in poorly known areas, in order to assess the extent of the area within which potential sources of fault displacement hazard can be present. The results from this study and the database made available in the Supplement can be used for improving the attenuation relationships for distributed faulting, with possible applications in probabilistic studies of fault displacement hazard.
Hecker, Suzanne; Abrahamson, N.A.; Wooddell, Kathryn
2013-01-01
To investigate the nature of earthquake‐magnitude distributions on faults, we compare the interevent variability of surface displacement at a point on a fault from a composite global data set of paleoseismic observations with the variability expected from two prevailing magnitude–frequency distributions: the truncated‐exponential model and the characteristic‐earthquake model. We use forward modeling to predict the coefficient of variation (CV) for the alternative earthquake distributions, incorporating factors that would effect observations of displacement at a site. The characteristic‐earthquake model (with a characteristic‐magnitude range of ±0.25) produces CV values consistent with the data (CV∼0.5) only if the variability for a given earthquake magnitude is small. This condition implies that rupture patterns on a fault are stable, in keeping with the concept behind the model. This constraint also bears upon fault‐rupture hazard analysis, which, for lack of point‐specific information, has used global scaling relations to infer variability in average displacement for a given‐size earthquake. Exponential distributions of earthquakes (from M 5 to the maximum magnitude) give rise to CV values that are significantly larger than the empirical constraint. A version of the model truncated at M 7, however, yields values consistent with a larger CV (∼0.6) determined for small‐displacement sites. Although this result allows for a difference in the magnitude distribution of smaller surface‐rupturing earthquakes, it may reflect, in part, less stability in the displacement profile of smaller ruptures and/or the tails of larger ruptures.
Explosive-driven, high speed, arcless switch
Skogmo, P.J.; Tucker, T.J.
1986-05-02
An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.
Explosive-driven, high speed, arcless switch
Skogmo, Phillip J.; Tucker, Tillman J.
1987-01-01
An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.
NASA Astrophysics Data System (ADS)
Chitnis, Parag V.; Lee, Paul; Mamou, Jonathan; Allen, John S.; Böhmer, Marcel; Ketterling, Jeffrey A.
2011-04-01
Polymer-shelled micro-bubbles are employed as ultrasound contrast agents (UCAs) and vesicles for targeted drug delivery. UCA-based delivery of the therapeutic payload relies on ultrasound-induced shell rupture. The fragility of two polymer-shelled UCAs manufactured by Point Biomedical or Philips Research was investigated by characterizing their response to static overpressure. The nominal diameters of Point and Philips UCAs were 3 μm and 2 μm, respectively. The UCAs were subjected to static overpressure in a glycerol-filled test chamber with a microscope-reticule lid. UCAs were reconstituted in 0.1 mL of water and added over the glycerol surface in contact with the reticule. A video-microscope imaged UCAs as glycerol was injected (5 mL/h) to vary the pressure from 2 to 180 kPa over 1 h. Neither UCA population responded to overpressure until the rupture threshold was exceeded, which resulted in abrupt destruction. The rupture data for both UCAs indicated three subclasses that exhibited different rupture behavior, although their mean diameters were not statistically different. The rupture pressures provided a measure of UCA fragility; the Philips UCAs were more resilient than Point UCAs. Results were compared to theoretical models of spherical shells under compression. Observed variations in rupture pressures are attributed to shell imperfections. These results may provide means to optimize polymeric UCAs for drug delivery and elucidate associated mechanisms.
Geotechnical reconnaissance of the 2002 Denali fault, Alaska, earthquake
Kayen, R.; Thompson, E.; Minasian, D.; Moss, R.E.S.; Collins, B.D.; Sitar, N.; Dreger, D.; Carver, G.
2004-01-01
The 2002 M7.9 Denali fault earthquake resulted in 340 km of ruptures along three separate faults, causing widespread liquefaction in the fluvial deposits of the alpine valleys of the Alaska Range and eastern lowlands of the Tanana River. Areas affected by liquefaction are largely confined to Holocene alluvial deposits, man-made embankments, and backfills. Liquefaction damage, sparse surrounding the fault rupture in the western region, was abundant and severe on the eastern rivers: the Robertson, Slana, Tok, Chisana, Nabesna and Tanana Rivers. Synthetic seismograms from a kinematic source model suggest that the eastern region of the rupture zone had elevated strong-motion levels due to rupture directivity, supporting observations of elevated geotechnical damage. We use augered soil samples and shear-wave velocity profiles made with a portable apparatus for the spectral analysis of surface waves (SASW) to characterize soil properties and stiffness at liquefaction sites and three trans-Alaska pipeline pump station accelerometer locations. ?? 2004, Earthquake Engineering Research Institute.
Haeussler, Peter J.; Schwartz, David P.; Dawson, Timothy E.; Stenner, Heidi D.; Lienkaemper, James J.; Sherrod, Brian; Cinti, Francesca R.; Montone, Paola; Craw, Patricia; Crone, Anthony J.; Personius, Stephen F.
2004-01-01
The 3 November 2002 Denali fault, Alaska, earthquake resulted in 341 km of surface rupture on the Susitna Glacier, Denali, and Totschunda faults. The rupture proceeded from west to east and began with a 48-km-long break on the previously unknown Susitna Glacier thrust fault. Slip on this thrust averaged about 4 m (Crone et al., 2004). Next came the principal surface break, along 226 km of the Denali fault, with average right-lateral offsets of 4.5–5.1 m and a maximum offset of 8.8 m near its eastern end. The Denali fault trace is commonly left stepping and north side up. About 99 km of the fault ruptured through glacier ice, where the trace orientation was commonly influenced by local ice fabric. Finally, slip transferred southeastward onto the Totschunda fault and continued for another 66 km where dextral offsets average 1.6–1.8 m. The transition from the Denali fault to the Totschunda fault occurs over a complex 25-km-long transfer zone of right-slip and normal fault traces. Three methods of calculating average surface slip all yield a moment magnitude of Mw 7.8, in very good agreement with the seismologically determined magnitude of M 7.9. A comparison of strong-motion inversions for moment release with our slip distribution shows they have a similar pattern. The locations of the two largest pulses of moment release correlate with the locations of increasing steps in the average values of observed slip. This suggests that slip-distribution data can be used to infer moment release along other active fault traces.
Dynamic rupture simulations of the 2016 Mw7.8 Kaikōura earthquake: a cascading multi-fault event
NASA Astrophysics Data System (ADS)
Ulrich, T.; Gabriel, A. A.; Ampuero, J. P.; Xu, W.; Feng, G.
2017-12-01
The Mw7.8 Kaikōura earthquake struck the Northern part of New Zealand's South Island roughly one year ago. It ruptured multiple segments of the contractional North Canterbury fault zone and of the Marlborough fault system. Field observations combined with satellite data suggest a rupture path involving partly unmapped faults separated by large stepover distances larger than 5 km, the maximum distance usually considered by the latest seismic hazard assessment methods. This might imply distant rupture transfer mechanisms generally not considered in seismic hazard assessment. We present high-resolution 3D dynamic rupture simulations of the Kaikōura earthquake under physically self-consistent initial stress and strength conditions. Our simulations are based on recent finite-fault slip inversions that constrain fault system geometry and final slip distribution from remote sensing, surface rupture and geodetic data (Xu et al., 2017). We assume a uniform background stress field, without lateral fault stress or strength heterogeneity. We use the open-source software SeisSol (www.seissol.org) which is based on an arbitrary high-order accurate DERivative Discontinuous Galerkin method (ADER-DG). Our method can account for complex fault geometries, high resolution topography and bathymetry, 3D subsurface structure, off-fault plasticity and modern friction laws. It enables the simulation of seismic wave propagation with high-order accuracy in space and time in complex media. We show that a cascading rupture driven by dynamic triggering can break all fault segments that were involved in this earthquake without mechanically requiring an underlying thrust fault. Our prefered fault geometry connects most fault segments: it does not features stepover larger than 2 km. The best scenario matches the main macroscopic characteristics of the earthquake, including its apparently slow rupture propagation caused by zigzag cascading, the moment magnitude and the overall inferred slip distribution. We observe a high sensitivity of cascading dynamics on fault-step over distance and off-fault energy dissipation.
Seismic rupture process of the 2010 Haiti Earthquake (Mw7.0) inferred from seismic and SAR data
NASA Astrophysics Data System (ADS)
Santos, Rúben; Caldeira, Bento; Borges, José; Bezzeghoud, Mourad
2013-04-01
On January 12th 2010 at 21:53, the Port-au-Prince - Haiti region was struck by an Mw7 earthquake, the second most deadly of the history. The last seismic significant events in the region occurred in November 1751 and June 1770 [1]. Geodetic and geological studies, previous to the 2010 earthquake [2] have warned to the potential of the destructive seismic events in that region and this event has confirmed those warnings. Some aspects of the source of this earthquake are nonconsensual. There is no agreement in the mechanism of rupture or correlation with the fault that should have it generated [3]. In order to better understand the complexity of this rupture, we combined several techniques and data of different nature. We used teleseismic body-wave and Synthetic Aperture Radar data (SAR) based on the following methodology: 1) analysis of the rupture process directivity [4] to determine the velocity and direction of rupture; 2) teleseismic body-wave inversion to obtain the spatiotemporal fault slip distribution and a detailed rupture model; 3) near field surface deformation modeling using the calculated seismic rupture model and compared with the measured deformation field using SAR data of sensor Advanced Land Observing Satellite - Phased Array L-band SAR (ALOS-PALSAR). The combined application of seismic and geodetic data reveals a complex rupture that spread during approximately 12s mainly from WNW to ESE with average velocity of 2,5km/s, on a north-dipping fault plane. Two main asperities are obtained: the first (and largest) occurs within the first ~ 5sec and extends for approximately 6km around the hypocenter; the second one, that happens in the remaining 6s, covers a near surface rectangular strip with about 12km long by 3km wide. The first asperity is compatible with a left lateral strike-slip motion with a small reverse component; the mechanism of second asperity is predominantly reverse. The obtained rupture process allows modeling a coseismic deformation which is in agreement with the deformation field measured by InSAR. [1] Bakun W, Flores C, Brink U, 2012 Significant Earthquakes on the Enriquillo Fault System, Hispaniola, 1500-2010: Implications for Seismic Hazard. Bul. Seis. Soc. of America, 102(1):18-30. [2] Dixon, T. et al., 1998. Relative motion between the Caribbean and North American plates and related boundary zone deformation based on a decade of GPS observations. J. Geophys. Res. 103, 15157-15182. [3] Mercier de Lépinay, B., Deschamps, A., Klingelhoefer, F., Mazabraud, Y., Delouis, B., Clouard, V., Hello Y., Crozon, J., Marcaillou, B., Graindorge, D., Vallée M., Perrot, J., Bouin, M., Saurel, J., Charvis, Philippe, C. and St-Louis, 2011. The 2010 Haiti earthquake: A complex fault pattern constrained by seismologic and tectonic observations, Geoph. Res. Let., 30, L22305 [4] Caldeira B, Bezzeghoud M, Borges JF., 2009 DIRDOP: a directivity approach to determining the seismic rupture velocity vector. J. of Seis.. 2009;14(3):565-600.
Blass, Johanna; Albrecht, Marcel; Bozna, Bianca L; Wenz, Gerhard; Bennewitz, Roland
2015-05-07
We introduce a molecular toolkit for studying the dynamics in friction and adhesion from the single molecule level to effects of multivalency. As experimental model system we use supramolecular bonds established by the inclusion of ditopic adamantane connector molecules into two surface-bound cyclodextrin molecules, attached to a tip of an atomic force microscope (AFM) and to a flat silicon surface. The rupture force of a single bond does not depend on the pulling rate, indicating that the fast complexation kinetics of adamantane and cyclodextrin are probed in thermal equilibrium. In contrast, the pull-off force for a group of supramolecular bonds depends on the unloading rate revealing a non-equilibrium situation, an effect discussed as the combined action of multivalency and cantilever inertia effects. Friction forces exhibit a stick-slip characteristic which is explained by the cooperative rupture of groups of host-guest bonds and their rebinding. No dependence of friction on the sliding velocity has been observed in the accessible range of velocities due to fast rebinding and the negligible delay of cantilever response in AFM lateral force measurements.
NASA Astrophysics Data System (ADS)
Xu, S.; Fukuyama, E.; Yamashita, F.; Mizoguchi, K.; Takizawa, S.; Kawakata, H.
2016-12-01
Influence of fault zone heterogeneity on the behavior of fault motion has been studied in many aspects, such as strain partitioning, heat generation, slip mode, rupture mode, and effective friction law. However, a multi-scale investigation of fault behavior due to heterogeneity was difficult in nature, because of the limited access to natural fault zones at the seismogenic depth and the lack of in situ high-resolution observations. To overcome these difficulties, we study the behavior of a meter-scale synthetic fault made of Indian metagabbro during laboratory direct shear experiments, utilizing high-density arrays of strain gauges mounted close to the fault. We focus on two target experiments that are loaded under the same normal stress of 6.7 MPa and loading rate of 0.01 mm/s, but with different initial surface conditions. To change the surface condition, we applied a fast loading experiment under a rate of 1 mm/s between the two target experiments. It turned out the fast loading activated many foreshocks before the mainshock and caused a roaming of the mainshock nucleation site. These features were closely related to the re-distribution of the real contact area and surface wear, which together reflected a more heterogeneous state of the surface condition. During the first target experiment before the fast loading, the synthetic fault moved in a classic stick-slip fashion and the typical rupture mode was subshear within the range of the fault length. However, during the second target experiment, the synthetic fault inherited the heterogeneous features generated from the previous fast loading, showing a macroscopic creep-like behavior that actually consisted of many small stick-slip events. The apparent frictional strength increased while the recurrence interval and the stress drop decreased, compared to the levels seen in the first target experiment. The rupture mode became more complicated; supershear phases sometimes emerged but may only exist transiently. Their occurrence or termination showed a strong correlation with the local stress field characterized by short-range coherence. These observations highlight the role of surface heterogeneity in influencing fault motion, both macroscopically and locally, and have important implications for understanding the behavior of natural faults.
Urbanek, Tomasz; Juśko, Maciej; Niewiem, Alfred; Kuczmik, Wacław; Ziaja, Damian; Ziaja, Krzysztof
2015-01-01
The rate of aortic aneurysm rupture correlates with the aneurysm's diameter, and a higher rate of rupture is observed in patients with larger aneurysms. According to the literature, contradictory results concerning the relationship between atmospheric pressure and aneurysm size have been reported. In this paper, we assessed the influence of changes in atmospheric pressure on abdominal aneurysm ruptures in relationship to the aneurysm's size. The records of 223 patients with ruptured abdominal aneurysms were evaluated. All of the patients had been admitted to the department in the period 1997-2007 from the Silesia region. The atmospheric pressures on the day of the rupture and on the days both before the rupture and between the rupture events were compared. The size of the aneurysm was also considered in the analysis. There were no statistically significant differences in pressure between the days of rupture and the remainder of the days within an analysed period. The highest frequency of the admission of patients with a ruptured aortic aneurysm was observed during periods of winter and spring, when the highest mean values of atmospheric pressure were observed; however, this observation was not statistically confirmed. A statistically non-significant trend towards the higher rupture of large aneurysms (> 7 cm) was observed in the cases where the pressure increased between the day before the rupture and the day of the rupture. This trend was particularly pronounced in patients suffering from hypertension (p = 0.1). The results of this study do not support the hypothesis that there is a direct link between atmospheric pressure values and abdominal aortic aneurysm ruptures.
NASA Astrophysics Data System (ADS)
Sayab, Mohammad; Khan, Muhammad Asif
2010-10-01
Detailed rupture-fracture analyses of some of the well-studied earthquakes have revealed that the geometrical arrangement of secondary faults and fractures can be used as a geological tool to understand the temporal evolution of slip produced during the mainshock. The October 8, 2005 Mw 7.6 Kashmir earthquake, NW Himalaya, surface rupture provides an opportunity to study a complex network of secondary fractures developed on the hanging wall of the fault scarp. The main fault scarp is clearly thrust-type, rupture length is ~ 75 ± 5 km and the overall trend of the rupture is NW-SE. We present the results of our detailed structural mapping of secondary faults and fractures at 1:100 scale, on the hanging wall of the southern end of the rupture in the vicinity of the Sar Pain. Secondary ruptures can be broadly classified as two main types, 1) normal faults and, (2) right-lateral strike-slip 'Riedel' fractures. The secondary normal faults are NW-SE striking, with a maximum 3.3 meter vertical displacement and 2.5 meter horizontal displacement. Estimated total horizontal extension across the secondary normal faults is 3.1-3.5%. We propose that the bending-moment and coseismic stress relaxation can explain the formation of secondary normal faults on the hanging wall of the thrust fault. The strike-slip 'Riedel' fractures form distinct sets of tension (T) and shear fractures (R', R, Y) with right-lateral displacement. Field observations revealed that the 'Riedel' fractures (T) cut the secondary normal faults. In addition, there is kinematic incompatibility and magnitude mismatch between the secondary normal faults and strike-slip 'Riedel' fractures. The cross-cutting relationship, geometric and magnitude incoherence implies a temporal evolution of slip from dip- to strike-slip during the mainshock faulting. The interpretation is consistent with the thrust fault plane solution with minor right-lateral strike-slip component.
The mechanical implications of deep fluids in the rupture process of giant landslides
NASA Astrophysics Data System (ADS)
Cappa, Frédéric; Guglielmi, Yves; Viseur, Sophie; Garambois, Stéphane
2015-04-01
Fluids are known to be a triggering and driving factor for landslides. Hydromechanical coupling has been proposed as possible explanation for landslide dynamics, including both slow, aseismic slip, as well as fast, seismic rupture. The widely accepted understanding is that rainfall, snowmelt and the seasonality of the groundwater recharge increases fluid pressures, which in turn reduces effective stress, and thus alters the strength of rocks and rupture surfaces, promoting sliding. So far, most interpretations focused on the effects of rainfall infiltration into landslides, and did not investigate in detail the role of groundwater table variations below the landslides on the rupture processes. However, such considerations are important, since observations of well-documented giant landslides showed that the moving volume extends hundreds of meters above the slope aquifer. Furthermore, although motions correlate well with seasonal infiltrations, no significant pore pressure increase has ever been measured within the landslide body, particularly in high-permeability rocky landslides. Indeed, motions occur in the near surface of the unsaturated slope, which is in general highly permeable (which allows high infiltration rates), perched, highly discontinuous, size-limited, and experiences low magnitude pore pressure build-up that is not high enough to significantly vary the effective stresses in the slope. Triggering of local instabilities by such perched low-pressurized zones may be possible only at the critical stress level of the rock, but do not explain the slow increase in the permanent background seasonal accelerations and decelerations that affect the entire landslide. Thus, clarifying the role of fluids, especially the effects of groundwater table variations within the deep aquifer on the unsaturated slope slow rupture is important for improved understanding of weak forcing mechanisms on landslides and risk assessment. The study of strain partitioning in two giant rocky landslides in France (La Clapière and Séchilienne, estimated volume of about 60 million cubic meters) provides a unique insight into the sensitivity of landslide motions to the changes in deep fluid pressures and surface frictional properties. Here we show with hydromechanical modeling that a significant part of the observed landslide motions and associated seismicity may be caused by poroelastic strain below the landslide, induced by groundwater table variations. In the unstable volume near the surface, calculated strain and rupture may be controlled by stress transfer and friction weakening above the phreatic zone and reproduce well high-motion zone characteristics measured by geodesy and seismology. The key model parameters are friction weakening and the position of groundwater level, which is sufficiently constrained by field data and seismic imaging to support the physical validity of the model. These results are of importance for the understanding of surface strain evolution under weak forcing and they demonstrated that the seasonal variation of deep fluids below the landslide is a major increasing factor of instability.
Explosive-driven, high speed, arcless switch
Skogmo, P.J.; Tucker, T.J.
1987-07-14
An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed. 7 figs.
Rupture history of 2008 May 12 Mw 8.0 Wen-Chuan earthquake: Evidence of slip interaction
NASA Astrophysics Data System (ADS)
Ji, C.; Shao, G.; Lu, Z.; Hudnut, K.; Jiu, J.; Hayes, G.; Zeng, Y.
2008-12-01
We will present the rupture process of the May 12, 2008 Mw 8.0 Wenchuan earthquake using all available data. The current model, using both teleseismic body and surface waves and interferometric LOS displacements, reveals an unprecedented complex rupture process which can not be resolved using either of the datasets individually. Rupture of this earthquake involved both the low angle Pengguan fault and the high angle Beichuan fault, which intersect each other at depth and are separated approximately 5-15 km at the surface. Rupture initiated on the Pengguan fault and triggered rupture on the Beichuan fault 10 sec later. The two faults dynamically interacted and unilaterally ruptured over 270 km with an average rupture velocity of 3.0 km/sec. The total seismic moment is 1.1x1021 Nm (Mw 8.0), roughly equally partitioned between the two faults. However, the spatiotemporal evaluations of the two faults are very different. This study will focus on the evidence for fault interactions and will analyze the corresponding uncertainties, in preparation for future dynamic studies of the same detailed nature.
Deng, J.; Hudnut, K.; Gurnis, M.; Hauksson, E.
1999-01-01
Following the M(w) 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.Following the Mw 6.7 Northridge earthquake, significant postseismic displacements were resolved with GPS. Using a three-dimensional viscoelastic model, we suggest that this deformation is mainly driven by viscous flow in the lower crust. Such flow can transfer stress to the upper crust and load the rupture zone of the main shock at a decaying rate. Most aftershocks within the rupture zone, especially those that occurred after the first several weeks of the main shock, may have been triggered by continuous stress loading from viscous flow. The long-term decay time of aftershocks (about 2 years) approximately matches the decay of viscoelastic loading, and thus is controlled by the viscosity of the lower crust. Our model provides a physical interpretation of the observed correlation between aftershock decay rate and surface heat flow.
Andrews, D.J.; Ma, Shuo
2010-01-01
Large dynamic stress off the fault incurs an inelastic response and energy loss, which contributes to the fracture energy, limiting the rupture and slip velocity. Using an explicit finite element method, we model three-dimensional dynamic ruptures on a vertical strike-slip fault in a homogeneous half-space. The material is subjected to a pressure-dependent Drucker-Prager yield criterion. Initial stresses in the medium increase linearly with depth. Our simulations show that the inelastic response is confined narrowly to the fault at depth. There the inelastic strain is induced by large dynamic stresses associated with the rupture front that overcome the effect of the high confining pressure. The inelastic zone increases in size as it nears the surface. For material with low cohesion (~5 MPa) the inelastic zone broadens dramatically near the surface, forming a "flowerlike" structure. The near-surface inelastic strain occurs in both the extensional and the compressional regimes of the fault, induced by seismic waves ahead of the rupture front under a low confining pressure. When cohesion is large (~10 MPa), the inelastic strain is significantly reduced near the surface and confined mostly to depth. Cohesion, however, affects the inelastic zone at depth less significantly. The induced shear microcracks show diverse orientations near the surface, owing to the low confining pressure, but exhibit mostly horizontal slip at depth. The inferred rupture-induced anisotropy at depth has the fast wave direction along the direction of the maximum compressive stress.
NASA Astrophysics Data System (ADS)
Milliner, C. W. D.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.
2016-10-01
Subpixel correlation of preevent and postevent air photos reveal the complete near-field, horizontal surface deformation patterns of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine ruptures. Total surface displacement values for both earthquakes are systematically larger than "on-fault" displacements from geologic field surveys, indicating significant distributed, inelastic deformation occurred along these ruptures. Comparison of these two data sets shows that 46 ± 10% and 39 ± 22% of the total surface deformation were distributed over fault zones averaging 154 m and 121 m in width for the Landers and Hector Mine events, respectively. Spatial variations of distributed deformation along both ruptures show correlations with the type of near-surface lithology and degree of fault complexity; larger amounts of distributed shear occur where the rupture propagated through loose unconsolidated sediments and areas of more complex fault structure. These results have basic implications for geologic-geodetic rate comparisons and probabilistic seismic hazard analysis.
Revisiting the 1872 Owens Valley, California, Earthquake
Hough, S.E.; Hutton, K.
2008-01-01
The 26 March 1872 Owens Valley earthquake is among the largest historical earthquakes in California. The felt area and maximum fault displacements have long been regarded as comparable to, if not greater than, those of the great San Andreas fault earthquakes of 1857 and 1906, but mapped surface ruptures of the latter two events were 2-3 times longer than that inferred for the 1872 rupture. The preferred magnitude estimate of the Owens Valley earthquake has thus been 7.4, based largely on the geological evidence. Reinterpreting macroseismic accounts of the Owens Valley earthquake, we infer generally lower intensity values than those estimated in earlier studies. Nonetheless, as recognized in the early twentieth century, the effects of this earthquake were still generally more dramatic at regional distances than the macroseismic effects from the 1906 earthquake, with light damage to masonry buildings at (nearest-fault) distances as large as 400 km. Macroseismic observations thus suggest a magnitude greater than that of the 1906 San Francisco earthquake, which appears to be at odds with geological observations. However, while the mapped rupture length of the Owens Valley earthquake is relatively low, the average slip was high. The surface rupture was also complex and extended over multiple fault segments. It was first mapped in detail over a century after the earthquake occurred, and recent evidence suggests it might have been longer than earlier studies indicated. Our preferred magnitude estimate is Mw 7.8-7.9, values that we show are consistent with the geological observations. The results of our study suggest that either the Owens Valley earthquake was larger than the 1906 San Francisco earthquake or that, by virtue of source properties and/or propagation effects, it produced systematically higher ground motions at regional distances. The latter possibility implies that some large earthquakes in California will generate significantly larger ground motions than San Andreas fault events of comparable magnitude.
Rupture Complexities of Fluid Induced Microseismic Events at the Basel EGS Project
NASA Astrophysics Data System (ADS)
Folesky, Jonas; Kummerow, Jörn; Shapiro, Serge A.; Häring, Markus; Asanuma, Hiroshi
2016-04-01
Microseismic data sets of excellent quality, such as the seismicity recorded in the Basel-1 enhanced geothermal system, Switzerland, in 2006-2007, provide the opportunity to analyse induced seismic events in great detail. It is important to understand in how far seismological insights on e.g. source and rupture processes are scale dependent and how they can be transferred to fluid induced micro-seismicity. We applied the empirical Green's function (EGF) method in order to reconstruct the relative source time functions of 195 suitable microseismic events from the Basel-1 reservoir. We found 93 solutions with a clear and consistent directivity pattern. The remaining events display either no measurable directivity, are unfavourably oriented or exhibit non consistent or complex relative source time functions. In this work we focus on selected events of M ˜ 1 which show possible rupture complexities. It is demonstrated that the EGF method allows to resolve complex rupture behaviour even if it is not directly identifiable in the seismograms. We find clear evidence of rupture directivity and multi-phase rupturing in the analysed relative source time functions. The time delays between consecutive subevents lies in the order of 10ms. Amplitudes of the relative source time functions of the subevents do not always show the same azimuthal dependence, indicating dissimilarity in the rupture directivity of the subevents. Our observations support the assumption that heterogeneity on fault surfaces persists down to small scale (few tens of meters).
NASA Astrophysics Data System (ADS)
Ren, Yefei; Wang, Hongwei; Wen, Ruizhi
2017-12-01
An
Effect of thermal pressurization on dynamic rupture propagation under depth-dependent stress
NASA Astrophysics Data System (ADS)
Urata, Y.; Kuge, K.; Kase, Y.
2009-12-01
Fluid and pore pressure evolution can affect dynamic propagation of earthquake ruptures owing to thermal pressurization (e.g., Mase and Smith, 1985). We investigate dynamic rupture propagation with thermal pressurization on a fault subjected to depth-dependent stress, on the basis of 3-D numerical simulations for spontaneous dynamic ruptures. We put a vertical strike-slip rectangular fault in a semi-infinite, homogenous, and elastic medium. The length and width of the fault are 8 and 3 km, respectively. We assume a depth-dependent stress estimated by Yamashita et al. (2004). The numerical algorithm is based on the finite-difference method by Kase and Kuge (2001). A rupture is initiated by increasing shear stress in a small patch at the bottom of the fault, and then proceeds spontaneously, governed by a slip-weakening law with the Coulomb failure criteria. Coefficients of friction and Dc are homogeneous on the fault. On a fault with thermal pressurization, we allow effective normal stress to vary with pore pressure change due to frictional heating by the formulation of Bizzarri and Cocco (2006). When thermal pressurization does not work, tractions drop in the same way everywhere and rupture velocity is subshear except near the free surface. Due to thermal pressurization, dynamic friction on the fault decreases and is heterogeneous not only vertically but horizontally, slip increases, and rupture velocity along the strike direction becomes supershear. As a result, plural peaks of final slip appear, as observed in the case of undrained dip-slip fault by Urata et al. (2008). We found in this study that the early stage of rupture growth under the depth-dependent stress is affected by the location of an initial crack. When a rupture is initiated at the center of the fault without thermal pressurization, the rupture cannot propagate and terminates. Thermal pressurization can help such a powerless rupture to keep propagating.
NASA Astrophysics Data System (ADS)
Ozel, A.; Yalcinkaya, E.; Guralp, C. M.; Tunc, S.; Meral Ozel, N.
2013-12-01
The main objective of this study is to install a multi-parameter borehole system and surface array as close to the main Marmara Fault (MMF) in the western Marmara Sea as possible, and measure continuously the evolution of the state of the fault zone surrounding the MMF and to detect any anomaly or change which may occur before earthquakes by making use of the data from the arrays already running in the eastern part of the Marmara Sea. The multi-parameter borehole system will be composed of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, and incorporate 3-D strain meter, tilt meter, and temperature and local hydrostatic pressure measuring devices. The borehole seismic station will use the latest update technologies and design ideas to record 'Earth tides' signals to the smallest magnitude -3 events. Bringing face to face the seismograms of microearthquakes recorded by borehole and surface instruments portrays quite different contents. The shorter recording duration and nearly flat frequency spectrum up to the Nyquist frequencies of borehole records are faced with longer recording duration and rapid decay of spectral amplitudes at higher frequencies of a surface seismogram. The main causative of the observed differences are near surface geology effects that mask most of the source related information the seismograms include, and that give rise to scattering, generating longer duration seismograms. In view of these circumstances, studies on microearthquakes employing surface seismograms may bring on misleading results. Particularly, the works on earthquake physics and nucleation process of earthquakes requires elaborate analysis of tiny events. It is obvious from the studies on the nucleation process of the 1999 earthquake that tens of minutes before the major rupture initiate noteworthy microearthquake activity happened. The starting point of the 1999 rupture was a site of swarm activity noticed a few decades prior the main shock. Nowadays, analogous case is probable in western Marmara Sea region, prone to a major event in near future where the seismic activity is prevailing along the impending rupture zone. Deploying a borehole system eastern end of the Ganos fault zone may yield invaluable data to closely inspect and monitor the last stages of the preparation stage of major rupture. Keywords: Borehole seismometer; Ganos fault; microearthquakes; western Marmara
Geotechnical Reconnaissance of the 3 November 2002, Mw 7.9, Denali- Earthquake, Alaska
NASA Astrophysics Data System (ADS)
Kayen, R.; Sitar, N.; Carver, G.; Collins, B.; Moss, R.
2002-12-01
Following the Mw 7.9 earthquake on the Denali and Totschunda faults on 3 November 2002, we conducted a reconnaissance of the region to investigate geotechnical and surface rupture features of the event. The focus of our investigation was to characterize the spatial extent and amplitude of ground failures and fault displacements, and assess damage to structures. As a first step, our team flew along the Denali fault from the Black Rapids Glacier, west of the Richardson Highway, to the Glenn Highway (Tok Cut-off). We also conducted a brief air reconnaissance of the southern part of the Totschunda fault northwest of the Nabesna River, and brief ground surveys where the fault intersected the highways and the TAPS pipeline. The most noteworthy aerial observations were that geotechnical and structural damages appeared to be focused towards the eastern end of the Denali- fault rupture area. For example, liquefaction features in the bars of the Tanana River, north of the fault-break, are sparsely located from Fairbanks to Delta, but are pervasive throughout the eastern area of the break to Northway Junction, the eastern limit of our survey. Likewise, for the four glacier-proximal rivers draining toward the north, little or no liquefaction was observed on the western Delta and Johnson Rivers whereas, the eastern Johnson and Tok Rivers and, especially, the Nabesna River had observable-to-abundant fissures and sand vents. Another curious aspect of the apparent differences in strong motion along and across the fault was the abundance of landslide and rock avalanche features on the south side of the fault and a dearth of these features on the northern side. Ice on frozen lakes and ponds were shattered within about 30-40 km of the fault along the western part of the surface rupture and to the east became more widespread. In the Northway region ice on most lakes was broken at distances of more than 100 km. The surface rupture was very linear, continuous, and confined to a relatively narrow zone composed over much of its length by closely spaced en-echelin breaks. Few significant branches or splays were observed. The apparent slip on the Denali Fault was also observed to increase to the east from Black Rapids Glacier toward the Mentasta Village area. , On the Totschunda fault, the rupture decreased in slip before dying out approximately 5 kilometers northwest of the Nabesna River. Where the fault crossed the trans-Alaska pipeline, dislocation occurred along a series of en echelon fissures. One of these en echelon breaks intersected the end of one of the Teflon surfaced skids (sleepers) that supports the pipe in the fault zone, displacing it about a meter but not damaging the pipe. Strong shaking and movement of the pipe resulted in damage to 8 horizontal support members, and 9 anchored supports near the fault crossing. These affects were not critical to the integrity of the pipeline, which performed well during the event. This reconnaissance was supported by the National Science Foundation (NSF) and the US Geological Survey (USGS).
NASA Astrophysics Data System (ADS)
Kurtz, R.; Klinger, Y.; Ferry, M.; Ritz, J.-F.
2018-06-01
The 1957, MW 8.1, Gobi-Altai earthquake, Southern Mongolia, produced a 360-km-long surface rupture along the Eastern Bogd fault. Cumulative offsets of geomorphic features suggest that the Eastern Bogd fault might produce characteristic slip over the last seismic cycles. Using orthophotographs derived from a dataset of historical aerial photographs acquired in 1958, we measured horizontal offsets along two thirds ( 170 km) of the 1957 left-lateral strike-slip surface rupture. We propose a new empirical methodology to extract the average slip for each past earthquake that could be recognized along successive fault segments, to determine the slip distribution associated with successive past earthquakes. Our results suggest that the horizontal slip distribution of the 1957 Gobi-Altai earthquake is fairly flat, with an average offset of 3.5 m ± 1.3 m. A combination of our lateral measurements with vertical displacements derived from the literature, allows us to re-assess the magnitude of the Gobi-Altai earthquake to be between MW 7.8 and MW 8.2, depending on the depth of the rupture, and related value of the shear modulus. When comparing this magnitude to magnitudes derived from seismic data, it suggests that the rupture may have extended deeper than the 15 km to 20 km usually considered for the seismogenic crust. We observe that some fault segments are more likely than others to record seismic deformation through several seismic cycles, depending on the local rupture complexity and geomorphology. Additionally, our results allow us to model the horizontal slip function for the 1957 Gobi-Altai earthquake and for three previous paleoseismic events along 70% of the studied area. Along about 50% of the fault sections where we could recognize three past earthquakes, our results suggest that the slip per event was similar for each earthquake.
Belabbes, S.; Wicks, Charles; Cakir, Z.; Meghraoui, M.
2009-01-01
We study the surface deformation associated with the 21 May 2003 (M w = 6.8) Zemmouri (Algeria) earthquake, the strongest seismic event felt in the Algiers region since 1716. The thrust earthquake mechanism and related surface deformation revealed an average 0.50 m coastal uplift along ??55-km-long coastline. We obtain coseismic interferograms using Envisat advanced synthetic aperture radar (ASAR) (IS2) and RADARSAT standard beam (ST4) data from both the ascending and descending orbits of Envisat satellite, whereas the RADARSAT data proved useful only in the descending mode. While the two RADARSAT interferograms cover the earthquake area, Envisat data cover only the western half of the rupture zone. Although the interferometric synthetic aperture radar (InSAR) coherence in the epicenter area is poor, deformation fringes are observed along the coast in different patches. In the Boumerdes area, the maximum coseismic deformation is indicated by the high gradient of fringes visible in all interferograms in agreement with field measurements (tape, differential GPS, leveling, and GPS). To constrain the earthquake rupture parameters, we model the interferograms and uplift measurements using elastic dislocations on triangular fault patches in an elastic and homogeneous half-space. We invert the coseismic slip using first, a planar surface and second, a curved fault, both constructed from triangular elements using Poly3Dinv program that uses a damped least square minimization. The best fit of InSAR, coastal uplift, and GPS data corresponds to a 65-km-long fault rupture dipping 40?? to 50?? SE, located at 8 to 13 km offshore with a change in strike west of Boumerdes from N60??-65?? to N95??-105??. The inferred rupture geometry at depth correlates well with the seismological results and may have critical implications for the seismic hazard assessment of the Algiers region. Copyright 2009 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Rockwell, T. K.
2010-12-01
A long paleoseismic record at Hog Lake on the central San Jacinto fault (SJF) in southern California documents evidence for 18 surface ruptures in the past 3.8-4 ka. This yields a long-term recurrence interval of about 210 years, consistent with its slip rate of ~16 mm/yr and field observations of 3-4 m of displacement per event. However, during the past 3800 years, the fault has switched from a quasi-periodic mode of earthquake production, during which the recurrence interval is similar to the long-term average, to clustered behavior with the inter-event periods as short as a few decades. There are also some periods as long as 450 years during which there were no surface ruptures, and these periods are commonly followed by one to several closely-timed ruptures. The coefficient of variation (CV) for the timing of these earthquakes is about 0.6 for the past 4000 years (17 intervals). Similar behavior has been observed on the San Andreas Fault (SAF) south of the Transverse Ranges where clusters of earthquakes have been followed by periods of lower seismic production, and the CV is as high as 0.7 for some portions of the fault. In contrast, the central North Anatolian Fault (NAF) in Turkey, which ruptured in 1944, appears to have produced ruptures with similar displacement at fairly regular intervals for the past 1600 years. With a CV of 0.16 for timing, and close to 0.1 for displacement, the 1944 rupture segment near Gerede appears to have been both periodic and characteristic. The SJF and SAF are part of a broad plate boundary system with multiple parallel strands with significant slip rates. Additional faults lay to the east (Eastern California shear zone) and west (faults of the LA basin and southern California Borderland), which makes the southern SAF system a complex and broad plate boundary zone. In comparison, the 1944 rupture section of the NAF is simple, straight and highly localized, which contrasts with the complex system of parallel faults in southern California. These observations suggest that the complexity of the southern California fault network is partly responsible for the apparent increase in “noise” and non-periodic behavior, perhaps resulting from stress transfer to adjacent faults after a large earthquake on one fault. The simplicity of the central NAF may account for its relatively simple behavior. If correct, the study of simple plate boundary faults may provide new insights into the constitutive elements of fault zones, and may aid in identifying those components that are critical for better forecasting future seismicity in complex systems.
NASA Astrophysics Data System (ADS)
Yeck, William L.; Block, Lisa V.; Wood, Christopher K.; King, Vanessa M.
2015-01-01
The Paradox Valley Unit (PVU), a salinity control project in southwest Colorado, disposes of brine in a single deep injection well. Since the initiation of injection at the PVU in 1991, earthquakes have been repeatedly induced. PVU closely monitors all seismicity in the Paradox Valley region with a dense surface seismic network. A key factor for understanding the seismic hazard from PVU injection is the maximum magnitude earthquake that can be induced. The estimate of maximum magnitude of induced earthquakes is difficult to constrain as, unlike naturally occurring earthquakes, the maximum magnitude of induced earthquakes changes over time and is affected by injection parameters. We investigate temporal variations in maximum magnitudes of induced earthquakes at the PVU using two methods. First, we consider the relationship between the total cumulative injected volume and the history of observed largest earthquakes at the PVU. Second, we explore the relationship between maximum magnitude and the geometry of individual seismicity clusters. Under the assumptions that: (i) elevated pore pressures must be distributed over an entire fault surface to initiate rupture and (ii) the location of induced events delineates volumes of sufficiently high pore-pressure to induce rupture, we calculate the largest allowable vertical penny-shaped faults, and investigate the potential earthquake magnitudes represented by their rupture. Results from both the injection volume and geometrical methods suggest that the PVU has the potential to induce events up to roughly MW 5 in the region directly surrounding the well; however, the largest observed earthquake to date has been about a magnitude unit smaller than this predicted maximum. In the seismicity cluster surrounding the injection well, the maximum potential earthquake size estimated by these methods and the observed maximum magnitudes have remained steady since the mid-2000s. These observations suggest that either these methods overpredict maximum magnitude for this area or that long time delays are required for sufficient pore-pressure diffusion to occur to cause rupture along an entire fault segment. We note that earthquake clusters can initiate and grow rapidly over the course of 1 or 2 yr, thus making it difficult to predict maximum earthquake magnitudes far into the future. The abrupt onset of seismicity with injection indicates that pore-pressure increases near the well have been sufficient to trigger earthquakes under pre-existing tectonic stresses. However, we do not observe remote triggering from large teleseismic earthquakes, which suggests that the stress perturbations generated from those events are too small to trigger rupture, even with the increased pore pressures.
Rockwell, Thomas; Gath, Edon; Gonzalez, Tania; Madden, Chris; Verdugo, Danielle; Lippincott, Caitlin; Dawson, Tim; Owen, Lewis A.; Fuchs, Markus; Cadena, Ana; Williams, Pat; Weldon, Elise; Franceschi, Pastora
2010-01-01
We present new geologic, tectonic geomorphic, and geochronologic data on the slip rate, timing, and size of past surface ruptures for the right-lateral Lim??n and Pedro Miguel faults in central Panam??. These faults are part of a system of conjugate faults that accommodate the internal deformation of Panam?? resulting from the ongoing collision of Central and South America. There have been at least three surface ruptures on the Lim??n fault in the past 950-1400 years, with the most recent during the past 365 years. Displacement in this young event is at least 1.2 m (based on trenching) and may be 1.6-2 m (based on small channel offsets). Awell-preserved 4.2 m offset suggests that the penultimate event also sustained significant displacement. The Holocene slip rate has averaged about 6 mm=yr, based on a 30-m offset terrace riser incised into a 5-ka abandoned channel. The Pedro Miguel fault has sustained three surface ruptures in the past 1600 years, the most recent being the 2 May 1621 earthquake that partially destroyed Panam?? Viejo. At least 2.1 m of slip occurred in this event near the Canal, with geomorphic offsets suggesting 2.5-3 m. The historic Camino de Cruces is offset 2.8 m, indicating multimeter displacement over at least 20 km of fault length. Channel offsets of 100-400 m, together with a climate-induced incision model, suggest a Late Quaternary slip rate of about 5 mm=yr, which is consistent with the paleoseismic results. Comparison of the timing of surface ruptures between the Lim??n and Pedro Miguel faults suggests that large earthquakes may rupture both faults with 2-3 m of displacement for over 40 km, such as is likely in earthquakes in the M 7 range. Altogether, our observations indicate that the Lim??n and Pedro Miguel faults represent a significant seismic hazard to central Panam?? and, specifically, to the Canal and Panam?? City.
Anomalies of rupture velocity in deep earthquakes
NASA Astrophysics Data System (ADS)
Suzuki, M.; Yagi, Y.
2010-12-01
Explaining deep seismicity is a long-standing challenge in earth science. Deeper than 300 km, the occurrence rate of earthquakes with depth remains at a low level until ~530 km depth, then rises until ~600 km, finally terminate near 700 km. Given the difficulty of estimating fracture properties and observing the stress field in the mantle transition zone (410-660 km), the seismic source processes of deep earthquakes are the most important information for understanding the distribution of deep seismicity. However, in a compilation of seismic source models of deep earthquakes, the source parameters for individual deep earthquakes are quite varied [Frohlich, 2006]. Rupture velocities for deep earthquakes estimated using seismic waveforms range from 0.3 to 0.9Vs, where Vs is the shear wave velocity, a considerably wider range than the velocities for shallow earthquakes. The uncertainty of seismic source models prevents us from determining the main characteristics of the rupture process and understanding the physical mechanisms of deep earthquakes. Recently, the back projection method has been used to derive a detailed and stable seismic source image from dense seismic network observations [e.g., Ishii et al., 2005; Walker et al., 2005]. Using this method, we can obtain an image of the seismic source process from the observed data without a priori constraints or discarding parameters. We applied the back projection method to teleseismic P-waveforms of 24 large, deep earthquakes (moment magnitude Mw ≥ 7.0, depth ≥ 300 km) recorded since 1994 by the Data Management Center of the Incorporated Research Institutions for Seismology (IRIS-DMC) and reported in the U.S. Geological Survey (USGS) catalog, and constructed seismic source models of deep earthquakes. By imaging the seismic rupture process for a set of recent deep earthquakes, we found that the rupture velocities are less than about 0.6Vs except in the depth range of 530 to 600 km. This is consistent with the depth variation of deep seismicity: it peaks between about 530 and 600 km, where the fast rupture earthquakes (greater than 0.7Vs) are observed. Similarly, aftershock productivity is particularly low from 300 to 550 km depth and increases markedly at depth greater than 550 km [e.g., Persh and Houston, 2004]. We propose that large fracture surface energy (Gc) value for deep earthquakes generally prevent the acceleration of dynamic rupture propagation and generation of earthquakes between 300 and 700 km depth, whereas small Gc value in the exceptional depth range promote dynamic rupture propagation and explain the seismicity peak near 600 km.
Large-Scale Biaxial Friction Experiments with an Assistance of the NIED Shaking Table
NASA Astrophysics Data System (ADS)
Fukuyama, E.; Mizoguchi, K.; Yamashita, F.; Togo, T.; Kawakata, H.; Yoshimitsu, N.; Shimamoto, T.; Mikoshiba, T.; Sato, M.; Minowa, C.
2012-12-01
We constructed a large-scale biaxial friction apparatus using a large shaking table working at NIED (table dimension is 15m x 15m). The actuator of the shaking table becomes the engine of the constant speed loading. We used a 1.5m long rock sample overlaid on a 2m one. Their height and width are both 0.5m. Therefore, the slip area is 1.5m x 0.5m. The 2m long sample moves with the shaking table and the 1.5m sample is fixed to the basement of the shaking table. Thus, the shaking table displacement controls the dislocation between two rock samples. The shaking table can generate 0.4m displacement with a velocity ranging between 0.0125mm/s and 1m/s. We used Indian gabbro for the rock sample of the present experiments. Original flatness of the sliding surface was formed less than 0.024mm undulation using a large-scale plane grinder. Surface roughness evolved as subsequent experiments were done. Wear material was generated during each experiment, whose grain size becomes bigger as the experiments proceed. This might suggest a damage evolution on the sliding surface. In some experiments we did not remove the gouge material before sliding to examine the effect of gouge layer. Normal stress can be applied up to 1.3MPa. The stiffness of this apparatus was measured experimentally and was of the order of 0.1GN/m. We first measured the coefficient of friction at low sliding velocity (0.1~1mm/s) where the steady state was achieved after the slip of ~5mm. The coefficient of friction was about 0.75 under the normal stress between 0.13 and 1.3MPa. This is consistent with those estimated by previous works using smaller rock samples. We observed that the coefficient of friction decreased gradually with increasing slip velocity, but simultaneously the friction curves at the higher velocities are characterized by stick-slip vibration. Our main aim of the experiments is to understand the rupture propagation from slow nucleation to fast unstable rupture during the loading of two contact surfaces. We recorded many unstable slip events that nucleated inside the sliding surface but did not reach the edge of the sliding surface until the termination of slip. These slip events simulate full rupture process during earthquake, including nucleation, propagation and termination of the rupture. We monitored these rupture progress using the strain change propagation measured by 16 semiconductor strain gauges recorded at a sampling rate of 1MHz. In addition, high frequency waves emitted from AE events was continuously observed by 8 piezo-electronic transducers (PZTs) at a sampling rate of 20MHz. These sensors were attached at the edge of the slipping area. The AE event started to occur where the slip was nucleated and the slip area started to expand. Unfortunately, we could not locate all AE events during the unstable rupture, because of the overprints of signals from multiple events in the PZT records. We also monitored the amplitudes of transmitted waves across the sliding surface. The amplitudes decreased just after the stick slip and recovered gradually, suggesting that the transmitted wave amplitudes might reflect the slipped area on the interface.
Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.
2002-01-01
A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.
NASA Astrophysics Data System (ADS)
Reches, Z.; Zu, X.; Jeffers, J.
2017-12-01
We explored the evolution of dynamic rupture along a circular experimental fault composed of clear acrylic blocks. The ring-shaped fault surface has inner and outer diameters of 7.72 and 10.16 cm, respectively. An array of ten rossette strain-gauges is attached to the outer rim of one block that provide the 2D strain tensor in a plane normal to the fault. The 30 components of the gauges are monitored at 10^6 samples/second. One 3D miniature accelerometer is attached to the fault block. The initial asperities of the fault surface generated a non-uniform strain (=stress) distribution that was recorded, and indicated local deviations of ±30% from the mean stress. The mean normal stress was up to 3.5 MPa, the remotely applied velocity was up to .002 m/s, and the slip velocities during rupture were not measured. The rupture characteristics, namely propagation velocity and rupture front strain-field, were determined from strain-gauge outputs. The analysis of tens of stick-slip events revealed the following preliminary results: (1) The ruptures consistently nucleated at sites of high local strains (=stresses) that were formed by the pre-shear, normal stress loading. (2) The pre-rupture nucleation process was recognized a by temporal (< 0.1 s), local (<20 mm) reduction of the shear strain. (3) Commonly, the initiation of nucleation was associated with micro acoustic emissions, whereas the initiation of rupture was associated with intense acoustic activity. (4) Nucleation could occur quasi-simultaneously at two, highly stressed sites. (5) From the nucleation site, the ruptures propagated in two directions along the ring-shaped fault, and the collision between the two fronts led to rupture `shut-off'. (5) The strain-field of rupture fronts was well-recognized for ruptures propagating faster than 50 m/s, and the fastest fronts propagated at 1000 m/s. (7) It appears that the rupture front strain-field close to the nucleation site differs from the front strain-field far from nucleation site. (8) Post-shear examination of the fault surfaces revealed evidence of brittle wear of the acrylic including gouge formation, ploughing, and powder smearing. (9) Work in progress includes attempts to achieve faster dynamic ruptures, and the utilization of the existing monitoring system to rupture granite faults.
Effects of the 2016 Kumamoto earthquakes on the Aso volcanic edifice
NASA Astrophysics Data System (ADS)
Tajima, Yasuhisa; Hasenaka, Toshiaki; Torii, Masayuki
2017-05-01
Large earthquakes occurred in the central part of Kumamoto Prefecture on April 14-16, 2016, causing severe damage to the northern segment of the Hinagu faults and the eastern segment of the Futagawa faults. Earthquake surface ruptures appeared along these faults and on the Aso volcanic edifice, which in turn generated landslides. We conducted landform change analysis of the central cones of Aso volcano by using satellite and aerial photographs. First, we categorized the topographical changes as surface scarps, arc-shaped cracks, and linear cracks. Field survey indicated that landslides caused the scarps and arc-shaped cracks, whereas faulting caused the linear cracks. We discovered a surface rupture concentration zone (RCZ) formed three ruptures bands with many surface ruptures and landslides extending from the west foot to the center of the Aso volcanic edifice. The magmatic volcanic vents that formed during the past 10,000 years are located along the north margin of the RCZ. Moreover, the distribution and dip of the core of rupture concentration zone correspond with the Nakadake craters. We conclude that a strong relationship exists between the volcanic vents and fault structures in the central cones of Aso volcano.[Figure not available: see fulltext.
Three-Dimensional Dynamic Rupture in Brittle Solids and the Volumetric Strain Criterion
NASA Astrophysics Data System (ADS)
Uenishi, K.; Yamachi, H.
2017-12-01
As pointed out by Uenishi (2016 AGU Fall Meeting), source dynamics of ordinary earthquakes is often studied in the framework of 3D rupture in brittle solids but our knowledge of mechanics of actual 3D rupture is limited. Typically, criteria derived from 1D frictional observations of sliding materials or post-failure behavior of solids are applied in seismic simulations, and although mode-I cracks are frequently encountered in earthquake-induced ground failures, rupture in tension is in most cases ignored. Even when it is included in analyses, the classical maximum principal tensile stress rupture criterion is repeatedly used. Our recent basic experiments of dynamic rupture of spherical or cylindrical monolithic brittle solids by applying high-voltage electric discharge impulses or impact loads have indicated generation of surprisingly simple and often flat rupture surfaces in 3D specimens even without the initial existence of planes of weakness. However, at the same time, the snapshots taken by a high-speed digital video camera have shown rather complicated histories of rupture development in these 3D solid materials, which seem to be difficult to be explained by, for example, the maximum principal stress criterion. Instead, a (tensile) volumetric strain criterion where the volumetric strain (dilatation or the first invariant of the strain tensor) is a decisive parameter for rupture seems more effective in computationally reproducing the multi-directionally propagating waves and rupture. In this study, we try to show the connection between this volumetric strain criterion and other classical rupture criteria or physical parameters employed in continuum mechanics, and indicate that the criterion has, to some degree, physical meanings. First, we mathematically illustrate that the criterion is equivalent to a criterion based on the mean normal stress, a crucial parameter in plasticity. Then, we mention the relation between the volumetric strain criterion and the failure envelope of the Mohr-Coulomb criterion that describes shear-related rupture. The critical value of the volumetric strain for rupture may be controlled by the apparent cohesion and apparent angle of internal friction of the Mohr-Coulomb criterion.
The 2002 Denali fault earthquake, Alaska: A large magnitude, slip-partitioned event
Eberhart-Phillips, D.; Haeussler, Peter J.; Freymueller, J.T.; Frankel, A.D.; Rubin, C.M.; Craw, P.; Ratchkovski, N.A.; Anderson, G.; Carver, G.A.; Crone, A.J.; Dawson, T.E.; Fletcher, H.; Hansen, R.; Harp, E.L.; Harris, R.A.; Hill, D.P.; Hreinsdottir, S.; Jibson, R.W.; Jones, L.M.; Kayen, R.; Keefer, D.K.; Larsen, C.F.; Moran, S.C.; Personius, S.F.; Plafker, G.; Sherrod, B.; Sieh, K.; Sitar, N.; Wallace, W.K.
2003-01-01
The MW (moment magnitude) 7.9 Denali fault earthquake on 3 November 2002 was associated with 340 kilometers of surface rupture and was the largest strike-slip earthquake in North America in almost 150 years. It illuminates earthquake mechanics and hazards of large strike-slip faults. It began with thrusting on the previously unrecognized Susitna Glacier fault, continued with right-slip on the Denali fault, then took a right step and continued with right-slip on the Totschunda fault. There is good correlation between geologically observed and geophysically inferred moment release. The earthquake produced unusually strong distal effects in the rupture propagation direction, including triggered seismicity.
Huang, Changchun; Wen, Gangyao; Li, Jingdan; Wu, Tao; Wang, Lina; Xue, Feifei; Li, Hongfei; Shi, Tongfei
2016-09-15
Effects of copolymer composition, film thickness, and solvent vapor annealing time on dewetting of spin-coated polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) films (<20nm thick) were mainly investigated by atomic force microscopy. Surface chemical analysis of the ultrathin films annealed for different times were performed using X-ray photoelectron spectroscopy and contact angle measurement. With the annealing of acetone vapor, dewetting of the films with different thicknesses occur via the spinodal dewetting and the nucleation and growth mechanisms, respectively. The PS-b-PMMA films rupture into droplets which first coalesce into large ones to reduce the surface free energy. Then the large droplets rupture into small ones to increase the contact area between PMMA blocks and acetone molecules resulting from ultimate migration of PMMA blocks to droplet surface, which is a novel dewetting process observed in spin-coated films for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.
Morphological evolution of thin polymer film on chemically patterned substrates
NASA Astrophysics Data System (ADS)
Singh, Satya Pal
2018-05-01
In this paper work, pattern formation in ultra thin polymer film, adsorbed on chemically patterned substrates, is reported under strong confinement. The observations indicate for the strong influence of the surface attraction over evolution of spindoal waves, leading to the flattening of the film. But, the film appears to be torn apart in strip or nano fiber like structures, because of coalescences of the monomers at the free ends of the chains. The beads at the free ends of the chain are relatively more mobile. The chain diffusion towards attractive part of the chemically patterned surfaces is clearly seen. Prewetting or crystallization like phenomena seems to appear resulting into formation of strips with coexistence of molten phase drops at the top of the ruptured film. The investigation mimics spindoal dewetting because of the fact that the rupturing occurs in case of strong attractive surface. The investigation is of technical importance as it highlights the formation of nano scale strips and fibers though in a quasi equilibrium case.
Influence of Evaporation on Soap Film Rupture.
Champougny, Lorène; Miguet, Jonas; Henaff, Robin; Restagno, Frédéric; Boulogne, François; Rio, Emmanuelle
2018-03-13
Although soap films are prone to evaporate due to their large surface to volume ratio, the effect of evaporation on macroscopic film features has often been disregarded in the literature. In this work, we experimentally investigate the influence of environmental humidity on soap film stability. An original experiment allows to measure both the maximum length of a film pulled at constant velocity and its thinning dynamics in a controlled atmosphere for various values of the relative humidity [Formula: see text]. At first order, the environmental humidity seems to have almost no impact on most of the film thinning dynamics. However, we find that the film length at rupture increases continuously with [Formula: see text]. To rationalize our observations, we propose that film bursting occurs when the thinning due to evaporation becomes comparable to the thinning due to liquid drainage. This rupture criterion turns out to be in reasonable agreement with an estimation of the evaporation rate in our experiment.
Strain release along ocean transform faults
NASA Astrophysics Data System (ADS)
Stewart, L. M.
A global study of the nature of seismic rupture along oceanic transform faults (TFs) is presented, and many aspects of fault behavior and Mid-Ocean Ridge processes are discussed. A classification of TF earthquakes is developed based on their relative excitation of short period body waves to long period surface waves. Since the ways in which transform faults release their accumulated strain varies, for more than 50 earthquakes occurring on 30 TFs since 1963 form the database for a comparison of rupture processes. The variation of TF rupture processes is not related to spreading rate or TF offset. A study of seismicity of the Eltanin Fracture Zone system shows that unlike many TFs, the Eltanin FZ realizes more than 90% of its slip aseismically. This identifies a major portion of plate boundary whose motion persists undetected by seismic instruments. The global variations in rupture patterns are discussed in terms of current models of fault behavior. The versatility of the asperity model accommodates the entire range of observed patterns. Variations in physical properties within TF contact zones (asperities) are documented in the petrology and geochemistry of rocks from ophiolite sections and TFs.
Ground Motion Synthetics For Spontaneous Versus Prescribed Rupture On A 45(o) Thrust Fault
NASA Astrophysics Data System (ADS)
Gottschämmer, E.; Olsen, K. B.
We have compared prescribed (kinematic) and spontaneous dynamic rupture propaga- tion on a 45(o) dipping thrust fault buried up to 5 km in a half-space model, as well as ground motions on the free surface for frequencies less than 1 Hz. The computa- tions are carried out using a 3D finite-difference method with rate-and-state friction on a planar, 20 km by 20 km fault. We use a slip-weakening distance of 15 cm and a slip- velocity weakening distance of 9.2 cm/s, similar to those for the dynamic study for the 1994 M6.7 Northridge earthquake by Nielsen and Olsen (2000) which generated satis- factory fits to selected strong motion data in the San Fernando Valley. The prescribed rupture propagation was designed to mimic that of the dynamic simulation at depth in order to isolate the dynamic free-surface effects. In this way, the results reflect the dy- namic (normal-stress) interaction with the free surface for various depths of burial of the fault. We find that the moment, peak slip and peak sliprate for the rupture breaking the surface are increased by up to 60%, 80%, and 10%, respectively, compared to the values for the scenario buried 5 km. The inclusion of these effects increases the peak displacements and velocities above the fault by factors up 3.4 and 2.9 including the increase in moment due to normal-stress effects at the free surface, and up to 2.1 and 2.0 when scaled to a Northridge-size event with surface rupture. Similar differences were found by Aagaard et al. (2001). Significant dynamic effects on the ground mo- tions include earlier arrival times caused by super-shear rupture velocities (break-out phases), in agreement with the dynamic finite-element simulations by Oglesby et al. (1998, 2000). The presence of shallow low-velocity layers tend to increase the rup- ture time and the sliprate. In particular, they promote earlier transitions to super-shear velocities and decrease the rupture velocity within the layers. Our results suggest that dynamic interaction with the free surface can significantly affect the ground motion for faults buried less than 1-3 km. We therefore recommend that strong ground motion for these scenarios be computed including such dynamic rupture effects.
NASA Astrophysics Data System (ADS)
Varble, Nicole; Meng, Hui
2015-11-01
Intracranial aneurysms affect 3% of the population. Risk stratification of aneurysms is important, as rupture often leads to death or permanent disability. Image-based CFD analyses of patient-specific aneurysms have identified low and oscillatory wall shear stress to predict rupture. These stresses are sensed biologically at the luminal wall, but the flow dynamics related to aneurysm rupture requires further understanding. We have conducted two studies: one examines vortex dynamics, and the other, high frequency flow fluctuations in patient-specific aneurysms. In the first study, based on Q-criterion vortex identification, we developed two measures to quantify regions within the aneurysm where rotational flow is dominate: the ratio of volume or surface area where Q >0 vs. the total aneurysmal volume or surface area, respectively termed volume vortex fraction (VVF) and surface vortex fraction (SVF). Statistical analysis of 204 aneurysms shows that SVF, but not VVF, distinguishes ruptured from unruptured aneurysms, suggesting that once again, the local flow patterns on the wall is directly relevant to rupture. In the second study, high-resolution CFD (high spatial and temporal resolutions and second-order discretization schemes) on 56 middle cerebral artery aneurysms shows the presence of temporal fluctuations in 8 aneurysms, but such flow instability bears no correlation with rupture. Support for this work was partially provided by NIH grant (R01 NS091075-01) and a grant from Toshiba Medical Systems Corp.
NASA Astrophysics Data System (ADS)
Gold, R. D.; Reitman, N. G.; Briggs, R. W.; Barnhart, W. D.; Hayes, G. P.
2014-12-01
The 24 September 2013 Mw7.7 Balochistan, Pakistan earthquake ruptured a ~200 km-long stretch of the Hoshab fault in southern Pakistan. We remotely measured the coseismic surface deformation field using high-resolution (0.5 m) pre- and post-event satellite imagery. We measured ~300 near-field (0-10 m from fault) laterally offset piercing points (streams, terrace risers, roads, etc.) and find peak left-lateral offsets of ~12-15 m. We characterized the far-field (0-10 km from fault) displacement field using manual (~250 measurements) and automated image cross-correlation methods (e.g., pixel tracking) and find peak displacement values of ~16 m, which commonly exceed the on-fault displacement magnitudes. Our preliminary observations suggest the following: (1) coseismic surface displacement typically increases with distance away from the surface trace of the fault (e.g., highest displacement values in the far field), (2) for certain locations along the fault rupture, as little as 50% of the coseismic displacement field occurred in the near-field; and (3) the magnitudes of individual displacements are inversely correlated to the width of the surface rupture zone (e.g., largest displacements where the fault zone is narrowest). This analysis highlights the importance of identifying field study sites spanning fault sections with narrow deformation zones in order to capture the entire deformation field. For regions of distributed deformation, these results would predict that geologic slip rate studies underestimate a fault's complete slip rate.
Poroelastic rebound along the Landers 1992 earthquake surface rupture
Peltzer, G.; Rosen, P.; Rogez, F.; Hudnut, K.
1998-01-01
Maps of surface displacement following the 1992 Landers, California, earthquake, generated by interferometric processing of ERS-1 synthetic aperture radar (SAR) images, reveal effects of various postseismic deformation processes along the 1992 surface rupture. The large-scale pattern of the postseismic displacement field includes large lobes, mostly visible on the west side of the fault, comparable in shape with the lobes observed in the coseismic displacement field. This pattern and the steep displacement gradient observed near the Emerson-Camp Rock fault cannot be simply explained by afterslip on deep sections of the 1992 rupture. Models show that horizontal slip occurring on a buried dislocation in a Poisson's material produces a characteristic quadripole pattern in the surface displacement field with several centimeters of vertical motion at distances of 10-20 km from the fault, yet this pattern is not observed in the postseismic interferograms. As previously proposed to explain local strain in the fault step overs [Peltzer et al., 1996b], we argue that poroelastic rebound caused by pore fluid flow may also occur over greater distances from the fault, compensating the vertical ground shift produced by fault afterslip. Such a rebound is explained by the gradual change of the crustal rocks' Poisson's ratio value from undrained (coseismic) to drained (postseismic) conditions as pore pressure gradients produced by the earthquake dissipate. Using the Poisson's ratio values of 0.27 and 0.31 for the drained and undrained crustal rocks, respectively, elastic dislocation models show that the combined contributions of afterslip on deep sections of the fault and poroelastic rebound can account for the range change observed in the SAR data and the horizontal displacement measured at Global Positioning System (GPS) sites along a 60-km-long transect across the Emerson fault [Savage and Svarc, 1997]. Using a detailed surface slip distribution on the Homestead Valley, Kickapoo, and Johnson Valley faults, we modeled the poroelastic rebound in the Homestead Valley pull apart. A Poisson's ratio value of 0.35 for the undrained gouge rocks in the fault zone is required to account for the observed surface uplift in the 3.5 years following the earthquake. This large value implies a seismic velocity ratio Vp/Vs of 2.1, consistent with the observed low Vs values of fault zone guided waves at shallow depth [Li et al., 1997]. The SAR data also reveal postseismic creep along shallow patches of the Eureka Peak and Burnt Mountain faults with a characteristic decay time of 0.8 years. Coseismic, dilatant hardening (locking process) followed by post-seismic, pore pressure controlled fault creep provide a plausible mechanism to account for the decay time of the observed slip rate along this section of the fault. Copyright 1998 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Dultsev, Fedor N.; Mik, Ivan A.; Dubtsov, Sergei N.; Dultseva, Galina G.
2014-11-01
We describe the new procedure developed to determine the functional groups on the surface of nanoparticles formed in photonucleation of furfural, one of the aldehydes generated during forest fire events. The procedure is based on the detection of nanoparticle rupture from chemically modified surface of the quartz crystal microbalance oscillating in the thickness shear mode under voltage sweep. The rupture force is determined from the voltage at which the rupture occurs. It depends on particle mass and on the affinity of the surface functional groups of the particle to the groups that are present on the modified QCM surface. It was demonstrated with the amine modification of the surface that the nanoparticles formed in furfural photonucleation contain carbonyl and carboxyl groups. The applicability of the method for the investigation of functional groups on the surface of the nanoparticles of atmospheric aerosol is demonstrated.
A support-operator method for 3-D rupture dynamics
NASA Astrophysics Data System (ADS)
Ely, Geoffrey P.; Day, Steven M.; Minster, Jean-Bernard
2009-06-01
We present a numerical method to simulate spontaneous shear crack propagation within a heterogeneous, 3-D, viscoelastic medium. Wave motions are computed on a logically rectangular hexahedral mesh, using the generalized finite-difference method of Support Operators (SOM). This approach enables modelling of non-planar surfaces and non-planar fault ruptures. Our implementation, the Support Operator Rupture Dynamics (SORD) code, is highly scalable, enabling large-scale, multiprocessors calculations. The fault surface is modelled by coupled double nodes, where rupture occurs as dictated by the local stress conditions and a frictional failure law. The method successfully performs test problems developed for the Southern California Earthquake Center (SCEC)/U.S. Geological Survey (USGS) dynamic earthquake rupture code validation exercise, showing good agreement with semi-analytical boundary integral method results. We undertake further dynamic rupture tests to quantify numerical errors introduced by shear deformations to the hexahedral mesh. We generate a family of meshes distorted by simple shearing, in the along-strike direction, up to a maximum of 73°. For SCEC/USGS validation problem number 3, grid-induced errors increase with mesh shear angle, with the logarithm of error approximately proportional to angle over the range tested. At 73°, rms misfits are about 10 per cent for peak slip rate, and 0.5 per cent for both rupture time and total slip, indicating that the method (which, up to now, we have applied mainly to near-vertical strike-slip faulting) is also capable of handling geometries appropriate to low-angle surface-rupturing thrust earthquakes. Additionally, we demonstrate non-planar rupture effects, by modifying the test geometry to include, respectively, cylindrical curvature and sharp kinks.
NASA Technical Reports Server (NTRS)
Peltzer, G.; Crampe, F.
1998-01-01
ERS2 radar data acquired before and after the Mw7.6, Manyi (Tibet) earthquake of November 8, 1997, provide geodetic information about the surface displacement produced by the earthquake in two ways. (1) The sub-pixel geometric adjustment of the before and after images provides a two dimensional offset field with a resolution of approx, 1m in both the range (radar line of sight) and azimuth (satellite track) directions. Comparison of offsets in azimuth and range indicates that the displacement along the fault is essentially strike-slip and in a left-lateral sense. The offset map reveals a relatively smooth and straight, N78E surface rupture that exceeds 150 km in length, consistent with the EW plane of the Harvard CMT solution. The rupture follows the trace of a quaternary fault visible on satellite imagery (Tapponnier and Molnar, 1978; Wan Der Woerd, pers. comm.). (2) Interferometric processing of the SAR data provides a range displacement map with a precision of a few millimeters. The slip distribution along the rupture reconstructed from the range change map is a bell-shaped curve in the 100-km long central section of the fault with smaller, local maxima near both ends. The curve shows that the fault slip exceeds 2.2 m in range, or 6.2 in strike-slip, along a 30-km long section of the fault and remains above 1 m in range, approx. 3 m strike-slip, along most of its length. Preliminary forward modeling of the central section of the rupture, assuming a uniform slip distribution with depth, indicates that the slip occur-red essentially between 0 and the depth of 10 km, consistent with a relatively shallow event (Velasco et al., 1998).
How does damage affect rupture propagation across a fault stepover?
NASA Astrophysics Data System (ADS)
Cooke, M. L.; Savage, H. M.
2011-12-01
We investigate the potential for fault damage to influence earthquake rupture at fault step-overs using a mechanical numerical model that explicitly includes the generation of cracks around faults. We compare the off-fault fracture patterns and slip profiles generated along faults with a variety of frictional slip-weakening distances and step-over geometry. Models with greater damage facilitate the transfer of slip to the second fault. Increasing separation and decreasing the overlap distance reduces the transfer of slip across the step over. This is consistent with observations of rupture stopping at step-over separation greater than 4 km (Wesnousky, 2006). In cases of slip transfer, rupture is often passed to the second fault before the damage zone cracks of the first fault reach the second fault. This implies that stresses from the damage fracture tips are transmitted elastically to the second fault to trigger the onset of slip along the second fault. Consequently, the growth of damage facilitates transfer of rupture from one fault to another across the step-over. In addition, the rupture propagates along the damage-producing fault faster than along the rougher fault that does not produce damage. While this result seems counter to our understanding that damage slows rupture propagation, which is documented in our models with pre-existing damage, these model results are suggesting an additional process. The slip along the newly created damage may unclamp portions of the fault ahead of the rupture and promote faster rupture. We simulate the M7.1 Hector Mine Earthquake and compare the generated fracture patterns to maps of surface damage. Because along with the detailed damage pattern, we also know the stress drop during the earthquake, we may begin to constrain parameters like the slip-weakening distance along portions of the faults that ruptured in the Hector Mine earthquake.
NASA Astrophysics Data System (ADS)
Ozel, Oguz; Guralp, Cansun; Tunc, Suleyman; Yalcinkaya, Esref
2016-04-01
The main objective of this study is to install a multi-parameter borehole system and surface array as close to the main Marmara Fault (MMF) in the western Marmara Sea as possible, and measure continuously the evolution of the state of the fault zone surrounding the MMF and to detect any anomaly or change, which may occur before earthquakes by making use of the data from the arrays already running in the eastern part of the Marmara Sea. The multi-parameter borehole system is composed of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, and incorporate strain meter, tilt meter, and temperature and local hydrostatic pressure measuring devices. The borehole seismic station uses the latest update technologies and design ideas to record "Earth tides" signals to the smallest magnitude -3 events. Additionally, a surface microearthquake observation array, consisting of 8-10 seismometers around the borehole is established to obtain continuous high resolution locations of micro-seismicity and to better understand the existing seismically active structures and their roles in local tectonic settings.Bringing face to face the seismograms of microearthquakes recorded by borehole and surface instruments portrays quite different contents. The shorter recording duration and nearly flat frequency spectrum up to the Nyquist frequencies of borehole records are faced with longer recording duration and rapid decay of spectral amplitudes at higher frequencies of a surface seismogram. The main causative of the observed differences are near surface geology effects that mask most of the source related information the seismograms include, and that give rise to scattering, generating longer duration seismograms. In view of these circumstances, studies on microearthquakes employing surface seismograms may bring on misleading results. Particularly, the works on earthquake physics and nucleation process of earthquakes requires elaborate analysis of tiny events. It is obvious from the studies on the nucleation process of the 1999 earthquake that tens of minutes before the major rupture initiate noteworthy microearthquake activity happened. The starting point of the 1999 rupture was a site of swarm activity noticed a few decades prior the main shock. Nowadays, analogous case is probable in western Marmara Sea region, prone to a major event in near future where the seismic activity is prevailing along the impending rupture zone. Deploying a borehole system eastern end of the Ganos fault zone may yield invaluable data to closely inspect and monitor the last stages of the preparation stage of major rupture.
NASA Astrophysics Data System (ADS)
Goto, Hideaki; Tsutsumi, Hiroyuki; Toda, Shinji; Kumahara, Yasuhiro
2017-02-01
The 30-km-long surface ruptures associated with the M w 7.0 ( M j 7.3) earthquake at 01:25 JST on April 16 in Kumamoto Prefecture appeared along the previously mapped 100-km-long active fault called the Futagawa-Hinagu fault zone (FHFZ). The surface ruptures appeared to have extended further west out of the main FHFZ into the Kumamoto Plain. Although InSAR analysis by Geospatial Information Authority of Japan (GSI) indicated coseismic surface deformation in and around the downtown of Kumamoto City, the surface ruptures have not been clearly mapped in the central part of the Kumamoto Plain, and whether there are other active faults other than the Futagawa fault in the Kumamoto Plain remained unclear. We produced topographical stereo images (anaglyph) from 5-m-mesh digital elevation model of GSI, which was generated from light detection and ranging data. We interpreted them and identified that several SW-sloping river terraces formed after the deposition of the pyroclastic flow deposits related to the latest large eruption of the Aso caldera (86.8-87.3 ka) are cut and deformed by several NW-trending flexure scarps down to the southwest. These 5.4-km-long scarps that cut across downtown Kumamoto were identified for the first time, and we name them as the Suizenji fault zone. Surface deformation such as continuous cracks, tilts, and monoclinal folding associated with the main shock of the 2016 Kumamoto earthquake was observed in the field along the fault zone. The amount of vertical deformation ( 0.1 m) along this fault associated with the 2016 Kumamoto earthquake was quite small compared to the empirically calculated coseismic slip (0.5 m) based on the fault length. We thus suggest that the slip on this fault zone was triggered by the Kumamoto earthquake, but the fault zone has potential to generate an earthquake with larger slip that poses a high seismic risk in downtown Kumamoto area.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Wang, K.; Fialko, Y. A.
2016-12-01
The 2015 Mw 7.8 Gorkha (Nepal) earthquake occurred along the central Himalayan arc, a convergent boundary between India and Eurasian plates. We use space geodetic data to investigate co- and post-seismic deformation due to the Gorkha earthquake. Because the epicentral area of the earthquake is characterized by strong variations in surface relief and material properties, we developed finite element models that explicitly account for topography and 3-D elastic structure. Compared with slip models obtained using homogenous elastic half-space models, the model including elastic heterogeneity and topography exhibits greater (up to 10%) slip amplitude. GPS observations spanning more than 1 year following the earthquake show overall southward movement and uplift after the Gorkha earthquake, qualitatively similar to the coseismic deformation pattern. Kinematic inversions of GPS data, and forward modeling of stress-driven creep indicate that the observed post-seismic transient is consistent with afterslip on a down-dip extention of the seismic rupture. The Main Himalayan Thrust (MHT) has negligible creep updip of the 2015 rupture, reiterating a future seismic hazard. A poro-elastic rebound may contribute to the observed uplift southward motion, but the predicted surface displacements are small (on the order of 1 cm or less). We also tested a wide range of visco-elastic relaxation models, including 1-D and 3-D variations in the viscosity structure. All tested visco-elastic models predict the opposite signs of horizontal and vertical displacements compared to those observed. Available surface deformation data allow one to rule out a model of a low viscosity channel beneath Tibetan Plateau invoked to explain variations in surface relief at the plateau margins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, Arthur J.; Dreger, Douglas S.; Pitarka, Arben
We performed three-dimensional (3D) anelastic ground motion simulations of the South Napa earthquake to investigate the performance of different finite rupture models and the effects of 3D structure on the observed wavefield. We considered rupture models reported by Dreger et al. (2015), Ji et al., (2015), Wei et al. (2015) and Melgar et al. (2015). We used the SW4 anelastic finite difference code developed at Lawrence Livermore National Laboratory (Petersson and Sjogreen, 2013) and distributed by the Computational Infrastructure for Geodynamics. This code can compute the seismic response for fully 3D sub-surface models, including surface topography and linear anelasticity. Wemore » use the 3D geologic/seismic model of the San Francisco Bay Area developed by the United States Geological Survey (Aagaard et al., 2008, 2010). Evaluation of earlier versions of this model indicated that the structure can reproduce main features of observed waveforms from moderate earthquakes (Rodgers et al., 2008; Kim et al., 2010). Simulations were performed for a domain covering local distances (< 25 km) and resolution providing simulated ground motions valid to 1 Hz.« less
Causal mechanisms of seismo-EM phenomena during the 1965-1967 Matsushiro earthquake swarm.
Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo
2017-03-21
The 1965-1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO 2 /water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO 2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO 2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart's law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities.
Causal mechanisms of seismo-EM phenomena during the 1965–1967 Matsushiro earthquake swarm
Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo
2017-01-01
The 1965–1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO2/water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart’s law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities. PMID:28322263
Causal mechanisms of seismo-EM phenomena during the 1965-1967 Matsushiro earthquake swarm
NASA Astrophysics Data System (ADS)
Enomoto, Yuji; Yamabe, Tsuneaki; Okumura, Nobuo
2017-03-01
The 1965-1967 Matsushiro earthquake swarm in central Japan exhibited two unique characteristics. The first was a hydro-mechanical crust rupture resulting from degassing, volume expansion of CO2/water, and a crack opening within the critically stressed crust under a strike-slip stress. The other was, despite the lower total seismic energy, the occurrence of complexed seismo-electromagnetic (seismo-EM) phenomena of the geomagnetic intensity increase, unusual earthquake lights (EQLs) and atmospheric electric field (AEF) variations. Although the basic rupture process of this swarm of earthquakes is reasonably understood in terms of hydro-mechanical crust rupture, the associated seismo-EM processes remain largely unexplained. Here, we describe a series of seismo-EM mechanisms involved in the hydro-mechanical rupture process, as observed by coupling the electric interaction of rock rupture with CO2 gas and the dielectric-barrier discharge of the modelled fields in laboratory experiments. We found that CO2 gases passing through the newly created fracture surface of the rock were electrified to generate pressure-impressed current/electric dipoles, which could induce a magnetic field following Biot-Savart’s law, decrease the atmospheric electric field and generate dielectric-barrier discharge lightning affected by the coupling effect between the seismic and meteorological activities.
NASA Astrophysics Data System (ADS)
Kuebler, S.; Friedrich, A. M.; Strecker, M. R.
2011-12-01
One of the most enigmatic problems in intraplate earthquake geology is the spatio-temporal recurrence pattern of large earthquakes. Intraplate regions such as the New Madrid seismic zone or the central European rift system are subject to considerable seismic hazards, because fault activity is highly disparate in space and time and our knowledge about the recurrence of large earthquakes is still rudimentary. The current debate in central Europe ranges from slip dominated by repeated large coseismic events to slip dominated by aseismic creep. Here, field evidence in support of the former is sparse, and hence, some authors concluded that many faults move by slow aseismic creep rather than by ground rupturing earthquakes. We report new results from a paleoseismic study carried out in the Lower Rhine Embayment across a subsidiary normal fault in the area of Germany's largest historical earthquake (1756 AD, ML 6.2±0.2) that clearly revealed field evidence of dynamic surface faulting. At the trench site, the fault is covered by <5 m-thick Holocene fluvial gravel and flood deposits overlaying Devonian shale. We mapped a surface offset of ~1 m and a ~10 m wide zone of localized deformation expressed by abundant fractures with aligned and broken clasts extending vertically throughout the entire gravel. Mapping of 237 fractured clasts and the long-axis orientation of ~10.000 clasts defines a deformation zone coinciding with the surface offset and two offset markers within the gravel layers. We interpret these features as the result of coseismic deformation at the near-surface end of the rupture. We rule out alternative processes which may lead to fracturing of pebbles such as freeze-thaw weathering or sediment loading effects, since both the gravel fabric and fracture planes coincide well with the fault orientation. We preclude slow deformation due to aseismic creep as governing process to cause rupturing of pebbles this close to the surface, as this would require an overburden stress of several hundreds of meters according to modelling results (e. g. Eidelmann, 1992, Geology). With a significantly smaller overburden, as in this study, a high differential acceleration force, such as a shock wave produced by an earthquake rupture or a seismic wave would be needed to overcome the pebble's shear resistance. Preliminary radiocarbon data bracket the youngest event horizon to Latest Holocene age. In conclusion, we identified coseismic deformation at the trench site, because special conditions produced a number of features not usually observed in other fault exposures. The thin sedimentary cover (<5 m) above basement rocks and the high groundwater table, which may reduce the shear strength of the pebbles, may have played an important role in producing this deformation pattern. Our results imply that large surface rupturing earthquakes in low-strain intraplate regions may be more common than previously thought.
NASA Astrophysics Data System (ADS)
Victor, P.; Sobiesiak, M.
2005-12-01
Convergent plate boundaries at continental margins belong to the tectonically most active areas on earth and are endangered by devastating earthquakes and tsunamis. The north Chilean margin is a high strain continental margin driven by fast plate convergence rate. The greatest amount of strain is accommodated along the subduction interface. Nevertheless there is extensive crustal deformation obvious by surface ruptures along reactivated segments of large fault systems and vertical surface motions reflecting the interaction between subducting and overriding plates. The historical seismicity record indicates that great earthquakes affect the Chilean Forearc with recurrence intervals of about 112+/- 21 y . The last great event in northern Chile occurred in 1995 near Antofagasta. The Mw= 8.0 event ruptured the subduction interface 180 km along strike with an average slip of about 5m in the depth interval between 10-50 km. From careful evaluation of the aftershock sequence by examining the different catagories of aftershock focal mechanisms we can define three segments of the seismogenic zone affected by the Antofagasta main shock. The non-ruptured northern segment beneath Mejillones Peninsula is seperated by a broad transition zone from the central segment which hosts the earthquakes' rupture plane. The southern fault plane boundary is identified by linear alignment of all apparent aftershock mechanisms. Along this southern boundary the strike slip mechanisms are exclusively left lateral whereas the strike slip mechanisms along the northern transition zone are right lateral. The orientations of summed moment tensors calculated from aftershock fault plane solutions on the northern segment and in the northern transition zone differ from the orientations exhibited by moment tensors on the central segment. This might indicate a rotational component in the coseismic movement of the ruptured segment relative to the non-ruptured segment. The observed segmentation of the downgoing plate correlates well with changes in the coseismic surface displacement field and coseismic rotations derived from GPS data (Allmendinger et al. in press). We can localize a transition zone at Mejillones peninsula (23,5°S) striking approximately N 80°E dominated by clockwise vertical axis rotations also marked by rotations of the summed moment tensors on the downgoing plate. The calculated strain tensor for this transition zone does not correspond with long term surface deformation, implying that coseismic as well as early postseismic effects on the subduction interface do not contribute to long term deformation of crustal fault zones. The Antofagasta earthquake took place just south of the large 1877 gap which extends from southern Peru to Mejillones Peninsula, being the surface expression of a barrier seperating the Antofagasta fault plane from the expected future fault plane. From our studies of the Antofagasta subduction zone and the surface displacement field we hope to find evidences for interface-crust-surface interactions which can be extrapolated also to the 1877 gap.
The 2013 Mw 6.2 Khaki-Shonbe (Iran) Earthquake: Seismic Shortening of the Zagros Sedimentary Cover
NASA Astrophysics Data System (ADS)
Elliott, J. R.; Bergman, E.; Copley, A.; Ghods, A.; Nissen, E.; Oveisi, B.; Walters, R. J.
2014-12-01
The 2013 Mw 6.2 Khaki-Shonbe earthquake occurred in the Simply Folded Belt of the Zagros Mountains, Iran. This is the largest earthquake in the Zagros since the November 1990 Mw 6.4 Furg (Hormozgan) thrust faulting event, and therefore the largest in the period for which dense InSAR ground displacements are available. It is also the biggest seismic event to have occurred in the Simply Folded Belt since the March 1977 Mw 6.7 Khurgu earthquake. This earthquake therefore potentially provides valuable insights into a range of controversies: (1) the preponderance of earthquake faulting in the crystalline basement versus the sedimentary cover and the potential importance of lithology in controlling and limiting seismic rupture; (2) the nature of surface folding and whether or not there is a one-to-one relationship between buried reverse faults and surface anticlines; and (3) the presence or absence of large pulses of aseismic slip triggered by mainshock rupture. We combine seismological solutions and aftershock relocations with satellite interferometric ground displacements and observations from the field to determine the geometry of faulting and its relationship with the structure, stratigraphy and tectonics of the Central Zagros. The earthquake rupture involved reverse slip on two along-strike southwest dipping fault segments, the rupture initiating at the northern and bottom end of the larger north-west segment. These faults verge away from the foreland and towards the high range interior, contrary to the fault geometries depicted in many structural cross-sections of the Zagros. The slip measured on the reverse segments occurred over two mutually exclusive depth ranges, 10-5 km and 4-2 km, resulting in long (16 km), narrow (7 km) rupture segments. Conversely, aftershocks are found to cluster in the depth range 8-16 km, beneath the main rupture segment. This indicates only significant reverse slip and coseismic shortening in the sedimentary cover, with the slip distribution likely to be lithologically controlled in depth by the Hormuz salt at the base of the sedimentary cover, and the Kazhdumi Formation mudrocks at upper-levels (5 km), and aftershocks constrained largely beneath the main coseismic rupture planes.
Experimental Modeling of Dynamic Shallow Dip-Slip Faulting
NASA Astrophysics Data System (ADS)
Uenishi, K.
2010-12-01
In our earlier study (AGU 2005, SSJ 2005, JPGU 2006), using a finite difference technique, we have conducted some numerical simulations related to the source dynamics of shallow dip-slip earthquakes, and suggested the possibility of the existence of corner waves, i.e., shear waves that carry concentrated kinematic energy and generate extremely strong particle motions on the hanging wall of a nonvertical fault. In the numerical models, a dip-slip fault is located in a two-dimensional, monolithic linear elastic half space, and the fault plane dips either vertically or 45 degrees. We have investigated the seismic wave field radiated by crack-like rupture of this straight fault. If the fault rupture, initiated at depth, arrests just below or reaches the free surface, four Rayleigh-type pulses are generated: two propagating along the free surface into the opposite directions to the far field, the other two moving back along the ruptured fault surface (interface) downwards into depth. These downward interface pulses may largely control the stopping phase of the dynamic rupture, and in the case the fault plane is inclined, on the hanging wall the interface pulse and the outward-moving Rayleigh surface pulse interact with each other and the corner wave is induced. On the footwall, the ground motion is dominated simply by the weaker Rayleigh pulse propagating along the free surface because of much smaller interaction between this Rayleigh and the interface pulse. The generation of the downward interface pulses and corner wave may play a crucial role in understanding the effects of the geometrical asymmetry on the strong motion induced by shallow dip-slip faulting, but it has not been well recognized so far, partly because those waves are not expected for a fault that is located and ruptures only at depth. However, the seismological recordings of the 1999 Chi-Chi, Taiwan, the 2004 Niigata-ken Chuetsu, Japan, earthquakes as well as a more recent one in Iwate-Miyagi Inland, Japan in 2008, for example, seem to support the need for careful mechanical consideration. In this contribution, utilizing two-dimensional dynamic photoelasticity in conjunction with high speed digital cinematography, we try to perform "fully controlled" laboratory experiments of dip-slip faulting and observe the propagation of interface pulses and corner waves mentioned above. A birefringent material containing a (model) dip-slip fault plane is prepared, and rupture is initiated in that material using an Nd:YAG laser system, and the evolution of time-dependent isochromatic fringe patterns (contours of maximum in-plane shear stress) associated with the dynamic process of shallow dip-slip faulting is recorded. Use of Nd:YAG laser pulses, instead of ignition of explosives, for rupture initiation may enhance the safety of laboratory fracture experiments and enable us to evaluate the energy entering the material (and hence the energy balance in the system) more precisely, possibly in a more controlled way.
NASA Astrophysics Data System (ADS)
DuRoss, C. B.; Bunds, M. P.; Reitman, N. G.; Gold, R. D.; Personius, S. F.; Briggs, R. W.; Toke, N. A.; Johnson, K. L.; Lajoie, L. J.
2017-12-01
In 1983, about 36 km of the 130-km-long multisegment Lost River fault zone (LRFZ) (Idaho, USA) ruptured in the M 6.9 Borah Peak earthquake. Normal-faulting surface rupture propagated along the entire 24-km-long Thousand Springs section, then branched to the northwest along a 4-km-long fault (western section) that continues into the Willow Creek Hills, a prominent bedrock ridge that forms a structural boundary between the Thousand Springs section and Warms Springs section to the north. North of the Willow Creek Hills, the 1983 rupture continued onto the southern 8 km of the 16-km-long Warm Springs section. To improve our understanding of the Borah Peak earthquake and the role of structural boundaries in normal-fault rupture propagation, we acquired low-altitude aerial imagery of the southern 8 km of the Warm Springs section and northern 6 km of the Thousand Springs section, including the western section branch fault. Using 5-10-cm-pixel digital surface models generated from this dataset, we measured vertical surface offsets across both 1983 and prehistoric scarps. On the Warm Springs section, 1983 displacement is minor (mean of 0.3 m) compared to at least two prehistoric events having mean displacements of 1.1 m and 1.7 m inferred from displacement difference curves. Prehistoric scarps on the western section indicate rupture of this branch fault prior to 1983. Correcting for 1983 displacement, mean prehistoric displacement on the western section is 0.9 m compared to a mean of 0.7 m in 1983. Using these data and previous paleoseismic displacements, we evaluate the spatial distribution of cumulative and per-earthquake displacement. Our results suggest that at least one prehistoric rupture of the Thousand Springs section occurred with a similar length and displacement to that in 1983. Further, the 1983 spillover rupture from the Thousand Springs section to the southernmost Warm Springs section appears unique from larger displacement, prehistoric ruptures that may have spanned the majority of the Warm Springs section and possibly continued south into the Willow Creek Hills based on paleoseismic and surface-offset data. We conclude that the Willow Creek Hills structural boundary has likely moderated, but not completely impeded both prehistoric and 1983 ruptures of the northern LRFZ.
Monte Carlo simulation of liquid bridge rupture: Application to lung physiology
NASA Astrophysics Data System (ADS)
Alencar, Adriano M.; Wolfe, Elie; Buldyrev, Sergey V.
2006-08-01
In the course of certain lung diseases, the surface properties and the amount of fluids coating the airways changes and liquid bridges may form in the small airways blocking the flow of air, impairing gas exchange. During inhalation, these liquid bridges may rupture due to mechanical instability and emit a discrete sound event called pulmonary crackle, which can be heard using a simple stethoscope. We hypothesize that this sound is a result of the acoustical release of energy that had been stored in the surface of liquid bridges prior to its rupture. We develop a lattice gas model capable of describing these phenomena. As a step toward modeling this process, we address a simpler but related problem, that of a liquid bridge between two planar surfaces. This problem has been analytically solved and we use this solution as a validation of the lattice gas model of the liquid bridge rupture. Specifically, we determine the surface free energy and critical stability conditions in a system containing a liquid bridge of volume Ω formed between two parallel planes, separated by a distance 2h , with a contact angle Θ using both Monte Carlo simulation of a lattice gas model and variational calculus based on minimization of the surface area with the volume and the contact angle constraints. In order to simulate systems with different contact angles, we vary the parameters between the constitutive elements of the lattice gas. We numerically and analytically determine the phase diagram of the system as a function of the dimensionless parameters hΩ-1/3 and Θ . The regions of this phase diagram correspond to the mechanical stability and thermodynamical stability of the liquid bridge. We also determine the conditions for the symmetrical versus asymmetrical rupture of the bridge. We numerically and analytically compute the release of free energy during rupture. The simulation results are in agreement with the analytical solution. Furthermore, we discuss the results in connection to the rupture of similar bridges that exist in diseased lungs.
Interseismic Coupling-Based Earthquake and Tsunami Scenarios for the Nankai Trough
NASA Astrophysics Data System (ADS)
Baranes, H.; Woodruff, J. D.; Loveless, J. P.; Hyodo, M.
2018-04-01
Theoretical modeling and investigations of recent subduction zone earthquakes show that geodetic estimates of interseismic coupling and the spatial distribution of coseismic rupture are correlated. However, the utility of contemporary coupling in guiding construction of rupture scenarios has not been evaluated on the world's most hazardous faults. Here we demonstrate methods for scaling coupling to slip to create rupture models for southwestern Japan's Nankai Trough. Results show that coupling-based models produce distributions of ground surface deformation and tsunami inundation that are similar to historical and geologic records of the largest known Nankai earthquake in CE 1707 and to an independent, quasi-dynamic rupture model. Notably, these models and records all support focused subsidence around western Shikoku that makes the region particularly vulnerable to flooding. Results imply that contemporary coupling mirrors the slip distribution of a full-margin, 1707-type rupture, and Global Positioning System measurements of surface motion are connected with the trough's physical characteristics.
NASA Astrophysics Data System (ADS)
Yang, Bo; Scheidtmann, Jens; Mayer, Joachim; Wuttig, Matthias; Michely, Thomas
2002-01-01
Deposition of Ag on a silicon oil surface leads to the formation of nm-sized Ag crystals floating on the oil surface. These nanocrystals mutually attract each other, forming strongly branched nanocrystal aggregates and continuous aggregate networks. Transformation processes of such nanocrystal aggregate networks are imaged in situ by optical microscopy. The observations are explained on the basis of a simple model involving diffusion of nanocrystals along aggregate edges and the rupture of branches resulting from branch width fluctuations due to edge diffusion.
NASA Astrophysics Data System (ADS)
Yule, D.; Lave, J.; Kumar, S.; Wesnousky, S.
2007-12-01
A growing body of paleoseismic data collected from more than ten sites in Nepal and India has documented large coseismic displacements at the thrust front (Main Frontal thrust (MFT)). Three great earthquakes have been identified: in ~A.D. 1410 centered north of Delhi, in A.D. 1505 centered in far-western Nepal, and in ~A.D. 1100 centered in eastern Nepal. It is noteworthy that wherever exposures of the MFT have been studied estimates of surface slip are consistently large; with a range of 9-26 m. Historic accounts of the 1505 earthquake describe strong shaking across a 600-km-long stretch of the central Himalaya. A magnitude for this event is estimated to be >Mw 8.5 based on the maximum extent of felt strong shaking, the 100 km width of the locked portion of the basal detachment, and an average slip of 10-15 m. Though no historic accounts exist for the ~1410 and ~1100 earthquakes, the similarity between their surface expression and the 1505 rupture suggests that these events may have been equally large. These surface-rupturing earthquakes are distinctly different from a host of blind thrust events (Mw 7.5-8.4) that dominate the historic record since A.D. 1505. Both blind and emergent earthquakes are presumed to rupture the basal detachment and release interseismic strain that accumulates near the base of the High Himalaya and carry it to the thrust front where Holocene shortening occurs at rates of 15-22 mm/yr. Whereas the surface-rupturing earthquakes clearly deform the thrust front, survey data from the region affected by the 1906 Dehra Dun earthquake suggest that blind events contribute negligible, if any, deformation to the frontal structures. The factors controlling whether or not surface rupture occurs on the MFT remain unconstrained, but the current data seem to suggest that >Mw 8.5 surface-rutpuring earthquakes are the primary contributors to the shortening observed at the thrust front. It is sobering to consider that the 'Big One' has not struck the Himalaya in over 500 years and that Mw 7.5-8.4 earthquakes are the 'moderate' earthquakes'. Further study to constrain the lateral extent and recurrence of the great paleoearthquakes of the central Himalaya is critical to answer important questions about the Himalaya earthquake cycle and the seismic hazard facing the rapidly urbanizing population of the region.
Choy, G.L.; Boatwright, J.
2004-01-01
Displacement, velocity, and velocity-squared records of P and SH body waves recorded at teleseismic distances are analyzed to determine the rupture characteristics of the Denali fault, Alaska, earthquake of 3 November 2002 (MW 7.9, Me 8.1). Three episodes of rupture can be identified from broadband (???0.1-5.0 Hz) waveforms. The Denali fault earthquake started as a MW 7.3 thrust event. Subsequent right-lateral strike-slip rupture events with centroid depths of 9 km occurred about 22 and 49 sec later. The teleseismic P waves are dominated by energy at intermediate frequencies (0.1-1 Hz) radiated by the thrust event, while the SH waves are dominated by energy at lower frequencies (0.05-0.2 Hz) radiated by the strike-slip events. The strike-slip events exhibit strong directivity in the teleseismic SH waves. Correcting the recorded P-wave acceleration spectra for the effect of the free surface yields an estimate of 2.8 ?? 1015 N m for the energy radiated by the thrust event. Correcting the recorded SH-wave acceleration spectra similarly yields an estimate of 3.3 ?? 10 16 N m for the energy radiated by the two strike-slip events. The average rupture velocity for the strike-slip rupture process is 1.1??-1.2??. The strike-slip events were located 90 and 188 km east of the epicenter. The rupture length over which significant or resolvable energy is radiated is, thus, far shorter than the 340-km fault length over which surface displacements were observed. However, the seismic moment released by these three events, 4 ?? 1020 N m, was approximately half the seismic moment determined from very low-frequency analyses of the earthquake. The difference in seismic moment can be reasonably attributed to slip on fault segments that did not radiate significant or coherent seismic energy. These results suggest that very large and great strike-slip earthquakes can generate stress pulses that rapidly produce substantial slip with negligible stress drop and little discernible radiated energy on fault segments distant from the initial point of nucleation. The existence of this energy-deficient rupture mode has important implications for the evaluation of the seismic hazard of very large strike-slip earthquakes.
Blood vessel rupture by cavitation
Chen, Hong; Brayman, Andrew A.; Bailey, Michael R.
2011-01-01
Cavitation is thought to be one mechanism for vessel rupture during shock wave lithotripsy treatment. However, just how cavitation induces vessel rupture remains unknown. In this work, a high-speed photomicrography system was set up to directly observe the dynamics of bubbles inside blood vessels in ex vivo rat mesenteries. Vascular rupture correlating to observed bubble dynamics were examined by imaging bubble extravasation and dye leakage. The high-speed images show that bubble expansion can cause vessel distention, and bubble collapse can lead to vessel invagination. Liquid jets were also observed to form. Our results suggest that all three mechanisms, vessel distention, invagination and liquid jets, can contribute to vessel rupture. PMID:20680255
Near-Field Deformation Associated with the M6.0 South Napa Earthquake Surface Rupture
NASA Astrophysics Data System (ADS)
Brooks, B. A.; Hudnut, K. W.; Glennie, C. L.; Ericksen, T.
2014-12-01
We characterize near-field deformation associated with the surface rupture of the M6.0 South Napa earthquake from repeat mobile laser scanning (MLS) surveys. Starting the day after the main shock, we operated, sometime simultaneously, short (~75 m range) and medium (~400m range) range laser scanners on a truck or backpack. We scanned most of the length of the principal and secondary surface ruptures at speeds less than 10 km/hr. Scanning occurred primarily in either suburban subdivisions or cultivated vineyards of varying varietals with differing leaf patterns and stages of maturity. Spot-spacing is dense enough (100s of points/m^2) to permit creation of 10-25cm digital elevation models of much of the surface rupture. Scanned features of the right-lateral rupture include classic mole tracks through a variety of soil types, en echelon cracks, offset vine rows, and myriad types of pavement-related deformation. We estimate coseismic surface displacements ranging from 5 to 45 cm by examining offset cultural features and vine rows and by comparing the MLS data with preexisting airborne laser scans from 2003 using point-cloud and solid-modeling methodologies. Additionally, we conducted repeat MLS scans to measure the magnitude and spatial variation of fault afterslip, exceeding 20 cm in some places, particularly in the southern portion of the rupture zone. We anticipate these data sets, in conjunction with independently collected ground-based alinement arrays and space-based geodetic data will contribute significant insight into topics of current debate including assessing the most appropriate material models for shallow fault zones and how shallow and deeper fault slip relate to one another.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappa, F.; Rutqvist, J.; Yamamoto, K.
2009-05-15
In Matsushiro, central Japan, a series of more than 700,000 earthquakes occurred over a 2-year period (1965-1967) associated with a strike-slip faulting sequence. This swarm of earthquakes resulted in ground surface deformations, cracking of the topsoil, and enhanced spring-outflows with changes in chemical compositions as well as carbon dioxide (CO{sub 2}) degassing. Previous investigations of the Matsushiro earthquake swarm have suggested that migration of underground water and/or magma may have had a strong influence on the swarm activity. In this study, employing coupled multiphase flow and geomechanical modelling, we show that observed crustal deformations and seismicity can have been drivenmore » by upwelling of deep CO{sub 2}-rich fluids around the intersection of two fault zones - the regional East Nagano earthquake fault and the conjugate Matsushiro fault. We show that the observed spatial evolution of seismicity along the two faults and magnitudes surface uplift, are convincingly explained by a few MPa of pressurization from the upwelling fluid within the critically stressed crust - a crust under a strike-slip stress regime near the frictional strength limit. Our analysis indicates that the most important cause for triggering of seismicity during the Matsushiro swarm was the fluid pressurization with the associated reduction in effective stress and strength in fault segments that were initially near critically stressed for shear failure. Moreover, our analysis indicates that a two order of magnitude permeability enhancement in ruptured fault segments may be necessary to match the observed time evolution of surface uplift. We conclude that our hydromechanical modelling study of the Matsushiro earthquake swarm shows a clear connection between earthquake rupture, deformation, stress, and permeability changes, as well as large-scale fluid flow related to degassing of CO{sub 2} in the shallow seismogenic crust. Thus, our study provides further evidence of the important role of deep fluid sources in earthquake fault dynamics and surface deformations.« less
Wright, Tim J.; Lu, Z.; Wicks, Charles
2004-01-01
The Mw 7.9, Denali fault earthquake (DFE) is the largest continental strike-slip earthquake to occur since the development of Interferometric Synthetic Aperture Radar (InSAR). We use five interferograms, constructed using radar images from the Canadian Radarsat-1 satellite, to map the surface deformation at the western end of the fault rupture. Additional geodetic data are provided by displacements observed at 40 campaign and continuous Global Positioning System (GPS) sites. We use the data to determine the geometry of the Susitna Glacier fault, thrusting on which initiated the DFE, and to determine a slip model for the entire event that is consistent with both the InSAR and GPS data. We find there was an average of 7.3 ± 0.4 m slip on the Susitna Glacier fault, between 1 and 9.5 km depth on a 29 km long fault that dips north at 41 ± 0.7° and has a surface projection close to the mapped rupture. On the Denali fault, a simple model with large slip patches finds a maximum of 8.7 ± 0.7 m of slip between the surface and 14.3 ± 0.2 km depth. A more complex distributed slip model finds a peak of 12.5 ± 0.8 m in the upper 4 km, significantly higher than the observed surface slip. We estimate a geodetic moment of 670 ± 10 × 1018 N m (Mw 7.9), consistent with seismic estimates. Lack of preseismic data resulted in an absence of InSAR coverage for the eastern half of the DFE rupture. A dedicated geodetic InSAR mission could obviate coverage problems in the future.
NASA Astrophysics Data System (ADS)
Fielding, E. J.; Huang, M. H.; Liang, C.; Yue, H.; Agram, P. S.; Simons, M.; Fattahi, H.; Tung, H.; Hu, J. C.; Huang, C.
2016-12-01
We map complex fault ruptures of the February 2016 MeiNong earthquake in Taiwan and the April 2016 Kumamoto earthquake sequence in Japan by analysis of Synthetic Aperture Radar (SAR) data from the Copernicus Sentinel-1A (S1A) satellite operated by the European Space Agency and the Advanced Land Observation Satellite-2 (ALOS-2) satellite operated by the Japanese Aerospace Exploration Agency (JAXA). Our analysis shows that the MeiNong main rupture at lower crustal depth triggered slip on another fault at upper crustal depth and shallow slip on several faults in the upper few km. The Kumamoto earthquake sequence ruptured two major fault systems over two days and triggered shallow slip on a large number of shallow faults. We combine less precise analysis of large scale displacements from the SAR images of the two satellites by pixel offset tracking or sub-pixel correlation, including the along-track component of surface motion, with the more precise SAR interferometry (InSAR) measurements in the radar line-of-sight direction to estimate all three components of the surface displacement for the events. Data was processed with customized workflows based on modules in the InSAR Scientific Computing Environment (ISCE). Joint inversion of S1A and ALOS-2 InSAR, GPS, and strong motion seismograms for the Mw6.4 MeiNong earthquake shows that the main thrust rupture with N61°W strike and 15° dip at 15-20 km depth explains nearly all of the seismic waveforms but leaves a substantial uplift residual in the InSAR and GPS offsets estimated 4 hours after the earthquake. We model this residual with slip on a N8°E-trending thrust fault dipping 30° at depths between 5-10 km. This fault strike is parallel to surface faults and we interpret it as fault slip within a mid-crustal duplex that was triggered by the main rupture within 4 hours of the mainshock. In addition, InSAR shows sharp discontinuities at many locations that are likely due to shallow triggered slip, but the timing of these is uncertain. The Kumamoto earthquake sequence in Japan started with Mw 6.2 and 6.0 earthquakes on 14 April (UTC) followed on 15 April by the Mw 7.0 mainshock. JAXA acquired one ALOS-2 scene between the foreshocks and mainshock that enables some separation of the surface deformation. InSAR shows M6 foreshocks were deeper, while M7 mainshock ruptured surface in many places.
King, G; Soufleris, C; Berberian, M
1981-03-01
Abstract- Three earthquakes have been studied. These are the Thessaloniki earthquake of 20th June 1978 (Ms = 6.4, Normal faulting), the Tabase-Golshan earthquake of 16th September 1978 (Ms = 7.7 Thrust faulting) and the Carlisle earth-quake of 26th December 1979 (Mb = 5.0, Thrust faulting). The techniques employed to determine source parameters included field studies of SUP face deformation, fault breaks, locations of locally recorded aftershocks and teleseismic studies including joint hypocentral location, first motion methods and waveform modelling. It is clear that these techniques applied together provide more information than the same methods used separately. The moment of the Thessaloniki earthquake determined teleseismically (Force moment 5.2 times 10(25) dyne cm. Geometric moment 1.72 times 10(8) m(3) ) is an order of magnitude greater than that determined using field data (surface ruptures and aftershock depths) (Force moment 4.5 times 10(24) dyne cm. Geometric moment 0.16 times 10(8) m(3) ). It is concluded that for this earthquake the surface rupture only partly reflects the processes on the main rupture plane. This view i s supported by a distribution of aftershocks and damage which extends well outside the region of ground rupture. However, the surface breaks consistently have the same slip vector direction as the fault plane solutions suggesting that they are in this respect related to to the main faulting and are not superficial slumping. Both field studies and waveform studies suggest a low stress drop which may explain the relatively little damage and loss of life as a result of the Thessaloniki earthquake. In contrast, the teleseismic moment of the Tabas-e-Golshan earthquake (Force moment 4.4 times 10(26) dyne cm. Geometric moment 1.5 times 10(9) m(3) ) is similar t o that determined from field studies (Force moment 10.2 times 10(26) dyne cm. Geometric moment 3.4 times 10(9) m(3) ) and the damage and after-shock distributions clearly relate to the surface faulting. It h a s also been observed that high aftershock activity appears beneath gaps in the surface rupture system. The Carlisle earthquake (Force moment 9 times 10(23) dyne cm. Geometric moment 3 times 10(6) m(3) ) produced no surface ruptures. However, dislocation model-ling suggests that surface deformation will be visible on a first order levelling line which passes very close t o the epicentre. A well controlled fault plane solution, the first in the British Isles, derived from an aftershock study shows north-south compression. All three studied earthquakes occurred along major faults which had been reactivated in geological times. The fault on which the Tabas-e-Golshan earthquake occurred could have been identified a s active from evidence of Quaternary motion and previous smaller earthquakes. However, there were no perceptible events in the 12 months preceeding the catastrophic earthquake. In both Thessaloniki and Carlisle, significant foreshocks did occur within 6 months prior to the main shock*
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Hurst, Janet; Brewer, David
1999-01-01
Woven Hi-Nicalon (TM) reinforced melt-infiltrated SiC matrix composites were tested under tensile stress-rupture conditions in air at intermediate temperatures. A comprehensive examination of the damage state and the fiber properties at failure was performed. Modal acoustic emission analysis was used to monitor damage during the experiment. Extensive microscopy of the composite fracture surfaces and the individual fiber fracture surfaces was used to determine the mechanisms leading to ultimate failure. The rupture properties of these composites were significantly worse than expected compared to the fiber properties under similar conditions. This was due to the oxidation of the BN interphase. Oxidation occurred through the matrix cracks that intersected the surface or edge of a tensile bar. These oxidation reactions resulted in minor degradation to fiber strength and strong bonding of the fibers to one another at regions of near fiber-to-fiber contact. It was found that two regimes for rupture exist for this material: a high stress regime where rupture occurs at a fast rate and a low stress regime where rupture occurs at a slower rate. For the high stress regime, the matrix damage state consisted of through thickness cracks. The average fracture strength of fibers that were pulled-out (the final fibers to break before ultimate failure) was controlled by the slow-crack growth rupture criterion in the literature for individual Hi-Nicalon (TM) fibers. For the low stress regime, the matrix damage state consisted of microcracks which grew during the rupture test. The average fracture strength of fibers that were pulled-out in this regime was the same as the average fracture strength of individual fibers pulled out in as-produced composites tested at room temperature.
NASA Astrophysics Data System (ADS)
Nevitt, J.; Brooks, B. A.; Catchings, R.; Goldman, M.; Criley, C.; Chan, J. H.; Glennie, C. L.; Ericksen, T. L.; Madugo, C. M.
2017-12-01
The physics governing near-surface fault slip and deformation are largely unknown, introducing significant uncertainty into seismic hazard models. Here we combine near-field measurements of surface deformation from the 2014 M6.0 South Napa earthquake with high-resolution seismic imaging and finite element models to investigate the effects of rupture speed, elastic heterogeneities, and plasticity on shallow faulting. We focus on two sites that experienced either predominantly co-seismic or post-seismic slip. We measured surface deformation with mobile laser scanning of deformed vine rows within 300 m of the fault at 1 week and 1 month after the event. Shear strain profiles for the co- and post-seismic sites are similar, with maxima of 0.012 and 0.013 and values exceeding 0.002 occurring within 26 m- and 18 m-wide zones, respectively. That the rupture remained buried at the two sites and produced similar deformation fields suggests that permanent deformation due to dynamic stresses did not differ significantly from the quasi-static case, which might be expected if the rupture decelerated as it approached the surface. Active-source seismic surveys, 120 m in length with 1 m geophone/shot spacing, reveal shallow compliant zones of reduced shear modulus. For the co- and post-seismic sites, the tomographic anomaly (Vp/Vs > 5) at 20 m depth has a width of 80 m and 50 m, respectively, much wider than the observed surface displacement fields. We investigate this discrepancy with a suite of finite element models in which a planar fault is buried 5 m below the surface. The model continuum is defined by either homogeneous or heterogeneous elastic properties, with or without Drucker-Prager plastic yielding, with properties derived from lab testing of similar near-surface materials. We find that plastic yielding can greatly narrow the surface displacement zone, but that the width of this zone is largely insensitive to changes in the elastic structure (i.e., the presence of a compliant zone).
NASA Astrophysics Data System (ADS)
Bennett, S. E. K.; DuRoss, C. B.; Reitman, N. G.; Devore, J. R.; Hiscock, A.; Gold, R. D.; Briggs, R. W.; Personius, S. F.
2014-12-01
Paleoseismic data near fault segment boundaries constrain the extent of past surface ruptures and the persistence of rupture termination at segment boundaries. Paleoseismic evidence for large (M≥7.0) earthquakes on the central Holocene-active fault segments of the 350-km-long Wasatch fault zone (WFZ) generally supports single-segment ruptures but also permits multi-segment rupture scenarios. The extent and frequency of ruptures that span segment boundaries remains poorly known, adding uncertainty to seismic hazard models for this populated region of Utah. To address these uncertainties we conducted four paleoseismic investigations near the Salt Lake City-Provo and Provo-Nephi segment boundaries of the WFZ. We examined an exposure of the WFZ at Maple Canyon (Woodland Hills, UT) and excavated the Flat Canyon trench (Salem, UT), 7 and 11 km, respectively, from the southern tip of the Provo segment. We document evidence for at least five earthquakes at Maple Canyon and four to seven earthquakes that post-date mid-Holocene fan deposits at Flat Canyon. These earthquake chronologies will be compared to seven earthquakes observed in previous trenches on the northern Nephi segment to assess rupture correlation across the Provo-Nephi segment boundary. To assess rupture correlation across the Salt Lake City-Provo segment boundary we excavated the Alpine trench (Alpine, UT), 1 km from the northern tip of the Provo segment, and the Corner Canyon trench (Draper, UT) 1 km from the southern tip of the Salt Lake City segment. We document evidence for six earthquakes at both sites. Ongoing geochronologic analysis (14C, optically stimulated luminescence) will constrain earthquake chronologies and help identify through-going ruptures across these segment boundaries. Analysis of new high-resolution (0.5m) airborne LiDAR along the entire WFZ will quantify latest Quaternary displacements and slip rates and document spatial and temporal slip patterns near fault segment boundaries.
Active faults system and related potential seismic events near Ulaanbaatar, capital of Mongolia.
NASA Astrophysics Data System (ADS)
Schlupp, Antoine; Ferry, Matthieu; Munkhuu, Ulziibat; Sodnomsambuu, Demberel; Al-Ashkar, Abeer
2013-04-01
The region of Ulaanbaatar lies several hundred kilometers from large known active faults that produced magnitude 6 to 8+ earthquakes during the last century. Beside the Hustai fault, which displays a clear morphological expression, no active fault was previously described less than 100 km from the city. In addition, no large historical (i.e. more recent than the 16th c.) earthquakes are known in this region. However, since 2005 a very dense seismic activity has developed over the Emeelt Township area, a mere 10 km from Ulaanbaatar. The activity is characterized by numerous low magnitude events (M<2.8), which are distributed linearly along several tens of kilometers where no active fault has been identified. This raises several questions: Is this seismicity associated to a -yet- unknown active fault? If so, are there other unknown active faults near Ulaanbaatar? Hence, we deployed a multi-disciplinary approach including morpho-tectonic, near-surface geophysical and paleoseismological investigations. We describe four large active faults west and south of Ulaanbaatar, three of them are newly discovered (Emeelt, Sharai, Avdar), one was previously known (Hustai) but without precise study on its seismic potential. The Emeelt seismicity can be mapped over 35 km along N150 and corresponds in the field to a smoothed, but clear, active fault morphology that can be mapped along a 10-km-long section. The fault dips at ~30° NE (GPR and surface morphology observations) and uplifts the eastern block. The age of the last surface rupture observed in trenches is about 10 ka (preliminary OSL dating). Considering a rupture length of 35 km, a full segment rupture would be comparable to the 1967 Mogod earthquake with a magnitude as large as Mw 7. It has to be considered today as a possible scenario for the seismic risk of Ulaanbaatar. The 90-km-long Hustai Range Fault System, oriented WSW-ENE and located about 10 km west of Ulaanbaatar, displays continuous microseismicity with five light to moderate (M 4 - 5.4) earthquakes over the last 40 years. The last surface-rupturing earthquake occurred about 1000 years ago (OSL dating). Alluvial fans affected by the fault suggest the rate of deformation (left lateral with normal component) along the main segment ranges from 0.3 to 0.4 mm/year for the last 120 000 years. Hence, the average recurrence interval for a full-segment M 7-7.5 is likely in the order of 10 ky. However, if the Hustai fault also releases strain during partial ruptures along its strongly segmented trace, a Mw 6.5 event may be expected anytime. However, only the main central fault segment has been investigated in terms of paleoseismicity. The Sharai and Avdar faults, oriented NNE-SSW, were mapped along ~50-km-long sections. Each of these faults was the site of earthquakes of magnitude 6 and more in the past as suggested by morphology and trench observations. Full-segment-ruptures could produce events as large as M 7.2. The precise relationship and interactions between these faults as well as associated earthquakes have to be clarified by collecting more data. They are the key of the seismic hazard and risk of Ulaanbaatar.
From viscous to elastic sheets: Dynamics of smectic bubbles
NASA Astrophysics Data System (ADS)
Harth, Kirsten; Trittel, Torsten; van der Meer, Devaraj; Stannarius, Ralf
2015-11-01
Oscillations and rupture of bubbles composed of an inner fluid separated from an outer fluid by a membrane, represent an old but still immensely active field of research. Membrane properties apart from surface tension are often neglected for fluids (e.g. soap bubbles), whereas they govern the dynamics in systems with a rigid membrane (e.g. vesicles). Due to their layered phase structure, smectic liquid crystals can form stable, uniform and easy-to-handle fluid films of immense aspect ratios. Only recently, freely floating bubbles detached from a support could be prepared. We analyze their relaxation from strongly non-spherical shapes and the rupture using high-speed video recordings. Peculiar dynamics intermediate between simple viscous fluid films and an elastic response are observed: Fast oscillations, slowed relaxation and even the reversible formation of wrinkles and extrusions. Bubble rupture deviates qualitatively from previously observed behavior of simple Newtonian and other complex fluids. It becomes retarded by at least two orders of magnitude compared to the predictions of Taylor and Culick. A transition between fluid-like and elastic behavior is seen with increasing thickness. We give experimental results, an intuitive explanation and a novel hydrodynamic description.
Bell, J.W.; DePolo, C.M.; Ramelli, A.R.; Sarna-Wojcicki, A. M.; Meyer, C.E.
1999-01-01
The 1932 Cedar Mountain earthquake (Ms 7.2) was one of the largest historical events in the Walker Lane region of western Nevada, and it produced a complicated strike-slip rupture pattern on multiple Quaternary faults distributed through three valleys. Primary, right-lateral surface ruptures occurred on north-striking faults in Monte Cristo Valley; small-scale lateral and normal offsets occurred in Stewart Valley; and secondary, normal faulting occurred on north-northeast-striking faults in the Gabbs Valley epicentral region. A reexamination of the surface ruptures provides new displacement and fault-zone data: maximum cumulative offset is estimated to be 2.7 m, and newly recognized faults extend the maximum width and end-to-end length of the rupture zone to 17 and 75 km, respectively. A detailed Quaternary allostratigraphic chronology based on regional alluvialgeomorphic relationships, tephrochronology, and radiocarbon dating provides a framework for interpreting the paleoseismic history of the fault zone. A late Wisconsinan alluvial-fan and piedmont unit containing a 32-36 ka tephra layer is a key stratigraphic datum for paleoseismic measurements. Exploratory trenching and radiocarbon dating of tectonic stratigraphy provide the first estimates for timing of late Quaternary faulting along the Cedar Mountain fault zone. Three trenches display evidence for six faulting events, including that in 1932, during the past 32-36 ka. Radiocarbon dating of organic soils interstratified with tectonically ponded silts establishes best-fit ages of the pre-1932 events at 4, 5,12,15, and 18 ka, each with ??2 ka uncertainties. On the basis of an estimated cumulative net slip of 6-12 m for the six faulting events, minimum and maximum late Quaternary slip rates are 0.2 and 0.7 mm/yr, respectively, and the preferred rate is 0.4-0.5 mm/yr. The average recurrence (interseismic) interval is 3600 yr. The relatively uniform thickness of the ponded deposits suggests that similar-size, characteristic rupture events may characterize late Quaternary slip on the zone. A comparison of event timing with the average late Quaternary recurrence interval indicates that slip has been largely regular (periodic) rather than temporally clustered. To account for the spatial separation of the primary surface faulting in Monte Cristo Valley from the epicenter and for a factor-of-two-to-three disparity between the instrumentally and geologically determined seismic moments associated with the earthquake, we hypothesize two alternative tectonic models containing undetected subevents. Either model would adequately account for the observed faulting on the basis of wrench-fault kinematics that may be associated with the Walker Lane. The 1932 Cedar Mountain earthquake is considered an important modern analogue for seismotectonic modeling and estimating seismic hazard in the Walker Lane region. In contrast to most other historical events in the Basin and Range province, the 1932 event did not occur along a major range-bounding fault, and no single, throughgoing basement structure can account for the observed rupture pattern. The 1932 faulting supports the concept that major earthquakes in the Basin and Range province can exhibit complicated distributive rupture patterns and that slip rate may not be a reliable criterion for modeling seismic hazard.
Bonilla, Manuel G.; Mark, Robert K.; Lienkaemper, James J.
1984-01-01
In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors.The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation in which the variance results primarily from measurement errors.Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are grouped by fault type or by region, including attenuation regions delineated by Evernden and others.Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating Ms with the logarithms of rupture length, fault displacement, or the product of length and displacement.Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of Ms on rupture area did not result in a marked improvement over regressions that did not involve rupture area. Because no subduction-zone earthquakes are included in this study, the reported results do not apply to such zones.
Bonilla, M.G.; Mark, R.K.; Lienkaemper, J.J.
1984-01-01
In order to refine correlations of surface-wave magnitude, fault rupture length at the ground surface, and fault displacement at the surface by including the uncertainties in these variables, the existing data were critically reviewed and a new data base was compiled. Earthquake magnitudes were redetermined as necessary to make them as consistent as possible with the Gutenberg methods and results, which necessarily make up much of the data base. Measurement errors were estimated for the three variables for 58 moderate to large shallow-focus earthquakes. Regression analyses were then made utilizing the estimated measurement errors. The regression analysis demonstrates that the relations among the variables magnitude, length, and displacement are stochastic in nature. The stochastic variance, introduced in part by incomplete surface expression of seismogenic faulting, variation in shear modulus, and regional factors, dominates the estimated measurement errors. Thus, it is appropriate to use ordinary least squares for the regression models, rather than regression models based upon an underlying deterministic relation with the variance resulting from measurement errors. Significant differences exist in correlations of certain combinations of length, displacement, and magnitude when events are qrouped by fault type or by region, including attenuation regions delineated by Evernden and others. Subdivision of the data results in too few data for some fault types and regions, and for these only regressions using all of the data as a group are reported. Estimates of the magnitude and the standard deviation of the magnitude of a prehistoric or future earthquake associated with a fault can be made by correlating M with the logarithms of rupture length, fault displacement, or the product of length and displacement. Fault rupture area could be reliably estimated for about 20 of the events in the data set. Regression of MS on rupture area did not result in a marked improvement over regressions that did not involve rupture area. Because no subduction-zone earthquakes are included in this study, the reported results do not apply to such zones.
NASA Astrophysics Data System (ADS)
Ishiyama, T.; Sugito, N.; Echigo, T.; Sato, H.; Suzuki, T.
2012-04-01
A month after March 11 gigantic M9.0 Tohoku-oki earthquake, M7.0 intraplate earthquake occurred at a depth of 5 km on April 11 beneath coastal area of near Iwaki city, Fukushima prefecture. Focal mechanism of the mainshock indicates that this earthquake is a normal faulting event. Based on field reconnaissance and LIDAR mapping by Geospatial Information Authority of Japan, we recognized coseismic surface ruptures, presumably associated with the main shock. Coseismic surface ruptures extend NNW for about 11 km in a right-stepping en echelon manner. Geomorphic expressions of these ruptures commonly include WWS-facing normal fault scarps and/or drape fold scarp with open cracks on their crests, on the hanging wall sides of steeply west-dipping normal fault planes subparallel to Cretaceous metamorphic rocks. Highest topographic scarp height is about 2.3 m. In this study we introduce preliminary results of a trenching survey across the coseismic surface ruptures at Shionohira site, to resolve timing of paleoseismic events along the Shionohira fault. Trench excavations were carried out at two sites (Ichinokura and Shionohira sites) in Iwaki, Fukushima. At Shionohira site a 2-m-deep trench was excavated across the coseismic fault scarp emerged on the alluvial plain on the eastern flank of the Abukuma Mountains. On the trench walls we observed pairs of steeply dipping normal faults that deform Neogene to Paleogene conglomerates and unconformably overlying, late Quaternary to Holocene fluvial units. Sense of fault slip observed on the trench walls (large dip-slip with small sinistral component) is consistent with that estimated from coseismic surface ruptures. Fault throw estimated from separation of piercing points on lower Unit I and vertical structural relief on folded upper Unit I is consistent with topographic height of the coseismic fault scarp at the trench site. In contrast, vertical separation of Unit II, unconformably overlain by Unit I, is measured as about 1.5 m, twice as large as coseismic vertical component of slip, indicative of penultimate seismic event prior to the 2011 earthquake. Abrupt thickening of overlying Unit I may also suggest preexisting topographic relief prior to its deposition. Radiocarbon dating of charred materials included in event horizons and tephrostratigraphy at two sites indicate that penultimate event prior to the 2011 event might occurred at about 40 ka. This normal fault earthquake is in contrast to compressional or neutral stress regimes in Tohoku region before the 2011 megaquake and rarity of the normal faulting earthquake inferred from these paleoseismic studies may reflect its mechanical relation to the gigantic megathrust earthquakes, such as unusual, enhanced extensional stress on the hangingwall block induced by mainshock and/or postseismic creep after the M~9 earthquake.
A Kinematic Model of Slow Slip Constrained by Tremor-Derived Slip Histories in Cascadia
NASA Astrophysics Data System (ADS)
Schmidt, D. A.; Houston, H.
2016-12-01
We explore new ways to constrain the kinematic slip distributions for large slow slip events using constraints from tremor. Our goal is to prescribe one or more slip pulses that propagate across the fault and scale appropriately to satisfy the observations. Recent work (Houston, 2015) inferred a crude representative stress time history at an average point using the tidal stress history, the static stress drop, and the timing of the evolution of tidal sensitivity of tremor over several days of slip. To convert a stress time history into a slip time history, we use simulations to explore the stressing history of a small locked patch due to an approaching rupture front. We assume that the locked patch releases strain through a series of tremor bursts whose activity rate is related to the stressing history. To test whether the functional form of a slip pulse is reasonable, we assume a hypothetical slip time history (Ohnaka pulse) timed with the occurrence of tremor to create a rupture front that propagates along the fault. The duration of the rupture front for a fault patch is constrained by the observed tremor catalog for the 2010 ETS event. The slip amplitude is scaled appropriately to match the observed surface displacements from GPS. Through a forward simulation, we evaluate the ability of the tremor-derived slip history to accurately predict the pattern of surface displacements observed by GPS. We find that the temporal progression of surface displacements are well modeled by a 2-4 day slip pulse, suggesting that some of the longer duration of slip typically found in time-dependent GPS inversions is biased by the temporal smoothing. However, at some locations on the fault, the tremor lingers beyond the passage of the slip pulse. A small percentage (5-10%) of the tremor appears to be activated ahead of the approaching slip pulse, and tremor asperities experience a driving stress on the order of 10 kPa/day. Tremor amplitude, rather than just tremor counts, is needed to better refine the pattern of slip across the fault.
Long-period spectral features of the Sumatra-Andaman 2004 earthquake rupture process
NASA Astrophysics Data System (ADS)
Clévédé, E.; Bukchin, B.; Favreau, P.; Mostinskiy, A.; Aoudia, A.; Panza, G. F.
2012-12-01
The goal of this study is to investigate the spatial variability of the seismic radiation spectral content of the Sumatra-Andaman 2004 earthquake. We determine the integral estimates of source geometry, duration and rupture propagation given by the stress glut moments of total degree 2 of different source models. These models are constructed from a single or a joint use of different observations including seismology, geodesy, altimetry and tide gauge data. The comparative analysis shows coherency among the different models and no strong contradictions are found between the integral estimates of geodetic and altimetric models, and those retrieved from very long period seismic records (up to 2000-3000 s). The comparison between these results and the integral estimates derived from observed surface wave spectra in period band from 500 to 650 s suggests that the northern part of the fault (to the north of 8°N near Nicobar Islands) did not radiate long period seismic waves, that is, period shorter than 650 s at least. This conclusion is consistent with the existing composite short and long rise time tsunami model: with short rise time of slip in the southern part of the fault and very long rise time of slip at the northern part. This complex space-time slip evolution can be reproduced by a simple dynamic model of the rupture assuming a crude phenomenological mechanical behaviour of the rupture interface at the fault scales combining an effective slip-controlled exponential weakening effect, related to possible friction and damage breakdown processes of the fault zone, and an effective linear viscous strengthening effect, related to possible interface lubrication processes. While the rupture front speed remains unperturbed with initial short slip duration, a slow creep wave propagates behind the rupture front in the case of viscous effects accounting for the long slip duration and the radiation characteristics in the northern segment.
Liu, Yang; Xu, Caijun; Wen, Yangmao; Fok, Hok Sum
2015-01-01
On 28 August 2009, the northern margin of the Qaidam basin in the Tibet Plateau was ruptured by an Mw 6.3 earthquake. This study utilizes the Envisat ASAR images from descending Track 319 and ascending Track 455 for capturing the coseismic deformation resulting from this event, indicating that the earthquake fault rupture does not reach to the earth’s surface. We then propose a four-segmented fault model to investigate the coseismic deformation by determining the fault parameters, followed by inverting slip distribution. The preferred fault model shows that the rupture depths for all four fault planes mainly range from 2.0 km to 7.5 km, comparatively shallower than previous results up to ~13 km, and that the slip distribution on the fault plane is complex, exhibiting three slip peaks with a maximum of 2.44 m at a depth between 4.1 km and 4.9 km. The inverted geodetic moment is 3.85 × 1018 Nm (Mw 6.36). The 2009 event may rupture from the northwest to the southeast unilaterally, reaching the maximum at the central segment. PMID:26184210
Liu, Yang; Xu, Caijun; Wen, Yangmao; Fok, Hok Sum
2015-07-10
On 28 August 2009, the northern margin of the Qaidam basin in the Tibet Plateau was ruptured by an Mw 6.3 earthquake. This study utilizes the Envisat ASAR images from descending Track 319 and ascending Track 455 for capturing the coseismic deformation resulting from this event, indicating that the earthquake fault rupture does not reach to the earth's surface. We then propose a four-segmented fault model to investigate the coseismic deformation by determining the fault parameters, followed by inverting slip distribution. The preferred fault model shows that the rupture depths for all four fault planes mainly range from 2.0 km to 7.5 km, comparatively shallower than previous results up to ~13 km, and that the slip distribution on the fault plane is complex, exhibiting three slip peaks with a maximum of 2.44 m at a depth between 4.1 km and 4.9 km. The inverted geodetic moment is 3.85 × 10(18) Nm (Mw 6.36). The 2009 event may rupture from the northwest to the southeast unilaterally, reaching the maximum at the central segment.
Persistent fine-scale fault structures control rupture development in Parkfield, CA.
NASA Astrophysics Data System (ADS)
Perrin, C.; Waldhauser, F.; Scholz, C. H.
2016-12-01
We investigate the fine-scale geometry and structure of the San Andreas Fault (SAF) near Parkfield, CA, and their role in the development of the 1966 and 2004 M6 earthquakes. Both events broke the fault mainly unilaterally with similar length ( 30 km) but in opposite directions. Seismic slip occurred in a narrow zone between 5 and 10 km depth, as outlined by the concentration of aftershocks along the edge of the slip area. Across fault distribution of the 2004 aftershocks show a rapid decrease of event density away from the fault core. The damage zone is narrower in the Parkfield section (few 100 meters) than in the creeping section ( 1 km). We observe a similar but broader distribution during the interseismic periods. This implies that stress accumulates in a volume around the fault during interseismic periods, whereas coseismic deformation is more localized on the mature SAF. Large aftershocks are concentrated at both rupture tips, characterized by strong heterogeneities in the fault structure at the surface and at depth: i) in the south near Gold Hill-Cholame, a large releasing bend (>25°) separates the Parkfield section from the southern section of the SAF; ii) in the north at Middle Mountain, the surface fault trace goes through an ancient restraining step-over connecting the Parkfield and creeping sections. Fine-scale analysis of the 2004 aftershocks reveals a change in the fault dip and local variations of the fault strike (up to 25°) beneath Middle Mountain, in good agreement with focal mechanisms, which show oblique normal and reverse faulting. We observe these variations during the interseismic periods before and after the 2004 event, suggesting that the structural heterogeneities persisted through at least two earthquake cycles. These heterogeneities act as barriers to rupture propagation of moderate size earthquakes at Parkfield, but also as stress concentrations where rupture initiates.
NASA Astrophysics Data System (ADS)
Melosh, Ben L.; Rowe, Christie D.; Smit, Louis; Groenewald, Conrad; Lambert, Christopher W.; Macey, Paul
2014-10-01
Off-fault dynamic tensile cracks form behind an earthquake rupture front with distinct orientation and spacing. These cracks explode the wall rock and create breccias, which we hypothesize will preserve a unique fingerprint of dynamic rupture. Identification of these characteristic breccias may enable a new tool for identifying paleoseismic slip surfaces in the rock record. Using previous experimental and theoretical predictions, we develop a field-based model of dynamic dilational breccia formation. Experimental studies find that secondary tensile fracture networks comprise closely spaced fractures at angles of 70-90° from a slip surface, as well as fractures that branch at angles of ∼ 30 ° from a primary mode I fracture. The Pofadder Shear Zone, in Namibia and South Africa, preserves breccias formed in the brittle-ductile transition zone displaying fracture patterns consistent with those described above. Fracture spacing is approximately two orders of magnitude less than predicted by quasi-static models. Breccias are clast-supported, monomict and can display an abrupt transition from fracture network crackle breccia to mosaic breccia textures. Brecciation occurs by the intersection of off-fault dynamic fractures and wall rock fabric; this is in contrast to previous models of fluid pressure gradient-driven failure ;implosion breccias;. This mechanism tends to form many similar sized clasts with particle size distributions that may not display self-similarity; where self-similarity is observed the distributions have relatively low D-values of 1.47 ± 0.37, similar to other studies of dynamic processes. We measure slip distances at dilational breccia stepovers, estimating earthquake magnitudes between Mw 2.8-5.8 and associated rupture lengths of 0.023-3.3 km. The small calculated rupture dimensions, in combination with our geologic observations, suggest that some earthquakes nucleated within the quartz-plastic transitional zone and potentially record deep seismic slip.
Coseismic rupturing stopped by Aso volcano during the 2016 Mw 7.1 Kumamoto earthquake, Japan.
Lin, A; Satsukawa, T; Wang, M; Mohammadi Asl, Z; Fueta, R; Nakajima, F
2016-11-18
Field investigations and seismic data show that the 16 April 2016 moment magnitude (M w ) 7.1 Kumamoto earthquake produced a ~40-kilometer-long surface rupture zone along the northeast-southwest-striking Hinagu-Futagawa strike-slip fault zone and newly identified faults on the western side of Aso caldera, Kyushu Island, Japan. The coseismic surface ruptures cut Aso caldera, including two volcanic cones inside it, but terminate therein. The data show that northeastward propagation of coseismic rupturing terminated in Aso caldera because of the presence of magma beneath the Aso volcanic cluster. The seismogenic faults of the 2016 Kumamoto earthquake may require reassessment of the volcanic hazard in the vicinity of Aso volcano. Copyright © 2016, American Association for the Advancement of Science.
NASA Technical Reports Server (NTRS)
Fielding, Eric J.; Talebian, M.; Rosen, P. A.; Nazari, H.; Jackson, J. A.; Ghorashi, M.; Walker, R.
2005-01-01
We use the interferometric correlation from Envisat synthetic aperture radar (SAR) images to map the details of the surface ruptures related to the 26 December 2003 earthquake that devastated Bam, Iran. The main strike-slip fault rupture south of the city of Bam has a series of four segments with left steps shown by a narrow line of low correlation in the coseismic interferogram. This also has a clear expression in the field because of the net extension across the fault. Just south of the city limits, the surface strain becomes distributed over a width of about 500 m, probably because of a thicker layer of soft sedimentary material.
Apparatus for controlling fluid flow in a conduit wall
Glass, S. Jill; Nicolaysen, Scott D.; Beauchamp, Edwin K.
2003-05-13
A frangible rupture disk and mounting apparatus for use in blocking fluid flow, generally in a fluid conducting conduit such as a well casing, a well tubing string or other conduits within subterranean boreholes. The disk can also be utilized in above-surface pipes or tanks where temporary and controllable fluid blockage is required. The frangible rupture disk is made from a pre-stressed glass with controllable rupture properties wherein the strength distribution has a standard deviation less than approximately 5% from the mean strength. The frangible rupture disk has controllable operating pressures and rupture pressures.
3-D kinematics analysis of surface ruptures on an active creeping fault at Chihshang, Eastern Taiwan
NASA Astrophysics Data System (ADS)
Lee, J.; Angelier, J.; Chen, H.; Chu, H.; Hu, J.
2003-12-01
The Chihshang fault is one of the most active segments of the Longitudinal Valley Fault, the plate suture between the converging Philippine and Eurasian plates. A destructive earthquake of M 7.1 with substantial surface scarps resulted from rupturing of the Chihshang fault in 1951. From that on, no big earthquake greater than M 5.5 occurred in this area. Instead, the Chihshang fault reveals a creeping behavior at a rapid rate of about 20 mm/yr at least during the past 20 years. The surface breaks of the creeping Chihshang fault can be observed at the several places. A typical feature is reverse-fault-like fractures on the retaining wall. We deployed small geodetic networks across the fault zone at five sites. Each network comprises of 5 to 15 benchmarks. Trilateration measurements including angles and distances as well as leveling among the benchmarks have been carried out on an annual basis or twice a year since 1998. Compared to previous other measurements which have shown the first order creep rate for the entire fault zone, the present geodetic data provides the detailed information of the surface movements across the fault zone which usually composed of more than one fault strands and folds structures. According to our data from the local geodetic networks, we are able to reconstruct the 3-D kinematics of surface deformation across the Chihshang fault zone. Multiple fault strands are common along the Chihshang fault. Oblique shortening occurred at all sites and was characterized by a combination of thrusts, backthrust and surface warps. Strike-slip motion can also be distinguished on some fault strands. It is worth to note that the cultural feature, such as concrete basement of strong resistance, sometimes acted as deflection of surface ruptures. It should be taken into consideration for mitigation against seismic hazards.
New investigations of the October 1999 Hector Mine Earthquake surface rupture
NASA Astrophysics Data System (ADS)
Sousa, F.; Harvey, J. C.; Hudnut, K. W.; Akciz, S. O.; Stock, J. M.
2013-12-01
We report on new field and computer based investigation of the surface rupture of the October 16, 1999 Hector Mine Earthquake. In cooperation with the United States Marine Corps Air Ground Combat Center Twentynine Palms (MCAGCC), our team was allowed ground and aerial access to the extent of the surface rupture for limited times during October - December 2012. As far as we know, this was the first scientific access granted to the entire surface rupture since the immediate aftermath of the earthquake, and the first scientific access of any kind to some parts of the maximum slip zone since before the event. This locale is an excellent natural laboratory for detailed study of a major earthquake surface rupture because: 1) complete circumscription within the boundaries of MCAGCC severely limit both past and future human disruption of the rupture, particularly in the mountainous maximum slip zone; 2) groundbreaking aerial LiDAR survey carried out six months after the earthquake was followed up by a higher density, wider swath LiDAR survey in May 2012, making the temporal evolution of this rupture perhaps the most completely physically documented of any major rupture; and 3) field investigation immediately following the event was followed up by computer based offset measurements using the April 2000 LiDAR dataset, providing a database of published offset measurements. Due to time constraints imposed by MCAGGC we focused our new research effort along the ~8 km long maximum slip zone of the rupture, roughly corresponding to the zone of >4 m dextral offset. Our investigation includes 1) walking this entire section of the fault and making >30 measurements of dextral slip while photo documenting the current state of the rupture; 2) creating a difference raster for the entire 8 km maximum slip zone from exactly congruent DEM's made from the 2000 and 2012 LiDAR data sets; 3) documenting the fault traces with a Trimble GeoXH high precision handheld GPS unit (+/- 10 cm); 4) carrying out field checks of a small number of computer-based offset measurements made using the 2000 LiDAR dataset; and 5) high-resolution low-altitude (<100 m AGL) photography of the maximum slip zone during a helicopter overflight. To date, important results include 1) identification of two new maximum slip locations where features are offset 7.9 m +/- 0.5 m and 6.7 m +/- 0.5 m; 2) a database of >30 offset measurements (georeferenced and photo documented) made by our team on the ground; 3) clear changes in fracture visibility in the field, with some fractures more visible, and others no longer visible, compared to the 1999-2000 studies; and 4) examples of a few field checks that both strongly agree and disagree with computer based LiDAR offset measurements.
Analytic Study of Three-Dimensional Rupture Propagation in Strike-Slip Faulting with Analogue Models
NASA Astrophysics Data System (ADS)
Chan, Pei-Chen; Chu, Sheng-Shin; Lin, Ming-Lang
2014-05-01
Strike-slip faults are high angle (or nearly vertical) fractures where the blocks have moved along strike way (nearly horizontal). Overburden soil profiles across main faults of Strike-slip faults have revealed the palm and tulip structure characteristics. McCalpin (2005) has trace rupture propagation on overburden soil surface. In this study, we used different offset of slip sandbox model profiles to study the evolution of three-dimensional rupture propagation by strike -slip faulting. In strike-slip faults model, type of rupture propagation and width of shear zone (W) are primary affecting by depth of overburden layer (H), distances of fault slip (Sy). There are few research to trace of three-dimensional rupture behavior and propagation. Therefore, in this simplified sandbox model, investigate rupture propagation and shear zone with profiles across main faults when formation are affecting by depth of overburden layer and distances of fault slip. The investigators at the model included width of shear zone, length of rupture (L), angle of rupture (θ) and space of rupture. The surface results was follow the literature that the evolution sequence of failure envelope was R-faults, P-faults and Y-faults which are parallel to the basement fault. Comparison surface and profiles structure which were curved faces and cross each other to define 3-D rupture and width of shear zone. We found that an increase in fault slip could result in a greater width of shear zone, and proposed a W/H versus Sy/H relationship. Deformation of shear zone showed a similar trend as in the literature that the increase of fault slip resulted in the increase of W, however, the increasing trend became opposite after a peak (when Sy/H was 1) value of W was reached (small than 1.5). The results showed that the W width is limited at a constant value in 3-D models by strike-slip faulting. In conclusion, this study helps evaluate the extensions of the shear zone influenced regions for strike-slip faults.
Estimating rupture distances without a rupture
Thompson, Eric M.; Worden, Charles
2017-01-01
Most ground motion prediction equations (GMPEs) require distances that are defined relative to a rupture model, such as the distance to the surface projection of the rupture (RJB) or the closest distance to the rupture plane (RRUP). There are a number of situations in which GMPEs are used where it is either necessary or advantageous to derive rupture distances from point-source distance metrics, such as hypocentral (RHYP) or epicentral (REPI) distance. For ShakeMap, it is necessary to provide an estimate of the shaking levels for events without rupture models, and before rupture models are available for events that eventually do have rupture models. In probabilistic seismic hazard analysis, it is often convenient to use point-source distances for gridded seismicity sources, particularly if a preferred orientation is unknown. This avoids the computationally cumbersome task of computing rupture-based distances for virtual rupture planes across all strikes and dips for each source. We derive average rupture distances conditioned on REPI, magnitude, and (optionally) back azimuth, for a variety of assumed seismological constraints. Additionally, we derive adjustment factors for GMPE standard deviations that reflect the added uncertainty in the ground motion estimation when point-source distances are used to estimate rupture distances.
Poroelastic response to megathrust earthquakes: A look at the 2012 Mw 7.6 Costa Rican event
NASA Astrophysics Data System (ADS)
McCormack, K. A.; Hesse, M. A.
2017-12-01
Following an earthquake, surface deformation is influenced by a myriad of post-seismic processes including after-slip, poroelastic and viscoelastic relaxation. Geodetic measurements record the combined result of all these processes, which makes studying the effects of any single process difficult. To constrain the poroelastic component of post-seismic deformation, we model the subsurface hydrologic response to the Mw 7.6 subduction zone earthquake beneath the Nicoya peninsula on September 5, 2012. The regional-scale poroelastic model of the overlying plate integrates seismologic, geodetic and hydrologic data sets to predict the post-seismic poroelastic response. Following the earthquake, continuous surface deformation was observed with high-rate GPS monitoring directly above the rupture zone. By modeling the time-dependent deformation associated with poroelastic relaxation, we can begin to remove the contribution of groundwater flow from the observed geodetic signal. For this study we used both 2D and 3D numerical models. In 2D we investigate more general trends in the poroelastic response of a subduction zone earthquake. In 3D we model the poroelastic response to the 2012 Nicoya event using a fixed set of best fit parameters and the real earthquake slip data. The slip distribution of 2012 event is obtained by inverting the co-seismic surface GPS displacements for fault slip. The 2D model shows that thrust earthquakes with a rupture width less than a third of their depth produce complex multi-lobed pressure perturbations in the shallow subsurface. In the 3D model, the small width to depth ratio of the Nicoya rupture leads to a multi-lobed initial pore pressure distribution. This creates complex groundwater flow patterns, non-monotonic variations in well head and surface deformation, and poroelastic relaxation over multiple, distinct time scales. Different timescales arise because the earthquake causes pressure perturbations with different wavelengths. In the shallow, permeable region of the upper crust, two relaxation timescales of approximately 21 days and 18 months arise for the 2012 event. In the 18 months following the earthquake, the magnitude of the poroelastic surface deformation can be up to 3 cm for the vertical component and 2 cm for the trench-perpendicular component.
NASA Astrophysics Data System (ADS)
Wong, Pei-Syuan; Lin, Ming-Lang
2016-04-01
According to investigation of recent earthquakes, ground deformation and surface rupture are used to map the influenced range of the active fault. The zones of horizontal and vertical surface displacements and different features of surface rupture are investigated in the field, for example, the Greendale Fault 2010, MW 7.1 Canterbury earthquake. The buildings near the fault rotated and displaced vertically and horizontally due to the ground deformation. Besides, the propagation of fault trace detoured them because of the higher rigidity. Consequently, it's necessary to explore the ground deformation and mechanism of the foundation induced by strike-slip faulting for the safety issue. Based on previous study from scaled analogue model of strike-slip faulting, the ground deformation is controlled by material properties, depth of soil, and boundary condition. On the condition controlled, the model shows the features of ground deformation in the field. This study presents results from shear box experiment on small-scale soft clay models subjected to strike-slip faulting and placed shallow foundations on it in a 1-g environment. The quantifiable data including sequence of surface rupture, topography and the position of foundation are recorded with increasing faulting. From the result of the experiment, first en echelon R shears appeared. The R shears rotated to a more parallel angle to the trace and cracks pulled apart along them with increasing displacements. Then the P shears crossed the basement fault in the opposite direction appears and linked R shears. Lastly the central shear was Y shears. On the other hand, the development of wider zones of rupture, higher rising surface and larger the crack area on surface developed, with deeper depth of soil. With the depth of 1 cm and half-box displacement 1.2 cm, en echelon R shears appeared and the surface above the fault trace elevated to 1.15 mm (Dv), causing a 1.16 cm-wide zone of ground-surface rupture and deformation (W). Compared to the investigation in field, rupture of the Greendale Fault, produced a 30-km-long, 300-m-wide zone of ground-surface rupture and deformation (W), involving 5.29 m maximum horizontal , 1.45 m maximum vertical (Dv, max) and 2.59 m average net displacement. Meanwhile, en echelon R shears and cracks were recorded in some region. Besides, the 400-m depth of deep sedimentation (Ds) in the Christchurch City area. Greendale Fault showed close ratio Dv/Ds and W/Ds compared to the experimental case (in the same order), which indicated the wide zone of ground-surface rupture and deformation may be normalized with the vertical displacement (Dv). The foundation located above the basement-fault trace had obvious horizontal displacements and counter-clockwise rotation with increasing displacement. Horizontal displacements and rotation decreased with deeper depth of soil. The deeper embedded foundation caused more rotation. Besides, the soil near the foundation is confined and pressed when it rotates. Key words: strike-slip fault, shallow foundation, ground deformation
Using a pseudo-dynamic source inversion approach to improve earthquake source imaging
NASA Astrophysics Data System (ADS)
Zhang, Y.; Song, S. G.; Dalguer, L. A.; Clinton, J. F.
2014-12-01
Imaging a high-resolution spatio-temporal slip distribution of an earthquake rupture is a core research goal in seismology. In general we expect to obtain a higher quality source image by improving the observational input data (e.g. using more higher quality near-source stations). However, recent studies show that increasing the surface station density alone does not significantly improve source inversion results (Custodio et al. 2005; Zhang et al. 2014). We introduce correlation structures between the kinematic source parameters: slip, rupture velocity, and peak slip velocity (Song et al. 2009; Song and Dalguer 2013) in the non-linear source inversion. The correlation structures are physical constraints derived from rupture dynamics that effectively regularize the model space and may improve source imaging. We name this approach pseudo-dynamic source inversion. We investigate the effectiveness of this pseudo-dynamic source inversion method by inverting low frequency velocity waveforms from a synthetic dynamic rupture model of a buried vertical strike-slip event (Mw 6.5) in a homogeneous half space. In the inversion, we use a genetic algorithm in a Bayesian framework (Moneli et al. 2008), and a dynamically consistent regularized Yoffe function (Tinti, et al. 2005) was used for a single-window slip velocity function. We search for local rupture velocity directly in the inversion, and calculate the rupture time using a ray-tracing technique. We implement both auto- and cross-correlation of slip, rupture velocity, and peak slip velocity in the prior distribution. Our results suggest that kinematic source model estimates capture the major features of the target dynamic model. The estimated rupture velocity closely matches the target distribution from the dynamic rupture model, and the derived rupture time is smoother than the one we searched directly. By implementing both auto- and cross-correlation of kinematic source parameters, in comparison to traditional smoothing constraints, we are in effect regularizing the model space in a more physics-based manner without loosing resolution of the source image. Further investigation is needed to tune the related parameters of pseudo-dynamic source inversion and relative weighting between the prior and the likelihood function in the Bayesian inversion.
Slow crack growth in spinel in water
NASA Technical Reports Server (NTRS)
Schwantes, S.; Elber, W.
1983-01-01
Magnesium aluminate spinel was tested in a water environment at room temperature to establish its slow crack-growth behavior. Ring specimens with artificial flaws on the outside surface were loaded hydraulically on the inside surface. The time to failure was measured. Various precracking techniques were evaluated and multiple precracks were used to minimize the scatter in the static fatigue tests. Statistical analysis techniques were developed to determine the strength and crack velocities for a single flaw. Slow crack-growth rupture was observed at stress intensities as low as 70 percent of K sub c. A strengthening effect was observed in specimens that had survived long-time static fatigue tests.
The 2016-2017 Central Italy Seismic Sequence: Source Complexity Inferred from Rupture Models.
NASA Astrophysics Data System (ADS)
Scognamiglio, L.; Tinti, E.; Casarotti, E.; Pucci, S.; Villani, F.; Cocco, M.; Magnoni, F.; Michelini, A.
2017-12-01
The Apennines have been struck by several seismic sequences in recent years, showing evidence of the activation of multiple segments of normal fault systems in a variable and, relatively short, time span, as in the case of the 1980 Irpinia earthquake (three shocks in 40 s), the 1997 Umbria-Marche sequence (four main shocks in 18 days) and the 2009 L'Aquila earthquake having three segments activated within a few weeks. The 2016-2017 central Apennines seismic sequence begin on August 24th with a MW 6.0 earthquake, which strike the region between Amatrice and Accumoli causing 299 fatalities. This earthquake ruptures a nearly 20 km long normal fault and shows a quite heterogeneous slip distribution. On October 26th, another main shock (MW 5.9) occurs near Visso extending the activated seismogenic area toward the NW. It is a double event rupturing contiguous patches on the fault segment of the normal fault system. Four days after the second main shock, on October 30th, a third earthquake (MW 6.5) occurs near Norcia, roughly midway between Accumoli and Visso. In this work we have inverted strong motion waveforms and GPS data to retrieve the source model of the MW 6.5 event with the aim of interpreting the rupture process in the framework of this complex sequence of moderate magnitude earthquakes. We noted that some preliminary attempts to model the slip distribution of the October 30th main shock using a single fault plane oriented along the Apennines did not provide convincing fits to the observed waveforms. In addition, the deformation pattern inferred from satellite observations suggested the activation of a multi-fault structure, that is coherent to the complexity and the extension of the geological surface deformation. We investigated the role of multi-fault ruptures and we found that this event revealed an extraordinary complexity of the rupture geometry and evolution: the coseismic rupture propagated almost simultaneously on a normal fault and on a blind fault, possibly inherited from compressional tectonics. These earthquakes raise serious concerns on our understanding of fault segmentation and seismicity evolution during sequences of normal faulting earthquakes. Finally, the retrieved rupture history has important implications on seismic hazard assessment and on the maximum expected magnitude in a given tectonic area.
The 1959 MW 7.3 Hebgen Lake earthquake revisited: morphology and mechanics from lidar
NASA Astrophysics Data System (ADS)
Johnson, K. L.; Nissen, E.; Lajoie, L. J.
2016-12-01
This study demonstrates how we can glean new information by revisiting an early instrumental earthquake with high-resolution topography and modern thinking about the mechanics of surface rupturing. The 1959 MW 7.3 Hebgen Lake earthquake is among the largest and most deadly historic earthquakes within the conterminous United States outside of California, and one of the largest normal faulting earthquakes on record globally. The earthquake ruptured the subparallel Hebgen and Red Canyon faults within the slowly extending ( 3 mm/yr) Centennial Mountain Belt, and is one of the first to be field mapped in detail, modeled from global seismograms, and surveyed geodetically. Here, we augment these early studies with an investigation of the surface rupture in its current state. We use a 50 cm-resolution airborne lidar digital terrain model collected by the National Center for Airborne Laser Mapping (NCALM) in 2014 to document the fault scarp morphology, constrain its evolution, and speculate on the mechanical rupture properties. Using a dense set of scarp profiles, we add >400 displacement measurements to the 143 published data points from early field work, allowing more rigorous quantification of along-strike slip variability and strain gradients. Evidence of off-fault deformation is sparse along most of the scarp, though damage zone width increases where the earthquake ruptured closely spaced sedimentary contacts rather than unconsolidated Quaternary deposits. In a few places, we can identify composite scarps from which we estimate the number of earthquakes that have offset Holocene surfaces. We assess the scarp's degraded state, including some sites that were surveyed in 1980 and 2009 and others that have not been revisited since the initial investigation. Where the rupture crosses unconsolidated surfaces, we compute local sediment diffusion coefficients and analyze their variability along strike. Lastly, we model subsurface fault geometry by fitting dipping planes to its surface trace, testing our best-fit fault dips against those recovered in seismic analyses; this reaffirms that both main rupture strands correspond to primary faulting rather than induced landsliding.
NASA Astrophysics Data System (ADS)
Hirakawa, E. T.; Ma, S.
2012-12-01
The deficiency of high-frequency seismic radiation from shallow subduction zone earthquakes was first recognized in tsunami earthquakes (Kanamori, 1972), which produce larger tsunamis than expected from short-period (20 s) surface wave excitation. Shallow subduction zone earthquakes were also observed to have unusually low energy-to-moment ratios compared to regular subduction zone earthquakes (e.g., Newman and Okal, 1998; Venkataraman and Kanamori, 2004; Lay et al., 2012). What causes this anomalous radiation and how it relates to large tsunami generation has remained unclear. Here we show that these anomalous observations can be due to extensive poroplastic deformation in the overriding wedge, which provides a unifying interpretation. Ma (2012) showed that the pore pressure increase in the wedge due to up-dip rupture propagation significantly weakens the wedge, leading to widespread Coulomb failure in the wedge. Widespread failure gives rise to slow rupture velocity and large seafloor uplift (landward from the trench) in the case of a shallow fault dip. Here we extend this work and demonstrate that the large seafloor uplift due to the poroplastic deformation significantly dilates the fault behind the rupture front, which reduces the normal stress on the fault and increases the stress drop, slip, and rupture duration. The spectral amplitudes of the moment-rate time function is significantly less at high frequencies than those from elastic simulations. Large tsunami generation and deficiency of high-frequency radiation are thus two consistent manifestations of the same mechanism (poroplastic deformation). Although extensive poroplastic deformation in the wedge represents a significant portion of total seismic moment release, the plastic deformation is shown to act as a large energy sink, leaving less energy to be radiated and leading to low energy-to-moment ratios as observed for shallow subduction zone earthquakes.
NASA Astrophysics Data System (ADS)
Sawaguchi, Tak Ahiro; Kausträter, Gregor; Yawny, Alejandro; Wagner, Martin; Eggeler, Gunther
2003-12-01
The structural fatigue of pseudoelastic Ni-Ti wires (50.9 at. pct Ni) was investigated using bending-rotation fatigue (BRF) tests, where a bent and otherwise unconstrained wire was forced to rotate at different rotational speeds. The number of cycles to failure ( N f ) was measured for different bending radii and wire thicknesses (1.0, 1.2, and 1.4 mm). The wires consisted of an alloy with a 50-nm grain size, no precipitates, and some TiC inclusions. In BRF tests, the surface of the wire is subjected to tension-compression cycles, and fatigue lives can be related to the maximum tension and compression strain amplitudes ( ɛ a ) in the wire surface. The resulting ɛ a - N f curves can be subdivided into three regimes. At ɛ a > 1 pct rupture occurs early (low N f ) and the fatigue-rupture characteristics were strongly dependent on ɛ a and the rotational speed (regime 1). For 0.75 pct < ɛ a < 1 pct, fatigue lives strongly increase and are characterized by a significant statistical scatter (regime 2). For ɛ a < 0.75 pct, no fatigue rupture occurs up to cycle numbers of 106 (regime 3). Using scanning electron microscopy (SEM), it was shown that surface cracks formed in regions with local stress raisers (such as inclusions and/or scratches). The growth of surface cracks during fatigue loading produced striations on the rupture surface; during final rupture, ductile voids form. The microstructural details of fatigue-damage accumulation during BRF testing are described and discussed.
NASA Astrophysics Data System (ADS)
Ueta, K.; Tani, K.
2001-12-01
Sandbox experiments were performed to investigate ground surface deformation in unconsolidated sediments caused by dip-slip and strike-slip motion on bedrock faults. A 332.5 cm long, 200 cm high, and 40 cm wide sandbox was used in a dip-slip fault model test. In the strike-slip fault test, a 600 cm long, 250 cm wide, and 60 cm high sandbox and a 170 cm long, 25 cm wide, 15 cm high sandbox were used. Computerized X-ray tomography applied to the sandbox experiments made it possible to analyze the kinematic evolution, as well as the three-dimensional geometry, of the faults. The fault type, fault dip, fault displacement, thickness and density of sandpack and grain size of the sand were varied for different experiments. Field survey of active faults in Japan and California were also made to investigate the deformation of unconsolidated sediments overlying bedrock faults. A comparison of the experimental results with natural cases of active faults reveals the following: (1) In the case of dip-slip faulting, the shear bands are not shown as one linear plane but as en echelon pattern. Thicker and finer unconsolidated sediments produce more shear bands and clearer en echelon shear band patterns. (2) In the case of left-lateral strike-slip faulting, the deformation of the sand pack with increasing basement displacement is observed as follows. a) In three dimensions, the right-stepping shears that have a "cirque" / "shell" / "ship body" shape develop on both sides of the basement fault. The shears on one side of the basement fault join those on the other side, resulting in helicoidal shaped shear surfaces. Shears reach the surface of the sand near or above the basement fault and en echelon Riedel shears are observed at the surface of the sand. b) Right-stepping pressure ridges develop within the zone defined by the Riedel shears. c) Lower-angle shears generally branch off from the first Riedel shears. d) Right-stepping helicoidal shaped lower-angle shears offset Riedel shears and pressure ridges, and left-stepping and right-stepping pressure ridges are observed. d) With displacement concentrated on the central throughgoing fault zone, a "Zone of shear band" (ZSB) developed directly above the basement fault. The geometry of the ZSB shows a strong resemblance to linear ridge and trough geomorphology associated with active strike-slip faulting. (3) In the case of normal faulting, the location of the surface fault rupture is just above the bedrock faults, which have no relationship with the fault dip. On the other hand, the location of the surface rupture of the reverse fault has closely relationship with the fault dip. In the case of strike-slip faulting, the width of the deformation zone in dense sand is wider than that in loose sand. (4) The horizontal distance of surface rupture from the bedrock fault normalized by the height of sand mass (W/H) does not depend on the height of sand mass and grain size of sand. The values of W/H from the test agree well with those of earthquake faults. (5) The normalized base displacement required to propagate the shear rupture zone to the ground surface (D/H), in the case of normal faulting, is lower than those for reverse faulting and strike-slip faulting.
NASA Astrophysics Data System (ADS)
Oncken, O.; Haberland, C. A.; Moreno, M.; Melnick, D.; Tilmann, F.; Tipteq Research Groups
2010-12-01
Accumulation of deformation at convergent plate margins is recently identified to be highly discontinuous and transient in nature: silent slip events, non-volcanic tremors, afterslip, fault coupling and complex response patterns of the upper plate during a single event as well as across several seismic cycles have all been observed in various settings and combinations. Segments of convergent plate margins with high recurrence rates and at different stages of the rupture cycle like the Chilean margin offer an exceptional opportunity to study these features and their interaction resolving behaviour during the seismic cycle and over repeated cycles. A past (TIPTEQ) and several active international initiatives (Integrated Plate Boundary Observatory Chile; IPOC-network.org) address these goals with research groups from IPG Paris, Seismological Survey of Chile, Free University Berlin, Potsdam University, Hamburg University, IFM-GEOMAR Kiel, GFZ Potsdam, and Caltech (USA) employing an integrated plate boundary observatory and associated projects. Results from these studies allow us to define the preseismic state - with respect to the Maule eartghquake - of the margin system at the south Central Chilean convergent margin. Here, two major seismic events have occurred in adjoining segments (Valdivia 1960, Mw = 9.5; Maule 2010, Mw = 8.8) yielding observations from critical time windows of the seismic cycle in the same region. Seismic imaging and seismological data have allowed us to relocate major rupture hypocentres and to locate the geometry and properties of the seismogenic zone. The reflection seismic data exhibit well defined changes of reflectivity and Vp/Vs ratio along the plate interface that can be correlated with different parts of the coupling zone and its hanging wall as well as with changes during the seismic cycle. Observations suggest an important role of the hydraulic system, and of lateral variation of locking degree on subsequent rupture and aftershock distribution as evidenced by the recent Maule earthquake. Moreover, the latter coseismic rupture pattern was foreseeable from its pre-seismic locking pattern as derived by inversion of GPS observations during the previous decade. Neogene surface deformation at the Chilean coast related to these locking properties has been complex exhibiting tectonically uplifting areas along the coast driven by interseismically active reverse faulting. In addition, we observe coseismically subsiding domains along other parts of the coast - mostly above fully locked patches. Finally, we note that the characteristic peninsulas along the South American margin constitute stable rupture boundaries and appear to have done so for a protracted time as evidenced by their long-term uplift history since at least the Late Pliocene. This suggests barriers to rupture being related to anomalous properties of the plate interface affecting the mode of strain accumulation and plate interface rupture - like e.g. velocity strengthening in contrast to the weakening property of most of the remaining domains.
NASA Astrophysics Data System (ADS)
Champenois, Johann; Klinger, Yann; Grandin, Raphaël; Satriano, Claudio; Baize, Stéphane; Delorme, Arthur; Scotti, Oona
2017-04-01
Remote sensing techniques, like optical satellite image correlation, are very efficient methods to localize and quantify surface displacements due to earthquakes. In this study, we use the french sub-pixel correlator MicMac (Multi Images Correspondances par Méthodes Automatiques de Corrélation). This free open-source software, developed by IGN, was recently adapted to process satellite images. This correlator uses regularization, and that provides good results especially in near-fault area with a high spatial resolution. We use co-seismic pair of ortho-images to measure the horizontal displacement field during the recent 2016 Mw7.8 Kaikoura earthquake. Optical satellite images from different satellites are processed (Sentinel-2A, Landsat8, etc.) to present a dense map of the surface ruptures and to analyze high density slip distribution along all major ruptures. We also provide a detail pattern of deformation along these main surface ruptures. Moreover, 2D displacement from optical correlation is compared to co-seismic measurements from GPS, static displacement from accelerometric records, geodetic marks and field investigations. Last but not least, we investigate the reconstruction of 3D displacement from combining InSAR, GPS and optic.
Verification of SORD, and Application to the TeraShake Scenario
NASA Astrophysics Data System (ADS)
Ely, G. P.; Day, S.; Minster, J.
2007-12-01
The Support Operator Rupture Dynamics (SORD) code provides a highly scalable (up to billions of nodes) computational tool for modeling spontaneous rupture on a non-planar fault surface embedded in a heterogeneous medium with surface topography. SORD successfully performs the SCEC Rupture Dynamics Code Validation Project tests, and we have undertaken further dynamic rupture tests assessing the effects of distorted hexahedral meshes on code accuracy. We generate a family of distorted meshes by simple shearing (applied both parallel and normal to the fault plane) of an initially Cartesian mesh. For shearing normal to the fault, shearing angle was varied, up to a maximum of 73-degrees. For SCEC Validation Problem 3, grid-induced errors increase with mesh-shear angle, with the logarithm of error approximately proportional to angle over the range tested. At 73-degrees, RMS misfits are about 10% for peak slip rate, and 0.5% for both rupture time and total slip, indicating that the method--which up to now we have applied mainly to near-vertical strike-slip faulting-- also is capable of handling geometries appropriate to low-angle surface-rupturing thrust earthquakes. The SORD code was used to reexamine the TeraShake 2 dynamics simulations of a M7.7 earthquake on the southern San Andreas Fault. Relative to the original (Olsen et al, 2007) TeraShake 2 simulations, our spontaneous rupture models find decreased peak ground velocities in the Los Angles basin, principally due to a shallower eastward connecting basin chain in the SCEC Velocity Model Version 4 (used in our simulations) compared to Version 3 (used by Olsen et al.). This is partially offset by including the effects of surface topography (which was not included in the Olsen et al. models) in the simulation, which increases PGV at some basin sites by as much as a factor of two. Some non-basin sites showed comparable decreases in PGV. These predicted topographic effects are quite large, so it is important to quantify SORD accuracy in the presence of non-planar free surface geometry. We test the case of a semi-circular canyon to an incident P wave, and find close agreement with boundary element methods, for surface amplification at wavelengths comparable to the canyon width.
Kinematic Seismic Rupture Parameters from a Doppler Analysis
NASA Astrophysics Data System (ADS)
Caldeira, Bento; Bezzeghoud, Mourad; Borges, José F.
2010-05-01
The radiation emitted from extended seismic sources, mainly when the rupture spreads in preferred directions, presents spectral deviations as a function of the observation location. This aspect, unobserved to point sources, and named as directivity, are manifested by an increase in the frequency and amplitude of seismic waves when the rupture occurs in the direction of the seismic station and a decrease in the frequency and amplitude if it occurs in the opposite direction. The model of directivity that supports the method is a Doppler analysis based on a kinematic source model of rupture and wave propagation through a structural medium with spherical symmetry [1]. A unilateral rupture can be viewed as a sequence of shocks produced along certain paths on the fault. According this model, the seismic record at any point on the Earth's surface contains a signature of the rupture process that originated the recorded waveform. Calculating the rupture direction and velocity by a general Doppler equation, - the goal of this work - using a dataset of common time-delays read from waveforms recorded at different distances around the epicenter, requires the normalization of measures to a standard value of slowness. This normalization involves a non-linear inversion that we solve numerically using an iterative least-squares approach. The evaluation of the performance of this technique was done through a set of synthetic and real applications. We present the application of the method at four real case studies, the following earthquakes: Arequipa, Peru (Mw = 8.4, June 23, 2001); Denali, AK, USA (Mw = 7.8; November 3, 2002); Zemmouri-Boumerdes, Algeria (Mw = 6.8, May 21, 2003); and Sumatra, Indonesia (Mw = 9.3, December 26, 2004). The results obtained from the dataset of the four earthquakes agreed, in general, with the values presented by other authors using different methods and data. [1] Caldeira B., Bezzeghoud M, Borges JF, 2009; DIRDOP: a directivity approach to determining the seismic rupture velocity vector. J Seismology, DOI 10.1007/s10950-009-9183-x
The 1995 November 22, Mw 7.2 Gulf of Elat earthquake cycle revisited
NASA Astrophysics Data System (ADS)
Baer, Gidon; Funning, Gareth J.; Shamir, Gadi; Wright, Tim J.
2008-12-01
The 1995 November 22, Mw = 7.2 Nuweiba earthquake occurred along one of the left-stepping segments of the Dead Sea Transform (DST) in the Gulf of Elat (Aqaba). It was the largest earthquake along the DST in at least 160 yr. The main shock was preceded by earthquake swarms north and south of its NE-striking rupture since the early 1980s, and was followed by about 6 months of intense aftershock activity, concentrated mainly northwest and southeast of the main rupture. In this study we re-analyse ERS-1 and ERS-2 InSAR data for the period spanning the main shock and 5 post-seismic years. Because the entire rupture was under the Gulf water, surface observations related to the earthquake are limited to distances greater than 5 km away from the rupture zone. Coseismic interferograms were produced for the earthquake +1 week, +4 months and +6 months. Non-linear inversions were carried out for fault geometry and linear inversions were made for slip distribution using an ascending-descending 2-frame data set. The moment calculated from our best-fitting model is in agreement with the seismological moment, but trade-offs exist among several fault parameters. The present model upgrades previous InSAR models of the Nuweiba earthquake, and differs from recent teleseismic waveform inversion results mainly in terms of slip magnitude and distribution. The moment released by post-seismic deformation in the period of 6 months to 2 yr after the Nuweiba earthquake is about 15 per cent of the coseismic moment release. Our models suggest that this deformation can be represented by slip along the lower part of the coseismic rupture. Localised deformation along the Gulf shores NW of the main rupture in the first 6 months after the earthquake is correlated with surface displacements along active Gulf-parallel normal faults and possibly with shallow M > 3.9, D < 6 km aftershocks. The geodetic moment calculated by modelling this deformation is more than an order of magnitude larger than expected for a single M ~ 4 aftershock, but could be a result of a sequence of aftershocks and/or aseismic slip. The major aftershocks and the slip along Gulf-parallel normal faulting NW of the main rupture are associated with positive Coulomb stress changes induced by the main event.
NASA Astrophysics Data System (ADS)
Chounet, Agnès; Vallée, Martin; Causse, Mathieu; Courboulex, Françoise
2018-05-01
Application of the SCARDEC method provides the apparent source time functions together with seismic moment, depth, and focal mechanism, for most of the recent earthquakes with magnitude larger than 5.6-6. Using this large dataset, we have developed a method to systematically invert for the rupture direction and average rupture velocity Vr, when unilateral rupture propagation dominates. The approach is applied to all the shallow (z < 120 km) earthquakes of the catalog over the 1992-2015 time period. After a careful validation process, rupture properties for a catalog of 96 earthquakes are obtained. The subsequent analysis of this catalog provides several insights about the seismic rupture process. We first report that up-dip ruptures are more abundant than down-dip ruptures for shallow subduction interface earthquakes, which can be understood as a consequence of the material contrast between the slab and the overriding crust. Rupture velocities, which are searched without any a-priori up to the maximal P wave velocity (6000-8000 m/s), are found between 1200 m/s and 4500 m/s. This observation indicates that no earthquakes propagate over long distances with rupture velocity approaching the P wave velocity. Among the 23 ruptures faster than 3100 m/s, we observe both documented supershear ruptures (e.g. the 2001 Kunlun earthquake), and undocumented ruptures that very likely include a supershear phase. We also find that the correlation of Vr with the source duration scaled to the seismic moment (Ts) is very weak. This directly implies that both Ts and Vr are anticorrelated with the stress drop Δσ. This result has implications for the assessment of the peak ground acceleration (PGA) variability. As shown by Causse and Song (2015), an anticorrelation between Δσ and Vr significantly reduces the predicted PGA variability, and brings it closer to the observed variability.
NASA Astrophysics Data System (ADS)
Costa, Carlos H.; Owen, Lewis A.; Ricci, Walter R.; Johnson, William J.; Halperin, Alan D.
2018-07-01
Trench excavations across the El Molino fault in the southeastern Pampean Ranges of central-western Argentina have revealed a deformation zone composed of opposite-verging thrusts that deform a succession of Holocene sediments. The west-verging thrusts place Precambrian basement over Holocene proximal scarp-derived deposits, whereas the east-verging thrusts form an east-directed fault-propagation fold that deforms colluvium, fluvial and aeolian deposits. Ages for exposed fault-related deposits range from 7.1 ± 0.4 to 0.3 ka. Evidence of surface deformation suggests multiple rupture events with related scarp-derived deposits and a minimum of three surface ruptures younger than 7.1 ± 0.4 ka, the last rupture event being younger than 1 ka. Shortening rates of 0.7 ± 0.2 mm/a are near one order of magnitude higher than those estimated for the faults bounding neighboring crustal blocks and are considered high for this intraplate setting. These ground-rupturing crustal earthquakes are estimated to be of magnitude Mw ≥ 7.0, a significant discrepancy with the magnitudes Mw < 6.5 recorded in the seismic catalog of this region at present with low to moderate seismicity. Results highlight the relevance of identifying primary surface ruptures as well as the seismogenic potential of thrust faults in seemingly stable continental interiors.
A multiple fault rupture model of the November 13 2016, M 7.8 Kaikoura earthquake, New Zealand
NASA Astrophysics Data System (ADS)
Benites, R. A.; Francois-Holden, C.; Langridge, R. M.; Kaneko, Y.; Fry, B.; Kaiser, A. E.; Caldwell, T. G.
2017-12-01
The rupture-history of the November 13 2016 MW7.8 Kaikoura earthquake recorded by near- and intermediate-field strong-motion seismometers and 2 high-rate GPS stations reveals a complex cascade of multiple crustal fault rupture. In spite of such complexity, we show that the rupture history of each fault is well approximated by simple kinematic model with uniform slip and rupture velocity. Using 9 faults embedded in a crustal layer 19 km thick, each with a prescribed slip vector and rupture velocity, this model accurately reproduces the displacement waveforms recorded at the near-field strong-motion and GPS stations. This model includes the `Papatea Fault' with a mixed thrust and strike-slip mechanism based on in-situ geological observations with up to 8 m of uplift observed. Although the kinematic model fits the ground-motion at the nearest strong station, it doesn not reproduce the one sided nature of the static deformation field observed geodetically. This suggests a dislocation based approach does not completely capture the mechanical response of the Papatea Fault. The fault system as a whole extends for approximately 150 km along the eastern side of the Marlborough fault system in the South Island of New Zealand. The total duration of the rupture was 74 seconds. The timing and location of each fault's rupture suggests fault interaction and triggering resulting in a northward cascade crustal ruptures. Our model does not require rupture of the underlying subduction interface to explain the data.
NASA Astrophysics Data System (ADS)
Maeda, T.; Furumura, T.; Noguchi, S.; Takemura, S.; Iwai, K.; Lee, S.; Sakai, S.; Shinohara, M.
2011-12-01
The fault rupture of the 2011 Tohoku (Mw9.0) earthquake spread approximately 550 km by 260 km with a long source rupture duration of ~200 s. For such large earthquake with a complicated source rupture process the radiation of seismic wave from the source rupture and initiation of tsunami due to the coseismic deformation is considered to be very complicated. In order to understand such a complicated process of seismic wave, coseismic deformation and tsunami, we proposed a unified approach for total modeling of earthquake induced phenomena in a single numerical scheme based on a finite-difference method simulation (Maeda and Furumura, 2011). This simulation model solves the equation of motion of based on the linear elastic theory with equilibrium between quasi-static pressure and gravity in the water column. The height of tsunami is obtained from this simulation as a vertical displacement of ocean surface. In order to simulate seismic waves, ocean acoustics, coseismic deformations, and tsunami from the 2011 Tohoku earthquake, we assembled a high-resolution 3D heterogeneous subsurface structural model of northern Japan. The area of simulation is 1200 km x 800 km and 120 km in depth, which have been discretized with grid interval of 1 km in horizontal directions and 0.25 km in vertical direction, respectively. We adopt a source-rupture model proposed by Lee et al. (2011) which is obtained by the joint inversion of teleseismic, near-field strong motion, and coseismic deformation. For conducting such a large-scale simulation, we fully parallelized our simulation code based on a domain-partitioning procedure which achieved a good speed-up by parallel computing up to 8192 core processors with parallel efficiency of 99.839%. The simulation result demonstrates clearly the process in which the seismic wave radiates from the complicated source rupture over the fault plane and propagating in heterogeneous structure of northern Japan. Then, generation of tsunami from coseismic ground deformation at sea floor due to the earthquake and propagation is also well demonstrated . The simulation also demonstrates that a very large slip up to 40 m at shallow plate boundary near the trench pushes up sea floor with source rupture propagation, and the highly elevated sea surface gradually start propagation as tsunamis due to the gravity. The result of simulation of vertical-component displacement waveform matches the ocean-bottom pressure gauge record which is installed just above the source fault area (Maeda et al., 2011) very consistently. Strong reverberation of the ocean-acoustic waves between sea surface and sea bottom particularly near the Japan Trench for long time after the source rupture ends is confirmed in the present simulation. Accordingly, long wavetrains of high-frequency ocean acoustic waves is developed and overlap to later tsunami waveforms as we found in the observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Chang-Whan; Heo, Yoon-Uk, E-mail: yunuk01@postech.ac.kr; Heo, Nam-Hoe
2016-05-15
Precipitation of various particles and their growth during rupture test have been investigated in TP347H austenitic stainless steels using a transmission electron microscopy. Various precipitates of MnS, Nb-rich MC, and MnS + MC and MnS + M{sub 2}P complexes are observed in the γ matrix after rupture test at 750 °C. The MnS particles formed independently in the γ matrix show a coherency or semi-coherency with the γ matrix. The Nb-rich MC carbides show also a coherency with the γ matrix. The Nb-rich MC carbides showing a semi-coherency with the MnS also form on the surface of the coherent ormore » semi-coherent MnS particles, and they show a cube-cube orientation relationship with the MnS particles. The MnS + MC complex loses the initial coherency with the γ matrix, as the MC in the complex grows. The Nb-rich M{sub 2}P precipitates formed on the surface of the MnS particles do not show an orientation relationship with the MnS particles or the γ matrix. The MnS particles in the MnS + M{sub 2}P complex hold the initial coherency with the γ matrix. Effects of MnS precipitation followed by the formation of the complexes on rupture life of the TP347H austenitic stainless steels are discussed from the viewpoint of MnS precipitates acting as sinks of free sulfur segregating to the grain boundaries. - Highlights: • Coherent to incoherent transition of precipitates during rupture test in TP347H steels is clarified. • MnS precipitation actively retards the time to intergranular fracture. • Effect of the coherency of secondary precipitates on the coherency loss of the complex particle is compared.« less
Alliance ruptures and rupture resolution in cognitive-behavior therapy: a preliminary task analysis.
Aspland, Helen; Llewelyn, Susan; Hardy, Gillian E; Barkham, Michael; Stiles, William
2008-11-01
An initial ideal, rational model of alliance rupture and rupture resolution provided by cognitive-behavioral therapy (CBT) experts was assessed and compared with empirical observations of ruptures and their resolution in two cases of successful CBT. The initial rational model emphasized nondefensive acknowledgment and exploration of the rupture. Results indicated differences between what therapists think they should do to resolve ruptures and what they actually do and suggested that the rational model should be expanded to emphasize client validation and empowerment. Therapists' ability to attend to ruptures emerged as an important clinical skill.
NASA Astrophysics Data System (ADS)
Asano, K.; Iwata, T.
2008-12-01
The 2008 Iwate-Miyagi Nairiku earthquake (MJMA7.2) on June 14, 2008, is a thrust type inland crustal earthquake, which occurred in northeastern Honshu, Japan. In order to see strong motion generation process of this event, the source rupture process is estimated by the kinematic waveform inversion using strong motion data. Strong motion data of the K-NET and KiK-net stations and Aratozawa Dam are used. These stations are located 3-94 km from the epicenter. Original acceleration time histories are integrated into velocity and band- pass filtered between 0.05 and 1 Hz. For obtaining the detailed source rupture process, appropriate velocity structure model for Green's functions should be used. We estimated one dimensional velocity structure model for each strong motion station by waveform modeling of aftershock records. The elastic wave velocity, density, and Q-values for four sedimentary layers are assumed following previous studies. The thickness of each sedimentary layer depends on the station, which is estimated to fit the observed aftershock's waveforms by the optimization using the genetic algorithm. A uniform layered structure model is assumed for crust and upper mantle below the seismic bedrock. We succeeded to get a reasonable velocity structure model for each station to give a good fit of the main S-wave part in the observation of aftershocks. The source rupture process of the mainshock is estimated by the linear kinematic waveform inversion using multiple time windows (Hartzell and Heaton, 1983). A fault plane model is assumed following the moment tensor solution by F-net, NIED. The strike and dip angle is 209° and 51°, respectively. The rupture starting point is fixed at the hypocenter located by the JMA. The obtained source model shows a large slip area in the shallow portion of the fault plane approximately 6 km southwest of the hypocenter. The rupture of the asperity finishes within about 9 s. This large slip area corresponds to the area with surface break reported by the field survey group (e.g., AIST/GSJ, 2008), which supports the existence of the large slip close to the ground surface. But, most of surface offset found by the field survey are less than 0.5 m whereas the slip amount of the shallow asperity of the source inversion result is 3-4 m. In north of the hypocenter, the estimated slip amount is small. Slip direction is almost pure dip-slip for the entire fault (Northwest side goes up against southeast side). Total seismic moment is 2.6× 1019 Nm (MW 6.9). Acknowledgments: Strong motion data of K-NET and KiK-net operated by the National Research Institute for Earth Science and Disaster Prevention are used. Strong motion data of Aratozawa Dam obtained by Miyagi prefecture government is also used in the study.
Graves, Robert; Pitarka, Arben
2016-01-01
We describe a methodology for generating kinematic earthquake ruptures for use in 3D ground‐motion simulations over the 0–5 Hz frequency band. Our approach begins by specifying a spatially random slip distribution that has a roughly wavenumber‐squared fall‐off. Given a hypocenter, the rupture speed is specified to average about 75%–80% of the local shear wavespeed and the prescribed slip‐rate function has a Kostrov‐like shape with a fault‐averaged rise time that scales self‐similarly with the seismic moment. Both the rupture time and rise time include significant local perturbations across the fault surface specified by spatially random fields that are partially correlated with the underlying slip distribution. We represent velocity‐strengthening fault zones in the shallow (<5 km) and deep (>15 km) crust by decreasing rupture speed and increasing rise time in these regions. Additional refinements to this approach include the incorporation of geometric perturbations to the fault surface, 3D stochastic correlated perturbations to the P‐ and S‐wave velocity structure, and a damage zone surrounding the shallow fault surface characterized by a 30% reduction in seismic velocity. We demonstrate the approach using a suite of simulations for a hypothetical Mw 6.45 strike‐slip earthquake embedded in a generalized hard‐rock velocity structure. The simulation results are compared with the median predictions from the 2014 Next Generation Attenuation‐West2 Project ground‐motion prediction equations and show very good agreement over the frequency band 0.1–5 Hz for distances out to 25 km from the fault. Additionally, the newly added features act to reduce the coherency of the radiated higher frequency (f>1 Hz) ground motions, and homogenize radiation‐pattern effects in this same bandwidth, which move the simulations closer to the statistical characteristics of observed motions as illustrated by comparison with recordings from the 1979 Imperial Valley earthquake.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, Robert; Pitarka, Arben
Here, we describe a methodology for generating kinematic earthquake ruptures for use in 3D ground–motion simulations over the 0–5 Hz frequency band. Our approach begins by specifying a spatially random slip distribution that has a roughly wavenumber–squared fall–off. Given a hypocenter, the rupture speed is specified to average about 75%–80% of the local shear wavespeed and the prescribed slip–rate function has a Kostrov–like shape with a fault–averaged rise time that scales self–similarly with the seismic moment. Both the rupture time and rise time include significant local perturbations across the fault surface specified by spatially random fields that are partially correlatedmore » with the underlying slip distribution. We represent velocity–strengthening fault zones in the shallow (<5 km) and deep (>15 km) crust by decreasing rupture speed and increasing rise time in these regions. Additional refinements to this approach include the incorporation of geometric perturbations to the fault surface, 3D stochastic correlated perturbations to the P– and S–wave velocity structure, and a damage zone surrounding the shallow fault surface characterized by a 30% reduction in seismic velocity. We demonstrate the approach using a suite of simulations for a hypothetical Mw 6.45 strike–slip earthquake embedded in a generalized hard–rock velocity structure. The simulation results are compared with the median predictions from the 2014 Next Generation Attenuation–West2 Project ground–motion prediction equations and show very good agreement over the frequency band 0.1–5 Hz for distances out to 25 km from the fault. Additionally, the newly added features act to reduce the coherency of the radiated higher frequency (f>1 Hz) ground motions, and homogenize radiation–pattern effects in this same bandwidth, which move the simulations closer to the statistical characteristics of observed motions as illustrated by comparison with recordings from the 1979 Imperial Valley earthquake.« less
Graves, Robert; Pitarka, Arben
2016-08-23
Here, we describe a methodology for generating kinematic earthquake ruptures for use in 3D ground–motion simulations over the 0–5 Hz frequency band. Our approach begins by specifying a spatially random slip distribution that has a roughly wavenumber–squared fall–off. Given a hypocenter, the rupture speed is specified to average about 75%–80% of the local shear wavespeed and the prescribed slip–rate function has a Kostrov–like shape with a fault–averaged rise time that scales self–similarly with the seismic moment. Both the rupture time and rise time include significant local perturbations across the fault surface specified by spatially random fields that are partially correlatedmore » with the underlying slip distribution. We represent velocity–strengthening fault zones in the shallow (<5 km) and deep (>15 km) crust by decreasing rupture speed and increasing rise time in these regions. Additional refinements to this approach include the incorporation of geometric perturbations to the fault surface, 3D stochastic correlated perturbations to the P– and S–wave velocity structure, and a damage zone surrounding the shallow fault surface characterized by a 30% reduction in seismic velocity. We demonstrate the approach using a suite of simulations for a hypothetical Mw 6.45 strike–slip earthquake embedded in a generalized hard–rock velocity structure. The simulation results are compared with the median predictions from the 2014 Next Generation Attenuation–West2 Project ground–motion prediction equations and show very good agreement over the frequency band 0.1–5 Hz for distances out to 25 km from the fault. Additionally, the newly added features act to reduce the coherency of the radiated higher frequency (f>1 Hz) ground motions, and homogenize radiation–pattern effects in this same bandwidth, which move the simulations closer to the statistical characteristics of observed motions as illustrated by comparison with recordings from the 1979 Imperial Valley earthquake.« less
Time-resolved observation of thermally activated rupture of a capillary-condensed water nanobridge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bak, Wan; Sung, Baekman; Kim, Jongwoo
2015-01-05
The capillary-condensed liquid bridge is one of the most ubiquitous forms of liquid in nature and contributes significantly to adhesion and friction of biological molecules as well as microscopic objects. Despite its important role in nanoscience and technology, the rupture process of the bridge is not well understood and needs more experimental works. Here, we report real-time observation of rupture of a capillary-condensed water nanobridge in ambient condition. During slow and stepwise stretch of the nanobridge, we measured the activation time for rupture, or the latency time required for the bridge breakup. By statistical analysis of the time-resolved distribution ofmore » activation time, we show that rupture is a thermally activated stochastic process and follows the Poisson statistics. In particular, from the Arrhenius law that the rupture rate satisfies, we estimate the position-dependent activation energies for the capillary-bridge rupture.« less
Systematic observations of the slip pulse properties of large earthquake ruptures
Melgar, Diego; Hayes, Gavin
2017-01-01
In earthquake dynamics there are two end member models of rupture: propagating cracks and self-healing pulses. These arise due to different properties of faults and have implications for seismic hazard; rupture mode controls near-field strong ground motions. Past studies favor the pulse-like mode of rupture; however, due to a variety of limitations, it has proven difficult to systematically establish their kinematic properties. Here we synthesize observations from a database of >150 rupture models of earthquakes spanning M7–M9 processed in a uniform manner and show the magnitude scaling properties of these slip pulses indicates self-similarity. Further, we find that large and very large events are statistically distinguishable relatively early (at ~15 s) in the rupture process. This suggests that with dense regional geophysical networks strong ground motions from a large rupture can be identified before their onset across the source region.
2010-03-10
achieved by setting proper driver and driven pressures. A calibration of the tunnel was done for the decided freestream conditions with a pitot rake ...measurement. A rake of 12 pitot probes spanning the diameter of the nozzle (300 mm) was placed facing the freestream. The pitot pressures were... pitot rake and shock tube measurements, the freestream conditions for each of the observed rupture pressure are estimated. It was observed that of
NASA Astrophysics Data System (ADS)
Dalguer, L. A.; Miyake, H.; Irikura, K.; Wu, H., Sr.
2016-12-01
Empirical scaling models of seismic moment and rupture area provide constraints to parameterize source parameters, such as stress drop, for numerical simulations of ground motion. There are several scaling models published in the literature. The effect of the finite width seismogenic zone and the free-surface have been attributed to cause the breaking of the well know self-similar scaling (e.g. Dalguer et al, 2008) given origin to the so called L and W models for large faults. These models imply the existence of three-stage scaling relationship between seismic moment and rupture area (e.g. Irikura and Miyake, 2011). In this paper we extend the work done by Dalguer et al 2008, in which these authors calibrated fault models that match the observations showing that the average stress drop is independent of earthquake size for buried earthquakes, but scale dependent for surface-rupturing earthquakes. Here we have developed additional sets of dynamic rupture models for vertical strike slip faults to evaluate the effect of the weak shallow layer (WSL) zone for the calibration of stress drop. Rupture in the WSL zone is expected to operate with enhanced energy absorption mechanism. The set of dynamic models consists of fault models with width 20km and fault length L=20km, 40km, 60km, 80km, 100km, 120km, 200km, 300km and 400km and average stress drop values of 2.0MPa, 2.5MPa, 3.0MPa, 3.5MPa, 5.0MPa and 7.5MPa. For models that break the free-surface, the WSL zone is modeled assuming a 2km width with stress drop 0.0MPa or -2.0 MPa. Our results show that depending on the characterization of the WSL zone, the average stress drop at the seismogenic zone that fit the empirical models changes. If WSL zone is not considered, that is, stress drop at SL zone is the same as the seismogenic zone, average stress drop is about 20% smaller than models with WSL zone. By introducing more energy absorption at the SL zone, that could be the case of large mature faults, the average stress drop in the seismogenic zone increases. Suggesting that large earthquakes need higher stress drop to break the fault than buried and moderate earthquakes. Therefore, the value of the average stress drop for large events that break the free-source depend on the definition of the WSL. Suggesting that the WSL plays an important role on the prediction of final slip and fault displacement.
High Frequency Near-Field Ground Motion Excited by Strike-Slip Step Overs
NASA Astrophysics Data System (ADS)
Hu, Feng; Wen, Jian; Chen, Xiaofei
2018-03-01
We performed dynamic rupture simulations on step overs with 1-2 km step widths and present their corresponding horizontal peak ground velocity distributions in the near field within different frequency ranges. The rupture speeds on fault segments are determinant in controlling the near-field ground motion. A Mach wave impact area at the free surface, which can be inferred from the distribution of the ratio of the maximum fault-strike particle velocity to the maximum fault-normal particle velocity, is generated in the near field with sustained supershear ruptures on fault segments, and the Mach wave impact area cannot be detected with unsustained supershear ruptures alone. Sub-Rayleigh ruptures produce stronger ground motions beyond the end of fault segments. The existence of a low-velocity layer close to the free surface generates large amounts of high-frequency seismic radiation at step over discontinuities. For near-vertical step overs, normal stress perturbations on the primary fault caused by dipping structures affect the rupture speed transition, which further determines the distribution of the near-field ground motion. The presence of an extensional linking fault enhances the near-field ground motion in the extensional regime. This work helps us understand the characteristics of high-frequency seismic radiation in the vicinities of step overs and provides useful insights for interpreting the rupture speed distributions derived from the characteristics of near-field ground motion.
NASA Astrophysics Data System (ADS)
Wu, S. M.; Hung, S. H.
2015-12-01
Earthquake-induced temporal changes in seismic velocity of the earth's crust have been demonstrated to be monitored effectively by the time-lapse shifts of coda waves recently. Velocity drop during the coseismic rupture has been explicitly observed in proximity to the epicenters of large earthquakes with different styles of faulting. The origin of such sudden perturbation in crustal properties is closely related to the damage and/or volumetric strain change influenced by seismic slip distribution. In this study, we apply a coda wave interferometry method to investigate potential velocity change in both space and time related to the moderate-sized (Mw6.3) 2010 Jiasian earthquake, which nucleated deeply in the crust (~23 km), ruptured and terminated around the depth of 10 km along a previously unidentified blind thrust fault near the lithotectonic boundary of the southern Taiwan orogenic belt. To decipher the surface and crustal response to this relatively deep rupture, we first measure relative time-lapse changes of coda between different short-term time frames spanning one year covering the pre- and post-seismic stages by using the Moving Window Cross Spectral Method. Rather than determining temporal velocity variations based on a long-term reference stack, we conduct a Bayesian least-squares inversion to obtain the optimal estimates by minimizing the inconsistency between the relative time-lapse shifts of individual short-term stacks. The results show the statistically significant velocity reduction immediately after the mainshock, which is most pronounced at the pairs with the interstation paths traversing through the hanging-wall block of the ruptured fault. The sensitivity of surface wave coda arrivals mainly in the periods of 3-5 s to shear wave speed perturbation is confined within the depth of 10 km, where the crust mostly experienced extensional strain changes induced by the slip distribution from the finite-fault model. Compared with coseismic slip distribution from GPS data and finite-fault inversion, peak ground velocity, and static volumetric strain field following the earthquake, the velocity decrease observed in the hanging wall side of the shallow crust is most likely attributed to pervasive dilatational strain changes induced by the slip rupture on the underlying blind thrust.
McGarr, Arthur F.; Johnston, Malcolm J.; Boettcher, M.; Heesakkers, V.; Reches, Z.
2013-01-01
On December 12, 2004, an earthquake of magnitude 2.2, located in the TauTona Gold Mine at a depth of about 3.65 km in the ancient Pretorius fault zone, was recorded by the in-mine borehole seismic network, yielding an excellent set of ground motion data recorded at hypocentral distances of several km. From these data, the seismic moment tensor, indicating mostly normal faulting with a small implosive component, and the radiated energy were measured; the deviatoric component of the moment tensor was estimated to be M0 = 2.3×1012 N·m and the radiated energy ER = 5.4×108 J. This event caused extensive damage along tunnels within the Pretorius fault zone. What rendered this earthquake of particular interest was the underground investigation of the complex pattern of exposed rupture surfaces combined with laboratory testing of rock samples retrieved from the ancient fault zone (Heesakkers et al.2011a, 2011b). Event 12/12 2004 was the result of fault slip across at least four nonparallel fault surfaces; 25 mm of slip was measured at one location on the rupture segment that is most parallel with a fault plane inferred from the seismic moment tensor, suggesting that this segment accounted for much of the total seismic deformation. By applying a recently developed technique based on biaxial stick-slip friction experiments (McGarr2012, 2013) to the seismic results, together with the 25 mm slip observed underground, we estimated a maximum slip rate of at least 6.6 m/s, which is consistent with the observed damage to tunnels in the rupture zone. Similarly, the stress drop and apparent stress were found to be correspondingly high at 21.9 MPa and 6.6 MPa, respectively. The ambient state of stress, measured at the approximate depth of the earthquake but away from the influence of mining, in conjunction with laboratory measurements of the strength of the fault zone cataclasites, indicates that during rupture of the M 2.2 event, the normal stress acting on the large-slip fault segment was about 260 MPa, the yield stress was 172 MPa and the seismic efficiency was 0.05. Thus, for event 12/12 2004, 5% of the energy released by the earthquake was radiated and the remaining 95% was consumed in overcoming fault friction and expanding the zone of rupture.
Ceramic Life Prediction Methodology.
1986-03-01
stress rupture data were collected on two materials, a sintered silicon nitride and a lithium-aluminum-silicate. The fast fracture data was presented...graphically in the form of Weibull plots of percent failed versus failure stress . The stress rupture results were presented in tabular form. Photo...micrographs were presented to illustrate the fracture surfaces of fast fracture and stress rupture failures. A program of specimen development was coaducted
Bizzarri, A.; Dunham, Eric M.; Spudich, P.
2010-01-01
We study how heterogeneous rupture propagation affects the coherence of shear and Rayleigh Mach wavefronts radiated by supershear earthquakes. We address this question using numerical simulations of ruptures on a planar, vertical strike-slip fault embedded in a three-dimensional, homogeneous, linear elastic half-space. Ruptures propagate spontaneously in accordance with a linear slip-weakening friction law through both homogeneous and heterogeneous initial shear stress fields. In the 3-D homogeneous case, rupture fronts are curved owing to interactions with the free surface and the finite fault width; however, this curvature does not greatly diminish the coherence of Mach fronts relative to cases in which the rupture front is constrained to be straight, as studied by Dunham and Bhat (2008a). Introducing heterogeneity in the initial shear stress distribution causes ruptures to propagate at speeds that locally fluctuate above and below the shear wave speed. Calculations of the Fourier amplitude spectra (FAS) of ground velocity time histories corroborate the kinematic results of Bizzarri and Spudich (2008a): (1) The ground motion of a supershear rupture is richer in high frequency with respect to a subshear one. (2) When a Mach pulse is present, its high frequency content overwhelms that arising from stress heterogeneity. Present numerical experiments indicate that a Mach pulse causes approximately an ω−1.7 high frequency falloff in the FAS of ground displacement. Moreover, within the context of the employed representation of heterogeneities and over the range of parameter space that is accessible with current computational resources, our simulations suggest that while heterogeneities reduce peak ground velocity and diminish the coherence of the Mach fronts, ground motion at stations experiencing Mach pulses should be richer in high frequencies compared to stations without Mach pulses. In contrast to the foregoing theoretical results, we find no average elevation of 5%-damped absolute response spectral accelerations (SA) in the period band 0.05–0.4 s observed at stations that presumably experienced Mach pulses during the 1979 Imperial Valley, 1999 Kocaeli, and 2002 Denali Fault earthquakes compared to SA observed at non-Mach pulse stations in the same earthquakes. A 20% amplification of short period SA is seen only at a few of the Imperial Valley stations closest to the fault. This lack of elevated SA suggests that either Mach pulses in real earthquakes are even more incoherent that in our simulations or that Mach pulses are vulnerable to attenuation through nonlinear soil response. In any case, this result might imply that current engineering models of high frequency earthquake ground motions do not need to be modified by more than 20% close to the fault to account for Mach pulses, provided that the existing data are adequately representative of ground motions from supershear earthquakes.
Geodetic Insights into the Earthquake Cycle in a Fold and Thrust Belt
NASA Astrophysics Data System (ADS)
Ingleby, T. F.; Wright, T. J.; Butterworth, V.; Weiss, J. R.; Elliott, J.
2017-12-01
Geodetic measurements are often sparse in time (e.g. individual interferograms) and/or space (e.g. GNSS stations), adversely affecting our ability to capture the spatiotemporal detail required to study the earthquake cycle in complex tectonic systems such as subaerial fold and thrust belts. In an effort to overcome these limitations we combine 3 generations of SAR satellite data (ERS 1/2, Envisat & Sentinel-1a/b) to obtain a 25 year, high-resolution surface displacement time series over the frontal portion of an active fold and thrust belt near Quetta, Pakistan where a Mw 7.1 earthquake doublet occurred in 1997. With these data we capture a significant portion of the seismic cycle including the interseismic, coseismic and postseismic phases. Each satellite time series has been referenced to the first ERS-1 SAR epoch by fitting a ground deformation model to the data. This allows us to separate deformation associated with each phase and to examine their relative roles in accommodating strain and creating topography, and to explore the relationship between the earthquake cycle and critical taper wedge mechanics. Modeling of the coseismic deformation suggests a long, thin rupture with rupture length 7 times greater than rupture width. Rupture was confined to a 20-30 degree north-northeast dipping reverse fault or ramp at depth, which may be connecting two weak decollements at approximately 8 km and 13 km depth. Alternatively, intersections between the coseismic fault plane and pre-existing steeper splay faults underlying folds may have played a significant role in inhibiting rupture, as evidenced by intersection points bordering the rupture. These fault intersections effectively partition the fault system down-dip and enable long, thin ruptures. Postseismic deformation is manifest as uplift across short-wavelength folds at the thrust front, with displacement rates decreasing with time since the earthquake. Broader patterns of postseismic uplift are also observed surrounding the coseismic rupture in both the down- and up-dip directions. We examine how coseismic stress changes may be driving the postseismic deformation by jointly inverting the InSAR-derived displacements for the rupture and fault friction parameters using a rate-strengthening friction model.
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Levine, Stanley (Technical Monitor)
2000-01-01
Tensile stress-rupture experiments were performed on woven Hi-Nicalon reinforced SiC matrix composites with BN interphases in air. Modal acoustic emission (AE) was used to monitor the damage accumulation in the composites during the tests and microstructural analysis was performed to determine the amount of matrix cracking that occurred for each sample. Fiber fractograph), was also performed for individual fiber failures at the specimen fracture surface to determine the strengths at which fibers failed. The rupture strengths were significantly worse than what would have been expected front the inherent degradation of the fibers themselves when subjected to similar rupture conditions. At higher applied stresses the rate of rupture "?as larger than at lower applied stresses. It was observed that the change in rupture rate corresponded to the onset of through-thickness cracking in the composites themselves. The primary cause of the sen,ere degradation was the ease with which fibers would bond to one another at their closest separation distances, less than 100 nanometers, when exposed to the environment. The near fiber-to-fiber contact in the woven tows enabled premature fiber failure over large areas of matrix cracks due to the stress-concentrations created b), fibers bonded to one another after one or a few fibers fail. i.e. the loss of global load sharing. An@, improvement in fiber-to-fiber separation of this composite system should result in improved stress- rupture properties. A model was den,eloped in order to predict the rupture life-time for these composites based on the probabilistic nature of indin,idual fiber failure at temperature. the matrix cracking state during the rupture test, and the rate of oxidation into a matrix crack. Also incorporated into the model were estimates of the stress-concentration that would occur between the outer rim of fibers in a load-bearing bundle and the unbridged region of a matrix crack after Xia et al. For the lower stresses, this source of stress-concentration was the likely cause for initial fiber failure that would trigger catastrophic failure of the composite.
Rapid Source Characterization of the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake
Hayes, Gavin P.
2011-01-01
On March 11th, 2011, a moment magnitude 9.0 earthquake struck off the coast of northeast Honshu, Japan, generating what may well turn out to be the most costly natural disaster ever. In the hours following the event, the U.S. Geological Survey National Earthquake Information Center led a rapid response to characterize the earthquake in terms of its location, size, faulting source, shaking and slip distributions, and population exposure, in order to place the disaster in a framework necessary for timely humanitarian response. As part of this effort, fast finite-fault inversions using globally distributed body- and surface-wave data were used to estimate the slip distribution of the earthquake rupture. Models generated within 7 hours of the earthquake origin time indicated that the event ruptured a fault up to 300 km long, roughly centered on the earthquake hypocenter, and involved peak slips of 20 m or more. Updates since this preliminary solution improve the details of this inversion solution and thus our understanding of the rupture process. However, significant observations such as the up-dip nature of rupture propagation and the along-strike length of faulting did not significantly change, demonstrating the usefulness of rapid source characterization for understanding the first order characteristics of major earthquakes.
Rupture Dynamics and Ground Motion from Earthquakes in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Bydlon, S.; Dunham, E. M.; Kozdon, J. E.
2012-12-01
Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the relative strength of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. We have begun a modeling effort to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. To do this we extended our two-dimensional high order finite difference rupture dynamics code to accommodate material heterogeneities. We generate synthetic heterogeneous media using Von Karman correlation functions and their associated power spectral density functions. We then nucleate ruptures on either flat or rough faults, which obey strongly rate-weakening friction laws. Preliminary results for flat faults with uniform frictional properties and initial stresses indicate that off-fault material heterogeneity alone can lead to a complex rupture process. Our simulations reveal the excitation of high frequency bursts of waves, which radiate energy away from the propagating rupture. The average rupture velocity is thus reduced relative to its value in simulations employing homogeneous material properties. In the coming months, we aim to more fully explore parameter space by varying the correlation length, Hurst exponent, and amplitude of medium heterogeneities, as well as the statistical properties characterizing fault roughness.
The transition of dynamic rupture styles in elastic media under velocity-weakening friction
NASA Astrophysics Data System (ADS)
Gabriel, A.-A.; Ampuero, J.-P.; Dalguer, L. A.; Mai, P. M.
2012-09-01
Although kinematic earthquake source inversions show dominantly pulse-like subshear rupture behavior, seismological observations, laboratory experiments and theoretical models indicate that earthquakes can operate with different rupture styles: either as pulses or cracks, that propagate at subshear or supershear speeds. The determination of rupture style and speed has important implications for ground motions and may inform about the state of stress and strength of active fault zones. We conduct 2D in-plane dynamic rupture simulations with a spectral element method to investigate the diversity of rupture styles on faults governed by velocity-and-state-dependent friction with dramatic velocity-weakening at high slip rate. Our rupture models are governed by uniform initial stresses, and are artificially initiated. We identify the conditions that lead to different rupture styles by investigating the transitions between decaying, steady state and growing pulses, cracks, sub-shear and super-shear ruptures as a function of background stress, nucleation size and characteristic velocity at the onset of severe weakening. Our models show that small changes of background stress or nucleation size may lead to dramatic changes of rupture style. We characterize the asymptotic properties of steady state and self-similar pulses as a function of background stress. We show that an earthquake may not be restricted to a single rupture style, but that complex rupture patterns may emerge that consist of multiple rupture fronts, possibly involving different styles and back-propagating fronts. We also demonstrate the possibility of a super-shear transition for pulse-like ruptures. Finally, we draw connections between our findings and recent seismological observations.
Scaling law on formation and rupture of a dynamical liquid bridge
NASA Astrophysics Data System (ADS)
Zhang, Huang; Zhang, Zehao; Liu, Qianfeng; Li, Shuiqing; Department of Thermal Engineering, Tsinghua University Collaboration; Institute of Nuclear Energy; Technology, Tsinghua University Collaboration
2017-11-01
The formation and breakup of a pendular liquid bridge in dynamic state is investigated experimentally. The experimental setup arises from a system to measure the coefficient of restitution (COR) of a glass sphere impacting and bouncing on a wetted surface. We compare the effect of surface tension and gravity on the liquid bridge rupture by the capillary length κ-1. For water and liquid 1 (50% water mixed with 50% glycerol), the gravity is dominant on the liquid bridge breakup. And we find that the rupture distance is in good linear trend with the non-dimensional number G by the scaling law analysis. Further, for liquid 2 (25% water mixed with 75% glycerol) that is relatively high viscous, the linear changing of the rupture distance with the capillary number Ca is found. The relation of the rupture distance with G and Ca would be helpful in understanding the complex behavior of the dynamical liquid bridge. This work was funded by the Major State Basic Research Development Program of China (Grant No. 2016YFC0203705) and the China Postdoctoral Science Foundation (Grant No. 2016M601024).
Geodetically resolved slip distribution of the 27 August 2012 Mw=7.3 El Salvador earthquake
NASA Astrophysics Data System (ADS)
Geirsson, H.; La Femina, P. C.; DeMets, C.; Hernandez, D. A.; Mattioli, G. S.; Rogers, R.; Rodriguez, M.
2013-12-01
On 27 August 2012 a Mw=7.3 earthquake occurred offshore of Central America causing a small tsunami in El Salvador and Nicaragua but little damage otherwise. This is the largest magnitude earthquake in this area since 2001. We use co-seismic displacements estimated from episodic and continuous GPS station time series to model the magnitude and spatial variability of slip for this event. The estimated surface displacements are small (<2 cm) due to the distance and low magnitude of the earthquake. We use TDEFNODE to model the displacements using two different modeling approaches. In the first model, we solve for homogeneous slip on free rectangular fault(s), and in the second model we solve for distributed slip on the main thrust, realized using different slab models. The results indicate that we can match the seismic moment release, with models indicating rupture of a large area, with a low magnitude of slip. The slip is at shallow-to-intermediate depths on the main thrust off the coast of El Salvador. Additionally, we observe a deeper region of slip to the east, that reaches towards the Gulf of Fonseca between El Salvador and Nicaragua. The observed tsunami additionally indicates near-trench rupture off the coast of El Salvador. The duration of the rupturing is estimated from seismic data to be 70 s, which indicates a slow rupture process. Since the geodetic moment we obtain agrees with the seismic moment, this indicates that the earthquake was not associated with aseismic slip.
NASA Astrophysics Data System (ADS)
Ozel, Oguz; Guralp, Cansun; Tunc, Suleyman; Yalcinkaya, Esref; Meral Ozel, Nurcan
2015-04-01
The main objective of this study is to install a multi-parameter borehole system and surface array consisting of eight broadband sensors as close to the main Marmara Fault (MMF) in the western Marmara Sea as possible, and measure continuously the evolution of the state of the fault zone surrounding the MMF and to detect any anomaly or change which may occur before earthquakes by making use of the data from these arrays. The multi-parameter borehole system is composed of very wide dynamic range and stable borehole (VBB) broad band seismic sensor, and incorporate 3-D strain meter, tilt meter, and temperature and local hydrostatic pressure measuring devices. All these sensors are installed in 146m-deep borehole. All the sensor outputs are digitized; total of 11*24 bit-channels and 6*20 bit-channels. Real-time data transmission to the main server of the Marsite Project at Kandilli Observatory in Istanbul is accomplished. The multi-parameter borehole seismic station uses the latest update technologies and design ideas to record "Earth tides" signals to the smallest magnitude -3 events, as the innovative part of the Marsite Project. Bringing face to face the seismograms of microearthquakes recorded by borehole and surface instruments portrays quite different contents. The shorter recording duration and nearly flat frequency spectrum up to the Nyquist frequencies of borehole records are faced with longer recording duration and rapid decay of spectral amplitudes at higher frequencies of a surface seismogram. The main causative of the observed differences are near surface geology effects that mask most of the source related information the seismograms include, and that give rise to scattering, generating longer duration seismograms. In view of these circumstances, studies on microearthquakes employing surface seismograms may bring on misleading results. Particularly, the works on earthquake physics and nucleation process of earthquakes requires elaborate analysis of tiny events. It is obvious from the studies on the nucleation process of the 1999 earthquake that tens of minutes before the major rupture initiate noteworthy microearthquake activity happened. The starting point of the 1999 rupture was a site of swarm activity noticed a few decades prior the main shock. Nowadays, analogous case is probable in western Marmara Sea region, prone to a major event in near future where the seismic activity is prevailing along the impending rupture zone. Having deployed a borehole system at the eastern end of the Ganos fault zone will yield invaluable data to closely inspect and monitor the last stages of the preparation stage of major rupture.
NASA Astrophysics Data System (ADS)
Harding, D. J.; Miuller, J. R.
2005-12-01
Modeling the kinematics of the 2004 Great Sumatra-Andaman earthquake is limited in the northern two-thirds of the rupture zone by a scarcity of near-rupture geodetic deformation measurements. Precisely repeated Ice, Cloud, and Land Elevation Satellite (ICESat) profiles across the Andaman and Nicobar Islands provide a means to more fully document the spatial pattern of surface vertical displacements and thus better constrain geomechanical modeling of the slip distribution. ICESat profiles that total ~45 km in length cross Car Nicobar, Kamorta, and Katchall in the Nicobar chain. Within the Andamans, the coverage includes ~350 km on North, Central, and South Andaman Islands along two NNE and NNW-trending profiles that provide elevations on both the east and west coasts of the island chain. Two profiles totaling ~80 km in length cross South Sentinel Island, and one profile ~10 km long crosses North Sentinel Island. With an average laser footprint spacing of 175 m, the total coverage provides over 2700 georeferenced surface elevations measurements for each operations period. Laser backscatter waveforms recorded for each footprint enable detection of forest canopy top and underlying ground elevations with decimeter vertical precision. Surface elevation change is determined from elevation profiles, acquired before and after the earthquake, that are repeated with a cross-track separation of less than 100 m by precision pointing of the ICESat spacecraft. Apparent elevation changes associated with cross-track offsets are corrected according to local slopes calculated from multiple post-earthquake repeated profiles. The surface deformation measurements recorded by ICESat are generally consistent with the spatial distribution of uplift predicted by a preliminary slip distribution model. To predict co-seismic surface deformation, we apply a slip distribution, derived from the released energy distribution computed by Ishii et al. (2005), as the displacement discontinuity boundary condition on the Sumatra-Andaman subduction interface fault. The direction of slip on the fault surface is derived from the slip directions computed by Tsai et al. (in review) for centroid moment tensor focal mechanisms spatially distributed along the rupture. The slip model will be refined to better correspond to the observed surface deformation as additional results from the ICESat profiles become available.
Material contrast does not predict earthquake rupture propagation direction
Harris, R.A.; Day, S.M.
2005-01-01
Earthquakes often occur on faults that juxtapose different rocks. The result is rupture behavior that differs from that of an earthquake occurring on a fault in a homogeneous material. Previous 2D numerical simulations have studied simple cases of earthquake rupture propagation where there is a material contrast across a fault and have come to two different conclusions: 1) earthquake rupture propagation direction can be predicted from the material contrast, and 2) earthquake rupture propagation direction cannot be predicted from the material contrast. In this paper we provide observational evidence from 70 years of earthquakes at Parkfield, CA, and new 3D numerical simulations. Both the observations and the numerical simulations demonstrate that earthquake rupture propagation direction is unlikely to be predictable on the basis of a material contrast. Copyright 2005 by the American Geophysical Union.
Fractal avalanche ruptures in biological membranes
NASA Astrophysics Data System (ADS)
Gözen, Irep; Dommersnes, Paul; Czolkos, Ilja; Jesorka, Aldo; Lobovkina, Tatsiana; Orwar, Owe
2010-11-01
Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity. Pore formation in cell membranes is also at the heart of many biomedical applications such as in drug, gene and short interfering RNA delivery. Membrane rupture dynamics has been studied in bilayer vesicles under tensile stress, which consistently produce circular pores. We observed very different rupture mechanics in bilayer membranes spreading on solid supports: in one instance fingering instabilities were seen resulting in floral-like pores and in another, the rupture proceeded in a series of rapid avalanches causing fractal membrane fragmentation. The intermittent character of rupture evolution and the broad distribution in avalanche sizes is consistent with crackling-noise dynamics. Such noisy dynamics appear in fracture of solid disordered materials, in dislocation avalanches in plastic deformations and domain wall magnetization avalanches. We also observed similar fractal rupture mechanics in spreading cell membranes.
Systematic Observations of the Slip-pulse Properties of Large Earthquake Ruptures
NASA Astrophysics Data System (ADS)
Melgar, D.; Hayes, G. P.
2017-12-01
In earthquake dynamics there are two end member models of rupture: propagating cracks and self-healing pulses. These arise due to different properties of ruptures and have implications for seismic hazard; rupture mode controls near-field strong ground motions. Past studies favor the pulse-like mode of rupture, however, due to a variety of limitations, it has proven difficult to systematically establish their kinematic properties. Here we synthesize observations from a database of >150 rupture models of earthquakes spanning M7-M9 processed in a uniform manner and show the magnitude scaling properties (rise time, pulse width, and peak slip rate) of these slip pulses indicates self-similarity. Self similarity suggests a weak form of rupture determinism, where early on in the source process broader, higher amplitude slip pulses will distinguish between events of icnreasing magnitude. Indeed, we find by analyzing the moment rate functions that large and very large events are statistically distinguishable relatively early (at 15 seconds) in the rupture process. This suggests that with dense regional geophysical networks strong ground motions from a large rupture can be identified before their onset across the source region.
Nawasreh, Zakariya; Failla, Mathew; Marmon, Adam; Logerstedt, David; Snyder-Mackler, Lynn
2018-05-23
Performing physical activities on a compliant surface alters joint kinematics and increases joints stiffness. However, the effect of compliant surface on joint kinematics after ACL-rupture is yet unknown. To compare the effects of mechanical perturbation training with a compliant surface to manual perturbation training on joint kinematics after ACL-rupture. Sixteen level I/II athletes with ACL-rupture participated in this preliminary study. Eight patients received mechanical perturbation with compliant surface (Mechanical) and 8 patients received manual perturbation training (Manual). Patients completed standard gait analysis before (Pre) and after (Post) training. Significant group-by-time interactions were found for knee flexion angle at initial contact (IC) and peak knee flexion (PKF) (p<0.004), with manual group significantly increased knee flexion angle at IC and PKF (p<0.03). Main effects of group were found for hip flexion angle at IC (Manual:34.34+3.51°, Mechanical:27.68+4.08°, p = 0.011), hip rotation angle at PKE (Manual:-3.40+4.78°, Mechanical:5.43+4.78°, p < 0.0001), and knee adduction angle at PKE (Manual:-2.00+2.23°, Mechanical:0.55+2.23°, p = 0.039). Main effects of time were found for hip adduction angle at PKE (Pre:6.98+4.48°, Post:8.41+4.91°, p = 0.04), knee adduction angle at IC (Pre:-2.90+3.50°, Post:-0.62+2.58°, p = 0.03), ankle adduction angle at IC (Pre:2.16+3.54, Post:3.8+3.68, p = 0.008), and ankle flexion angle at PKF (Pre:-4.55+2.77°, Post:-2.39+3.48°, p = 0.01). Training on a compliant surface induces different effects on joint kinematics compared to manual perturbation training after ACL-rupture. Manual perturbation improved hip alignment and increased knee flexion angles, while mechanical training decreased knee flexion angles throughout the stance phase. Administering training on a compliant surface after ACL-rupture may help improving dynamic knee stability, however, long-term effects on knee health needs to be determined. Copyright © 2018 Elsevier B.V. All rights reserved.
Long-wavelength Instability in Surface-tension-driven Bénard Convection
NASA Astrophysics Data System (ADS)
van Hook, Stephen J.
1997-03-01
Laboratory experiments and numerical simulations reveal that a liquid layer heated from below and possessing a free upper surface can undergo a long-wavelength deformational instability that causes rupture of the interface.(S. J. VanHook, M. F. Schatz, W. D. McCormick, J. B. Swift, and H. L. Swinney, Phys. Rev. Lett.) 75, 4397 (1995). Depending on the depth and thermal conductivity of the liquid and the overlying gas layer, the interface can rupture downwards and form a dry spot or rupture upwards and form a high spot. This long-wavelength instability competes with the formation of Bénard hexagons for thin or viscous liquid layers, or for liquid layers in microgravity.
Single Molecule Junctions: A Laboratory for Chemistry, Mechanics and Bond Rupture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hybertsen M. S.
Simultaneous measurement [1] of junction conductance and sustained force in single molecule junctions bridging metal electrodes provides a powerful tool in the quantitative study of the character of molecule-metal bonds. In this talk I will discuss three topics. First, I will describe chemical trends in link bond strength based on experiments and Density Functional Theory based calculations. Second, I will focus on the specific case of pyridine-linked junctions. Bond rupture from the high conductance junction structure shows a requires a force that exceeds the rupture force of gold point contacts and clearly indicates the role of additional forces, beyond themore » specific N-Au donor acceptor bond. DFT-D2 calculations with empirical addition of dispersion interactions illustrates the interplay between the donor-acceptor bonding and the non-specific van der Waals interactions between the pyridine rings and Au asperities. Third, I will describe recent efforts to characterize the diversity of junction structures realized in break-junction experiments with suitable models for the potential surfaces that are observed. [1] Venkataraman Group, Columbia University.« less
Large earthquakes and creeping faults
Harris, Ruth A.
2017-01-01
Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.
NASA Astrophysics Data System (ADS)
Viesca, R. C.; Rice, J. R.
2011-12-01
We address the nucleation of dynamic landslide rupture in response to gradual pore pressure increases. Nucleation marks the onset of acceleration of the overlying slope mass due to the suddenly rapid enlargement of a sub-surface zone of shear failure, previously deforming quasi-statically. We model that zone as a planar surface undergoing initially linear slip-weakening frictional failure within a bordering linear-elastic medium. The results are also relevant to earthquake nucleation. The sub-surface rupture zone considered runs parallel to the free surface of a uniform slope, under a 2D plane-strain deformation state. We show results for ruptures with friction coefficients following linear slip weakening (i.e., the residual friction is not yet reached). For spatially broad increases in pore pressure, the nucleation length depends on a ratio of depth to a cohesive zone length scale. In the very broad-increase limit, a direct numerical solution for nucleation lengths compares well with solutions to a corresponding eigenvalue problem (similar to Uenishi and Rice [JGR '03]), in which spatial variations in normal stress are neglected. We estimate nucleation lengths for subaerial and submarine conditions using data [e.g., Bishop et al., Géotech. '71; Stark et al., JGGE '05] from ring-shear tests on sediments (peak friction fp = 0.5, frictional slip-weakening rate within the range w = -df/d(slip) = 0.1/cm-1/cm). We assume that only pre-stresses, and not material properties, vary with depth. With such fp and w, we find for a range of subsurface depths and shear moduli μ that nucleation lengths are typically several hundred meters long for shallow undersea slopes, and up to an order of magnitude less for steeper slopes on the Earth's surface. In the submarine case, this puts nucleation lengths in a size range comparable to observed pore-pressure-generated seafloor disturbances as pockmarks [e.g., Gay et al., MG '06].
NASA Astrophysics Data System (ADS)
Carannante, Simona; Argnani, Andrea; Massa, Marco; D'Alema, Ezio; Lovati, Sara; Moretti, Milena; Cattaneo, Marco; Augliera, Paolo
2015-08-01
This study presents new geological and seismological data that are used to assess the seismic hazard of a sector of the Po Plain (northern Italy), a large alluvial basin hit by two strong earthquakes on May 20 (MW 6.1) and May 29 (MW 6.0), 2012. The proposed interpretation is based on high-quality relocation of 5369 earthquakes ('Emilia sequence') and a dense grid of seismic profiles and exploration wells. The analyzed seismicity was recorded by 44 seismic stations, and initially used to calibrate new one-dimensional and three-dimensional local Vp and Vs velocity models for the area. Considering these new models, the initial sparse hypocenters were then relocated in absolute mode and adjusted using the double-difference relative location algorithm. These data define a seismicity that is elongated in the W-NW to E-SE directions. The aftershocks of the May 20 mainshock appear to be distributed on a rupture surface that dips ~ 45° SSW, and the surface projection indicates an area ~ 10 km wide and 23 km long. The aftershocks of the May 29 mainshock followed a steep rupture surface that is well constrained within the investigated volume, whereby the surface projection of the blind source indicates an area ~ 6 km wide and 33 km long. Multichannel seismic profiles highlight the presence of relevant lateral variations in the structural style of the Ferrara folds that developed during the Pliocene and Pleistocene. There is also evidence of a Mesozoic extensional fault system in the Ferrara arc, with faults that in places have been seismically reactivated. These geological and seismological observations suggest that the 2012 Emilia earthquakes were related to ruptures along blind fault surfaces that are not part of the Pliocene-Pleistocene structural system, but are instead related to a deeper system that is itself closely related to re-activation of a Mesozoic extensional fault system.
NASA Astrophysics Data System (ADS)
Zheng, A.; Zhang, W.
2016-12-01
On 15 April, 2016 the great earthquake with magnitude Mw7.1 occurred in Kumamoto prefecture, Japan. The focal mechanism solution released by F-net located the hypocenter at 130.7630°E, 32.7545°N, at a depth of 12.45 km, and the strike, dip, and the rake angle of the fault were N226°E, 84° and -142° respectively. The epicenter distribution and focal mechanisms of aftershocks implied the mechanism of the mainshock might have changed in the source rupture process, thus a single focal mechanism was not enough to explain the observed data adequately. In this study, based on the inversion result of GNSS and InSAR surface deformation with active structures for reference, we construct a finite fault model with focal mechanism changes, and derive the source rupture process by multi-time-window linear waveform inversion method using the strong-motion data (0.05 1.0Hz) obtained by K-NET and KiK-net of Japan. Our result shows that the Kumamoto earthquake is a right-lateral strike slipping rupture event along the Futagawa-Hinagu fault zone, and the seismogenic fault is divided into a northern segment and a southern one. The strike and the dip of the northern segment are N235°E, 60° respectively. And for the southern one, they are N205°E, 72° respectively. The depth range of the fault model is consistent with the depth distribution of aftershocks, and the slip on the fault plane mainly concentrate on the northern segment, in which the maximum slip is about 7.9 meter. The rupture process of the whole fault continues for approximately 18-sec, and the total seismic moment released is 5.47×1019N·m (Mw 7.1). In addition, the essential feature of the distribution of PGV and PGA synthesized by the inversion result is similar to that of observed PGA and seismic intensity.
Source Rupture Process of the 2016 Kumamoto, Japan, Earthquake Inverted from Strong-Motion Records
NASA Astrophysics Data System (ADS)
Zhang, Wenbo; Zheng, Ao
2017-04-01
On 15 April, 2016 the great earthquake with magnitude Mw7.1 occurred in Kumamoto prefecture, Japan. The focal mechanism solution released by F-net located the hypocenter at 130.7630°E, 32.7545°N, at a depth of 12.45 km, and the strike, dip, and the rake angle of the fault were N226°E, 84˚ and -142° respectively. The epicenter distribution and focal mechanisms of aftershocks implied the mechanism of the mainshock might have changed in the source rupture process, thus a single focal mechanism was not enough to explain the observed data adequately. In this study, based on the inversion result of GNSS and InSAR surface deformation with active structures for reference, we construct a finite fault model with focal mechanism changes, and derive the source rupture process by multi-time-window linear waveform inversion method using the strong-motion data (0.05 1.0Hz) obtained by K-NET and KiK-net of Japan. Our result shows that the Kumamoto earthquake is a right-lateral strike slipping rupture event along the Futagawa-Hinagu fault zone, and the seismogenic fault is divided into a northern segment and a southern one. The strike and the dip of the northern segment are N235°E, 60˚ respectively. And for the southern one, they are N205°E, 72˚ respectively. The depth range of the fault model is consistent with the depth distribution of aftershocks, and the slip on the fault plane mainly concentrate on the northern segment, in which the maximum slip is about 7.9 meter. The rupture process of the whole fault continues for approximately 18-sec, and the total seismic moment released is 5.47×1019N·m (Mw 7.1). In addition, the essential feature of the distribution of PGV and PGA synthesized by the inversion result is similar to that of observed PGA and seismic intensity.
NASA Astrophysics Data System (ADS)
Manta, F.; Feng, L.; Occhipinti, G.; Taisne, B.; Hill, E.
2017-12-01
Tsunami earthquakes generate tsunamis larger than expected for their seismic magnitude. They rupture the shallow megathrust, which is usually at significant distance from land-based monitoring networks. This distance presents a challenge in accurately estimating the magnitude and source extent of tsunami earthquakes. Whether these parameters can be estimated reliably is critical to the success of tsunami early warning systems. In this work, we investigate the potential role of using GNSS-observed ionospheric total electron content (TEC) to discriminate tsunami earthquakes, by introducing for the first time the TEC Intensity Index (TECII) for rapidly identify tsunamigenic earthquakes. We examine two Mw 7.8 megathrust events along the Sumatran subduction zone with data from the Sumatran GPS Array (SuGAr). Both events triggered a tsunami alert that was canceled later. The Banyaks event (April 6th, 2010) did not generate a tsunami and caused only minor earthquake-related damage to infrastructure. On the contrary, the Mentawai event (October 25th, 2010) produced a large tsunami with run-up heights of >16 m along the southwestern coasts of the Pagai Islands. The tsunami claimed more than 400 lives. The primary difference between the two events was the depth of rupture: the Mentawai event ruptured a very shallow (<6 km) portion of the Sunda megathrust, while the Banyaks event ruptured a deeper portion (20-30 km). While we identify only a minor ionospheric signature of the Banyaks event (TECII = 1.05), we identify a strong characteristic acoustic-gravity wave only 8 minutes after the Mentawai earthquake (TECII = 1.14) and a characteristic signature of a tsunami 40 minutes after the event. These two signals reveal the large surface displacement at the rupture, and the consequent destructive tsunami. This comparative study of two earthquakes with the same magnitude at different depths highlights the potential role of ionospheric monitoring by GNSS to tsunami early warning systems
Spatio-temporal mapping of plate boundary faults in California using geodetic imaging
Donnellan, Andrea; Arrowsmith, Ramon; DeLong, Stephen B.
2017-01-01
The Pacific–North American plate boundary in California is composed of a 400-km-wide network of faults and zones of distributed deformation. Earthquakes, even large ones, can occur along individual or combinations of faults within the larger plate boundary system. While research often focuses on the primary and secondary faults, holistic study of the plate boundary is required to answer several fundamental questions. How do plate boundary motions partition across California faults? How do faults within the plate boundary interact during earthquakes? What fraction of strain accumulation is relieved aseismically and does this provide limits on fault rupture propagation? Geodetic imaging, broadly defined as measurement of crustal deformation and topography of the Earth’s surface, enables assessment of topographic characteristics and the spatio-temporal behavior of the Earth’s crust. We focus here on crustal deformation observed with continuous Global Positioning System (GPS) data and Interferometric Synthetic Aperture Radar (InSAR) from NASA’s airborne UAVSAR platform, and on high-resolution topography acquired from lidar and Structure from Motion (SfM) methods. Combined, these measurements are used to identify active structures, past ruptures, transient motions, and distribution of deformation. The observations inform estimates of the mechanical and geometric properties of faults. We discuss five areas in California as examples of different fault behavior, fault maturity and times within the earthquake cycle: the M6.0 2014 South Napa earthquake rupture, the San Jacinto fault, the creeping and locked Carrizo sections of the San Andreas fault, the Landers rupture in the Eastern California Shear Zone, and the convergence of the Eastern California Shear Zone and San Andreas fault in southern California. These examples indicate that distribution of crustal deformation can be measured using interferometric synthetic aperture radar (InSAR), Global Navigation Satellite System (GNSS), and high-resolution topography and can improve our understanding of tectonic deformation and rupture characteristics within the broad plate boundary zone.
Duross, Christopher; Personius, Stephen; Olig, Susan S; Crone, Anthony J.; Hylland, Michael D.; Lund, William R; Schwartz, David P.
2017-01-01
The Wasatch fault (WFZ)—Utah’s longest and most active normal fault—forms a prominent eastern boundary to the Basin and Range Province in northern Utah. To provide paleoseismic data for a Wasatch Front regional earthquake forecast, we synthesized paleoseismic data to define the timing and displacements of late Holocene surface-faulting earthquakes on the central five segments of the WFZ. Our analysis yields revised histories of large (M ~7) surface-faulting earthquakes on the segments, as well as estimates of earthquake recurrence and vertical slip rate. We constrain the timing of four to six earthquakes on each of the central segments, which together yields a history of at least 24 surface-faulting earthquakes since ~6 ka. Using earthquake data for each segment, inter-event recurrence intervals range from about 0.6 to 2.5 kyr, and have a mean of 1.2 kyr. Mean recurrence, based on closed seismic intervals, is ~1.1–1.3 kyr per segment, and when combined with mean vertical displacements per segment of 1.7–2.6 m, yield mean vertical slip rates of 1.3–2.0 mm/yr per segment. These data refine the late Holocene behavior of the central WFZ; however, a significant source of uncertainty is whether structural complexities that define the segments of the WFZ act as hard barriers to ruptures propagating along the fault. Thus, we evaluate fault rupture models including both single-segment and multi-segment ruptures, and define 3–17-km-wide spatial uncertainties in the segment boundaries. These alternative rupture models and segment-boundary zones honor the WFZ paleoseismic data, take into account the spatial and temporal limitations of paleoseismic data, and allow for complex ruptures such as partial-segment and spillover ruptures. Our data and analyses improve our understanding of the complexities in normal-faulting earthquake behavior and provide geological inputs for regional earthquake-probability and seismic hazard assessments.
NASA Astrophysics Data System (ADS)
Yi, De-Cheng; Chuang, Ray Y.; Lin, Ching-Weei
2017-04-01
We demonstrate mapping results of a newly-identified active folding-associated fault in southwestern Taiwan, which was triggered by the distant ML 6.6 Meinong earthquake in 2016. The 14.6-km-deep main shock occurred in Meinong at 3:57 (GMT +08) on February 6th while a series of 21-27 km deep aftershocks were induced after 160 seconds in Guanmiao, where is 25km NW away from the epicenter of the main shock. The focal mechanism of the Meinong main shock shows a westward oblique thrust with the fault plane of 275°/42°/17° (strike/dip/rake) but Guanmiao aftershocks show the N-S striking eastward normal movement. The study area locates at an on-going fold-and-thrust belt close to the deformation front of Taiwan orogeny with high rates of convergence, uplift and erosion. The geology of SW Taiwan is characterized by the 3-km-thick mudstones with high fluid pressure underlying the loose sedimentary rocks forming mud diapirs or mud-core anticlines. The significance of the Meinong earthquake is (1) aftershocks are far away from the main shock, and (2) the surface cracks partially distributed systematically along lineaments observed from InSAR, which has never been recognized as geological structures before. This study aims to establish possible kinematic processes of shallow deformation induced by the Meinong earthquake. We mapped surface cracks around the lineaments by using hand-held GPS and measured surface cracks by the compass and vernier. Among 249 kinematic data measured from 244 observed surface cracks and ruptures, the type of deformation was mostly identified as dilation or lateral translation and only 4 data were compressional deformation. The overall surface displacement moved to the northwest and west, consistent with the regional coseismic movement. The opening of the surface cracks range from 0.5 to 105 mm and 85% of them are less than 10 mm. Preseismic deformed features such as failure of the retaining wall were also observed along the western and eastern boundary of the coseismic deformation area, indicating accumulated deformation and repeated structural activity in this area. In addition, we found a series of centimeters to meters long, N-S to N-W striking and eastern-side-down surface ruptures with the 4-19 cm heave distributed along the 4-km-long, nearly N-S striking and range-facing scarp with the 4-12 m height at the west of Guanmiao, where locate between the Chungchou anticline and Guanmiao syncline. We interpret these surface ruptures as a sign of the bending-moment fault associated with folding amplified by seismic energy through fluid-rich mud diapirs. Thus, seismic potential in this region needs to be re-evaluated, and the mechanism of seismic-induced amplification through high fluid pressure medium may play a critical role in assessing earthquake hazards in regions with similar geology to SW Taiwan.
NASA Astrophysics Data System (ADS)
Wang, Kang; Fialko, Yuri
2018-01-01
We use space geodetic data to investigate coseismic and postseismic deformation due to the 2015 Mw 7.8 Gorkha earthquake that occurred along the central Himalayan arc. Because the earthquake area is characterized by strong variations in surface relief and material properties, we developed finite element models that explicitly account for topography and 3-D elastic structure. We computed the line-of-sight displacement histories from three tracks of the Sentinel-1A/B Interferometric Synthetic Aperture Radar (InSAR) satellites, using persistent scatter method. InSAR observations reveal an uplift of up to ˜70 mm over ˜20 months after the main shock, concentrated primarily at the downdip edge of the ruptured asperity. GPS observations also show uplift, as well as southward movement in the epicentral area, qualitatively similar to the coseismic deformation pattern. Kinematic inversions of GPS and InSAR data and forward models of stress-driven creep suggest that the observed postseismic transient is dominated by afterslip on a downdip extension of the seismic rupture. A poroelastic rebound may have contributed to the observed uplift and southward motion, but the predicted surface displacements are small. We also tested a wide range of viscoelastic relaxation models, including 1-D and 3-D variations in the viscosity structure. Models of a low-viscosity channel previously invoked to explain the long-term uplift and variations in topography at the plateau margins predict opposite signs of horizontal and vertical displacements compared to those observed. Our results do not preclude a possibility of deep-seated viscoelastic response beneath southern Tibet with a characteristic relaxation time greater than the observation period (2 years).
NASA Astrophysics Data System (ADS)
Bagiya, Mala S.; Sunil, P. S.; Sunil, A. S.; Ramesh, D. S.
2018-02-01
The oblique-thrust Kaikoura earthquake of Mw 7.8 that struck New Zealand on 13 November 2016 at 11:02:56 UTC (local time at 00:02:56 a.m. on 14 November 2016) was one of the most geometrically and tectonically complex earthquakes recorded onshore in modern seismology. The event ruptured in the region of multisegmented faults and propagated unilaterally northeastward for more than 170 km from the epicenter. The GPS derived coseismic surface displacements reveal a larger widespread horizontal and vertical coseismic surface offsets of 6 m and 2 m, respectively, with two distinct tectonic thrust zones. We study the characteristics of coseismic ionospheric perturbations based on tectonic and nontectonic forcing mechanisms and demonstrate that these perturbations are linked to two distinct surface thrust zones with rotating horizontal reinforcement trending the rupture, rather than merely to the displacements oriented along the rupture propagation direction.
Is internal friction friction?
Savage, J.C.; Byerlee, J.D.; Lockner, D.A.
1996-01-01
Mogi [1974] proposed a simple model of the incipient rupture surface to explain the Coulomb failure criterion. We show here that this model can plausibly be extended to explain the Mohr failure criterion. In Mogi's model the incipient rupture surface immediately before fracture consists of areas across which material integrity is maintained (intact areas) and areas across which it is not (cracks). The strength of the incipient rupture surface is made up of the inherent strength of the intact areas plus the frictional resistance to sliding offered by the cracked areas. Although the coefficient of internal friction (slope of the strength versus normal stress curve) depends upon both the frictional and inherent strengths, the phenomenon of internal friction can be identified with the frictional part. The curvature of the Mohr failure envelope is interpreted as a consequence of differences in damage (cracking) accumulated in prefailure loading at different confining pressures.
NASA Astrophysics Data System (ADS)
Meng, L.; Zang, Y.; Zhou, L.; Han, Y.
2017-12-01
The MW7.8 New Zealand earthquake of 2016 occurred near the Kaikoura area in the South Island, New Zealand with the epicenter of 173.13°E and 42.78°S. The MW7.8 Kaikoura earthquake occurred on the transform boundary faults between the Pacific plate and the Australian plate and with the thrust focal mechanism solution. The Kaikoura earthquake is a complex event because the significant difference, especially between the magnitude, seismic moment, radiated energy and the casualties. Only two people were killed, and twenty people injured and no more than twenty buildings are destroyed during this earthquake, the damage level is not so severe in consideration about the huge magnitude. We analyzed the rupture process according to the source parameters, it can be confirmed that the radiated energy and the apparent stress of the Kaikoura earthquake are small and minor. The results indicate a frictional overshoot behavior in the dynamic source process of Kaikoura earthquake, which is actually with sufficient rupture and more affluent moderate aftershocks. It is also found that the observed horizontal Peak Ground Acceleration of the strong ground motion is generally small comparing with the Next Generation Attenuation relationship. We further studied the characteristics of the observed horizontal PGAs at the 6 near fault stations, which are located in the area less than 10 km to the main fault. The relatively high level strong ground motion from the 6 stations may be produced by the higher slip around the asperity area rather than the initial rupture position on the main plane. Actually, the huge surface displacement at the northern of the rupture fault plane indicated why aftershocks are concentrated in the north. And there are more damage in Wellington than in Christchurch, even which is near the south of the epicenter. In conclusion, the less damage level of Kaikoura earthquake in New Zealand may probably because of the smaller strong ground motion and the rare population in the near fault area, with the most severe surface destruction. This work is supported by the Natural Science Foundation of China (No. 41404045).
Slip Model of the 2015 Mw 7.8 Gorkha (Nepal) Earthquake from Inversions of ALOS-2 and GPS Data
NASA Astrophysics Data System (ADS)
Wang, K.; Fialko, Y. A.
2015-12-01
We use surface deformation measurements including Interferometric Synthetic Aperture Radar (InSAR) data acquired by the ALOS-2 mission of the Japanese Aerospace Exploration Agency (JAXA) and Global Positioning System (GPS) data to invert for the fault geometry and coseismic slip distribution of the 2015 Mw 7.8 Gorkha earthquake in Nepal. Assuming that the ruptured fault connects to the surface trace of the of Main Frontal Thrust fault (MFT) between 84.34E and 86.19E, the best-fitting model suggests a dip angle of 7 degrees. The moment calculated from the slip model is 6.17*1020 Nm, corresponding to the moment magnitude of 7.79. The rupture of the 2015 Gorkha earthquake was dominated by thrust motion that was primarily concentrated in a 150-km long zone 50 to 100 km northward from the surface trace of the Main Frontal Thrust (MFT), with maximum slip of ~6 m at a depth of ~ 8 km. Data thus indicate that the 2015 Gorkha earthquake ruptured a deep part of the seismogenic zone, in contrast to the 1934 Bihar-Nepal earthquake, which had ruptured a shallow part of the adjacent fault segment to the East.
A crack-like rupture model for the 19 September 1985 Michoacan, Mexico, earthquake
NASA Astrophysics Data System (ADS)
Ruppert, Stanley D.; Yomogida, Kiyoshi
1992-09-01
Evidence supporting a smooth crack-like rupture process of the Michoacan earthquake of 1985 is obtained from a major earthquake for the first time. Digital strong motion data from three stations (Caleta de Campos, La Villita, and La Union), recording near-field radiation from the fault, show unusually simple ramped displacements and permanent offsets previously only seen in theoretical models. The recording of low frequency (0 to 1 Hz) near-field waves together with the apparently smooth rupture favors a crack-like model to a step or Haskell-type dislocation model under the constraint of the slip distribution obtained by previous studies. A crack-like rupture, characterized by an approximated dynamic slip function and systematic decrease in slip duration away from the point of rupture nucleation, produces the best fit to the simple ramped displacements observed. Spatially varying rupture duration controls several important aspects of the synthetic seismograms, including the variation in displacement rise times between components of motion observed at Caleta de Campos. Ground motion observed at Caleta de Campos can be explained remarkably well with a smoothly propagating crack model. However, data from La Villita and La Union suggest a more complex rupture process than the simple crack-like model for the south-eastern portion of the fault.
Aftershock seismicity and Tectonic Setting of the 16 September 2015 Mw 8.3 Illapel earthquake
NASA Astrophysics Data System (ADS)
Lange, Dietrich; Geersen, Jacob; Barrientos, Sergio; Moreno, Marcos; Grevemeyer, Ingo; Contreras-Reyes, Eduardo; Kopp, Heidrun
2016-04-01
Powerful subduction zone earthquakes rupture thousands of square kilometers along continental margins but at certain locations earthquake rupture terminates. On 16 September 2015 the Mw. 8.3 Illapel earthquake ruptured a 200 km long stretch of the Central Chilean subduction zone, triggering a tsunami and causing significant damage. Here we analyze the spatial pattern of coseismic rupture and the temporal and spatial pattern of local seismicity for aftershocks and foreshocks in relation to the tectonic setting in the earthquake area. Aftershock seismicity surrounds the rupture area in lateral and downdip direction. For the first 24 hours following the mainshock we observe aftershock migration to both lateral directions with velocities of approximately 2.5 and 5 km/h. At the southern earthquake boundary aftershocks cluster around individual subducted seamounts located on the prolongation of the downthrusting Juan Fernández Ridge indicating stress transfer from the main rupture area. In the northern part of the rupture area a deeper band of local seismicity is observed indicating an alternation of seismic to aseismic behavior of the plate interface in downdip direction. This aseismic region at ~30 km depth that is also observed before the Illapel 2015 earthquake is likely controlled by the intersection of the continental Moho with the subducting slab.
NASA Astrophysics Data System (ADS)
Klinger, Y.; Vallage, A.; Grandin, R.; Delorme, A.; Rosu, A. M.; Pierro-Deseilligny, M.
2014-12-01
The Mw7.7 2013 Balochistan earthquake ruptured 200 km of the Hoshab fault, the southern end of the Chaman fault. Azimuth of the fault changes by more than 30° along rupture, from a well-oriented strike-slip fault to a more thrust prone direction. We use the MicMac optical image software to correlate pairs of Landsat images taken before and after the earthquake to access to the horizontal displacement field associated with the earthquake. We combine the horizontal displacement with radar image correlation in range and radar interferometry to derive the co-seismic slip on the fault. The combination of these different datasets actually provides the 3D displacement field. We note that although the earthquake was mainly strike-slip all along the rupture length, some vertical motion patches exist, which locations seem to be controlled by kilometric-scale variations of the fault geometry. 5 pairs of SPOT images were also correlated to derive a 2.5m pixel-size horizontal displacement field, providing unique opportunity to look at deformation in the near field and to obtain high-resolution strike-slip and normal slip-distributions. We note a significant difference, especially in the normal component, between the slip localized at depth on the fault plane and the slip localized closer to the surface, with more apparent slip at the surface. A high-resolution map of ground rupture allows us to locate the distribution of the deformation over the whole rupture length. The rupture map also highlights multiple fault geometric complexities where we could quantify details of the slip distribution. At the rupture length-scale, the local azimuth variations between segments have a large impact on the expression of the localized slip at the surface. The combination of those datasets gives an overview of the large distribution of the deformation in the near field, corresponding to the co-seismic damage zone.
NASA Astrophysics Data System (ADS)
Ben-Zion, Y.; McGuire, J.
2003-04-01
Natural fault systems have interfaces that separate different media. There are fundamental differences between in-plane ruptures on planar faults that separate similar and dissimilar elastic solids. In a linear isotropic homogeneous solid, slip does not change the normal stress on the rupture plane. However, if the fault separates different materials in-plane slip can produce strong variations of normal stress on the fault. The interaction between slip and normal stress along a material interface can reduce dynamically the frictional strength, making material interfaces mechanically favored surfaces for rupture propagation. Analytical and numerical works (Weertman, 1980; Adams, 1995; Andrews and Ben-Zion, 1997; Ben-Zion and Andrews, 1998) have shown that rupture along a material interface occurs as a narrow wrinkle-like pulse propagating spontaneously only in one direction, that of slip in the more compliant medium. Characteristic features of the wrinkle-like pulse include: (1) Strong correlation between variations of normal stress and slip. (2) Asymmetric motion on different sides of the fault. (3) Preferred direction of rupture propagation. (4) Self-sharpening and divergent behavior with propagation distance. These characteristics can be important to a number of fundamental issues, including trapping of rupture in structures with material interfaces, the heat flow paradox, short rise-time of earthquake slip, possible existence of tensile component of rupture, and spatial distribution of seismic shaking. Rubin and Gillard (2000), Rubin (2002) and McGuire et al. (2002) presented some seismological evidence that rupture propagation along the San Andreas and other large faults is predominantly unidirectional. Features (1)-(4) are consistent with observations from lab sliding and fracture experiments (Anooshehpoor and Brune, 1999; Schallamach, 1971; Samudrala and Rosakis, 2000). Cochard and Rice (2000) performed calculations of rupture along a material interface governed by a regularized friction having a gradual response of strength to an abrupt variation of normal stress. Their calculations confirmed features (1)-(3) and showed hints of feature (4). The latter was not fully developed in their results because the calculations did not extend long enough in time. Ben-Zion and Huang (2002) simulated dynamic rupture on an interface governed by the regularized friction between a low velocity layer and a surrounding host rock. The results show that the self-sharpening and divergent behavior exists also with the regularized friction for large enough propagation distance. The simulations of Ben-Zion and Huang suggest that in fault structures having a low velocity layer, rupture initiated by failing of an asperity with size not larger than the layer width can become a self-sustaining wrinkle-like pulse. However, if the initial asperity is much larger than the layer width, the rupture will not propagate as a self-sustaining pulse (unless there is also an overall contrast across the fault). The Bear Valley section of the San Andreas Fault separates high velocity block on the SW from a low-velocity material on the NE. This contrast is expected to generate a preference for rupture to the SE and fault zone head-waves on the NE block. Using seismograms from a high density temporary array (Thurber et al., 1997), we measured differential travel-times of head-waves along with the geometrical distribution of the stations at which they arrive prior to the direct P-wave. The travel-time data and spatial distribution of events and stations associated with headwave first arrivals are compatible with the theoretical results of Ben-Zion (1989). We are now modeling waveforms to obtain high resolution image of the fault-zone structure. To test the prediction of unidirectional rupture propagation, we estimate the space-time variances of the moment-release distribution of magnitude 2.5-3.0 events using a variation of the Empirical Green's Function technique. Initial results for a few small events indicate rupture propagation in both directions. We are developing a catalog that will hopefully be large enough to provide clear results on this issue.
Nonlinear interaction of strong S-waves with the rupture front in the shallow subsurface
NASA Astrophysics Data System (ADS)
Sleep, N. H.
2017-12-01
Shallow deformation in moderate to large earthquakes is sometimes distributed rather than being concentrated on a single fault plane. Strong high-frequency S-waves interact with the rupture front to produce this effect. For strike-slip faults, the rupture propagation velocity is a fraction of the S-wave velocity. The rupture propagation vector refracts essentially vertically in the low (S-wave) velocity shallow subsurface. So does the propagation direction of S-waves. The shallow rupture front is essentially mode 3 near the surface. Strong S-waves arrive before the rupture front. They continue to arrive for several seconds in a large event. There are simple scaling relationships. The dynamic Coulomb stress ratio of horizontal stress on horizontal planes from S-waves is the normalized acceleration in g's. For fractured rock and gravel, frictional failure occurs when the normalized acceleration exceeds the effective coefficient of friction. Acceleration tends to saturate at that level as the anelastic strain rate increases rapidly with stress. For muddy materials, failure begins at a low normalized acceleration but increases slowly with dynamic stress. Dynamic accelerations sometimes exceed 1 g. In both cases, the rupture tip finds the shallow subsurface already in nonlinear failure down to a few to tens of meters depth. The material does not distinguish between S-wave and rupture tip stresses. Both stresses add to the stress invariant and hence to the anelastic strain rate tensor. Surface anelastic strain from fault slip is thus distributed laterally over a distance scaling to the depth of nonlinearity from S-waves. The environs of the fault anelastically accommodate the fault slip at depth. This process differs from blind faults where the shallow coseismic strain is mostly elastic and interseismic anelastic processes accommodate the long-term shallow deformation.
Scharer, Katherine M.; Weldon, Ray; Streig, Ashley; Fumal, Thomas
2014-01-01
Large earthquakes are infrequent along a single fault, and therefore historic, well-characterized earthquakes exert a strong influence on fault behavior models. This is true of the 1857 Fort Tejon earthquake (estimated M7.7–7.9) on the southern San Andreas Fault (SSAF), but an outstanding question is whether the 330 km long rupture was typical. New paleoseismic data for six to seven ground-rupturing earthquakes on the Big Bend of the SSAF restrict the pattern of possible ruptures on the 1857 stretch of the fault. In conjunction with existing sites, we show that over the last ~650 years, at least 75% of the surface ruptures are shorter than the 1857 earthquake, with estimated rupture lengths of 100 to <300 km. These results suggest that the 1857 rupture was unusual, perhaps leading to the long open interval, and that a return to pre-1857 behavior would increase the rate of M7.3–M7.7 earthquakes.
Duross, Christopher; Hylland, Michael D.; Hiscock, Adam; Personius, Stephen; Briggs, Richard; Gold, Ryan D.; Beukelman, Gregg; McDonald, Geg N; Erickson, Ben; McKean, Adam; Angster, Steve; King, Roselyn; Crone, Anthony J.; Mahan, Shannon
2017-01-01
The Nephi segment of the Wasatch fault zone (WFZ) comprises two fault strands, the northern and southern strands, which have evidence of recurrent late Holocene surface-faulting earthquakes. We excavated paleoseismic trenches across these strands to refine and expand their Holocene earthquake chronologies; improve estimates of earthquake recurrence, displacement, and fault slip rate; and assess whether the strands rupture separately or synchronously in large earthquakes. Paleoseismic data from the Spring Lake site expand the Holocene record of earthquakes on the northern strand: at least five to seven earthquakes ruptured the Spring Lake site at 0.9 ± 0.2 ka (2σ), 2.9 ± 0.7 ka, 4.0 ± 0.5 ka, 4.8 ± 0.8 ka, 5.7 ± 0.8 ka, 6.6 ± 0.7 ka, and 13.1 ± 4.0 ka, yielding a Holocene mean recurrence of ~1.2–1.5 kyr and vertical slip rate of ~0.5–0.8 mm/yr. Paleoseismic data from the North Creek site help refine the Holocene earthquake chronology for the southern strand: at least five earthquakes ruptured the North Creek site at 0.2 ± 0.1 ka (2σ), 1.2 ± 0.1 ka, 2.6 ± 0.9 ka, 4.0 ± 0.1 ka, and 4.7 ± 0.7 ka, yielding a mean recurrence of 1.1–1.3 kyr and vertical slip rate of ~1.9–2.0 mm/yr. We compare these Spring Lake and North Creek data with previous paleoseismic data for the Nephi segment and report late Holocene mean recurrence intervals of ~1.0–1.2 kyr for the northern strand and ~1.1–1.3 kyr for the southern strand. The northern and southern strands have similar late Holocene earthquake histories, which allow for models of both independent and synchronous rupture. However, considering the earthquake timing probabilities and per-event vertical displacements, we have the greatest confidence in the simultaneous rupture of the strands, including rupture of one strand with spillover rupture to the other. Ultimately, our results improve the surface-faulting earthquake history of the Nephi segment and enhance our understanding of how structural barriers influence normal-fault rupture.
3-D dynamic rupture simulations of the 2016 Kumamoto, Japan, earthquake
NASA Astrophysics Data System (ADS)
Urata, Yumi; Yoshida, Keisuke; Fukuyama, Eiichi; Kubo, Hisahiko
2017-11-01
Using 3-D dynamic rupture simulations, we investigated the 2016 Mw7.1 Kumamoto, Japan, earthquake to elucidate why and how the rupture of the main shock propagated successfully, assuming a complicated fault geometry estimated on the basis of the distributions of the aftershocks. The Mw7.1 main shock occurred along the Futagawa and Hinagu faults. Within 28 h before the main shock, three M6-class foreshocks occurred. Their hypocenters were located along the Hinagu and Futagawa faults, and their focal mechanisms were similar to that of the main shock. Therefore, an extensive stress shadow should have been generated on the fault plane of the main shock. First, we estimated the geometry of the fault planes of the three foreshocks as well as that of the main shock based on the temporal evolution of the relocated aftershock hypocenters. We then evaluated the static stress changes on the main shock fault plane that were due to the occurrence of the three foreshocks, assuming elliptical cracks with constant stress drops on the estimated fault planes. The obtained static stress change distribution indicated that Coulomb failure stress change (ΔCFS) was positive just below the hypocenter of the main shock, while the ΔCFS in the shallow region above the hypocenter was negative. Therefore, these foreshocks could encourage the initiation of the main shock rupture and could hinder the propagation of the rupture toward the shallow region. Finally, we conducted 3-D dynamic rupture simulations of the main shock using the initial stress distribution, which was the sum of the static stress changes caused by these foreshocks and the regional stress field. Assuming a slip-weakening law with uniform friction parameters, we computed 3-D dynamic rupture by varying the friction parameters and the values of the principal stresses. We obtained feasible parameter ranges that could reproduce the characteristic features of the main shock rupture revealed by seismic waveform analyses. We also observed that the free surface encouraged the slip evolution of the main shock.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Grützner, Christoph; Fischer, Peter; Reicherter, Klaus
2016-03-01
The Lower Rhine Embayment in Central Europe hosts a rift system that has very low deformation rates. The faults in this area have slip rates of less than 0.1 mm yr-1, which does not allow to investigate ongoing tectonic deformation with geodetic techniques, unless they cover very long time spans. Instrumental seismicity does only cover a small fraction of the very long earthquake recurrence intervals of several thousands of years. Palaeoseismological studies are needed to constrain slip rates and the earthquake history of such faults. Destructive earthquakes are rare in the study area, but did occur in historic times. In 1755/1756, a series of strong earthquakes caused significant destruction in the city of Düren (Germany) and the surrounding areas. In this study we document palaeoseismological data from the nearby Rurrand Fault. In contrast to earlier studies on the same fault, we found evidence for a surface rupturing earthquake in the Holocene, and we identified at least one more surface rupturing event. Our study shows that the Rurrand Fault currently accommodates deformation in earthquakes rather than by creeping. The coseismic offsets were determined to be between less than 0.5 m per event. We assign maximum possible magnitudes of Mw 5.9-6.8 for the Rurrand Fault and a slip rate of at least 0.02-0.03 mm yr-1 for the last ˜130-50 kyr. The surface ruptures did not occur at the main fault trace that has a clear morphological expression due to older tectonic motions, but on a younger fault strand in the hanging wall of the main fault. Terrain analyses based on 1 m resolution airborne LiDAR data have been used to image the subtle morphological expression of this young fault zone. Georadar and electric resistivity tomography were applied to image the fault zone at depth and to test if these shallow geophysical methods can be used to identify and trace the fault zone. Georadar failed to produce reliable results, but geoelectrics were successfully applied and allowed us to retrieve slip rate estimates. Our results indicate that the Düren 1755/1756 earthquakes did not produce surface ruptures at the Rurrand Fault, either because they did not rupture the surface at all, or because they occurred at another, neighbouring fault.
NASA Astrophysics Data System (ADS)
Lay, Thorne; Ye, Lingling; Koper, Keith D.; Kanamori, Hiroo
2017-09-01
On April 25, 2015 a major (MW 7.9) thrust earthquake ruptured the deeper portion of the seismogenic plate boundary beneath Nepal along which India is underthrusting Eurasia. An MW 7.2 aftershock on May 12, 2015 extended the eastern, down-dip edge of the rupture. These destructive events caused about 9000 fatalities and 23,000 injuries. The overall rupture zone is about 170 km long and 40-80 km wide. This region of the plate boundary previously experienced a large earthquake in 1833, and in 1934 a larger MS 8.0 event located to the east ruptured all the way to the surface. The Main Himalayan Thrust (MHT) on which slip occurred in 2015 has a very low dip angle of 6°, and the depth of the mainshock slip distribution is very shallow, extending from 7 to 18 km. The shallow dip and depth present challenges for resolving faulting characteristics using teleseismic data. We analyze global teleseismic signals for the mainshock and aftershock to estimate source parameters, evaluating the stability of various procedures used for remotely characterizing kinematics of such shallow faulting. Back-projection and finite-fault slip inversion are used to assess the spatio-temporal rupture history and evidence for frequency-dependent radiation along dip. Slip zone width constraints from near-field geodetic observations are imposed on the preferred models to overcome some limitations of purely teleseismic methods. Radiated energy, stress drop and moment rate functions are determined for both events.
Historic surface slip along the San Andreas Fault near Parkfield, California
Lienkaemper, J.J.; Prescott, W.H.
1989-01-01
The Parkfield Earthquake Prediction Experiment is focusing close attention on the 44-km-long section of the San Andreas fault that last ruptured seismically in 1966 (Ms 6.0). The 20-km-long central segment of the 1966 Parkfield rupture, extending from the mainshock epicenter at Middle Mountain southeastward to Gold Hill, forms a 1- to 2-km salient northeastward away from the dominant N40??W strike. Following the 1966 earthquake afterslip, aseismic slip has been nearly constant. Moderate Parkfield earthquakes have recurred on average every 21 years since 1857, when a great earthquake (M ~ 8) ruptured at least as far north as the southern Parkfield segment. Many measurements of slip have been made near Parkfield since 1966. Nevertheless, much of the history of surface slip remained uncertain, especially the total amount associated with the 1966 event. In 1985 we measured accumulated slip on the four oldest cultural features offset by the fault along the 1966 Parkfield rupture segment. -from Authors
First paleoseismic evidence for great surface-rupturing earthquakes in the Bhutan Himalayas
NASA Astrophysics Data System (ADS)
Le Roux-Mallouf, Romain; Ferry, Matthieu; Ritz, Jean-François; Berthet, Théo.; Cattin, Rodolphe; Drukpa, Dowchu
2016-10-01
The seismic behavior of the Himalayan arc between central Nepal and Arunachal Pradesh remains poorly understood due to the lack of observations concerning the timing and size of past major and great earthquakes in Bhutan. We present here the first paleoseismic study along the Himalayan topographic front conducted at two sites in southern central Bhutan. Paleoseismological excavations and related OxCal modeling reveal that Bhutan experienced at least two great earthquakes in the last millennium: one between the seventeenth and eighteenth century and one during medieval times, producing a total cumulative vertical offset greater than 10 m. Along with previous studies that reported similar medieval events in Central Nepal, Sikkim, and Assam, our investigations support the occurrence of either (i) a series of great earthquakes between A.D. 1025 and A.D. 1520 or (ii) a single giant earthquake between A.D. 1090 and A.D. 1145. In the latter case, the surface rupture may have reached a total length of 800 km and could be associated with an earthquake of magnitude Mw = 8.7-9.1.
NASA Astrophysics Data System (ADS)
Ren, Junjie; Xu, Xiwei; Zhang, Shimin; Yeats, Robert S.; Chen, Jiawei; Zhu, Ailan; Liu, Shao
2018-03-01
The 1933 M 7.5 Diexi earthquake is another catastrophic event with the loss of over 10 000 lives in eastern Tibet comparable to the 2008 Mw 7.9 Wenchuan earthquake. Because of its unknown surface rupture, the seismogenic tectonics of the 1933 earthquake remains controversial. We collected unpublished reports, literatures and old photos associated with the 1933 earthquake and conducted field investigations based on high-resolution Google Earth imagery. Combined with palaeoseismological analysis, radiocarbon dating and relocated earthquakes, our results demonstrate that the source of the 1933 earthquake is the northwest-trending Songpinggou fault. This quake produced a > 30 km long normal-faulting surface rupture with the coseismic offset of 0.9-1.7 m. Its moment magnitude (Mw) is ˜6.8. The Songpinggou fault undergoes an average vertical slip rate of ˜0.25 mm yr-1 and has a recurrence interval of ˜6700 yr of large earthquakes. The normal-faulting surface rupture of this quake is probably the reactivation of the Mesozoic Jiaochang tectonic belt in gravitational adjustment of eastern Tibet. Besides the major boundary faults, minor structures within continental blocks may take a role in strain partitioning of eastern Tibet and have the potential of producing large earthquake. This study contributes to a full understanding of seismotectonics of large earthquakes and strain partitioning in eastern Tibet.
XPS analysis of Al/EPDM bondlines from IUS SRM-1 polar bosses
NASA Astrophysics Data System (ADS)
Hemminger, Carol S.; Marquez, Nicholas
1993-03-01
A temperature-stress rupture method using partial immersion in liquid nitrogen was developed for the aluminum/EPDM rubber insulation bondline of the IUS SRM-1 polar bosses in order to investigate a corrosion problem. Subsequent XPS analysis of the ruptured bondline followed changes in the locus of failure as corrosion progressed. Samples from the forward polar bosses had a predominantly noncorroded appearance on the ruptured surfaces. The locus of failure was predominantly through the primer layer, which is distinguished by a high concentration of chlorinated hydrocarbon. The aft polar boss segments analyzed were characterized by the presence of corrosion over the entire mid-section of the ruptured aluminum to insulation bondline. The predominant corrosion product detected was aluminum oxide/hydroxide. The corroded bondline sections had significantly higher concentrations of aluminum oxide/hydroxide than the noncorroded areas, and lower concentrations of primer material. The temperature-stress rupture appeared to progress most readily through areas of thickened aluminum oxide/hydroxide infiltrated into the primer layer. In general there was a very good correlation between the calculated Cl:Al atomic % ratio, and the visual characterization of the extent of corrosion. The Cl:Al ratio, which represents the primer to corrosion product ratio at the locus of failure, varied from 0.4 to 47. With only a few exceptions, surfaces with a predominantly noncorroded appearance had Cl:Al ratios greater than 2, and surfaces with a heavily corroded appearance had Cl:Al ratios less than 1.
Dynamic rupture models of earthquakes on the Bartlett Springs Fault, Northern California
Lozos, Julian C.; Harris, Ruth A.; Murray, Jessica R.; Lienkaemper, James J.
2015-01-01
The Bartlett Springs Fault (BSF), the easternmost branch of the northern San Andreas Fault system, creeps along much of its length. Geodetic data for the BSF are sparse, and surface creep rates are generally poorly constrained. The two existing geodetic slip rate inversions resolve at least one locked patch within the creeping zones. We use the 3-D finite element code FaultMod to conduct dynamic rupture models based on both geodetic inversions, in order to determine the ability of rupture to propagate into the creeping regions, as well as to assess possible magnitudes for BSF ruptures. For both sets of models, we find that the distribution of aseismic creep limits the extent of coseismic rupture, due to the contrast in frictional properties between the locked and creeping regions.
Poly Implant Prothèse (PIP) incidence of rupture: a retrospective MR analysis in 64 patients.
Scotto di Santolo, Mariella; Cusati, Bianca; Ragozzino, Alfonso; Dell'Aprovitola, Nicoletta; Acquaviva, Alessandra; Altiero, Michele; Accurso, Antonello; Riccardi, Albina; Imbriaco, Massimo
2014-12-01
The purpose of this retrospective study was to describe the magnetic resonance imaging (MRI) features of Poly Implant Prothèse (PIP) hydrogel implants in a group of 64 patients and to assess the incidence of rupture, compared to other clinical trials. In this double-center study, we retrospectively reviewed the data sets of 64 consecutive patients (mean age, 43±9 years, age range, 27-65 years), who underwent breast MRI examinations, between January 2008 and October 2013, with suspected implant rupture on the basis of clinical assessment or after conventional imaging examination (either mammography or ultrasound). All patients had undergone breast operation with bilateral textured cohesive gel PIP implant insertion for aesthetic reasons. The mean time after operation was 8 years (range, 6-14 years). No patients reported history of direct trauma to their implants. At the time of clinical examination, 41 patients were asymptomatic, 16 complained of breast tenderness and 7 had clinical evidence of rupture. Normal findings were observed in 15 patients. In 26 patients there were signs of mild collapse, with associated not significant peri-capsular fluid collections and no evidence of implant rupture; in 23 patients there was suggestion of implant rupture, according to breast MRI leading to an indication for surgery. In particular, 14 patients showed intra-capsular rupture, with associated evidence of the linguine sign in all cases; the keyhole sign and the droplet signs were observed in 6 cases. In 9 patients there was evidence of extra-capsular rupture, with presence of axillary collections (siliconomas) in 7 cases and peri-prosthetic and mediastinal cavity siliconomas, in 5 cases. The results of this double center retrospective study, confirm the higher incidence (36%) of prosthesis rupture observed with the PIP implants, compared to other breast implants.
The Wasatch fault zone, utah-segmentation and history of Holocene earthquakes
Machette, M.N.; Personius, S.F.; Nelson, A.R.; Schwartz, D.P.; Lund, W.R.
1991-01-01
The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. We have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a-1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of 6.5 have occurred since 1860. Although the time scale of the clustering is different-130 years vs 1100 years-we consider the central Nevada-eastern California Seismic Belt to be a historic analog for movement on the WFZ during the past 1500 years. We have found no evidence that surface-rupturing events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval. In particular, the Brigham City segment (the northernmost medial segment) has not ruptured in the past 3600 years-a period that is about three times longer than this segment's average recurrence interval during the early and middle Holocene. Although the WFZ's seismological record is one of relative quiescence, a comparison with other historic surface-rupturing earthquakes in the region suggests that earthquakes having moment magnitudes of 7.1-7.4 (or surface-wave magnitudes of 7.5-7.7)-each associated with tens of kilometers of surface rupture and several meters of normal dip slip-have occurred about every four centuries during the Holocene and should be expected in the future. ?? 1991.
Aftershocks of the june 20, 1978, Greece earthquake: A multimode faulting sequence
Carver, D.; Bollinger, G.A.
1981-01-01
A 10-station portable seismograph network was deployed in northern Greece to study aftershocks of the magnitude (mb) 6.4 earthquake of June 20, 1978. The main shock occurred (in a graben) about 25 km northeast of the city of Thessaloniki and caused an east-west zone of surface rupturing 14 km long that splayed to 7 km wide at the west end. The hypocenters for 116 aftershocks in the magnitude range from 2.5 to 4.5 were determined. The epicenters for these events cover an area 30 km (east-west) by 18 km (north-south), and focal depths ranges from 4 to 12 km. Most of the aftershocks in the east half of the aftershock zone are north of the surface rupture and north of the graben. Those in the west half are located within the boundaries of the graben. Composite focalmechanism solutions for selected aftershocks indicate reactivation of geologically mapped normal faults in the area. Also, strike-slip and dip-slip faults that splay off the western end of the zone of surface ruptures may have been activated. The epicenters for four large (M ??? 4.8) foreshocks and the main shock were relocated using the method of joint epicenter determination. Collectively, those five epicenters form an arcuate pattern convex southward, that is north of and 5 km distant from the surface rupturing. The 5-km separation, along with a focal depth of 8 km (average aftershock depth) or 16 km (NEIS main-shock depth), implies that the fault plane dips northward 58?? or 73??, respectively. A preferred nodal-plane dip of 36?? was determined by B.C. Papazachos and his colleagues in 1979 from a focal-mechanism solution for the main shock. If this dip is valid for the causal fault and that fault projects to the zone of surface rupturing, a decrease of dip with depth is required. ?? 1981.
No Great Earthquake in the Central Himalaya Since 1505: a Possible Future M>=8.2 event?
NASA Astrophysics Data System (ADS)
Bilham, R.; Ambraseys, N.
2002-12-01
The re-evaluation of the past several centuries of damaging Himalayan earthquakes has largely decreased their magnitudes and/or rupture areas, with one exception. An earthquake in 1505 that simultaneously destroyed Indian cities near Agra, and Tibetan monasteries between longitudes 78° and 84° appears to be larger than any known hitherto. It occurred exactly one month after a catastrophic earthquake in Kabul, and accounts from the two earthquakes have sometimes been confused. Although the data in Tibetan accounts are sparse the event appears to have had equal violence along the 600 km northern Himalaya and in the northern plains of India. From this we infer a rupture zone possibly twice as long as that associated with recent Himalayan earthquakes, corresponding to the segment that has hitherto been termed the Central Himalayan Gap. An enigmatic observation is that surface ruptures have been exhumed in trench investigations but have not been reported from the past two centuries of 7.8
Observing Triggered Earthquakes Across Iran with Calibrated Earthquake Locations
NASA Astrophysics Data System (ADS)
Karasozen, E.; Bergman, E.; Ghods, A.; Nissen, E.
2016-12-01
We investigate earthquake triggering phenomena in Iran by analyzing patterns of aftershock activity around mapped surface ruptures. Iran has an intense level of seismicity (> 40,000 events listed in the ISC Bulletin since 1960) due to it accommodating a significant portion of the continental collision between Arabia and Eurasia. There are nearly thirty mapped surface ruptures associated with earthquakes of M 6-7.5, mostly in eastern and northwestern Iran, offering a rich potential to study the kinematics of earthquake nucleation, rupture propagation, and subsequent triggering. However, catalog earthquake locations are subject to up to 50 km of location bias from the combination of unknown Earth structure and unbalanced station coverage, making it challenging to assess both the rupture directivity of larger events and the spatial patterns of their aftershocks. To overcome this limitation, we developed a new two-tiered multiple-event relocation approach to obtain hypocentral parameters that are minimally biased and have realistic uncertainties. In the first stage, locations of small clusters of well-recorded earthquakes at local spatial scales (100s of events across 100 km length scales) are calibrated either by using near-source arrival times or independent location constraints (e.g. local aftershock studies, InSAR solutions), using an implementation of the Hypocentroidal Decomposition relocation technique called MLOC. Epicentral uncertainties are typically less than 5 km. Then, these events are used as prior constraints in the code BayesLoc, a Bayesian relocation technique that can handle larger datasets, to yield region-wide calibrated hypocenters (1000s of events over 1000 km length scales). With locations and errors both calibrated, the pattern of aftershock activity can reveal the type of the earthquake triggering: dynamic stress changes promote an increase in the seismicity rate in the direction of unilateral propagation, whereas static stress changes should not be biased by rupture propagation direction. Here we present results from Ahar, Baladeh, Qom, Rigan, Silakhour and Zirkuh clusters, that include early-instrumental and modern mainshock-aftershock sequences. These will in turn provide a greatly improved basis for research into seismic hazards in this region.
Crack propagation in disordered materials: how to decipher fracture surfaces
NASA Astrophysics Data System (ADS)
Ponson, L.
For a half-century, engineers know how to describe and predict the propagation of a crack in a model elastic homogeneous medium. The case of real materials is much more complex. Indeed, we do not know how to relate their lifetime or their resistance to their microstructure. To achieve such a prediction, understanding the role of the microstructural disorder on the behavior of a crack is determinant. Fracture surfaces represent a promising field of investigation to address this question. From the study of various disordered materials, we propose a statistical description of their roughness and determine to which extent their properties are dependent of the material. We show that fracture surfaces display an anisotropic scale invariant geometry characterized by two universal exponents. Glass ceramics is then studied because its microstructure can be tuned in a controlled manner. Their fracture surfaces display the same general anisotropic properties but with surprisingly low exponents independent of the detail of the ceramics microstructure. This suggests the existence of a second universality class in failure problems. Using finally theoretical tools from out-of-equilibrium statistical physics and fracture mechanics, we relate the statistical properties of fracture surfaces with the mechanisms occurring at the microscopic scale during the failure of a material. In particular, we show that the first class of fracture surfaces results from a failure involving damage processes while the second one results from a perfectly brittle failure. Propagation de fissures dans les matériaux désordonnés : comment déchiffrer les surfaces de rupture. Depuis près d'un demi-siècle, les ingénieurs savent décrire et prévoir la propagation d'une fissure dans un milieu élastique homogène modèle. Le cas des matériaux réels est beaucoup plus complexe. En effet, on ne sait pas relier leur durée de vie ou leur résistance à leur microstructure. Passage obligé avant de telles prédictions, il est nécessaire de comprendre comment le désordre structural du matériau influe sur le comportement d'une fissure. Dans cette optique, les surfaces de rupture représentent un champ d'investigation très prometteur. À travers une étude portant sur divers matériaux hétérogènes, nous caractérisons les propriétés statistiques de leur rugosité et déterminons dans quelle mesure elles sont indépendantes du matériau. Nous montrons notamment que les surfaces de rupture présentent des propriétés d'invariance d'échelle anisotropes, caractérisées par deux exposants universels. Étudiant ensuite une céramique de verre, matériau hétérogène modèle dont on peut contrôler la microstructure, on montre qu'il existe une seconde classe de surfaces de rupture caractérisée par la même structure anisotrope mais présentant des exposants plus faibles. Utilisant enfin des outils théoriques issus de la physique statistique hors équilibre combinés avec la mécanique de la rupture, nous établissons le lien entre ces propriétés et les mécanismes généraux de rupture à l'échelle microscopique. Cette étude nous permet notamment d'associer les deux classes de surfaces de rupture à un processus de fissuration mettant en jeux de l'endommagement pour l'un et à une rupture parfaitement fragile pour l'autre.
NASA Astrophysics Data System (ADS)
Comte, D.; Farias, M.; Charrier, R.; Gonzalez, A.
2008-12-01
Most of the seismological research in the Andes has been mainly oriented to the detection and understanding of the seismicity associated with megathrust earthquakes that characterize the subduction environment that governs the Andean tectonics. However, deployments of temporary networks have allowed the detection of intense crustal seismicity beneath the Chilean forearc-arc region. The temporary seismic network deployed along the Las Leñas and Pangal river valleys (34°25'S), between January and May 2004 permitted to better constrain the abundant shallow intra-continental seismicity previously detected in that region. Although most of the seismicity is randomly distributed in the region, several microearthquakes occur along the trace of the major El Fierro fault-system. This system is well recognized between 33°30' and 35°15'S and is located at or close to the eastern contact between Mesozoic and Cenozoic deposits in the Principal Cordillera and, locally, below active volcanoes, being considered to have participated in the extension and tectonic inversion of a widely extended (>600 km long) Cenozoic basin along the Principal Cordillera. Further south, at 35°S, a Mw=6.5 strike-slip shallow earthquake occurred on August 28, 2004, near of the headwater of the Teno river, close to the Planchon volcano. A 3D detailed Vp and Vs velocities determination was obtained along the 2004 earthquake aftershock area. The aftershocks are distributed along one branch of the El Fierro fault system, with a NNE-SSW direction and depths lower than 15 km. The rupture zone coincides with a sharp contrast in Vp and Vs, also in coincidence with the presence of hydrothermal fluids, gypsum diapers and the volcanic arc, suggesting rheological contrast controlling deformation. At the surface, this zone present an intense contractive deformation produced during the Neogene, which differs from what can be observed in other regions. Present day deformation related to seismicity has no deformation related at the surface, maybe because of large landsliding that could hide surface rupture. However, the presence of these mass wasting phenomena suggests that rupture propagation to the surface is more diffusive, being accommodated by a wide microfracturing and thus not showing appreciable slip. Such a kind of features has been also observed in northern Chile and near Santiago. Both situations differ from what has been commonly assumed for crustal deformation, and therefore they should be studied critically. One alternative to explain this kind of ruptures could be related to the fact that fluid and heat in this zone are larger than in other crustal fault systems. The relation between fluid, heat and seismicity along the Andes is one of the main goals of the ACT-18 PBCT project.
NASA Astrophysics Data System (ADS)
Milliner, C. W. D.; Burgmann, R.; Wang, T.; Inbal, A.; Bekaert, D. P.; Liang, C.; Fielding, E. J.
2017-12-01
Separating the contribution of shallow coseismic slip from rapidly decaying, postseismic afterslip in surface rupturing events has been difficult to resolve due to the typically sparse configuration of GPS networks and long-repeat time of InSAR acquisitions. Whether shallow fault motion along surface ruptures is a result of coseismic slip, or largely a product of rapid afterslip occurring within the first minutes to days, has significant implications for our understanding of the mechanics and frictional behavior of faulting in the shallow crust. To test this behavior in the case of a major surface rupturing event, we attempt to quantify the co- and postseismic slip of the 2016 Mw 7.1 Kumamoto earthquake sequence using a dense and continuous GPS network ( 10 km spacing), with short-repeat time, ALOS-2 InSAR data. Using the Network Inversion Filter method, we jointly invert the GPS and InSAR data to obtain a time history of afterslip in the first minutes to months following the mainshock. From our initial results, we find no clear evidence of significant shallow afterslip (i.e., no observable slip > 30 cm at depths of < 3 km, a minimum resolvable value), that could account for the 1 m of coseismic deficit of shallow slip inferred from our static finite-fault inversion. Our results show, aside from significant volumetric changes related to poroelastic processes, the majority of shallow fault slip was largely complete after rupture cessation. We also attempt to improve our coseismic slip model by implementing a method that inverts changes in seismicity rates for coseismic slip, helping constrain parts of the model space at depth where geodetic data loses resolving power. The use of geodetic data with the ability to resolve near-field, coseismic deformation and rapidly decaying postseismic processes will aid in our understanding of the frictional properties of shallow faulting, giving more reliable predictions for ground motion simulations and seismic hazard assessments.
NASA Astrophysics Data System (ADS)
Lin, Y. N.; Chen, Y.; Ota, Y.
2003-12-01
A large earthquake (M 7.0) took place in Miaoli area, western Taiwan on April 21st, 1935. Right to its south is the 1999 Chi-Chi earthquake fault, indicating it is not only tectonically but seismically active. As the previous study, the study area is located in the mature zone of a tectonic collision that occurred between Philippine sea Plate and Eurasia continental Plate. The associated surface ruptures of 1935 earthquake daylighted Tungtsichiao Fault, a tear fault trending NE in the south and Chihhu Fault, a back thrust trending N-S in the north, but no ruptures occurred in between. Strike-slip component was identified by the horizontal offset observed along Tungtsichiao Fault; however, there are still disputes on the reported field evidence. Our purposes are (1) to identify the structural behaviors of these two faults, (2) to find out what the seismogenic structure is, and (3) to reconstruct the regional geology by information given by this earthquake. By DEM interpretation and field survey, we can clearly recognize a lot of the 1935 associated features. In the west of Chihhu Fault, a series of N-S higher terraces can be identified with eastward tilted surfaces and nearly 200 m relative height. Another lower terrace is also believed being created during the 1935 earthquake, showing an east-facing scarp with a height of ca. 1.5~2 m. Outcrop investigation reveals that the late-Miocene bedrock has been easterly thrusted over the Holocene conglomerates, indicating a west-dipping fault plane. The Tungtsichiao Fault cuts through a lateritic terrace at Holi, which is supposed developed in Pleistocene. The fault scarp is only discernible in the northeastern ending. Other noticeable features are the fault related antiforms that line up along the surface rupture. There is no outcrop to show the fault geometry among bedrocks. We re-interpret the northern Chihhu Fault as the back thrust generated from a main subsurface detachment, which may be the actual seismogenic fault. Due to the bend geometry normally existing between ramp and detachment, stress accumulated and earthquake happened right on it. The fault tip of this main thrust may be blind on land or break out offshore, which explains why no surface ruptures related to the main thrust were found.
Nawasreh, Zakariya; Logerstedt, David; Failla, Mathew; Snyder-Mackler, Lynn
2017-10-27
Manual perturbation training improves dynamic knee stability and functional performance after anterior cruciate ligament rupture (ACL-rupture). However, it is limited to static standing position and does not allow time-specific perturbations at different phase of functional activities. The purpose of this study was to investigate whether administering mechanical perturbation training including compliant surface provides effects similar to manual perturbation training on knee functional measures after an acute ACL-rupture. Sixteen level I/II athletes with ACL-ruptures participated in this preliminary study. Eight patients received mechanical (Mechanical) and eight subjects received manual perturbation training (Manual). All patients completed a functional testing (isometric quadriceps strength, single-legged hop tests) and patient-reported measures (Knee Outcome Survey-Activities of Daily Living Scale (KOS-ADLS), Global Rating Score (GRS), International Knee Documentation Committee 2000 (IKDC 2000) at pre- and post-training. 2 × 2 ANOVA was used for data analysis. No significant group-by-time interactions were found for all measures (p > 0.18). Main effects of time were found for single hop (Pre-testing: 85.14% ± 21.07; Post-testing: 92.49% ± 17.55), triple hop (Pre-testing: 84.64% ± 14.17; Post-testing: 96.64% ± 11.14), KOS-ADLS (Pre-testing: 81.13% ± 11.12; Post-testing: 88.63% ± 12.63), GRS (Pre-testing: 68.63% ± 15.73; Post-testing: 78.81% ± 13.85), and IKDC 2000 (Pre-testing: 66.66% ± 9.85; Post-testing: 76.05% ± 14.62) (p < 0.032). Administering mechanical perturbation training using compliant surfaces induce effects similar to manual perturbation training on knee functional performance after acute ACL-rupture. The clinical significance is both modes of training improve patients' functional-performance and limb-to-limb movement symmetry, and enhancing the patients' self-reported of knee functional measures after ACL rupture. Mechanical perturbation that provides a compliant surface might be utilized as part of the ACL rehabilitation training. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Evaporation-driven instability of the precorneal tear film.
Peng, Cheng-Chun; Cerretani, Colin; Braun, Richard J; Radke, C J
2014-04-01
Tear-film instability is widely believed to be a signature of eye health. When an interblink is prolonged, randomly distributed ruptures occur in the tear film. "Black spots" and/or "black streaks" appear in 15 to 40 s for normal individuals. For people who suffer from dry eye, tear-film breakup time (BUT) is typically less than a few seconds. To date, however, there is no satisfactory quantitative explanation for the origin of tear rupture. Recently, it was proposed that tear-film breakup is related to locally high evaporative thinning. A spatial variation in the thickness of the tear-film lipid layer (TFLL) may lead to locally elevated evaporation and subsequent tear-film breakup. We examine the local-evaporation-driven tear-film-rupture hypothesis in a one-dimensional (1-D) model for the evolution of a thin aqueous tear film overriding the cornea subject to locally elevated evaporation at its anterior surface and osmotic water influx at its posterior surface. Evaporation rate depends on mass transfer both through the coating lipid layer and through ambient air. We establish that evaporation-driven tear-film breakup can occur under normal conditions but only for higher aqueous evaporation rates. Predicted roles of environmental conditions, such as wind speed and relative humidity, on tear-film stability agree with clinical observations. More importantly, locally elevated evaporation leads to hyperosmolar spots in the tear film and, hence, vulnerability to epithelial irritation. In addition to evaporation rate, tear-film instability depends on the strength of healing flow from the neighboring region outside the breakup region, which is determined by the surface tension at the tear-film surface and by the repulsive thin-film disjoining pressure. This study provides a physically consistent and quantitative explanation for the formation of black streaks and spots in the human tear film during an interblink. Copyright © 2013 Elsevier B.V. All rights reserved.
Slow rupture of frictional interfaces
NASA Astrophysics Data System (ADS)
Bar Sinai, Yohai; Brener, Efim A.; Bouchbinder, Eran
2012-02-01
The failure of frictional interfaces and the spatiotemporal structures that accompany it are central to a wide range of geophysical, physical and engineering systems. Recent geophysical and laboratory observations indicated that interfacial failure can be mediated by slow slip rupture phenomena which are distinct from ordinary, earthquake-like, fast rupture. These discoveries have influenced the way we think about frictional motion, yet the nature and properties of slow rupture are not completely understood. We show that slow rupture is an intrinsic and robust property of simple non-monotonic rate-and-state friction laws. It is associated with a new velocity scale cmin, determined by the friction law, below which steady state rupture cannot propagate. We further show that rupture can occur in a continuum of states, spanning a wide range of velocities from cmin to elastic wave-speeds, and predict different properties for slow rupture and ordinary fast rupture. Our results are qualitatively consistent with recent high-resolution laboratory experiments and may provide a theoretical framework for understanding slow rupture phenomena along frictional interfaces.
Pulsed strain release on the Altyn Tagh fault, northwest China
Gold, Ryan D.; Cowgill, Eric; Arrowsmith, J. Ramón; Friedrich, Anke M.
2017-01-01
Earthquake recurrence models assume that major surface-rupturing earthquakes are followed by periods of reduced rupture probability as stress rebuilds. Although purely periodic, time- or slip-predictable rupture models are known to be oversimplifications, a paucity of long records of fault slip clouds understanding of fault behavior and earthquake recurrence over multiple ruptures. Here, we report a 16 kyr history of fault slip—including a pulse of accelerated slip from 6.4 to 6.0 ka—determined using a Monte Carlo analysis of well-dated offset landforms along the central Altyn Tagh strike-slip fault (ATF) in northwest China. This pulse punctuates a median rate of 8.1+1.2/−0.9 mm/a and likely resulted from either a flurry of temporally clustered ∼Mw 7.5 ground-rupturing earthquakes or a single large >Mw 8.2 earthquake. The clustered earthquake scenario implies rapid re-rupture of a fault reach >195 km long and indicates decoupled rates of elastic strain energy accumulation versus dissipation, conceptualized as a crustal stress battery. If the pulse reflects a single event, slip-magnitude scaling implies that it ruptured much of the ATF with slip similar to, or exceeding, the largest documented historical ruptures. Both scenarios indicate fault rupture behavior that deviates from classic time- or slip-predictable models.
Identification of vortex structures in a cohort of 204 intracranial aneurysms
Trylesinski, Gabriel; Xiang, Jianping; Snyder, Kenneth; Meng, Hui
2017-01-01
An intracranial aneurysm (IA) is a cerebrovascular pathology that can lead to death or disability if ruptured. Abnormal wall shear stress (WSS) has been associated with IA growth and rupture, but little is known about the underlying flow physics related to rupture-prone IAs. Previous studies, based on analysis of a few aneurysms or partial views of three-dimensional vortex structures, suggest that rupture is associated with complex vortical flow inside IAs. To further elucidate the relevance of vortical flow in aneurysm pathophysiology, we studied 204 patient IAs (56 ruptured and 148 unruptured). Using objective quantities to identify three-dimensional vortex structures, we investigated the characteristics associated with aneurysm rupture and if these features correlate with previously proposed WSS and morphological characteristics indicative of IA rupture. Based on the Q-criterion definition of a vortex, we quantified the degree of the aneurysmal region occupied by vortex structures using the volume vortex fraction (vVF) and the surface vortex fraction (sVF). Computational fluid dynamics simulations showed that the sVF, but not the vVF, discriminated ruptured from unruptured aneurysms. Furthermore, we found that the near-wall vortex structures co-localized with regions of inflow jet breakdown, and significantly correlated to previously proposed haemodynamic and morphologic characteristics of ruptured IAs. PMID:28539480
Identification of vortex structures in a cohort of 204 intracranial aneurysms.
Varble, Nicole; Trylesinski, Gabriel; Xiang, Jianping; Snyder, Kenneth; Meng, Hui
2017-05-01
An intracranial aneurysm (IA) is a cerebrovascular pathology that can lead to death or disability if ruptured. Abnormal wall shear stress (WSS) has been associated with IA growth and rupture, but little is known about the underlying flow physics related to rupture-prone IAs. Previous studies, based on analysis of a few aneurysms or partial views of three-dimensional vortex structures, suggest that rupture is associated with complex vortical flow inside IAs. To further elucidate the relevance of vortical flow in aneurysm pathophysiology, we studied 204 patient IAs (56 ruptured and 148 unruptured). Using objective quantities to identify three-dimensional vortex structures, we investigated the characteristics associated with aneurysm rupture and if these features correlate with previously proposed WSS and morphological characteristics indicative of IA rupture. Based on the Q -criterion definition of a vortex, we quantified the degree of the aneurysmal region occupied by vortex structures using the volume vortex fraction ( vVF ) and the surface vortex fraction ( sVF ). Computational fluid dynamics simulations showed that the sVF , but not the vVF , discriminated ruptured from unruptured aneurysms. Furthermore, we found that the near-wall vortex structures co-localized with regions of inflow jet breakdown, and significantly correlated to previously proposed haemodynamic and morphologic characteristics of ruptured IAs. © 2017 The Author(s).
Wasatch fault zone, Utah - segmentation and history of Holocene earthquakes
Machette, Michael N.; Personius, Stephen F.; Nelson, Alan R.; Schwartz, David P.; Lund, William R.
1991-01-01
The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. The authors have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a-1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of <0.5 mm a-1, recurrence intervals of ???10,000 years and average lengths of about 20 km. Surface-faulting events on each of the medial segments of the WFZ formed 2-4-m-high scarps repeatedly during the Holocene. Paleoseismological records for the past 6000 years indicate that a major surface-rupturing earthquake has occurred along one of the medial segments about every 395 ?? 60 years. However, between about 400 and 1500 years ago, the WFZ experienced six major surface-rupturing events, an average of one event every 220 years, or about twice as often as expected from the 6000-year record. Evidence has been found that surface-rupturing events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval.
Is the co-seismic slip distribution fractal?
NASA Astrophysics Data System (ADS)
Milliner, Christopher; Sammis, Charles; Allam, Amir; Dolan, James
2015-04-01
Co-seismic along-strike slip heterogeneity is widely observed for many surface-rupturing earthquakes as revealed by field and high-resolution geodetic methods. However, this co-seismic slip variability is currently a poorly understood phenomenon. Key unanswered questions include: What are the characteristics and underlying causes of along-strike slip variability? Do the properties of slip variability change from fault-to-fault, along-strike or at different scales? We cross-correlate optical, pre- and post-event air photos using the program COSI-Corr to measure the near-field, surface deformation pattern of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes in high-resolution. We produce the co-seismic slip profiles of both events from over 1,000 displacement measurements and observe consistent along-strike slip variability. Although the observed slip heterogeneity seems apparently complex and disordered, a spectral analysis reveals that the slip distributions are indeed self-affine fractal i.e., slip exhibits a consistent degree of irregularity at all observable length scales, with a 'short-memory' and is not random. We find a fractal dimension of 1.58 and 1.75 for the Landers and Hector Mine earthquakes, respectively, indicating that slip is more heterogeneous for the Hector Mine event. Fractal slip is consistent with both dynamic and quasi-static numerical simulations that use non-planar faults, which in turn causes heterogeneous along-strike stress, and we attribute the observed fractal slip to fault surfaces of fractal roughness. As fault surfaces are known to smooth over geologic time due to abrasional wear and fracturing, we also test whether the fractal properties of slip distributions alters between earthquakes from immature to mature fault systems. We will present results that test this hypothesis by using the optical image correlation technique to measure historic, co-seismic slip distributions of earthquakes from structurally mature, large cumulative displacement faults and compare these slip distributions to those from immature fault systems. Our results have fundamental implications for an understanding of slip heterogeneity and the behavior of the rupture process.
Slip model of the 2015 Mw 7.8 Gorkha (Nepal) earthquake from inversions of ALOS-2 and GPS data
NASA Astrophysics Data System (ADS)
Wang, Kang; Fialko, Yuri
2015-09-01
We use surface deformation measurements including Interferometric Synthetic Aperture Radar data acquired by the ALOS-2 mission of the Japanese Aerospace Exploration Agency and Global Positioning System (GPS) data to invert for the fault geometry and coseismic slip distribution of the 2015 Mw 7.8 Gorkha earthquake in Nepal. Assuming that the ruptured fault connects to the surface trace of the Main Frontal Thrust (MFT) fault between 84.34°E and 86.19°E, the best fitting model suggests a dip angle of 7°. The moment calculated from the slip model is 6.08 × 1020 Nm, corresponding to the moment magnitude of 7.79. The rupture of the 2015 Gorkha earthquake was dominated by thrust motion that was primarily concentrated in a 150 km long zone 50 to 100 km northward from the surface trace of the Main Frontal Thrust (MFT), with maximum slip of ˜ 5.8 m at a depth of ˜8 km. Data thus indicate that the 2015 Gorkha earthquake ruptured a deep part of the seismogenic zone, in contrast to the 1934 Bihar-Nepal earthquake, which had ruptured a shallow part of the adjacent fault segment to the east.
Faulting, Seismicity and Stress Interaction in the Salton Sea Region of Southern California
NASA Astrophysics Data System (ADS)
Kilb, D. L.; Brothers, D. S.; Lin, G.; Kent, G.; Newman, R. L.; Driscoll, N.
2009-12-01
The Salton Sea region in southern California provides an ideal location to study the relationship between transcurrent and extensional motion in the northern Gulf of California margin, allowing us to investigate the spatial and temporal interaction of faults in the area and better understand their kinematics. In this region, the San Andreas Fault (SAF) and Imperial Fault present two major transform faults separated by the Salton Sea transtensional domain. Earthquakes over magnitude 4 in this area almost always have associated aftershock sequences. Recent seismic reflection surveys in the Salton Sea reveal that the majority of faults under the southern Salton Sea trend ~N15°E, appear normal-dominant and have very minimal associated microseismicity. These normal faults rupture every 100-300 years in large earthquakes and most of the nearby microseismicity locates east of the mapped surface traces. For example, there is profuse microseismicity in the Brawley Seismic Zone (BSZ), which is coincident with the southern terminus of the SAF as it extends offshore into the Salton Sea. Earthquakes in the BSZ are dominantly swarm-like, occurring along short (<5 km) ~N45°E oriented sinistral and N35°W oriented dextral fault planes. This mapped seismicity makes a rung-and-ladder pattern. In an effort to reconcile differences between processes at the surface and those at seismogenic depths we integrate near surface fault kinematics, geometry and paleoseismic history with seismic data. We identify linear and planer trends in these data (20 near surface faults, >20,000 relocated earthquakes and >2,000 earthquake focal mechanisms) and when appropriate estimate the fault strike and dip using principal component analysis. With our more detailed image of the fault structure we assess how static stress changes imparted by magnitude ~6.0 ruptures along N15E oriented normal faults beneath the Salton Sea can modulate the stress field in the BSZ and along the SAF. These tests include exploring sensitivity of the results to parameter uncertainties. In general, we find rupture of the normal faults produces a butterfly pattern of static stress changes on the SAF with decreases along the southernmost portion below latitude 33.3±0.1 and increases on segments above these latitudes. Additionally, simulated ruptures on the normal faults predict optimally oriented sinistral faults that align with the “rungs” in the BSZ and optimally oriented dextral faults that are parallel to the SAF. Given these observations and results, we favor the scenario that normal faults beneath the Salton Sea accommodate most of the strain budget, rupturing as magnitude ~6.0-6.6 events every 100 years or so, and the consequent stress field generated within the relatively weak crust shapes the orientation of the short faults in the BSZ.
Interfacial thin films rupture and self-similarity
NASA Astrophysics Data System (ADS)
Ward, Margaret H.
2011-06-01
Two superposed thin layers of fluids are prone to interfacial instabilities due to London-van der Waals forces. Evolution equations for the film thicknesses are derived using lubrication theory. Using the intrinsic scales, for a single layer, results in a system with parametric dependence of four ratios of the two layers: surface tension, Hamaker constant, viscosity, and film thickness. In contrast to the single layer case, the bilayer system has two unstable eigenmodes: squeezing and bending. For some particular parameter regimes, the system exhibits the avoided crossing behavior, where the two eigenmodes are interchanged. Based on numerical analysis, the system evolves into four different rupture states: basal layer rupture, upper layer rupture, double layer rupture, and mixed layer rupture. The ratio of Hamaker constants and the relative film thickness of the two layers control the system dynamics. Remarkably, the line of avoided crossing demarks the transition region of mode mixing and energy transfer, affecting the scaling of the dynamical regime map consequentially. Asymptotic and numerical analyses are used to examine the self-similar ruptures and to extract the power law scalings for both the basal layer rupture and the upper layer rupture. The scaling laws for the basal layer rupture are the same as those of the single layer on top of a substrate. The scaling laws for the upper layer rupture are different: the lateral length scale decreases according to (tr-t)1/3 and the film thickness decreases according to (tr-t)1/6.
Lyon, J A; Haynes, J D; Diggs, C L; Chulay, J D; Pratt-Rossiter, J M
1986-03-15
Some immune sera that inhibit erythrocyte invasion by merozoites also agglutinate the merozoites as they emerge from rupturing schizonts. These immune clusters of merozoites (ICM) possess a surface coat that is cross-linked by antibody and is thicker than the surface coat associated with normal merozoites (NM) obtained from cultures containing preimmune serum. Analysis of metabolically labeled ICM and NM performed by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that washed ICM possessed immune complexes containing antigens representative of schizonts and merozoites. Characteristics of the immune complexes included: a) they were not soluble in pH 8 Triton X-100, b) they were soluble at an acid pH, and c) after pH neutralization they were precipitated by using staphylococcal protein A. Merozoite antigens having Mr of 83, 73, and 45 kDa were associated with immune complexes in ICM. The 83 and 73 kDa antigens were recovered in considerably larger quantities from ICM than from NM. Schizont antigens having Mr of 230, 173 (triplet), 152 (doublet), and 31 kDa were associated with immune complexes in ICM, and a 195 kDa antigen(s) from schizonts and merozoites was also present in the immune complexes. In addition, other antigens of Mr 113, 101, 65, and 51 kDa may have been immune complexed. These 15 antigens accounted for less than 30% of the schizont and merozoite antigens recognized by the immune serum. Immune complexes probably formed between antibodies and a) surface antigens of schizont-infected erythrocytes exposed to antibody before schizont rupture, b) surface antigens of merozoites and schizonts exposed during schizont rupture, and c) soluble antigens normally released during schizont rupture. The antibody components of the immune complexes may have prevented rapid degradation or shedding of some antigens from the merozoite surface. Allowing schizonts to rupture in the presence of inhibitory antibodies (to form ICM) is a useful approach to identifying exposed targets of protective immunity against malaria.
Healing Rate of Swim Bladders in Rainbow Trout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bellgraph, Brian J.; Brown, Richard S.; Stephenson, John R.
2008-12-01
The swimbladders of juvenile rainbow trout Onchorhynchus mykiss were ruptured and subsequently observed for 28 days to identify healing patterns of swimbladder wounds and the effects of swimbladder rupture on direct mortality. Healing began within seven days, wounds were completely closed after 14 days, and no mortalities occurred. The healing process followed a pattern in which tissue first thickened around the opening (7 to 14 days), followed by scarring of the ruptured area, and disappearance of any evidence of the wound (21 to 28 days). The healing observed in juvenile rainbow trout swimbladders suggests that swimbladder rupture does not resultmore » in direct mortality as was hypothesized; however, the indirect effects of swimbladder injury (e.g., a decreased ability to swim efficiently) may lead to mortality by predation or other natural phenomena that were not observable in this study.« less
NASA Astrophysics Data System (ADS)
Lee, Y. S.; Almeida, R. V.; Hubbard, J.; Liberty, L. M.; Foster, A. E.; Sapkota, S. N.
2017-12-01
The foreland fold and thrust belt in the Nepal Himalaya has developed over the last 2 My (Mugnier et al., 2004; Van der Beek et al., 2006), and is generally referred to as the Main Frontal Thrust system (MFT; Gansser, 1964). The thrust faults there are spaced 5-30 km apart. Where the faults are furthest from each other, they create piggy-back basins, known as "dun" valleys in the Himalaya. The easternmost of these basins in Nepal is the Triyuga river valley, a 35 km wide basin where the range front abruptly steps 15 km to the south. This dun valley is thought to be the youngest of Nepal, initiating in the Late Pleistocene (Kimura, 1999). In order to understand the sub-surface structure and development of the Triyuga Valley, we analyse high resolution seismic reflection profiles across the three basin-surrounding structures, as well as a north-south profile across the basin proper, in combination with field observations. These datasets reveal that the edges of the forward step are defined by three orthogonal thrust fronts, with abrupt changes in vergence direction. Sharp geometric changes along the range front may have implications for the propagation of earthquakes along the MFT. The surface rupture of the Nepal-Bihar 1934 earthquake was inferred to go around this thrust front (Sapkota et al., 2013), however field observations suggest that although past earthquakes have likely ruptured the surface here, these faults did not slip in 1934. Further, analogue models suggest that the filling of the basin with sediments may affect the activation of out of sequence thrusts (Toscani et al., 2014). This is consistent with field evidence of Quaternary reactivation of the Main Boundary Thrust north of the Triyuga Valley. We also compare these seismic profiles to one across the Jalthal anticline, an incipient structure forming 50 km south of the range front in easternmost Nepal (a section thought to have ruptured in 125; Nakata et al., 1998). We suggest that this may be an incipient break forward of the MFT, and represent a window into the earliest stage of dun valley formation. These observations indicate a complex MFT system, where out-of-sequence thrusting is more common than presently inferred, which in turn complicates the estimation of seismic hazard.
NASA Astrophysics Data System (ADS)
Kolawole, F.; Ismail, A. M.; Pickens, C. M.; Beckendorff, D.; Mayle, M. V.; Goussi, J. F.; Nyalugwe, V.; Aghayan, A.; Tim, S.; Atekwana, E. A.
2016-12-01
To date, the Mw 5.8 Pawnee, Oklahoma, earthquake on September 3, 2016 produced the largest moment release in the central and eastern United States, linked to saline waste water injection into the underlying formations. This earthquake occurred in a region of complex fault interactions, and typical of most of the earthquake activity in Oklahoma the earthquake ruptured a previously unknown left-lateral strike-slip fault striking 109°. Moreover, unlike the 2011 Mw 5.7 Prague, Oklahoma earthquake, the Pawnee earthquake produced surface deformation including fractures and liquefaction features. In this study, we use high resolution electrical resistivity, ground penetrating radar (GPR) and surface fracture mapping to image the zones of surface disruption. Our objective was to report some of the near-surface deformations that are associated with the recent earthquake and compare them with deep structures. We selected two sites for this study. We observed linear fractures and liquefaction at the first site which is 5 km away from the earthquake epicenter, while the second site, 7.5 km away from the epicenter, showed mostly curvilinear fractures. The resistivity and GPR sections showed indication of saturated sediments at about 2 m - 5 m below ground surface and settlement-sag structure within the liquefaction dominated area, and less saturated sediments in areas dominated by fractures only. GPS mapping of fractures at the first site revealed a pattern of en-echelon fractures oriented 93°-116°, sub-parallel to the orientation of the slip direction of the earthquake, while the fractures at the second site trend along the bank of a river meander. We infer that the liquefaction was enhanced by the occurrence of loose, wet, fluvial deposits of the Arkansas River flood plain and adequate near-surface pore pressure at the liquefaction dominated areas. Our results suggest the greater influence of surface morphological heterogeneity on the ruptures farther away from the epicenter, while the relationship between the deep structures, displacement kinematics and the linear fractures closer to the epicenter are unclear. We conclude that high resolution geophysical imaging can be used as a rapid response tool for evaluating areas susceptible to failure during earthquakes and can help improve hazard mitigation measures.
Endocytic vesicle rupture is a conserved mechanism of cellular invasion by amyloid proteins.
Flavin, William P; Bousset, Luc; Green, Zachary C; Chu, Yaping; Skarpathiotis, Stratos; Chaney, Michael J; Kordower, Jeffrey H; Melki, Ronald; Campbell, Edward M
2017-10-01
Numerous pathological amyloid proteins spread from cell to cell during neurodegenerative disease, facilitating the propagation of cellular pathology and disease progression. Understanding the mechanism by which disease-associated amyloid protein assemblies enter target cells and induce cellular dysfunction is, therefore, key to understanding the progressive nature of such neurodegenerative diseases. In this study, we utilized an imaging-based assay to monitor the ability of disease-associated amyloid assemblies to rupture intracellular vesicles following endocytosis. We observe that the ability to induce vesicle rupture is a common feature of α-synuclein (α-syn) assemblies, as assemblies derived from WT or familial disease-associated mutant α-syn all exhibited the ability to induce vesicle rupture. Similarly, different conformational strains of WT α-syn assemblies, but not monomeric or oligomeric forms, efficiently induced vesicle rupture following endocytosis. The ability to induce vesicle rupture was not specific to α-syn, as amyloid assemblies of tau and huntingtin Exon1 with pathologic polyglutamine repeats also exhibited the ability to induce vesicle rupture. We also observe that vesicles ruptured by α-syn are positive for the autophagic marker LC3 and can accumulate and fuse into large, intracellular structures resembling Lewy bodies in vitro. Finally, we show that the same markers of vesicle rupture surround Lewy bodies in brain sections from PD patients. These data underscore the importance of this conserved endocytic vesicle rupture event as a damaging mechanism of cellular invasion by amyloid assemblies of multiple neurodegenerative disease-associated proteins, and suggest that proteinaceous inclusions such as Lewy bodies form as a consequence of continued fusion of autophagic vesicles in cells unable to degrade ruptured vesicles and their amyloid contents.
The Wasatch fault zone, utah—segmentation and history of Holocene earthquakes
NASA Astrophysics Data System (ADS)
Machette, Michael N.; Personius, Stephen F.; Nelson, Alan R.; Schwartz, David P.; Lund, William R.
The Wasatch fault zone (WFZ) forms the eastern boundary of the Basin and Range province and is the longest continuous, active normal fault (343 km) in the United States. It underlies an urban corridor of 1.6 million people (80% of Utah's population) representing the largest earthquake risk in the interior of the western United States. We have used paleoseismological data to identify 10 discrete segments of the WFZ. Five are active, medial segments with Holocene slip rates of 1-2 mm a -1, recurrence intervals of 2000-4000 years and average lengths of about 50 km. Five are less active, distal segments with mostly pre-Holocene surface ruptures, late Quaternary slip rates of <0.5 mm a -1 recurrence intervals of ≥10,000 years and average lengths of about 20 km. Surface-faulting events on each of the medial segments of the WFZ formed 2-4-m-high scarps repeatedly during the Holocene; latest Pleistocene (14-15 ka) deposits commonly have scarps as much as 15-20 m in height. Segments identified from paleoseismological studies of other major late Quaternary normal faults in the northern Basin and Range province are 20-25 km long, or about half of that proposed for the medial segments of the WFZ. Paleoseismological records for the past 6000 years indicate that a major surface-rupturing earthquake has occurred along one of the medial segments about every 395 ± 60 years. However, between about 400 and 1500 years ago, the WFZ experienced six major surface-rupturing events, an average of one event every 220 years, or about twice as often as expected from the 6000-year record. This pattern of temporal clustering is similar to that of the central Nevada—eastern California Seismic Belt in the western part of the Basin and Range province, where 11 earthquakes of M > 6.5 have occurred since 1860. Although the time scale of the clustering is different—130 years vs 1100 years—we consider the central Nevada—eastern California Seismic Belt to be a historic analog for movement on the WFZ during the past 1500 years. We have found no evidence that surface-rupturing events occurred on the WFZ during the past 400 years, a time period which is twice the average intracluster recurrence interval and equal to the average Holocene recurrence interval. In particular, the Brigham City segment (the northernmost medial segment) has not ruptured in the past 3600 years—a period that is about three times longer than this segment's average recurrence interval during the early and middle Holocene. Although the WFZ's seismological record is one of relative quiescence, a comparison with other historic surface-rupturing earthquakes in the region suggests that earthquakes having moment magnitudes of 7.1-7.4 (or surface-wave magnitudes of 7.5-7.7)—each associated with tens of kilometers of surface rupture and several meters of normal dip slip—have occurred about every four centuries during the Holocene and should be expected in the future.
NASA Astrophysics Data System (ADS)
Li, Ming-Lung; Wang, Yi-Chou; Liou, Tong-Miin; Lin, Chao-An
2014-10-01
Precise locations of rupture region under contrast agent leakage of five ruptured cerebral artery aneurysms during computed tomography angiography, which is to our knowledge for the first time, were successfully identified among 101 patients. These, together with numerical simulations based on the reconstructed aneurysmal models, were used to analyze hemodynamic parameters of aneurysms under different cardiac cyclic flow rates. For side wall type aneurysms, different inlet flow rates have mild influences on the shear stresses distributions. On the other hand, for branch type aneurysms, the predicted wall shear stress (WSS) correlates strongly with the increase of inlet vessel velocity. The mean and time averaged WSSes at rupture regions are found to be lower than those over the surface of the aneurysms. Also, the levels of the oscillatory shear index (OSI) are higher than the reported threshold value, supporting the assertion that high OSI correlates with rupture of the aneurysm. However, the present results also indicate that OSI level at the rupture region is relatively lower.
NASA Astrophysics Data System (ADS)
Dalguer, L. A.; Baumann, C.; Cauzzi, C.
2013-12-01
Empirical ground motion prediction in the very near-field and for large magnitudes is often based on extrapolation of ground motion prediction equations (GMPEs) outside the range where they are well constrained by recorded data. With empirical GMPEs it is also difficult to capture source-dominated ground motion patterns, such as the effects of velocity pulses induced by subshear and supershear rupture directivity, buried and surface-rupturing, hanging-wall and foot-wall, weak shallow layers, complex geometry faults and stress drop. A way to cope at least in part with these shortcomings is to augment the calibration datasets with synthetic ground motions. To this aim, physics-based dynamic rupture models - where the physical bases involved in the fault rupture are explicitly considered - appear to be a suitable approach to produce synthetic ground motions. In this contribution, we first perform an assessment of a database of synthetic ground motions generated by a suite of dynamic rupture simulations to verify compatibility of the peak ground amplitudes with current GMPEs. The synthetic data-set is composed by 360 earthquake scenarios with moment magnitudes in the range of 5.5-7, for three mechanisms of faulting (reverse, normal and strike-slip) and for both buried faults and surface rupturing faults. Second, we parameterise the synthetic dataset through a GMPE. For this purpose, we identify the basic functional forms by analyzing the variation of the synthetic peak ground motions and spectral ordinates as a function of different explanatory variables related to the earthquake source characteristics, in order to account for some of the source effects listed above. We argue that this study provides basic guidelines for the developments of future GMPEs including data from physics-based numerical simulations.
Spontaneous tendon rupture in systemic lupus erythematosus: association with Jaccoud's arthropathy.
Alves, E M; Macieira, J C; Borba, E; Chiuchetta, F A; Santiago, M B
2010-03-01
Tendon rupture has rarely been described in patients with systemic lupus erythematosus. From observation of three cases of Jaccoud's arthropathy with tendon rupture, and considering that this arthropathy is more related to an inflammatory process of the tendon sheath than to synovitis per se, the intention of this study was to review the cases of tendon rupture in patients with systemic lupus erythematosus, in the hope of determining the frequency of Jaccoud's arthropathy associated with this complication. Systematic review using MEDLINE, Scielo and LILACS databases (1966 to 2009) and the following keywords: systemic lupus erythematosus, tendon rupture, Jaccoud's arthropathy. Secondary references were additionally obtained. Additionally, three Brazilian systemic lupus erythematosus patients who developed tendon rupture are described. Only 40 articles obtained fulfilled the previously established criteria. They were all case reports; the number of cases reported was 52 which, together with the three cases presented herein add up to 55 cases. Forty-six patients were women aged between 19 and 71 years, with a mean age of 40.1 +/- 12.4 years, and the average duration of the disease was 10 years. The most frequently observed rupture sites were the patellar and Achilles' tendons. While almost all patients described were on various doses of corticosteroids, 16 patients concomitantly had Jaccoud's arthropathy (29%). In conclusion, the association between Jaccoud's arthropathy and tendon rupture in systemic lupus erythematosus has been underestimated. As almost one-third of the systemic lupus erythematosus patients with tendon rupture also have Jaccoud's arthropathy, this arthropathy may be recognized as risk marker for tendon rupture.
NASA Astrophysics Data System (ADS)
Fielding, E. J.; Huang, M. H.; Dickinson, H.; Freed, A. M.; Burgmann, R.; Gonzalez-Ortega, J. A.; Andronicos, C.
2016-12-01
The 4 April 2010 Mw 7.2 El Mayor-Cucapah (EMC) Earthquake ruptured about 120 km along several NW-striking faults to the west of the Cerro Prieto Fault in the Salton Trough of Baja California, Mexico. We analyzed interferometric synthetic aperture radar (SAR), SAR and optical pixel offsets, and continuous and campaign GPS data to optimize an EMC coseismic rupture model with 9 fault segments, which fits the complex structure of the faults. Coseismic slip inversion with a layered elastic model shows that largely right-lateral slip is confined to upper 10 km with strong variations along strike. Near-field GPS measures slip on a north-striking normal fault that ruptured at the beginning of the earthquake, previously inferred from seismic waveforms. EMC Earthquake postseismic deformation shows the Earth's response to the large coseismic stress changes. InSAR shows rapid shallow afterslip at the north and south ends of the main ruptures. Continuous GPS from the Plate Boundary Observatory operated by UNAVCO measures the first six years of postseismic deformation, extremely rapid near the rupture. Afterslip on faults beneath the coseismic rupture cannot explain far-field displacements that are best explained by viscoelastic relaxation of the lower crust and upper mantle. We built a viscoelastic 3D finite element model of the lithosphere and asthenosphere based on available data for the region with the EMC coseismic faults embedded inside. Coseismic slip was imposed on the model, allowed to relax for 5 years, and then compared to the observed surface deformation. Systematic exploration of the viscoelastic parameters shows that horizontal and vertical heterogeneity is required to fit the postseismic deformation. Our preferred viscoelastic model has weaker viscosity layers beneath the Salton Trough than adjacent blocks that are consistent with the inferred differences in the geotherms. Defining mechanical lithosphere as rocks that have viscosities greater than 10^19 Pa s (able to sustain stresses for more than 100 years), we infer the thickness of lithosphere beneath the Salton Trough to be 32 km and 65 km beneath the Peninsula Ranges to the west. These mechanical lithosphere-asthenosphere boundaries (LABs) are shallower than the observed seismic LABs, but probably better represent the strength of the blocks in this area.
NASA Astrophysics Data System (ADS)
Elbanna, A. E.
2013-12-01
Numerous field and experimental observations suggest that faults surfaces are rough at multiple scales and tend to produce a wide range of branch sizes ranging from micro-branching to large scale secondary faults. The development and evolution of fault roughness and branching is believed to play an important role in rupture dynamics and energy partitioning. Previous work by several groups has succeeded in determining conditions under which a main rupture may branch into a secondary fault. Recently, there great progress has been made in investigating rupture propagation on rough faults with and without off-fault plasticity. Nonetheless, in most of these models the heterogeneity, whether the roughness profile or the secondary faults orientation, was built into the system from the beginning and consequently the final outcome depends strongly on the initial conditions. Here we introduce an adaptive mesh technique for modeling mode-II crack propagation on slip weakening frictional interfaces. We use a Finite Element Framework with random mesh topology that adapts to crack dynamics through element splitting and sequential insertion of frictional interfaces dictated by the failure criterion. This allows the crack path to explore non-planar paths and develop the roughness profile that is most compatible with the dynamical constraints. It also enables crack branching at different scales. We quantify energy dissipation due to the roughening process and small scale branching. We compare the results of our model to a reference case for propagation on a planar fault. We show that the small scale processes of roughening and branching influence many characteristics of the rupture propagation including the energy partitioning, rupture speed and peak slip rates. We also estimate the fracture energy required for propagating a crack on a planar fault that will be required to produce comparable results. We anticipate that this modeling approach provides an attractive methodology that complements the current efforts in modeling off-fault plasticity and damage.
Analysis of Fan Waves in a Laboratory Model Simulating the Propagation of Shear Ruptures in Rocks
NASA Astrophysics Data System (ADS)
Tarasov, B. G.; Sadovskii, V. M.; Sadovskaya, O. V.
2017-12-01
The fan-shaped mechanism of rotational motion transmission in a system of elastically bonded slabs on flat surface, simulating the propagation of shear ruptures in super brittle rocks, is analyzed. Such ruptures appear in the Earth's crust at seismogenic depths. They propagate due to the nucleation of oblique tensile microcracks, leading to the formation of a fan domino-structure in the rupture head. A laboratory physical model was created which demonstrates the process of fan-structure wave propagation. Equations of the dynamics of rotational motion of slabs as a mechanical system with a finite number of degrees of freedom are obtained. Based on the Merson method of solving the Cauchy problem for systems of ordinary differential equations, the computational algorithm taking into account contact interaction of slabs is developed. Within the framework of a simplified mathematical model of dynamic behavior of a fan-shaped system in the approximation of a continuous medium, the approximate estimates of the length of a fan depending on the velocity of its motion are obtained. It is shown that in the absence of friction a fan can move with any velocity that does not exceed the critical value, which depends on the size, the moment of inertia of slabs, the initial angle and the elasticity coefficient of bonds. In the presence of friction a fan stops. On the basis of discrete and continuous models, the main qualitative features of the behavior of a fan-structure moving under the action of applied tangential forces, whose values in a laboratory physical model are regulated by a change in the inclination angle of the rupture plane, are analyzed. Comparison of computations and laboratory measurements and observations shows good correspondence between the results.
Could offset cluster reveal strong earthquake pattern?——case study from Haiyuan Fault
NASA Astrophysics Data System (ADS)
Ren, Z.; Zhang, Z.; Chen, T.; Yin, J.; Zhang, P. Z.; Zheng, W.; Zhang, H.; Li, C.
2016-12-01
Since 1990s, researchers tried to use offset clusters to study strong earthquake patterns. However, due to the limitation of quantity of offset data, it was not widely used until recent years with the rapid development of high-resolution topographic data, such as remote sensing images, LiDAR. In this study, we use airborne LiDAR data to re-evaluate the cumulative offsets and co-seismic offset of the 1920 Haiyuan Ms 8.5 earthquake along the western and middle segments of the co-seismic surface rupture zone. Our LiDAR data indicate the offset observations along both the western and middle segments fall into five groups. The group with minimum slip amount is associated with the 1920 Haiyuan Ms 8.5 earthquake, which ruptured both the western and middle segments. Our research highlights two new interpretations: firstly, the previously reported maximum displacement of the 1920 Earthquake is likely to be produced by at least two earthquakes; secondly, Our results reveal that the Cumulative Offset Probability Density (COPD) peaks of same offset amount on western segment and middles segment did not corresponding to each other one by one. The ages of the paleoearthquakes indicate the offsets are not accumulated during same period. We suggest that any discussion of the rupture pattern of a certain fault based on the offset data should also consider fault segmentation and paleoseismological data; Therefore, using the COPD peaks for studying the number of palaeo-events and their rupture patterns, the COPD peaks should be computed and analyzed on fault sub-sections and not entire fault zones. Our results reveal that the rupture pattern on the western and middle segment of the Haiyuan Fault is different from each other, which provide new data for the regional seismic potential analysis.
Induced seismicity provides insight into why earthquake ruptures stop.
Galis, Martin; Ampuero, Jean Paul; Mai, P Martin; Cappa, Frédéric
2017-12-01
Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures.
Role of infrasound pressure waves in atherosclerotic plaque rupture: a theoretical approach.
Tsatsaris, Athanasios; Koukounaris, Efstathios; Motsakos, Theodoros; Perrea, Despina
2007-01-01
To investigate the role of infrasound aortic pressure waves (IPW) in atherosclerotic plaque rupture. Atherosclerotic plaques have been simulated partly, in two dimensions, as being short or long Conical Intersections (CIS), that is to say elliptic, parabolic or hyperbolic surfaces. Consequently, the course and reflection of the generated aortic pressure wave (infrasound domain-less than 20Hz) has been examined around the simulated plaques. The incidence of IPW on plaque surface results both in reflection and "refraction" of the wave. The IPW course within tissue, seems to be enhanced by high Cu-level presence at these areas according to recent evidence (US2003000388213). The "refracted", derived wave travels through plaque tissue and is eventually accumulated to the foci of the respective CIS-plaque geometry. The foci location within or underneath atheroma declares zones where infrasound energy is mostly absorbed. This process, among other mechanisms may contribute to plaque rupture through the development of local hemorrhage and inflammation in foci areas. In future, detection of foci areas and repair (i.e. via Laser Healing Microtechnique) may attenuate atherosclerotic plaque rupture behavior.
Surface Rupture Effects on Earthquake Moment-Area Scaling Relations
NASA Astrophysics Data System (ADS)
Luo, Yingdi; Ampuero, Jean-Paul; Miyakoshi, Ken; Irikura, Kojiro
2017-09-01
Empirical earthquake scaling relations play a central role in fundamental studies of earthquake physics and in current practice of earthquake hazard assessment, and are being refined by advances in earthquake source analysis. A scaling relation between seismic moment ( M 0) and rupture area ( A) currently in use for ground motion prediction in Japan features a transition regime of the form M 0- A 2, between the well-recognized small (self-similar) and very large (W-model) earthquake regimes, which has counter-intuitive attributes and uncertain theoretical underpinnings. Here, we investigate the mechanical origin of this transition regime via earthquake cycle simulations, analytical dislocation models and numerical crack models on strike-slip faults. We find that, even if stress drop is assumed constant, the properties of the transition regime are controlled by surface rupture effects, comprising an effective rupture elongation along-dip due to a mirror effect and systematic changes of the shape factor relating slip to stress drop. Based on this physical insight, we propose a simplified formula to account for these effects in M 0- A scaling relations for strike-slip earthquakes.
Estimating the Maximum Magnitude of Induced Earthquakes With Dynamic Rupture Simulations
NASA Astrophysics Data System (ADS)
Gilmour, E.; Daub, E. G.
2017-12-01
Seismicity in Oklahoma has been sharply increasing as the result of wastewater injection. The earthquakes, thought to be induced from changes in pore pressure due to fluid injection, nucleate along existing faults. Induced earthquakes currently dominate central and eastern United States seismicity (Keranen et al. 2016). Induced earthquakes have only been occurring in the central US for a short time; therefore, too few induced earthquakes have been observed in this region to know their maximum magnitude. The lack of knowledge regarding the maximum magnitude of induced earthquakes means that large uncertainties exist in the seismic hazard for the central United States. While induced earthquakes follow the Gutenberg-Richter relation (van der Elst et al. 2016), it is unclear if there are limits to their magnitudes. An estimate of the maximum magnitude of the induced earthquakes is crucial for understanding their impact on seismic hazard. While other estimates of the maximum magnitude exist, those estimates are observational or statistical, and cannot take into account the possibility of larger events that have not yet been observed. Here, we take a physical approach to studying the maximum magnitude based on dynamic ruptures simulations. We run a suite of two-dimensional ruptures simulations to physically determine how ruptures propagate. The simulations use the known parameters of principle stress orientation and rupture locations. We vary the other unknown parameters of the ruptures simulations to obtain a large number of rupture simulation results reflecting different possible sets of parameters, and use these results to train a neural network to complete the ruptures simulations. Then using a Markov Chain Monte Carlo method to check different combinations of parameters, the trained neural network is used to create synthetic magnitude-frequency distributions to compare to the real earthquake catalog. This method allows us to find sets of parameters that are consistent with earthquakes observed in Oklahoma and find which parameters effect the rupture propagation. Our results show that the stress orientation and magnitude, pore pressure, and friction properties combine to determine the final magnitude of the simulated event.
NASA Astrophysics Data System (ADS)
Milner, K. R.; Shaw, B. E.; Gilchrist, J. J.; Jordan, T. H.
2017-12-01
Probabilistic seismic hazard analysis (PSHA) is typically performed by combining an earthquake rupture forecast (ERF) with a set of empirical ground motion prediction equations (GMPEs). ERFs have typically relied on observed fault slip rates and scaling relationships to estimate the rate of large earthquakes on pre-defined fault segments, either ignoring or relying on expert opinion to set the rates of multi-fault or multi-segment ruptures. Version 3 of the Uniform California Earthquake Rupture Forecast (UCERF3) is a significant step forward, replacing expert opinion and fault segmentation with an inversion approach that matches observations better than prior models while incorporating multi-fault ruptures. UCERF3 is a statistical model, however, and doesn't incorporate the physics of earthquake nucleation, rupture propagation, and stress transfer. We examine the feasibility of replacing UCERF3, or components therein, with physics-based rupture simulators such as the Rate-State Earthquake Simulator (RSQSim), developed by Dieterich & Richards-Dinger (2010). RSQSim simulations on the UCERF3 fault system produce catalogs of seismicity that match long term rates on major faults, and produce remarkable agreement with UCERF3 when carried through to PSHA calculations. Averaged over a representative set of sites, the RSQSim-UCERF3 hazard-curve differences are comparable to the small differences between UCERF3 and its predecessor, UCERF2. The hazard-curve agreement between the empirical and physics-based models provides substantial support for the PSHA methodology. RSQSim catalogs include many complex multi-fault ruptures, which we compare with the UCERF3 rupture-plausibility metrics as well as recent observations. Complications in generating physically plausible kinematic descriptions of multi-fault ruptures have thus far prevented us from using UCERF3 in the CyberShake physics-based PSHA platform, which replaces GMPEs with deterministic ground motion simulations. RSQSim produces full slip/time histories that can be directly implemented as sources in CyberShake, without relying on the conditional hypocenter and slip distributions needed for the UCERF models. We also compare RSQSim with time-dependent PSHA calculations based on multi-fault renewal models.
Engineering a nanostructured "super surface" with superhydrophobic and superkilling properties.
Hasan, Jafar; Raj, Shammy; Yadav, Lavendra; Chatterjee, Kaushik
2015-05-12
We present a nanostructured "super surface" fabricated using a simple recipe based on deep reactive ion etching of a silicon wafer. The topography of the surface is inspired by the surface topographical features of dragonfly wings. The super surface is comprised of nanopillars 4 μm in height and 220 nm in diameter with random inter-pillar spacing. The surface exhibited superhydrophobicity with a static water contact angle of 154.0° and contact angle hysteresis of 8.3°. Bacterial studies revealed the bactericidal property of the surface against both gram negative ( Escherichia coli ) and gram positive ( Staphylococcus aureus ) strains through mechanical rupture of the cells by the sharp nanopillars. The cell viability on these nanostructured surfaces was nearly six-fold lower than on the unmodified silicon wafer. The nanostructured surface also killed mammalian cells (mouse osteoblasts) through mechanical rupture of the cell membrane. Thus, such nanostructured super surfaces could find applications for designing self-cleaning and anti-bacterial surfaces in diverse applications such as microfluidics, surgical instruments, pipelines and food packaging.
Complex source mechanisms of mining-induced seismic events - implications for surface effects
NASA Astrophysics Data System (ADS)
Orlecka-Sikora, B.; Cesca, S.; Lasocki, S.; Rudzinski, L.; Lizurek, L.; Wiejacz, P.; Urban, P.; kozlowska, M.
2012-04-01
The seismicity of Legnica-Głogów Copper District (LGCD) is induced by mining activities in three mines: Lubin, Rudna and Polkowice-Sieroszowice. Ground motion caused by strong tremors might affect local infrastructure. "Żelazny Most" tailings pond, the biggest structure of this type in Europe, is here under special concern. Due to surface objects protection, Rudna Mine has been running ground motion monitoring for several years. From June 2010 to June 2011 unusually strong and extensive surface impact has been observed for 6 mining tremors induced in one of Rudna mining sections. The observed peak ground acceleration (PGA) for both horizontal and vertical component were in or even beyond 99% confidence interval for prediction. The aim of this paper is analyze the reason of such unusual ground motion. On the basis of registrations from Rudna Mine mining seismological network and records from Polish Seismological Network held by the Institute of Geophysics Polish Academy of Sciences (IGF PAN), the source mechanisms of these 6 tremors were calculated using a time domain moment tensor inversion. Furthermore, a kinematic analysis of the seismic source was performed, in order to determine the rupture planes orientations and rupture directions. These results showed that in case of the investigated tremors, point source models and shear fault mechanisms, which are most often assumed in mining seismology, are invalid. All analyzed events indicate extended sources with non-shear mechanism. The rapture planes have small dip angles and the rupture starts at the tremors hypocenter and propagates in the direction opposite to the plane dip. The tensional component plays here also big role. These source mechanisms well explain such observed strong ground motion, and calculated synthetic PGA values well correlates with observed ones. The relationship between mining tremors were also under investigation. All subsequent tremors occurred in the area of increased stress due to stress transfer caused by previous tremors. This indicates that preceding tremors contributed to the occurrence of later ones in the area. This work was prepared partially within the framework of the research projects No. N N307234937 and 3935/B/T02/2010/39 financed by the Ministry of Education and Science of Poland during the period 2009 to 2011 and 2010 to 2012, respectively, and the project MINE, financed by the German Ministry of Education and Research (BMBF), R&D Programme Geotechnologien, Grant of project BMBF03G0737.
A Retrospective Analysis of Ruptured Breast Implants
Baek, Woo Yeol; Lew, Dae Hyun
2014-01-01
Background Rupture is an important complication of breast implants. Before cohesive gel silicone implants, rupture rates of both saline and silicone breast implants were over 10%. Through an analysis of ruptured implants, we can determine the various factors related to ruptured implants. Methods We performed a retrospective review of 72 implants that were removed for implant rupture between 2005 and 2014 at a single institution. The following data were collected: type of implants (saline or silicone), duration of implantation, type of implant shell, degree of capsular contracture, associated symptoms, cause of rupture, diagnostic tools, and management. Results Forty-five Saline implants and 27 silicone implants were used. Rupture was diagnosed at a mean of 5.6 and 12 years after insertion of saline and silicone implants, respectively. There was no association between shell type and risk of rupture. Spontaneous was the most common reason for the rupture. Rupture management was implant change (39 case), microfat graft (2 case), removal only (14 case), and follow-up loss (17 case). Conclusions Saline implants have a shorter average duration of rupture, but diagnosis is easier and safer, leading to fewer complications. Previous-generation silicone implants required frequent follow-up observation, and it is recommended that they be changed to a cohesive gel implant before hidden rupture occurs. PMID:25396188
Theoretical Constraints on Properties of Dynamic Ruptures Implied by Pulverized Fault Zone Rocks
NASA Astrophysics Data System (ADS)
Xu, S.; Ben-Zion, Y.
2016-12-01
Prominent belts of Pulverized Fault Zone Rocks (PFZR) have been observed adjacent to several major strike-slip faults that separate different crustal blocks. They consist of 100-200m wide zones of highly damaged rock products, primarily of crystalline origin, that were mechanically shattered to sub-micron scale while preserving most of their original fabric with little evidence of shear. PFZR are strongly asymmetric with respect to the fault trace, existing primarily on the side with higher seismic velocity at depth, and their fabric suggests volumetric deformation with tensile cracks in all directions (e.g., Dor et al., 2006; Rockwell et al., 2009; Mitchell et al., 2011). Generating with split Hopkinson pressure bar in intact cm-scale sample microstructures similar to those observed in PFZR requires strain-rates higher than 150/s (e.g., Doan and Gary, 2009; Yuan et al., 2011). Using samples with preexisting damage reduces the strain-rate required for pulverization by 50% (Doan and d'Hour, 2012). These laboratory observations support earlier suggestions that PFZR are produced by dynamic stress fields at the tip of earthquake ruptures (e.g., Ben-Zion and Shi, 2005; Reches and Dewers, 2005). To clarify the conditions associated with generation of PFZR, we discuss theoretical results based on Linear Elastic Fracture Mechanics and simulations of Mode-II dynamic ruptures on frictional faults (Xu and Ben-Zion, 2016). We consider subshear and supershear ruptures along faults between similar and dissimilar solids. The results indicate that strain-rates higher than 150/s can be generated at distance of about 100m from the fault by either subshear ruptures on a bimaterial interface or supershear ruptures between similar and dissimilar solids. The dynamic fields of subshear bimaterial ruptures are expected to produce off-fault damage primarily on the stiff side of the fault, with tensile cracks that have no preferred orientation, in agreement with observations. In contrast, the supershear ruptures are likely to produce off-fault damage on both sides of the fault with preferred tensile crack orientations. Additional laboratory tests with multi-axial tension and larger samples with preexisting damage can clarify further the dynamic conditions implied by observed PFZR.
NASA Astrophysics Data System (ADS)
Folesky, J.; Kummerow, J.; Shapiro, S. A.; Asanuma, H.; Häring, M. O.
2015-12-01
The Emprirical Green's Function (EGF) method uses pairs of events of high wave form similarity and adjacent hypocenters to decompose the influences of source time function, ray path, instrument site, and instrument response. The seismogram of the smaller event is considered as the Green's Function which then can be deconvolved from the other seismogram. The result provides a reconstructed relative source time function (RSTF) of the larger event of that event pair. The comparison of the RSTFs at different stations of the observation systems produces information on the rupture process of the larger event based on the observation of the directivity effect and on changing RSTFs complexities.The Basel EGS dataset of 2006-2007 consists of about 2800 localized events of magnitudes between 0.0
NASA Astrophysics Data System (ADS)
Arora, Shreya; Malik, Javed N.
2017-12-01
The Himalaya is one of the most seismically active regions of the world. The occurrence of several large magnitude earthquakes viz. 1905 Kangra earthquake (Mw 7.8), 1934 Bihar-Nepal earthquake (Mw 8.2), 1950 Assam earthquake (Mw 8.4), 2005 Kashmir (Mw 7.6), and 2015 Gorkha (Mw 7.8) are the testimony to ongoing tectonic activity. In the last few decades, tremendous efforts have been made along the Himalayan arc to understand the patterns of earthquake occurrences, size, extent, and return periods. Some of the large magnitude earthquakes produced surface rupture, while some remained blind. Furthermore, due to the incompleteness of the earthquake catalogue, a very few events can be correlated with medieval earthquakes. Based on the existing paleoseismic data certainly, there exists a complexity to precisely determine the extent of surface rupture of these earthquakes and also for those events, which occurred during historic times. In this paper, we have compiled the paleo-seismological data and recalibrated the radiocarbon ages from the trenches excavated by previous workers along the entire Himalaya and compared earthquake scenario with the past. Our studies suggest that there were multiple earthquake events with overlapping surface ruptures in small patches with an average rupture length of 300 km limiting Mw 7.8-8.0 for the Himalayan arc, rather than two or three giant earthquakes rupturing the whole front. It has been identified that the large magnitude Himalayan earthquakes, such as 1905 Kangra, 1934 Bihar-Nepal, and 1950 Assam, that have occurred within a time frame of 45 years. Now, if these events are dated, there is a high possibility that within the range of ±50 years, they may be considered as the remnant of one giant earthquake rupturing the entire Himalayan arc. Therefore, leading to an overestimation of seismic hazard scenario in Himalaya.
NASA Astrophysics Data System (ADS)
Dang, Jiaxiang; Zhou, Yongsheng; He, Changrong; Ma, Shengli
2018-06-01
There are two co-seismic bedrock surface ruptures from the Mw 7.9 Wenchuan earthquake in the northern and central parts of the Beichuan-Yingxiu fault, Sichuan Province, southwest China. In this study, we report on the macrostructure of the fault rocks and results from X-ray powder diffraction analysis of minerals from rocks in the fault zone. The most recent fault gouge (the gouge produced by the most recent co-seismic fault movement) in all the studied outcrops is dark or grayish-black, totally unconsolidated and ultrafine-grained. Older fault gouges in the same outcrops are grayish or yellowish and weakly consolidated. X-ray powder diffraction analysis results show that mineral assemblages in both the old fault gouge and the new fault gouge are more complicated than the mineral assemblages in the bedrock as the fault gouge is rich in clay minerals. The fault gouge inherited its major rock-forming minerals from the parent rocks, but the clay minerals in the fault gouge were generated in the fault zone and are therefore authigenic and synkinematic. In profiles across the fault, clay mineral abundances increase as one traverses from the bedrock to the breccia to the old gouge and from the old gouge to the new gouge. Quartz and illite are found in all collected gouge samples. The dominant clay minerals in the new fault gouge are illite and smectite along the northern part of the surface rupture and illite/smectite mixed-layer clay in the middle part of the rupture. Illite/smectite mixed-layer clay found in the middle part of the rupture indicates that fault slip was accompanied by K-rich fluid circulation. The existence of siderite, anhydrite, and barite in the northern part of the rupture suggests that fault slip at this locality was accompanied by acidic fluids containing ions of Fe, Ca, and Ba.
EGF Search for Compound Source Time Functions in Microearthquakes
NASA Astrophysics Data System (ADS)
Ampuero, J.; Rubin, A. M.
2003-12-01
Numerical simulations of stopping ruptures on bimaterial interfaces seem to indicate a pronounced asymmetry in the time it takes to reach the peak Coulomb stress shortly beyond the rupture ends. For the rupture front moving in the direction of slip of the stiffer medium, the timescale is controlled by the arrival of stopping phases from the opposite side of the crack, but for the opposite rupture front this timescale is controlled by the much shorter-duration tensile stress pulse that moves in front of the crack tip as it slows down. This behavior may have implications for rupture complexity on bimaterial interfaces. In addition to observing an asymmetry in aftershock occurrence on the San Andreas fault, Rubin and Gillard (2000) noted that for all 5 of the compound earthquakes they observed in a cluster of 72 events, the second subevent occurred to the NW of the first (that is, near the rupture front moving in the direction of slip of the stiffer medium). They suggested that these 5``second events'' were simply examples of ``early aftershocks'' which also occur preferentially to the NW; however, the fact that these 5 earthquakes could not be recognized as compound at stations located to the SE indicates that the second event actually occurred on the timescale of the passage of the dynamic stress waves. Thus, observations of asymmetry in rupture complexity may form an independent dataset, complimentary to observations of aftershock asymmetry, for constraining models of rupture on bimaterial interfaces. Microseismicity recorded on dense seismological networks has proved interesting for earthquake physics because the high number of events allows one to gain statistical insight into the observed source properties. However, microearthquakes are usually so small that the range of methods that can be applied to their analysis is limited and of low resolution. To address the questions raised above we would like to characterize the source time functions (STF) of a large number of microearthquakes, in particular the statistics of compound events and the possible asymmetry of their spatial distribution. We will show results of the systematic application of empirical Green's function deconvolution methods to a large dataset from the Parkfield HRSN. On the methodological side the performance and robustness of various deconvolution schemes is tested. These range from trivially stabilized spectral division to projected Landweber and blind deconvolution. Use is also made of the redundance available in highly clustered seismicity with many similar seismograms. The observations will be interpreted in the light of recent numerical simulations of dynamic rupture on bimaterial interfaces (see abstract of Rubin and Ampuero).
New perspectives on self-similarity for shallow thrust earthquakes
NASA Astrophysics Data System (ADS)
Denolle, Marine A.; Shearer, Peter M.
2016-09-01
Scaling of dynamic rupture processes from small to large earthquakes is critical to seismic hazard assessment. Large subduction earthquakes are typically remote, and we mostly rely on teleseismic body waves to extract information on their slip rate functions. We estimate the P wave source spectra of 942 thrust earthquakes of magnitude Mw 5.5 and above by carefully removing wave propagation effects (geometrical spreading, attenuation, and free surface effects). The conventional spectral model of a single-corner frequency and high-frequency falloff rate does not explain our data, and we instead introduce a double-corner-frequency model, modified from the Haskell propagating source model, with an intermediate falloff of f-1. The first corner frequency f1 relates closely to the source duration T1, its scaling follows M0∝T13 for Mw<7.5, and changes to M0∝T12 for larger earthquakes. An elliptical rupture geometry better explains the observed scaling than circular crack models. The second time scale T2 varies more weakly with moment, M0∝T25, varies weakly with depth, and can be interpreted either as expressions of starting and stopping phases, as a pulse-like rupture, or a dynamic weakening process. Estimated stress drops and scaled energy (ratio of radiated energy over seismic moment) are both invariant with seismic moment. However, the observed earthquakes are not self-similar because their source geometry and spectral shapes vary with earthquake size. We find and map global variations of these source parameters.
NASA Astrophysics Data System (ADS)
Clévédé, E.; Satriano, C.; Bukchin, B.; Lancieri, M.; Fuenzalida, A.; Vilotte, J.; Lyon-Caen, H.; Vigny, C.; Socquet, A.; Aranda, C.; Campos, J. A.; Scientific Team of the Lia Montessus de Ballore (Cnrs-Insu, U. Chile)
2010-12-01
The Mw 8.8 earthquake in central Chile ruptured more than 400 km along the subduction bound between the Nazca and the South American plates. The aftershock distribution clearly shows that this earthquake filled a well-known seismic gap, corresponding to rupture extension of the 1835 earthquake. The triggered post-seismic activity extends farther north of the gap, partially overlapping the 1985 and the 1960 Valparaiso earthquakes. However, the analysis of continuous GPS (cGPS) recordings, and back projection imaging of teleseismic body wave energy, indicate that the rupture stopped south of Valparaiso, around -33.5 degrees of latitude. An important question is how far the rupture actually extended to the north and the potential relation between the northernmost aftershock activity and remaining asperities within the ruptured zone of the previous Valparaiso earthquakes. The extension of the rupture offshore, towards west, also deserves further investigation. The aftershock distribution and the back propagation analysis support the hypothesis that, in the northern part, the rupture may have reached the surface at the trench. In this work, we performed a CMT and depth location study for more than 10 of the immediate largest aftershocks using teleseismic surface wave analysis constrained by P-wave polarity. In parallel, a detailed analysis of aftershocks in the northern part of the rupture, between 2010-03-11 and 2010-05-13, have been performed using the data from the station of the Chilean Servicio Sismológico Nacional (SSN), and of the post-seismic network, deployed by the French CNRS-INSU, GFZ, IRIS, and Caltech. We accurately hand-picked 153 larger events, which have been located using a non-linear probabilistic code, with improved depth location. Focal mechanisms have been computed for the larger events. Those results have been integrated with the analysis of cGPS and teleseismic back projection, and the overall kinematic of the Maule earthquake is discussed as well as the extension of the rupture along strike and dip.
[Spontaneous splenic rupture as a complication of infectious mononucleosis].
Barałkiewicz, G; Mijal, J; Karoń, J; Rybski, Z; Juszczyk, J
1996-01-01
Spontaneous splenic rupture as a complication of infectious mononucleosis in 17-years old man was described. Clinical manifestations of infectious mononucleosis were typical without any sign of the splenic rupture. At the end of third week of the disease sonographic investigation revealed subcapsular hematoma of the spleen without overt rupture. The patient was observed. Five days later in the next sonographic investigation the second hematoma of the spleen appeared. Patient was treated underwent splenectomy and he remain alive and well. Authors suggest that in cases with subcapsular hematoma of the spleen splenectomy remains the treatment of choice. Mononucleosis patients with significant enlarged spleen should be observed very carefully. Authors propose control sonographic investigation in 3rd or 4th week of the disease in those cases.
NASA Astrophysics Data System (ADS)
Frankel, A. D.; Wirth, E. A.; Stephenson, W. J.; Moschetti, M. P.; Ramirez-Guzman, L.
2015-12-01
We have produced broadband (0-10 Hz) synthetic seismograms for magnitude 9.0 earthquakes on the Cascadia subduction zone by combining synthetics from simulations with a 3D velocity model at low frequencies (≤ 1 Hz) with stochastic synthetics at high frequencies (≥ 1 Hz). We use a compound rupture model consisting of a set of M8 high stress drop sub-events superimposed on a background slip distribution of up to 20m that builds relatively slowly. The 3D simulations were conducted using a finite difference program and the finite element program Hercules. The high-frequency (≥ 1 Hz) energy in this rupture model is primarily generated in the portion of the rupture with the M8 sub-events. In our initial runs, we included four M7.9-8.2 sub-events similar to those that we used to successfully model the strong ground motions recorded from the 2010 M8.8 Maule, Chile earthquake. At periods of 2-10 s, the 3D synthetics exhibit substantial amplification (about a factor of 2) for sites in the Puget Lowland and even more amplification (up to a factor of 5) for sites in the Seattle and Tacoma sedimentary basins, compared to rock sites outside of the Puget Lowland. This regional and more localized basin amplification found from the simulations is supported by observations from local earthquakes. There are substantial variations in the simulated M9 time histories and response spectra caused by differences in the hypocenter location, slip distribution, down-dip extent of rupture, coherence of the rupture front, and location of sub-events. We examined the sensitivity of the 3D synthetics to the velocity model of the Seattle basin. We found significant differences in S-wave focusing and surface wave conversions between a 3D model of the basin from a spatially-smoothed tomographic inversion of Rayleigh-wave phase velocities and a model that has an abrupt southern edge of the Seattle basin, as observed in seismic reflection profiles.
NASA Astrophysics Data System (ADS)
Font, Y.; Agurto-Detzel, H.; Alvarado, A. P.; Regnier, M. M.; Rolandone, F.; Charvis, P.; Mothes, P. A.; Nocquet, J. M.; Jarrin, P.; Ambrois, D.; Maron, C.; Deschamps, A.; Cheze, J.; Peix, F., Sr.; Ruiz, M. C.; Gabriela, P.; Acero, W.; Singaucho, J. C.; Viracucha, C.; Vasconez, F.; De Barros, L.; Mercerat, D.; Courboulex, F.; Galve, A.; Godano, M.; Monfret, T.; Ramos, C.; Martin, X.; Rietbrock, A.; Beck, S. L.; Metlzer, A.
2017-12-01
The Mw7.8 Pedernales earthquake is associated with the subduction of the Nazca Plate beneath the South American Plate. The mainshock caused many casualties and widespread damage across the Manabi province. The 150 km-long coseismic rupture area extends beneath the coastline, near 25 km depth. The rupture propagated southward and involved the successive rupture of two discrete asperities, with a maximum slip ( 5 m) on the southern patch. The rupture area is consistent with the highly locked regions observed on interseismic coupling models, overlaps the 7.2 Mw rupture zone, and terminates near where the 1906 Mw 8.8 megathrust earthquake rupture zone is estimated to have ended. Two neighboring highly coupled patches remain locked: (A) south and updip of the coseismic rupture zone and (B) north and downdip. In this study, we are working on the earthquake locations of the first month of aftershocks and compare the seismicity distribution to the interseismic coupling, the rupture area and to early afterslip. We use continuous seismic traces recorded on the permanent network partly installed in the framework of the collaboration between l'Institut de Recherche pour le Développement (France) and the Instituto Geofísico, Escuela Politécnica Nacional (IGEPN), Quito, Ecuador. Detections are conducted using Seiscomp in play-back mode and arrival-times are manually picked. To improve earthquake locations, we use the MAXi technique and a heterogeneous a priori P-wave velocity model that approximates the large velocity variations of the Ecuadorian subduction system. Aftershocks align along 3 to 4 main clusters that strike perpendicularly to the trench, and mostly updip of the co-seismic rupture. Seismicity develops over portions of plate interface that are known to be strongly locked or almost uncoupled. The seismicity pattern is similar to the one observed during a decade of observation during the interseismic period with swarms such as the Galera alignment, Jama and Cabo Pasado, Manta to Puerto Lopez.
Poly Implant Prothèse (PIP) incidence of rupture: a retrospective MR analysis in 64 patients
Scotto di Santolo, Mariella; Cusati, Bianca; Ragozzino, Alfonso; Dell’Aprovitola, Nicoletta; Acquaviva, Alessandra; Altiero, Michele; Accurso, Antonello; Riccardi, Albina
2014-01-01
Aim of the study The purpose of this retrospective study was to describe the magnetic resonance imaging (MRI) features of Poly Implant Prothèse (PIP) hydrogel implants in a group of 64 patients and to assess the incidence of rupture, compared to other clinical trials. Material and methods In this double-center study, we retrospectively reviewed the data sets of 64 consecutive patients (mean age, 43±9 years, age range, 27-65 years), who underwent breast MRI examinations, between January 2008 and October 2013, with suspected implant rupture on the basis of clinical assessment or after conventional imaging examination (either mammography or ultrasound). All patients had undergone breast operation with bilateral textured cohesive gel PIP implant insertion for aesthetic reasons. The mean time after operation was 8 years (range, 6-14 years). No patients reported history of direct trauma to their implants. Results At the time of clinical examination, 41 patients were asymptomatic, 16 complained of breast tenderness and 7 had clinical evidence of rupture. Normal findings were observed in 15 patients. In 26 patients there were signs of mild collapse, with associated not significant peri-capsular fluid collections and no evidence of implant rupture; in 23 patients there was suggestion of implant rupture, according to breast MRI leading to an indication for surgery. In particular, 14 patients showed intra-capsular rupture, with associated evidence of the linguine sign in all cases; the keyhole sign and the droplet signs were observed in 6 cases. In 9 patients there was evidence of extra-capsular rupture, with presence of axillary collections (siliconomas) in 7 cases and peri-prosthetic and mediastinal cavity siliconomas, in 5 cases. Conclusions The results of this double center retrospective study, confirm the higher incidence (36%) of prosthesis rupture observed with the PIP implants, compared to other breast implants. PMID:25525578
Li, Yong-Gang; Catchings, Rufus D.; Goldman, Mark R.
2016-01-01
The aftershocks of the 24 August 2014 Mw 6.0 South Napa earthquake generated prominent fault‐zone trapped waves (FZTWs) that were recorded on two 1.9‐km‐long seismic arrays deployed across the northern projection (array 1, A1) and the southern part (A2) of the surface rupture of the West Napa fault zone (WNFZ). We also observed FZTWs on an array (A3) deployed across the intersection of the Franklin and Southampton faults, which appear to be the southward continuations of the WNFZ. A1, A2, and A3 consisted of 20, 20, and 10 L28 (4.5 Hz) three‐component seismographs. We analyzed waveforms of FZTWs from 55 aftershocks in both time and frequency to characterize the fault damage zone associated with this Mw 6.0 earthquake. Post‐S coda durations of FZTWs increase with epicentral distances and focal depths from the recording arrays, suggesting a low‐velocity waveguide along the WNFZ to depths in excess of 5–7 km. Locations of the aftershocks showing FZTWs, combined with 3D finite‐difference simulations, suggest the subsurface rupture zone having an S‐wave speed reduction of ∼40%–50% between A1 and A2, coincident with the ∼14‐km‐long mapped surface rupture zone and at least an ∼500‐m‐wide deformation zone. The low‐velocity waveguide along the WNFZ extends further southward to at least A3, but with a more moderate‐velocity reduction of 30%–35% at ray depth. This last FZTW observation suggests continuity between the WNFZ and Franklin fault. The waveguide effect may have localized and amplified ground shaking along the WNFZ and the faults farther to the south (see a companion paper by Catchings et al., 2016).
NASA Astrophysics Data System (ADS)
Zinke, Robert; Hollingsworth, James; Dolan, James F.
2014-12-01
Comparison of 398 fault offsets measured by visual analysis of WorldView high-resolution satellite imagery with deformation maps produced by COSI-Corr subpixel image correlation of Landsat-8 and SPOT5 imagery reveals significant complexity and distributed deformation along the 2013 Mw 7.7 Balochistan, Pakistan earthquake. Average slip along the main trace of the fault was 4.2 m, with local maximum offsets up to 11.4 m. Comparison of slip measured from offset geomorphic features, which record localized slip along the main strand of the fault, to the total displacement across the entire width of the surface deformation zone from COSI-Corr reveals ˜45% off-fault deformation. While previous studies have shown that the structural maturity of the fault exerts a primary control on the total percentage of off-fault surface deformation, large along-strike variations in the percentage of strain localization observed in the 2013 rupture imply the influence of important secondary controls. One such possible secondary control is the type of near-surface material through which the rupture propagated. We therefore compared the percentage off-fault deformation to the type of material (bedrock, old alluvium, and young alluvium) at the surface and the distance of the fault to the nearest bedrock outcrop (a proxy for sediment thickness along this hybrid strike slip/reverse slip fault). We find significantly more off-fault deformation in younger and/or thicker sediments. Accounting for and predicting such off-fault deformation patterns has important implications for the interpretation of geologic slip rates, especially for their use in probabilistic seismic hazard assessments, the behavior of near-surface materials during coseismic deformation, and the future development of microzonation protocols for the built environment.
Induced seismicity provides insight into why earthquake ruptures stop
Galis, Martin; Ampuero, Jean Paul; Mai, P. Martin; Cappa, Frédéric
2017-01-01
Injection-induced earthquakes pose a serious seismic hazard but also offer an opportunity to gain insight into earthquake physics. Currently used models relating the maximum magnitude of injection-induced earthquakes to injection parameters do not incorporate rupture physics. We develop theoretical estimates, validated by simulations, of the size of ruptures induced by localized pore-pressure perturbations and propagating on prestressed faults. Our model accounts for ruptures growing beyond the perturbed area and distinguishes self-arrested from runaway ruptures. We develop a theoretical scaling relation between the largest magnitude of self-arrested earthquakes and the injected volume and find it consistent with observed maximum magnitudes of injection-induced earthquakes over a broad range of injected volumes, suggesting that, although runaway ruptures are possible, most injection-induced events so far have been self-arrested ruptures. PMID:29291250
NASA Astrophysics Data System (ADS)
Jiang, Zhongshan; Yuan, Linguo; Huang, Dingfa; Yang, Zhongrong; Hassan, Abubakr
2018-05-01
The 2015 Mw 7.8 Gorkha earthquake has not only imposed effective constraints on the geometrical structures, friction behaviours and seismogenic patterns of the Nepal Himalaya thrust systems but has also provided valuable insights into the uplift mechanism and lithosphere rheology of the Tibetan Plateau. Here, ∼1.6-year GPS observations are used to reveal the postseismic deformation characteristics following the Gorkha earthquake, investigate the ongoing aseismic afterslip on the Main Himalayan Thrust (MHT) fault and constrain the crustal rheology of the Southern Tibetan Plateau. First, afterslip is considered to be solely responsible for the postseismic deformation (afterslip-only model). The results show that afterslip is anticorrelated with peak coseismic slip areas. One high-afterslip-concentration area, with a peak of ∼24 cm, is distributed downdip of the coseismic rupture, as well as in two other regions: one partially overlapping the mainshock rupture, and the other next to the Mw 7.3 aftershock area. Second, the GPS postseismic observations are inverted to jointly investigate afterslip and viscoelastic deformation (multiple-mechanism model). The afterslip inversion results of the above two models are highly consistent, indicating the dominant contribution of afterslip to surface deformation during the ∼1.6-year postseismic period. Considering the interseismic fault coupling and historical seismicity, no appreciable fault slip associated with the Gorkha earthquake is found to occur both updip and west of the mainshock rupture areas. This reveals that the Gorkha earthquake only unzipped the lower edge of the locked portion of the MHT, leaving the shallow portion and western segment of the seismogenic zone still locked and the Nepal region under high seismic risk. The viscoelastic mechanism contributes minorly to surface deformation during the ∼1.6-year postseismic period. The middle-lower crust is assumed to comprise Maxwell material beneath an elastic ∼25-km-thick upper crust and the optimal viscosity is conservatively estimated to be 1.6 × 1019 Pa s beneath the Southern Tibetan Plateau, which should be robustly constrained with more long-term observations, more effective spatial constraints, and more detailed crustal models.
Rupture Dynamics and Seismic Radiation on Rough Faults for Simulation-Based PSHA
NASA Astrophysics Data System (ADS)
Mai, P. M.; Galis, M.; Thingbaijam, K. K. S.; Vyas, J. C.; Dunham, E. M.
2017-12-01
Simulation-based ground-motion predictions may augment PSHA studies in data-poor regions or provide additional shaking estimations, incl. seismic waveforms, for critical facilities. Validation and calibration of such simulation approaches, based on observations and GMPE's, is important for engineering applications, while seismologists push to include the precise physics of the earthquake rupture process and seismic wave propagation in 3D heterogeneous Earth. Geological faults comprise both large-scale segmentation and small-scale roughness that determine the dynamics of the earthquake rupture process and its radiated seismic wavefield. We investigate how different parameterizations of fractal fault roughness affect the rupture evolution and resulting near-fault ground motions. Rupture incoherence induced by fault roughness generates realistic ω-2 decay for high-frequency displacement amplitude spectra. Waveform characteristics and GMPE-based comparisons corroborate that these rough-fault rupture simulations generate realistic synthetic seismogram for subsequent engineering application. Since dynamic rupture simulations are computationally expensive, we develop kinematic approximations that emulate the observed dynamics. Simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. The dynamic rake angle variations are anti-correlated with local dip angles. Based on a dynamically consistent Yoffe source-time function, we show that the seismic wavefield of the approximated kinematic rupture well reproduces the seismic radiation of the full dynamic source process. Our findings provide an innovative pseudo-dynamic source characterization that captures fault roughness effects on rupture dynamics. Including the correlations between kinematic source parameters, we present a new pseudo-dynamic rupture modeling approach for computing broadband ground-motion time-histories for simulation-based PSHA
Got, J.-L.; Okubo, P.
2003-01-01
We investigated the microseismicity recorded in an active volcano to infer information concerning the volcano structure and long-term dynamics, by using relative relocations and focal mechanisms of microearthquakes. There were 32,000 earthquakes of the Mauna Loa and Kilauea volcanoes recorded by more than eight stations of the Hawaiian Volcano Observatory seismic network between 1988 and 1999. We studied 17,000 of these events and relocated more than 70%, with an accuracy ranging from 10 to 500 m. About 75% of these relocated events are located in the vicinity of subhorizontal decollement planes, at a depth of 8-11 km. However, the striking features revealed by these relocation results are steep southeast dipping fault planes working as reverse faults, clearly located below the decollement plane and which intersect it. If this decollement plane coincides with the pre-Mauna Loa seafloor, as hypothesized by numerous authors, such reverse faults rupture the pre-Mauna Loa oceanic crust. The weight of the volcano and pressure in the magma storage system are possible causes of these ruptures, fully compatible with the local stress tensor computed by Gillard et al. [1996]. Reverse faults are suspected of producing scarps revealed by kilometer-long horizontal slip-perpendicular lineations along the decollement surface and therefore large-scale roughness, asperities, and normal stress variations. These are capable of generating stick-slip, large-magnitude earthquakes, the spatial microseismic pattern observed in the south flank of Kilauea volcano, and Hilina-type instabilities. Rupture intersecting the decollement surface, causing its large-scale roughness, may be an important parameter controlling the growth of Hawaiian volcanoes.
Fan-head shear rupture mechanism as a source of off-fault tensile cracking
NASA Astrophysics Data System (ADS)
Tarasov, Boris
2016-04-01
This presentation discusses the role of a recently identified fan-head shear rupture mechanism [1] in the creation of off-fault tensile cracks observed in earthquake laboratory experiments conducted on brittle photoelastic specimens [2,3]. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength) and self-sustaining tensile stress intensification along one side of the interface. The variation of tensile stress within the fan-head zone is like this: it increases with distance from the fracture tip up to a maximum value and then decreases. For the initial formation of the fan-head high local stresses corresponding to the fracture strength should be applied in a small area, however after completions of the fan-head it can propagate dynamically through the material at low shear stresses (even below the frictional strength). The fan-mechanism allows explaining all unique features associated with the off-fault cracking process observed in photoelastic experiments [2,3]. In these experiments spontaneous shear ruptures were nucleated in a bonded, precut, inclined and pre-stressed interface by producing a local pressure pulse in a small area. Isochromatic fringe patterns around a shear rupture propagating along bonded interface indicate the following features of the off-fault tensile crack development: tensile cracks nucleate and grow periodically along one side of the interface at a roughly constant angle (about 80 degrees) relative to the shear rupture interface; the tensile crack nucleation takes place some distance behind the rupture tip; with distance from the point of nucleation tensile cracks grow up to a certain length within the rupture head zone; behind this zone static microcracks are left in the wake of the propagating rupture. Unfortunately, the modern technology used in these experiments is not able to identify the shear rupture mechanism itself operated within the narrow rupture interface. However, a special analysis of side effects accompanying the shear rupture propagation (including the off-fault tensile cracking) allows supposing that the failure process was governed by the fan-mechanism. 1. Tarasov, B.G. 2014. Hitherto unknown shear rupture mechanism as a source of instability in intact hard rocks at highly confined compression. Tectonophysics, 621, 69-84. 2. Griffith, W.A., Rosakis, A., Pollard, D.D. and Ko, C.W., 2009. Dynamic rupture experiments elucidate tensile crack development during propagating earthquake ruptures, Geology, pp 795-798. 3. Ngo, D., Huang, Y., Rosakis, A., Griffith, W.A., Pollard D. 2012. Off-fault tensile cracks: A link between geological fault observations, lab experiments, and dynamic rupture models. Journal of Geophysical Research, vol. 117, B01307, doi: 10.1029/2011JB008577 (2012).
Timing of late Holocene surface rupture of the Wairau Fault, Marlborough, New Zealand
Zachariasen, J.; Berryman, K.; Langridge, Rob; Prentice, C.; Rymer, M.; Stirling, M.; Villamor, P.
2006-01-01
Three trenches excavated across the central portion of the right-lateral strike-slip Wairau Fault in South Island, New Zealand, exposed a complex set of fault strands that have displaced a sequence of late Holocene alluvial and colluvial deposits. Abundant charcoal fragments provide age control for various stratigraphic horizons dating back to c. 5610 yr ago. Faulting relations from the Wadsworth trench show that the most recent surface rupture event occurred at least 1290 yr and at most 2740 yr ago. Drowned trees in landslide-dammed Lake Chalice, in combination with charcoal from the base of an unfaulted colluvial wedge at Wadsworth trench, suggest a narrower time bracket for this event of 1811-2301 cal. yr BP. The penultimate faulting event occurred between c. 2370 and 3380 yr, and possibly near 2680 ?? 60 cal. yr BP, when data from both the Wadsworth and Dillon trenches are combined. Two older events have been recognised from Dillon trench but remain poorly dated. A probable elapsed time of at least 1811 yr since the last surface rupture, and an average slip rate estimate for the Wairau Fault of 3-5 mm/yr, suggests that at least 5.4 m and up to 11.5 m of elastic shear strain has accumulated since the last rupture. This is near to or greater than the single-event displacement estimates of 5-7 m. The average recurrence interval for surface rupture of the fault determined from the trench data is 1150-1400 yr. Although the uncertainties in the timing of faulting events and variability in inter-event times remain high, the time elapsed since the last event is in the order of 1-2 times the average recurrence interval, implying that the Wairau Fault is near the end of its interseismic period. ?? The Royal Society of New Zealand 2006.
NASA Astrophysics Data System (ADS)
Yoshida, Kunikazu; Miyakoshi, Ken; Somei, Kazuhiro; Irikura, Kojiro
2017-05-01
In this study, we estimated source process of the 2016 Kumamoto earthquake from strong-motion data by using the multiple-time window linear kinematic waveform inversion method to discuss generation of strong motions and to explain crustal deformation pattern with a seismic source inversion model. A four-segment fault model was assumed based on the aftershock distribution, active fault traces, and interferometric synthetic aperture radar data. Three western segments were set to be northwest-dipping planes, and the most eastern segment under the Aso caldera was examined to be a southeast-dipping plane. The velocity structure models used in this study were estimated by using waveform modeling of moderate earthquakes that occurred in the source region. We applied a two-step approach of the inversions of 20 strong-motion datasets observed by K-NET and KiK-net by using band-pass-filtered strong-motion data at 0.05-0.5 Hz and then at 0.05-1.0 Hz. The rupture area of the fault plane was determined by applying the criterion of Somerville et al. (Seismol Res Lett 70:59-80, 1999) to the inverted slip distribution. From the first-step inversion, the fault length was trimmed from 52 to 44 km, whereas the fault width was kept at 18 km. The trimmed rupture area was not changed in the second-step inversion. The source model obtained from the two-step approach indicated 4.7 × 1019 Nm of the total moment release and 1.8 m average slip of the entire fault with a rupture area of 792 km2. Large slip areas were estimated in the seismogenic zone and in the shallow part corresponding to the surface rupture that occurred during the Mj7.3 mainshock. The areas of the high peak moment rate correlated roughly with those of large slip; however, the moment rate functions near the Earth surface have low peak, bell shape, and long duration. These subfaults with long-duration moment release are expected to cause weak short-period ground motions. We confirmed that the southeast dipping of the most eastern segment is more plausible rather than northwest-dipping from the observed subsidence around the central cones of the Aso volcano.[Figure not available: see fulltext.
Formation of a cavitation cluster in the vicinity of a quasi-empty rupture
NASA Astrophysics Data System (ADS)
Bol'shakova, E. S.; Kedrinskiy, V. K.
2017-09-01
The presentation deals with one of the experimental and numerical models of a quasi-empty rupture in the magma melt. This rupture is formed in the liquid layer of a distilled cavitating fluid under shock loading within the framework of the problem formulation with a small electromagnetic hydrodynamic shock tube. It is demonstrated that the rupture is shaped as a spherical segment, which retains its topology during the entire process of its evolution and collapsing. The dynamic behavior of the quasi-empty rupture is analyzed, and the growth of cavitating nuclei in the form of the boundary layer near the entire rupture interface is found. It is shown that rupture implosion is accompanied by the transformation of the bubble boundary layer to a cavitating cluster, which takes the form of a ring-shaped vortex floating upward to the free surface of the liquid layer. A p-κ mathematical model is formulated, and calculations are performed to investigate the implosion of a quasi-empty spherical cavity in the cavitating liquid, generation of a shock wave by this cavity, and dynamics of the bubble density growth in the cavitating cluster by five orders of magnitude.
NASA Astrophysics Data System (ADS)
Su, Haijun; Wang, Haifeng; Zhang, Jun; Guo, Min; Liu, Lin; Fu, Hengzhi
2018-05-01
The influence of melt superheating treatment on the melt properties, solidification characteristics, and rupture life of a third-generation Ni-based single-crystal superalloy was investigated to reveal the critical temperature range of melt structure evolution and its effect on rupture life. The results showed that the viscosity of superalloy decreased but the surface tension increased with increasing superheating temperature. Two characteristic temperature points where the melt viscosity and undercooling degree suddenly change were determined to be 1600 °C and 1700 °C, respectively. Similarly, the stability of the solidification interface firstly improved and then weakened with increasing superheating temperature. The dendrite arms were well refined and the segregation was reduced at 1700 °C. In addition, the rupture life obtained at 1100 °C and 137 MPa increased by approximately 30 pct, approaching the rupture life of the corresponding superalloy containing 2 pct Ru, with increasing superheating temperature from 1500 °C to 1700 °C. When the melt was further heated to 1800 °C, the rupture life decreased. The evolutions of solidification characteristics and rupture life with increasing melt superheating temperature were attributed to changes in the melt structure.
Theoretical constraints on dynamic pulverization of fault zone rocks
NASA Astrophysics Data System (ADS)
Xu, Shiqing; Ben-Zion, Yehuda
2017-04-01
We discuss dynamic rupture results aiming to elucidate the generation mechanism of pulverized fault zone rocks (PFZR) observed in 100-200 m wide belts distributed asymmetrically across major strike-slip faults separating different crustal blocks. Properties of subshear and supershear ruptures are considered using analytical results of Linear Elastic Fracture Mechanics and numerical simulations of Mode-II ruptures along faults between similar or dissimilar solids. The dynamic fields of bimaterial subshear ruptures are expected to produce off-fault damage primarily on the stiff side of the fault, with tensile cracks having no preferred orientation, in agreement with field observations. Subshear ruptures in a homogeneous solid are expected to produce off-fault damage with high-angle tensile cracks on the extensional side of the fault, while supershear ruptures between similar or dissimilar solids are likely to produce off-fault damage on both sides of the fault with preferred tensile crack orientations. One or more of these features are not consistent with properties of natural samples of PFZR. At a distance of about 100 m from the fault, subshear and supershear ruptures without stress singularities produce strain rates up to 1 s-1. This is less than required for rock pulverization in laboratory experiments with centimetre-scale intact rock samples, but may be sufficient for pulverizing larger samples with pre-existing damage.
The Kumamoto Mw7.1 mainshock: deep initiation triggered by the shallow foreshocks
NASA Astrophysics Data System (ADS)
Shi, Q.; Wei, S.
2017-12-01
The Kumamoto Mw7.1 earthquake and its Mw6.2 foreshock struck the central Kyushu region in mid-April, 2016. The surface ruptures are characterized with multiple fault segments and a mix of strike-slip and normal motion extended from the intersection area of Hinagu and Futagawa faults to the southwest of Mt. Aso. Despite complex surface ruptures, most of the finite fault inversions use two fault segments to approximate the fault geometry. To study the rupture process and the complex fault geometry of this earthquake, we performed a multiple point source inversion for the mainshock using the data on 93 K-net and Kik-net stations. With path calibration from the Mw6.0 foreshock, we selected the frequency ranges for the Pnl waves (0.02 0.26 Hz) and surface waves (0.02 0.12 Hz), as well as the components that can be well modeled with the 1D velocity model. Our four-point-source results reveal a unilateral rupture towards Mt. Aso and varying fault geometries. The first sub-event is a high angle ( 79°) right-lateral strike-slip event at the depth of 16 km on the north end of the Hinagu fault. Notably the two M>6 foreshocks is located by our previous studies near the north end of the Hinagu fault at the depth of 5 9 km, which may give rise to the stress concentration at depth. The following three sub-events are distributed along the surface rupture of the Futagawa fault, with focal depths within 4 10 km. Their focal mechanisms present similar right-lateral fault slips with relatively small dip angles (62 67°) and apparent normal-fault component. Thus, the mainshock rupture initiated from the relatively deep part of the Hinagu fault and propagated through the fault-bend toward NE along the relatively shallow part of the Futagawa fault until it was terminated near Mt. Aso. Based on the four-point-source solution, we conducted a finite-fault inversion and obtained a kinematic rupture model of the mainshock. We then performed the Coulomb Stress analyses on the two foreshocks and the mainshock. The results support that the stress alternation after the foreshocks may have triggered the failure on the fault plane of the Mw7.1 earthquake. Therefore, the 2016 Kumamoto earthquake sequence is dominated by a series of large triggering events whose initiation is associated with the geometric barrier in the intersection of the Futagawa and Hinagu faults.
QCM operating in threshold mode as a gas sensor.
Dultsev, Fedor N; Kolosovsky, Eugeny A
2009-10-20
Application of the threshold mode allowed us to use the quartz resonator (quartz crystal microbalance, QCM) as a highly sensitive gas sensor measuring the forces of the rupture of adsorbed gas components from the resonator surface oscillating with increasing amplitude. This procedure allows one to analyze different gas components using the same surface modification, just varying the rupture threshold by varying the amplitude of shear oscillations. The sensitivity of the threshold measurements is 2 to 3 orders of magnitude higher than for the gravimetric procedure. It is demonstrated that the QCM operating as an active element can be used as a gas sensor. This procedure seems to be promising in investigating the reactivity of the surface or the interactions of gaseous components with the surface containing various functional groups, thus contributing to the surface chemistry.
Paleoearthquakes on the Denali-Totschunda Fault system: Preliminary Observations of Slip and Timing
NASA Astrophysics Data System (ADS)
Schwartz, D. P.; Denali Fault Earthquake Geology Wp, .
2003-12-01
Understanding the behavior of large strike-slip fault systems requires information about the amount of slip and timing of past earthquakes at different locations along a fault. A historical surface rupture adds a critically important baseline for calibration. During July 2003 we performed additional mapping of the 2002 Denali-Totschunda surface rupture with the goal of also measuring and dating slip during previous earthquakes. We were able to obtain slip values for prior events at a dozen locations along Denali-Totschunda strike-slip rupture. We focused on the penultimate event, which is easiest to distinguish (slip from individual older events can eventually be measured). On the Denali fault just west of the intersection with the Susitna Glacier thrust 2002 slip was low, 1.0 m to 1.5 m; cumulative slip from two events was 2.5-3.0, which is essentially double. On the 100-km-long section between Black Rapids Glacier and Gillett Pass, where 2002 slip averaged 5 m, three measurements indicate penultimate-event slip was about the same as 2002. The 7-8 m offset section east of Gillett Pass has the clearest paleoevent slip history. We measured three locations where 2002 slip was 7-8m and cumulative offset on channels was 14.5-16 m. Along this section previous workers noted gullies with 15 m offsets before the 2002 earthquake, suggesting the past three events here had similar slip. On the Totschunda fault paleo offsets appear to be similar in amount to 2002. At one locality we measured 2.8 m in 2002 and 5.4 m for two events. A second site had 1.0-1.4 m of offset in 2002 and 3.1 m for two events. A third location yielded 3.3 m in 2002 and 10.8 m on a paleochannel, which could represent three events with similar slip. A location in the Denali-Totschunda transition zone had a 5-6 m-high scarp and a well-developed sag pond, indicating that this complex part of the fault system has been active in previous events. The major observation is that the paleo offset measurements, though presently limited in number, indicate that penultimate event slip was very similar to the 2002 offset along the length of the ruptured Denali and Totschundafaults, and may have been similar for at least a third event back. For most of the it's length the 2002 rupture is expressed as a narrow mole track (typically 1m to 3m wide) but locally it has produced pull aparts and large fissures. These features contain a variety of organic deposits associated with the ground surface at the time of the penultimate earthquake(s) on the Denali and Totschunda faults. We sampled five of these, and recovered peat, pine needles, and trees that were toppled during the penultimate event(s). Including a test pit west of the Delta River, we have six sample sites that span the 5m and 7-8m rupture segments of the Denali, the Denali-Totschunda transition zone, and the Totschunda fault. Preliminary radiocarbon dates indicate that the timing of the penultimate event on the Denali fault is younger than 1400 to 1289 yr BP and may have occurred as recently as 520 to 310 yr BP. The penultimate event on the Totschunda fault occurred after 1340 to 1130 yr BP and most likely occurred shortly after 660 to 530 years BP. The Denali-Totschunda fault system is a remarkable laboratory, particularly in terms of preservation of fault geomorphology and organic material, for studying large strike-slip faults. These initial observations of paleoslip and event dates are the first steps in unraveling the behavior of this major strike-slip zone. Denali Fault Earthquake Geology Working Group: T. Dawson, P. Haeussler, J. Lienkaemper, A. Matmon, D. Schwartz, H.Stenner, B. Sherrod (USGS), F. Cinti, P. Montone (INGV, Rome), G. Carver. G.Plafker (Alyeska)
NASA Astrophysics Data System (ADS)
Boncio, P.; Caldarella, M.
2016-12-01
We analyze the zones of coseismic surface faulting along thrust faults, whit the aim of defining the most appropriate criteria for zoning the Surface Fault Rupture Hazard (SFRH) along thrust faults. Normal and strike-slip faults were deeply studied in the past, while thrust faults were not studied with comparable attention. We analyze the 1999 Chi-Chi, Taiwan (Mw 7.6) and 2008 Wenchuan, China (Mw 7.9) earthquakes. Several different types of coseismic fault scarps characterize the two earthquakes, depending on the topography, fault geometry and near-surface materials. For both the earthquakes, we collected from the literature, or measured in GIS-georeferenced published maps, data about the Width of the coseismic Rupture Zone (WRZ). The frequency distribution of WRZ compared to the trace of the main fault shows that the surface ruptures occur mainly on and near the main fault. Ruptures located away from the main fault occur mainly in the hanging wall. Where structural complexities are present (e.g., sharp bends, step-overs), WRZ is wider then for simple fault traces. We also fitted the distribution of the WRZ dataset with probability density functions, in order to define a criterion to remove outliers (e.g., by selecting 90% or 95% probability) and define the zone where the probability of SFRH is the highest. This might help in sizing the zones of SFRH during seismic microzonation (SM) mapping. In order to shape zones of SFRH, a very detailed earthquake geologic study of the fault is necessary. In the absence of such a very detailed study, during basic (First level) SM mapping, a width of 350-400 m seems to be recommended (95% of probability). If the fault is carefully mapped (higher level SM), one must consider that the highest SFRH is concentrated in a narrow zone, 50 m-wide, that should be considered as a "fault-avoidance (or setback) zone". These fault zones should be asymmetric. The ratio of footwall to hanging wall (FW:HW) calculated here ranges from 1:5 to 1:3.
Barka, A.; Akyuz, H.S.; Altunel, E.; Sunal, G.; Cakir, Z.; Dikbas, A.; Yerli, B.; Armijo, R.; Meyer, B.; De Chabalier, J. B.; Rockwell, Thomas; Dolan, J.R.; Hartleb, R.; Dawson, Tim; Christofferson, S.; Tucker, A.; Fumal, T.; Langridge, Rob; Stenner, H.; Lettis, William; Bachhuber, J.; Page, W.
2002-01-01
The 17 August 1999 İzmit earthquake occurred on the northern strand of the North Anatolian fault zone. The earthquake is associated with a 145-km-long surface rupture that extends from southwest of Düzce in the east to west of Hersek delta in the west. Detailed mapping of the surface rupture shows that it consists of five segments separated by releasing step-overs; herein named the Hersek, Karamürsel-Gölcük, İzmit-Sapanca Lake, Sapanca-Akyazi, and Karadere segments from west to east, respectively. The Hersek segment, which cuts the tip of a large delta plain in the western end of the rupture zone, has an orientation of N80°. The N70°-80°E-trending Karamürsel-Gölcük segment extends along the linear southern coasts of the İzmit Gulf between Karamürsel and Gölcük and produced the 470-cm maximum displacement in Gölcük. The northwest-southeast-striking Gölcük normal fault between the Karamürsel-Gölcük and İzmit-Sapanca segments has 2.3-m maximum vertical displacement. The maximum dextral offset along the İzmit-Sapanca Lake segment was measured to be about 3.5 m, and its trend varies between N80°E and east-west. The Sapanca-Akyazi segment trends N75°-85°W and expresses a maximum displacement of 5.2 m. The Karadere segment trends N65°E and produced up to 1.5-m maximum displacement. The Karadere and Sapanca-Akyazi segments form fan-shape or splaying ruptures near their eastern ends where the displacement also diminished.
NASA Astrophysics Data System (ADS)
Ryan, K. J.; Geist, E. L.; Oglesby, D. D.; Kyriakopoulos, C.
2016-12-01
Motivated by the 2011 Mw 9 Tohoku-Oki event, we explore the effects of realistic fault dynamics on slip, free surface deformation, and the resulting tsunami generation and local propagation from a hypothetical Mw 9 megathrust earthquake along the Alaskan-Aleutian (A-A) Megathrust. We demonstrate three scenarios: a spatially-homogenous prestress and frictional parameter model and two models with rate-strengthening-like friction (e.g., Dieterich, 1992). We use a dynamic finite element code to model 3-D ruptures, using time-weakening friction (Andrews, 2004) as a proxy for rate-strengthening friction, along a portion of the A-A subduction zone. Given geometric, material, and plate-coupling data along the A-A megathrust assembled from the Science Application for Risk Reduction (SAFRR) team (e.g., Bruns et al., 1987; Hayes et al., 2012; Johnson et al., 2004; Santini et al., 2003; Wells at al., 2003), we are able to dynamically model rupture. Adding frictional-strengthening to a region of the fault reduces both average slip and free surface displacement above the strengthening zone, with the magnitude of the reductions depending on the strengthening zone location. Corresponding tsunami models, which use a finite difference method to solve the long-wave equations (e.g., Liu et al., 1995; Satake, 2002; Shuto, 1991), match sea floor displacement, in time, to the free surface displacement from the rupture models. Tsunami models show changes in local peak amplitudes and beaming patterns for each slip distribution. Given these results, other heterogeneous parameterizations, with respect to prestress and friction, still need to be examined. Additionally, a more realistic fault geometry will likely affect the rupture dynamics. Thus, future work will incorporate stochastic stress and friction distributions as well as a more complex fault geometry based on Slab 1.0 (Hayes et al., 2012).
NASA Astrophysics Data System (ADS)
Scott, C. P.; Lohman, R. B.
2015-12-01
InSAR-based studies of the seismic cycle have focused primarily on the interferometric phase observations, which place constraints on the amount of uplift or subsidence of the ground surface. Recently, coseismic InSAR coherence has also been used to rapidly identify urban damage, surface ruptures, cracking, and soil liquefaction. Here we demonstrate that time-variable correlation and amplitude data contain additional information about surficial processes and material properties that may affect ground deformation and seismic hazard. In the use of correlation for hazard response, distinguishing the coseismic signal from other changes in surface properties associated with variations in soil moisture content, vegetation and snow cover, and wind is critical. Building SAR-based catalogues of ground properties will therefore improve the reliability of rapid response and aid in the designing of future SAR missions to better map surface ruptures, off-fault deformation, and coseismic damage. In this project, we characterize the seasonal variations in the soil moisture content in the Northern Chilean Coastal Cordillera and Southern California. The extreme climate of the Atacama Desert characterized by hyperaridity and coastal fog during the non-summer months creates an ideal landscape for exploring surface properties. We produce interferograms using L-band ALOS data (λ = 23.6 cm) that span 46 days to three years and have perpendicular baselines less than 1500 m. We observe a strong seasonal dependence on correlation that extends to the maximum elevation of the fog penetration. Interferograms with only austral summer acquisitions are more correlated than interferograms with one or both acquisitions in the autumn, winter or spring, even when the summer interferograms span multiple years. We propose that the seasonal dependence is due to small changes in the radar path length caused by variable soil moisture content in the very shallow subsurface. We further consider local variations in correlation surrounding aeolian dunes, quebradas or ravines, cities, and salars. We extend our work to include the Owens Valley and Death Valley in California.
Inverting Coseismic TEC Disturbances for Neutral Atmosphere Pressure Wave
NASA Astrophysics Data System (ADS)
Lee, R. F.; Mikesell, D.; Rolland, L.
2017-12-01
Research from the past 20 years has shown that we can detect coseismic disturbances in the total electron content (TEC) using global navigation space systems (GNSS). In the near field, TEC disturbances are created by the direct wave from rupture on the surface. This pressure wave travels through the neutral atmosphere to the ionosphere within about 10 minutes. This provides the opportunity to almost immediately characterize the source of the acoustic disturbance on the surface using methods from seismology. In populated areas, this could provide valuable information to first responders. To retrieve the surface motion amplitude information we must account for changes in the waveform caused by the geomagnetic field, motion of the satellites and the geometry of the satellites and receivers. One method is to use a transfer function to invert for the neutral atmosphere pressure wave. Gómez et al (2015) first employed an analytical model to invert for acoustic waves produced by Rayleigh waves propagating along the Earth's surface. Here, we examine the same model in the near field using the TEC disturbances from the direct wave produced by rupture at the surface. We compare results from the forward model against a numerical model that has been shown to be in good agreement with observations from the 2011 Van (Turkey) earthquake. We show the forward model predictions using both methods for the Van earthquake. We then analyze results for hypothetical events at different latitudes and discuss the reliability of the analytical model in each scenario. Gómez, D., R. Jr. Smalley, C. A. Langston, T. J. Wilson, M. Bevis, I. W. D. Dalziel, E. C. Kendrick, S. A. Konfal, M. J. Willis, D. A. Piñón, et al. (2015), Virtual array beamforming of GPS TEC observations of coseismic ionospheric disturbances near the Geomagnetic South Pole triggered by teleseismic megathrusts, J. Geophys. Res. Space Physics, 120, 9087-9101, doi:10.1002/2015JA021725.
Physics of Earthquake Rupture Propagation
NASA Astrophysics Data System (ADS)
Xu, Shiqing; Fukuyama, Eiichi; Sagy, Amir; Doan, Mai-Linh
2018-05-01
A comprehensive understanding of earthquake rupture propagation requires the study of not only the sudden release of elastic strain energy during co-seismic slip, but also of other processes that operate at a variety of spatiotemporal scales. For example, the accumulation of the elastic strain energy usually takes decades to hundreds of years, and rupture propagation and termination modify the bulk properties of the surrounding medium that can influence the behavior of future earthquakes. To share recent findings in the multiscale investigation of earthquake rupture propagation, we held a session entitled "Physics of Earthquake Rupture Propagation" during the 2016 American Geophysical Union (AGU) Fall Meeting in San Francisco. The session included 46 poster and 32 oral presentations, reporting observations of natural earthquakes, numerical and experimental simulations of earthquake ruptures, and studies of earthquake fault friction. These presentations and discussions during and after the session suggested a need to document more formally the research findings, particularly new observations and views different from conventional ones, complexities in fault zone properties and loading conditions, the diversity of fault slip modes and their interactions, the evaluation of observational and model uncertainties, and comparison between empirical and physics-based models. Therefore, we organize this Special Issue (SI) of Tectonophysics under the same title as our AGU session, hoping to inspire future investigations. Eighteen articles (marked with "this issue") are included in this SI and grouped into the following six categories.
Smith, D.E.; Aagaard, Brad T.; Heaton, T.H.
2005-01-01
We investigate whether a shallow-dipping thrust fault is prone to waveslip interactions via surface-reflected waves affecting the dynamic slip. If so, can these interactions create faults that are opaque to radiated energy? Furthermore, in this case of a shallow-dipping thrust fault, can incorrectly assuming a transparent fault while using dislocation theory lead to underestimates of seismic moment? Slip time histories are generated in three-dimensional dynamic rupture simulations while allowing for varying degrees of wave-slip interaction controlled by fault-friction models. Based on the slip time histories, P and SH seismograms are calculated for stations at teleseismic distances. The overburdening pressure caused by gravity eliminates mode I opening except at the tip of the fault near the surface; hence, mode I opening has no effect on the teleseismic signal. Normalizing by a Haskell-like traditional kinematic rupture, we find teleseismic peak-to-peak displacement amplitudes are approximately 1.0 for both P and SH waves, except for the unrealistic case of zero sliding friction. Zero sliding friction has peak-to-peak amplitudes of 1.6 for P and 2.0 for SH waves; the fault slip oscillates about its equilibrium value, resulting in a large nonzero (0.08 Hz) spectral peak not seen in other ruptures. These results indicate wave-slip interactions associated with surface-reflected phases in real earthquakes should have little to no effect on teleseismic motions. Thus, Haskell-like kinematic dislocation theory (transparent fault conditions) can be safety used to simulate teleseismic waveforms in the Earth.
NASA Astrophysics Data System (ADS)
Colangelo, Antonio C.
2010-05-01
The central purpose of this work is to perform a reverse procedure in the mass movement conventional parameterization approach. The idea is to generate a number of synthetic mass movements by means of the "slope stability simulator" (Colangelo, 2007), and compeer their morphological and physical properties with "real" conditions of effective mass movements. This device is an integrated part of "relief unity emulator" (rue), that permits generate synthetic mass movements in a synthetic slope environment. The "rue" was build upon fundamental geomorphological concepts. These devices operate with an integrated set of mechanical, geomorphic and hydrological models. The "slope stability simulator" device (sss) permits to perform a detailed slope stability analysis in a theoretical three dimensional space, by means of evaluation the spatial behavior of critical depths, gradients and saturation levels in the "potential rupture surfaces" inferred along a set of slope profiles, that compounds a synthetic slope unity. It's a meta-stable 4-dimensional object generated by means of "rue", that represents a sequence evolution of a generator profile applied here, was adapted the infinite slope model for slope. Any slope profiles were sliced by means of finite element solution like in Bishop method. For the synthetic slope systems generated, we assume that the potential rupture surface occurs at soil-regolith or soil-rock boundary in slope material. Sixteen variables were included in the "rue-sss" device that operates in an integrated manner. For each cell, the factor of safety was calculated considering the value of shear strength (cohesion and friction) of material, soil-regolith boundary depth, soil moisture level content, potential rupture surface gradient, slope surface gradient, top of subsurface flow gradient, apparent soil bulk density and vegetation surcharge. The slope soil was considered as cohesive material. The 16 variables incorporated in the models were analyzed for each cell in synthetic slope systems performed by relief unity emulator. The central methodological strategy is to locate the potential rupture surfaces (prs), main material discontinuities, like soil-regolith or regolith-rock transitions. Inner these "prs", we would to outline the effective potential rupture surfaces (eprs). This surface is a sub-set of the "prs" that presents safety factor less than unity (f<1), the sub-region in the "prs" equal or deeper than critical depths. When the effective potential rupture surface acquires significant extension with respect the thickness of critical depth and retaining walls, the "slope stability simulator" generates a synthetic mass movement. The overlay material will slide until that a new equilibrium be attained at residual shear strength. These devices generate graphic 3D cinematic sequences of experiments in synthetic slope systems and numerical results about physical and morphological data about scars and deposits. Thus, we have a detailed geotechnical, morphological, topographic and morphometric description of these mass movements prototypes, for deal with effective mass movements found in the real environments.
The 1985 central chile earthquake: a repeat of previous great earthquakes in the region?
Comte, D; Eisenberg, A; Lorca, E; Pardo, M; Ponce, L; Saragoni, R; Singh, S K; Suárez, G
1986-07-25
A great earthquake (surface-wave magnitude, 7.8) occurred along the coast of central Chile on 3 March 1985, causing heavy damage to coastal towns. Intense foreshock activity near the epicenter of the main shock occurred for 11 days before the earthquake. The aftershocks of the 1985 earthquake define a rupture area of 170 by 110 square kilometers. The earthquake was forecast on the basis of the nearly constant repeat time (83 +/- 9 years) of great earthquakes in this region. An analysis of previous earthquakes suggests that the rupture lengths of great shocks in the region vary by a factor of about 3. The nearly constant repeat time and variable rupture lengths cannot be reconciled with time- or slip-predictable models of earthquake recurrence. The great earthquakes in the region seem to involve a variable rupture mode and yet, for unknown reasons, remain periodic. Historical data suggest that the region south of the 1985 rupture zone should now be considered a gap of high seismic potential that may rupture in a great earthquake in the next few tens of years.
NASA Astrophysics Data System (ADS)
Castro, J.; Martin-Rojas, I.; Medina-Cascales, I.; García-Tortosa, F. J.; Alfaro, P.; Insua-Arévalo, J. M.
2018-06-01
This paper on the Baza Fault provides the first palaeoseismic data from trenches in the central sector of the Betic Cordillera (S Spain), one of the most tectonically active areas of the Iberian Peninsula. With the palaeoseismological data we constructed time-stratigraphic OxCal models that yield probability density functions (PDFs) of individual palaeoseismic event timing. We analysed PDF overlap to quantitatively correlate the walls and site events into a single earthquake chronology. We assembled a surface-rupturing history of the Baza Fault for the last ca. 45,000 years. We postulated six alternative surface rupturing histories including 8-9 fault-wide earthquakes. We calculated fault-wide earthquake recurrence intervals using Monte Carlo. This analysis yielded a 4750-5150 yr recurrence interval. Finally, compared our results with the results from empirical relationships. Our results will provide a basis for future analyses of more of other active normal faults in this region. Moreover, our results will be essential for improving earthquake-probability assessments in Spain, where palaeoseismic data are scarce.
NASA Astrophysics Data System (ADS)
Scala, Antonio; Murphy, Shane; Romano, Fabrizio; Lorito, Stefano; Festa, Gaetano; Volpe, Manuela; Piatanesi, Alessio
2017-04-01
Recent megathrust tsunamigenic events, e.g. Maule 2010 (M8.8) and Tohoku 2011 (M9.0), generated huge tsunami waves as a consequence of high slip in the shallow part of the respective subduction zone. Other events, (e.g. the recent Mentawai 2010, M7.8, or the historical Meiji 1896, M8.2), referred to as tsunami earthquakes, produced unexpectedly large tsunami waves, probably due to large slip at shallow depth over longer rupture durations compared to deeper thrust events. Subduction zone earthquakes originate and propagate along bimaterial interfaces separating materials having different elastic properties, e.g. continental and oceanic crust, a stiffer deep mantle wedge, shallow compliant accretionary prism etc. Bimaterial interfaces have been showed, through observations (seismological and laboratory) and theoretical studies, to affect the rupture: introducing a preferred rupture direction as well as asymmetric rupture velocities and shear stress redistributions. Such features are predominantly due to the break of symmetry between the two sides of the interface in turn ascribable to the complex coupling between the frictional interfacial sliding and the slip-induced normal stress perturbations. In order to examine the influence of material contrast on a fault plane on the seismic source and tsunami waves, we modelled a Tohoku-like subduction zone to perform a large number of 2D along-dip rupture dynamics simulations in the framework of linear slip weakening both for homogeneous and bimaterial fault. In this latter model, the rupture acts as the interface between the subducting oceanic crust and the overriding layers (accretionary prism, continental crust and mantle wedge), varying the position of the shear stress asperity acting as nucleation patch. Initial results reveal that ruptures in homogeneous media produce earthquakes with large slip at depth compared to the case where bi-material interface is included. However the opposite occurs for events nucleating at intermediate depths: the compliant accretionary prism favours slip up to the free surface leading to larger events compared to the homogeneous case. These preliminary findings will be further investigated considering different material contrasts between the slab and the overriding accretionary prism to mimic the slowness of the sedimentary wedge. This will contribute to assess the influence of these contrasts in more realistic environment on the seismic source features and, in turn, on the conditional probability of exceedance for maximum tsunami wave height for a M9 event. Several source parameters, such as coseismic slip, rupture duration, rupture velocity and stress conditions, derived from the numerical simulations will be compared to those inferred from real events using existing finite fault catalogues (e.g. USGS, SRCMOD, etc.).
A retrospective study of eyeball rupture in patients with or without orbital fracture
Chen, Xiang; Yao, Yi; Wang, Fengxiang; Liu, Tiecheng; Zhao, Xiao
2017-01-01
Abstract To summarize the clinical features of eyeball rupture with or without orbital fracture and explore the differences between them. In all, 197 patients were observed, and the following data were recorded: sex, age, time of injury, place of injury, cause of trauma, zone of eye injury, intraocular content prolapse, surgical methods and the therapeutic process, visual acuity after injury, and the final best corrected visual acuity. The results were analyzed for statistically significant differences. There was no significant difference (P > .05) in the age, sex, or cause of injury. Patients with eyeball rupture with fracture had poorer vision than did those in the simple eyeball rupture group; eyeball rupture with fracture also had a higher probability of enucleation. In this study, the clinical results show that prognosis of eyeball rupture with orbital fracture is worse than that of eyeball rupture without orbital fracture. PMID:28614230
A retrospective study of eyeball rupture in patients with or without orbital fracture.
Chen, Xiang; Yao, Yi; Wang, Fengxiang; Liu, Tiecheng; Zhao, Xiao
2017-06-01
To summarize the clinical features of eyeball rupture with or without orbital fracture and explore the differences between them.In all, 197 patients were observed, and the following data were recorded: sex, age, time of injury, place of injury, cause of trauma, zone of eye injury, intraocular content prolapse, surgical methods and the therapeutic process, visual acuity after injury, and the final best corrected visual acuity. The results were analyzed for statistically significant differences.There was no significant difference (P > .05) in the age, sex, or cause of injury. Patients with eyeball rupture with fracture had poorer vision than did those in the simple eyeball rupture group; eyeball rupture with fracture also had a higher probability of enucleation.In this study, the clinical results show that prognosis of eyeball rupture with orbital fracture is worse than that of eyeball rupture without orbital fracture.
Fracture surfaces of granular pastes.
Mohamed Abdelhaye, Y O; Chaouche, M; Van Damme, H
2013-11-01
Granular pastes are dense dispersions of non-colloidal grains in a simple or a complex fluid. Typical examples are the coating, gluing or sealing mortars used in building applications. We study the cohesive rupture of thick mortar layers in a simple pulling test where the paste is initially confined between two flat surfaces. After hardening, the morphology of the fracture surfaces was investigated, using either the box counting method to analyze fracture profiles perpendicular to the mean fracture plane, or the slit-island method to analyze the islands obtained by cutting the fracture surfaces at different heights, parallel to the mean fracture plane. The fracture surfaces were shown to exhibit scaling properties over several decades. However, contrary to what has been observed in the brittle or ductile fracture of solid materials, the islands were shown to be mass fractals. This was related to the extensive plastic flow involved in the fracture process.
NASA Astrophysics Data System (ADS)
Hobbs, T. E.; Cassidy, J. F.; Dosso, S. E.
2014-12-01
This paper examines the effect of the October 2012 Mw 7.8 Haida Gwaii earthquake on aftershock nodal planes and the neighboring Queen Charlotte Fault (QCF) through Coulomb modeling and directivity analysis. The Haida Gwaii earthquake was the largest thrust event recorded in this region and ruptured an area of ~150 by 40 km on a gently NE-dipping fault off the west coast of Moresby Island, British Columbia. It is particularly interesting as it is located just to the west of the QCF, the predominantly right-lateral strike-slip fault separating the Pacific and North American plates. The QCF was the site of the largest recorded earthquake in Canada: the 1949 Ms 8.1 strike-slip earthquake whose rupture extended as far south as this 2012 event and roughly as far north as an Mw7.5 strike slip event at Craig, Alaska, which occurred just two months later in January 2013. The 75 km long portion of the QCF south of the 1949 rupture has not had a large (M ≥ 7) earthquake in over 116 years, representing a significant seismic gap. Coulomb stress transfer analysis is performed using finite fault models which incorporate seismic and geodetic data. Static stress changes are projected onto aftershock nodal planes and the QCF, including an inferred southern seismic gap. We find up to 86% of aftershocks are consistent with triggering, and as high as 96% for normal faulting events. The QCF experiences static stress changes greater than the empirically-determined threshold for triggering, with positive stress changes predicted for roughly half of the seismic gap region. Added stress from the mainshock and a lack of post-mainshock events make this seismic gap a likely location for future earthquakes. Empirical Green's function and directivity analyses are also performed to constrain rupture kinematics of the mainshock using systematic azimuthal variations in relative source time functions. Results indicate rupture progressed mainly to the northwest within 15o of the direction of the 2013 Craig epicenter, with at least two sources of significant moment release. These results explain observed surface wave amplification at Alaskan seismic stations and support the idea that strong surface wave shaking may be linked to the possible delayed triggering of the Mw 7.5 Craig event, through an unknown intermediate mechanism that accounts for the two-month hiatus.
Detachment of agglutinin-bonded red blood cells. I. Forces to rupture molecular-point attachments.
Evans, E; Berk, D; Leung, A
1991-01-01
A simple micromechanical method has been developed to measure the rupture strength of a molecular-point attachment (focal bond) between two macroscopically smooth membrane capsules. In the procedure, one capsule is prepared with a low density coverage of adhesion molecules, formed as a stiff sphere, and held at fixed position by a micropipette. The second capsule without adhesion molecules is pressurized into a spherical shape with low suction by another pipette. This capsule is maneuvered to initiate point contact at the pole opposite the stiff capsule which leads to formation of a few (or even one) molecular attachments. Then, the deformable capsule is slowly withdrawn by displacement of the pipette. Analysis shows that the end-to-end extension of the capsule provides a direct measure of the force at the point contact and, therefore, the rupture strength when detachment occurs. The range for point forces accessible to this technique depends on the elastic moduli of the membrane, membrane tension, and the size of the capsule. For biological and synthetic vesicle membranes, the range of force lies between 10(-7)-10(-5) dyn (10(-12)-10(-10) N) which is 100-fold less than presently measurable by Atomic Force Microscopy! Here, the approach was used to study the forces required to rupture microscopic attachments between red blood cells formed by a monoclonal antibody to red cell membrane glycophorin, anti-A serum, and a lectin from the snail-helix pomatia. Failure of the attachments appeared to be a stochastic function of the magnitude and duration of the detachment force. We have correlated the statistical behavior observed for rupture with a random process model for failure of small numbers of molecular attachments. The surprising outcome of the measurements and analysis was that the forces deduced for short-time failure of 1-2 molecular attachments were nearly the same for all of the agglutinin, i.e., 1-2 x 10(-6) dyn. Hence, microfluorometric tests were carried out to determine if labeled agglutinins and/or labeled surface molecules were transferred between surfaces after separation of large areas of adhesive contact. The results showed that the attachments failed because receptors were extracted from the membrane. Images FIGURE 1 FIGURE 4 PMID:2065188
Delayed splenic rupture presenting 70 days following blunt abdominal trauma.
Resteghini, Nancy; Nielsen, Jonpaul; Hoimes, Matthew L; Karam, Adib R
2014-01-01
Delayed splenic rupture following conservative management of splenic injury is an extremely rare complication. We report a case of an adult patient who presented with delayed splenic rupture necessitating splenectomy, 2 months following blunt abdominal trauma. Imaging at the initial presentation demonstrated only minimal splenic contusion and the patient was discharge following 24 hours of observation. © 2014.
Features of the rupture of free hanging liquid film under the action of a thermal load
NASA Astrophysics Data System (ADS)
Ovcharova, Alla S.
2011-10-01
We consider a deformation and a rupture of a thin liquid film which is hanging between two solid flat walls under the action of concentrated thermal load action. A two-dimensional model is applied to describe the motion of thin layers of viscous non-isothermal liquid under micro-gravity conditions. For flow simulation, two-dimensional Navier-Stokes equations are used. A computational analysis of the influence of thermal loads on the deformation and the rupture behavior of the thin freely hanging film is carried out. It is shown that the rupture of the thin film with generation of a droplet can occur under the thermal beam of specific width acting on the free surface of the film. The results of the model problem solutions are presented.
Implications of loading/unloading a subduction zone with a heterogeneously coupled interface
NASA Astrophysics Data System (ADS)
Herman, M. W.; Furlong, K. P.; Govers, R. M. A.
2017-12-01
Numerical models of subduction zones with appropriate physical properties may help understand deformation throughout great earthquake cycles, as well as associated observations such as the distribution of smaller magnitude megathrust earthquakes and surface displacements. Of particular interest are displacements near the trench, where tsunamis are generated. The patterns of co-seismic strain release in great megathrust earthquakes depend on the frictional coupling of the plate interface prior to the event. Geodetic observations during the inter-seismic stage suggest that the plates are fully locked at asperities surrounded by zones of apparent partial coupling. We simulate the accumulation (and release) of elastic strain in the subduction system using a finite element model with a relatively simple geometry and material properties. We demonstrate that inter-seismic apparent partial coupling can be dominantly explained by a distribution of completely locked asperities and zero friction elsewhere. In these models, the interface up-dip of the locked zone (< 15 km depth) accumulates large slip deficit even if its coefficient of friction is zero, as might be inferred from the scarcity of megathrust earthquakes shallower than 15 km in global earthquake catalogs. In addition, the upper plate above a low-friction shallow megathrust accumulates large displacements with little internal strain, potentially leading to large co-seismic block displacements (low displacement gradients) of the near-trench seafloor like those observed following the 2011 Mw 9.0 Tohoku earthquake. This is also consistent with anomalously low co-seismic frictional heating of the shallow megathrust indicated by borehole heat flow measurements after the Tohoku event. Our models also yield insights into slip partitioning throughout multiple earthquake cycles. In smaller ruptures, fault slip is inhibited by nearby locked zones; in subsequent multi-segment ruptures, the rest of this slip deficit may be released, producing significantly larger slip than might be expected based on historical earthquake magnitudes. Finally, because low-friction areas around asperities accumulate some slip deficit but may not rupture co-seismically, these regions may be the primary locations of afterslip following the rupture of the locked patch.
NASA Astrophysics Data System (ADS)
Festa, Gaetano; Vilotte, Jean-Pierre; Raous, Michel; Henninger, Carole
2010-05-01
Propagation and radiation of an earthquake rupture is commonly considered as a friction dominated process on fault surfaces. Friction laws, such as the slip weakening and the rate-and-state laws are widely used in the modeling of the earthquake rupture process. These laws prescribe the traction evolution versus slip, slip rate and potentially other internal variables. They introduce a finite cohesive length scale over which the fracture energy is released. However faults are finite-width interfaces with complex internal structures, characterized by highly damaged zones embedding a very thin principal slip interface where most of the dynamic slip localizes. Even though the rupture process is generally investigated at wavelengths larger than the fault zone thickness, which should justify a formulation based upon surface energy, a consistent homogeneization, a very challenging problem, is still missing. Such homogeneization is however be required to derive the consistent form of an effective interface law, as well as the appropriate physical variables and length scales, to correctly describe the coarse-grained dissipation resulting from surface and volumetric contributions at the scale of the fault zone. In this study, we investigate a scale-dependent law, introduced by Raous et al. (1999) in the context of adhesive material interfaces, that takes into account the transition between a damage dominated and a friction dominated state. Such a phase-field formalism describes this transition through an order parameter. We first compare this law to standard slip weakening friction law in terms of the rupture nucleation. The problem is analyzed through the representation of the solution of the quasi-static elastic problem onto the Chebyshev polynomial basis, generalizing the Uenishi-Rice solution. The nucleation solutions, at the onset of instability, are then introduced as initial conditions for the study of the dynamic rupture propagation, in the case of in-plane rupture, using high-order Spectral Element Methods and non-smooth contact mechanics. In particular, we investigate the implications of this new interface law in terms of the rupture propagation and arrest. Special attention is focused on radiation and supershear transition. Comparison with the classical slip weakening friction law is provided. Finally, first results toward a dynamic consistent homogeneization of damaged fault zones will be discussed. Raous, M., Cangémi, L. and Cocou, M. (1999). A consistent model coupling adhesion, friction and unilateral contact', Computer Methods in Applied Mechanics and Engineering, Vol. 177, pp.383-399.
Seafloor Deformation and Localized Source Mechanisms of the 2011 M9 Tohoku Earthquake and Tsunami.
NASA Astrophysics Data System (ADS)
Masterlark, T.; Grilli, S. T.; Tappin, D. R.; Kirby, J. T.
2012-12-01
The 2011 M9 Tohoku Earthquake (TE) ruptured the interface separating the Pacific and Okhotsk Plates. This rupture was about hundred kilometers in the along-strike direction and 200 kilometers in the down-dip direction. The TE was primarily thrust having substantial slip along the up-dip portion of the rupture, near the Japan Trench. The regional-scale seafloor deformation from the TE triggered a tsunami with run-ups of a few tens of meters that caused extensive damage along the east coast of Tohoku, Japan. We construct finite element models (FEMs) to simulate the deformation caused by a distribution of coseismic slip along the curved rupture surface of the TE. The FEMs include a distribution of material properties that accounts for the subduction zone structure -a weak forearc, volcanic arc, and backarc basin of the overriding Okhotsk Plate overriding the relatively strong subducting slab that is capped by basaltic oceanic crust. The coseismic rupture is simulated as a distribution of elastic dislocations along the interface separating the forearc of the overriding plate and the oceanic crust of the subducting slab. The slip distribution is calibrated to both onshore and offshore geodetic data, using linear least-squares inverse methods with FEM-generated Greens Functions and second order regularization. The regularization is imposed with a conductance matrix, constructed using Galerkin's Method to account for the curvilinear relationships among the dislocating node pairs. The estimated slip distribution is generally characterized as a few tens of meters of slip over the entire rupture, with greater slip magnitudes (>50 meters) concentrated up-dip and near the Japan Trench. The offshore geodetic data provide critical constraints for the location of the polarity reversal of predicted seafloor vertical deformation. Wave models excited by the predicted regional-scale seafloor deformation generally well predict observed tsunami run-ups and the vertical displacement magnitudes of low frequency waves of coastal GPS buoys. However, coastal areas near Sanriku, Japan experienced anomalously high run-ups of 40 meters and local offshore GPS buoys indicate high frequency waveforms that are incompatible with the coseismic seafloor deformation of the TE. These observations require a localized deformation source near the Japan Trench and just to the north of the TE rupture zone, which models solely based on tsunami waveform inversion predict. Others suggest that a submarine mass failure at this location, presumably triggered by the TE, can excite such waveforms. In this study, we investigate an alternative hypothesis that localized splay faulting, also presumably triggered by the TE, can excite the anomalous waveforms. To do so, we will estimate plausible suites of splay fault and slip parameters that can account for the anomalously high magnitude and high frequency tsunami waves sourced from a localized area near the Japan Trench and north of the TE rupture.
DuRoss, Christopher B.; Personius, Stephen F.; Crone, Anthony J.; McDonald, Greg N.; Briggs, Richard W.
2012-01-01
Of the five central segments of the Wasatch fault zone (WFZ) having evidence of recurrent Holocene surface-faulting earthquakes, the Brigham City segment (BCS) has the longest elapsed time since its most recent surface-faulting event (~2.1 kyr) compared to its mean recurrence time between events (~1.3 kyr). Thus, the BCS has the highest time-dependent earthquake probability of the central WFZ. We excavated trenches at three sites––the Kotter Canyon and Hansen Canyon sites on the north-central BCS and Pearsons Canyon site on the southern BCS––to determine whether a surface-faulting earthquake younger than 2.1 ka occurred on the BCS. Paleoseismic data for Hansen Canyon and Kotter Canyon confirm that the youngest earthquake on the north-central BCS occurred before 2 ka, consistent with previous north-central BCS investigations at Bowden Canyon and Box Elder Canyon. At Hansen Canyon, the most recent earthquake is constrained to 2.1–4.2 ka and had 0.6–2.5 m of vertical displacement. At Kotter Canyon, we found evidence for two events at 2.5 ± 0.3 ka and 3.5 ± 0.3 ka, with an average displacement per event of 1.9–2.3 m. Paleoseismic data from Pearsons Canyon, on the previously unstudied southern BCS, indicate that a post-2 ka earthquake ruptured this part of the segment. The Pearsons Canyon earthquake occurred at 1.2 ± 0.04 ka and had 0.1–0.8 m of vertical displacement, consistent with our observation of continuous, youthful scarps on the southern 9 km of the BCS having 1–2 m of late Holocene(?) surface offset. The 1.2-ka earthquake on the southern BCS likely represents rupture across the Weber–Brigham City segment boundary from the penultimate Weber-segment earthquake at about 1.1 ka. The Pearsons Canyon data result in a revised length of the BCS that has not ruptured since 2 ka (with time-dependent probability implications), and provide compelling evidence of at least one segment-boundary failure and multi-segment rupture on the central WFZ. Our paleoseismic investigations of the BCS clarify the timing, displacement, and extent of late Holocene earthquakes on the segment, and importantly, confirm the long elapsed time since the most recent earthquake on most of the BCS.
Satellite Radar Show Complex Set of Faults Moved in 2016 New Zealand Earthquake
2017-03-23
NASA and its partners are contributing important observations and expertise to the ongoing response to the Nov. 14, 2016, magnitude 7.8 Kaikoura earthquake in New Zealand. This shallow earthquake was so complex and unusual, it is likely to change how scientists think about earthquake hazards in plate boundary zones around the world. Scientists with the Advanced Rapid Imaging and Analysis project (ARIA), a collaboration between NASA's Jet Propulsion Laboratory, Pasadena, California, and Caltech in Pasadena, analyzed interferometric synthetic aperture radar images from the PALSAR-2 instrument on the ALOS-2 satellite operated by the Japan Aerospace Exploration Agency (JAXA) to calculate maps of the deformation of Earth's surface caused by the quake. Two maps show motion of the surface in two different directions. Each false-color map shows the amount of permanent surface movement caused almost entirely by the earthquake, as viewed by the satellite, during a 28-day interval between two ALOS-2 wide-swath images acquired on Oct. 18 and Nov. 15, 2016. In these two new maps made from the wide-swath images, the colors of the surface displacements are proportional to the surface motion. The wide-swath images cover the entire 106-mile (170-kilometer) length of the complex set of earthquake ruptures. The arrows show the direction of the radar motion measurement. In the left image, the blue and purple tones show the areas where the land around the Kaikoura peninsula in the Marlborough region of New Zealand's South Island has moved toward the satellite by up to 13.2 feet (4 meters), both eastward and upward. In the right image, the blue and purple tones show the areas that moved to the north by up to 30 feet (9 meters) and green tones show the area that moved to the south. The sharp line of color change is across the Kekerengu Fault, which had the largest amount of motion in the earthquake. Field studies found maximum rupture at the surface was measured at 39 feet (12 meters) of horizontal displacement. Several other faults have sharp color changes due to smaller amounts of motion, with a total of at least 12 faults rupturing in this single large earthquake. Areas without color have snow, heavy vegetation or open water that prevents the radar measurements from being coherent between satellite images – a required condition to measure ground displacement. Scientists use these maps to build detailed models of the fault slip at depth and associated land movements to better understand the impact on future earthquake activity. The PALSAR-2 data were provided by JAXA through the Committee on Earth Observation Satellites (CEOS) and through scientific research projects. The background image is from Google Earth. http://photojournal.jpl.nasa.gov/catalog/PIA21210
NASA Astrophysics Data System (ADS)
Reitman, N. G.; Briggs, R.; Gold, R. D.; DuRoss, C. B.
2015-12-01
Post-earthquake, field-based assessments of surface displacement commonly underestimate offsets observed with remote sensing techniques (e.g., InSAR, image cross-correlation) because they fail to capture the total deformation field. Modern earthquakes are readily characterized by comparing pre- and post-event remote sensing data, but historical earthquakes often lack pre-event data. To overcome this challenge, we use historical aerial photographs to derive pre-event digital surface models (DSMs), which we compare to modern, post-event DSMs. Our case study focuses on resolving on- and off-fault deformation along the Lost River fault that accompanied the 1983 M6.9 Borah Peak, Idaho, normal-faulting earthquake. We use 343 aerial images from 1952-1966 and vertical control points selected from National Geodetic Survey benchmarks measured prior to 1983 to construct a pre-event point cloud (average ~ 0.25 pts/m2) and corresponding DSM. The post-event point cloud (average ~ 1 pt/m2) and corresponding DSM are derived from WorldView 1 and 2 scenes processed with NASA's Ames Stereo Pipeline. The point clouds and DSMs are coregistered using vertical control points, an iterative closest point algorithm, and a DSM coregistration algorithm. Preliminary results of differencing the coregistered DSMs reveal a signal spanning the surface rupture that is consistent with tectonic displacement. Ongoing work is focused on quantifying the significance of this signal and error analysis. We expect this technique to yield a more complete understanding of on- and off-fault deformation patterns associated with the Borah Peak earthquake along the Lost River fault and to help improve assessments of surface deformation for other historical ruptures.
NASA Astrophysics Data System (ADS)
Gallovič, F.
2017-09-01
Strong ground motion simulations require physically plausible earthquake source model. Here, I present the application of such a kinematic model introduced originally by Ruiz et al. (Geophys J Int 186:226-244, 2011). The model is constructed to inherently provide synthetics with the desired omega-squared spectral decay in the full frequency range. The source is composed of randomly distributed overlapping subsources with fractal number-size distribution. The position of the subsources can be constrained by prior knowledge of major asperities (stemming, e.g., from slip inversions), or can be completely random. From earthquake physics point of view, the model includes positive correlation between slip and rise time as found in dynamic source simulations. Rupture velocity and rise time follows local S-wave velocity profile, so that the rupture slows down and rise times increase close to the surface, avoiding unrealistically strong ground motions. Rupture velocity can also have random variations, which result in irregular rupture front while satisfying the causality principle. This advanced kinematic broadband source model is freely available and can be easily incorporated into any numerical wave propagation code, as the source is described by spatially distributed slip rate functions, not requiring any stochastic Green's functions. The source model has been previously validated against the observed data due to the very shallow unilateral 2014 Mw6 South Napa, California, earthquake; the model reproduces well the observed data including the near-fault directivity (Seism Res Lett 87:2-14, 2016). The performance of the source model is shown here on the scenario simulations for the same event. In particular, synthetics are compared with existing ground motion prediction equations (GMPEs), emphasizing the azimuthal dependence of the between-event ground motion variability. I propose a simple model reproducing the azimuthal variations of the between-event ground motion variability, providing an insight into possible refinement of GMPEs' functional forms.
Asymmetry and anisotropy of surface effects of mining induced seismic events
NASA Astrophysics Data System (ADS)
Lasocki, Stanislaw; Orlecka-Sikora, Beata
2013-04-01
Long-lasting exploitation in underground mines and the complex system of goaf - unmined areas - excavation may cause the occurrence of seismic events, whose influence in the excavation and on the free surface is untypical. We present here the analysis of surface effects of a series of ten seismic events that occurred in one panel of a copper-ore mine. The analysis bases on a comparison of the observed ground motion due to the studied events with the estimates from Ground Motion Prediction Equations for peak horizontal (PHA) and vertical (PVA) acceleration of motion in the frequency band up to 10Hz, local for that mining area. The GMPE-s take into account also relative site amplification factors. The posterior probabilities that the observed PHA-s are not attained according to GMPE-s are calculated and mapped. Although all ten considered events had comparable magnitudes and were located close one to another their ground effects were very diverse. The analysis of anomalies of surface effects shows strong asymmetry of ground motion propagation and anisotropy of surface effects of the studied tremors. Based on similarities of surface effects anomalies, expressed in terms of the posterior probabilities, the events are split into distinct groups. In case of four events the actual PHA-s on most of the stations are greater than the respective estimated medians, especially in the sector N-SE. The PHA values of the second group are at short epicentral distances mostly on the same level as the predicted estimates from GMPE. The observed effects, however, become abnormally strong with the increase of epicentral distances in the sector NE-SE. The effects of events from next groups abnormally increase either in NE or NE - SE direction and the maximum anomalies appear about 3km from the epicenter. The extreme discrepancies can be attributed neither to local site effects nor to preferential propagation conditions along some wavepaths. Therefore it is concluded that the observed anomalies of ground motion result from sources properties. Integrated analysis of source mechanism of these events indicates that their untypical and diverse surface effects result from complexity of their sources expressed by tensile source mechanisms, finite sources, directivity of ruptures and nearly horizontal rupture planes. The above features seem to be implied by a superposition of coseismic alterations of stress field and stress changes due to mining. This work has been done in the framework of the research project No. NN525393539, financed by the National Science Centre of Poland for the period 2010-2013.
Rockwell, Thomas K.; Lindvall, Scott; Dawson, Tim; Langridge, Rob; Lettis, William; Klinger, Yann
2002-01-01
Surveys of multiple tree lines within groves of poplar trees, planted in straight lines across the fault prior to the earthquake, show surprisingly large lateral variations. In one grove, slip increases by nearly 1.8 m, or 35% of the maximum measured value, over a lateral distance of nearly 100 m. This and other observations along the 1999 ruptures suggest that the lateral variability of slip observed from displaced geomorphic features in many earthquakes of the past may represent a combination of (1) actual differences in slip at the surface and (2) the difficulty in recognizing distributed nonbrittle deformation.
NASA Astrophysics Data System (ADS)
Goldfinger, C.; Ikeda, Y.; Yeats, R. S.
2011-12-01
The recent Mw=9 superquake off Tohoku Japan, and the 2004 Sumatra-Andaman superquake have humbled many in earthquake research. Neither region was thought capable of earthquakes of magnitudes exceeding Mw~8.4 based on historical records and theories based on short instrumental records. In NE Japan, horizontal shortening is ~5-7 mm/yr. based on faulting and regional uplift data. On the Pacific coast, high rates of subsidence from tide gauges, and geodetic observations revealed E-W contraction at several tens of mm/yr. Only a fraction (< 10%) of plate convergence is inelastic. The elastic rate is ~ an order of magnitude greater than the geologic rate, and is comparable to convergence at the Trench. These data strongly suggested that the strain must be released periodically in earthquakes stronger than those in the historical record (Ikeda, 2003). The Jogan tsunami of 869 is a likely equivalent to the 2011 earthquake, and had two predecessors at ~ 1000 year intervals (Minoura et al., 2001; Shishikura et al., 2007). A related example is the Haiyuan fault, China, the source of an earthquake in 1920 with a rupture length of 237 km. Paleoseismic trenching divided the 1920 rupture into three segments and dated surface-rupturing earthquakes in the past 6000 yrs. Some earthquakes ruptured one segment, some ruptured two, but only one (6100-6200 yrs BP) ruptured all three segments and was a likely duplicate of 1920 (Ran et al. 1997). Prior to trenching, there was a tendency to regard the 1920 earthquake as the characteristic earthquake, when the majority of the paleoseismic examples were much smaller. The two largest events had much greater net slip (5.6 and 7.0 m respectively for ~6150 BP and AD 1920) than the intervening events which averaged 1.5-2 m. In Cascadia, a 10ka paleoseismic record includes evidence of segmented ruptures, clustering, and several outsized events. Goldfinger et al. (2011) compared the mass of correlated turbidite deposits along strike, and found strong correlation between disparate sites. They conclude the earthquake magnitude and turbidite mass are related for many of the Cascadia events. The two outsized events, dated at ~ 5960 and 8810 yrs. BP, consistently have two to five times the average turbidite mass for Holocene events at many sites. To examine long term cycling of kinetic energy, we scale turbidite mass (energy release) to balance plate convergence (energy gain) to generate a 10ka energy time series for Cascadia. A robust pattern is observed, and includes long term increases and declines in stored "energy state" which we term "supercycles". If Cascadia is representative, this suggests that recurrence models may be neither time nor slip predictable and cannot be based on short instrumental records.
NASA Astrophysics Data System (ADS)
Derode, B.; Cappa, F.; Guglielmi, Y.
2012-04-01
The recent observations of non-volcanic tremors (NVT), slow-slip events (SSE), low- (LFE) and very-low (VLF) frequency earthquakes on seismogenic faults reveal that unexpected, large, non-linear transient deformations occur during the interseismic loading of the earthquake cycle. Such phenomena modify stress to the adjacent locked zones bringing them closer to failure. Recent studies indicated various driving factors such as high-fluid pressures and frictional processes. Here we focus on the role of fluids in the different seismic signatures observed in in-situ fractures slip experiments. Experiments were conducted in critically stressed fractures zone at 250 m-depth within the LSBB underground laboratory (south of France). This experiment seeks to explore the field measurements of temporal variations in fluid and stress through continuous monitoring of seismic waves, fluid pressures and mechanical deformations between boreholes and the ground surface. The fluid pressure was increased step-by-step in a fracture isolated between packers until a maximum value of 35 bars; a pressure analog to ones known to trigger earthquakes at crustal depths. We observed in the seismic signals: (1) Tremor-like signatures, (2) Low Frequency signatures, and (3) sudden and short ruptures like micro-earthquakes. By analogy, we suggest that fluid pressures may trigger these different seismic signatures in active faults.
Observing earthquakes triggered in the near field by dynamic deformations
Gomberg, J.; Bodin, P.; Reasenberg, P.A.
2003-01-01
We examine the hypothesis that dynamic deformations associated with seismic waves trigger earthquakes in many tectonic environments. Our analysis focuses on seismicity at close range (within the aftershock zone), complementing published studies of long-range triggering. Our results suggest that dynamic triggering is not confined to remote distances or to geothermal and volcanic regions. Long unilaterally propagating ruptures may focus radiated dynamic deformations in the propagation direction. Therefore, we expect seismicity triggered dynamically by a directive rupture to occur asymmetrically, with a majority of triggered earthquakes in the direction of rupture propagation. Bilaterally propagating ruptures also may be directive, and we propose simple criteria for assessing their directivity. We compare the inferred rupture direction and observed seismicity rate change following 15 earthquakes (M 5.7 to M 8.1) that occured in California and Idaho in the United States, the Gulf of Aqaba, Syria, Guatemala, China, New Guinea, Turkey, Japan, Mexico, and Antarctica. Nine of these mainshocks had clearly directive, unilateral ruptures. Of these nine, seven apparently induced an asymmetric increase in seismicity rate that correlates with the rupture direction. The two exceptions include an earthquake preceded by a comparable-magnitude event on a conjugate fault and another for which data limitations prohibited conclusive results. Similar (but weaker) correlations were found for the bilaterally rupturing earthquakes we studied. Although the static stress change also may trigger seismicity, it and the seismicity it triggers are expected to be similarly asymmetric only if the final slip is skewed toward the rupture terminus. For several of the directive earthquakes, we suggest that the seismicity rate change correlates better with the dynamic stress field than the static stress change.
NASA Astrophysics Data System (ADS)
Kumar, S.; Biswal, S.; Parija, M. P.
2016-12-01
The Himalaya overrides the Indian plate along a decollement fault, referred as the Main Himalayan Thrust (MHT). The 2400 km long Himalayan mountain arc in the northern boundary of the Indian sub-continent is one of the most seismically active regions of the world. The Himalayan Frontal Thrust (HFT) is characterized by an abrupt physiographic and tectonic break between the Himalayan front and the Indo-Gangetic plain. The HFT represents the southern surface expression of the MHT on the Himalayan front. The tectonic zone between the Main Boundary Thrust (MBT) and the HFT encompasses the Himalayan Frontal Fault System (HFFS). The zone indicates late Quaternary-Holocene active deformation. Late Quaternary intramontane basin of Dehradun flanked to the south by the Mohand anticline lies between the MBT and the HFT in Garhwal Sub Himalaya. Slip rate 13-15 mm/yr has been estimated on the HFT based on uplifted strath terrace on the Himalyan front (Wesnousky et al. 2006). An out of sequence active fault, Bhauwala Thrust (BT), is observed between the HFT and the MBT. The Himalayan Frontal Fault System includes MBT, BT, HFT and PF active fault structures (Thakur, 2013). The HFFS structures were developed analogous to proto-thrusts in subduction zone, suggesting that the plate boundary is not a single structure, but series of structures across strike. Seismicity recorded by WIHG shows a concentrated belt of seismic events located in the Main Central Thrust Zone and the physiographic transition zone between the Higher and Lesser Himalaya. However, there is quiescence in the Himalayan frontal zone where surface rupture and active faults are reported. GPS measurements indicate the segment between the southern extent of microseismicity zone and the HFT is locked. The great earthquake originating in the locked segment rupture the plate boundary fault and propagate to the Himalaya front and are registered as surface rupture reactivating the fault in the HFFS.
Accounting for Fault Roughness in Pseudo-Dynamic Ground-Motion Simulations
NASA Astrophysics Data System (ADS)
Mai, P. Martin; Galis, Martin; Thingbaijam, Kiran K. S.; Vyas, Jagdish C.; Dunham, Eric M.
2017-09-01
Geological faults comprise large-scale segmentation and small-scale roughness. These multi-scale geometrical complexities determine the dynamics of the earthquake rupture process, and therefore affect the radiated seismic wavefield. In this study, we examine how different parameterizations of fault roughness lead to variability in the rupture evolution and the resulting near-fault ground motions. Rupture incoherence naturally induced by fault roughness generates high-frequency radiation that follows an ω-2 decay in displacement amplitude spectra. Because dynamic rupture simulations are computationally expensive, we test several kinematic source approximations designed to emulate the observed dynamic behavior. When simplifying the rough-fault geometry, we find that perturbations in local moment tensor orientation are important, while perturbations in local source location are not. Thus, a planar fault can be assumed if the local strike, dip, and rake are maintained. We observe that dynamic rake angle variations are anti-correlated with the local dip angles. Testing two parameterizations of dynamically consistent Yoffe-type source-time function, we show that the seismic wavefield of the approximated kinematic ruptures well reproduces the radiated seismic waves of the complete dynamic source process. This finding opens a new avenue for an improved pseudo-dynamic source characterization that captures the effects of fault roughness on earthquake rupture evolution. By including also the correlations between kinematic source parameters, we outline a new pseudo-dynamic rupture modeling approach for broadband ground-motion simulation.
Dynamic rupture models of subduction zone earthquakes with off-fault plasticity
NASA Astrophysics Data System (ADS)
Wollherr, S.; van Zelst, I.; Gabriel, A. A.; van Dinther, Y.; Madden, E. H.; Ulrich, T.
2017-12-01
Modeling tsunami-genesis based on purely elastic seafloor displacement typically underpredicts tsunami sizes. Dynamic rupture simulations allow to analyse whether plastic energy dissipation is a missing rheological component by capturing the complex interplay of the rupture front, emitted seismic waves and the free surface in the accretionary prism. Strike-slip models with off-fault plasticity suggest decreasing rupture speed and extensive plastic yielding mainly at shallow depths. For simplified subduction geometries inelastic deformation on the verge of Coulomb failure may enhance vertical displacement, which in turn favors the generation of large tsunamis (Ma, 2012). However, constraining appropriate initial conditions in terms of fault geometry, initial fault stress and strength remains challenging. Here, we present dynamic rupture models of subduction zones constrained by long-term seismo-thermo-mechanical modeling (STM) without any a priori assumption of regions of failure. The STM model provides self-consistent slab geometries, as well as stress and strength initial conditions which evolve in response to tectonic stresses, temperature, gravity, plasticity and pressure (van Dinther et al. 2013). Coseismic slip and coupled seismic wave propagation is modelled using the software package SeisSol (www.seissol.org), suited for complex fault zone structures and topography/bathymetry. SeisSol allows for local time-stepping, which drastically reduces the time-to-solution (Uphoff et al., 2017). This is particularly important in large-scale scenarios resolving small-scale features, such as the shallow angle between the megathrust fault and the free surface. Our dynamic rupture model uses a Drucker-Prager plastic yield criterion and accounts for thermal pressurization around the fault mimicking the effect of pore pressure changes due to frictional heating. We first analyze the influence of this rheology on rupture dynamics and tsunamigenic properties, i.e. seafloor displacement, in 2D. Finally, we use the same rheology in a large-scale 3D scenario of the 2004 Sumatra earthquake to shed light to the source process that caused the subsequent devastating tsunami.
Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ
Mateos-Gil, Pablo; Paez, Alfonso; Hörger, Ines; Rivas, Germán; Vicente, Miguel; Tarazona, Pedro; Vélez, Marisela
2012-01-01
We report observation and analysis of the depolymerization filaments of the bacterial cytoskeletal protein FtsZ (filament temperature-sensitive Z) formed on a mica surface. At low concentration, proteins adsorbed on the surface polymerize forming curved filaments that close into rings that remain stable for some time before opening irreversibly and fully depolymerizing. The distribution of ring lifetimes (T) as a function of length (N), shows that the rate of ring aperture correlates with filament length. If this ring lifetime is expressed as a bond survival time, (Tb ≡ NT), this correlation is abolished, indicating that these rupture events occur randomly and independently at each monomer interface. After rings open irreversibly, depolymerization of the remaining filaments is fast, but can be slowed down and followed using a nonhydrolyzing GTP analogue. The histogram of depolymerization velocities of individual filaments has an asymmetric distribution that can be fit with a computer model that assumes two rupture rates, a slow one similar to the one observed for ring aperture, affecting monomers in the central part of the filaments, and a faster one affecting monomers closer to the open ends. From the quantitative analysis, we conclude that the depolymerization rate is affected both by nucleotide hydrolysis rate and by its exchange along the filament, that all monomer interfaces are equally competent for hydrolysis, although depolymerization is faster at the open ends than in central filament regions, and that all monomer–monomer interactions, regardless of the nucleotide present, can adopt a curved configuration. PMID:22566654
High-intensity focused ultrasound ablation around the tubing
Siu, Jun Yang; Liu, Chenhui
2017-01-01
High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17–339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10–30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography. PMID:29161293
High-intensity focused ultrasound ablation around the tubing.
Siu, Jun Yang; Liu, Chenhui; Zhou, Yufeng
2017-01-01
High-intensity focused ultrasound (HIFU) has been emerging as an effective and noninvasive modality in cancer treatment with very promising clinical results. However, a small vessel in the focal region could be ruptured, which is an important concern for the safety of HIFU ablation. In this study, lesion formation in the polyacrylamide gel phantom embedded with different tubing (inner diameters of 0.76 mm and 3 mm) at varied flow speeds (17-339 cm/s) by HIFU ablation was photographically recorded. Produced lesions have decreased length (~30%) but slightly increased width (~6%) in comparison to that without the embedded tubing. Meanwhile, bubble activities during the exposures were measured by passive cavitation detection (PCD) at the varied pulse repetition frequency (PRF, 10-30 Hz) and duty cycle (DC, 10%-20%) of the HIFU bursts. High DC and low flow speed were found to produce stronger bubble cavitation whereas no significant influence of the PRF. In addition, high-speed photography illustrated that the rupture of tubing was produced consistently after the first HIFU burst within 20 ms and then multiple bubbles would penetrate into the intraluminal space of tubing through the rupture site by the acoustic radiation force. Alignment of HIFU focus to the anterior surface, middle, and posterior surface of tubing led to different characteristics of vessel rupture and bubble introduction. In summary, HIFU-induced vessel rupture is possible as shown in this phantom study; produced lesion sizes and shapes are dependent on the focus alignment to the tubing, flow speed, and tubing properties; and bubble cavitation and the formation liquid jet may be one of the major mechanisms of tubing rupture as shown in the high-speed photography.
Personius, S.F.; Mahan, S.A.
2003-01-01
The Hubbell Spring fault zone forms the modern eastern margin of the Rio Grande rift in the Albuquerque basin of north-central New Mexico. Knowledge of its seismic potential is important because the fault zone transects Kirtland Air Force Base/Sandia National Laboratories and underlies the southern Albuquerque metropolitan area. No earthquakes larger than ML 5.5 have been reported in the last 150 years in this region, so we excavated the first trench across this fault zone to determine its late Quaternary paleoseismic history. Our trench excavations revealed a complex, 16-m-wide fault zone overlain by four tapered blankets of mixed eolian sand and minor colluvium that we infer were deposited after four large-magnitude, surface-rupturing earthquakes. Although the first (oldest) rupture event is undated, we used luminescence (thermoluminescence and infrared-stimulated luminescence) ages to determine that the subsequent three rupture events occurred about 56 ?? 6, 29 ?? 3, and 12 ?? 1 ka. These ages yield recurrence intervals of 27 and 17 k.y. between events and an elapsed time of 12 k.y. since the latest surface-rupturing paleoearthquake. Slip rates are not well constrained, but our preferred average slip rate since rupture event 2 (post-56 ka) is 0.05 mm/yr, and interval slip rates between the last three events are 0.06 and 0.09 mm/yr, respectively. Vertical displacements of 1-2 m per event and probable rupture lengths of 34-43 km indicate probable paleoearthquake magnitudes (Ms or Mw) of 6.8-7.1. Future earthquakes of this size likely would cause strong ground motions in the Albuquerque metropolitan area.
Evidence for Coseismic Rupture Beyond the Base of the Seismogenic Layer
NASA Astrophysics Data System (ADS)
Zielke, O.; Wesnousky, S.
2010-12-01
For scientific reasons and hazard assessment it is important to better understand the physics and rupture characteristics of large, destructive earthquakes. However, those events occur infrequently, severely obstructing their analysis. Smaller but more frequent earthquakes are usually studied and their characteristics are extrapolated to assess large earthquake behavior, assuming that small and large events are associated with the same physical processes and parameters. For small and moderate size earthquakes it was observed and independently derived from elastic models that coseismic stress drop is independent of earthquake size and that slip is proportional to the smallest rupture dimension. It is therefore assumed that large earthquake stress drops are essentially equal to the stress drop of their smaller size siblings. It is further assumed that the slip amount of large events does not further increase once it ruptures the full seismogenic layer--the base of the seismogenic layer is commonly thought to limit the earthquake down-dip rupture extend and thus defines the smallest rupture dimension. However, slip observations for many large strike-slip events show how offset gradually increases with rupture length. Two explanations have been formulated: If the rupture width of those events were indeed limited by the base of the seismogenic layer, the observations would imply larger stress drops and possibly other processes involved in large earthquake rupture, questioning the validity of the aforementioned extrapolation from small to large earthquakes. On the other hand, if rupture width of large earthquakes were not limited by the base of the seismogenic layer but were allowed to extend further down (as suggested by recent studies), the increased slip amount may be explained without an increase in stress drop or additional rupture mechanisms for large earthquakes. For the study we present here, we analyzed seismic data constraining the depth extent of large earthquakes relative to the depth of the seismogenic base. We utilized time series data of aftershock depths for a number of large strike-slip earthquakes, generating aftershock time vs. depth histograms to investigate the temporal variation in depth distribution. Based on hypocenter depth of small earthquakes along the Landers fault (causing the 1992 M7.3 Landers earthquake), we identified the base of the seismogenic layer at ~10km. Aftershocks that occurred only days after the Landers earthquake had maximum depths of ~18km, suggesting that rupture of the main shock extended this far down and therefore went well below the base of the seismogenic layer. Maximum aftershock depth then decayed roughly logarithmically, reaching the previous value of ~10km after about 5.5years. We argue that these observations are a logical consequence of the visco-elastic rheology of crustal rocks: Coseismically highly increased strains elevate the crustal stiffness, temporarily lowering the base of the seismogenic layer and permitting initiation of slip instabilities at depths that are otherwise characterized by viscous behavior. Extrapolation from small to large earthquakes is therefore permitted. No additional stress drop or rupture mechanism is required to explain the data.
The Influence of TiO2 Addition on the Modulus of Rupture of Alumina-Magnesia Refractory Castables
NASA Astrophysics Data System (ADS)
Yuan, Wenjie; Deng, Chengji; Zhu, Hongxi
2015-08-01
The addition of TiO2 to alumina-magnesia refractory castables could accelerate the in situ spinel and calcium hexa-aluminate (CA6) formation and change the phase evolution, which will have direct effect on the overall modulus of rupture values. The cold (CMOR) and hot (HMOR) modulus of rupture, thermal expansion, and elastic modulus of alumina-magnesia refractory castables with different amounts of TiO2 were measured. The correlation of CMOR, theoretical strength, fracture toughness, and the fractal dimension of the fracture surface for these compositions were investigated. HMOR data were described using the model based on Varshni approach and Adam-Gibbs theory. The influence of TiO2 addition on the modulus of rupture of alumina-magnesia refractory castables was related to microcracks derived from expansive phase formation and pore filling or viscous bridging due to the presence of liquid phase at high temperature. The contribution of the above factors to the modulus of rupture for castables varied with the temperature.
The deep Peru 2015 doublet earthquakes
NASA Astrophysics Data System (ADS)
Ruiz, S.; Tavera, H.; Poli, P.; Herrera, C.; Flores, C.; Rivera, E.; Madariaga, R.
2017-11-01
On 24 November 2015 two events of magnitude Mw 7.5 and Mw 7.6 occurred at 600 km depth under the Peru-Brazil boundary. These two events were separated in time by 300 s. Deep event doublets occur often under South America. The characteristics that control these events and the dynamic interaction between them are an unresolved problem. We used teleseismic and regional data, situated above the doublet, to perform source inversion in order to characterize their ruptures. The overall resemblance between these two events suggests that they share similar rupture process. They are not identical but occur on the same fault surface dipping westward. Using a P-wave stripping and stretching method we determine rupture speed of 2.25 km/s. From regional body wave inversion we find that stress drop is similar for both events, they differ by a factor of two. The similarity in geometry, rupture velocity, stress drop and radiated energy, suggests that these two events looked like simple elliptical ruptures that propagated like classical sub-shear brittle cracks.
Speed of fast and slow rupture fronts along frictional interfaces
NASA Astrophysics Data System (ADS)
Trømborg, Jørgen Kjoshagen; Sveinsson, Henrik Andersen; Thøgersen, Kjetil; Scheibert, Julien; Malthe-Sørenssen, Anders
2015-07-01
The transition from stick to slip at a dry frictional interface occurs through the breaking of microjunctions between the two contacting surfaces. Typically, interactions between junctions through the bulk lead to rupture fronts propagating from weak and/or highly stressed regions, whose junctions break first. Experiments find rupture fronts ranging from quasistatic fronts, via fronts much slower than elastic wave speeds, to fronts faster than the shear wave speed. The mechanisms behind and selection between these fronts are still imperfectly understood. Here we perform simulations in an elastic two-dimensional spring-block model where the frictional interaction between each interfacial block and the substrate arises from a set of junctions modeled explicitly. We find that material slip speed and rupture front speed are proportional across the full range of front speeds we observe. We revisit a mechanism for slow slip in the model and demonstrate that fast slip and fast fronts have a different, inertial origin. We highlight the long transients in front speed even along homogeneous interfaces, and we study how both the local shear to normal stress ratio and the local strength are involved in the selection of front type and front speed. Last, we introduce an experimentally accessible integrated measure of block slip history, the Gini coefficient, and demonstrate that in the model it is a good predictor of the history-dependent local static friction coefficient of the interface. These results will contribute both to building a physically based classification of the various types of fronts and to identifying the important mechanisms involved in the selection of their propagation speed.
NASA Technical Reports Server (NTRS)
Tucker, Curtis E., Jr.; Sherrit, Stewart
2011-01-01
For commercial, military, and aerospace applications, low-cost, small, reliable, and lightweight gas and liquid hermetically sealed valves with post initiation on/off capability are highly desirable for pressurized systems. Applications include remote fire suppression, single-use system-pressurization systems, spacecraft propellant systems, and in situ instruments. Current pyrotechnic- activated rupture disk hermetic valves were designed for physically larger systems and are heavy and integrate poorly with portable equipment, aircraft, and small spacecraft and instrument systems. Additionally, current pyrotechnically activated systems impart high g-force shock loads to surrounding components and structures, which increase the risk of damage and can require additional mitigation. The disclosed mechanism addresses the need for producing a hermetically sealed micro-isolation valve for low and high pressure for commercial, aerospace, and spacecraft applications. High-precision electrical discharge machining (EDM) parts allow for the machining of mated parts with gaps less than a thousandth of an inch. These high-precision parts are used to support against pressure and extrusion, a thin hermetically welded diaphragm. This diaphragm ruptures from a pressure differential when the support is removed and/or when the plunger is forced against the diaphragm. With the addition of conventional seals to the plunger and a two-way actuator, a derivative of this design would allow nonhermetic use as an on/off or metering valve after the initial rupturing of the hermetic sealing disk. In addition, in a single-use hermetically sealed isolation valve, the valve can be activated without the use of potential leak-inducing valve body penetrations. One implementation of this technology is a high-pressure, high-flow-rate rupture valve that is self-rupturing, which is advantageous for high-pressure applications such as gas isolation valves. Once initiated, this technology is self-energizing and requires low force compared to current pyrotechnic-based burst disk hermetic valves. This is a novel design for producing a single-use, self-rupturing, hermetically sealed valve for isolation of pressurized gas and/or liquids. This design can also be applied for single-use disposable valves for chemical instruments. A welded foil diaphragm is fully supported by two mated surfaces that are machined to micron accuracies using EDM. To open the valve, one of the surfaces is moved relative to the other to (a) remove the support creating an unsupported diaphragm that ruptures due to over pressure, and/or (b) produce tension in the diaphragm and rupture it.
NASA Astrophysics Data System (ADS)
Okuwaki, R.; Yagi, Y.
2017-12-01
A seismic source model for the Mw 8.1 2017 Chiapas, Mexico, earthquake was constructed by kinematic waveform inversion using globally observed teleseismic waveforms, suggesting that the earthquake was a normal-faulting event on a steeply dipping plane, with the major slip concentrated around a relatively shallow depth of 28 km. The modeled rupture evolution showed unilateral, downdip propagation northwestward from the hypocenter, and the downdip width of the main rupture was restricted to less than 30 km below the slab interface, suggesting that the downdip extensional stresses due to the slab bending were the primary cause of the earthquake. The rupture front abruptly decelerated at the northwestern end of the main rupture where it intersected the subducting Tehuantepec Fracture Zone, suggesting that the fracture zone may have inhibited further rupture propagation.
On Critical States, Rupture States and Interlocking Strength of Granular Materials.
Szalwinski, Chris M
2017-07-27
The Mohr-Coulomb theory of strength identifies cohesion and internal friction as the two principal contributions to the shear strength of a granular material. The contribution of cohesion in over-compacted granular materials has been challenged and replacing cohesion with interlocking has been proposed. A theory of rupture strength that includes interlocking is derived herein. The physics-chemistry concept of critical state is elaborated to accommodate granular materials, based on empirical definitions established in the fields of soil mechanics and bulk solids' flow. A surface in state space, called the critical compaction surface, separates over-compacted states from lightly compacted states. The intersection of this surface with the Mohr-Coulomb envelope forms the critical state surface for a granular material. The rupture strength of an over-compacted granular material is expressed as the sum of cohesion, internal friction and interlocking strength. Interlocking strength is the shear strength contribution due to over-compaction and vanishes at critical state. The theory allows migrations from one critical state to another. Changes in specific volume during such migrations are related to changes in mean-normal effective stress and uncoupled from changes in shearing strain. The theory is reviewed with respect to two established research programs and underlying assumptions are identified.
NASA Astrophysics Data System (ADS)
Zheng, W.; Pritchard, M. E.; Henderson, S. T.; Gaherty, J. B.; Shillington, D. J.; Oliva, S. J.; Ebinger, C.; Nooner, S. L.; Elliott, J.; Saria, E.; Ntambila, D.; Chindandali, P. R. N.
2017-12-01
The Malawi rift is part of the archetypal East African rift where early-stage crustal extension is dominated by faulting. In the Karonga region of northern Malawi, a sequence of earthquakes in late 2009, with 15 teleseismically detected (Mw 4.5-6.0) over 13 days, provides a uniqueopportunity to evaluate faulting processes controlling present-day extension in an early-stage rift. We describe observations of this sequence including hundreds of aftershocks located by a temporary seismic array installed in 2010, ground deformation from satellite interferograms, and surface rupture from field surveys published by others. We use all of these data to model fault geometry and slip. The aftershocks from January-May 2010 suggest the involvement of multiple faults, and we test the extent that this can be resolved by the InSAR data. The InSAR and surface rupture both suggest that the major slip occurred at shallow depth (<5 km). Our preferred aftershock locations appear to correlate with this principal slip zone, although uncertainty in the shallow velocity structure can allow for a bulk of the events to fall down-dip of the geodetically constrained slip. Subsequent deformation, including that associated with a December 2014 Mw 5.1 earthquake, can be constrained from multidisciplinary data collected during the SEGMeNT (Study of Extension and maGmatism in Malawi aNd Tanzania) project, which includes the Karonga region and spans 2013-2015. We find 3 cm of potential ground movement at the location of the earthquake as determined by the SEGMeNT seismic array from Sentinel-1. Geodetic fault slip is consistent with the focal mechanism and depth determined by the local array. The location is at the northern end of the 2009-2010 aftershock zone, and aftershocks suggest some linkage with faults that slipped in 2009. InSAR observations do not provide any evidence for large aseismic slip or fluid movements during or after the 2014 sequence, which had <200 aftershocks above the network threshold. For example, we do not observe any deformation at Rungwe volcano above the 2 cm/yr detection threshold with InSAR time series from ALOS (2007-2010) or Sentinel-1 (10/2014 - 04/2017). The time series from SEGMeNT and other continuous GPS stations do not show transients related to the earthquakes, but are not optimally located in space or time.
Rupture directivity of microseismic events recorded during hydraulic fracture stimulations.
NASA Astrophysics Data System (ADS)
Urbancic, T.; Smith-Boughner, L.; Baig, A.; Viegas, G.
2016-12-01
We model the dynamics of a complex rupture sequence with four sub-events. These events were recorded during hydraulic fracture stimulations in a gas-bearing shale formation. With force-balance accelerometers, 4.5Hz and 15Hz instruments recording the failure history, we study the directivity of the entire rupture sequence and each sub-event. Two models are considered: unilateral and bi-lateral failures of penny shaped cracks. From the seismic moment tensors of these sub-events, we consider different potential failure planes and rupture directions. Using numerical wave-propagation codes, we generate synthetic rupture sequences with both unilateral and bi-lateral ruptures. These are compared to the four sub-events to determine the directionality of the observed failures and the sensitivity of our recording bandwidth and geometry to distinguishing between different rupture processes. The frequency of unilateral and bilateral rupture processes throughout the fracture stimulation is estimated by comparing the directivity characteristics of the modeled sub-events to other high-quality microseismic events recorded during the same stimulation program. Understanding the failure processes of these microseismic events can provide great insight into the changes in the rock mass responsible for these complex rupture processes.
Fault segmentation: New concepts from the Wasatch Fault Zone, Utah, USA
Duross, Christopher; Personius, Stephen F.; Crone, Anthony J.; Olig, Susan S.; Hylland, Michael D.; Lund, William R.; Schwartz, David P.
2016-01-01
The question of whether structural segment boundaries along multisegment normal faults such as the Wasatch fault zone (WFZ) act as persistent barriers to rupture is critical to seismic hazard analyses. We synthesized late Holocene paleoseismic data from 20 trench sites along the central WFZ to evaluate earthquake rupture length and fault segmentation. For the youngest (<3 ka) and best-constrained earthquakes, differences in earthquake timing across prominent primary segment boundaries, especially for the most recent earthquakes on the north-central WFZ, are consistent with segment-controlled ruptures. However, broadly constrained earthquake times, dissimilar event times along the segments, the presence of smaller-scale (subsegment) boundaries, and areas of complex faulting permit partial-segment and multisegment (e.g., spillover) ruptures that are shorter (~20–40 km) or longer (~60–100 km) than the primary segment lengths (35–59 km). We report a segmented WFZ model that includes 24 earthquakes since ~7 ka and yields mean estimates of recurrence (1.1–1.3 kyr) and vertical slip rate (1.3–2.0 mm/yr) for the segments. However, additional rupture scenarios that include segment boundary spatial uncertainties, floating earthquakes, and multisegment ruptures are necessary to fully address epistemic uncertainties in rupture length. We compare the central WFZ to paleoseismic and historical surface ruptures in the Basin and Range Province and central Italian Apennines and conclude that displacement profiles have limited value for assessing the persistence of segment boundaries but can aid in interpreting prehistoric spillover ruptures. Our comparison also suggests that the probabilities of shorter and longer ruptures on the WFZ need to be investigated.
An Analysis of Surgical Treatment for the Spontaneous Rupture of Hepatocellular Carcinoma.
Sada, Haruki; Ohira, Masahiro; Kobayashi, Tsuyoshi; Tashiro, Hirotaka; Chayama, Kazuaki; Ohdan, Hideki
2016-01-01
The prognosis of spontaneous rupture of hepatocellular carcinoma (HCC) remains unclear. We investigated the prognosis of patients with ruptured HCC based on the treatments and prognostic factors associated with long-term survival. The prognoses of 64 consecutive patients treated for ruptured HCC from 1986 to 2013 were analyzed according to their methods of treatment. The prognostic factors of 16 surgical patients were identified, and their overall survival (OS) and recurrence rates were compared to 1,157 surgical patients who underwent surgery for non-ruptured HCC. The surgical outcomes were also compared using a propensity score matching method. Surgery was associated with a better OS. Curative resection was the only independent prognostic factor in surgical patients with ruptured HCC (p = 0.040). Although the OS of surgical patients with non-ruptured HCC was found to be significantly better than that of the patients with ruptured HCC, no significant difference in OS was observed after propensity score matching. A curative resection should be the objective of treatment, assuming the suitability of the patient's clinical condition. When the liver function reserve and tumor extension of patients with ruptured and non-ruptured HCC are similar, then their surgical outcomes may not be significantly different. © 2015 S. Karger AG, Basel.
Seismic Imaging of the West Napa Fault in Napa, California
NASA Astrophysics Data System (ADS)
Goldman, M.; Catchings, R.; Chan, J. H.; Sickler, R. R.; Nevitt, J. M.; Criley, C.
2017-12-01
In October 2016, we acquired high-resolution P- and S-wave seismic data along a 120-m-long, SW-NE-trending profile in Napa, California. Our seismic survey was designed to image a strand of the West Napa Fault Zone (WNFZ), which ruptured during the 24 August 2014 Mw 6.0 South Napa Earthquake. We separately acquired P- and S-wave data at every station using multiple hammer hits, which were edited and stacked into individual shot gathers in the lab. Each shot was co-located with and recorded by 118 P-wave (40-Hz) geophones, spaced at 1 m, and by 180 S-wave (4.5-Hz) geophones, spaced at 1 m. We developed both P- and S-wave tomographic velocity models, as well as Poisson's ratio and a Vp/Vs ratio models. We observed a well-defined zone of elevated Vp/Vs ratios below about 10 m depth, centered beneath the observed surface rupture. P-wave reflection images show that the fault forms a flower-structure in the upper few tens of meters. This method has been shown to delineate fault structures even in areas of rough terrain.
One-dimensional modeling of thermal energy produced in a seismic fault
NASA Astrophysics Data System (ADS)
Konga, Guy Pascal; Koumetio, Fidèle; Yemele, David; Olivier Djiogang, Francis
2017-12-01
Generally, one observes an anomaly of temperature before a big earthquake. In this paper, we established the expression of thermal energy produced by friction forces between the walls of a seismic fault while considering the dynamic of a one-dimensional spring-block model. It is noted that, before the rupture of a seismic fault, displacements are caused by microseisms. The curves of variation of this thermal energy with time show that, for oscillatory and aperiodic displacement, the thermal energy is accumulated in the same way. The study reveals that thermal energy as well as temperature increases abruptly after a certain amount of time. We suggest that the corresponding time is the start of the anomaly of temperature observed which can be considered as precursory effect of a big seism. We suggest that the thermal energy can heat gases and dilate rocks until they crack. The warm gases can then pass through the cracks towards the surface. The cracks created by thermal energy can also contribute to the rupture of the seismic fault. We also suggest that the theoretical model of thermal energy, produced in seismic fault, associated with a large quantity of experimental data may help in the prediction of earthquakes.
NASA Astrophysics Data System (ADS)
Kayen, R.; Barnhardt, W.; Carkin, B.; Collins, B. D.; Grossman, E. E.; Minasian, D.; Thompson, E.
2004-12-01
The Mw 7.9 Denali fault earthquake of 3 November 2002 resulted in approximately 5.5 meters of right-lateral offset and sub-meter (0.6m average) up-to-the north vertical displacement of alluvial deposits of the Delta River. We characterize the surface rupture and shallow fault structure of the Denali fault zone at the Delta River in order to better understand these most recent displacements and to estimate the total vertical offset of alluvium above glacially scoured bedrock. To analyze deformations along the fault-trace, we performed tripod-mounted ground-based LiDAR surveys, and Spectral analysis of Surface Wave (SASW) and Ground Penetrating RADAR (GPR) geophysical investigations. These studies were performed between the Trans-Alaska Pipeline (TAPS) corridor on the terrace deposits of the eastern flanks of the Delta River valley and the steeply sloping bedrock surface on the western side of the river. To produce digital terrain models (DTM) of the surface break we used a Riegl Z210i Laser-scanner to image eight independent LiDAR scans, and ISite3D modeling software to merge these scans into three DTM surfaces. We find that using a rotating scanning-laser allows us to produce ultra-high resolution quantitative DTMs for geomorphic analysis that can be used to resolve features and detect topographic changes on a fine-scale (0.9-2.5cm). Local geo-referencing control points are established using fixed auto reflectors. The near subsurface alluvium was imaged using reflection-based (GPR). A suite of parallel and orthogonal GPR reflection lines were measured to develop block models of the surface rupture at two locations. Radar imagery clearly delineates a plane of chaotic reflectors across the rupture zone. To characterize the depth of alluvium over bedrock on either side of the fault, we used the spectral analysis of surface waves (SASW) approach to invert the near-surface shear wave velocity profile. An Alyeska Co. Catepillar D9N track-mounted dozer was used as a high-energy random-wave source for the SASW test. This source allowed us to profile to depths in excess of 200 meters on either side of the fault. We found the combination of LiDAR and GPR allows us to analyze the surface and near-surface characteristics of a complex oblique rupture across the braid bars of the Delta River. SASW-based shear wave velocity profiles on either side of the fault indicate total up-to-the north uplift on the Denali fault of between 60-90 meters since Pleistocene (?) deglaciation. This investigation is the product of a collaborative research and development agreement between the Alyeska Pipeline Services Company, Pacific Gas and Electric Company and the U.S. Geological Survey.
Robinson, William P
2017-12-01
Ruptured abdominal aortic aneurysm is one of the most difficult clinical problems in surgical practice, with extraordinarily high morbidity and mortality. During the past 23 years, the literature has become replete with reports regarding ruptured endovascular aneurysm repair. A variety of study designs and databases have been utilized to compare ruptured endovascular aneurysm repair and open surgical repair for ruptured abdominal aortic aneurysm and studies of various designs from different databases have yielded vastly different conclusions. It therefore remains controversial whether ruptured endovascular aneurysm repair improves outcomes after ruptured abdominal aortic aneurysm in comparison to open surgical repair. The purpose of this article is to review the best available evidence comparing ruptured endovascular aneurysm repair and open surgical repair of ruptured abdominal aortic aneurysm, including single institution and multi-institutional retrospective observational studies, large national population-based studies, large national registries of prospectively collected data, and randomized controlled clinical trials. This article will analyze the study designs and databases utilized with their attendant strengths and weaknesses to understand the sometimes vastly different conclusions the studies have reached. This article will attempt to integrate the data to distill some of the lessons that have been learned regarding ruptured endovascular aneurysm repair and identify ongoing needs in this field. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kubo, H.; Asano, K.; Iwata, T.; Aoi, S.
2014-12-01
Previous studies for the period-dependent source characteristics of the 2011 Tohoku earthquake (e.g., Koper et al., 2011; Lay et al., 2012) were based on the short and long period source models using different method. Kubo et al. (2013) obtained source models of the 2011 Tohoku earthquake using multi period-bands waveform data by a common inversion method and discussed its period-dependent source characteristics. In this study, to achieve more in detail spatiotemporal source rupture behavior of this event, we introduce a new fault surface model having finer sub-fault size and estimate the source models in multi period-bands using a Bayesian inversion method combined with a multi-time-window method. Three components of velocity waveforms at 25 stations of K-NET, KiK-net, and F-net of NIED are used in this analysis. The target period band is 10-100 s. We divide this period band into three period bands (10-25 s, 25-50 s, and 50-100 s) and estimate a kinematic source model in each period band using a Bayesian inversion method with MCMC sampling (e.g., Fukuda & Johnson, 2008; Minson et al., 2013, 2014). The parameterization of spatiotemporal slip distribution follows the multi-time-window method (Hartzell & Heaton, 1983). The Green's functions are calculated by the 3D FDM (GMS; Aoi & Fujiwara, 1999) using a 3D velocity structure model (JIVSM; Koketsu et al., 2012). The assumed fault surface model is based on the Pacific plate boundary of JIVSM and is divided into 384 subfaults of about 16 * 16 km^2. The estimated source models in multi period-bands show the following source image: (1) First deep rupture off Miyagi at 0-60 s toward down-dip mostly radiating relatively short period (10-25 s) seismic waves. (2) Shallow rupture off Miyagi at 45-90 s toward up-dip with long duration radiating long period (50-100 s) seismic wave. (3) Second deep rupture off Miyagi at 60-105 s toward down-dip radiating longer period seismic waves then that of the first deep rupture. (4) Deep rupture off Fukushima at 90-135 s. The dominant-period difference of the seismic-wave radiation between two deep ruptures off Miyagi may result from the mechanism that small-scale heterogeneities on the fault are removed by the first rupture. This difference can be also interpreted by the concept of multi-scale dynamic rupture (Ide & Aochi, 2005).
Barnhart, William; Briggs, Richard; Reitman, Nadine G.; Gold, Ryan D.; Hayes, Gavin
2015-01-01
Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip – normal, reverse, or strike-slip – until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200+ km 200+km"> 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.
Long-term dynamics of hawaiian volcanoes inferred by large-scale relative relocations of earthquakes
NASA Astrophysics Data System (ADS)
Got, J.-L.; Okubo, P.
2003-04-01
We investigated the microseismicity recorded in an active volcano to infer information concerning the volcano structure and long-term dynamics, by using relative relocations and focal mechanisms of microearthquakes. 32000 earthquakes of Mauna Loa and Kilauea volcanoes were recorded by more than 8 stations of the Hawaiian Volcano Observatory seismic network between 1988 and 1999. We studied 17000 of these events and relocated more than 70% with an accuracy ranging from 10 to 500 meters. About 75% of these relocated events are located in the vicinity of subhorizontal decollement planes, at 8 to 11 km depth. However, the striking features revealed by these relocation results are steep south-east dipping fault planes working as reverse faults, clearly located below the decollement plane and which intersect it. If this decollement plane coincides with the pre-Mauna Loa seafloor, as hypothesized by numerous authors, such reverse faults rupture the pre-Mauna Loa oceanic crust. The weight of the volcano and pressure in the magma storage system are possible causes of these ruptures, fully compatible with the local stress tensor computed by Gillard et al. (1996). Reverse faults are suspected of producing scarps revealed by km-long horizontal slip-perpendicular lineations along the decollement surface, and therefore large-scale roughness, asperities and normal stress variations. These are capable of generating stick-slip, large magnitude earthquakes, the spatial microseismic pattern observed in the south flank of Kilauea volcano, and Hilina-type instabilities. Ruptures intersecting the decollement surface, causing its large-scale roughness, may be an important parameter controlling the growth of Hawaiian volcanoes. Are there more or less rough decollement planes existing near the base of other volcanoes, such as Piton de la Fournaise or Etna, and able to explain part of their deformation and seismicity ?
NASA Astrophysics Data System (ADS)
Balsamo, Fabrizio; Aldega, Luca; De Paola, Nicola; Faoro, Igor; Storti, Fabrizio
2014-05-01
Large seismic slip occurring along shallow creeping faults in tectonically active areas represents an unsolved paradox, which is largely due to our poor understanding of the mechanics governing creeping faults, and to the lack of documented geological evidence showing how coseismic rupturing overprints creep in near-surface conditions. In this contribution we integrate field, petrophysical, mineralogical and friction data to characterize the signature of coseismic ruptures propagating along shallow creeping faults affecting unconsolidated forearc sediments of the seismically active Crotone Basin, in South Italy. Field observations of fault zones show widespread foliated cataclasites in fault cores, locally overprinted by sharp slip surfaces decorated by thin (0.5-1.5 cm) black gouge layers. Compared to foliated cataclasites, black gouges have much lower grain size, porosity and permeability, which may have facilitated slip weakening by thermal fluid pressurization. Moreover, black gouges are characterized by distinct mineralogical assemblages compatible with high temperatures (180-200°C) due to frictional heating during seismic slip. Foliated cataclasites and black gouges were also produced by laboratory friction experiments performed on host sediments at sub-seismic (≤ 0.1 m/s) and seismic (1 m/s) slip rates, respectively. Black gouges display low friction coefficients (0.3) and velocity-weakening behaviours, as opposed to high friction coefficients (0.65) and velocity-strengthening behaviours shown by the foliated cataclasites. Our results show that narrow black gouges developed within foliated cataclasites represent a potential diagnostic marker for episodic seismic activity in shallow creeping faults. These findings can help understanding the time-space partitioning between aseismic and seismic slip of faults at shallow crustal levels, impacting on seismic hazard evaluation of subduction zones and forearc regions affected by destructive earthquakes and tsunamis.
NASA Astrophysics Data System (ADS)
Barnhart, W. D.; Briggs, R. W.; Reitman, N. G.; Gold, R. D.; Hayes, G. P.
2015-06-01
Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip - normal, reverse, or strike-slip - until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200 + km 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.
Source Mechanism and Near-field Characteristics of the 2011 Tohoku-oki Tsunami
NASA Astrophysics Data System (ADS)
Yamazaki, Y.; Cheung, K.; Lay, T.
2011-12-01
The Tohoku-oki great earthquake ruptured the megathrust fault offshore of Miyagi and Fukushima in Northeast Honshu with moment magnitude of Mw 9.0 on March 11, 2011, and generated strong shaking across the region. The resulting tsunami devastated the northeastern Japan coasts and damaged coastal infrastructure across the Pacific. The extensive global seismic networks, dense geodetic instruments, well-positioned buoys and wave gauges, and comprehensive runup records along the northeast Japan coasts provide datasets of unprecedented quality and coverage for investigation of the tsunami source mechanism and near-field wave characteristics. Our finite-source model reconstructs detailed source rupture processes by inversion of teleseismic P waves recorded around the globe. The finite-source solution is validated through comparison with the static displacements recoded at the ARIA (JPL-GSI) GPS stations and models obtained by inversion of high-rate GPS observations. The rupture model has two primary slip regions, near the hypocenter and along the trench; the maximum slip is about 60 m near the trench. Together with the low rupture velocity, the Tohoku-oki event has characteristics in common with tsunami earthquakes, although it ruptured across the entire megathrust. Superposition of the deformation of the subfaults from the planar fault model according to their rupture initiation and rise times specifies the seafloor vertical displacement and velocity for tsunami modeling. We reconstruct the 2011 Tohoku-oki tsunami from the time histories of the seafloor deformation using the dispersive long-wave model NEOWAVE (Non-hydrostatic Evolution of Ocean WAVEs). The computed results are compared with data from six GPS gauges and three wave gauges near the source at 120~200-m and 50-m water depth, as well as DART buoys positioned across the Pacific. The shock-capturing model reproduces near-shore tsunami bores and the runup data gathered by the 2011 Tohoku Earthquake Tsunami Joint Survey Group. Spectral analysis of the computed surface elevation reveals a series of resonance modes and areas prone to tsunami hazards. This case study improves our understanding of near-field tsunami waves and validates the modeling capability to predict their impacts for hazard mitigation and emergency management.
Laparoscopic uterine surgery as a risk factor for uterine rupture during pregnancy.
Chao, An-Shine; Chang, Yao-Lung; Yang, Lan-Yan; Chao, Angel; Chang, Wei-Yang; Su, Sheng-Yuan; Wang, Chin-Jung
2018-01-01
The incidence of uterine rupture through a previous cesarean scar (CS) is declining as a result of a lower parity and fewer options for vaginal birth after cesarean. However, uterine ruptures attributable to other causes that traumatize the myometrium are on the rise. To determine whether changes in the causes of uterine rupture had occurred in recent years, we retrospective retrieved the clinical records of all singletons with uterine rupture observed in the delivery room of a Taiwanese tertiary obstetric center over a 15-year period. The overall uterine rupture rate was 3.8 per 10,000 deliveries. A total of 22 cases in 20 women (with two of them experiencing two episodes). Seven uterine ruptures occurred through a previous cesarean scar (CS ruptures, 32%), 13 through a non-cesarean scar (non-CS ruptures, 59%), whereas the remaining two (9%) were in women who did not previously undergo any surgery. All of the 13 non-CS ruptures were identified in women with a history of laparoscopic procedures to the uterus. Specifically, 10 (76%) occurred after a previous laparoscopic myomectomy, one (8%) following a hysteroscopic myomectomy, and two (16%) after a laparoscopic wedge resection of cornual ectopic pregnancy. Severe bleeding (blood loss >1500 mL) requiring transfusions was more frequent in women who experienced non-CS compared with CS ruptures (10 versus 1 case, respectively, P = 0.024). Patients with a history of endoscopic uterine surgery should be aware of uterine rupture during pregnancy.
Laparoscopic uterine surgery as a risk factor for uterine rupture during pregnancy
Chao, An-Shine; Chang, Yao-Lung; Yang, Lan-Yan; Chao, Angel; Chang, Wei-Yang; Su, Sheng-Yuan
2018-01-01
The incidence of uterine rupture through a previous cesarean scar (CS) is declining as a result of a lower parity and fewer options for vaginal birth after cesarean. However, uterine ruptures attributable to other causes that traumatize the myometrium are on the rise. To determine whether changes in the causes of uterine rupture had occurred in recent years, we retrospective retrieved the clinical records of all singletons with uterine rupture observed in the delivery room of a Taiwanese tertiary obstetric center over a 15-year period. The overall uterine rupture rate was 3.8 per 10,000 deliveries. A total of 22 cases in 20 women (with two of them experiencing two episodes). Seven uterine ruptures occurred through a previous cesarean scar (CS ruptures, 32%), 13 through a non-cesarean scar (non-CS ruptures, 59%), whereas the remaining two (9%) were in women who did not previously undergo any surgery. All of the 13 non-CS ruptures were identified in women with a history of laparoscopic procedures to the uterus. Specifically, 10 (76%) occurred after a previous laparoscopic myomectomy, one (8%) following a hysteroscopic myomectomy, and two (16%) after a laparoscopic wedge resection of cornual ectopic pregnancy. Severe bleeding (blood loss >1500 mL) requiring transfusions was more frequent in women who experienced non-CS compared with CS ruptures (10 versus 1 case, respectively, P = 0.024). Patients with a history of endoscopic uterine surgery should be aware of uterine rupture during pregnancy. PMID:29787604
A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy
Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; De Martini, Paolo Marco; Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; De Martini, Paolo Marco; Agosta, F.; Alessio, G.; Alfonsi, L.; Amanti, M.; Amoroso, S.; Aringoli, D.; Auciello, E.; Azzaro, R.; Baize, S.; Bello, S.; Benedetti, L.; Bertagnini, A.; Binda, G.; Bisson, M.; Blumetti, A.M.; Bonadeo, L.; Boncio, P.; Bornemann, P.; Branca, S.; Braun, T.; Brozzetti, F.; Brunori, C.A.; Burrato, P.; Caciagli, M.; Campobasso, C.; Carafa, M.; Cinti, F.R.; Cirillo, D.; Comerci, V.; Cucci, L.; De Ritis, R.; Deiana, G.; Del Carlo, P.; Del Rio, L.; Delorme, A.; Di Manna, P.; Di Naccio, D.; Falconi, L.; Falcucci, E.; Farabollini, P.; Faure Walker, J.P.; Ferrarini, F.; Ferrario, M.F.; Ferry, M.; Feuillet, N.; Fleury, J.; Fracassi, U.; Frigerio, C.; Galluzzo, F.; Gambillara, R.; Gaudiosi, G.; Goodall, H.; Gori, S.; Gregory, L.C.; Guerrieri, L.; Hailemikael, S.; Hollingsworth, J.; Iezzi, F.; Invernizzi, C.; Jablonská, D.; Jacques, E.; Jomard, H.; Kastelic, V.; Klinger, Y.; Lavecchia, G.; Leclerc, F.; Liberi, F.; Lisi, A.; Livio, F.; Lo Sardo, L.; Malet, J.P.; Mariucci, M.T.; Materazzi, M.; Maubant, L.; Mazzarini, F.; McCaffrey, K.J.W.; Michetti, A.M.; Mildon, Z.K.; Montone, P.; Moro, M.; Nave, R.; Odin, M.; Pace, B.; Paggi, S.; Pagliuca, N.; Pambianchi, G.; Pantosti, D.; Patera, A.; Pérouse, E.; Pezzo, G.; Piccardi, L.; Pierantoni, P.P.; Pignone, M.; Pinzi, S.; Pistolesi, E.; Point, J.; Pousse, L.; Pozzi, A.; Proposito, M.; Puglisi, C.; Puliti, I.; Ricci, T.; Ripamonti, L.; Rizza, M.; Roberts, G.P.; Roncoroni, M.; Sapia, V.; Saroli, M.; Sciarra, A.; Scotti, O.; Skupinski, G.; Smedile, A.; Soquet, A.; Tarabusi, G.; Tarquini, S.; Terrana, S.; Tesson, J.; Tondi, E.; Valentini, A.; Vallone, R.; Van der Woerd, J.; Vannoli, P.; Venuti, A.; Vittori, E.; Volatili, T.; Wedmore, L.N.J.; Wilkinson, M.; Zambrano, M.
2018-01-01
We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting. PMID:29583143
Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; De Martini, Paolo Marco
2018-03-27
We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km 2 . The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting.
A database of the coseismic effects following the 30 October 2016 Norcia earthquake in Central Italy
NASA Astrophysics Data System (ADS)
Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; de Martini, Paolo Marco; Villani, Fabio; Civico, Riccardo; Pucci, Stefano; Pizzimenti, Luca; Nappi, Rosa; de Martini, Paolo Marco; Agosta, F.; Alessio, G.; Alfonsi, L.; Amanti, M.; Amoroso, S.; Aringoli, D.; Auciello, E.; Azzaro, R.; Baize, S.; Bello, S.; Benedetti, L.; Bertagnini, A.; Binda, G.; Bisson, M.; Blumetti, A. M.; Bonadeo, L.; Boncio, P.; Bornemann, P.; Branca, S.; Braun, T.; Brozzetti, F.; Brunori, C. A.; Burrato, P.; Caciagli, M.; Campobasso, C.; Carafa, M.; Cinti, F. R.; Cirillo, D.; Comerci, V.; Cucci, L.; de Ritis, R.; Deiana, G.; Del Carlo, P.; Del Rio, L.; Delorme, A.; di Manna, P.; di Naccio, D.; Falconi, L.; Falcucci, E.; Farabollini, P.; Faure Walker, J. P.; Ferrarini, F.; Ferrario, M. F.; Ferry, M.; Feuillet, N.; Fleury, J.; Fracassi, U.; Frigerio, C.; Galluzzo, F.; Gambillara, R.; Gaudiosi, G.; Goodall, H.; Gori, S.; Gregory, L. C.; Guerrieri, L.; Hailemikael, S.; Hollingsworth, J.; Iezzi, F.; Invernizzi, C.; Jablonská, D.; Jacques, E.; Jomard, H.; Kastelic, V.; Klinger, Y.; Lavecchia, G.; Leclerc, F.; Liberi, F.; Lisi, A.; Livio, F.; Lo Sardo, L.; Malet, J. P.; Mariucci, M. T.; Materazzi, M.; Maubant, L.; Mazzarini, F.; McCaffrey, K. J. W.; Michetti, A. M.; Mildon, Z. K.; Montone, P.; Moro, M.; Nave, R.; Odin, M.; Pace, B.; Paggi, S.; Pagliuca, N.; Pambianchi, G.; Pantosti, D.; Patera, A.; Pérouse, E.; Pezzo, G.; Piccardi, L.; Pierantoni, P. P.; Pignone, M.; Pinzi, S.; Pistolesi, E.; Point, J.; Pousse, L.; Pozzi, A.; Proposito, M.; Puglisi, C.; Puliti, I.; Ricci, T.; Ripamonti, L.; Rizza, M.; Roberts, G. P.; Roncoroni, M.; Sapia, V.; Saroli, M.; Sciarra, A.; Scotti, O.; Skupinski, G.; Smedile, A.; Soquet, A.; Tarabusi, G.; Tarquini, S.; Terrana, S.; Tesson, J.; Tondi, E.; Valentini, A.; Vallone, R.; van der Woerd, J.; Vannoli, P.; Venuti, A.; Vittori, E.; Volatili, T.; Wedmore, L. N. J.; Wilkinson, M.; Zambrano, M.
2018-03-01
We provide a database of the coseismic geological surface effects following the Mw 6.5 Norcia earthquake that hit central Italy on 30 October 2016. This was one of the strongest seismic events to occur in Europe in the past thirty years, causing complex surface ruptures over an area of >400 km2. The database originated from the collaboration of several European teams (Open EMERGEO Working Group; about 130 researchers) coordinated by the Istituto Nazionale di Geofisica e Vulcanologia. The observations were collected by performing detailed field surveys in the epicentral region in order to describe the geometry and kinematics of surface faulting, and subsequently of landslides and other secondary coseismic effects. The resulting database consists of homogeneous georeferenced records identifying 7323 observation points, each of which contains 18 numeric and string fields of relevant information. This database will impact future earthquake studies focused on modelling of the seismic processes in active extensional settings, updating probabilistic estimates of slip distribution, and assessing the hazard of surface faulting.
NASA Astrophysics Data System (ADS)
Fujii, Y.; Satake, K.
2005-12-01
The tsunami generation process of the 2004 Sumatra-Andaman earthquake were estimated from the tsunami waveforms recorded on tide gauges and sea surface heights captured by satellite altimetry measurements over the Indian Ocean. The earthquake (0:58:53, 26, Dec., 2004, UTC), the largest in the last 40 years, caused devastating tsunami damages to the countries around the Indian Ocean. One of the important questions is the source length; the aftershocks were distributed along the Sunda trench for 1000 to 1200 km, from off northwestern part of Sumatra island through Nicobar islands to Andaman island, while seismic wave analyses indicate much shorter source length (several hundred km). We used instrumental data of this tsunami, tide gauges and sea surface heights. Tide gauge data have been collected by Global Sea Level Observing System (GLOSS). We have also used another tide gauges data for tsunami simulation analysis. Tsunami propagation was captured as sea surface heights of Jason-1 satellite altimetry measurements over the Indian Ocean for the first time (Gower, 2005). We numerically compute tsunami propagation on actually bathymetry. ETOPO2 (Smith and Sandwell, 1997), the gridded data of global ocean depth from bathymetry soundings and satellite gravity data, are less reliable in the shallow ocean. To improve the accuracy, we have digitized the charts near coasts and merged the digitized data with the ETOPO2 data. The long-wave equation and the equation of motion were numerically solved by finite-difference method (Satake, 1995). As the initial condition, a static deformation of seafloor has been calculated using rectangular fault model (Okada, 1985). The source region is divided into 22 subfaults. We fixed the size and geometry of each subfault, and varied the slip amount and rise time (or slip duration) for each subfault, and rupture velocity. Tsunami waveforms or Greens functions for each subfault were calculated for the rise times of 3, 10, 30 and 60 minutes. Rupture velocities were varied for 0.7, 1.7 and 2.5 km/s. Forward modeling indicates that the best fits between the observed and computed waveforms were obtained in the case of rupture velocity 1.7 km/s and rise time 3 minutes. The slip was large in the southern part of the source region.
Rupture rate and patterns of shell failure with the McGhan Style 153 double-lumen breast implant.
Neaman, Keith C; Albert, Mark; Hammond, Dennis C
2011-01-01
In 2005, the McGhan Style 153 double-lumen breast implant was removed from the market secondary to a higher rupture rate when contrasted with other implants in the Core Study group. The high rupture rate was attributed to the development of a posterior tear in the shell where the inner implant is bonded to the posterior wall of the device. The purpose of this study was to report the existing rupture rate and describe the apparent mechanism of failure in the Style 153 double-lumen breast implant. Ninety-seven patients (157 implants) who received the McGhan Style 153 double-lumen breast implant by the senior author were reviewed. Intraoperative observations and photographic images of ruptured implants were reviewed and characterized based on severity and location of implant rupture. With a mean length of follow-up of greater than 6 years (82 months), the rupture rate was 19.1 percent per implant. Physical examination (60 percent) was the most common method of rupture detection. Ruptures tended to occur in the marginal aspect (63 percent) of the implant. Only three ruptures occurred secondary to a disruption of the inner bladder from the posterior portion of the implant. The rupture rate of the Style 153 double-lumen breast implant is higher than previously thought, with a rate of 19.1 percent. A majority of ruptures occurred in the peripheral aspects of the implant. It is postulated that these ruptures were likely secondary to fold flaws that led to failure of the implant shell.
NASA Astrophysics Data System (ADS)
Sánchez, Claudia; Vidal, Valérie; Melo, Francisco
2015-08-01
We report an experimental study of the acoustic signal produced by the rupture of an elastic membrane that initially closes a cylindrical overpressurized cavity. This configuration has been recently used as an experimental model system for the investigation of the acoustic emission from the bursting of elongated gas bubbles rising in a conduit. Here, we investigate the effect of the membrane rupture dynamics on the acoustic signal produced by the pressure release by changing the initial tension of the membrane. The initial overpressure in the cavity is fixed at a value such that the system remains in the linear acoustic regime. For large initial membrane deformation, the rupture time τ rup is small compared to the wave propagation time in the cavity and the pressure wave inside the conduit can be fully captured by the linear theory. For low membrane tension, a hole is pierced in the membrane but its rupture does not occur. For intermediate deformation, finally, the rupture progresses in two steps: first the membrane opens slowly; then, after reaching a critical size, the rupture accelerates. A transversal wave is excited along the membrane surface. The characteristic signature of each opening dynamics on the acoustic emission is described.
Bursting the Taylor cone bubble
NASA Astrophysics Data System (ADS)
Pan, Zhao; Truscott, Tadd
2014-11-01
A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.
Rupture Dynamics and Ground Motion from Earthquakes on Rough Faults in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Bydlon, S. A.; Kozdon, J. E.; Duru, K.; Dunham, E. M.
2013-12-01
Heterogeneities in the material properties of Earth's crust scatter propagating seismic waves. The effects of scattered waves are reflected in the seismic coda and depend on the amplitude of the heterogeneities, spatial arrangement, and distance from source to receiver. In the vicinity of the fault, scattered waves influence the rupture process by introducing fluctuations in the stresses driving propagating ruptures. Further variability in the rupture process is introduced by naturally occurring geometric complexity of fault surfaces, and the stress changes that accompany slip on rough surfaces. Our goal is to better understand the origin of complexity in the earthquake source process, and to quantify the relative importance of source complexity and scattering along the propagation path in causing incoherence of high frequency ground motion. Using a 2D high order finite difference rupture dynamics code, we nucleate ruptures on either flat or rough faults that obey strongly rate-weakening friction laws. These faults are embedded in domains with spatially varying material properties characterized by Von Karman autocorrelation functions and their associated power spectral density functions, with variations in wave speed of approximately 5 to 10%. Flat fault simulations demonstrate that off-fault material heterogeneity, at least with this particular form and amplitude, has only a minor influence on the rupture process (i.e., fluctuations in slip and rupture velocity). In contrast, ruptures histories on rough faults in both homogeneous and heterogeneous media include much larger short-wavelength fluctuations in slip and rupture velocity. We therefore conclude that source complexity is dominantly influenced by fault geometric complexity. To examine contributions of scattering versus fault geometry on ground motions, we compute spatially averaged root-mean-square (RMS) acceleration values as a function of fault perpendicular distance for a homogeneous medium and several heterogeneous media characterized by different statistical properties. We find that at distances less than ~6 km from the fault, RMS acceleration values from simulations with homogeneous and heterogeneous media are similar, but at greater distances the RMS values associated with heterogeneous media are larger than those associated with homogeneous media. The magnitude of this divergence increases with the amplitude of the heterogeneities. For instance, for a heterogeneous medium with a 10% standard deviation in material property values relative to mean values, RMS accelerations are ~50% larger than for a homogeneous medium at distances greater than 6 km. This finding is attributed to the scattering of coherent pulses into multiple pulses of decreased amplitude that subsequently arrive at later times. In order to understand the robustness of these results, an extension of our dynamic rupture and wave propagation code to 3D is underway.
Intermediate Temperature Strength Degradation in SiC/SiC Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Cawley, James D.; Levine, Stanley (Technical Monitor)
2001-01-01
Woven silicon carbide fiber-reinforced, silicon carbide matrix composites are leading candidate materials for an advanced jet engine combustor liner application. Although the use temperature in the hot region for this application is expected to exceed 1200 C, a potential life-limiting concern for this composite system exists at intermediate temperatures (800 +/- 200 C), where significant time-dependent strength degradation has been observed under stress-rupture loading. A number of factors control the degree of stress-rupture strength degradation, the major factor being the nature of the interphase separating the fiber and the matrix. BN interphases are superior to carbon interphases due to the slower oxidation kinetics of BN. A model for the intermediate temperature stress-rupture of SiC/BN/SiC composites is presented based on the observed mechanistic process that leads to strength degradation for the simple case of through-thickness matrix cracks. The approach taken has much in common with that used by Curtin and coworkers, for two different composite systems. The predictions of the model are in good agreement with the rupture data for stress-rupture of both precracked and as-produced composites. Also, three approaches that dramatically improve the intermediate temperature stress-rupture properties are described: Si-doped BN, fiber spreading, and 'outside debonding'.
NASA Astrophysics Data System (ADS)
Li, C.; Greuner, H.; Zhao, S. X.; Böswirth, B.; Luo, G. N.; Zhou, X.; Jia, Y. Z.; Liu, X.; Liu, W.
2015-11-01
Micro- and nano-scale surface damage on a W divertor component sample exposed to high heat flux loads generated with He atoms has been investigated through SEM, EBSD, AFM and FIB-SEM. The component sample was supplied by the Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP) and AT&M company, China, and the loading experiment was performed in the GLADIS facility at IPP Garching, Germany. Two typical damage structures were observed on the surface: the first one is characterized by obvious blisters and some grooves formed from ruptured blisters, and the other one is a kind of porous structure accompanying with at least ∼25 nm surface material loss. As the grain orientation is further away from <111>, the damage morphology gradually changes from the former structure to the latter. The possible damage mechanism is discussed.
NASA Astrophysics Data System (ADS)
Yue, H.; Simons, M.; Jiang, J.; Fielding, E. J.; Owen, S. E.; Moore, A. W.; Riel, B. V.; Polet, J.; Duputel, Z.; Samsonov, S. V.; Avouac, J. P.
2015-12-01
The April 2015 Gorkha, Nepal (Mw 7.8) earthquake ruptured the front of Himalaya thrust belt, causing more than 9,000 fatalities. 17 days after the main event, a large aftershock (Mw 7.2) ruptured to down-dip and east of the main rupture area. To investigate the kinematic rupture process of this earthquake sequence, we explored linear and non-linear inversion techniques using a variety of datasets including teleseismic, high rate and conventional GPS, InSAR interferograms and pixel-offsets. InSAR interferograms from ALOS-2, RADARSAT-2 and Sentinel-1a satellites are used in the joint inversion. The main event is characterized by unilateral rupture extending along strike approximately 70 km to the southeast and 40 km along dip direction. The rupture velocity is well resolved to be lie between 2.8 and 3.0 km/s, which is consistent with back-projection results. An emergent initial phase is observed in teleseismic body wave records, which is consistent with a narrow area of rupture initiation near the hypocenter. The rupture mode of the main event is pulse like. The aftershock ruptured down-dip to the northeast of the main event rupture area. The aftershock rupture area is compact and contained within 40 km of its hypocenter. In contrast to the main event, teleseismic body wave records of the aftershock suggest an abrupt initial phase, which is consistent with a crack like rupture mode. The locations of most of the aftershocks (small and large) surround the rupture area of the main shock with little, if any, spatial overlap.
NASA Astrophysics Data System (ADS)
Ando, R.; Kaneko, Y.
2017-12-01
The coseismic rupture of the 2016 Kaikoura earthquake propagated over the distance of 150 km along the NE-SW striking fault system in the northern South Island of New Zealand. The analysis of In-SAR, GPS and field observations (Hamling et al., 2017) revealed that the most of the rupture occurred along the previously mapped active faults, involving more than seven major fault segments. These fault segments, mostly dipping to northwest, are distributed in a quite complex manner, manifested by fault branching and step-over structures. Back-projection rupture imaging shows that the rupture appears to jump between three sub-parallel fault segments in sequence from the south to north (Kaiser et al., 2017). The rupture seems to be terminated on the Needles fault in Cook Strait. One of the main questions is whether this multi-fault rupture can be naturally explained with the physical basis. In order to understand the conditions responsible for the complex rupture process, we conduct fully dynamic rupture simulations that account for 3-D non-planar fault geometry embedded in an elastic half-space. The fault geometry is constrained by previous In-SAR observations and geological inferences. The regional stress field is constrained by the result of stress tensor inversion based on focal mechanisms (Balfour et al., 2005). The fault is governed by a relatively simple, slip-weakening friction law. For simplicity, the frictional parameters are uniformly distributed as there is no direct estimate of them except for a shallow portion of the Kekerengu fault (Kaneko et al., 2017). Our simulations show that the rupture can indeed propagate through the complex fault system once it is nucleated at the southernmost segment. The simulated slip distribution is quite heterogeneous, reflecting the nature of non-planar fault geometry, fault branching and step-over structures. We find that optimally oriented faults exhibit larger slip, which is consistent with the slip model of Hamling et al. (2017). We conclude that the first order characteristics of this event may be interpreted by the effect of irregularity in the fault geometry.
NASA Astrophysics Data System (ADS)
Fuis, G. S.; Catchings, R.; Scheirer, D. S.; Goldman, M.; Zhang, E.; Bauer, K.
2016-12-01
The San Andreas fault (SAF) in the northern Salton Trough, or Coachella Valley, in southern California, appears non-vertical and non-planar. In cross section, it consists of a steeply dipping segment (75 deg dip NE) from the surface to 6- to 9-km depth, and a moderately dipping segment below 6- to 9-km depth (50-55 deg dip NE). It also appears to branch upward into a flower-like structure beginning below about 10-km depth. Images of the SAF zone in the Coachella Valley have been obtained from analysis of steep reflections, earthquakes, modeling of potential-field data, and P-wave tomography. Review of seismological and geodetic research on the 1989 M 6.9 Loma Prieta earthquake, in central California (e.g., U.S. Geological Survey Professional Paper 1550), shows several features of SAF zone structure similar to those seen in the northern Salton Trough. Aftershocks in the Loma Prieta epicentral area form two chief clusters, a tabular zone extending from 18- to 9-km depth and a complex cluster above 5-km depth. The deeper cluster has been interpreted to surround the chief rupture plane, which dips 65-70 deg SW. When double-difference earthquake locations are plotted, the shallower cluster contains tabular subclusters that appear to connect the main rupture with the surface traces of the Sargent and Berrocal faults. In addition, a diffuse cluster may surround a steep to vertical fault connecting the main rupture to the surface trace of the SAF. These interpreted fault connections from the main rupture to surface fault traces appear to define a flower-like structure, not unlike that seen above the moderately dipping segment of the SAF in the Coachella Valley. But importantly, the SAF, interpreted here to include the main rupture plane, appears segmented, as in the Coachella Valley, with a moderately dipping segment below 9-km depth and a steep to vertical segment above that depth. We hope to clarify fault-zone structure in the Loma Prieta area by reanalyzing active-source data collected after the earthquake for steep reflections.
NASA Astrophysics Data System (ADS)
Madden, E. H.; Pollard, D. D.
2009-12-01
Multi-fault, strike-slip earthquakes have proved difficult to incorporate into seismic hazard analyses due to the difficulty of determining the probability of these ruptures, despite collection of extensive data associated with such events. Modeling the mechanical behavior of these complex ruptures contributes to a better understanding of their occurrence by elucidating the relationship between surface and subsurface earthquake activity along transform faults. This insight is especially important for hazard mitigation, as multi-fault systems can produce earthquakes larger than those associated with any one fault involved. We present a linear elastic, quasi-static model of the southern portion of the 28 June 1992 Landers earthquake built in the boundary element software program Poly3D. This event did not rupture the extent of any one previously mapped fault, but trended 80km N and NW across segments of five sub-parallel, N-S and NW-SE striking faults. At M7.3, the earthquake was larger than the potential earthquakes associated with the individual faults that ruptured. The model extends from the Johnson Valley Fault, across the Landers-Kickapoo Fault, to the Homestead Valley Fault, using data associated with a six-week time period following the mainshock. It honors the complex surface deformation associated with this earthquake, which was well exposed in the desert environment and mapped extensively in the field and from aerial photos in the days immediately following the earthquake. Thus, the model incorporates the non-linearity and segmentation of the main rupture traces, the irregularity of fault slip distributions, and the associated secondary structures such as strike-slip splays and thrust faults. Interferometric Synthetic Aperture Radar (InSAR) images of the Landers event provided the first satellite images of ground deformation caused by a single seismic event and provide constraints on off-fault surface displacement in this six-week period. Insight is gained by comparing the density, magnitudes and focal plane orientations of relocated aftershocks for this time frame with the magnitude and orientation of planes of maximum Coulomb shear stress around the fault planes at depth.
Constraints on the rupture process of the 17 August 1999 Izmit earthquake
NASA Astrophysics Data System (ADS)
Bouin, M.-P.; Clévédé, E.; Bukchin, B.; Mostinski, A.; Patau, G.
2003-04-01
Kinematic and static models of the 17 August 1999 Izmit earthquake published in the literature are quite different from one to each other. In order to extract the characteristic features of this event, we determine the integral estimates of the geometry, source duration and rupture propagation of this event. Those estimates are given by the stress glut moments of total degree 2 inverting long period surface wave (LPSW) amplitude spectra (Bukchin, 1995). We draw comparisons with the integral estimates deduced from kinematic models obtained by inversion of strong motion data set and/or teleseismic body wave (Bouchon et al, 2002; Delouis et al., 2000; Yagi and Kukuchi, 2000; Sekiguchi and Iwata, 2002). While the equivalent rupture zone and the eastward directivity are consistent among all models, the LPSW solution displays a strong unilateral character of the rupture associated with a short rupture duration that is not compatible with the solutions deduced from the published models. Using a simple equivalent kinematic model, we reproduce the integral estimates of the rupture process by adjusting a few free parameters controlling the western and eastern parts of the rupture. We show that the LPSW solution strongly suggest that: - There was significant moment released on the eastern segment of the activated fault system during the Izmit earthquake; - The rupture velocity decreases on this segment. We will discuss how these results allow to enlighten the scattering of source process published for this earthquake.
[Nonoperative management of spontaneous splenic rupture in infectious mononucleosis].
Szczepanik, Andrzej B; Gajda, Sławomir; Szczepanik, Anna M; Misiak, Andrzej
2011-04-01
Spontaneous splenic rupture is a rare complication of infectious mononucleosis observed in 0.1-0.5% of patients with this condition. Mandatory mode of management in hemodynamically stable patients is nonoperative treatment. We report the case of a 19-year old man with splenic rupture, during the course of serological and hematological confirmed infectious mononucleosis, with no history of trauma. Parenchymal and subcapsular splenic hematomas and presence of blood in vesico-rectal recess was demonstrated. Circulatory and respiratory findings and blood cell count were stable. Nonoperative management was instituted which comprised monitoring of valid vital signs, serial USG and tomography scans and vital activity limitation. Imaging radiological investigations demonstrated disappearance of observed abnormalities on post admission day 20. The patient was discharged from the hospital in good general condition. Nonoperative management can be a safe alternative to splenectomy in hemodynamically stable patient with spontaneous rupture of the spleen.
Fault failure with moderate earthquakes
Johnston, M.J.S.; Linde, A.T.; Gladwin, M.T.; Borcherdt, R.D.
1987-01-01
High resolution strain and tilt recordings were made in the near-field of, and prior to, the May 1983 Coalinga earthquake (ML = 6.7, ?? = 51 km), the August 4, 1985, Kettleman Hills earthquake (ML = 5.5, ?? = 34 km), the April 1984 Morgan Hill earthquake (ML = 6.1, ?? = 55 km), the November 1984 Round Valley earthquake (ML = 5.8, ?? = 54 km), the January 14, 1978, Izu, Japan earthquake (ML = 7.0, ?? = 28 km), and several other smaller magnitude earthquakes. These recordings were made with near-surface instruments (resolution 10-8), with borehole dilatometers (resolution 10-10) and a 3-component borehole strainmeter (resolution 10-9). While observed coseismic offsets are generally in good agreement with expectations from elastic dislocation theory, and while post-seismic deformation continued, in some cases, with a moment comparable to that of the main shock, preseismic strain or tilt perturbations from hours to seconds (or less) before the main shock are not apparent above the present resolution. Precursory slip for these events, if any occurred, must have had a moment less than a few percent of that of the main event. To the extent that these records reflect general fault behavior, the strong constraint on the size and amount of slip triggering major rupture makes prediction of the onset times and final magnitudes of the rupture zones a difficult task unless the instruments are fortuitously installed near the rupture initiation point. These data are best explained by an inhomogeneous failure model for which various areas of the fault plane have either different stress-slip constitutive laws or spatially varying constitutive parameters. Other work on seismic waveform analysis and synthetic waveforms indicates that the rupturing process is inhomogeneous and controlled by points of higher strength. These models indicate that rupture initiation occurs at smaller regions of higher strength which, when broken, allow runaway catastrophic failure. ?? 1987.
NASA Astrophysics Data System (ADS)
Isken, Marius P.; Sudhaus, Henriette; Heimann, Sebastian; Steinberg, Andreas; Bathke, Hannes M.
2017-04-01
We present a modular open-source software framework (pyrocko, kite, grond; http://pyrocko.org) for rapid InSAR data post-processing and modelling of tectonic and volcanic displacement fields derived from satellite data. Our aim is to ease and streamline the joint optimisation of earthquake observations from InSAR and GPS data together with seismological waveforms for an improved estimation of the ruptures' parameters. Through this approach we can provide finite models of earthquake ruptures and therefore contribute to a timely and better understanding of earthquake kinematics. The new kite module enables a fast processing of unwrapped InSAR scenes for source modelling: the spatial sub-sampling and data error/noise estimation for the interferogram is evaluated automatically and interactively. The rupture's near-field surface displacement data are then combined with seismic far-field waveforms and jointly modelled using the pyrocko.gf framwork, which allows for fast forward modelling based on pre-calculated elastodynamic and elastostatic Green's functions. Lastly the grond module supplies a bootstrap-based probabilistic (Monte Carlo) joint optimisation to estimate the parameters and uncertainties of a finite-source earthquake rupture model. We describe the developed and applied methods as an effort to establish a semi-automatic processing and modelling chain. The framework is applied to Sentinel-1 data from the 2016 Central Italy earthquake sequence, where we present the earthquake mechanism and rupture model from which we derive regions of increased coulomb stress. The open source software framework is developed at GFZ Potsdam and at the University of Kiel, Germany, it is written in Python and C programming languages. The toolbox architecture is modular and independent, and can be utilized flexibly for a variety of geophysical problems. This work is conducted within the BridGeS project (http://www.bridges.uni-kiel.de) funded by the German Research Foundation DFG through an Emmy-Noether grant.
The anodic surface film and hydrogen evolution on Mg
Song, Guang -Ling; Unocic, Kinga A.
2015-06-04
This paper clarifies that the inner and outer layers of the anodic film consist of a nano/micro-porous MgO+Mg(OH) 2 mixture. The film becomes thicker and more porous with increasing potential. It can rupture when potential is too positive in a non-corrosive Mg(OH) 2 solution. Hydrogen evolution becomes more intensive as polarization potential increases, particularly when the potential at the film-covered Mg surface is close to or more positive than the hydrogen equilibrium potential, suggesting that an “anodic hydrogen evolution” (AHE) reaction occurs on the substrate Mg in film pores, and the significantly intensified AHE causes film rupture at high potential.
Evaluation of steam generator WWER 440 tube integrity criteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Splichal, K.; Otruba, J.; Burda, J.
1997-02-01
The main corrosion damage in WWER steam generators under operating conditions has been observed on the outer surface of these tubes. An essential operational requirement is to assure a low probability of radioactive primary water leakage, unstable defect development and rupture of tubes. In the case of WWER 440 steam generators the above requirements led to the development of permissible limits for data evaluation of the primary-to-secondary leak measurements and determination of acceptable values for plugging of heat exchange tubes based on eddy current test (ECT) inspections.
Reconstruction of long digital extensor tendon by cranial tibial muscle fascia graft in a dog.
Sabiza, Soroush; Khajeh, Ahmad; Naddaf, Hadi
2016-01-01
Tendon rupture in dogs is generally the result of a direct trauma. This report described the use of adjacent muscle autogenic fascial graft for reconstruction of distal rupture of long digital extensor tendon in a dog. A two-year-old male mix breed dog, was presented with a non-weight bearing lameness of the right hind limb and a deep rupture of lateral side of right tarsus. History taking revealed that this rupture appeared without any apparent cause, when walking around the farm, three days before. Radiography was done and no fracture was observed. Hyperextension of right tarsal joint compared to left limb was observed. Under general anesthesia, after dissections of the ruptured area, complete rupture of long digital extensor tendon was revealed. Then, we attempted to locate the edge of the tendon, however, the tendon length was shortened approximately 1 cm. Hence, a strip of 1 cm length from fascia of cranial tibial muscle was harvested to fill the defect. The graft was sutured to the two ends of tendon using locking loop pattern. Subcutaneous layers and the skin were sutured routinely. Ehmer sling bandage was applied to prevent weight bearing on the surgical region. Re-examination and phone contact with the owner eight weeks and six months postoperatively revealed a poor lameness and excellent function of the dog, respectively. It could be concluded that the fascia of adjacent muscles can be used as an autogenic graft for reconstruction of some tendon ruptures.
Reconstruction of long digital extensor tendon by cranial tibial muscle fascia graft in a dog
Sabiza, Soroush; Khajeh, Ahmad; Naddaf, Hadi
2016-01-01
Tendon rupture in dogs is generally the result of a direct trauma. This report described the use of adjacent muscle autogenic fascial graft for reconstruction of distal rupture of long digital extensor tendon in a dog. A two-year-old male mix breed dog, was presented with a non-weight bearing lameness of the right hind limb and a deep rupture of lateral side of right tarsus. History taking revealed that this rupture appeared without any apparent cause, when walking around the farm, three days before. Radiography was done and no fracture was observed. Hyperextension of right tarsal joint compared to left limb was observed. Under general anesthesia, after dissections of the ruptured area, complete rupture of long digital extensor tendon was revealed. Then, we attempted to locate the edge of the tendon, however, the tendon length was shortened approximately 1 cm. Hence, a strip of 1 cm length from fascia of cranial tibial muscle was harvested to fill the defect. The graft was sutured to the two ends of tendon using locking loop pattern. Subcutaneous layers and the skin were sutured routinely. Ehmer sling bandage was applied to prevent weight bearing on the surgical region. Re-examination and phone contact with the owner eight weeks and six months postoperatively revealed a poor lameness and excellent function of the dog, respectively. It could be concluded that the fascia of adjacent muscles can be used as an autogenic graft for reconstruction of some tendon ruptures. PMID:27872726
Postseismic deformation following the 2015 Gorkha earthquake and implications for rheology
NASA Astrophysics Data System (ADS)
Rollins, C.; Gualandi, A.; Avouac, J. P.; Liu, J.; Zhang, Z.
2017-12-01
The 2015 Mw 7.9 Gorkha earthquake ruptured the lower, northern edge of the interseismically locked section of the Main Himalayan Thrust (MHT). Independent Component Analysis of location timeseries at GPS stations in Nepal and Tibet reveals significant transient postseismic motion following the mainshock. In order to probe the frictional properties of the MHT and the viscoelastic properties of the crust and upper mantle, we compare the extracted postseismic motions to those predicted by forward models of afterslip and viscoelastic relaxation. Postseismic displacements are minimal south of the coseismic rupture, suggesting that minimal afterslip occurred there and that the upper MHT remains mostly locked. North of the rupture, postseismic displacements feature south-southwest horizontal motion and uplift, each on the order of a few cm in the first postseismic year. A model of stress-driven afterslip extending 100 km north of the coseismic rupture reproduces the horizontal postseismic timeseries and the general pattern of uplift and subsidence; however, this model significantly overpredicts the uplift at stations overlying the rupture, and the down-dip extent of afterslip may be unrealistic. Viscoelastic relaxation in the high-temperature Tibetan crust reproduces the observed SSW motion without overpredicting the uplift; viscoelastic relaxation in the downgoing Indian mantle, however, produces northward motion and subsidence north of the rupture, i.e. opposite to the observed motions. We argue that models of coupled afterslip (confined close to the rupture) and viscoelastic relaxation can reproduce the postseismic timeseries with physically plausible parameters.
Martínez-Jarquín, Sandra; Herrera-Ubaldo, Humberto; de Folter, Stefan; Winkler, Robert
2018-08-01
Low-temperature plasma (LTP) is capable of ionizing a broad range of organic molecules at ambient conditions. The coupling of LTP to a mass analyzer delivers chemical profiles from delicate objects. To investigate the suitability of LTP ionization for mass spectrometry (MS) based in vivo studies, we monitored the auxin-regulated nicotine biosynthesis in tobacco (Nicotiana tabacum) and evaluated possible biological effects. The measured nicotine concentrations in different experiments were comparable to literature data obtained with conventional methods. The observed compounds suggest the rupture of trichomes, and cell damage was observed on the spots exposed to LTP. However, the lesions only affected a negligible proportion of the leaf surface area and no systemic reaction was noted. Thus, our study provides the proof-of-concept for measuring the biosynthetic activity of plant surfaces in vivo. Copyright © 2018 Elsevier B.V. All rights reserved.
Influence of UFG structure formation on mechanical and fatigue properties in Ti-6Al-7Nb alloy
NASA Astrophysics Data System (ADS)
Polyakova, V. V.; Anumalasetty, V. N.; Semenova, I. P.; Valiev, R. Z.
2014-08-01
Ultrafine-grained (UFG) Ti alloys have potential applications in osteosynthesis and orthopedics due to high bio-compatibility and increased weight-to- strength ratio. In current study, Ti6Al7Nb ELI alloy is processed through equal channel angular pressing-conform (ECAP-Conform) and subsequent thermomechanical processing to generate a UFG microstructure. The fatigue properties of UFG alloys are compared to coarse grained (CG) alloys. Our study demonstrates that the UFG alloys with an average grain size of ~180 nm showed 35% enhancement of fatigue endurance limit as compared to coarse-grained alloys. On the fracture surfaces of the UFG and CG samples fatigue striations and dimpled relief were observed. However, the fracture surface of the UFG sample looks smoother; fewer amounts of secondary micro-cracks and more ductile rupture were also observed, which testifies to the good crack resistance in the UFG alloy after high-cyclic fatigue tests.
Chiang, Po-Chieh; Tanady, Kevin; Huang, Ling-Ting; Chao, Ling
2017-11-09
Being able to directly obtain micron-sized cell blebs, giant plasma membrane vesicles (GPMVs), with native membrane proteins and deposit them on a planar support to form supported plasma membranes could allow the membrane proteins to be studied by various surface analytical tools in native-like bilayer environments. However, GPMVs do not easily rupture on conventional supports because of their high protein and cholesterol contents. Here, we demonstrate the possibility of using compression generated by the air-water interface to efficiently rupture GPMVs to form micron-sized supported membranes with native plasma membrane proteins. We demonstrated that not only lipid but also a native transmembrane protein in HeLa cells, Aquaporin 3 (AQP3), is mobile in the supported membrane platform. This convenient method for generating micron-sized supported membrane patches with mobile native transmembrane proteins could not only facilitate the study of membrane proteins by surface analytical tools, but could also enable us to use native membrane proteins for bio-sensing applications.
Revealing the cascade of slow transients behind a large slow slip event
NASA Astrophysics Data System (ADS)
Frank, W.; Rousset, B.; Lasserre, C.; Campillo, M.
2017-12-01
Capable of reaching similar magnitudes to large megathrust earthquakes (Mw > 7), slow slip events play a major role in accommodating tectonic motion on plate boundaries. These slip transients are the slow release of built-up tectonic stress that are geodetically imaged as a predominantly aseismic rupture, which is smooth in both time and space. We demonstrate here that large slow slip events are in fact a complex cascade of short-duration slow transients. Using a dense catalog of low-frequency earthquakes as a guide, we investigate the Mw 7.5 slow slip event that occurred in 2006 along the subduction interface 40 km beneath Guerrero, Mexico. We show that while the long-period surface displacement as recorded by GPS suggests a six month duration, motion in the direction of tectonic release only sporadically occurs over 55 days and its surface signature is attenuated by rapid relocking of the plate interface. These results demonstrate that our current conceptual model of slow and continuous rupture is an artifact of low-resolution geodetic observations of a superposition of small, clustered slip events. Our proposed description of slow slip as a cascade of slow transients implies that we systematically overestimate the duration T and underestimate the moment magnitude M of large slow slip events.
NASA Astrophysics Data System (ADS)
Wallace, W. K.; Sherrod, B. L.; Dawson, T. E.
2002-12-01
Preliminary observations suggest that right-lateral strike-slip on the Denali fault is transferred to the Totschunda fault via an extensional bend in the Little Tok River valley. Most of the surface rupture during the Denali fault earthquake was along an east- to east-southeast striking, gently curved segment of the Denali fault. However, in the Little Tok River valley, rupture transferred to the southeast-striking Totschunda fault and continued to the southeast for another 75 km. West of the Little Tok River valley, 5-7 m of right-lateral slip and up to 2 m of vertical offset occurred on the main strand of the Denali fault, but no apparent displacement occurred on the Denali fault east of the valley. Rupture west of the intersection also occurred on multiple discontinuous strands parallel to and south of the main strand of the Denali fault. In the Little Tok River valley, the northern part of the Totschunda fault system consists of multiple discontinuous southeast-striking strands that are connected locally by south-striking stepover faults. Faults of the northern Totschunda system display 0-2.5 m of right-lateral slip and 0-2.75 m of vertical offset, with the largest vertical offset on a dominantly extensional stepover fault. The strands of the Totschunda system converge southeastward to a single strand that had up to 2 m of slip. Complex and discontinuous faulting may reflect in part the immaturity of the northern Totschunda system, which is known to be younger and have much less total slip than the Denali. The Totschunda fault forms an extensional bend relative to the dominantly right-lateral Denali fault to the west. The fault geometry and displacements at the intersection suggest that slip on the Denali fault during the earthquake was accommodated largely by extension in the northern Totschunda fault system, allowing a significant decrease in strike-slip relative to the Denali fault. Strands to the southwest in the area of the bend may represent shortcut faults that have reduced the curvature at the intersection of the two fault systems.
Ponti, Daniel J.; Wells, Ray E.
1991-01-01
The Ms 7.1 Loma Prieta earthquake of 18 October 1989 produced abundant ground ruptures in an 8 by 4 km area along Summit Road and Skyland Ridge in the Santa Cruz Mountains. Predominantly extensional fissures formed a left-stepping, crudely en echelon pattern along ridges of the hanging-wall block southwest of the San Andreas fault, about 12 km northwest of the epicenter. The fissures are subparallel to the San Andreas fault and appear to be controlled by bedding planes, faults, joints, and other weak zones in the underlying Tertiary sedimentary strata of the hanging-wall block. The pattern of extensional fissures is generally consistent with tectonic extension across the crest of the uplifted hanging-wall block. Also, many displacements in Laurel Creek canyon and along the San Andreas and Sargent faults are consistent with right-lateral reverse faulting inferred for the mainshock. Additional small tensile failures along the axis of the Laurel anticline may reflect growth of the fold during deep-seated compression. However, the larger ridge-top fissures commonly have displacements that are parallel to the north-northeast regional slope directions and appear inconsistent with east-northeast extension expected from this earthquake. Measured cumulative displacements across the ridge crests are at least 35 times larger than that predicted by the geodetically determined surface deformation. These fissures also occur in association with ubiquitous landslide complexes that were reactivated by the earthquake to produce the largest concentration of co-seismic slope failures in the epicentral region. The anomalously large displacements and the apparent slope control of the geometry and displacement of many co-seismic surface ruptures lead us to conclude that gravity is an important driving force in the formation of the ridge-top fissures. Shaking-induced gravitational spreading of ridges and downslope movement may account for 90¿ or more of the observed displacements on the linear fissures. Similar fissures occurred in the same area and elsewhere near the San Andreas fault during the predominantly right-lateral 1906 San Francisco earthquake and suggest that the Loma Prieta ground ruptures may, in large part, be independent of fault kinematics.
The 2006-2007 Kuril Islands great earthquake sequence
Lay, T.; Kanamori, H.; Ammon, C.J.; Hutko, Alexander R.; Furlong, K.; Rivera, L.
2009-01-01
The southwestern half of a ???500 km long seismic gap in the central Kuril Island arc subduction zone experienced two great earthquakes with extensive preshock and aftershock sequences in late 2006 to early 2007. The nature of seismic coupling in the gap had been uncertain due to the limited historical record of prior large events and the presence of distinctive upper plate, trench and outer rise structures relative to adjacent regions along the arc that have experienced repeated great interplate earthquakes in the last few centuries. The intraplate region seaward of the seismic gap had several shallow compressional events during the preceding decades (notably an MS 7.2 event on 16 March 1963), leading to speculation that the interplate fault was seismically coupled. This issue was partly resolved by failure of the shallow portion of the interplate megathrust in an MW = 8.3 thrust event on 15 November 2006. This event ruptured ???250 km along the seismic gap, just northeast of the great 1963 Kuril Island (Mw = 8.5) earthquake rupture zone. Within minutes of the thrust event, intense earthquake activity commenced beneath the outer wall of the trench seaward of the interplate rupture, with the larger events having normal-faulting mechanisms. An unusual double band of interplate and intraplate aftershocks developed. On 13 January 2007, an MW = 8.1 extensional earthquake ruptured within the Pacific plate beneath the seaward edge of the Kuril trench. This event is the third largest normal-faulting earthquake seaward of a subduction zone on record, and its rupture zone extended to at least 33 km depth and paralleled most of the length of the 2006 rupture. The 13 January 2007 event produced stronger shaking in Japan than the larger thrust event, as a consequence of higher short-period energy radiation from the source. The great event aftershock sequences were dominated by the expected faulting geometries; thrust faulting for the 2006 rupture zone, and normal faulting for the 2007 rupture zone. A large intraplate compressional event occurred on 15 January 2009 (Mw = 7.4) near 45 km depth, below the rupture zone of the 2007 event and in the vicinity of the 16 March 1963 compressional event. The fault geometry, rupture process and slip distributions of the two great events are estimated using very broadband teleseismic body and surface wave observations. The occurrence of the thrust event in the shallowest portion of the interplate fault in a region with a paucity of large thrust events at greater depths suggests that the event removed most of the slip deficit on this portion of the interplate fault. This great earthquake doublet demonstrates the heightened seismic hazard posed by induced intraplate faulting following large interplate thrust events. Future seismic failure of the remainder of the seismic gap appears viable, with the northeastern region that has also experienced compressional activity seaward of the megathrust warranting particular attention. Copyright 2009 by the American Geophysical Union.
NASA Technical Reports Server (NTRS)
Banks, Curtis E.; Grant, Joseph; Russell, Sam; Arnett, Shawn
2008-01-01
Fiber optic Bragg gratings were used to measure strain fields during Stress Rupture (SSM) test of Kevlar Composite Over-Wrapped Pressure Vessels (COPV). The sensors were embedded under the over-wrapped attached to the liner released from the Kevlar and attached to the Kevlar released from the liner. Additional sensors (foil gages and fiber bragg gratings) were surface mounted on the COPY liner.
Rupture of vertical soap films
NASA Astrophysics Data System (ADS)
Rio, Emmanuelle
2014-11-01
Soap films are ephemeral and fragile objects. They tend to thin under gravity, which gives rise to the fascinating variations of colors at their interfaces but leads systematically to rupture. Even a child can create, manipulate and admire soap films and bubbles. Nevertheless, the reason why it suddenly bursts remains a mystery although the soap chosen to stabilize the film as well as the humidity of the air seem very important. One difficulty to study the rupture of vertical soap films is to control the initial solution. To avoid this problem we choose to study the rupture during the generation of the film at a controlled velocity. We have built an experiment, in which we measure the maximum length of the film together with its lifetime. The generation of the film is due to the presence of a gradient of surface concentration of surfactants at the liquid/air interface. This leads to a Marangoni force directed toward the top of the film. The film is expected to burst only when its weight is not balanced anymore by this force. We will show that this leads to the surprising result that the thicker films have shorter lifetimes than the thinner ones. It is thus the ability of the interface to sustain a surface concentration gradient of surfactants which controls its stability.
NASA Astrophysics Data System (ADS)
Bie, Lidong; Hicks, Stephen; Garth, Thomas; Gonzalez, Pablo; Rietbrock, Andreas
2018-06-01
On 25 November 2016, a Mw 6.6 earthquake ruptured the Muji fault in western Xinjiang, China. We investigate the earthquake rupture independently using geodetic observations from Interferometric Synthetic Aperture Radar (InSAR) and regional seismic recordings. To constrain the fault geometry and slip distribution, we test different combinations of fault dip and slip direction to reproduce InSAR observations. Both InSAR observations and optimal distributed slip model suggest buried rupture of two asperities separated by a gap of greater than 5 km. Additional seismic gaps exist at the end of both asperities that failed in the 2016 earthquake. To reveal the dynamic history of asperity failure, we inverted regional seismic waveforms for multiple centroid moment tensors and construct a moment rate function. The results show a small centroid time gap of 2.6 s between the two sub-events. Considering the >5 km gap between the two asperities and short time interval, we propose that the two asperities failed near-simultaneously, rather than in a cascading rupture propagation style. The second sub-event locates ∼39 km to the east of the epicenter and the centroid time is at 10.7 s. It leads to an estimate of average velocity of 3.7 km/s as an upper bound, consistent with upper crust shear wave velocity in this region. We interpret that the rupture front is propagating at sub-shear wave velocities, but that the second sub-event has a reduced or asymmetric rupture time, leading to the apparent near-simultaneous moment release of the two asperities.
NASA Technical Reports Server (NTRS)
Harding, David; Sauber, J.; Luthcke, S.; Carabajal, C.; Muller, J
2005-01-01
The Andaman Islands are located 120 km east of the Sunda trench in the northern quarter of the 1300 km long rupture zone of the 2004 Sumatra-Andaman Islands earthquake inferred from the distribution of aftershocks. Initial field reports indicate that several meters of uplift and up to a meter of submergence occurred on the western and eastern shorelines of the Andaman Islands, respectively, associated with the earthquake (Bilham, 2005). Satellite images also document uplift of western shoreline coral reef platforms above sea level. Body-wave (Ji, 2005; Yamamaka, 2005) and tide-gauge (Ortiz, 2005) slip inversions only resolve coseismic slip in the southern one-third to one-half of the rupture zone. The amount of coseismic slip in the Andaman Islands region is poorly constrained by these inversions. The Ice, Cloud, and land Elevation Satellite (ICESat), a part of the NASA Earth Observing System, is being used to document the spatial pattern of Andaman Islands vertical displacements in order to constrain models of slip distribution in the northern part of the rupture zone. ICESat carries the Geoscience Laser Altimeter System (GLAS) that obtains elevation measurements from 80 m diameter footprints spaced 175 m apart along profiles. For surfaces of low slope, single-footprint absolute elevation and horizontal accuracies of 10 cm and 6 m (1 sigma), respectively, referenced to the ITRF 2002 TOPEX/Poseidon ellipsoid are being obtained. Laser pulse backscatter waveforms enable separation of ground topography and overlying vegetation cover. During each 33-day observing period ICESat acquires three profiles crossing the Andaman Islands. A NNE-SSW oriented track consists of 1600 laser footprints along the western side of North, Middle, and South Andaman Islands and 240 laser footprints across the center of Great Andaman Island. Two NNW-SSE tracks consist of 440 footprints across Middle Andaman Island and 25 footprints across the west side of Sentinel Island. Cloud-free profiles were acquired in the fall of 2003 and 2004. During February-March, 2005 ICESat's precise pointing capability will be used to exactly repeat these three profiles, with a cross-track accuracy of better than 100 m, providing trench- parallel and -perpendicular observations of topographic change of the Andaman Islands that will compliment geodetic field surveys. The observed elevation changes will be compared to models of coseismic deformation associated with the mainshock and large aftershocks in the Andaman Islands region.
NASA Astrophysics Data System (ADS)
Lin, A.; Rao, G.; Jia, D.; Wu, X.; Yan, B.; Ren, Z.
2010-12-01
The magnitude (Mw) 6.9 (Ms 7.1) Yushu earthquake occurred on 14 April 2010 in the Yushu area, central Tibetan Plateau, killing approximately 3000 people (including 270 missing) and causing widespread damage in the high mountain regions of the central Tibetan Plateau. The Yushu earthquake is comparable with the 1997 Mw 7.6 Manyi earthquake, the 2001 Mw 7.8 Kunlun earthquake, and the 2008 Mw 7.9 Wenchuan earthquake, which all occurred in the northern and eastern Tibetan Plateau, in terms of their magnitude and seismotectonic environment, related to the eastward extrusion of the Tibetan Plateau in response to continental collision between the Indian and Eurasian plates. Although some prompt reports related to ground deformation and the focal mechanism were published in the Chinese literature soon after the Yushu earthquake, there are scarce data related to the nature of co-seismic strike-slip rupturing structures and displacement distributions because the co-seismic surface ruptures were produced mainly in remote, high mountain regions of the Tibetan Plateau (average elevation >4000 m) and roads to the epicentral area were damaged, which made it difficult to gain access to the area and to undertake fieldwork immediately after the earthquake. Field investigations reveal that the earthquake produced a 33-km-long surface rupture zone, with dominantly left-lateral strike-slip along the Yushu Fault of the pre-existing strike-slip Ganzi-Yushu Fault Zone. The co-seismic surface ruptures are characterized by discontinuous shear faults, right-stepping en echelon tensional cracks, and left-stepping mole track structures that indicate a left-lateral strike-slip shear sense for the seismic fault. Field measurements indicate co-seismic left-lateral strike-slip displacements of approximately 0.3-3.2 m (typically 1-2 m), accompanied by a minor vertical component of <0.6 m. The present results show that (i) the Yushu earthquake occurred upon the pre-existing active Ganzi-Yushu Fault Zone, which controlled the spatial distribution of co-seismic surface ruptures and displacements; (ii) the left-lateral strike-slip motion indicates that the Ganzi-Yushu Fault Zone partitions deformation into eastward extrusion and northeastward shortening of the central Tibetan Plateau to accommodate the continuing penetration of the Indian plate into the Eurasian plate. Our findings confirm that present-day strain energy related to continental deformation in the central Tibetan Plateau, generated by collision between the Indian and Eurasian plates, is mainly released by strike-slip faulting along active strike-slip faults, and that the Ganzi-Yushu Fault Zone plays an important role in this crustal deformation, generating strong earthquakes that help to release the accumulated strain energy.
Pollitz, F.F.; Sacks, I.S.
2002-01-01
The M 7.3 June 28, 1992 Landers and M 7.1 October 16, 1999 Hector Mine earthquakes, California, both right lateral strike-slip events on NNW-trending subvertical faults, occurred in close proximity in space and time in a region where recurrence times for surface-rupturing earthquakes are thousands of years. This suggests a causal role for the Landers earthquake in triggering the Hector Mine earthquake. Previous modeling of the static stress change associated with the Landers earthquake shows that the area of peak Hector Mine slip lies where the Coulomb failure stress promoting right-lateral strike-slip failure was high, but the nucleation point of the Hector Mine rupture was neutrally to weakly promoted, depending on the assumed coefficient of friction. Possible explanations that could account for the 7-year delay between the two ruptures include background tectonic stressing, dissipation of fluid pressure gradients, rate- and state-dependent friction effects, and post-Landers viscoelastic relaxation of the lower crust and upper mantle. By employing a viscoelastic model calibrated by geodetic data collected during the time period between the Landers and Hector Mine events, we calculate that postseismic relaxation produced a transient increase in Coulomb failure stress of about 0.7 bars on the impending Hector Mine rupture surface. The increase is greatest over the broad surface that includes the 1999 nucleation point and the site of peak slip further north. Since stress changes of magnitude greater than or equal to 0.1 bar are associated with documented causal fault interactions elsewhere, viscoelastic relaxation likely contributed to the triggering of the Hector Mine earthquake. This interpretation relies on the assumption that the faults occupying the central Mojave Desert (i.e., both the Landers and Hector Mine rupturing faults) were critically stressed just prior to the Landers earthquake.
The Bear River Fault Zone, Wyoming and Utah: Complex Ruptures on a Young Normal Fault
NASA Astrophysics Data System (ADS)
Schwartz, D. P.; Hecker, S.; Haproff, P.; Beukelman, G.; Erickson, B.
2012-12-01
The Bear River fault zone (BRFZ), a set of normal fault scarps located in the Rocky Mountains at the eastern margin of Basin and Range extension, is a rare example of a nascent surface-rupturing fault. Paleoseismic investigations (West, 1994; this study) indicate that the entire neotectonic history of the BRFZ may consist of two large surface-faulting events in the late Holocene. We have estimated a maximum per-event vertical displacement of 6-6.5 m at the south end of the fault where it abuts the north flank of the east-west-trending Uinta Mountains. However, large hanging-wall depressions resulting from back rotation, which front scarps that locally exceed 15 m in height, are prevalent along the main trace, obscuring the net displacement and its along-strike distribution. The modest length (~35 km) of the BRFZ indicates ruptures with a large displacement-to-length ratio, which implies earthquakes with a high static stress drop. The BRFZ is one of several immature (low cumulative displacement) normal faults in the Rocky Mountain region that appear to produce high-stress drop earthquakes. West (1992) interpreted the BRFZ as an extensionally reactivated ramp of the late Cretaceous-early Tertiary Hogsback thrust. LiDAR data on the southern section of the fault and Google Earth imagery show that these young ruptures are more extensive than currently mapped, with newly identified large (>10m) antithetic scarps and footwall graben. The scarps of the BRFZ extend across a 2.5-5.0 km-wide zone, making this the widest and most complex Holocene surface rupture in the Intermountain West. The broad distribution of Late Holocene scarps is consistent with reactivation of shallow bedrock structures but the overall geometry of the BRFZ at depth and its extent into the seismogenic zone are uncertain.
Jin, Wook; Ryu, Kyung Nam; Kim, Gou Young; Kim, Hyun Cheol; Lee, Jae Hoon; Park, Ji Seon
2008-02-01
The purpose of this study was to retrospectively evaluate the sonographic findings of ruptured epidermal inclusion cysts in superficial soft tissue, with an emphasis on shapes, pericystic changes, and pericystic vascularity. The cases of 61 patients with surgically confirmed epidermal inclusion cysts were reviewed, and 13 patients were found to have ruptured cysts. The Ethics Committees of our institutions did not require patient approval or informed patient consent for this retrospective study. We evaluated the shapes, sizes, locations, pericystic changes, and pericystic vascularity for the 13 cases. The shapes of the ruptured epidermal inclusion cysts were classified into 3 types: with lobulations (type I, 2 cases), with protrusions (type II, 8 cases), and with abscess pocket formations (type III, 3 cases). The mean long diameter of the cysts was 3 cm. Common sites of ruptured epidermal inclusion cysts were the plantar surface of the metatarsophalangeal joint (4 cases) and buttocks (3 cases). Pericystic changes were noted in all of the type II and III cysts. Increased vascularity on color Doppler sonography was prominent in 3 type II cysts and 3 type III cysts. Deep abscess formation was noted in the epidermal inclusion cysts, especially for the type III cysts. A ruptured epidermal inclusion cyst visualized by sonography had variable shapes; the sonographic findings can be useful for obtaining a correct diagnosis of a ruptured epidermal inclusion cyst.
Blood flow characteristics in a terminal basilar tip aneurysm prior to its fatal rupture
Sforza, D.M.; Putman, C.M.; Scrivano, E.; Lylyk, P.; Cebral, J.R.
2010-01-01
Background and Purpose The development and validation of methods to stratify the risk of rupture of cerebral aneurysms is highly desired since current treatment risks can exceed the natural risk of rupture. Because unruptured aneurysms are typically treated before they rupture, it is very difficult to connect the proposed risk indices to the rupture of an individual aneurysm. The purpose of this case study was to analyze the hemodynamic environment of a saccular aneurysm of the terminal morphology sub-type that was imaged just prior to its rupture and to test whether the hemodynamic characteristics would designate this particular aneurysm as at high risk. Methods A patient-specific computational fluid dynamics model was constructed from 3D rotational angiography images acquired just hours before the aneurysm ruptured. A pulsatile flow calculation was performed and hemodynamic characteristics previously connected to rupture were analyzed. Results It was found that the aneurysm had a concentrated inflow stream, small impingement region, complex intra-aneurysmal flow structure, asymmetric flow split from the parent vessel to the aneurysm and daughter branches, and high levels of aneurysmal wall shear stress near the impaction zone. Conclusions The hemodynamics characteristics observed in this aneurysm right before its rupture are consistent with previous studies correlating aneurysm rupture and hemodynamic patterns in saccular and terminal aneurysms. This study supports the notion that hemodynamic information may be used to help stratify the rupture risk of cerebral aneurysms. PMID:20150312
Vortex dynamics in ruptured and unruptured intracranial aneurysms
NASA Astrophysics Data System (ADS)
Trylesinski, Gabriel
Intracranial aneurysms (IAs) are a potentially devastating pathological dilation of brain arteries that affect 1.5-5 % of the population. Causing around 500 000 deaths per year worldwide, their detection and treatment to prevent rupture is critical. Multiple recent studies have tried to find a hemodynamics predictor of aneurysm rupture, but concluded with distinct opposite trends using Wall Shear Stress (WSS) based parameters in different clinical datasets. Nevertheless, several research groups tend to converge for now on the fact that the flow patterns and flow dynamics of the ruptured aneurysms are complex and unstable. Following this idea, we investigated the vortex properties of both unruptured and ruptured cerebral aneurysms. A brief comparison of two Eulerian vortex visualization methods (Q-criterion and lambda 2 method) showed that these approaches gave similar results in our complex aneurysm geometries. We were then able to apply either one of them to a large dataset of 74 patient specific cases of intracranial aneurysms. Those real cases were obtained by 3D angiography, numerical reconstruction of the geometry, and then pulsatile CFD simulation before post-processing with the mentioned vortex visualization tools. First we tested the two Eulerian methods on a few cases to verify their implementation we made as well as compare them with each other. After that, the Q-criterion was selected as method of choice for its more obvious physical meaning (it shows the balance between two characteristics of the flow, its swirling and deformation). Using iso-surfaces of Q, we started by categorizing the patient-specific aneurysms based on the gross topology of the aneurysmal vortices. This approach being unfruitful, we found a new vortex-based characteristic property of ruptured aneurysms to stratify the rupture risk of IAs that we called the Wall-Kissing Vortices, or WKV. We observed that most ruptured aneurysms had a large amount of WKV, which appears to agree with the current hypothesized biological triggers of pathological remodeling of the artery walls. Having a good natural ratio of statuses in our IA cohort (55 unruptured vs. 19 ruptured), we were able to test the statistical significance of our predictor to fortify our findings. We also performed a distribution analysis of our cohort with respect to the number of WKV to strengthen the encouraging statistical analysis result; both analyses provided a clear good separation of the status of the aneurysms based on our predictor. Lastly, we constructed a receiver operating characteristic (ROC) curve to analyze the power different thresholds of WKV had in splitting the data in a binary way (unruptured/ruptured). The number of WKV was efficaciously able to stratify the rupture status, identifying 84.21 % of the ruptured aneurysms (with 25.45 % of false positives, i.e. unruptured IAs tagged as ruptured) when using a threshold value of 2. Our novel work undertaken to study the vortex structures in IAs brought to light interesting characteristics of the flow in the aneurysmal sac. We found that there are several distinct categories in which the aneurysm vortex topologies can be put in without relationship to the aneurysm rupture status. This first finding was in contradiction with available already-published results. Nonetheless, ruptured IAs had a statistically significant larger amount of WKV as opposed to unruptured aneurysms. This new predictor we propose to the community could very well clear a new path among the currently controversial WSS-based parameters. Although it needs to be improved to be more resilient, the first results obtained by the WKV-based parameter are promising when applied to a large dataset of 74 IAs patient-specific transient CFD simulations.
NASA Astrophysics Data System (ADS)
Niemi, N. A.; Stahl, T.; Andreini, J.; Wells, J.; Bunds, M. P.
2016-12-01
The western face of the House Range in Utah is one of the steepest normal fault-bounded blocks in the Basin and Range. In spite of this, clear evidence of recent faulting is limited to a single c. 10 km-long, 1-2 m high scarp at the surface. A drone-based photogrammetric DEM with <10 cm resolution reveals that the fault displaces transgressive Lake Bonneville (c. 20-18 ka) and Provo highstand shorelines (c. 17 cal. ka) by similar amounts, suggesting a single event displacement of c. 1.5 m. Elastic strain models that incorporate shoreline geometry are best-fit by a fault dip of 50-60° in the uppermost crust, whereas previous studies have noted that the fault becomes listric or is truncated by a low-angle fault at depth. Exposure-ages of surface clasts on undeformed alluvial fans suggest that regression from the Provo shoreline occurred rapidly and that the last surface-rupturing earthquake occurred during occupation of the Provo shoreline. This pattern is consistent with other areas in the Great Basin that observe enhanced seismic moment release and earthquake ruptures during late Pleistocene lake regression. We calculate a time-averaged slip rate of 0.1-0.2 mm/yr and minimum recurrence interval of 17 ka. This study highlights the utility of drone surveys and high-resolution geochronology in neotectonic studies and in defining paleoseismic fault parameters.
Creep, creep-rupture tests of Al-surface-alloyed T91 steel in liquid lead bismuth at 500 and 550 °C
NASA Astrophysics Data System (ADS)
Weisenburger, A.; Jianu, A.; An, W.; Fetzer, R.; Del Giacco, Mattia; Heinzel, A.; Müller, G.; Markov, V. G.; Kasthanov, A. D.
2012-12-01
Surface layers made of FeCrAl alloys on T91 steel have shown their capability as corrosion protection barriers in lead bismuth. Pulsed electron beam treatment improves the density and more over the adherence of such layers. After the treatment of previously deposited coatings a surface graded material is achieved with a metallic bonded interface. Creep-rupture tests of T91 in lead-alloy at 550 °C reveal significant reduced creep strength of non-modified T91 test specimens. Oxide scales protecting the steels from attacks of the liquid metal will crack at a certain strain leading to a direct contact between the steel and the liquid metal. The negative influence of the lead-alloy on the creep behavior of non-modified T91 is stress dependent, but below a threshold stress value of 120 MPa at 550 °C this influence becomes almost negligible. At 500 °C and stress values of 200 MPa and 220 MPa the creep rates are comparable between them and significantly lower than creep rates at 180 MPa of original T91 in air at 550 °C. No signs of LBE influence are detected. The surface modified specimens tested at high stress levels instead had creep-rupture times similar to T91 (original state) tested in air. The thin oxide layers formed on the surface modified steel samples are less susceptible to crack formation and therefore to lead-alloy enhanced creep.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Constable, D.W.; Pierce, J.R.; Wood, S.A.
1962-04-26
The purpose of this report is to discuss the observations made on two equilibrium scram recovery startups (April 5 and April 16). Normally, the two startups would have little significance but unusual ruptures were experienced in the top near section of the reactor shortly after both startups, which indicates that some similarity could exist between the two. The ruptures were unusual in that the two tubes involved both had multiple ruptures. One tube contained two E{sup 2} ruptures and the other tube contained three overbore metal ruptures. The overbore tube also contained three incipient ruptures (uranium split under the can).more » The initial rise to power on both startups appeared to be normal with the flux peaking on the near side as expected. On the April 16 startup the maximum level reached was 1050 at which time a rupture in overbore tube 3062 caused on increase in pressure resulting in a high trip on the Panellit gauge. A level of 1600 was reached on the April 5 startup which was held for approximately 14 hours at which time the reactor was shut down due to rupture indications on row 29.« less
NASA Astrophysics Data System (ADS)
Clévédé, E.; Bouin, M.-P.; Bukchin, B.; Mostinskiy, A.; Patau, G.
2004-12-01
This paper illustrates the use of integral estimates given by the stress glut rate moments of total degree 2 for constraining the rupture scenario of a large earthquake in the particular case of the 1999 Izmit mainshock. We determine the integral estimates of the geometry, source duration and rupture propagation given by the stress glut rate moments of total degree 2 by inverting long-period surface wave (LPSW) amplitude spectra. Kinematic and static models of the Izmit earthquake published in the literature are quite different from one another. In order to extract the characteristic features of this event, we calculate the same integral estimates directly from those models and compare them with those deduced from our inversion. While the equivalent rupture zone and the eastward directivity are consistent among all models, the LPSW solution displays a strong unilateral character of the rupture associated with a short rupture duration that is not compatible with the solutions deduced from the published models. With the aim of understand this discrepancy, we use simple equivalent kinematic models to reproduce the integral estimates of the considered rupture processes (including ours) by adjusting a few free parameters controlling the western and eastern parts of the rupture. We show that the joint analysis of the LPSW solution and source tomographies allows us to elucidate the scattering of source processes published for this earthquake and to discriminate between the models. Our results strongly suggest that (1) there was significant moment released on the eastern segment of the activated fault system during the Izmit earthquake; (2) the apparent rupture velocity decreases on this segment.
A Benchmarking setup for Coupled Earthquake Cycle - Dynamic Rupture - Tsunami Simulations
NASA Astrophysics Data System (ADS)
Behrens, Joern; Bader, Michael; van Dinther, Ylona; Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Uphoff, Carsten; Vater, Stefan; Wollherr, Stephanie; van Zelst, Iris
2017-04-01
We developed a simulation framework for coupled physics-based earthquake rupture generation with tsunami propagation and inundation on a simplified subduction zone system for the project "Advanced Simulation of Coupled Earthquake and Tsunami Events" (ASCETE, funded by the Volkswagen Foundation). Here, we present a benchmarking setup that can be used for complex rupture models. The workflow begins with a 2D seismo-thermo-mechanical earthquake cycle model representing long term deformation along a planar, shallowly dipping subduction zone interface. Slip instabilities that approximate earthquakes arise spontaneously along the subduction zone interface in this model. The absolute stress field and material properties for a single slip event are used as initial conditions for a dynamic earthquake rupture model.The rupture simulation is performed with SeisSol, which uses an ADER discontinuous Galerkin discretization scheme with an unstructured tetrahedral mesh. The seafloor displacements resulting from this rupture are transferred to the tsunami model with a simple coastal run-up profile. An adaptive mesh discretizing the shallow water equations with a Runge-Kutta discontinuous Galerkin (RKDG) scheme subsequently allows for an accurate and efficient representation of the tsunami evolution and inundation at the coast. This workflow allows for evaluation of how the rupture behavior affects the hydrodynamic wave propagation and coastal inundation. We present coupled results for differing earthquake scenarios. Examples include megathrust only ruptures versus ruptures with splay fault branching off the megathrust near the surface. Coupling to the tsunami simulation component is performed either dynamically (time dependent) or statically, resulting in differing tsunami wave and inundation behavior. The simplified topographical setup allows for systematic parameter studies and reproducible physical studies.
NASA Astrophysics Data System (ADS)
Dogan, U.; Demir, D. O.; Cakir, Z.; Ergintav, S.; Cetin, S.; Ozdemir, A.; Reilinger, R. E.
2017-12-01
The 23 October 2011, Mw=7.2 Van Earthquake occurred in eastern Turkey on a thrust fault trending NE-SW and dipping to the north. We use GPS time series from the survey and continuous stations to determine coseismic deformation and to identify spatial and temporal changes in the near and far field due to postseismic processes (2011-2017). The coseismic deformation in the near field is derived from GPS data collected at 25 cadastral GPS survey sites. The coseismic horizontal displacements reach nearly 50 cm close to the surface trace of the fault that ruptured at depth during the earthquake. The density and distribution of the GPS sites allow us to better constrain the extent of the coseismic rupture using elastic dislocations on triangular faults embedded in a homogeneous, elastic half space. Modeling studies suggest that the coseismic rupture stopped west of the Erçek Lake before veering to the north. Estimated seismic moment is in good agreement with the seismologically and geodetically estimated seismic moment, estimated from the finite-fault model. Our preferred coseismic model consists of a simple elliptical slip patch centered at around 8 km depth with a maximum slip of about 2.5 m, consistent with the previous estimates based on InSAR measurements. The postseismic deformation field is derived from far field continuous GPS observations (10.2011 - 11.2017) and near field GPS campaigns (10.2011 - 09.2015). The postseismic time-series are fit better with a logarithmic than an exponential function, suggesting that the postseismic deformation is due to afterslip. Then, we modified our published postseismic model, using the coseismic model and data sets, extended until the end of 2017. The results show that during 6 years following the earthquake, after slip of up to 65 cm occurred at relatively shallow (< 10 km) depths, mostly above the deep coseismic slip that reaches depths > 15 km. New interpretations of the shallow afterslip, also, adds further evidence that the surface break observed after the earthquake was caused by coseismic stress changes rather than representing the coseismic fault. (This study is supported by TUBITAK no: 112Y109 project). Keywords: Van earthquake, GPS, coseismic, postseismic, deformation, elastic modeling
Dynamics of a pre-lens tear film after a blink: Model, evolution, and rupture
NASA Astrophysics Data System (ADS)
Usha, R.; Anjalaiah, Sanyasiraju, Y. V. S. S.
2013-11-01
A mathematical model is developed to investigate the dynamics and rupture of a pre-lens tear film on a contact lens. The contact lens is modeled as a saturated porous medium of constant, finite thickness and is described by the Darcy-Brinkman equations with stress-jump condition at the interface. The model incorporates the influence of capillarity, gravitational drainage, contact lens properties such as the permeability, the porosity, and the thickness of the contact lens on the evolution and rupture of a pre-lens tear film, when the eyelid has opened after a blink. Two models are derived for the evolution of a pre-lens tear film thickness using lubrication theory and are solved numerically; the first uses shear-free surface condition and the second, the tangentially immobile free surface condition. The results reveal that life span of a pre-lens tear film is longer on a thinner contact lens for all values of permeability and porosity parameter considered. An increase in permeability of contact lens, porosity or stress-jump parameter increases the rate of thinning of the film and advances the rupture time. The viscous-viscous interaction between the porous contact lens and the pre-lens tear film increases the resistance offered by the frictional forces to the rate of thinning of pre-lens tear film. This slows down the thinning process and hence delays the rupture of the film as compared to that predicted by the models of Nong and Anderson [SIAM. J. Appl. Math. 70, 2771-2795 (2010)] derived in the framework of Darcy model.
NASA Astrophysics Data System (ADS)
Qin, W.; Yin, J.; Yao, H.
2013-12-01
On May 24th 2013 a Mw 8.3 normal faulting earthquake occurred at a depth of approximately 600 km beneath the sea of Okhotsk, Russia. It is a rare mega earthquake that ever occurred at such a great depth. We use the time-domain iterative backprojection (IBP) method [1] and also the frequency-domain compressive sensing (CS) technique[2] to investigate the rupture process and energy radiation of this mega earthquake. We currently use the teleseismic P-wave data from about 350 stations of USArray. IBP is an improved method of the traditional backprojection method, which more accurately locates subevents (energy burst) during earthquake rupture and determines the rupture speeds. The total rupture duration of this earthquake is about 35 s with a nearly N-S rupture direction. We find that the rupture is bilateral in the beginning 15 seconds with slow rupture speeds: about 2.5km/s for the northward rupture and about 2 km/s for the southward rupture. After that, the northward rupture stopped while the rupture towards south continued. The average southward rupture speed between 20-35 s is approximately 5 km/s, lower than the shear wave speed (about 5.5 km/s) at the hypocenter depth. The total rupture length is about 140km, in a nearly N-S direction, with a southward rupture length about 100 km and a northward rupture length about 40 km. We also use the CS method, a sparse source inversion technique, to study the frequency-dependent seismic radiation of this mega earthquake. We observe clear along-strike frequency dependence of the spatial and temporal distribution of seismic radiation and rupture process. The results from both methods are generally similar. In the next step, we'll use data from dense arrays in southwest China and also global stations for further analysis in order to more comprehensively study the rupture process of this deep mega earthquake. Reference [1] Yao H, Shearer P M, Gerstoft P. Subevent location and rupture imaging using iterative backprojection for the 2011 Tohoku Mw 9.0 earthquake. Geophysical Journal International, 2012, 190(2): 1152-1168. [2]Yao H, Gerstoft P, Shearer P M, et al. Compressive sensing of the Tohoku-Oki Mw 9.0 earthquake: Frequency-dependent rupture modes. Geophysical Research Letters, 2011, 38(20).
Observations of the rupture development process from source time functions
NASA Astrophysics Data System (ADS)
Renou, Julien; Vallée, Martin
2017-04-01
The mechanisms governing the seismic rupture expansion and leading to earthquakes of very different magnitudes are still under debate. In the cascade model, the rupture starts from a very small patch, which size is undetectable by seismological investigation. Then rupture grows in a self-similar way, implying that no clues about the earthquake magnitude can be found before rupture starts declining. However dependencies between early phases of the rupture process and final magnitude have also been proposed, which can be explained if an earthquake is more likely to be a big one when its start and early development occur in rupture-prone areas. Here, the analysis of the early phases of the seismic rupture is achieved from an observational point of view using the SCARDEC database, a global catalog containing more than 3000 Source Time Functions (STFs) of earthquakes with magnitude larger than 5.7. This dataset is theoretically very suitable to investigate the initial phase, because STFs directly describe the seismic moment rate released over time, giving access to the rupture growth behavior. As several studies already showed that deep earthquakes tend to have a specific signature of short duration with respect to magnitude (implying a quicker rupture growth than superficial events), only shallow events (depths < 70km) are analyzed here. Our method consists in computing the STFs slope, i.e. the seismic moment acceleration, at several prescribed moment rates. In order to ensure that the chosen moment rates intersect the growth phase of the STF, its value must be high enough to avoid the very beginning of the signal -not well constrained in the deconvolution process-, and low enough to avoid the proximity of the peak moment rate. This approach does not use any rupture time information, which is interesting as (1) the exact hypocentral time can be uncertain and (2) the real rupture expansion can be delayed compared to origin time. If any magnitude-dependent signal exists, the average or median value of the slope should vary with the magnitude of the events, despite the intrinsic variability of the STFs. The preliminary results from the SCARDEC dataset seem to only exhibit a weak dependence of the slope with magnitude, in the magnitude domain where the chosen moment rate value crosses most of the STFs onsets. In addition, our results point out that slope values gradually increase with the moment rate. These findings will be discussed in the frame of the existing models of seismic rupture expansion.
Xie, Yong; Mintz, Gary S; Yang, Junqing; Doi, Hiroshi; Iñiguez, Andrés; Dangas, George D; Serruys, Patrick W; McPherson, John A; Wennerblom, Bertil; Xu, Ke; Weisz, Giora; Stone, Gregg W; Maehara, Akiko
2014-04-01
The aim of this study was to report the frequency, patient and lesion-related characteristics, and outcomes of subclinical, nonculprit plaque ruptures in the PROSPECT (Providing Regional Observations to Study Predictors of Events in the Coronary Tree) study. Plaque rupture and subsequent thrombosis is the most common cause of acute coronary syndrome (ACS). Secondary, subclinical, nonculprit plaque ruptures have been seen in both stable patients and patients with ACS; however, reports of the natural history of these secondary plaque ruptures are limited. After successful stenting in 697 patients with ACS, 3-vessel grayscale and intravascular ultrasound virtual histology (IVUS-VH) was performed in the proximal-mid segments of all 3 coronary arteries as part of a prospective multicenter study. Among 660 patients with complete IVUS data, 128 plaque ruptures were identified in 105 nonculprit lesions in 100 arteries from 93 patients (14.1%). Although the minimum lumen area (MLA) was similar, the plaque burden was significantly greater in nonculprit lesions with a plaque rupture compared with nonculprit lesions without a plaque rupture (66.0% [95% confidence interval: 64.5% to 67.4%] vs. 56.0% [95% confidence interval: 55.6% to 56.4%]; p < 0.0001). IVUS-VH analysis revealed that a nonculprit lesion with a plaque rupture was more often classified as a fibroatheroma than a nonculprit lesion without a plaque rupture (77.1% vs. 51.4%; p < 0.0001). Independent predictors of a plaque rupture were lesion length (per 10 mm; odds ratio: 1.30; p < 0.0001), plaque burden at the MLA site (per 10%; odds ratio: 2.56; p < 0.0001), vessel area at the MLA site (per 1 mm(2); odds ratio: 1.13; p < 0.0001), and VH-thin-cap fibroatheroma (odds ratio: 1.80; p = 0.016). During 3 years of follow-up, the incidence of overall major adverse cardiac events did not differ significantly between the patients with and patients without subclinical, nonculprit plaque ruptures. Secondary, nonculprit plaque ruptures were seen in 14% of patients with ACS and were associated with a fibroatheroma phenotype with a residual necrotic core but not with adverse outcomes if patients were treated with optimal medical therapy as part of a multicenter study. (Providing Regional Observations to Study Predictors of Events in the Coronary Tree [PROSPECT]; NCT00180466). Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Ligand Binding: Molecular Mechanics Calculation of the Streptavidin-Biotin Rupture Force
NASA Astrophysics Data System (ADS)
Grubmuller, Helmut; Heymann, Berthold; Tavan, Paul
1996-02-01
The force required to rupture the streptavidin-biotin complex was calculated here by computer simulations. The computed force agrees well with that obtained by recent single molecule atomic force microscope experiments. These simulations suggest a detailed multiple-pathway rupture mechanism involving five major unbinding steps. Binding forces and specificity are attributed to a hydrogen bond network between the biotin ligand and residues within the binding pocket of streptavidin. During rupture, additional water bridges substantially enhance the stability of the complex and even dominate the binding inter-actions. In contrast, steric restraints do not appear to contribute to the binding forces, although conformational motions were observed.